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Abstract

While machine learning (ML) has found multiple applications in photonics, tradi-
tional “black box” ML models typically require prohibitively large training data sets.
Generation of such data, as well as the training processes themselves, consume signif-
icant resources, often limiting practical applications of ML. Here we demonstrate that
embedding Maxwell’s equations into ML design and training significantly reduces the
required amount of data and improves the physics-consistency and generalizability of
ML models, opening the road to practical ML tools that do not need extremely large
training sets. The proposed physics-guided machine learning (PGML) approach is il-
lustrated on the example of predicting complex field distributions within hyperbolic
metamaterial photonic funnels, based on multilayered plasmonic-dielectric composites.
The hierarchical network design used in this study enables knowledge transfer and

points to the emergence of effective medium theories within neural networks.
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1 Introduction

Composite materials with engineered optical properties, metamaterials and metasurfaces,
are rapidly advancing as platforms for optical communications, sensing, imaging, and com-
puting. " The complexity of typical metamaterials makes it almost impossible to under-
stand and optimize their interaction with light based on experimental or analytical theory
approaches alone, leaving the problem of light interaction with metamaterials to computa-
tional sciences. %9 Currently, finite-difference time domain (FDTD)! and finite element
methods (FEM) 1112 represent industry-standard approaches to understanding the optics of
nonperiodic composite media.

Machine learning (ML) techniques, particularly neural networks (NNs), have recently
been incorporated into the design, evaluation, and measurement of nanophotonic struc-
tures. 32! Properly trained ML tools can be used as surrogate models that predict the
spectral response of composites or—rarely—field distributions within metamaterials. 1422724
Since ML does not solve the underlying electromagnetic problem, these predictions are signif-
icantly faster than brute-force simulations. However, extensive training sets, often featuring
~ 10%...10° configurations are required in order to develop high-quality ML models. 142528
The time and computational resources needed to generate these data sets, as well as the
time and resources needed for the ML training process, are significant and often serve as the
main limitation to ML use in computational photonics.

) 29,30

Embedding physics-based constraints (physics-consistency into the ML training pro-

cess may be beneficial for the resulting models. ML methods for general solutions of partial
differential equations (PDEs) are being developed. 3! 3® However, as of now, these techniques
are illustrated on convenient “toy” models and cannot be straightforwardly applied to prac-

6,7,39

tical electromagnetic problems. Physics-guided machine learning (PGML) is emerging

as a promising platform that can combine data- and physics-driven learning. Notably, pre-
vious PGML attempts have been focused on dielectric®® or relatively simple plasmonic”

composites. Here we develop PGML models that are capable of predicting electromagnetic



fields within plasmonic metamaterials. We illustrate our technique by analyzing the opti-

cal response of metamaterials-based photonic funnels: 4042

conical structures with strongly
anisotropic composite cores that are capable of concentrating light to deep subwavelength
areas. We show that physics-based constraints enable training on unlabeled data and sig-
nificantly improve the accuracy and generalizability of the models. We also attempt to
understand the inner workings of the NNs by analyzing the performance of hierarchical
models with different data resolutions.
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Figure 1: (a) schematic of the photonic funnel with cut-out demonstrating the composite
structure of the core; inset shows scanning electron microscope (SEM) image of as-fabricated
array of funnels (b) simulation setup used in FEM-based solutions of Maxwell’s equations;
NNs are trained only on a subregion of the FEM data which contains the funnel; (c,d)
wavelength dependence of (c) the permittivity of the highly doped plasmonic components of
the funnels and (d) the components of the resulting effective permittivity tensor.



2 Hyperbolic Metamaterial-based Photonic Funnels

An electromagnetic composite comprising sufficiently thin alternating layers of non-magnetic
materials with permittivities €;, e, and thicknesses dy,dy (see Fig.1) behaves as a uniaxial

medium whose optical axis is perpendicular to the layers (direction Z in this work) and

di€e1+doen and

whose diagonal permittivity tensor has components given by: €,, = €,y = €, = 72

_ (ditdy)eren

. dreatdner Such a material supports the propagation of two types of plane waves that

differ in their polarization and have fundamentally different dispersions.

The ordinary waves (which have E L 2) satisfy the dispersion relation k2 = €, w?/c* with
lg, w, and c representing the wavevector of the wave, operating angular frequency, and speed of
light in vacuum, respectively. This dispersion is identical to that of plane waves propagating
in a homogeneous isotropic material with permittivity ¢,. On the other hand, the extraor-
dinary, or transverse-magnetic (TM), waves (with H L 2) have dispersion @ + % = “;—22
Notably, for anisotropic materials, the dispersion of extraordinary waves is either elliptical or
hyperbolic. The topology of the iso-frequency contours strongly depends on the combination
of signs of the effective permittivity tensor.

