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ABSTRACT  

As global warming causes climate change, extreme weather has become more common, posing a significant threat to 
life on Earth. One of the important indicators of climate change is the formation of melt ponds in the arctic region. 
Scarcity of large amount of annotated arctic sea ice data is a major challenge in training a deep learning model for the 
prediction of the dynamics of the melt ponds. In this research work, we use diffusion model, a class of generative 
models, to generate synthetic arctic sea ice data for further analysis of meltponds. Based on the training data, diffusion 
models can generate new and realistic data that are not present in the original dataset by focusing on the data 
distribution from a simple to a more complex distribution. First, simple distribution is transformed into a complex 
distribution by adding noise, such as a Gaussian distribution and through a series of invertible operations. Once trained, 
the model can generate new samples by starting from a simple distribution and diffusing it to the complex distribution, 
capturing the underlying features of the data. During inference, when generating new samples, the conditioning 
information is provided as input alongside the starting noise vector. This guides the diffusion process to produce 
samples that adhere to the specified conditions. We used high-resolution aerial photographs of Arctic region obtained 
during the Healy-Oden Trans Arctic Expedition (HOTRAX) in year 2005 and NASA’s Operation IceBridge DMS 
L1B Geolocated and Orthorectified data acquired in 2016 for the initial training of the generative model. The original 
image and synthetic image are assessed based on their chromatic similarity. We employed evaluation metric known 
as Chromatic Similarity Index (CSI) for the assessment purposes.  

Keywords: Global warming, DDPM, meltponds, diffusion models, generative models, HOTRAX, Sea Operation 
IceBridge, synthetic images, Chromatic Similarity Index (CSI). 

1. INTRODUCTION  
Modern computer vision revolves around Convolutional Neural Networks (CNNs) and other deep learning 
architectures, and one such integral method is generative models such as Generative Adversarial Networks (GANs), 
Variational Autoencoders (VAEs), normalizing flows, etc [1]. They have come a long way due to their ability to 
generate realistic images from scratch or manipulating existing images, thus, making significant strides in recent years. 
However, due to their limitations, such as training instability, blurriness, mode collapse in latent space, and inability 
to combine both their specialties, researchers introduced a groundbreaking model: the Denoising Diffusion 
Probabilistic Model (DDPM). DDPM leverages a powerful generative-based model operating on the principle of 
denoising the diffusion. This entails adding noise into the image which is mapped accordingly to the Gaussian 
distribution. By transitioning the image from its initial distribution to a Gaussian distribution, it becomes possible to 
develop a model which inverts this procedure allowing for the creation of novel images. These novel images are 
inherently similar to the original images in which the noise was added to, as the process of reconstructing information 
will fit the image distribution [2]. Therefore, diffusion models represent a burgeoning category of generative models 
used for generating novel data by passing random noise [3].  

Arctic sea ice dynamics play a crucial role in the Earth's climate system, influencing weather patterns, ocean 
circulation, and global climate trends [4]. Accurate simulation and analysis of arctic sea ice behavior are paramount 
for understanding its impact on the environment and making informed decisions regarding climate policy and resource 
management. The absence of thorough annotations for Arctic sea ice data, caused by challenges like logistical issues, 
high costs, and time constraints, as well as the aggressive nature of the sea and weather, presents a major obstacle in 
gathering the necessary data for training deep learning models to predict the behavior of melt ponds. DDPM offers a 
promising approach for generating synthetic sea ice data that closely resemble real-world observations without the 
need for collection of physical data [5]. By adapting the DDPM to the domain of sea ice data generation, we aim to 



 

 
 

 

overcome the limitations of existing approaches and produce high-quality simulations that accurately represent the 
complex dynamics of sea ice systems. 

In this work, we implement Denoising Diffusion Probabilistic Model (DDPM) for generating synthetic sea ice data 
through temporal evolution of the sea ice region, thus, allowing for the generation of realistic images that can be used 
for future applications of segmentation, climate modeling etc. We used high-resolution aerial photographs of Arctic 
region obtained during the Healy-Oden Trans Arctic Expedition (HOTRAX) in year 2005 and NASA’s Operation 
IceBridge DMS L1B Geolocated and Orthorectified data acquired in 2016. 

