
New spin models in ecology: super multi-stationarity
and chaos

Ivan Sudakowa,∗, Sergey A. Vakulenkob

aSchool of Mathematics and Statistics, The Open University, Milton Keynes, MK7 6AA,
United Kingdom

bInstitute for Problems in Mechanical Engineering of the Russian Academy of Science
(IPME RAS) Bolshoy pr. V.O. 61, St.- Petersburg 199178, Russia

Abstract

This manuscript introduces a novel spin model that captures the dynamics of

ecological systems. We assume that these ecosystems consist of species whose

ecological properties are completely determined by their discrete genotypes, and

these genotypes are encoded by spin strings. We demonstrate that the Hamil-

tonian of this spin model can be derived naturally from classical models of

population dynamics. Specifically, we establish a connection between the max-

imization of species abundance and the minimization of the Hamiltonian. The

standard mean-field analysis reveals that the proposed spin model corresponds

to the well-known Hopfield system, in general, characterized by asymmetric

interactions. Remarkably, the resulting Hopfield system can possess an expo-

nential number of local attractors, which, in the case of asymmetric interactions,

may be complex. We term this characteristic ”super multistationarity.” We also

demonstrate that super multistationarity combined with spontaneous symmetry

breaking empowers populations to identify optimal genotypes. This adaptation

process mirrors the search for solutions in a parallel computer.
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1. Introduction

The Ising and spin glass models have garnered significant attention in the

field of statistical mechanics. To understand phase transitions, frustrated phe-

nomena, and other effects related to these models, various methods have been

developed, including mean-field theory, replica symmetric ansatz, cavity method,

and others (see [1, 2] and the references therein). These models have found

formidable applications in diverse areas such as neural network theory [3–7],

computation theory [8], machine learning problems [9–13], as well as climate

science [14–16] and biology [17–21]. These models have also been applied to

describe multiagent systems capable of resolving hard combinatorial problems

[22]. Moreover, they can be used to describe the formation of social groups [23].

Dynamics in such models can be described in various ways. The most well-

known is the so-called Glauber dynamics; however, there are other interesting

models as well [24].

In the context of ecology, spin models have been studied as presence-absence

(PA) models [20]. In these models, each species is represented by a binary (spin)

variable, with the i-th spin being assigned a value of 1 if the i-th species is

present within an ecosystem, and −1 otherwise. Such models prove valuable in

theoretically describing important phenomena, such as transitions from a niche

mode to a neutral mode [19], and they can also be employed to model species

biodiversity and spatial distribution (refer, for instance, to [20, 21]). Moreover,

biologically motivated inverse problems can be explored by the Ising model (see

[25, 26] and for a comprehensive overview, refer to [27]).

Consequently, there exists a compelling motivation to establish a theoreti-

cal link between these well-established classical models and the realms of evo-

lutionary biology and ecology. E. Koonin and collaborators have undertaken

this challenge in their research papers [28, 29], recognizing intriguing parallels

between the observed phenomena in spin glasses and those encountered in evo-

lutionary biology. These analogies provide a promising avenue for exploring and

understanding the fundamental principles underlying both systems.
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In this manuscript, we establish a new connection between classical ecolog-

ical models, which have been proposed to describe species sharing the same

resources [30, 31] and spin interaction models. We generalize classical popula-

tion dynamics models by considering a Boolean genetic code and assuming that

the species’ growth rate function depends on the state s of this code. Through

an averaging process, we demonstrate that the condition of achieving maximum

species abundance over an extended time interval is equivalent to the mini-

mization of a spin Hamiltonian, where spins correspond to binary genes. This

connection highlights the underlying similarities and mathematical equivalences

between ecological dynamics and spin models. In the case, where we are deal-

ing with a single gene, the resulting Hamiltonian closely resembles the Ising

model. Such a model can also be perceived as a PA model [19]. As we move to

the case of multiple genes, a vector spin model emerges, bearing resemblance to

more complex spin glass models [2]. We believe that this vector model is useful

for accounting for the effects of gene regulation and for explaining evolution in

an ecosystem under the influence of a changing environment.

For instance, consider the evolution from ancient rhinoceroses to woolly

rhinoceroses during a period of climate cooling. In contrast to their contem-

porary counterparts, woolly rhinoceroses boasted elongated heads and bodies,

coupled with shorter legs. Their elevated shoulders supported a robust hump,

serving both as a platform for the animal’s substantial front horn and as a fat

reservoir crucial for winter survival in the expansive mammoth steppe. Given

this, it is reasonable to anticipate the involvement of numerous genes in the

transition from ancestral rhinoceroses to the woolly variety. Vector spin models

provide a framework to elucidate the mechanisms driving successful adaptation

amid cooling conditions (see Fig. 1).

1.1. Super multistationarity and complex dynamics in spin systems

Unlike presence-absence models, we employ spins in a distinct manner and

pursue different objectives. Our primary aim is to unveil a novel adaptivity

property, which we term ’adaptivity via super multistationarity’ of ecosystems,
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and to comprehend the interplay between genetics and ecology—particularly in

response to changes induced by climate or other stressors.

Let us consider, for example, bacterial populations. They exhibit remark-

able adaptability across vastly different environments. Various bacterial species

demonstrate the ability to survive at diverse temperatures, often spanning ex-

tremes of both high and low ranges. They can thrive beneath ice or at depths

of kilometers without access to oxygen. Additionally, organisms like plants are

proficient at adapting to fluctuating surroundings, such as those characterized

by chaotic changing weather patterns. The question then arises: How can we

explain this exceptional adaptability displayed by ecosystems?