When the components of the permittivity tensor are of opposite signs, the iso-frequency
surfaces are hyperboloids. This hyperbolic dispersion has been identified as the enabling
mechanism for such unique optical phenomena as negative refraction, strong enhancement
of light matter interaction, and for light manipulation in ultrasmall (deep subwavelength)
areas. #3746 Hyperbolicity can be achieved by alternating layers of dielectric (€; = ¢4 > 0)
and plasmonic (e = €,, < 0) layers. In the semiclassical regime (typically, when the layer
thickness 2 10 nm) the permittivity of the plasmonic layers as a function of angular frequency
of light is well described by the Drude model,*”

enli) = (1- “’—) ()

w? + iyw

with €,wp, and v being background permittivity, plasma frequency, and scattering rate,



respectively. Here we use €5, = 12.15,7 = 10571, and parameterize the plasma frequency
using the plasma wavelength, \,, via w, = 2mc/\,.

The most common implementation of these metamaterials leverages a 50,/50 composition
(dy = dy = d). For such systems topological transitions occur when the permittivity of the
plasmonic layers (¢,,,) and the weighted permittivity of the mixture (e,) change signs. %
The dispersion of TM waves inside the metamaterial is elliptic for shorter wavelengths A < A,,.
It changes to type-I hyperbolicity (e, > 0,¢,. < 0) for A, < A < A, with the renormalized
plasma frequency, ),, defined as Re(e; (\,)) = 0. Finally, the dispersion of TM waves in the
composite becomes type-II hyperbolic (e, < 0,¢,, > 0) for 5\1, <A

4042 shown in

Photonic funnels, conical waveguides with hyperbolic metamaterial cores,
Fig.1, represent excellent examples of structures capable of manipulating light at a deep
subwavelength scale. Recent experimental results®4? demonstrate efficient concentration of
mid-infrared light with a vacuum wavelength of ~10 pm to spatial areas as small as ~300 nm,
1/30%™ of the operating wavelength, within an all-semiconductor “designer metal” material
platform.“® Further analysis relates the field concentration near the funnels’ tips to the
absence of the diffraction limit within the hyperbolic material and to the anomalous internal
reflection of light from the funnel sidewall, which forms an interface oblique to the optical
axis.*? Importantly, the optical response of realistic funnels can be engineered at the time
of fabrication by controlling the doping of the “designer metal” layers and thereby adjusting
the plasma frequency of these layers. The unusual electromagnetic response, strong field

confinement, and significant field inhomogeneities make photonic funnels an ideal platform

for testing the performance of ML-driven surrogate solvers of Maxwell’s equations.



3 Methods

3.1 Data set description and generation

To construct a sufficiently diverse set of labeled configurations, we used FEM to solve for
electromagnetic field distributions in photonic funnels with plasmonic layers of different
doping concentrations corresponding to plasma wavelengths®® of 6 pm, 7 pm, 8.5 um, 10 pm
and 11 pm. Fig.1 illustrates the wavelength-dependent permittivity of plasmonic layers with
various doping concentrations as well as the corresponding effective medium response of the
layered metamaterials. Note the drastic changes of effective medium response as a function
of both wavelength and doping.

For each doping level, wavelength-dependent permittivity and electromagnetic field dis-
tributions have been calculated with a commercial FEM-based solver!? (that takes into
account that all fields are proportional to exp(—i¢) with ¢ being the angular coordinate of
the cylindrical reference frame) for free-space wavelengths from 8 ym to 12 pm with incre-
ments of 62.5nm. The FEM model setup is shown schematically in Fig.1la. Electromagnetic
waves that are normally incident on the funnel base are generated by the port boundary
condition. Perfectly matched layers!'! and scattering boundary conditions are used to make
the outside boundaries of the simulation region completely transparent to electromagnetic
waves, thereby mimicking the surrounding infinite space. The model, which explicitly incor-
porates 80 nm-thick layers in the funnel cores, is meshed with a resolution of at most 40 nm
inside the funnel and 200 nm outside the funnels, with the mesh growth factor set to 1.1 to
avoid artifacts related to abrupt changes in mesh size.

For every plasma wavelength and operating frequency the distribution of electromagnetic
fields, along with the distributions of permittivities within a small (5 x 12 pm) region of space
containing the funnel (see Fig.1) is interpolated onto a rectangular mesh with resolution
12.5nm x 10 nm along the r and z directions, respectively, forming the basis for the data sets

used in the study. Note that selecting this internal region of space from the FEM simulations



allows us to (i) implicitly incorporate the proper boundary conditions for both incident as well
as scattered electromagnetic fields and (ii) avoid the implementation of perfectly matched
layers, ports, and scattering conditions within the physics-based constraints used in training

our NNs.