1.1 Healy-Oden Trans Arctic Expedition 

The aerial photographs were taken with a Nikon D70 digital camera from a helicopter during the Healy Oden Trans 
Arctic Expedition (HOTRAX) spanning from 5 August to 30 September 2005. To avoid interference from low clouds, 
flights were conducted at relatively low altitudes ranging from 150 to 700 meters. A total of 1013 images were 
captured, with an average resolution of 3042 × 2048 pixels. These images provide detailed insights into ice floes, 
submerged ice, meltponds, and open water [4,6,7]. Sample images are shown in Fig. 1. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Image samples from HOTRAX database 

 

1.2 NASA’s Chukchi Sea Operation IceBridge  

The IceBridge dataset comprises Level 1B images captured by the Digital Mapping System (DMS) over Greenland 
and Alaskan waters in 2016. In July, the aircraft flew over the Chukchi Sea, likely during the melting period of sea 
ice. The imagery collected had a resolution of 10 cm x 10 cm and varied in temporal frequency. This operation received 
funding from aircraft survey campaigns under NASA's Operation IceBridge initiative [8]. The sample images are 
shown in Fig. 2. 



 

 
 

 

 

 
Figure 2. Image samples from Operation IceBridge database 

 

2. MODEL ARCHITECTURE 
2.1 Forward and backward processes 
 
 
 

 

 

 

Figure 3.  Morkov chain manifested for our image data for forward process 

DDPM follows two essential processes: forward process and reverse process. The fundamental idea behind the 
forward process in DDPM is to begin with an original and clear image. Through a defined number of steps represented 
by 'T,' a minute level of noise is methodically introduced, adhering to a Gaussian distribution as shown in Fig. 3. For 
the introduction of minute noise at each timestep, we employ Markov chain with an implication that to generate the 
image at current timestep, the image from the previous timestep is required. The stochastic nature of Markov chain 
makes the likelihood of transitioning to any specific state depend solely on the current state and the time elapsed, 
rather than on the sequence of events that occurred previously. This characteristic simplifies the noise addition process.  
The forward process is also known as fixed or non-learnable step [2,9]. 



 

 
 

 

The next goal is to conduct a backward process to denoise the images known as backward diffusion process. The 
model forecasts the average of the noise introduced between the current and previous timestamps. This approach 
enables the model to effectively eliminate the noise, attaining the desired result. To sum it up, the forward process 
allows to perform the prediction of the noise added from the original image to the image at timestamp ‘T’ and 
traversing backward in Markov’s chain to generate new data from noise [2]. Figure 4 shows an example of a reverse 
process to generate new data. 
 

 

 
 
 
 

 
Figure 4.  Traversing Morkov chain for backward process to generate new image data 

 

2.2 Model implementation 

 
Figure 5.  Architectural structure of ‘U’ shaped segmentation network: UNet 

 

We employed a UNet architecture for our diffusion model. Figure 5 shows the overall architecture of UNet. The UNet 
architecture comprises four encoders and four decoders arranged in the shape of the letter 'U'. Each encoder block 
consists of 3x3 convolutions followed by Rectified Linear Unit (ReLU) activation functions. The contracting path, 
which involves stepping through the encoders, doubles the feature channels while halving the spatial dimensions via 
2x2 max-pooling operations, effectively down-sampling the data. To maintain information flow between the encoder 
and decoder, a bridge is formed by a 3x3 convolution followed by ReLU activation functions.  

In the expansive path, the decoder employs 2x2 transpose convolution techniques to up-sample the image sizes. Each 
decoder is concatenated with its corresponding encoder to preserve information from earlier layers. Finally, two 
convolutions of 3x3 with ReLU activation functions are applied. The output layer of the decoder utilizes 1x1 
convolutions with either sigmoid or softmax activation functions, depending on the number of classes. This activation 
function generates the segmentation mask, representing pixel-level classification [10, 11, 12].   

The diffusion process is employed on UNet by modifying its architecture as it requires the same model at every 
timestep. The procedure involves numerous changes within consistent conditional Gaussian distributions as the image 
generated are integer pixel values. This requires discrete (log) probabilities for every potential pixel value across all 
pixels. Thus, instead of using vanilla UNet outlined earlier, we designate the final step in the reverse diffusion 



 

 
 

 

sequence as an independent discrete decoder. At every time step, the UNet model predicts the noise that is required to 
be subtracted from the input image. Furthermore, the modified UNet architecture also incorporates ConvNext Block 
[13], attention block [14], MultiLayer Perceptron (MLP) [15] to create a more robust form of UNet. The downsample 
and upsample blocks used in the model behaves as a standard downsample and upsample process from the UNet. For 
awareness of the timesteps used, we introduce sinusoidal embedding into the upsampling and downsampling processes 
[2].  The addition of sinusoidal timestep embedding as one of the building blocks allows for the encoding of a specific 
time step while preserving relevant, current time information necessary for decoding. This feature ensures the model's 
adaptability across various time steps it encounters [18]. The engendering of the processes above provides 
reinforcement and maintains model’s capability in retaining same weights throughout the process of denoising fully 
noised and slightly noised images. The consolidated UNet is shown in Fig. 6 

