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Abstract

This manuscript introduces a novel spin model that captures the dynamics of
ecological systems. We assume that these ecosystems consist of species whose
ecological properties are completely determined by their discrete genotypes, and
these genotypes are encoded by spin strings. We demonstrate that the Hamil-
tonian of this spin model can be derived naturally from classical models of
population dynamics. Specifically, we establish a connection between the max-
imization of species abundance and the minimization of the Hamiltonian. The
standard mean-field analysis reveals that the proposed spin model corresponds
to the well-known Hopfield system, in general, characterized by asymmetric
interactions. Remarkably, the resulting Hopfield system can possess an expo-
nential number of local attractors, which, in the case of asymmetric interactions,
may be complex. We term this characteristic ”super multistationarity.” We also
demonstrate that super multistationarity combined with spontaneous symmetry
breaking empowers populations to identify optimal genotypes. This adaptation
process mirrors the search for solutions in a parallel computer.
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1. Introduction

The Ising and spin glass models have garnered significant attention in the
field of statistical mechanics. To understand phase transitions, frustrated phe-
nomena, and other effects related to these models, various methods have been
developed, including mean-field theory, replica symmetric ansatz, cavity method,
and others (see [1, 2] and the references therein). These models have found
formidable applications in diverse areas such as neural network theory [3-7],
computation theory [8], machine learning problems [9-13], as well as climate
science [14-16] and biology [17-21]. These models have also been applied to
describe multiagent systems capable of resolving hard combinatorial problems
[22]. Moreover, they can be used to describe the formation of social groups [23].
Dynamics in such models can be described in various ways. The most well-
known is the so-called Glauber dynamics; however, there are other interesting
models as well [24].

In the context of ecology, spin models have been studied as presence-absence
(PA) models [20]. In these models, each species is represented by a binary (spin)
variable, with the i-th spin being assigned a value of 1 if the i-th species is
present within an ecosystem, and —1 otherwise. Such models prove valuable in
theoretically describing important phenomena, such as transitions from a niche
mode to a neutral mode [19], and they can also be employed to model species
biodiversity and spatial distribution (refer, for instance, to [20, 21]). Moreover,
biologically motivated inverse problems can be explored by the Ising model (see
[25, 26] and for a comprehensive overview, refer to [27]).

Consequently, there exists a compelling motivation to establish a theoreti-
cal link between these well-established classical models and the realms of evo-
lutionary biology and ecology. E. Koonin and collaborators have undertaken
this challenge in their research papers [28, 29], recognizing intriguing parallels
between the observed phenomena in spin glasses and those encountered in evo-
lutionary biology. These analogies provide a promising avenue for exploring and

understanding the fundamental principles underlying both systems.



In this manuscript, we establish a new connection between classical ecolog-
ical models, which have been proposed to describe species sharing the same
resources [30, 31] and spin interaction models. We generalize classical popula-
tion dynamics models by considering a Boolean genetic code and assuming that
the species’ growth rate function depends on the state s of this code. Through
an averaging process, we demonstrate that the condition of achieving maximum
species abundance over an extended time interval is equivalent to the mini-
mization of a spin Hamiltonian, where spins correspond to binary genes. This
connection highlights the underlying similarities and mathematical equivalences
between ecological dynamics and spin models. In the case, where we are deal-
ing with a single gene, the resulting Hamiltonian closely resembles the Ising
model. Such a model can also be perceived as a PA model [19]. As we move to
the case of multiple genes, a vector spin model emerges, bearing resemblance to
more complex spin glass models [2]. We believe that this vector model is useful
for accounting for the effects of gene regulation and for explaining evolution in
an ecosystem under the influence of a changing environment.

For instance, consider the evolution from ancient rhinoceroses to woolly
rhinoceroses during a period of climate cooling. In contrast to their contem-
porary counterparts, woolly rhinoceroses boasted elongated heads and bodies,
coupled with shorter legs. Their elevated shoulders supported a robust hump,
serving both as a platform for the animal’s substantial front horn and as a fat
reservoir crucial for winter survival in the expansive mammoth steppe. Given
this, it is reasonable to anticipate the involvement of numerous genes in the
transition from ancestral rhinoceroses to the woolly variety. Vector spin models
provide a framework to elucidate the mechanisms driving successful adaptation

amid cooling conditions (see Fig. 1).

1.1. Super multistationarity and complex dynamics in spin systems

Unlike presence-absence models, we employ spins in a distinct manner and
pursue different objectives. Our primary aim is to unveil a novel adaptivity

property, which we term ’adaptivity via super multistationarity’ of ecosystems,



and to comprehend the interplay between genetics and ecology—particularly in
response to changes induced by climate or other stressors.

Let us consider, for example, bacterial populations. They exhibit remark-
able adaptability across vastly different environments. Various bacterial species
demonstrate the ability to survive at diverse temperatures, often spanning ex-
tremes of both high and low ranges. They can thrive beneath ice or at depths
of kilometers without access to oxygen. Additionally, organisms like plants are
proficient at adapting to fluctuating surroundings, such as those characterized
by chaotic changing weather patterns. The question then arises: How can we
explain this exceptional adaptability displayed by ecosystems?