The original FEM-generated data has been then resampled into three separate data sets:

e low-resolution data set, 20 x 60 pixels with resolution 250 nm and 200 nm in r and z

directions, respectively
e medium-resolution data set, 100 x 300 pixels with resolution 50 nm x 40 nm

e high-resolution data set, 200 x 600 pixels with resolution of 25nm x 20nm

4 Neural Network Architecture

On a fundamental level, approximating solutions of Maxwell’s equations within metama-
terials with ML necessitates a neural network to map the operating frequency and the
distribution of permittivity across the composite to the distribution of electromagnetic

5152 has demon-

fields, a problem that is similar to image transformation. Previous analysis
strated that convolutional neural networks (CNNs) excel in image transformation. Specif-
ically, encoder-decoder, CNN, and U-net architectures have shown success in electromag-

netic problems, 1%:21:53-55

presumably due to the cores of the networks learning some low-
dimensional representation of the solutions.3*% Note, however, that the vast majority of
previous ML-driven solvers of Maxwell’s equations?!3%:5758 have analyzed dielectric compos-
ites (where electromagnetic fields are relatively smooth) and were trained on relatively large
data sets. 14:20:39

We follow the general approach of constructing U-nets. The design of our networks is
summarized in Fig.2. Starting with the pixel resolution of the data set, the proposed CNNs

reduce the dimensionality of the problem to 20 x 10 pixels, and then expand the resulting

distributions to their original size.



The linear parts of the network employ standard convolutional and transposed convolu-
tional layers with stride = 1 for those parts of the network that preserve pixel size and with
stride > 1 for those that perform encoding/downsampling and decoding/upsampling. Hy-
perbolic tangent activation layers are used to add nonlinearities to the CNN. Combinations
of convolutional and tanh layers are marked as thick arrows in Fig.2. In addition, custom
layers are introduced to implement skip connections which can propagate the vacuum wave-
length and permittivity distributions into the depth of the network for both stability of the
resulting NN and to enable evaluation of the physics-consistency of the resulting predic-
tions. These layers operate by directly appending several layers of pixels to the output of a
given convolutional layer (thin black arrows in Fig.2) or by first downsampling to the core

resolution and then concatenating (thin orange arrows in Fig.2).

B 60 x 20 x 3 60 X 20 X 24 60 X 20 X 12 60x20x4 =
20 x 10 x 24
l--»-»-». ‘>
1 60 X 20 x12 60 X 20 X 8
300 x 100 x 3 300 x 100 x 12 300 x 100 x 8
60 x20x3 60 x 20 X 24
- » Il » I~ I
| 1 60 X 20 x12 300 x 100 x 4
600 X 200 x 3 600 X 200 X 8
300 X 100 x 3 300 x 100 x 12
» 60x20x3 60 x 20 X 24 » D s »
+ I I
- 60 x 20 x12 600 x 200 x 4
Input (3 layers): » Conv. Stride > 1, tanh — Downsample + Copy 3" layer l Calc H,,H, Output (11 layers):
| |- Re(e) » Conv. Stride = 1, tanh — Copy Layers Hg (complex, 2 layers)

* E4 (complex, 2 layers)
= ¢ (complex, 2 layers)
. 2

= H, (complex, 2 layers)
= H, (complex, 2 layers)

= Im(e)
= A

. Transp. Conv. Stride > 1, tanh

[> No transform

-

Figure 2: Setup of the CNN used in the study; the three rows represent low-, medium-
, and high-resolution networks; boxes represent the size of data as it propagates through
the network; arrows represent CNN data operations: each thick solid arrow represents the
combination of a (transposed) convolutional layer and a tanh activation layer; thin black
and orange arrows represent skip connections; thin red arrows represent input and output.



The base part of the NN (blue layers in Fig.2) is designed to learn the distribution of
the ¢ components of the electric and magnetic fields. Note that in our hierarchical setup,
the core of the networks remains the same, independent of the resolution of the data set,
with the outer structure producing encoding/decoding from/to the higher resolution. The
inner structure of the network (layer dimensionality and filter size) was optimized using
the low-resolution data set. The medium- and high-resolution networks build upon this
geometry by adding “hierarchical” downsampling and upsampling layers, implemented via
convolutional and transposed convolutional layers in our NNs. Our analysis suggests that
it is important to initialize the downsampling layers with unit weights, thereby setting the
network for brute-force averaging of permittivity during the initial training iterations.