Figure 6. Modified UNet architecture for diffusion model-based 

 

UNet modified diffusion model uses ConvNext infused with attention instead of basic convolutional blocks. To retain 
the information and prevent loss, we add skip connections. There are two residual connections in each layer instead 
of one to prevent the overfitting problem due to the complexity of the model (indicated by black and blue dotted lines). 
To incorporate the time step (T) information into the model, we add sinusoidal embedding to all the downsample and 
upsample blocks (red lines).  The final layer of the architecture consists of Conv2d layer with the kernel size of 1 to 
obtain the predicted noise in image dimension [18]. 
 

3. EVALUATION METRICS 
Color perception is crucial in the process of distinguishing the properties between open water (dark blue rectangle), 
snow (gray rectangle) and meltponds (light blue rectangle) as shown in Fig. 7. Open water typically appears darker 
depending on factors such as depth, clarity, and light. The water is darker due to the absorption of longer wavelengths 
of light i.e., red band and infrared spectrum. Meltponds are pools of water formed atop sea ice due melting. The 
presence of impurities, angle of observation and depth can vary in meltponds. They appear lighter in color due to the 
light reflecting from the underlying ice. Their color can vary between light blue to turquoise, sometimes greenish hue 
due to the algae bloom and sediments. Snow appears white due to its high reflectivity in the visible light. However, 
snow sometimes appears to have a bluish hue due to impurities or scattering of light. To gauge the resemblances 
between the original image and the generated image, we suggest an assessment measure built-up on Euclidean distance 
called the Chromatic Similarity Index (CSI).  We created ten patches for each category: snow, meltponds, and open 
water. Then, we calculated the RMS between the corresponding pixels in the red, blue, and green channels as well as 
for grayscale variants of these samples. Equation below illustrates the CSI between images 𝑎 and 𝑏. 
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Where 𝐶𝑆𝐼(𝑎,𝑏) is the chromatic distance between two images 𝑎 and 𝑏. 𝑛 and 𝑚 are the number of pixels and number 
of samples respectively, and 𝑖 is the individual sample and 𝑗 is the index between the original and synthetic pixels.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 7.  An image of arctic area marked based on its regions 

 

4. TRAINING AND EXPERIMENTAL RESULTS 
 

4.1 Training method 

As mentioned in Sec. 2, diffusion model trains by traversing backward by identifying the reverse Markov transitions 
that optimize the likelihood of the training dataset. In other words, for each available image in the data, we arbitrarily 
select a time step ranging between [0, T]. This will compute the forward process and produce noisy images. And, in 
backward process, the model is utilized to forecast the added noise in the image. For this purpose, as we are dealing 
with probabilistic latent space, we incorporate Kullback-Leibler (KL) Divergence loss function, an asymmetric 
statistical distance measuring the two probability distributions’ difference.  

 
Table 1. Configuration for the training, UNet and diffusion model 

 
Training UNet Diffusion 

Batch Size 16 Input size 64 Timesteps  100 

Learning Rate 1x10-4 Batch size 16 Beta scheduler Linear 

Number of steps 50000 Dimension [1,2,4,8] Output image size 224 

Save samples every 1000 Channels 3   

Number of samples 
saved 

9     



 

 
 

 

 
Table 1 displays the configuration of training, UNet and diffusion processes respectively. We evaluated our diffusion 
model on HOTRAX and Operation IceBridge database. The model was trained for 50,000 steps with a batch size of 
16. The image size obtained was 224x224 due to hardware limitations. Using Exponential Moving Average, samples 
were generated every 1000 steps and model was saved. The experiment was carried out utilizing an NVIDIA 
GEFORCE RTX Titan GPU with 24 GB of VRAM and 128 GB of RAM. The PyTorch framework in Python was 
employed for the experiment. 

 
4.2 Experimental results 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 Figure 8.  Generated images at different time steps for HOTRAX 

 
In Fig. 8, for HOTRAX data, the top row illustrates the images acquired during the initial 1000 steps, revealing 
primarily noise with minimal discernible features. Progressing to 10000 and 20000 timesteps, the model begins to 
gradually capture some features. However, the most substantial advancements in feature development occur around 
30000 and 40000 steps. By the conclusion of 50000 steps, we observe promising results produced by the model, with 
a notable enhancement in sample quality compared to earlier stages. Similarly, generated images for Operation 
IceBridge based on timesteps are illustrated in Fig. 9. Furthermore, Fig. 10 and Fig. 11 illustrate more samples 
generated by DDPM for HOTRAX and Operation IceBridge databases respectively. 

