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Abstract

While machine learning (ML) has found multiple applications in photonics, tradi-

tional “black box” ML models typically require prohibitively large training data sets.

Generation of such data, as well as the training processes themselves, consume signif-

icant resources, often limiting practical applications of ML. Here we demonstrate that

embedding Maxwell’s equations into ML design and training significantly reduces the

required amount of data and improves the physics-consistency and generalizability of

ML models, opening the road to practical ML tools that do not need extremely large

training sets. The proposed physics-guided machine learning (PGML) approach is il-

lustrated on the example of predicting complex field distributions within hyperbolic

metamaterial photonic funnels, based on multilayered plasmonic-dielectric composites.

The hierarchical network design used in this study enables knowledge transfer and

points to the emergence of effective medium theories within neural networks.
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1 Introduction

Composite materials with engineered optical properties, metamaterials and metasurfaces,

are rapidly advancing as platforms for optical communications, sensing, imaging, and com-

puting.1–7 The complexity of typical metamaterials makes it almost impossible to under-

stand and optimize their interaction with light based on experimental or analytical theory

approaches alone, leaving the problem of light interaction with metamaterials to computa-

tional sciences.1,4,8,9 Currently, finite-difference time domain (FDTD) 10 and finite element

methods (FEM)11,12 represent industry-standard approaches to understanding the optics of

nonperiodic composite media.

Machine learning (ML) techniques, particularly neural networks (NNs), have recently

been incorporated into the design, evaluation, and measurement of nanophotonic struc-

tures.13–21 Properly trained ML tools can be used as surrogate models that predict the

spectral response of composites or—rarely—field distributions within metamaterials. 14,22–24

Since ML does not solve the underlying electromagnetic problem, these predictions are signif-

icantly faster than brute-force simulations. However, extensive training sets, often featuring

∼ 103 . . . 105 configurations are required in order to develop high-quality ML models. 14,25–28

The time and computational resources needed to generate these data sets, as well as the

time and resources needed for the ML training process, are significant and often serve as the

main limitation to ML use in computational photonics.

Embedding physics-based constraints (physics-consistency) 29,30 into the ML training pro-

cess may be beneficial for the resulting models. ML methods for general solutions of partial

differential equations (PDEs) are being developed. 31–38 However, as of now, these techniques

are illustrated on convenient “toy” models and cannot be straightforwardly applied to prac-

tical electromagnetic problems. Physics-guided machine learning (PGML) 6,7,39 is emerging

as a promising platform that can combine data- and physics-driven learning. Notably, pre-

vious PGML attempts have been focused on dielectric39 or relatively simple plasmonic7

composites. Here we develop PGML models that are capable of predicting electromagnetic

3



fields within plasmonic metamaterials. We illustrate our technique by analyzing the opti-

cal response of metamaterials-based photonic funnels: 40–42 conical structures with strongly

anisotropic composite cores that are capable of concentrating light to deep subwavelength

areas. We show that physics-based constraints enable training on unlabeled data and sig-

nificantly improve the accuracy and generalizability of the models. We also attempt to

understand the inner workings of the NNs by analyzing the performance of hierarchical

models with different data resolutions.

Figure 1: (a) schematic of the photonic funnel with cut-out demonstrating the composite
structure of the core; inset shows scanning electron microscope (SEM) image of as-fabricated
array of funnels (b) simulation setup used in FEM-based solutions of Maxwell’s equations;
NNs are trained only on a subregion of the FEM data which contains the funnel; (c,d)
wavelength dependence of (c) the permittivity of the highly doped plasmonic components of
the funnels and (d) the components of the resulting effective permittivity tensor.
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2 Hyperbolic Metamaterial-based Photonic Funnels

An electromagnetic composite comprising sufficiently thin alternating layers of non-magnetic

materials with permittivities ϵ1, ϵ2 and thicknesses d1, d2 (see Fig.1) behaves as a uniaxial

medium whose optical axis is perpendicular to the layers (direction ẑ in this work) and

whose diagonal permittivity tensor has components given by: ϵxx = ϵyy = ϵ⊥ = d1ϵ1+d2ϵ2
d1+d2

and

ϵzz =
(d1+d2)ϵ1ϵ2
d1ϵ2+d2ϵ1

. Such a material supports the propagation of two types of plane waves that

differ in their polarization and have fundamentally different dispersions.

The ordinary waves (which have E⃗ ⊥ ẑ) satisfy the dispersion relation k2 = ϵ⊥ω
2/c2 with

k⃗, ω, and c representing the wavevector of the wave, operating angular frequency, and speed of

light in vacuum, respectively. This dispersion is identical to that of plane waves propagating

in a homogeneous isotropic material with permittivity ϵ⊥. On the other hand, the extraor-

dinary, or transverse-magnetic (TM), waves (with H⃗ ⊥ ẑ) have dispersion k2x+k2y
ϵzz

+ k2z
ϵ⊥

= ω2

c2
.