The physics-agnostic portion of the CNN, which is trained to produce the ¢ components
of the magnetic and electric fields, is followed by a physics-informed layer (gray layers in
Fig.2) which calculates distributions of the r and z components of the magnetic field based

on analytical expressions derived from Maxwell’s equations:

- —1 1= ws o=
E,.. = ——D, By — — D,.H 2
- —1 1= W =

c? r2

where we have introduced the vector differential operator D, f = f%ﬁ (rf)+ é’a—ﬁ.
Because the fields are discretized on a regular rectangular grid, all derivatives are ap-

proximated with finite difference schemes. Forward and backward differences are used at the

edges of the computational domain, while central differences are used within it. Our imple-

mentation of the CNNs used in this work and the data sets used in training are available on

GitHub and Figshare, respectively. 569

As seen from Egs.(3), predictions for H, and H, may diverge when er’w?/c* ~ 1. This

instability is a direct consequence of applying differential operators in cylindrical geometry.

Here, we address the related issues by introducing a regularizing function (see below and SI).
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Our approach, illustrated here on an example of cylindrical geometry may be generalized to

other curvilinear coordinates.

4.1 Knowledge transfer between different NN

As mentioned above, in the limit of ultrathin layers, the optics of multilayer metamaterials
can be adequately described by the effective medium theory. In a related but separate
scope, the U-shaped NNs are hypothesized to learn low-dimensional representations of the
underlying phenomena. These considerations motivate the hierarchical design of the NNs
used in this work.

To explore whether the learning outcomes of the NNs are consistent with the effective
medium description, we performed a series of experiments where pretrained lower-resolution
networks were used as pretrained cores of higher-resolution transfer-learning (TL) networks.
In these studies, the learning parameters of the pretrained “core” layers were frozen, with
only the averaging and transposed convolution peripheral layers of the higher-resolution NN
being trained.

At the implementation level, we drew inspiration from the ResNet 5!

architecture’s ap-
proach of organizing layers into “residual blocks.” Specifically, we grouped the frozen layers
into a single block, with the internal layer weights corresponding to those of the selected
pretrained network. The forward function was designed to perform training within the lay-
ers of the block; however, during backpropagation, the weight updates bypass the internal
layers of the block, passing directly to the previous layer.

We explored knowledge transfer from low- to medium-resolution networks as well as from

medium- to high-resolution networks.

4.2 Training protocols

To assess the benefits of the physics-based constraints, three different regimes of train-

ing the CNN are explored. In the base-case black-box (BB) scenario, the model min-

11



imizes only the radially-weighted mean-squared error of the ¢ components of the elec-
tric and magnetic fields (directly produced by the physics-agnostic part of the network)
Ly= <w(r) [‘ng — Hgf + ‘Eg — E$|2] > Here, the superscripts Y and 7' correspond to
the predicted and ground-truth fields, respectively, the angled brackets, (---), represent an
arithmetic mean over the simulation region, and the radial weight function, w(r), is used to
emphasize the region of small radii where the funnel is located.

The second, field-enhanced (FE) model utilizes a hybrid loss that combines the above-

described L, with its analog for the remaining components of the magnetic field,

Lrp =L+ L. (4)

with L,, = <w(7’) |R|? DHTY — Hﬂz + |HY - H;F|2]> and the rz components of the mag-
netic field being produced by the physics layer of the CNN.

In order to prevent the instability of Eq.(3) from dominating the overall loss, we introduce
the regularization function, R(r, z), such that R(r,z) — 0 when r — ¢/(\/€(r, z)w) (see the
supplementary information for details).

Because calculation of the r and z field components requires differentiating the ¢ com-
ponents, the addition of L,, allows the CNN to learn the relationships between the spatial
field distributions and the distributions of their derivatives. Importantly, evaluation of both
Ly and L, terms requires the training set to contain the solutions of Maxwell’s equations
(labeled data).

Finally, physics-guided (PG) training combines the above labeled-data—dependent terms,

Ly and L,,, with the physics loss,

+iZe EYR?—2 <HZR% - HXRa—R) ‘> (5)
C

Lo = or 0z

1 O(HYRY) 0(HYR?)
or 0z

maX}Hﬂ

which represents the (regularized) residual of Maxwell’s equations for the H, component of

the field (see the supporting information). Therefore, PG training aims to enforce consis-

12



tency of the solutions that are generated by the NN with Maxwell’s equations. Notably,
evaluation of the physics loss does not require labeled data. As a result, unlabeled-trained
(UL) networks can utilize a combination of labeled and unlabeled data, with the former
inherently incorporating the boundary conditions, and the latter allowing the expansion of
the training set without computing additional PDE solutions. This UL loss was also used in
training the TL networks described in the preceding section

Previous analysis® demonstrated that BB- and PG-loss often compete with each other.
Here, this competition reflects the different differentiation schemes used by FEM and the
PG-loss as well as the existence of multiple solutions to Maxwell’s equations (for example,
the trivial solution E = H = 0) that do not necessarily satisfy the boundary conditions
that are implicitly enforced by labeled data. To guide the network towards the correct
implementation of boundary conditions, the weight of the physics-loss, wyy, is dynamically

adjusted during training,® resulting in the dynamic PG loss,

LPG = L¢ + er + wpthh- (6)

