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 ABSTRACT   

With the increase in global temperatures due to anthropogenic climate change, sea ice in the Arctic has experienced rapid 
melting, resulting in increasing numbers of meltponds. As meltponds have a much lower albedo than sea ice or snow, more 
solar radiation will be absorbed by the water, further accelerating the melting rate of the sea ice. The dynamic nature of 
the meltponds exhibit complex shapes and boundaries, which makes manual analysis tedious and taxing. Several classical 
image processing approaches have been extensively used for the detection of meltpond regions in the Arctic area. We 
propose a CNN based multiclass segmentation model known as NABLA-N for automated detection and segmentation of 
meltponds. The architectural framework of NABLA-N consists of an encoding unit and multiple decoding units that 
decode from several latent spaces. The fusion of multiple feature spaces in the decoding units enables better representation 
of features due to the combination of low and high-level feature maps. The proposed model is evaluated on high-resolution 
aerial photographs of Arctic region obtained during the Healy-Oden Trans Arctic Expedition (HO-TRAX) in 2005 and 
NASA’s Operation IceBridge DMS L1B Geolocated and Orthorectified data in 2016. These images are classified into 
three classes: meltpond, open water and sea ice. In this paper, NABLA-N demonstrates superior performance on 
segmentation of meltpond data compared to other state-of-the-art networks such as UNet and Recurrent Residual UNet 
(R2UNet). 
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1. INTRODUCTION  
The earth’s average temperature has rapidly increased over the past 150 years in large part due to human-made greenhouse 
gas emissions. This increase has had an outsized effect on the Arctic, where higher temperatures have resulted in above-
average rates of melting for sea ice. Such melting forms pools of water known as meltponds, which have a much lower 
albedo than snow or ice [1]. The decreased albedo causes greater absorption of solar radiation in areas covered by 
meltponds, leading to more melting of the sea ice. This results in a positive feedback loop accelerating the rate of melting 
of sea ice. Since meltponds play a significant role in increasing the loss of sea ice, they could be a useful metric in 
quantifying how Arctic Sea ice is responding to global warming [2].  

Due to their localized nature and rapid development, an autonomous method for meltpond detection would prove extremely 
useful for environmental monitoring. Currently, tracking the formation and growth of meltponds requires manual 
annotation and evaluation. This makes data collection tedious, and calculating automated bounding boxes around 
meltponds would allow for more timely calculations of important metrics such as the melting rate of said meltponds. 
Additionally, general metrics of open water and sea ice allow for ratio calculations which will allow researchers to better 
track the overall activities of the Arctic region [1]. Figure 1 shows the meltpond in southwestern Greenland’s glacial ice 
field. The image is natural-color and was acquired by the Advanced Land Imager on NASA’s Earth Observing-1 (EO-1) 
satellite [3].  

This study focuses exclusively on creating automated bounding boxes for the regions (snow/ice, open water and 
meltponds) in Arctic. We used state of the art neural networks to compare and create a benchmark for our network. 



 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Image acquired from NASA’s Earth Observing-1 satellite by the Advanced Land Imager 

 

 

UNet 

 

 
 

 

 

Figure 2.  Architectural structure of UNet 

 



 
 

 
 
 

1.1 UNet 

Figure 2 displays the architectural structure of UNet [4]. UNet consists of four encoders and four decoders which are built 
in the shape of the letter ‘U’. Each encoder block consists of 3x3 convolutions followed by a Rectified Linear Unit (ReLU) 
activation function. Each stepping block in the contracting path downsamples input data by doubling the feature channels 
while decreasing the spatial dimension in half by using a 2x2 max-pooling operation. For the smooth flow of information 
from encoder to decoder, they are connected by a bridge consisting of a 3x3 convolution followed by a ReLU activation 
function. 

In the expansive path, the decoder uses 2x2 transpose convolution to up-sample the sizes of the images. Each decoder is 
concatenated with its corresponding encoder to retain the low-level information from earlier layers. Finally, two 
convolutions of 3x3 with ReLU activation function are used. The output layer of the decoder uses a 1x1 convolution layer 
with either sigmoid or softmax activation depending on the number of classes. This activation function provides the 
segmentation mask, which represents the pixel-level classification. 