Notably, for anisotropic materials, the dispersion of extraordinary waves is either elliptical or

hyperbolic. The topology of the iso-frequency contours strongly depends on the combination

of signs of the effective permittivity tensor.

When the components of the permittivity tensor are of opposite signs, the iso-frequency

surfaces are hyperboloids. This hyperbolic dispersion has been identified as the enabling

mechanism for such unique optical phenomena as negative refraction, strong enhancement

of light matter interaction, and for light manipulation in ultrasmall (deep subwavelength)

areas.2,43–46 Hyperbolicity can be achieved by alternating layers of dielectric (ϵ1 = ϵd > 0)

and plasmonic (ϵ2 = ϵm < 0) layers. In the semiclassical regime (typically, when the layer

thickness ≳ 10 nm) the permittivity of the plasmonic layers as a function of angular frequency

of light is well described by the Drude model,47

ϵm(ω) = ϵ∞

(
1−

ω2
p

ω2 + iγω

)
(1)

with ϵ∞, ωp, and γ being background permittivity, plasma frequency, and scattering rate,
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respectively. Here we use ϵ∞ = 12.15, γ = 1013s−1, and parameterize the plasma frequency

using the plasma wavelength, λp, via ωp = 2πc/λp.

The most common implementation of these metamaterials leverages a 50/50 composition

(d1 = d2 = d). For such systems topological transitions occur when the permittivity of the

plasmonic layers (ϵm) and the weighted permittivity of the mixture (ϵ⊥) change signs.48,49

The dispersion of TM waves inside the metamaterial is elliptic for shorter wavelengths λ < λp.

It changes to type-I hyperbolicity (ϵ⊥ > 0, ϵzz < 0) for λp < λ < λ̃p, with the renormalized

plasma frequency, λ̃p, defined as Re(ϵ⊥(λ̃p)) = 0. Finally, the dispersion of TM waves in the

composite becomes type-II hyperbolic (ϵ⊥ < 0, ϵzz > 0) for λ̃p < λ.

Photonic funnels, conical waveguides with hyperbolic metamaterial cores, 40–42 shown in

Fig.1, represent excellent examples of structures capable of manipulating light at a deep

subwavelength scale. Recent experimental results40,42 demonstrate efficient concentration of

mid-infrared light with a vacuum wavelength of ∼10 µm to spatial areas as small as ∼300 nm,

1/30th of the operating wavelength, within an all-semiconductor “designer metal” material

platform.49 Further analysis relates the field concentration near the funnels’ tips to the

absence of the diffraction limit within the hyperbolic material and to the anomalous internal

reflection of light from the funnel sidewall, which forms an interface oblique to the optical

axis.42 Importantly, the optical response of realistic funnels can be engineered at the time

of fabrication by controlling the doping of the “designer metal” layers and thereby adjusting

the plasma frequency of these layers. The unusual electromagnetic response, strong field

confinement, and significant field inhomogeneities make photonic funnels an ideal platform

for testing the performance of ML-driven surrogate solvers of Maxwell’s equations.
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3 Methods

3.1 Data set description and generation

To construct a sufficiently diverse set of labeled configurations, we used FEM to solve for

electromagnetic field distributions in photonic funnels with plasmonic layers of different

doping concentrations corresponding to plasma wavelengths 50 of 6 µm, 7 µm, 8.5 µm, 10 µm

and 11 µm. Fig.1 illustrates the wavelength-dependent permittivity of plasmonic layers with

various doping concentrations as well as the corresponding effective medium response of the

layered metamaterials. Note the drastic changes of effective medium response as a function

of both wavelength and doping.

For each doping level, wavelength-dependent permittivity and electromagnetic field dis-

tributions have been calculated with a commercial FEM-based solver 12 (that takes into

account that all fields are proportional to exp(−iϕ) with ϕ being the angular coordinate of

the cylindrical reference frame) for free-space wavelengths from 8 µm to 12 µm with incre-

ments of 62.5 nm. The FEM model setup is shown schematically in Fig.1a. Electromagnetic

waves that are normally incident on the funnel base are generated by the port boundary

condition. Perfectly matched layers11 and scattering boundary conditions are used to make

the outside boundaries of the simulation region completely transparent to electromagnetic

waves, thereby mimicking the surrounding infinite space. The model, which explicitly incor-

porates 80 nm-thick layers in the funnel cores, is meshed with a resolution of at most 40 nm

inside the funnel and 200 nm outside the funnels, with the mesh growth factor set to 1.1 to

avoid artifacts related to abrupt changes in mesh size.

For every plasma wavelength and operating frequency the distribution of electromagnetic

fields, along with the distributions of permittivities within a small (5×12 µm) region of space

containing the funnel (see Fig.1) is interpolated onto a rectangular mesh with resolution

12.5 nm × 10 nm along the r and z directions, respectively, forming the basis for the data sets

used in the study. Note that selecting this internal region of space from the FEM simulations
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allows us to (i) implicitly incorporate the proper boundary conditions for both incident as well

as scattered electromagnetic fields and (ii) avoid the implementation of perfectly matched

layers, ports, and scattering conditions within the physics-based constraints used in training

our NNs.