In order to assess the ability of the networks to interpolate and extrapolate between data
sets having plasmonic layers with different plasma wavelengths, we train the networks on
50% of the data with plasma wavelengths of 6 and 11 pm or with plasma wavelengths of 7
and 10 pm, and add up to 10% of the labeled data from other data sets to the training. The
UL models are also provided configurations from the remaining data sets as unlabeled data.
The training scenarios are summarized in Table 1, which gives the percent of each data set
that was used as labeled and unlabeled data in each network type. Each training scenario
has been used to train at least 10 different networks of each resolution and loss type, with the
dynamics of their training and validation loss presented in the supplementary information,

and their averaged performance summarized below.
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Table 1: Labeled and Unlabeled Training Data Composition of Each Network

Labeled % Unlabeled %
Network Ap (pm) Ap (pm)

6 7 85 10 11|16 7 85 10 11
BB;, FE;, PG, |50 0 10 0 50 none
UL;, TL; 50 0 10 O o500 0O 40 O O
BB., FE., PG, |0 50 10 50 0 none
UL, 0O 50 10 50 0 [25 0 40 O 25
BB,, FE,, PG, | 10 50 10 50 10 none
UL, 10 50 10 50 1025 O 40 O 25

5 Results

To demonstrate the impact of physics-based constraints on the accuracy and consistency of
NN-predicted fields, we analyze the dependence of the three average losses introduced above
(Lg, Ly, and Lyy,) both on the enforcement of physics-consistency and on the presence of
unlabeled data during training. Sample field distributions are presented to illustrate the
models’ performance. Finally, we analyze the generalizability of the models by evaluating
their performance across the plasma wavelengths of the plasmonic layers.

The three components of the loss, Ly, L,, and Ly, are arranged in increasing degree of
physics consistency and — simultaneously — decreasing reliance on data. Indeed, L,, which
analyzes only the physics-agnostic output of the networks, relies exclusively on data. L,.,,
which primarily relies on the output of the physics layer enforces the relationships between the
fields at neighboring points [see Eq.(3)]. Lastly, L, exclusively analyzes physics-consistency
and pays no regard to data consistency. Our analysis (see below) illustrates that training
with L, not only improves the consistency with Eq.(5) but also improves other metrics that
are related to Maxwell’s equations, such as energy conservation — as analyzed through the

Poynting theorem (see SI).

14
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Figure 3: Performance of NNs with different architectures and training protocols, evalu-
ated on the data that was not used in training; panels (a,b,c,d) represent low-resolution (a),
medium resolution (b,c), and high-resolution (d) networks (see Table 1 for network labels);
loss metrics of individual predictions are represented as filled semitransparent circles, result-
ing in the color-coded distributions; solid white markers and black bars represent the mean
and standard deviation of these distributions; the purple horizontal lines show the average
Ly, of all interpolated FEM solutions.

5.1 Impact of Physics Information on Accuracy

The performance of the different models is summarized in Fig. 3. With the comparatively
simple low-resolution model, adding the physics-based layer to the network and adding the
L,, component to the loss function provides enough additional information to adequately
represent the coarsely sampled data. Providing the network additional physics-based infor-

mation (by implementing PG loss) does not quantitatively boost the performance of the
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model — due to a combination of the model’s simplicity and the mesh being too coarse to
resolve the composite structure.

As the resolution and complexity of the model grow, increasing physics-based constraints
and adding unlabeled data yields measurable improvements in model performance. Interest-
ingly, the extra physics consistency (as demonstrated by the improving L, metric) sometimes
comes at the cost of a small increase of Ls. This apparent contradiction results from the
fact that the data used in training was generated by reinterpolating FEM solutions from
a triangular mesh to a rectangular mesh. As a result, the “ground truth” does not yield
vanishing L,,. As seen in Fig. 3, predictions of the neural net tend to be closer solutions to
Maxwell’s equations on the rectangular mesh than the FEM-sourced data.

A more granular look at the NN predictions is shown in Fig. 4 where representative
examples of model predictions are compared with FEM solutions. Note that in contrast to
their BB counterparts, PG networks predict smoother fields and resolve individual layers of
the structure.

Our results are in agreement with previous studies?!3? that focused on predictions of
field distributions in dielectric structures trained on relatively large (~ 10* configurations)
data sets. Incorporation of physics loss in these NNs resulted in substantial (but limited)
improvements in physics consistency (by a factor of < 2). Here, we see similar dynamics
for low-resolution networks that require few labeled-data training inputs to achieve their top
performance. At the same time, the physics consistency of our medium- and high-resolution
networks, which are trained in the data-poor regime, is improved by an order of magnitude

as a result of the incorporation of physics-based constraints.