To make headway in tackling this challenging problem, this paper undertakes

the following steps. By employing the standard mean-field approach, we derive

a mean-field Hamiltonian from the given Hamiltonian. In the simplest case

when we are dealing with a single gene (spin), the obtained Hamiltonian is

similar to the standard Curie-Weiss model with an external field. The inverse

temperature is proportional to the effective population size, and the field arises

if a point mutation (the gene flip) affects adaptive properties, i.e. the growth

function. A more intriguing scenario emerges when several genes are involved,

leading to vector spins and vector magnetization. To investigate the equilibrium

states of this vector model, it is convenient to examine the dynamical equations

associated with this model.

We find that the resulting system for dynamics of magnetization is the well-

known Hopfield system with continuous time and, in general, asymmetric inter-

actions. The Hopfield system has received considerable attention [2, 3], and it

has been shown to possess a remarkable property known as Universal Dynam-

ical Approximation (UDA). Currently, there is no general theory of dynamical

systems for dimensions above 2, except for monotone and gradient-like systems.

The study of each specific system with complex behavior is a rather difficult

problem. The approach based on UDA allows us to investigate entire classes

of systems depending on parameters. This shows that there are families of dy-

namical systems with parameters P, which exhibit universality in the sense that
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they can simulate any prescribed system of differential equations by adjusting

P.

For further insights into UDA, refer to [32], as well as [33–35] for related

results on UDA in the context of the Hopfield system and similar models. This

implies that, to a certain extent, this model can simulate all possible finite-

dimensional dynamical systems, such as those defined by systems of differential

equations. Furthermore, it can be demonstrated that these models possess a

remarkable property known as ”super adaptability”, which is critical for their

ability to successfully navigate and respond to various environmental challenges

and changes [36]. Specifically, if we consider a spin dimension of N , they can

support exp(cN) local attractors, where c > 0.

We suggest that the multistationarity property, coupled with the classical

theory of phase transitions for spin systems, can help explain the formidable

stability of the biosphere under environmental challenges, such as fast climate

changes. A possible mechanism is explained in Fig. 1. The key question is

how to explain adaptive evolution in many directions. For example, to adapt

to cooling conditions, woolly rhinoceroses should evolve to elongate heads and

bodies, shorten legs, and develop a hump. It is challenging to imagine mutations

simultaneously leading to such variations in phenotype, affecting many different

organism traits within the same time period.

In fact, Fisher’s classic work in the 1920s demonstrated that the probability

of such multidimensional mutations is exponentially small [37–39]. The analysis,

based on the analogy with spin systems, and the obtained results illustrate how

one can significantly facilitate this adaptation process.

1.2. Hypothesis: how to overcome the bottleneck

Let us propose a hypothesis based on our results, explaining how populations

navigate through a bottleneck induced by a climate catastrophe. It can be

demonstrated that, as a consequence, when resources decrease and the species

growth function approaches the mortality rate, the coefficient defining the spin-

spin interaction becomes large. This results in ferromagnetic effects, dividing
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the entire area into zones with differently directed spins. Since our spins have

high dimensions due to organisms containing many genes, one can expect that at

different spatial locations represented by point x, we have different independent

attractors.

Returning to the language of populations, this implies that the entire species

population splits into subspecies, each with unique adaptive properties. These

properties vary among different subspecies. When the ecological situation im-

proves (i.e., the growth function increases), migration and sexual mixing occur,

leading to the formation of a single species encompassing all necessary adaptive

features. This process can be likened to hysteresis. However, a crucial distinc-

tion from classical models of statistical mechanics is that the spin dimension

may be large.

In physics, classical spin models can be interpreted as the discretized version

of a microcontinuum model. Regarding ecological systems, here we neglect the

effects of smooth diffusion transitions, considering, for example, that the tundra-

forest transition is sharp: in each point, either a tundra or a forest. We believe

that for plant ecosystems, this boundary effect is not significant: the areas of

mixed habitats are small compared to homogeneous areas. Additionally, the

spin model dynamics considered in the paper are Markovian. Therefore, we

neglect the memory effects in spin dynamics.

The paper is organized as follows. In the next Section 2, we derive the spin

model from well-known population dynamics models. Section 3 focuses on the

mean-field equations. The main results are discussed in Section 4, where we

describe the possible dynamical behavior of our models over large time scales.

Concluding remarks are provided in Section 5.

2. The resource competition ecosystem model

In mathematical ecology, there exist fundamental models that describe ecosys-

tems where numerous species (such as plankton or plants) compete for limited

resources. The standard model [30, 40, 41] was introduced to address the so-
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called Plankton paradox.

Another seminal model in ecological studies is the MacArthur model, exten-

sively discussed in [31]. It shares similarities with the standard model, albeit

with linear growth rate functions and resource turnover coefficients. Addition-

ally, a variant of the MacArthur model was proposed in [31], where turnover

rates do not incorporate factors vk. While our reduction to spin models can

be applied similarly to all these models, for the sake of clarity, we focus on the

standard model. However, we extend it to account for spatial diffusion (species

migration):

∂ui

∂t
= di∆ui + ui(ϕi(v)− µi − γiui), i = 1, . . . , Nsp, (1)

∂vk
∂t

= Dk(Sk − vk)−
M∑
i=1

cki ui ϕi(v), k = 1, . . . , n, (2)

Here u = (u1, u2, . . . , uNsp) is the vector of species abundances, ui = ui(x, t),

t > 0, x ∈ Ω, v = (v1, . . . , vn) is a vector of resource amounts. The set Ω ⊂ Zd,

where d = 2, is a bounded subset of discrete lattice Zd, for example, a rectangle

[1 : L1]× [1 : L2]. In eqs. (1) ∆ denotes the standard discrete Laplace operator,

µi are the species mortalities, and γi are self-limitation parameters. In eqs. (2)

the unknown function vk is the amount of the resource of k-th type consumed

by all ecosystem species, Dk > 0 are resource turnover rates, Sk is the supply of

the resource vk, Dkvk(Sk − vk) is the supply rate for k-th resource and cik > 0

is the content of k-th resource in the i-th species. We consider general growth

rate functions ϕj that are bounded, smooth and non-negative and increasing

with respect to the resources:
∂ϕj(v)
∂vk

≥ 0 for all j, k.