The original FEM-generated data has been then resampled into three separate data sets:

• low-resolution data set, 20 × 60 pixels with resolution 250 nm and 200 nm in r and z

directions, respectively

• medium-resolution data set, 100× 300 pixels with resolution 50 nm × 40 nm

• high-resolution data set, 200× 600 pixels with resolution of 25 nm × 20 nm

4 Neural Network Architecture

On a fundamental level, approximating solutions of Maxwell’s equations within metama-

terials with ML necessitates a neural network to map the operating frequency and the

distribution of permittivity across the composite to the distribution of electromagnetic

fields, a problem that is similar to image transformation. Previous analysis 51,52 has demon-

strated that convolutional neural networks (CNNs) excel in image transformation. Specif-

ically, encoder-decoder, CNN, and U-net architectures have shown success in electromag-

netic problems,19,21,53–55 presumably due to the cores of the networks learning some low-

dimensional representation of the solutions. 34,56 Note, however, that the vast majority of

previous ML-driven solvers of Maxwell’s equations21,39,57,58 have analyzed dielectric compos-

ites (where electromagnetic fields are relatively smooth) and were trained on relatively large

data sets.14,20,39

We follow the general approach of constructing U-nets. The design of our networks is

summarized in Fig.2. Starting with the pixel resolution of the data set, the proposed CNNs

reduce the dimensionality of the problem to 20 × 10 pixels, and then expand the resulting

distributions to their original size.
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The linear parts of the network employ standard convolutional and transposed convolu-

tional layers with stride = 1 for those parts of the network that preserve pixel size and with

stride > 1 for those that perform encoding/downsampling and decoding/upsampling. Hy-

perbolic tangent activation layers are used to add nonlinearities to the CNN. Combinations

of convolutional and tanh layers are marked as thick arrows in Fig.2. In addition, custom

layers are introduced to implement skip connections which can propagate the vacuum wave-

length and permittivity distributions into the depth of the network for both stability of the

resulting NN and to enable evaluation of the physics-consistency of the resulting predic-

tions. These layers operate by directly appending several layers of pixels to the output of a

given convolutional layer (thin black arrows in Fig.2) or by first downsampling to the core

resolution and then concatenating (thin orange arrows in Fig.2).

Figure 2: Setup of the CNN used in the study; the three rows represent low-, medium-
, and high-resolution networks; boxes represent the size of data as it propagates through
the network; arrows represent CNN data operations: each thick solid arrow represents the
combination of a (transposed) convolutional layer and a tanh activation layer; thin black
and orange arrows represent skip connections; thin red arrows represent input and output.
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The base part of the NN (blue layers in Fig.2) is designed to learn the distribution of

the ϕ components of the electric and magnetic fields. Note that in our hierarchical setup,

the core of the networks remains the same, independent of the resolution of the data set,

with the outer structure producing encoding/decoding from/to the higher resolution. The

inner structure of the network (layer dimensionality and filter size) was optimized using

the low-resolution data set. The medium- and high-resolution networks build upon this

geometry by adding “hierarchical” downsampling and upsampling layers, implemented via

convolutional and transposed convolutional layers in our NNs. Our analysis suggests that

it is important to initialize the downsampling layers with unit weights, thereby setting the

network for brute-force averaging of permittivity during the initial training iterations.

The physics-agnostic portion of the CNN, which is trained to produce the ϕ components

of the magnetic and electric fields, is followed by a physics-informed layer (gray layers in

Fig.2) which calculates distributions of the r and z components of the magnetic field based

on analytical expressions derived from Maxwell’s equations:

E⃗rz =
−i

ϵω
2

c2
− 1

r2

(
−1

r
D⃗rzEϕ −

ω

c
ϕ̂× D⃗rzHϕ

)
(2)

H⃗rz =
−i

ϵω
2

c2
− 1

r2

(
−1

r
D⃗rzHϕ + ϵ

ω

c
ϕ̂× D⃗rzEϕ

)
(3)

where we have introduced the vector differential operator D⃗rzf = r̂ 1
r

∂
∂r

(rf) + ẑ ∂f
∂z

.

Because the fields are discretized on a regular rectangular grid, all derivatives are ap-

proximated with finite difference schemes. Forward and backward differences are used at the

edges of the computational domain, while central differences are used within it. Our imple-

mentation of the CNNs used in this work and the data sets used in training are available on

GitHub and Figshare, respectively.59,60

As seen from Eqs.(3), predictions for Hr and Hz may diverge when ϵr2ω2/c2 ≈ 1. This

instability is a direct consequence of applying differential operators in cylindrical geometry.

Here, we address the related issues by introducing a regularizing function (see below and SI).
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Our approach, illustrated here on an example of cylindrical geometry may be generalized to

other curvilinear coordinates.