 

1.2 R2UNet 

 

 
 

Figure 3.  Architectural structure of R2UNet 

 

Figure 3 shows the architectural details of R2UNet [5]. The structure of R2UNet is based on UNet consisting of encoder 
and decoder. Each encoder has a recurrent convolutional block following the residual connection before downsampling. 
Figure 4 (a) shows the recurrent residual convolutional unit. In each convolutional layer, subsequent recurrent 
convolutional layers are used. As the recurrent operation is based on the number of time steps, we used time step t=3. 
Thus, one convolutional layer has three recurrent layers as shown in Fig. 4 (b) [1,5,6,7]. The encoder is connected to the 
decoder via a bridge.  

The decoder performs up-sampling of feature maps similar to UNet, except that each decoder block consists of a recurrent 
convolutional block following the residual connection before a transpose operation. The feature maps on the encoder are 
concatenated with feature maps of the decoder to retain relevant low-level information. The addition of a feedback loop 
in each convolutional layer yields accumulation of features required for bettering of semantic representation of extracted 
features. Meanwhile, the addition of a residual connection improves the learning efficacy and prevents exploding and 
vanishing gradients [1, 5]. 



 
 

 
 
 

 
 

Figure 4. (a)  Unfolded recurrent residual convolutional unit (b) Unfolded recurrent convolutional unit t=3 

 

In this work, we introduce NABLA-N (∇N -Net) for creating bounding boxes for the regions in the Arctic Area. ∇N -N 
network embodies fusion and ensembling of multiple decoders and learns from many latent spaces for segmentation tasks. 
Our study shows that learning from multiple latent spaces enables better representation of features due to the combination 
of low and high-level feature maps. The model is evaluated on HO-TRAX and Operation IceBridge database acquired in 
year 2005 and 2016 respectively. Both databases consist of three annotated regions: open water, melt pond and snow/ice. 

 

2. RELATED WORKS 
The goal of this work is to employ NABLA-N, a segmentation model, and compare the qualitative and quantitative results 
against other state-of-the-art architectures. In the last few years, several semantic segmentation models have been proposed 
and have proven very successful in segmentation tasks in many different fields. In 2015, UNet was introduced for 
biomedical image segmentation [4]. The UNet model was efficiently applied on different modalities based on segmentation 
problems. In 2018, an improved version of UNet with residual and recurrent operations was introduced, named Recurrent 
Residual UNet [5]. In the same year, another architecture, LadderNet, which was a chain of multiple UNets, was introduced 
[9]. In 2019, the Fusion Net architecture, which was made up of multiple UNets in parallel, was proposed [10]. 
Additionally, in 2017, NABLA-Net was proposed. This architecture consisted of FCN based encoding and decoding units 
[11]. In 2019, NABLA-N network was introduced for the segmentation of skin cancer [8]. In this work, we applied 
NABLA-N network (∇N -Net) for the evaluation and creation of bounding boxes of the regions in Arctic area. The network 
is evaluated on HO-TRAX and Operation IceBridge dataset [12]. Additionally, MeltpondNet, which was based on Swin 
Transformer UNet [13] and R2UNet [1] for detection of meltponds on Arctic Sea ice, was also evaluated on the HO-TRAX 
dataset. 

3. MODEL ARCHITECTURE 
The NABLA-N network derives its name from the symbol known as “NABLA,” which is an upside-down version of the 
Greek letter Delta, as the network’s shape resembles the symbol. The ‘N’ in the network is derived based on the number 



 
 

 
 
 

of feature spaces used while employing NABLA. We used three latent spaces, hence the title ∇3 -Net. Figure 5 shows the 
∇3 -Net architecture with three feature spaces. ∇3 -Net is a combination of the UNet, R2UNet, LadderNet and FusionNet 
architectures, consisting of encoding and decoding unit. In the encoder, similar to UNet and its variants, the input image 
is fed through several forward convolutional techniques and is subsampled using max-pooling operations of 2x2. Here, 
the depth of the image is doubled by increasing the number of feature maps and size of the image is reduced half its spatial 
dimension.   
 
The decoder has several convolutional transpose operations for upsampling the image. Here, the image size is increased, 
and feature maps are reduced. The encoded features from the inputs are decoded through bottleneck layer. According to 
representation strategy of features, the deeper layers with a greater number of feature maps represent high level features 
in representing feature to object space.  As the bottleneck has high feature representation, the flow of information from 
encoders to decoders is prone to noise sensitivity and decoders are very crucial in producing accurate segmentation results. 
To combat this tendency, our ∇3 -Net model consists of three decoders utilizing three feature spaces in the deeper layers 
of the encoder to produce enhanced and precise segmentation masks. The encoding unit encodes the input samples and 
multiple decoding units decode the encoded features from different latent spaces as shown in Fig. 5. The encoding unit is 
concatenated with its multiple corresponding decoding units to retain relevant low-level features, and feature fusion 
operations are applied between decoding units using addition. A 1x1 convolution is performed in the output layer after 
concatenation. As the ∇3 -Net model is deeper, we used recurrent residual convolutions for convolutional operations in 
both encoding and decoding units to prevent exploding and vanishing gradients. These operations ensure efficient learning 
and better feature accumulation, which is required for segmentation and detection tasks. The robustness of our model is 
evaluated on HO-TRAX and Operation IceBridge dataset and is discussed in further sessions [8]. 
 