5.2 Knowledge Transfer

As mentioned above, we have attempted knowledge transfer from a pretrained low-resolution
network to a medium resolution network and from a pretrained medium resolution network to

its high-resolution counterpart. In both cases, a single average-performing lower-resolution
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Figure 4: Representative predictions of the NNs with (a..e) low- , (g...k) medium-, and
(m...r) high-resolution; input permittivity is shown in panels (f,1); panels (a, g, m) represent
ground truth; panels (b, h, n) - predictions of BB; NNs, panels (c, i, o) - predictions of FE;
networks, panels (d, j, p) - predictions of PG; networks, and panels (e, k, q) - predictions of
UL; networks; panel (r) illustrates the performance of the TL; network. Note that higher-
performing networks resolve field oscillations on the scale of individual layers within the
composite and field concentration near the tip of the funnel.
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UL network was chosen as the source of the frozen core of the higher-resolution TL net-
works. Notably, the low-resolution network poorly resolves the individual layers within the
composite. Consistent with this design, implementation of PG loss does not substantially
improve network performance (see above), and using a pretrained low-resolution network as a
learning-free core of the medium-resolution counterpart does not yield adequate performance
of the resulting NN.

In contrast, using a pretrained medium resolution network as a (fixed) core of a high-
resolution NN provided reasonable performance. As seen in Figs.3,4, the accuracy of TL;
networks falls between the fully-trained high-resolution FE; and PG; NNs.

The physics of finely stratified composites is analytically described by effective medium
theories (EMT). In the EMT formalism, the spatial distribution of homogenized (averaged
over the scale of the inclusion ~ d) electromagnetic fields is given by effective parameters
(here, €, and €,,). These homogenized fields, along with equations that relate the effective
medium parameters to microscopic distributions of permittivity, can then be used to recover
fine-scale field distributions. !

The analytical procedure described above is somewhat similar to the operation of the
hierarchical TL CNN reported in this work. Indeed, the CNN-based U-nets are known to
learn a low-dimensional representation of the underlying phenomena. From this standpoint,
while we do not analyze the neural operation of the CNN in detail, the medium-resolution
network is likely to learn some form of materials averaging/field recovery by analyzing the
transition between the scale of individual layers (resolved at the entrance and exit of the
network) and compact representations in its core. The transfer-learning high-resolution
wraparound parts of the network likely learn the averaging and upscaling procedures. We
reserve the analysis of the relationship between the analytical EMT and the operation of
TL-based hierarchial CNNs for future work.

By freezing the inner core of the CNN within knowledge transfer networks we significantly

reduce the number of training parameters. Therefore, we expect smaller variability and
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faster learning in the TL; networks as compared with their fully-trained high resolution
PG; counterparts. However, in our implementation, the time required to calculate one
training epoch of a TL; network is almost identical to the time required for one epoch of
a PG; network, indicating that the time spent updating the learnable NN parameters is
significantly less than the time spent executing forward and backward propagation steps.
Different implementation and optimization settings may affect this result.

At the same time, further analysis (see SI) suggests that TL; networks converge over a
smaller number of epochs than their PG; counterparts. In addition, in our studies, variation
between the performance of the best and the worst TL; networks was significantly smaller

than the variation between the best and the worst PG; networks.

5.3 Interpolation vs Extrapolation within the models

As described above (see Table 1), the NNs have been trained on multiple subsets of the data
derived from FEM solutions, aiming to assess both correctness and generalizability of the
proposed PGML networks. Here we are particularly interested in the ability of the NN to
generalize the results between different plasma wavelengths of the doped components of the
funnels’ cores.

In the “interpolating” models (subscripted i), 50% of the data from the sets represent-
ing the lowest and the highest plasma frequencies, and an additional 10% from the data
set representing the central plasma wavelength were used as labeled training data. The
unlabeled networks further included 40% of the central plasma wavelength data set as un-
labeled data. Therefore, the CNN would have to deduce the behavior of the composites
with A\, = 7,10pum. For the “extrapolating” (subscripted e) and “extended extrapolating”
(subscripted x) networks, a similar approach was used except with the bulk of labeled train-
ing data coming from the 7 and 10 pm plasma wavelengths, having the CNN deduce the
behavior of the metamaterials with A\, = 6,11 pm

Typically, data interpolation is a much simpler problem than data extrapolation. How-
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ever, this general rule does not hold for our analysis. As seen in Fig.3(b,c), the average
performance of the two classes of medium-resolution networks is almost identical to each
other, indicating that both interpolation and extrapolation tasks (in terms of \,) in our
study represent similar difficulties to the NNs.