We complement system (1), (2) by the following initial conditions

u(0) = ū(X), v(0) = v̄(X), (3)

where

ūi > 0, i = 1, . . . , N, and 0 ≤ v̄k ≤ Sk, k = 1, . . . , n. (4)

We set the periodic boundary conditions

ui(x+ L1, y, t) = ui(x+ L1, y, t) = ui(x, y + L2, t) (x, y) ∈ Ω, t > 0 (5)
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vk(x+ L1, y, t) = vk(x+ L1, y, t) = vk(x, y + L2, t) (x, y) ∈ Ω, t > 0. (6)

2.1. Simplified model involving genes

We would like to take into account the genetic code and its evolution. For

this purpose, we suppose that the growth function ϕi depends not only on the

resources v but also on the genotype s(x, t) ∈ SN = {−1, 1}N , which can evolve

in time.

To simplify the statement, we set the species number Nsp = 1 assuming that

we are dealing with different variations of the same species located at different

points, so we are seeking for u1(x, t) = u(x, t). Then system (1), (2) becomes

∂u

∂t
= d∆u+ u(ϕ(v, s)− µ− γu), (7)

∂vk
∂t

= Dk(Sk − vk)− ck u ϕ(v, s), (8)

where k = 1, . . . , n, s = s(x, τ), τ is a slow time, τ = ϵt, and 0 << ϵ << 1 is a

parameter of the evolution rate. So, when we consider the dynamics defined by

system (7),(8) one can assume that τ is fixed (frozen), i.e., ecological dynamics

is much faster with respect to genetic evolution of s.

2.2. Asymptotics for large turnovers

The system (7), (8) is complex and has primarily been studied using nu-

merical methods [40, 41]. In certain cases, this system can be reduced to the

well-investigated multispecies Lotka-Volterra system. It’s noteworthy that this

Lotka-Volterra system exhibits the UDA property. Therefore, this approach aids

in analytically proving the existence of chaos for (7), (8), which was previously

observed only in numerical simulations [40, 41]. This reduction is feasible when

turnovers are large, i.e., Dk ≫ 1 (see [42]). Consequently, vk approximates

the resource supplies Sk, indicating that almost all resources are utilized in the

ecosystem. Following [42], we express vk for large turnovers Dk via u. In fact,

for large Dk one can set vk = Sk − ṽk, where for ṽk one has

∂ṽk
∂t

= Dkṽk − ck u ϕ(S̄ − ṽ, s), (9)
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where k = 1, . . . , n and S̄ = (S1, ..., Sn). Then it is clear that ṽk = O(D−1
k ) and

we obtain an asymptotic solution

ṽk = D−1
k ckuϕ(S̄, s) +O(D−2

k ). (10)

Removing the small terms O(D−1
k ) in eq. (7), we obtain then the following

equation, which involves u only:

∂u

∂t
= d∆u+ u(ϕi(S̄, s)− µ− γu). (11)

2.3. Averaging and maximum principle

We denote ⟨u⟩ the spatial average of u over Ω:

⟨u(·, t)⟩ = |Ω|−1
∑
x∈Ω

u(x, t),

where |Ω| = L1L2 is the number of the location points x inside Ω.

It is well known that mutations are seldom. Therefore, we can choose a large

time interval [0, T ] for averaging such that T >> 1 but T << ϵ−1. Following

[42, 43] we use the time averaging over [0, T ]:

⟨u(x, ·)⟩T = T−1

∫ T

0

u(x, t)dt,

and we denote by

⟨⟨u(·, ·)⟩⟩T = T−1

∫ T

0

⟨u(·, t)⟩dt

the result of averaging in space and time. Let us divide the r.h.s and the l.h.s

of eq. (11) by u:

u−1 ∂u

∂t
= du−1∆u+ ϕi(S̄, s)− µ− γu. (12)

We suppose that our species are not extinct, i.e.

u(x, t) > δ0 > 0 ∀x ∈ Ω, t > 0. (13)

Such ecosystems are called permanent (ecologically stable)[44]. For a continual

model, where x take real values and ∆ is the standard Laplacian operator, we

have [42]

⟨⟨(log u(x, t))t⟩⟩T = ⟨⟨ϕ(S̄, s(x, t))− µ− γu+ d∇u2u−2⟩⟩T +O(T−1). (14)
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In the space discrete case, a similar relation can be found. For simplicity, we

proceed with the derivation of this relation for 1D case, where x ∈ Z are integers,

and periodical boundary conditions (5) hold with L1 = L. We have

⟨∆uu−1⟩ =
x=L∑
x=1

u(x+ 1)− 2u(x) + u(x− 1)

u(x)
. (15)

Eq. (15) gives

⟨∆uu−1⟩ =
x=L∑
x=1

b(x)− b(x− 1)

u(x)
, (16)

where b(x) = u(x+ 1)− u(x). It is clear that due to periodicity

x=L∑
x=1

b(x)− b(x− 1)

u(x)
=

x=L∑
x=1

( b(x− 1)

u(x− 1)
− b(x− 1)

u(x)

)
.

Therefore, we obtain

⟨∆uu−1⟩ =
x=L∑
x=1

(u(x)− u(x− 1))2

u(x)u(x− 1)
. (17)

The right-hand side of this equation will be denoted further as ⟨∇u2u−2⟩. In

fact, the r.h.s. of (17) is a discrete analog of the corresponding term in the

continual model. Moreover, let us note that under (13) for bounded u such that

supu(x, t) < C one has

⟨⟨log u(x, t))t⟩⟩T < (C − δ)/T = O(T−1).