4.1 Knowledge transfer between different NN

As mentioned above, in the limit of ultrathin layers, the optics of multilayer metamaterials

can be adequately described by the effective medium theory. In a related but separate

scope, the U-shaped NNs are hypothesized to learn low-dimensional representations of the

underlying phenomena. These considerations motivate the hierarchical design of the NNs

used in this work.

To explore whether the learning outcomes of the NNs are consistent with the effective

medium description, we performed a series of experiments where pretrained lower-resolution

networks were used as pretrained cores of higher-resolution transfer-learning (TL) networks.

In these studies, the learning parameters of the pretrained “core” layers were frozen, with

only the averaging and transposed convolution peripheral layers of the higher-resolution NN

being trained.

At the implementation level, we drew inspiration from the ResNet 61 architecture’s ap-

proach of organizing layers into “residual blocks.” Specifically, we grouped the frozen layers

into a single block, with the internal layer weights corresponding to those of the selected

pretrained network. The forward function was designed to perform training within the lay-

ers of the block; however, during backpropagation, the weight updates bypass the internal

layers of the block, passing directly to the previous layer.

We explored knowledge transfer from low- to medium-resolution networks as well as from

medium- to high-resolution networks.

4.2 Training protocols

To assess the benefits of the physics-based constraints, three different regimes of train-

ing the CNN are explored. In the base-case black-box (BB) scenario, the model min-
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imizes only the radially-weighted mean-squared error of the ϕ components of the elec-

tric and magnetic fields (directly produced by the physics-agnostic part of the network)

Lϕ =
〈
w(r)

[∣∣HY
ϕ −HT

ϕ

∣∣2 + ∣∣EY
ϕ − ET

ϕ

∣∣2]〉. Here, the superscripts Y and T correspond to

the predicted and ground-truth fields, respectively, the angled brackets, ⟨· · · ⟩, represent an

arithmetic mean over the simulation region, and the radial weight function, w(r), is used to

emphasize the region of small radii where the funnel is located.

The second, field-enhanced (FE) model utilizes a hybrid loss that combines the above-

described Lϕ with its analog for the remaining components of the magnetic field,

LFE = Lϕ + Lrz (4)

with Lrz =
〈
w(r) |R|2

[∣∣HY
r −HT

r

∣∣2 + ∣∣HY
z −HT

z

∣∣2]〉 and the rz components of the mag-

netic field being produced by the physics layer of the CNN.

In order to prevent the instability of Eq.(3) from dominating the overall loss, we introduce

the regularization function, R(r, z), such that R(r, z) → 0 when r → c/(
√

ϵ(r, z)ω) (see the

supplementary information for details).

Because calculation of the r and z field components requires differentiating the ϕ com-

ponents, the addition of Lrz allows the CNN to learn the relationships between the spatial

field distributions and the distributions of their derivatives. Importantly, evaluation of both

Lϕ and Lrz terms requires the training set to contain the solutions of Maxwell’s equations

(labeled data).

Finally, physics-guided (PG) training combines the above labeled-data–dependent terms,

Lϕ and Lrz, with the physics loss,

Lph =
1

max
∣∣HY

ϕ

∣∣
〈∣∣∣∣∂(HY

z R
2)

∂r
− ∂(HY

r R
2)

∂z
+ i

ω

c
ϵ EY

ϕ R
2 − 2

(
HY

z R
∂R

∂r
−HY

r R
∂R

∂z

)∣∣∣∣〉 (5)

which represents the (regularized) residual of Maxwell’s equations for the Hϕ component of

the field (see the supporting information). Therefore, PG training aims to enforce consis-
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tency of the solutions that are generated by the NN with Maxwell’s equations. Notably,

evaluation of the physics loss does not require labeled data. As a result, unlabeled-trained

(UL) networks can utilize a combination of labeled and unlabeled data, with the former

inherently incorporating the boundary conditions, and the latter allowing the expansion of

the training set without computing additional PDE solutions. This UL loss was also used in

training the TL networks described in the preceding section

Previous analysis6 demonstrated that BB- and PG-loss often compete with each other.

Here, this competition reflects the different differentiation schemes used by FEM and the

PG-loss as well as the existence of multiple solutions to Maxwell’s equations (for example,

the trivial solution E⃗ = H⃗ = 0) that do not necessarily satisfy the boundary conditions

that are implicitly enforced by labeled data. To guide the network towards the correct

implementation of boundary conditions, the weight of the physics-loss, wph, is dynamically

adjusted during training,6 resulting in the dynamic PG loss,

LPG = Lϕ + Lrz + wphLph. (6)

In order to assess the ability of the networks to interpolate and extrapolate between data

sets having plasmonic layers with different plasma wavelengths, we train the networks on

50% of the data with plasma wavelengths of 6 and 11 µm or with plasma wavelengths of 7

and 10 µm, and add up to 10% of the labeled data from other data sets to the training. The

UL models are also provided configurations from the remaining data sets as unlabeled data.