Fig. 5 provides a more in-depth look at this behavior. In general, as characterized by L,
loss, the networks perform their best in predicting the fields within the metamaterials for the
same plasma wavelength that comprises the majority of their labeled training set. Indeed, Ly
is ~ 2 times lower for the data that has a plasma wavelength that is well-represented in the
training set than for the configurations with plasma wavelengths that contribute few or no
instances to the labeled training data. Incorporation of physics-based constraints improves
the physics-consistency of the results for all values of A, by an order of magnitude, indicating
that the CNNs learn the general properties of the field distributions but miss the particular
boundary conditions that are encoded in the labeled data.

By comparing the performance of extrapolating networks to their “extended” counterparts
[Fig.5(c,e)] it is seen that adding very little labeled data can somewhat address this issue
of underspecified boundary conditions: introduction of ~ 20 labeled distributions (total) for
Ap = 6, 11pum reduces the \,-specific Ly by ~ 20% with almost no effect on L,y,.

Interestingly, in all scenarios L, decreases as a function of A,. This behavior traces the
strength of the resonance in €., that decays and moves out of the spectral range of the study

as A, increases (see Fig.1d).
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Figure 5: Performance of the medium-resolution networks for predicting the field distribution
of composites with given plasma wavelengths; panels (a, c, ) and (b, d, ) represent L, and
L, respectively, for (a, b) interpolating, (c, d) extrapolating, and (e, f) extended extrap-
olating networks; colors represent training protocols; individual predictions are represented
as filled semitransparent circles, resulting in the color-coded distributions; solid white circle
markers and black bars represent the mean and standard deviations of these distributions.
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6 Conclusions

We have presented a hierarchical design of PG neural network surrogate solvers of Maxwell’s
equations and demonstrated the proposed formalism by predicting the field distributions in
hyperbolic metamaterial-based photonic funnels. We have demonstrated that embedding
physics information into the ML process, by enforcing the physics-based constraints and
by adding unlabeled training configurations, improves the quality of ML predictions in the
regime of limited training data. In particular, physics-guided ML predictions are almost
two orders of magnitude more physics-consistent than their BB-ML counterparts, even near
wavelengths where the layered composite undergoes topological transitions. Separately, we
have demonstrated that a hierarchical network architecture enables knowledge transfer from
existing pretrained models to higher-resolution NN implementations.

The approach presented can be directly applied to the analysis of complex rotationally-
symmetric electromagnetic systems. The technique can be straightforwardly extended to
quasi-2D geometries with inclusions of various sizes and shapes by using the appropriate
coordinate-representations of Maxwell’s equations. The formalism can be further extended
to 3D geometries, although we anticipate that such extensions will require significantly larger

computational resources.
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Maxwell’s Equations in Cylindrical Geometry

As mentioned in the main manuscript, we use the rotational symmetry of our problem to re-
duce the three-dimensional vectorial Maxwell’s equations to equations describing the behav-
ior of the ¢-components of the electric and magnetic fields (which vary smoothly throughout
the geometry). Assuming that all fields are proportional to exp(—i¢), once E; and H, are
known (for example, as predicted by the neural net), the remaining components of the fields

can be calculated via

- —1 1= ws o=
E’r‘z = 6"‘)_22 — 12 (—;DTZE¢ — Egb X Dr2H¢) (S].)
— —Z ]. = W~ ~
H,., = ew_zj (_;Drsz) —+ EE¢ X DrzE(j)) (S2>
c2 r2

where the differential operator D, is defined by D,,f = f%(% (rf)+ 2%.
Maxwell’s equations also provide additional constraints, ensuring self-consistency of the

field components:

0z or _i€ZE¢ (53)
oF, OF, w
0z  Or :ZEH¢ (54)

the first of which is used as a basis for L, in the manuscript.

Regularization Function

The neural network directly predicts Ey and Hy, and the physics layer then calculates H,
and H, using Eq.(S2), above. It is seen, however, that for transparent materials, Eq.(S2)
diverges when r?ew?/c* = 1.

In approximate numerical solutions (such as those analyzed in our work), this condition

leads to instabilities that — if left unaddressed — would dominate both L,, and L, loss



functions.
To address these underlying instabilities, we introduce the regularization function R(r, z)
in such a way that regularized fields € = RE and H = RH remain finite within the simulation

domain. Explicitly,

2w?
) w2 1
R(r,z) =0.1 elr 2)r

(55)
e(r, z)r?%y +0.1

is used in our work (In principle, any R(r, z) that vanishes, at least linearly, when r?ew?/c? =
1 can be used).

To find an appropriate physics loss function, we first recast Eq.(S3) in terms of regularized

o (M, 9 (H.\ | w&
92 <E) “ar (E) =R (56)

We then apply the derivatives and rearrange the resulting relationships, arriving at:

fields

OR _ OR

J 0 HT—) +ie—RE, = 0. (S7)
T C

2 (RH,) — — (RH.) +2 (’H

0z ) or oz

Recasting the latter equation back to the actual fields yields the physics residual used for
physics loss in our work

0

__( OR OR
P,

0
A R*H,) — — (R’H.) +2 (RHZ— — RHT—> + ie%RQE¢. (S8)

or or 0z

Note that physics-consistent solutions should satisfy A, (r,z) = 0.