The boundedness of u can be shown by eq. (11). These estimates show that for

large T eq. (14) gives

⟨⟨u(x, t)⟩⟩T ≈ γ−1⟨⟨ϕ(S̄, s(x, t))− µ+ d∇u2u−2⟩⟩T +O(T−1) = −H(s). (18)

We see that the maximum abundance corresponds to the minimum of the Hamil-

tonian H(s). The function Φ equals

Φ(s) = ϕ(S̄, s(x, t))− µ.

Here ∇u(x) = u(x) − u(x − 1) can be considered as a discrete analog of the

nabla operator ∇u.
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2.4. Growth function representations

To find an explicit form for the Hamiltonian (18), we need relations for Φ(s)

and u via s. The growth function Φ can be considered as a fitness thus we can

use different approximations for the fitness. Moreover, let us note that Φ and

u are pseudo-Boolean functions of s. The general form of the pseudo-Boolean

functions of N variables si ∈ {−1, 1} is known. It can be written down as a

Boolean analog of the Fourier sum (a multilinear polynomial) [45]:

Φ(s) =
∑

X∈[N ]

F̂ (X)χX(s), (19)

where [N ] = {1, 2, ..., N}, the sum is taken over all subsets X of [N ] and

χX(s) =
∏
i∈X

si.

Suppose there are no epistatic effects in gene regulation, which represents

the simplest case. Then we have

Φ(s) = a0 +

N∑
k=1

bksk. (20)

If we are dealing with a single gene, (19) gives

Φ(s) = a0 + bs, (21)

where coefficients a0 and b may depend on the resource S̄:

a0 = a0(S̄), b = b(S̄). (22)

If we take into account linear and quadratic terms in (19) we obtain a fitness

arising from the Fisher Geometric model with mutations investigated in [46]. In

this case, we have

Φ(s) = a0 +
N∑

k=1

bksk +
1

2

N∑
k=1

N∑
l=1

bklsksl, (23)

with coefficients depending on S̄ (as above). In recent decades, studies of fitness

functions for genuinely existing organisms have commenced (see, for example,
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[47, 48]). These studies reveal the existence of numerous peaks, valleys, and

ridges connecting peaks in fitness landscapes. Moreover, investigations into fit-

ness landscapes in natural populations have demonstrated low fitness for inter-

mediate phenotypes, indicating the presence of valleys in the fitness landscape.

In the context of mimicry, it was found [48] that natural selection promotes ge-

netic architecture preventing the expression of intermediate phenotypes. Close

fitness peaks are separated by ridges, allowing for a drift from local peaks.

Certainly, it is impossible to obtain such complex landscapes with (20),

(21). A more accurate representation, capable of approximating intricate fitness

landscapes and taking into account complex gene regulation, is currently being

explored in [49]:

Φ(s) = a0 +
K∑
i=1

biYi(s) (24)

with

Yi(s) = σ
( N∑

j=1

wijsj − hi

)
,

where bi, wij , hi are coefficients, σ(u) is a monotone increasing sigmoidal func-

tion such that σ(+∞) = 1 and σ(−∞) = 0. The matrix W with the entries wij

defines an interaction between genes.

2.5. Simplified Hamiltonian

Let us consider the simplest scalar case (21). To find u, we suppose that d >

0 is small. Then a rough approximation for u via Φ is u(x) ≈ γ−1(Φ(S̄, s(x))−µ)

(under condition that ϕ(S̄, s(x)) > µ). We obtain then

∇u(x)2u(x)−2 ≈ b(s(x)− s(x− 1))

(a0 − µ+ bs(x))(a0 − µ+ bs(x− 1))
.

We can simplify this relation further supposing that |b| << a0 − µ and a0 > µ

(this means that mutation effects are small). It gives

∇u(x)2u(x)−2 ≈ b(s(x)− s(x− 1))

(a0 − µ)2
.
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By substituting this relation into (18), we find that the one dimensional Hamil-

tonian H(s) takes the Ising form:

H(s(·)) ≈ b
∑
x

s(x)− 2J0
∑
x

s(x)s(x− 1), (25)

where the coupling coefficient J0 is equal to

J0 = db2(a0 − µ)−2 (26)

and terms independent of s are removed in (25). Note that this model is ferro-

magnetic, i.e. the species migration and gene transfer produce the ferromagnetic

interaction in the spin model. The formula for J0 involves basic genetic and eco-

logical parameters: the migration rate d, the mortality rate µ, and the fraction

b2(a0 − µ)−2, where b can be interpreted as a sensitivity of the fitness with

respect to flip mutation s → −s, whereas a0 − µ is a difference between growth

function and mortality rate.

In the 2D case the sum in (25) must be taken over all pairs of the nearest

neighbors:

H(s(·)) ≈ b
∑
x

s(x)− J0
∑

x,y∈E

s(x)s(y), (27)

where E denotes the graph of spin interaction with the set of vertices V = Ω,

which in this case, contains edges corresponding to nearest neighbors. We can

envision that species within this ecosystem interact with each other through a

coupling term. This coupling term arises due to various interactions such as

sexual mixing, migration, or other forms of interaction. Then we can have a

more general coupling than via nearest neighbors.

The scalar model (27) can be interpreted as a presence-absence (PA) model

[20]. In fact, suppose that the species u consists of two subspecies, with spatial

densities u1(x) and u2(x), and only a single subspecies lives at each point x.

Assume that genomes of these subspecies differ in a single gene s ∈ {−1, 1}

only, and u1 corresponds to s = 1 whereas u2 bears s = −1. Then the presence-

absence of u1 at x is equivalent to s(x) = 1, s(x) = −1, respectively.