To make headway in tackling this challenging problem, this paper undertakes
the following steps. By employing the standard mean-field approach, we derive
a mean-field Hamiltonian from the given Hamiltonian. In the simplest case
when we are dealing with a single gene (spin), the obtained Hamiltonian is
similar to the standard Curie-Weiss model with an external field. The inverse
temperature is proportional to the effective population size, and the field arises
if a point mutation (the gene flip) affects adaptive properties, i.e. the growth
function. A more intriguing scenario emerges when several genes are involved,
leading to vector spins and vector magnetization. To investigate the equilibrium
states of this vector model, it is convenient to examine the dynamical equations
associated with this model.

We find that the resulting system for dynamics of magnetization is the well-
known Hopfield system with continuous time and, in general, asymmetric inter-
actions. The Hopfield system has received considerable attention [2, 3], and it
has been shown to possess a remarkable property known as Universal Dynam-
ical Approximation (UDA). Currently, there is no general theory of dynamical
systems for dimensions above 2, except for monotone and gradient-like systems.
The study of each specific system with complex behavior is a rather difficult
problem. The approach based on UDA allows us to investigate entire classes
of systems depending on parameters. This shows that there are families of dy-

namical systems with parameters P, which exhibit universality in the sense that



they can simulate any prescribed system of differential equations by adjusting
P.

For further insights into UDA, refer to [32], as well as [33-35] for related
results on UDA in the context of the Hopfield system and similar models. This
implies that, to a certain extent, this model can simulate all possible finite-
dimensional dynamical systems, such as those defined by systems of differential
equations. Furthermore, it can be demonstrated that these models possess a
remarkable property known as ”super adaptability”, which is critical for their
ability to successfully navigate and respond to various environmental challenges
and changes [36]. Specifically, if we consider a spin dimension of N, they can
support exp(cN) local attractors, where ¢ > 0.

We suggest that the multistationarity property, coupled with the classical
theory of phase transitions for spin systems, can help explain the formidable
stability of the biosphere under environmental challenges, such as fast climate
changes. A possible mechanism is explained in Fig. 1. The key question is
how to explain adaptive evolution in many directions. For example, to adapt
to cooling conditions, woolly rhinoceroses should evolve to elongate heads and
bodies, shorten legs, and develop a hump. It is challenging to imagine mutations
simultaneously leading to such variations in phenotype, affecting many different
organism traits within the same time period.

In fact, Fisher’s classic work in the 1920s demonstrated that the probability
of such multidimensional mutations is exponentially small [37-39]. The analysis,
based on the analogy with spin systems, and the obtained results illustrate how

one can significantly facilitate this adaptation process.

1.2. Hypothesis: how to overcome the bottleneck

Let us propose a hypothesis based on our results, explaining how populations
navigate through a bottleneck induced by a climate catastrophe. It can be
demonstrated that, as a consequence, when resources decrease and the species
growth function approaches the mortality rate, the coefficient defining the spin-

spin interaction becomes large. This results in ferromagnetic effects, dividing



the entire area into zones with differently directed spins. Since our spins have
high dimensions due to organisms containing many genes, one can expect that at
different spatial locations represented by point =, we have different independent
attractors.

Returning to the language of populations, this implies that the entire species
population splits into subspecies, each with unique adaptive properties. These
properties vary among different subspecies. When the ecological situation im-
proves (i.e., the growth function increases), migration and sexual mixing occur,
leading to the formation of a single species encompassing all necessary adaptive
features. This process can be likened to hysteresis. However, a crucial distinc-
tion from classical models of statistical mechanics is that the spin dimension
may be large.

In physics, classical spin models can be interpreted as the discretized version
of a microcontinuum model. Regarding ecological systems, here we neglect the
effects of smooth diffusion transitions, considering, for example, that the tundra-
forest transition is sharp: in each point, either a tundra or a forest. We believe
that for plant ecosystems, this boundary effect is not significant: the areas of
mixed habitats are small compared to homogeneous areas. Additionally, the
spin model dynamics considered in the paper are Markovian. Therefore, we
neglect the memory effects in spin dynamics.

The paper is organized as follows. In the next Section 2, we derive the spin
model from well-known population dynamics models. Section 3 focuses on the
mean-field equations. The main results are discussed in Section 4, where we
describe the possible dynamical behavior of our models over large time scales.

Concluding remarks are provided in Section 5.

2. The resource competition ecosystem model

In mathematical ecology, there exist fundamental models that describe ecosys-
tems where numerous species (such as plankton or plants) compete for limited

resources. The standard model [30, 40, 41] was introduced to address the so-



called Plankton paradox.

Another seminal model in ecological studies is the MacArthur model, exten-
sively discussed in [31]. It shares similarities with the standard model, albeit
with linear growth rate functions and resource turnover coefficients. Addition-
ally, a variant of the MacArthur model was proposed in [31], where turnover
rates do not incorporate factors vg. While our reduction to spin models can
be applied similarly to all these models, for the sake of clarity, we focus on the

standard model. However, we extend it to account for spatial diffusion (species

migration):

8ui .

5 = d; Au; + ui(9i(v) — pi — viui), i=1,..., Ngp, (1)

v M

E_Dk(sk_vk)_izzlckz Uj ¢Z(U)a k_la"'ana (2)
Here u = (u1,us,...,un,,) is the vector of species abundances, u; = u;(x,t),
t>0,2¢€ 8, v=(vy,...,v,) is a vector of resource amounts. The set 2 C Z9,

where d = 2, is a bounded subset of discrete lattice Z%, for example, a rectangle
[1:Lqi]x[1:Ls]. Inegs. (1) A denotes the standard discrete Laplace operator,
w; are the species mortalities, and ~; are self-limitation parameters. In eqgs. (2)
the unknown function vy is the amount of the resource of k-th type consumed
by all ecosystem species, Dy > 0 are resource turnover rates, Sy is the supply of
the resource vy, Dyvg(Sk — vi) is the supply rate for k-th resource and ¢;;, > 0
is the content of k-th resource in the i-th species. We consider general growth
rate functions ¢; that are bounded, smooth and non-negative and increasing
with respect to the resources: %(:) >0 for all j, k.