The training scenarios are summarized in Table 1, which gives the percent of each data set

that was used as labeled and unlabeled data in each network type. Each training scenario

has been used to train at least 10 different networks of each resolution and loss type, with the

dynamics of their training and validation loss presented in the supplementary information,

and their averaged performance summarized below.
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Table 1: Labeled and Unlabeled Training Data Composition of Each Network

Labeled % Unlabeled %
Network λp (µm) λp (µm)

6 7 8.5 10 11 6 7 8.5 10 11
BBi, FEi, PGi 50 0 10 0 50 none
ULi, TLi 50 0 10 0 50 0 0 40 0 0
BBe, FEe, PGe 0 50 10 50 0 none
ULe 0 50 10 50 0 25 0 40 0 25
BBx, FEx, PGx 10 50 10 50 10 none
ULx 10 50 10 50 10 25 0 40 0 25

5 Results

To demonstrate the impact of physics-based constraints on the accuracy and consistency of

NN-predicted fields, we analyze the dependence of the three average losses introduced above

(Lϕ, Lrz, and Lph) both on the enforcement of physics-consistency and on the presence of

unlabeled data during training. Sample field distributions are presented to illustrate the

models’ performance. Finally, we analyze the generalizability of the models by evaluating

their performance across the plasma wavelengths of the plasmonic layers.

The three components of the loss, Lϕ, Lrz and Lph, are arranged in increasing degree of

physics consistency and – simultaneously – decreasing reliance on data. Indeed, Lϕ, which

analyzes only the physics-agnostic output of the networks, relies exclusively on data. Lrz,

which primarily relies on the output of the physics layer enforces the relationships between the

fields at neighboring points [see Eq.(3)]. Lastly, Lph exclusively analyzes physics-consistency

and pays no regard to data consistency. Our analysis (see below) illustrates that training

with Lph not only improves the consistency with Eq.(5) but also improves other metrics that

are related to Maxwell’s equations, such as energy conservation – as analyzed through the

Poynting theorem (see SI).
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Figure 3: Performance of NNs with different architectures and training protocols, evalu-
ated on the data that was not used in training; panels (a,b,c,d) represent low-resolution (a),
medium resolution (b,c), and high-resolution (d) networks (see Table 1 for network labels);
loss metrics of individual predictions are represented as filled semitransparent circles, result-
ing in the color-coded distributions; solid white markers and black bars represent the mean
and standard deviation of these distributions; the purple horizontal lines show the average
Lph of all interpolated FEM solutions.

5.1 Impact of Physics Information on Accuracy

The performance of the different models is summarized in Fig. 3. With the comparatively

simple low-resolution model, adding the physics-based layer to the network and adding the

Lrz component to the loss function provides enough additional information to adequately

represent the coarsely sampled data. Providing the network additional physics-based infor-

mation (by implementing PG loss) does not quantitatively boost the performance of the
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model – due to a combination of the model’s simplicity and the mesh being too coarse to

resolve the composite structure.

As the resolution and complexity of the model grow, increasing physics-based constraints

and adding unlabeled data yields measurable improvements in model performance. Interest-

ingly, the extra physics consistency (as demonstrated by the improving Lph metric) sometimes

comes at the cost of a small increase of Lϕ. This apparent contradiction results from the

fact that the data used in training was generated by reinterpolating FEM solutions from

a triangular mesh to a rectangular mesh. As a result, the “ground truth” does not yield

vanishing Lph. As seen in Fig. 3, predictions of the neural net tend to be closer solutions to

Maxwell’s equations on the rectangular mesh than the FEM-sourced data.

A more granular look at the NN predictions is shown in Fig. 4 where representative

examples of model predictions are compared with FEM solutions. Note that in contrast to

their BB counterparts, PG networks predict smoother fields and resolve individual layers of

the structure.

Our results are in agreement with previous studies 21,39 that focused on predictions of

field distributions in dielectric structures trained on relatively large (∼ 104 configurations)

data sets. Incorporation of physics loss in these NNs resulted in substantial (but limited)

improvements in physics consistency (by a factor of ≲ 2). Here, we see similar dynamics

for low-resolution networks that require few labeled-data training inputs to achieve their top

performance. At the same time, the physics consistency of our medium- and high-resolution

networks, which are trained in the data-poor regime, is improved by an order of magnitude

as a result of the incorporation of physics-based constraints.