Let us consider the case (20). A similar computation gives
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H(s(·))) ≈
∑
x

N∑
l=1

blsl(x)−
∑

x,y∈E

Js(x) · s(y) +
∑
x

Ψ(s(x)), (28)

where J is the coupling matrix with the entries Jlk = d(a0 − µ)−2blbk and

Js · s̃ =
∑

l,k=1,...,N, l ̸=k

Jlksls̃k, Ψ(s) = Js · s.

In the case (24) one has

H(s(·)) ≈ const+
∑

x,y∈E

J(s(x), s(y)) +
∑
x

ΨR(s(x)), (29)

where

ΨR(s) =
K∑
i=1

biσ
( N∑

j=1

wijsj − hi

)
,

and the coupling term J has a complex form:

J(s, s̃) = da−2
0

K∑
l=1

bl
(
Yl(s)− Yl(s̃)

)2
.

Note that similar coupling terms arise in multiagent systems describing the

formation of social groups [23]. They possess a transparent interpretation: each

entry of the spin vector can be regarded as a feature, so J(s, s̃) measures the

distance between the spin strings s and s̃. This distance is a complex function

of s and s̃. This model is not tractable and we simplify the coupling term that

gives

H(s(·)) ≈ const− J0
∑

x,y∈E

s(x) · s(y) +
∑
x

ΨR(s(x)), (30)

where J0 is a constant.

So, we see that fundamental ecological models for systems competing for

resources [30, 31, 40] can generate these Hamiltonians when assuming that the

growth rate function of species involved in resource competition depends on the

genes s. Then the quantity −H corresponds to the average species abundance

over a long time period, during which the genes remain fixed. The minimum of

the Hamiltonian means that species abundance is maximal. It is also possible to

obtain the Hamiltonian through another approach, namely a natural variation
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Figure 1: This illustration elucidates how segmentation and migration facilitate the evolution

of species under climate variations, as exemplified by the transition from ancestral rhinos to

woolly rhinos, specifically in the context of cooling. Initially, the population is homogeneous

(as shown in the left panel, representing an area with a single species). As climate variations

occur, the fragmentation parameter Pfrag increases, leading to a potential ”bottleneck” sce-

nario. This increase triggers spontaneous symmetry breaking, resulting in the formation of

distinct domains housing organisms with diverse traits. This phenomenon is facilitated by the

modular structure of gene regulation. Consequently, various subspecies emerge, each adapted

to specific habitats and displaying distinct features, such as the hump or longer body (refer to

the middle panel, where the area domain is decomposed into three subdomains with three sub-

species). The appearance of the hump represents a useful genetic innovation (feature A), and

the emergence of a longer body represents another valuable trait (feature B). Subsequently, as

the parameter Pfrag rebounds and genetic mixing occurs (e.g., through sexual reproduction)

within the entire habitat, a new organism emerges. This organism is well-suited to thrive in

the new cold climate conditions, benefiting from both features A and B.

principle for ecological systems, as described in [31]. Note that if we wish to

consider the effects of heterogeneity and external parameters, such as environ-

mental temperature Ts or precipitation level P , we can consider a more general

potential energy Φ, which involves parameters, for example, Φ = Φ(s, x, Ts).

3. Mean field equations

Let us consider the Hamiltonian Hsc first. In order to apply the standard

mean field approximation, we set s(x) = m + s̃(x), where m = ⟨s⟩ represents

the averaged magnetization (which does not depend on i due to translation

invariance), and s̃(x) denotes the fluctuations. We remove the quadratic fluc-
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Figure 2: This plot shows an oscillating time evolution of magnetization for mean field equa-

tions. The spin dimension N is N = 2, the parameter values used are h1 = h2 = 0.0, β = 1

and the matrix J has the entries J11 = J22 = J12 = 1, J21 = −1.

tuation terms s̃(x)s̃(y) and then this standard mean field approximation yields

the following mean field Hamiltonian:

Hsc,MF = M
J0zm

2

2
+

∑
x∈Ω

(J0zm− b)s(x), (31)

where z is the number of neighbors (the coordinate number).

3.1. Scalar model

To simplify the subsequent statement, let us proceed with the derivation

of (33) (the vector case equations can be obtained similarly). Consider the

equation

d logZ(m)/dm = 0, (32)

where the Gibbs statistical sum has the form

Z =
∑
s(·)

exp(−βMJzm2/2) exp
(
−

∑
x

β(Jzm− b)s(x)
)
,
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where the sum is taken over all distributions s(x), x ∈ Ω. We obtain

logZ = −βMJ0z
m2

2
−M log cosh

(
β(J0zm− b)

)
that by (32) gives

m = tanh
(
β(J0zm− b)

)
. (33)

In the case of b = 0, where spin-flip does not alter the fitness (growth function),

we obtain the following equation:

m = tanh(βJ0zm). (34)

In biology, this case means that we consider a neutral situation when selection

is absent. As the inverse temperature β increases, at β = βc, we observe the

Curie-Weiss transition. Mathematically, for βJ0z < 1, equation (34) has a single

root, while for βJ0z > 1, it exhibits bistability with three roots.

Note that, according to [28, 29], the parameter β is proportional to the

effective population size Ne. This means that the case of large populations,

where genetic drift is small, corresponds to the low-temperatures in statistical

mechanics. Conversely, in the case of small populations, where genetic drift

is large, corresponds to high temperatures. The ferromagnetic effects in spin

systems are analogous to fragmentation in an ecosystem. We thus conclude that

the fragmentation effect depends on the parameter

Pfrag = db2(a0 − µ)−2Ne. (35)

The rough estimate of Ne by eq. (12) shows that for small |b| and d the effective

population size Ne ∝ (a0 − µ)γ−1|Ω|. Let us note that Ne ∝
∫
Ω
u(x, t)dx.