We complement system (1), (2) by the following initial conditions
u(0) = u(X), v(0) =v(X), 3)

where

w;>0,i=1,...,N, and 0< 0, < S, k=1,...,n. (4)

We set the periodic boundary conditions

uz(x—kLl,y,t):uz(x—l—Ll,y,t):ul(x,y—i—Lg,t) (may)egv t>0 (5)



vz + L1, y,t) = vg(x + L1, y,t) = ve(z,y + La,t) (z,y) € 2, t>0. (6)

2.1. Simplified model involving genes

We would like to take into account the genetic code and its evolution. For
this purpose, we suppose that the growth function ¢; depends not only on the
resources v but also on the genotype s(z,t) € S¥ = {—1,1}¥, which can evolve
in time.

To simplify the statement, we set the species number Ny, = 1 assuming that
we are dealing with different variations of the same species located at different

points, so we are seeking for u(z,t) = u(x,t). Then system (1), (2) becomes

0
o = ddutu((v,s) — =), (7)
v
a—tk = Di(Sk — vk) — ¢ u &(v, 8), (8)
where k =1,...,n, s =s(z,7), 7 is a slow time, 7T = ef, and 0 << e << lis a

parameter of the evolution rate. So, when we consider the dynamics defined by
system (7),(8) one can assume that 7 is fixed (frozen), i.e., ecological dynamics

is much faster with respect to genetic evolution of s.

2.2. Asymptotics for large turnovers

The system (7), (8) is complex and has primarily been studied using nu-
merical methods [40, 41]. In certain cases, this system can be reduced to the
well-investigated multispecies Lotka-Volterra system. It’s noteworthy that this
Lotka-Volterra system exhibits the UDA property. Therefore, this approach aids
in analytically proving the existence of chaos for (7), (8), which was previously
observed only in numerical simulations [40, 41]. This reduction is feasible when
turnovers are large, i.e., Dy > 1 (see [42]). Consequently, vy approximates
the resource supplies Sy, indicating that almost all resources are utilized in the
ecosystem. Following [42], we express vy for large turnovers Dy, via u. In fact,
for large Dy one can set vy = Si — Uk, where for U5 one has

Oy,

E = Dk’ﬁk —Cr U ¢(§ — ’E,S), (9)



where k= 1,...,n and S = (Si, ..., S,). Then it is clear that @5 = O(D; ') and

we obtain an asymptotic solution
oy = D} 'epud(S,s) + O(Dy?). (10)

Removing the small terms O(D; ') in eq. (7), we obtain then the following
equation, which involves u only:

%:dAuﬂLU(@(S’,S)—u—w)- (11)

2.3. Averaging and mazimum principle
We denote (u) the spatial average of u over 2:
(w(-6) = 1217 Y ul,1),
zeR
where |2| = Ly Lo is the number of the location points x inside (2.
It is well known that mutations are seldom. Therefore, we can choose a large

1

time interval [0, 7] for averaging such that 7' >> 1 but T' << e~ *. Following

[42, 43] we use the time averaging over [0, T]:

T
(w(z,))r = T_l/ u(x, t)dt,
0
and we denote by .
(o mr =171 [t
the result of averaging in space and time. Let us divide the r.h.s and the Lh.s
of eq. (11) by w:

uil% =du " Au+ ¢;(S,8) — 1 — yu. (12)

We suppose that our species are not extinct, i.e.
u(z,t) > d >0 Vre2,t>0. (13)

Such ecosystems are called permanent (ecologically stable)[44]. For a continual
model, where x take real values and A is the standard Laplacian operator, we

have [42]

(((ogu(z,t)e))r = (($(S,8(x, 1)) — p—yu+ dVu?u=?))r + O(T7). (14)



In the space discrete case, a similar relation can be found. For simplicity, we
proceed with the derivation of this relation for 1D case, where x € Z are integers,

and periodical boundary conditions (5) hold with L; = L. We have

(Auu™") = i — 2u((x)) *ule - 1). (15)

Eq. (15) gives

x=L
(Auu™t) = Z W, (16)
x=1

where b(x) = u(x + 1) — u(z). It is clear that due to periodicity
b(x) — bz — — z—1) bz-1)
Z u(z) ; ( (z—1) u(z) )

Therefore, we obtain

=L

ur) —ulxr — 2
(Auwu™) =" ( (u()x)u(i — 1;)) : (17)

r=1
The right-hand side of this equation will be denoted further as (Vu*u~2). In
fact, the r.h.s. of (17) is a discrete analog of the corresponding term in the
continual model. Moreover, let us note that under (13) for bounded w such that

sup u(z,t) < C one has
({logu(x,t)):))r < (C = 0)/T = O(T™).

The boundedness of u can be shown by eq. (11). These estimates show that for

large T eq. (14) gives
((ula, ) =77 {(#(S,8(2,1)) — p+ dVuPu=2))r + O(T ") = —H(s). (18)

We see that the maximum abundance corresponds to the minimum of the Hamil-

tonian H(s). The function ¢ equals
D(s) = (S, s(x,t)) — p.