5.2 Knowledge Transfer

As mentioned above, we have attempted knowledge transfer from a pretrained low-resolution

network to a medium resolution network and from a pretrained medium resolution network to

its high-resolution counterpart. In both cases, a single average-performing lower-resolution
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Figure 4: Representative predictions of the NNs with (a..e) low- , (g...k) medium-, and
(m...r) high-resolution; input permittivity is shown in panels (f,l); panels (a, g, m) represent
ground truth; panels (b, h, n) - predictions of BBi NNs, panels (c, i, o) - predictions of FEi

networks, panels (d, j, p) - predictions of PGi networks, and panels (e, k, q) - predictions of
ULi networks; panel (r) illustrates the performance of the TLi network. Note that higher-
performing networks resolve field oscillations on the scale of individual layers within the
composite and field concentration near the tip of the funnel.
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UL network was chosen as the source of the frozen core of the higher-resolution TL net-

works. Notably, the low-resolution network poorly resolves the individual layers within the

composite. Consistent with this design, implementation of PG loss does not substantially

improve network performance (see above), and using a pretrained low-resolution network as a

learning-free core of the medium-resolution counterpart does not yield adequate performance

of the resulting NN.

In contrast, using a pretrained medium resolution network as a (fixed) core of a high-

resolution NN provided reasonable performance. As seen in Figs.3,4, the accuracy of TLi

networks falls between the fully-trained high-resolution FEi and PGi NNs.

The physics of finely stratified composites is analytically described by effective medium

theories (EMT). In the EMT formalism, the spatial distribution of homogenized (averaged

over the scale of the inclusion ∼ d) electromagnetic fields is given by effective parameters

(here, ϵ⊥ and ϵzz). These homogenized fields, along with equations that relate the effective

medium parameters to microscopic distributions of permittivity, can then be used to recover

fine-scale field distributions.1

The analytical procedure described above is somewhat similar to the operation of the

hierarchical TL CNN reported in this work. Indeed, the CNN-based U-nets are known to

learn a low-dimensional representation of the underlying phenomena. From this standpoint,

while we do not analyze the neural operation of the CNN in detail, the medium-resolution

network is likely to learn some form of materials averaging/field recovery by analyzing the

transition between the scale of individual layers (resolved at the entrance and exit of the

network) and compact representations in its core. The transfer-learning high-resolution

wraparound parts of the network likely learn the averaging and upscaling procedures. We

reserve the analysis of the relationship between the analytical EMT and the operation of

TL-based hierarchial CNNs for future work.

By freezing the inner core of the CNN within knowledge transfer networks we significantly

reduce the number of training parameters. Therefore, we expect smaller variability and
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faster learning in the TLi networks as compared with their fully-trained high resolution

PGi counterparts. However, in our implementation, the time required to calculate one

training epoch of a TLi network is almost identical to the time required for one epoch of

a PGi network, indicating that the time spent updating the learnable NN parameters is

significantly less than the time spent executing forward and backward propagation steps.

Different implementation and optimization settings may affect this result.

At the same time, further analysis (see SI) suggests that TLi networks converge over a

smaller number of epochs than their PGi counterparts. In addition, in our studies, variation

between the performance of the best and the worst TLi networks was significantly smaller

than the variation between the best and the worst PGi networks.

5.3 Interpolation vs Extrapolation within the models

As described above (see Table 1), the NNs have been trained on multiple subsets of the data

derived from FEM solutions, aiming to assess both correctness and generalizability of the

proposed PGML networks. Here we are particularly interested in the ability of the NN to

generalize the results between different plasma wavelengths of the doped components of the

funnels’ cores.

In the “interpolating” models (subscripted i), 50% of the data from the sets represent-

ing the lowest and the highest plasma frequencies, and an additional 10% from the data

set representing the central plasma wavelength were used as labeled training data. The

unlabeled networks further included 40% of the central plasma wavelength data set as un-

labeled data. Therefore, the CNN would have to deduce the behavior of the composites

with λp = 7, 10 µm. For the “extrapolating” (subscripted e) and “extended extrapolating”

(subscripted x) networks, a similar approach was used except with the bulk of labeled train-

ing data coming from the 7 and 10 µm plasma wavelengths, having the CNN deduce the

behavior of the metamaterials with λp = 6, 11 µm

Typically, data interpolation is a much simpler problem than data extrapolation. How-
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ever, this general rule does not hold for our analysis. As seen in Fig.3(b,c), the average

performance of the two classes of medium-resolution networks is almost identical to each

other, indicating that both interpolation and extrapolation tasks (in terms of λp) in our

study represent similar difficulties to the NNs.

Fig. 5 provides a more in-depth look at this behavior. In general, as characterized by Lϕ

loss, the networks perform their best in predicting the fields within the metamaterials for the

same plasma wavelength that comprises the majority of their labeled training set. Indeed, Lϕ

is ∼ 2 times lower for the data that has a plasma wavelength that is well-represented in the

training set than for the configurations with plasma wavelengths that contribute few or no

instances to the labeled training data. Incorporation of physics-based constraints improves

the physics-consistency of the results for all values of λp by an order of magnitude, indicating

that the CNNs learn the general properties of the field distributions but miss the particular

boundary conditions that are encoded in the labeled data.

By comparing the performance of extrapolating networks to their “extended” counterparts

[Fig.5(c,e)] it is seen that adding very little labeled data can somewhat address this issue

of underspecified boundary conditions: introduction of ∼ 20 labeled distributions (total) for

λp = 6, 11µm reduces the λp-specific Lϕ by ∼ 20% with almost no effect on Lph.