The equilibrium spatially homogeneous solution of ((12) is ueq ≈ (a0 − µ)γ−1.

Finally, the fragmentation parameter can be estimated by

Pfrag ≈ db2(a0 − µ)−1γ−1|Ω|. (36)

3.2. Vector model

In the vector case, by the same method, one can derive mean-field equations

for the case of quadratic Hamiltonian given (28). We introduce magnetisation
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vector m with the components ml = M−1
∑

x sl(x) and fluctuations s̃l(x) =

sl(x)−ml. For simplicity, we suppose that only nearest neighbors interact, the

coordinate number equals the constant z for all x. Then we compute as above

and obtain the mean-field Hamiltonian

HMF (s(·)) ≈
∑
x

N∑
l=1

heff
l (m)sl(x) + z

N∑
l=1

N∑
k=1

Jlkml(x)mk(y), (37)

where the effective field heff is defined by

heff
l (m) = −bl + z

N∑
k=1

Jlkmk. (38)

We can compute the Gibbs statistical sum

ZMF =
∑

s(x)∈SN
exp

(
− βHMF

)
in the mean-field approximation as above that gives

M−1 logZMF = −βzM

N∑
k=1

N∑
k=1

Jklmkml +

N∑
l=1

log coshheff
l (m).

Then for non-degenerate matrices J the mean-field equations can be written

down as

mk = tanh
(
β(−bk +

N∑
l=1

Jklml)
)
, (39)

where k ∈ {1, . . . , N}.

4. Dynamics in vector case

To study possible bifurcations we consider the following dynamical equa-

tions, for which the system (39) determines the equilibrium equations

dmk

dt
= tanh

(
β(−bk +

N∑
l=1

Jklml)
)
−mk, (40)

where k = 1, . . . , N .

This system is the well-known celebrated Hopfield model [3], which has been

extensively studied. Firstly, it can be shown that this system is dissipative: there
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is a bounded absorbing set and thus the attractor always exists. For symmetric

interactions, when the matrix J with the entries is symmetric, we obtain that

all trajectories of (40) are convergent, i.e., magnetization m(t) approach to a

solution (39) as t → ∞. It is a consequence of a Lyapunov function existence for

dynamics defined by (40) with symmetric J. Note that we can have a number

of stable equilibria.

In the general non-symmetric case, the system (40) exhibits the property of

Universal Dynamical Approximation (UDA) (as defined in [32]). The general

asymmetric case does not arise for linear and quadratic fitness functions defined

by (20), (23), in particular, for the Fisher model, but this case may occur if we

consider fitness (24) with a common non-symmetric matrix W.

Currently, there is no general theory of dynamical systems (for dimensions

above 2), with the exception of monotone and gradient-like systems. The study

of each specific system with complex behavior is a rather difficult problem.

The approach based on UDA allows us to investigate entire classes of systems

depending on parameters.

To explain UDA property more formally, consider a finite-dimensional dy-

namical system defined by the following equations:

dq

dt
= Q̃(q,P) , Q̃ ∈ C1(Bn) , (41)

where Bn is an n-dimensional unit ball. Suppose the following condition holds:

Condition SS. System (41) generates a global semiflow St, t > 0, defined

on the n-dimensional closed ball Bn ⊂ Rn and having structurally stable (for

example, hyperbolic) local attractors Al, l = 1, . . . , k.

We have

Theorem 4.1. Assume that dynamical system defined by (41) satisfies condi-

tion SS. Then for sufficiently large satellite numbers Ns there exist a matrix J

and parameters bk such that dynamical system defined by (40) has local attrac-

tors Bl topologically equivalent to Al. The restrictions of the semiflow St
H to Bl

are orbitally topologically equivalent to the restrictions of semiflows St to Al.
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This means that dynamics (40) can simulate any prescribed structurally

stable dynamics. Recall that structural stability is a fundamental property of

dynamics, implying that the topological structure of trajectories of the system

(41) on Al remains unaffected by C1-small perturbations of the vector field

Q. Specifically, under small perturbations, hyperbolic fixed points remain un-

changed and only shift slightly; they cannot transform into cycles, and vice

versa—hyperbolic cycles cannot become points or chaotic attractors.

Structurally stable attractors can assume complex forms since structurally

stable dynamics may exhibit chaos. If a hyperbolic invariant set Γ is attracting

and is neither a fixed point nor a limit cycle, we refer to Γ as a chaotic (strange)

attractor [50]. Hyperbolic sets possess a fundamental property known as per-

sistence. Informally, this property implies that hyperbolic sets remain stable

(robust) under sufficiently small, smooth perturbations (see [50] for details).

If the dynamics defined by the system (41) is not structurally stable, then the

system (40) for magnetization can approximate trajectories defined by (41) over

finite time intervals. This approximation property was initially demonstrated in

the work of [51]. Moreover, this property has been established for many classes

of systems, such as systems of chemical kinetics [52], Lotka-Volterra systems

[53, 54], and even for general reaction-diffusion systems with two components

[55].

Some numerical results of the dynamical effects are presented in Figs. (2),(3).

In the Appendix, we state an algorithm to construct a system (40) with com-

plicated large-time behavior, which can be controlled by a few parameters. It is

important to note that the number of local attractors Al can be exponentially

large. This multistationarity effect will be further discussed in the subsequent

subsection.

4.1. Multistationarity effects

The number of equilibria and local attractors generated by the dynamics

(40) can be extremely large. This phenomenon of complex attractor emergence

is attributed to the presence of feedback loops in the interaction structure and
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the modularity of that structure. The following assertion holds:

Proposition 4.2. Under an appropriate parameter choice, system (40) with

dim m = N nodes can have 2cN chaotic or periodic structurally stable local

attractors, where a constant c ∈ (0, 1) is uniform in N as N → ∞.