Here Vu(z) = u(x) — u(xz — 1) can be considered as a discrete analog of the

nabla operator Vu.

10



2.4. Growth function representations

To find an explicit form for the Hamiltonian (18), we need relations for &(s)
and u via s. The growth function @ can be considered as a fitness thus we can
use different approximations for the fitness. Moreover, let us note that ¢ and
u are pseudo-Boolean functions of s. The general form of the pseudo-Boolean
functions of N variables s; € {—1,1} is known. It can be written down as a

Boolean analog of the Fourier sum (a multilinear polynomial) [45]:

os)= > F(X)xx(s), (19)

X€[N]

where [N] = {1,2,..., N}, the sum is taken over all subsets X of [N] and

xx(s) = H ;.

ieX
Suppose there are no epistatic effects in gene regulation, which represents

the simplest case. Then we have
N
B(s) = ao+ Y _ bisy. (20)
k=1
If we are dealing with a single gene, (19) gives
&(s) = ap + bs, (21)
where coefficients ag and b may depend on the resource S:
ap :(],O(S)7 b:b(g) (22)

If we take into account linear and quadratic terms in (19) we obtain a fitness
arising from the Fisher Geometric model with mutations investigated in [46]. In

this case, we have

N 1 N N
@(S) =ag + ; brsk + B ; l_zl briSksi, (23)

with coefficients depending on S (as above). In recent decades, studies of fitness

functions for genuinely existing organisms have commenced (see, for example,

11



[47, 48]). These studies reveal the existence of numerous peaks, valleys, and
ridges connecting peaks in fitness landscapes. Moreover, investigations into fit-
ness landscapes in natural populations have demonstrated low fitness for inter-
mediate phenotypes, indicating the presence of valleys in the fitness landscape.
In the context of mimicry, it was found [48] that natural selection promotes ge-
netic architecture preventing the expression of intermediate phenotypes. Close
fitness peaks are separated by ridges, allowing for a drift from local peaks.
Certainly, it is impossible to obtain such complex landscapes with (20),
(21). A more accurate representation, capable of approximating intricate fitness
landscapes and taking into account complex gene regulation, is currently being

explored in [49]:
K
B(s) = ag + »_ biYi(s) (24)
i=1

with N
Yi(s) = U(Zwijsj - hi>7
j=1

where b;, w;;, h; are coefficients, o(u) is a monotone increasing sigmoidal func-
tion such that o(+00) =1 and o(—o00) = 0. The matrix W with the entries w;;

defines an interaction between genes.

2.5. Simplified Hamiltonian

Let us consider the simplest scalar case (21). To find u, we suppose that d >
0 is small. Then a rough approximation for u via @ is u(x) ~ v~ 1(®(S,s(x)) —p)
(under condition that ¢(S,s(x)) > u). We obtain then

2 —2 b(s(z) —s(z —1))
Vu(z) u(r) = =~ (ag — p+ bs(x))(ag — pu+ bs(z — 1))

We can simplify this relation further supposing that |b| << ag — ¢ and ag > p
(this means that mutation effects are small). It gives

b(s(x) — s(x — 1))

Vu(e) ()~ S

Q
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By substituting this relation into (18), we find that the one dimensional Hamil-
tonian H(s) takes the Ising form:
H(s()) ~ sz(m) —2JOZs(sc)s(x— 1), (25)
x T

where the coupling coefficient Jy is equal to
Jo = db*(ag — p) ™ (26)

and terms independent of s are removed in (25). Note that this model is ferro-
magnetic, i.e. the species migration and gene transfer produce the ferromagnetic
interaction in the spin model. The formula for Jy involves basic genetic and eco-
logical parameters: the migration rate d, the mortality rate u, and the fraction
b2(ag — p)~2, where b can be interpreted as a sensitivity of the fitness with
respect to flip mutation s — —s, whereas ag — p is a difference between growth
function and mortality rate.

In the 2D case the sum in (25) must be taken over all pairs of the nearest

neighbors:

H(s() mbYy s(a) = Jo Y s(x)s(y), (27)

z,yelE
where E denotes the graph of spin interaction with the set of vertices V = {2,
which in this case, contains edges corresponding to nearest neighbors. We can
envision that species within this ecosystem interact with each other through a
coupling term. This coupling term arises due to various interactions such as
sexual mixing, migration, or other forms of interaction. Then we can have a
more general coupling than via nearest neighbors.

The scalar model (27) can be interpreted as a presence-absence (PA) model
[20]. In fact, suppose that the species u consists of two subspecies, with spatial
densities u1(z) and wus(z), and only a single subspecies lives at each point x.
Assume that genomes of these subspecies differ in a single gene s € {—1,1}
only, and u; corresponds to s = 1 whereas us bears s = —1. Then the presence-
absence of u; at z is equivalent to s(z) = 1, s(z) = —1, respectively.

Let us consider the case (20). A similar computation gives

13



N
HC)) =YD bisi(a) = D Is(z)-s(y) + ) ¥(s(a)), (28)
z =1 T

z,yel
where J is the coupling matrix with the entries Jy, = d(ag — u)_2blbk and
Js-s= Z Jlkslgka !P(s) =Js-s.
I,k=1,...,N, Ik

In the case (24) one has

H(s(+)) =~ const + Z J(s(z),s(y)) + ZWR(S(QC)), (29)

z,yelE

where K N
WR(S) = Zbio(zwijsj‘ - hi)u
i=1 j=1

and the coupling term J has a complex form:

K

J(s,8) = day? > bi(Yi(s) — ¥i(8))".