Radial Weight Function

The fundamental electromagnetic phenomena enabled by photonic funnels (anomalous reflec-
tion and subdiffractive light confinement) are encoded in the field distributions within and
in close proximity to the funnels. Since these field distribution features are more important

for understanding the electromagnetism of the funnels and at the same time are more com-



plicated than the diffraction-limited field distributions outside the funnels, a weight function
is used to improve learning of the fields at small radii. In our networks, this radial weight

function is a sigmoid given by

5

w(r) = W + 0.5, (89)

where 7 is in pm.

Physics-Consistency and Energy Conservation

An important physical principle, which should hold (at least approximately, given our dis-
cretization) for physically consistent fields is energy conservation. We may therefore use
the deviation from energy conservation as an additional measure of physics-inconsistency.
Furthermore, we can utilize this metric to demonstrate the impact of imposing physics-
consistency through the inclusion of L, in the training loss function.

The conservation of energy for monochromatic fields in linear dispersive media can be

gIm {6
c

The left-hand side of this equation acts as a kind of “Poynting residual” when applied to

written as

|2 |2 . .
E‘ +u‘H‘ }—V-Re{ExH*}:O. (S10)

electromagnetic fields, with nonzero values representing local violations of energy conserva-
tion.

As was the case with A, to make use of this residual with network-predicted fields, we
must suppress the numerical instabilities which arise from calculating the r and z field com-
ponents via Eq.S1 and Eq.S2. Because this residual expression is proportional to the square
of the fields, adequately suppressing the numerical errors introduced in calculating these

additional components requires multiplication by R? resulting in the regularized Poynting



residual:

— 2 — —
Ap = R? <°—"Im{e} ‘E‘ — V- Re{E x H*}) (S11)
C

for non-magnetic materials. In analogy with how our physics loss is defined in terms of
our physics residual, a Poynting loss, Lp, was calculated as the average magnitude of the
Poynting residual normalized by the square of the maximum field, max(|Ey|, |Hy|) (here,
Gaussian units are used for convenience, making amplitudes of electric and magnetic fields

of the plane wave comparable to each other).
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Figure S1: Physics and Poynting losses of NNs with different architectures and training pro-
tocols, evaluated on the subset of data that was not used in training sets; panels (a,b,c,d) rep-
resent low-resolution (a), medium resolution (b,c), and high-resolution (d) networks; Losses
of individual predictions are represented as filled semi-transparent circles; solid white mark-
ers and black bars represent the mean and standard deviations of these distributions.



To demonstrate that the physics-consistency enforced by L,y results in fields which better
satisfy energy conservation, we calculated the Poynting loss for the predictions of networks
of each size across all test data. The results are shown in Fig.S1. It is clearly seen that
improving physics-consistency (characterized by lowering L,;) yields improvement in energy

conservation (characterized by lowering Lp).

Loss Dynamics
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Figure S2: Loss dynamics of medium resolution networks showing training and validation
loss against training iteration for (a) black-box, (b) field-enhanced, (c) physics-guided, and
(d) unlabeled-trained networks. The solid lines show the losses averaged over networks while
the shaded regions are bounded by the maximum and minimum losses at each iteration.



The training and validation loss curves for each of the four medium resolution “inter-
polating” network configurations are presented in Fig. S2. Across all cases, the validation
loss closely follows the trend of the training loss throughout the training process. While the
two losses begin at similar values—occasionally with the validation loss slightly lower during
the early epochs—they gradually separate as training progresses with the validation loss
becoming slightly greater towards convergence. This pattern is expected given the model’s
exposure to the training data and indicates stable, consistent generalization to unseen data,
with no evidence of significant overfitting.

Similar results were seen for high-resolution networks, pointing again to stable training
without overfitting. Additionally, we compared the validation loss dynamics between high-
resolution UL; and TL; networks, summarized in Fig.S3. It can be seen that TL; networks
require fewer training epochs to converge and tend to outperform their UL; counterparts
during early training iterations. However, UL; networks tend to eventually outperform their
TL; counterparts.

This dynamics reflects the comparatively smaller parameter space of TL networks, which
are therefore more readily able to find optimal network configurations and less likely to fall
into (and become stuck within) local minima. However, this smaller network dimensionality
comes at the price of expressiveness, somewhat limiting the ability of TL networks to fine-

tune their predictions.
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Figure S3: Validation loss dynamics of high-resolution unlabeled-trained and transfer-
learning networks. The solid lines show the losses averaged over networks while the shaded
regions are bounded by the maximum and minimum losses at each iteration.