Proof. For the case of the rest point attractors, this claim is obvious. Let

us take the diagonal matrix J = diag(a + a1, a + a2, ..., a + aN ), where ak > 0

are parameters, a > 0. Let us set bk = 0. Then the system of equations (40)

decomposes into the following independent equations:

dmk

dt
= tanh(2β(a+ ak)mk)−mk, k = 1, ..., N. (42)

So, for sufficiently large β > β∗
k the k-th dynamical systems generated by equa-

tion (42) has two local attractors for rest points. The first attractor is close

to −1, while the second attractor is close to 1. Hence, we have a total of 2N

attractors for the entire system formed by the set of equations (42).

A similar trick proves the assertion in the general case. According to Theo-

rem 4.1, we can find a system (40) of dimension Nd (possibly, Nd is large but it

is finite) with two low-dimensional local structurally stable attractors A1 and

A2 with dim(Ai) < d0. We take M independent identical or almost identical

such systems with these local attractors A1 and A2. The total system (40)

involves MNd unknowns and it is a union of these independent systems. Then

this system has 2M attractors that proves our assertion.

Comment 1: This proof demonstrates that bifurcations leading to multi-

stationarity can occur in various ways. To gain a better understanding, let’s

consider the case of rest point attractors. New attractors can arise simultane-

ously if all the ai values are equal (a1 = a2 = ... = aN ), or they can emerge

sequentially if the ai values are different. However, these phenomena can also

occur for more complex types of attractors.

Comment 2: The property described by this claim can be interpreted as the

super adaptability of our systems, arising from the exponentially large number

of possible equilibria and spontaneous symmetry breaking in space-extended

spin systems (corresponding to habitat fragmentation in biology).
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Comment 3: As noted in the review [56], plants have evolved sophisticated

systems to maintain mineral nutrient homeostasis, allowing them to cope with

spatial and temporal variability in nutrient concentrations. These systems in-

volve root architecture modification and the control of transporter expression

in response to nutrient availability [56]. The expression and activities of genes

coding for nutrient transporters, for instance, are finely regulated in multiple

steps to adapt to a wide range of nutrient conditions [56]. We propose that

such regulatory mechanisms can be described by complex attractors in gene

expression dynamics. Our assertion regarding the formidable multistationarity

in variants of spin system attractors can contribute to explaining how evolution

has achieved such intricate regulatory mechanisms

Explaining the existence of such complex multicellular organisms supporting

sophisticated regulatory systems remains a profound challenge in the field of

biology [28, 29]. As early as 1930, Fisher demonstrated through his FGM model

that positive mutations impacting multiple features in organisms simultaneously

are exceedingly improbable [37]. This problem was subsequently investigated by

H. Orr (for a comprehensive perspective, refer to [38]). Genomics data suggest

that the evolution of organisms more intricate than bacteria may not necessarily

have been driven by adaptive processes [28, 29].

By employing spin models and building upon the insights from claim 4.2, we

can propose a physically and biologically plausible mechanism to address this

challenge (refer to Fig. 1 and its corresponding comment). Let’s consider a sce-

nario where an organism needs to adapt to a new and demanding environment,

requiring the acquisition of distinct features denoted as F1, F2, ..., FK . The

probability of a mutation generating all these necessary features concurrently is

exceedingly low. However, it is reasonable to posit that under harsh conditions,

the fragmentation parameter Pfrag defined by (35) becomes significant, leading

to the occurrence of phase transitions and ecosystem fragmentation.

This parameter is inversely proportional to (a0−µ)2, where a0−µ determines

the population growth rate and can depend on the resource supply S̄ and other

ecological parameters. One can suppose that this coefficient decreases as the
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environment becomes more challenging.

Leveraging the significant multistationarity property highlighted in claim

4.2, we can anticipate that the entire habitat might fragment into subdomains,

each potentially supporting a distinct subspecies (labeled as 1, 2, ...,K). These

subspecies may possess the requisite features F1, ..., FK , respectively. As these

better-adapted organisms emerge, the population size Ne increases, leading to

the dissolution of this fragmentation. Subsequent sexual mixing can then facil-

itate the emergence of a well-adapted organism encompassing all the necessary

traits.

It’s worth noting that there might be an alternative mechanism that doesn’t

necessarily rely on spontaneous symmetry breaking and fragmentation. Specifi-

cally, we could consider a more gradual evolution, where the organism acquires

features like F1, followed by F2, and so forth (in any order).

The difference between these approaches lies in the timing of transitions and

the rate of evolution, which could be particularly crucial during rapid environ-

mental changes. The first option functions akin to a parallel computer, while

the second resembles a conventional evolutionary process. Note that in spin

systems, spin waves (magnons) exist, and these can be utilized for data process-

ing [57]. In ecology, such waves can be interpreted as migration waves, driving

the formation of new species. In certain cases, this formation process is very

fast, as found in [58]. The evolution of complex features in plants was recently

investigated in [59] using network methods, and it was shown that evolution

rates could vary significantly for different species and situations.

5. Concluding remarks

In this paper, it is demonstrated that by incorporating Boolean genes into

basic population dynamics models (which can be viewed as spins), the maxi-

mization of species abundance is equivalent to the minimization of a spin Hamil-

tonian. When only a single gene influences the species’ growth function, a model

similar to the Ising-like model is obtained.
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However, if we consider a multigene control of the growth function, a vector

spin Hamiltonian arises. Under the standard mean-field assumptions, this leads

to the Hopfield system with non-symmetric interactions for magnetization. This

system can exhibit chaotic behavior and demonstrate formidable multistation-

arity, meaning it can have a significant number of local attractors. The presence

of this property plays a vital role in enabling ecosystems to attain and maintain

super adaptability, which is essential for their resilience and ability to thrive in

diverse and changing environments.