=1
Note that similar coupling terms arise in multiagent systems describing the
formation of social groups [23]. They possess a transparent interpretation: each
entry of the spin vector can be regarded as a feature, so J(s,S) measures the
distance between the spin strings s and s. This distance is a complex function
of s and 8. This model is not tractable and we simplify the coupling term that
gives

H(s(-)) =~ const — Jy Z s(z) - s(y) + Z Ur(s(z)), (30)

z,yeE

where J; is a constant.

So, we see that fundamental ecological models for systems competing for
resources [30, 31, 40] can generate these Hamiltonians when assuming that the
growth rate function of species involved in resource competition depends on the
genes s. Then the quantity —7# corresponds to the average species abundance
over a long time period, during which the genes remain fixed. The minimum of
the Hamiltonian means that species abundance is maximal. It is also possible to

obtain the Hamiltonian through another approach, namely a natural variation
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Evolution as a result of spontaneous symmetry breaking and hysteresis

Cooling >
N.decreases
P \\\ N, increases
7 S N 7 - ke S
~ / R
P \\ / /‘g , NEJ \\ // \\\\
A 3 A a : 4 3
/// \\ A\ - \\ / - \\\
\ s
\ —~ | / \

/

( oy N

\\ ) / \\\\7717 , \\ ; /

Figure 1: This illustration elucidates how segmentation and migration facilitate the evolution
of species under climate variations, as exemplified by the transition from ancestral rhinos to
woolly rhinos, specifically in the context of cooling. Initially, the population is homogeneous
(as shown in the left panel, representing an area with a single species). As climate variations
occur, the fragmentation parameter Py,..4 increases, leading to a potential ”bottleneck” sce-
nario. This increase triggers spontaneous symmetry breaking, resulting in the formation of
distinct domains housing organisms with diverse traits. This phenomenon is facilitated by the
modular structure of gene regulation. Consequently, various subspecies emerge, each adapted
to specific habitats and displaying distinct features, such as the hump or longer body (refer to
the middle panel, where the area domain is decomposed into three subdomains with three sub-
species). The appearance of the hump represents a useful genetic innovation (feature A), and
the emergence of a longer body represents another valuable trait (feature B). Subsequently, as
the parameter Py,qq4 rebounds and genetic mixing occurs (e.g., through sexual reproduction)
within the entire habitat, a new organism emerges. This organism is well-suited to thrive in

the new cold climate conditions, benefiting from both features A and B.

principle for ecological systems, as described in [31]. Note that if we wish to
consider the effects of heterogeneity and external parameters, such as environ-
mental temperature T or precipitation level P, we can consider a more general

potential energy @, which involves parameters, for example, @ = &(s, x,Ts).

3. Mean field equations

Let us consider the Hamiltonian H. first. In order to apply the standard
mean field approximation, we set s(x) = m + 5(z), where m = (s) represents
the averaged magnetization (which does not depend on ¢ due to translation

invariance), and §(x) denotes the fluctuations. We remove the quadratic fluc-
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Figure 2: This plot shows an oscillating time evolution of magnetization for mean field equa-
tions. The spin dimension N is N = 2, the parameter values used are hy = ha = 0.0, 5 =1

and the matrix J has the entries J11 = Jog = J12 = 1, Jo1 = —1.

tuation terms §(z)5(y) and then this standard mean field approximation yields

the following mean field Hamiltonian:

Jozm?
2

HSC,MF == M + Z(Jozm - b)S(:L’), (31)

e

where z is the number of neighbors (the coordinate number).

8.1. Scalar model

To simplify the subsequent statement, let us proceed with the derivation
of (33) (the vector case equations can be obtained similarly). Consider the
equation

dlog Z(m)/dm = 0, (32)

where the Gibbs statistical sum has the form

Z = Zexp(—,@Mszz/Q) exp ( — Zﬁ(.]zm — b)s(x)),
) P

16



where the sum is taken over all distributions s(z), = € 2. We obtain

2
log Z = fﬂMJozm? — M log cosh (6(Jozm — b))
that by (32) gives
m = tanh (8(Jozm — b)). (33)

In the case of b = 0, where spin-flip does not alter the fitness (growth function),

we obtain the following equation:
m = tanh(BJyzm). (34)

In biology, this case means that we consider a neutral situation when selection
is absent. As the inverse temperature [ increases, at 8 = ., we observe the
Curie-Weiss transition. Mathematically, for fJyz < 1, equation (34) has a single
root, while for SJyz > 1, it exhibits bistability with three roots.

Note that, according to [28, 29], the parameter f is proportional to the
effective population size N.. This means that the case of large populations,
where genetic drift is small, corresponds to the low-temperatures in statistical
mechanics. Conversely, in the case of small populations, where genetic drift
is large, corresponds to high temperatures. The ferromagnetic effects in spin
systems are analogous to fragmentation in an ecosystem. We thus conclude that

the fragmentation effect depends on the parameter
Pfrag = db*(ag — p) 2 Ne. (35)

The rough estimate of N, by eq. (12) shows that for small |b| and d the effective
population size N o« (ag — p)y~*[£2|. Let us note that N, o< [, u(x,t)dx.
The equilibrium spatially homogeneous solution of ((12) is ueq & (ag — )y~ L.