 



 

 
 

 

 
 

Figure 9.  Generated images at different time steps for Operation IceBridge 
 
To assess the chromatic similarity between the original and generated images, we first created patches for three classes: 
meltponds, snow, and open water. Next, we normalized both sets of class patches and computed CSI for all the 
samples. The resulting chromatic differences between the corresponding pixels in the original class patches (reference) 
and generated class patches (testing) are presented in Table 2 and Table 3 for both the databases. Lower the CSI, 
similar are the original and synthetic images. We observe that the color sample distances between original snow and 
synthetic snow are the smallest compared to the original and synthetic pairs of snow-open water and snow-meltpond, 
which exhibited larger disparities between their corresponding pixels. Likewise, the original and synthetic pairs, such 
as open water - snow and open water - meltponds, showed greater disparities in distances compared to open water - 
open water pairs. Moreover, concerning meltponds in both the original and synthetic pairs, such as meltponds - snow 
and meltponds - open water, the differences were more pronounced when contrasted with meltponds - meltponds, 
exhibiting the lowest differences. Therefore, as the CSI decreases, the original and synthetic images become 
increasingly alike. 

 



 

 
 

 

 
Figure 10.  More diffusion model-based generated samples at T=50000 for HOTRAX 

 
 

   

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 11.  More diffusion model-based generated samples at T=50000 for Operation IceBridge 

 



 

 
 

 

Table 2. CSI for HOTRAX database 

Reference Snow Open water Meltpond 

Testing Snow Open 
water 

Melt 
pond 

Snow Open 
water 

Melt 
pond 

Snow Open 
water 

Melt 
pond 

𝑹̅ 0.04191 0.11889 0.06328 0.13857 0.02390 0.05427 0.09256 0.06739 0.03286 

𝑮̅ 0.04152 0.11881 0.06331 0.13838 0.02395 0.05407 0.09227 0.06748 0.03276 

𝑩̅ 0.04125 0.11927 0.06355 0.13873 0.02386 0.05419 0.09239 0.06748 0.03276 

Grayscale 0.15022 0.47681 0.20935 0.53535 0.09003 0.18714 0.34621 0.27691 0.09697 

 

Table 3. CSI for Operation IceBridge database 

Reference Snow Open water Meltpond 

Testing Snow Open 
water 

Melt 
pond 

Snow Open 
water 

Melt 
pond 

Snow Open 
water 

Melt 
pond 

𝑹̅ 0.00819 0.07212 0.04624 0.07596 0.00760 0.03620 0.04487 0.02946 0.00902 

𝑮̅ 0.00834 0.07210 0.04616 0.07586 0.00769 0.03633 0.04484 0.02927 0.00889 

𝑩̅ 0.00828 0.07218 0.04608 0.07586 0.00763 0.03638 0.04497 0.02918 0.00868 

Grayscale 0.02513 0.23820 0.14701 0.24748 0.02167 0.11082 0.14270 0.08644 0.02509 

 

5. CONCLUSION 
In this work, we utilize Denoising Diffusion Probabilistic Model (DDPM), a category of generative models, to create 
synthetic data representing Arctic sea ice. Diffusion model follows the Markov chain process consisting of forward 
diffusion and reverse diffusion. These models are adept at generating novel and realistic data beyond what is included 
in the original dataset by transitioning from a basic to a more intricate data distribution through the addition of 
Gaussian noise for the forward process. A UNet based architecture was used in the reverse diffusion process to predict 
the subtractive noise to generate noise-free synthetic images   

We introduced an evaluation metric, the Chromatic Similarity Index (CSI), to gauge the chromatic similarities between 
the original images and the generated images. This metric entailed computing the normalized RMS for the RGB 
channels, along with their grayscale counterparts for the ten patches. We then assessed the chromatic resemblances 
based on the results after calculating the mean differences between the corresponding pixels. In Sec.4, Tables 2 and 3 
revealed that the chromatic difference between the corresponding pixels in the original and generated images of snow 
and snow, open water and open water, meltpond and melpond were minimal suggesting that generated images are 
closer to the original images. Therefore, we can assert that the generated images exhibit high quality, promising 
characteristics, and realism, making them suitable for future analysis. 

In the future, our aim is to apply our pretrained model to segment the generated images. Additionally, we intend to 
integrate positional embedding into the Diffusion Model to generate sequential patches. This approach will enable us 
to achieve high-resolution images by seamlessly stitching the patches together. We would also like to create high 
precision masks using in-painting which features the use of tokens.  
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