Interestingly, in all scenarios Lph decreases as a function of λp. This behavior traces the

strength of the resonance in ϵzz that decays and moves out of the spectral range of the study

as λp increases (see Fig.1d).
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Figure 5: Performance of the medium-resolution networks for predicting the field distribution
of composites with given plasma wavelengths; panels (a, c, e) and (b, d, f) represent Lϕ and
Lph, respectively, for (a, b) interpolating, (c, d) extrapolating, and (e, f) extended extrap-
olating networks; colors represent training protocols; individual predictions are represented
as filled semitransparent circles, resulting in the color-coded distributions; solid white circle
markers and black bars represent the mean and standard deviations of these distributions.
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6 Conclusions

We have presented a hierarchical design of PG neural network surrogate solvers of Maxwell’s

equations and demonstrated the proposed formalism by predicting the field distributions in

hyperbolic metamaterial-based photonic funnels. We have demonstrated that embedding

physics information into the ML process, by enforcing the physics-based constraints and

by adding unlabeled training configurations, improves the quality of ML predictions in the

regime of limited training data. In particular, physics-guided ML predictions are almost

two orders of magnitude more physics-consistent than their BB-ML counterparts, even near

wavelengths where the layered composite undergoes topological transitions. Separately, we

have demonstrated that a hierarchical network architecture enables knowledge transfer from

existing pretrained models to higher-resolution NN implementations.

The approach presented can be directly applied to the analysis of complex rotationally-

symmetric electromagnetic systems. The technique can be straightforwardly extended to

quasi-2D geometries with inclusions of various sizes and shapes by using the appropriate

coordinate-representations of Maxwell’s equations. The formalism can be further extended

to 3D geometries, although we anticipate that such extensions will require significantly larger

computational resources.
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Maxwell’s Equations in Cylindrical Geometry

As mentioned in the main manuscript, we use the rotational symmetry of our problem to re-

duce the three-dimensional vectorial Maxwell’s equations to equations describing the behav-

ior of the ϕ-components of the electric and magnetic fields (which vary smoothly throughout

the geometry). Assuming that all fields are proportional to exp(−iϕ), once Eϕ and Hϕ are

known (for example, as predicted by the neural net), the remaining components of the fields

can be calculated via

E⃗rz =
−i

ϵω
2

c2
− 1

r2

(
−1

r
D⃗rzEϕ −

ω

c
ϕ̂× D⃗rzHϕ

)
(S1)

H⃗rz =
−i

ϵω
2

c2
− 1

r2

(
−1

r
D⃗rzHϕ + ϵ

ω

c
ϕ̂× D⃗rzEϕ

)
(S2)

where the differential operator D⃗rz is defined by D⃗rzf = r̂ 1
r

∂
∂r

(rf) + ẑ ∂f
∂z

.

Maxwell’s equations also provide additional constraints, ensuring self-consistency of the

field components:

∂Hr

∂z
− ∂Hz

∂r
= −iϵ

ω

c
Eϕ (S3)

∂Er

∂z
− ∂Ez

∂r
= i

ω

c
Hϕ (S4)

the first of which is used as a basis for Lph in the manuscript.

Regularization Function

The neural network directly predicts Eϕ and Hϕ, and the physics layer then calculates Hr

and Hz using Eq.(S2), above. It is seen, however, that for transparent materials, Eq.(S2)

diverges when r2ϵω2/c2 = 1.

In approximate numerical solutions (such as those analyzed in our work), this condition

leads to instabilities that – if left unaddressed – would dominate both Lrz and Lph loss
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functions.

To address these underlying instabilities, we introduce the regularization function R(r, z)

in such a way that regularized fields E⃗ = RE⃗ and H⃗ = RH⃗ remain finite within the simulation

domain. Explicitly,

R(r, z) = 0.1
ϵ(r, z)r2 ω

2

c2
− 1

ϵ(r, z)r2 ω
2

c2
+ 0.1

(S5)

is used in our work (In principle, any R(r, z) that vanishes, at least linearly, when r2ϵω2/c2 =

1 can be used).

To find an appropriate physics loss function, we first recast Eq.(S3) in terms of regularized

fields
∂

∂z

(
Hr

R

)
− ∂

∂r

(
Hz

R

)
= −iϵ

ω

c

Eϕ
R
. (S6)

We then apply the derivatives and rearrange the resulting relationships, arriving at:

∂

∂z
(RHr)−

∂

∂r
(RHz) + 2

(
Hz

∂R

∂r
−Hr

∂R

∂z

)
+ iϵ

ω

c
REϕ = 0. (S7)

Recasting the latter equation back to the actual fields yields the physics residual used for

physics loss in our work

Λph =
∂

∂z

(
R2Hr

)
− ∂

∂r

(
R2Hz

)
+ 2

(
RHz

∂R

∂r
−RHr

∂R

∂z

)
+ iϵ

ω

c
R2Eϕ. (S8)

Note that physics-consistent solutions should satisfy Λph(r, z) ≡ 0.