Finally, the fragmentation parameter can be estimated by
Pfrag ~ de(ao - :u)_l’y_l'gl' (36)

3.2. Vector model

In the vector case, by the same method, one can derive mean-field equations

for the case of quadratic Hamiltonian given (28). We introduce magnetisation
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vector m with the components m; = M~'>" s/(z) and fluctuations §;(z) =
si(x) —my. For simplicity, we suppose that only nearest neighbors interact, the
coordinate number equals the constant z for all z. Then we compute as above

and obtain the mean-field Hamiltonian

N N N
Harr(s() = Y > bl m)si(@) +2) Y Juwmi(@)mi(y),  (37)

z 1=1 I=1 k=1
where the effective field h¢// is defined by

N
hle‘ff(l’n) =—-b+z Z Jiemyg. (38)
k=1

We can compute the Gibbs statistical sum

ZMF = Z exp ( - BHMF>
s(z)eSN

in the mean-field approximation as above that gives

N N N

M~Yog Zyp = —BzMZ Z Jmpmy + Zlogcosh hleff(m).
k=1k=1 =1

Then for non-degenerate matrices J the mean-field equations can be written

down as
N

my = tanh (5(—bk + Z Jklml))v (39)

1=1
where k € {1,...,N}.

4. Dynamics in vector case

To study possible bifurcations we consider the following dynamical equa-

tions, for which the system (39) determines the equilibrium equations

N
dmk
e tanh (ﬁ(—b;C + ZZ:; Jklml)) — My, (40)

where k=1,...,N.
This system is the well-known celebrated Hopfield model [3], which has been

extensively studied. Firstly, it can be shown that this system is dissipative: there
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is a bounded absorbing set and thus the attractor always exists. For symmetric
interactions, when the matrix J with the entries is symmetric, we obtain that
all trajectories of (40) are convergent, i.e., magnetization m(t) approach to a
solution (39) as t — oco. It is a consequence of a Lyapunov function existence for
dynamics defined by (40) with symmetric J. Note that we can have a number
of stable equilibria.

In the general non-symmetric case, the system (40) exhibits the property of
Universal Dynamical Approximation (UDA) (as defined in [32]). The general
asymmetric case does not arise for linear and quadratic fitness functions defined
by (20), (23), in particular, for the Fisher model, but this case may occur if we
consider fitness (24) with a common non-symmetric matrix W.

Currently, there is no general theory of dynamical systems (for dimensions
above 2), with the exception of monotone and gradient-like systems. The study
of each specific system with complex behavior is a rather difficult problem.
The approach based on UDA allows us to investigate entire classes of systems
depending on parameters.

To explain UDA property more formally, consider a finite-dimensional dy-
namical system defined by the following equations:

dq ~ ~ n
where B" is an n-dimensional unit ball. Suppose the following condition holds:

Condition SS. System ({1) generates a global semiflow St, t > 0, defined
on the n-dimensional closed ball B™ C R™ and having structurally stable (for

example, hyperbolic) local attractors A;, 1 =1,...,k.

We have

Theorem 4.1. Assume that dynamical system defined by (41) satisfies condi-
tion SS. Then for sufficiently large satellite numbers Ny there exist a matriz J
and parameters by, such that dynamical system defined by (40) has local attrac-
tors By topologically equivalent to A;. The restrictions of the semiflow Sk to B

are orbitally topologically equivalent to the restrictions of semiflows St to A;.
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This means that dynamics (40) can simulate any prescribed structurally
stable dynamics. Recall that structural stability is a fundamental property of
dynamics, implying that the topological structure of trajectories of the system
(41) on A; remains unaffected by C'-small perturbations of the vector field
Q. Specifically, under small perturbations, hyperbolic fixed points remain un-
changed and only shift slightly; they cannot transform into cycles, and vice
versa—nhyperbolic cycles cannot become points or chaotic attractors.

Structurally stable attractors can assume complex forms since structurally
stable dynamics may exhibit chaos. If a hyperbolic invariant set I” is attracting
and is neither a fixed point nor a limit cycle, we refer to I" as a chaotic (strange)
attractor [50]. Hyperbolic sets possess a fundamental property known as per-
sistence. Informally, this property implies that hyperbolic sets remain stable
(robust) under sufficiently small, smooth perturbations (see [50] for details).

If the dynamics defined by the system (41) is not structurally stable, then the
system (40) for magnetization can approximate trajectories defined by (41) over
finite time intervals. This approximation property was initially demonstrated in
the work of [51]. Moreover, this property has been established for many classes
of systems, such as systems of chemical kinetics [52], Lotka-Volterra systems
[63, 54], and even for general reaction-diffusion systems with two components
[55].

Some numerical results of the dynamical effects are presented in Figs. (2),(3).
In the Appendix, we state an algorithm to construct a system (40) with com-
plicated large-time behavior, which can be controlled by a few parameters. It is
important to note that the number of local attractors A; can be exponentially
large. This multistationarity effect will be further discussed in the subsequent

subsection.

4.1. Multistationarity effects

The number of equilibria and local attractors generated by the dynamics
(40) can be extremely large. This phenomenon of complex attractor emergence

is attributed to the presence of feedback loops in the interaction structure and
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the modularity of that structure. The following assertion holds:

Proposition 4.2. Under an appropriate parameter choice, system (40) with
dim m = N nodes can have 2°N chaotic or periodic structurally stable local

attractors, where a constant ¢ € (0,1) is uniform in N as N — co.