In this context, we do not take into consideration stochastic transitions be-

tween different local attractors due to internal and external noises. Additionally,

we assume that the number of spins is fixed. The renowned mathematician, M.

Gromov highlighted the idea that such transitions inevitably lead to the de-

struction of any biosystem with fixed parameters. This concept was further

developed in [60], where it is demonstrated that gene evolution and the emer-

gence of new genes can stabilize unstable biosystems. This leads us to consider

a growing spin network as a general model for evolution, wherein the inclusion

of new genes and the exploration of diverse gene interactions can greatly impact

the adaptation and stability of ecological systems.

By interpreting ecological dynamics through the framework of spin Hamil-

tonians, we unveil striking parallels between the principles of physics and the

intricate dynamics observed in ecological communities. Moreover, our research

contributes to the broader series of works [32, 36, 55, 61] on Universal Dynamical

Approximation (UDA) by examining its implications within the realm of statis-

tical mechanics. The models exhibiting UDA properties possess the remarkable

ability to simulate any finite-dimensional dynamics with a desired level of accu-

racy. This further highlights the potential of spin-based models to capture the

complexity and richness of real-world ecological systems.

Let us note some similarities and differences with previous works. The model

described in [24] focuses on long spin chains, where evolution oscillates between

two processes resembling asexual and sexual reproduction. The line-graph op-

erator from [24] can be viewed as an asexual process, while the recombination
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mechanism mirrors sexual reproduction. This allows for the depiction of alter-

nating sexual-asexual reproduction. In our paper, we explore ecosystems where

reproduction can take various forms; all genetic effects are encapsulated within

the growth function.

The dynamics introduced in [23] elucidate the formation and dissolution of

social groups. The formation of a social group within a large society mirrors

the fragmentation of an ecosystem into subsystems to some extent. Similar to

[23], our work employs spin strings, which may extend considerably in length.

However, unlike the model in [23], which introduces the probability of forming an

entire social group, our model’s fragmentation arises from interactions between

nearest spins, akin to classical Ising-type models. This process allows for an

energy interpretation via a Hamiltonian. Ecological fragmentation of this nature

can be depicted in a static model without delving into detailed dynamics.
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Appendix

In this Appendix, we show how, given a prescribed dynamical system, to

obtain a spin system with a similar dynamics. As an example, we consider the

Rössler system (similarly, we can simulate any quadratic system, and in turn,

quadratic systems can simulate all possible dynamical systems):

dv1
dt

= −v2 − v3, (A1)

dv2
dt

= v1 + av2, (A2)

dv3
dt

= b+ v3(v1 − c), (A3)

where a, b, c are parameters. This system exhibits a very rich behavior when we

vary these parameters: convergent, periodic and chaotic. The main trick is to

transform this system into a slow-fast spin system one with additional variables.

The first step is as follows. We introduce a small parameter γ > 0, a slow time

τ = γt and transforms (A1)- (A2) as follows:

dv1
dτ

= γ−1 tanh(γ(−v2 − v3 + v1))− v1, (A4)

dv2
dτ

= γ−1 tanh(γ(v1 + av2 + v2))− v2. (A5)

For bounded trajectories the right-hand sides of (A1) and (A4) differ by a term,

which is O(γ2). Further, we approximate the term v3v1 via auxiliary fast vari-

ables. First, we use the identity 4v3v1 = v2+ − v2−, where v± = v3 ± v1. By the
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Figure 3: This plot shows a complex time evolution of magnetization for mean field equations.

The spin system is constructed by the algorithm stated in the Appendix to simulate the Rössler

system exhibiting a rich variety of large time regimes. Here the Rössler system with parameters

a = 0.2, b = 0.2 and c = 3 is simulated, the parameter γ = 0.001. The spin number is 103, the

matrix J corresponds to a spin interaction graph, where we have 3 nodes (centers) interacting

with other 100 nodes (satellites) while the satellites do not interact with each other. This

graph can be viewed as a simplified representation of real-world biological interaction graphs.

This also illustrates the temporal evolution of magnetization for centers. Computations are

by the program Ode45 in Matlab on time interval I = [0 : 120]. The accuracy of simulation is

computed as L2(I)-norm on the differences between the numerical trajectories of the Rössler

system and the trajectories of the spin simulation (divided by the L2-norm of the trajectories

of the Rössler system). That accuracy is 0.046.
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least mean squares, we can obtain an approximation

z2 ≈
Na∑
j=1

Xi tanh(z − hi) (A6)

on a compact interval [−R,R], where R(a, b, c) > max(|v3(t)| + v1(t)|), where

v3, v1 are trajectories of the Röossler system (since this system is dissipative,

such a constant R exists). Here hi are thresholds located uniformly: hi =

R+ i(2R/Na) and Xi are coefficients to adjust. Having Xi we represent v3v1 as

v3v1 ≈
Na∑
j=1

Xi

4

(
tanh(v3 − v1 − hi)− tanh(v3 + v1 − hi)

)
. (A7)

Now we introduce additional fast variables w±
i satisfying equations

dw±
i

dτ
= γ−1

(Xi

4
tanh(v3 ± v1 − hi)− w±

i

)
. (A8)

Then we can rewrite (A3) as follows:

dv3
dτ

= γ−1 tanh
(
γ
∑
i=1

(w−
i + w+

i + v3)
)
− v3. (A9)

Finally, we obtain the system of equations (A4), (A5), (A9) and (A8) which

has the form of (40) for an appropriate matrix J and coefficients bk.

The outcomes of this algorithm’s operation are illustrated in Fig. 3.
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