Radial Weight Function

The fundamental electromagnetic phenomena enabled by photonic funnels (anomalous reflec-

tion and subdiffractive light confinement) are encoded in the field distributions within and

in close proximity to the funnels. Since these field distribution features are more important

for understanding the electromagnetism of the funnels and at the same time are more com-
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plicated than the diffraction-limited field distributions outside the funnels, a weight function

is used to improve learning of the fields at small radii. In our networks, this radial weight

function is a sigmoid given by

w(r) =
5

1 + 10e2(r−3)
+ 0.5, (S9)

where r is in µm.

Physics-Consistency and Energy Conservation

An important physical principle, which should hold (at least approximately, given our dis-

cretization) for physically consistent fields is energy conservation. We may therefore use

the deviation from energy conservation as an additional measure of physics-inconsistency.

Furthermore, we can utilize this metric to demonstrate the impact of imposing physics-

consistency through the inclusion of Lph in the training loss function.

The conservation of energy for monochromatic fields in linear dispersive media can be

written as
ω

c
Im

{
ϵ
∣∣∣E⃗∣∣∣2 + µ

∣∣∣H⃗∣∣∣2}−∇ · Re{E⃗ × H⃗∗} = 0. (S10)

The left-hand side of this equation acts as a kind of “Poynting residual” when applied to

electromagnetic fields, with nonzero values representing local violations of energy conserva-

tion.

As was the case with Λph, to make use of this residual with network-predicted fields, we

must suppress the numerical instabilities which arise from calculating the r and z field com-

ponents via Eq.S1 and Eq.S2. Because this residual expression is proportional to the square

of the fields, adequately suppressing the numerical errors introduced in calculating these

additional components requires multiplication by R2 resulting in the regularized Poynting
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residual:

ΛP = R2

(
ω

c
Im {ϵ}

∣∣∣E⃗∣∣∣2 −∇ · Re{E⃗ × H⃗∗}
)

(S11)

for non-magnetic materials. In analogy with how our physics loss is defined in terms of

our physics residual, a Poynting loss, LP , was calculated as the average magnitude of the

Poynting residual normalized by the square of the maximum field, max(|Eϕ|, |Hϕ|) (here,

Gaussian units are used for convenience, making amplitudes of electric and magnetic fields

of the plane wave comparable to each other).

Figure S1: Physics and Poynting losses of NNs with different architectures and training pro-
tocols, evaluated on the subset of data that was not used in training sets; panels (a,b,c,d) rep-
resent low-resolution (a), medium resolution (b,c), and high-resolution (d) networks; Losses
of individual predictions are represented as filled semi-transparent circles; solid white mark-
ers and black bars represent the mean and standard deviations of these distributions.
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To demonstrate that the physics-consistency enforced by Lph results in fields which better

satisfy energy conservation, we calculated the Poynting loss for the predictions of networks

of each size across all test data. The results are shown in Fig.S1. It is clearly seen that

improving physics-consistency (characterized by lowering Lph) yields improvement in energy

conservation (characterized by lowering LP ).

Loss Dynamics

Figure S2: Loss dynamics of medium resolution networks showing training and validation
loss against training iteration for (a) black-box, (b) field-enhanced, (c) physics-guided, and
(d) unlabeled-trained networks. The solid lines show the losses averaged over networks while
the shaded regions are bounded by the maximum and minimum losses at each iteration.
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The training and validation loss curves for each of the four medium resolution “inter-

polating” network configurations are presented in Fig. S2. Across all cases, the validation

loss closely follows the trend of the training loss throughout the training process. While the

two losses begin at similar values—occasionally with the validation loss slightly lower during

the early epochs—they gradually separate as training progresses with the validation loss

becoming slightly greater towards convergence. This pattern is expected given the model’s

exposure to the training data and indicates stable, consistent generalization to unseen data,

with no evidence of significant overfitting.

Similar results were seen for high-resolution networks, pointing again to stable training

without overfitting. Additionally, we compared the validation loss dynamics between high-

resolution ULi and TLi networks, summarized in Fig.S3. It can be seen that TLi networks

require fewer training epochs to converge and tend to outperform their ULi counterparts

during early training iterations. However, ULi networks tend to eventually outperform their

TLi counterparts.

This dynamics reflects the comparatively smaller parameter space of TL networks, which

are therefore more readily able to find optimal network configurations and less likely to fall

into (and become stuck within) local minima. However, this smaller network dimensionality

comes at the price of expressiveness, somewhat limiting the ability of TL networks to fine-

tune their predictions.
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Figure S3: Validation loss dynamics of high-resolution unlabeled-trained and transfer-
learning networks. The solid lines show the losses averaged over networks while the shaded
regions are bounded by the maximum and minimum losses at each iteration.
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