Proof. For the case of the rest point attractors, this claim is obvious. Let
us take the diagonal matrix J = diag(a + a1,a + as, ...,a + ay), where a; > 0
are parameters, a > 0. Let us set by = 0. Then the system of equations (40)

decomposes into the following independent equations:

% = tanh(28(a + ax)mg) —my, k=1,...,N. (42)

So, for sufficiently large 8 > S} the k-th dynamical systems generated by equa-
tion (42) has two local attractors for rest points. The first attractor is close
to —1, while the second attractor is close to 1. Hence, we have a total of 2V
attractors for the entire system formed by the set of equations (42).

A similar trick proves the assertion in the general case. According to Theo-
rem 4.1, we can find a system (40) of dimension Ny (possibly, Ny is large but it
is finite) with two low-dimensional local structurally stable attractors .4; and
Ay with dim(A;) < dy. We take M independent identical or almost identical
such systems with these local attractors A; and A;. The total system (40)
involves M Ny unknowns and it is a union of these independent systems. Then
this system has 2™ attractors that proves our assertion.

Comment 1: This proof demonstrates that bifurcations leading to multi-
stationarity can occur in various ways. To gain a better understanding, let’s
consider the case of rest point attractors. New attractors can arise simultane-
ously if all the a; values are equal (a; = a2 = ... = ay), or they can emerge
sequentially if the a; values are different. However, these phenomena can also
occur for more complex types of attractors.

Comment 2: The property described by this claim can be interpreted as the
super adaptability of our systems, arising from the exponentially large number
of possible equilibria and spontaneous symmetry breaking in space-extended

spin systems (corresponding to habitat fragmentation in biology).
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Comment 3: As noted in the review [56], plants have evolved sophisticated
systems to maintain mineral nutrient homeostasis, allowing them to cope with
spatial and temporal variability in nutrient concentrations. These systems in-
volve root architecture modification and the control of transporter expression
in response to nutrient availability [56]. The expression and activities of genes
coding for nutrient transporters, for instance, are finely regulated in multiple
steps to adapt to a wide range of nutrient conditions [56]. We propose that
such regulatory mechanisms can be described by complex attractors in gene
expression dynamics. Our assertion regarding the formidable multistationarity
in variants of spin system attractors can contribute to explaining how evolution
has achieved such intricate regulatory mechanisms

Explaining the existence of such complex multicellular organisms supporting
sophisticated regulatory systems remains a profound challenge in the field of
biology [28, 29]. As early as 1930, Fisher demonstrated through his FGM model
that positive mutations impacting multiple features in organisms simultaneously
are exceedingly improbable [37]. This problem was subsequently investigated by
H. Orr (for a comprehensive perspective, refer to [38]). Genomics data suggest
that the evolution of organisms more intricate than bacteria may not necessarily
have been driven by adaptive processes [28, 29].

By employing spin models and building upon the insights from claim 4.2, we
can propose a physically and biologically plausible mechanism to address this
challenge (refer to Fig. 1 and its corresponding comment). Let’s consider a sce-
nario where an organism needs to adapt to a new and demanding environment,
requiring the acquisition of distinct features denoted as Fi, Fb,...,Fx. The
probability of a mutation generating all these necessary features concurrently is
exceedingly low. However, it is reasonable to posit that under harsh conditions,
the fragmentation parameter Py, defined by (35) becomes significant, leading
to the occurrence of phase transitions and ecosystem fragmentation.

This parameter is inversely proportional to (ap—pu)?, where ag—p determines
the population growth rate and can depend on the resource supply S and other

ecological parameters. One can suppose that this coefficient decreases as the
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environment becomes more challenging.

Leveraging the significant multistationarity property highlighted in claim
4.2, we can anticipate that the entire habitat might fragment into subdomains,
each potentially supporting a distinct subspecies (labeled as 1,2, ..., K'). These
subspecies may possess the requisite features Fi, ..., Fix, respectively. As these
better-adapted organisms emerge, the population size N, increases, leading to
the dissolution of this fragmentation. Subsequent sexual mixing can then facil-
itate the emergence of a well-adapted organism encompassing all the necessary
traits.

It’s worth noting that there might be an alternative mechanism that doesn’t
necessarily rely on spontaneous symmetry breaking and fragmentation. Specifi-
cally, we could consider a more gradual evolution, where the organism acquires
features like F, followed by F5, and so forth (in any order).

The difference between these approaches lies in the timing of transitions and
the rate of evolution, which could be particularly crucial during rapid environ-
mental changes. The first option functions akin to a parallel computer, while
the second resembles a conventional evolutionary process. Note that in spin
systems, spin waves (magnons) exist, and these can be utilized for data process-
ing [57]. In ecology, such waves can be interpreted as migration waves, driving
the formation of new species. In certain cases, this formation process is very
fast, as found in [58]. The evolution of complex features in plants was recently
investigated in [59] using network methods, and it was shown that evolution

rates could vary significantly for different species and situations.

5. Concluding remarks

In this paper, it is demonstrated that by incorporating Boolean genes into
basic population dynamics models (which can be viewed as spins), the maxi-
mization of species abundance is equivalent to the minimization of a spin Hamil-
tonian. When only a single gene influences the species’ growth function, a model

similar to the Ising-like model is obtained.
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However, if we consider a multigene control of the growth function, a vector
spin Hamiltonian arises. Under the standard mean-field assumptions, this leads
to the Hopfield system with non-symmetric interactions for magnetization. This
system can exhibit chaotic behavior and demonstrate formidable multistation-
arity, meaning it can have a significant number of local attractors. The presence
of this property plays a vital role in enabling ecosystems to attain and maintain
super adaptability, which is essential for their resilience and ability to thrive in
diverse and changing environments.

In this context, we do not take into consideration stochastic transitions be-
tween different local attractors due to internal and external noises. Additionally,
we assume that the number of spins is fixed. The renowned mathematician, M.
Gromov highlighted the idea that such transitions inevitably lead to the de-
struction of any biosystem with fixed parameters. This concept was further
developed in [60], where it is demonstrated that gene evolution and the emer-
gence of new genes can stabilize unstable biosystems. This leads us to consider
a growing spin network as a general model for evolution, wherein the inclusion
of new genes and the exploration of diverse gene interactions can greatly impact
the adaptation and stability of ecological systems.

By interpreting ecological dynamics through the framework of spin Hamil-
tonians, we unveil striking parallels between the principles of physics and the
intricate dynamics observed in ecological communities. Moreover, our research
contributes to the broader series of works [32, 36, 55, 61] on Universal Dynamical
Approximation (UDA) by examining its implications within the realm of statis-
tical mechanics. The models exhibiting UDA properties possess the remarkable
ability to simulate any finite-dimensional dynamics with a desired level of accu-
racy. This further highlights the potential of spin-based models to capture the
complexity and richness of real-world ecological systems.

Let us note some similarities and differences with previous works. The model
described in [24] focuses on long spin chains, where evolution oscillates between
two processes resembling asexual and sexual reproduction. The line-graph op-

erator from [24] can be viewed as an asexual process, while the recombination
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mechanism mirrors sexual reproduction. This allows for the depiction of alter-
nating sexual-asexual reproduction. In our paper, we explore ecosystems where
reproduction can take various forms; all genetic effects are encapsulated within
the growth function.

The dynamics introduced in [23] elucidate the formation and dissolution of
social groups. The formation of a social group within a large society mirrors
the fragmentation of an ecosystem into subsystems to some extent. Similar to
[23], our work employs spin strings, which may extend considerably in length.
However, unlike the model in [23], which introduces the probability of forming an
entire social group, our model’s fragmentation arises from interactions between
nearest spins, akin to classical Ising-type models. This process allows for an
energy interpretation via a Hamiltonian. Ecological fragmentation of this nature

can be depicted in a static model without delving into detailed dynamics.
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Appendix

In this Appendix, we show how, given a prescribed dynamical system, to
obtain a spin system with a similar dynamics. As an example, we consider the
Rossler system (similarly, we can simulate any quadratic system, and in turn,
quadratic systems can simulate all possible dynamical systems):

d’U1

E = —V2 — Vs, (Al)
dv
7; = vy + avy, (A2)
dv
ditg =b+v3(v1 —¢), (A3)

where a, b, c are parameters. This system exhibits a very rich behavior when we
vary these parameters: convergent, periodic and chaotic. The main trick is to
transform this system into a slow-fast spin system one with additional variables.
The first step is as follows. We introduce a small parameter v > 0, a slow time

T = ~yt and transforms (Al)- (A2) as follows:

dv -

T; =~ tanh(y(—ve — v3 +v1)) — vy, (A4)
dvy —1

e ~~ " tanh(y(v1 + ave + v2)) — va. (A5)

For bounded trajectories the right-hand sides of (A1) and (A4) differ by a term,
which is O(y?). Further, we approximate the term vzv; via auxiliary fast vari-

ables. First, we use the identity 4vzv; = v] — v2, where vy = v3 £ v1. By the
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Figure 3: This plot shows a complex time evolution of magnetization for mean field equations.
The spin system is constructed by the algorithm stated in the Appendix to simulate the Rossler
system exhibiting a rich variety of large time regimes. Here the Rossler system with parameters
a =0.2,b =0.2 and ¢ = 3 is simulated, the parameter v = 0.001. The spin number is 103, the
matrix J corresponds to a spin interaction graph, where we have 3 nodes (centers) interacting
with other 100 nodes (satellites) while the satellites do not interact with each other. This
graph can be viewed as a simplified representation of real-world biological interaction graphs.
This also illustrates the temporal evolution of magnetization for centers. Computations are
by the program Ode45 in Matlab on time interval I = [0 : 120]. The accuracy of simulation is
computed as Lo (I)-norm on the differences between the numerical trajectories of the Rssler
system and the trajectories of the spin simulation (divided by the La-norm of the trajectories

of the Rossler system). That accuracy is 0.046.
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least mean squares, we can obtain an approximation
N,
22~ Z X, tanh(z — h;) (A6)
j=1
on a compact interval [—R, R], where R(a,b,c) > max(|vs(t)| + v1(t)|), where
v3,v1 are trajectories of the Roossler system (since this system is dissipative,

such a constant R exists). Here h; are thresholds located uniformly: h; =

R+i(2R/N,) and X; are coefficients to adjust. Having X; we represent vzv; as
V3V R Z (tanh vz — vy — h;) — tanh(vs +v; — hz)) (A7)

Now we introduce additional fast variables w satisfying equations

dwt X
d; =~"1 (I tanh(vs +v1 — h;) — w;t) (A8)

Then we can rewrite (A3) as follows:

dvs _

_1 _
o tanh fyzzzl w; +w; +v3)) — vs. (A9)

Finally, we obtain the system of equations (A4), (A5), (A9) and (A8) which
has the form of (40) for an appropriate matrix J and coefficients by.

The outcomes of this algorithm’s operation are illustrated in Fig. 3.
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