We used: 
3→16(2)→32(2)→64(2)→128(2)→256(2)→128 (2)→64(2)→32(2)→16(2)→3, where numbers within the parentheses 
indicate filter size of the receptive field, and numbers outside the parentheses indicate filter size of the filter maps. The 
number of total, trainable, and non-trainable parameters of the model are 3,037,923, 3,036,931 and 992 respectively. 
 

 
 
 
 

Figure 5. The ∇3 -Net architecture 



 
 

 
 
 

4. EXPERIMENTAL SETUP AND RESULTS 
The experiments were conducted on two NVIDIA GEFORCE RTX Titan GPUs with 24 GB of VRAM each (for a total 
of 48 GB VRAM) and 128 GB RAM. We used the TensorFlow framework in Python with a Keras backend. The 
experimental setup was consistent for all the experiments conducted for this work. 
  
4.1 Dataset 

4.1.1 HO-TRAX 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Healy Oden Trans Arctic Expedition (HO-TRAX) image dataset 

The aerial imagery was captured from a helicopter with a Nikon D70 digital camera between 5 August and 30 September 
2005 during the Healy Oden Trans Arctic Expedition (HO-TRAX). Flights were conducted at relatively low altitudes 
between 150–700 m to avoid low clouds. The captured images had an average size of 3042×2048 pixels. The highly 
detailed images were visually analyzed, and the zones were divided into three classes: open water, meltponds and sea ice 
[1,12]. The sample images are shown in Fig. 6. 

4.1.1 Operation IceBridge 

The IceBridge dataset consists of Level 1B imagery acquired from the Digital Mapping System (DMS) over Greenland 
and Alaskan waters in 2016, as part of NASA’s Operation IceBridge. The aircraft was flown over the Chukchi Sea in July 
when the sea ice would have been melting. The collected imagery had a 10 cm ground sample distance with varying 
temporal resolution [14]. The sample images are shown in Fig. 7. 



 
 

 
 
 

 

 

Figure 7. NASA’s Operation IceBridge image dataset 

 

4.2 Quantitative analysis approaches 

For quantitative analysis of the experimental results of our model, we employed F1-score, accuracy, precision, recall, 
Jaccard similarity and mean IoU. We utilized the following evaluation metrics to evaluate the performance of our model 
against UNet and R2UNet. 

 

F1 – Score: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Accuracy: 

𝐴𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
Precision: 
 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 



 
 

 
 
 

 
Recall: 
 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
Jaccard Similarity: 
 

𝐽𝑆 =
|𝐺𝑇 ∩ 𝑆𝑅|

|𝐺𝑇 ∪ 𝑆𝑅|
 

 
Mean IoU:                                                                    

𝑀𝑒𝑎𝑛𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

Here, GT is ground truth, SR is segmentation result, TP is True Positive, TN is True Negative, FP is False Positive and 
FN is False Negative.  
 
4.3 Training method 

All the three models viz. UNet, R2UNet and ∇N -Net are trained for 200 epochs. For the optimizer, we used ADAMW 
with a learning rate and weight decay of 1×10-4. As meltpond detection is a multi class segmentation problem, we converted 
our labels to a binary class matrix to return either 1 or 0 from a class vector. We used categorical cross entropy for the loss 
function. For HO-TRAX, we split the data set into 60, 25, and 15 images for training, validation, and testing, respectively 
[1]. Figures 8 (a), (b) (c) show the training and validation loss, training accuracy, and validation accuracy of UNet, R2UNet 
and ∇3 -Net. For the IceBridge dataset, we cropped the images to a size of 640 x 640 pixels since the original images are 
very large. After cropping, we had 210, 70, and 70 images for training, validation, and testing, respectively. Figures 9(a), 
(b) (c) show the training and validation loss, training, and validation accuracy of UNet, R2UNet and ∇N -Net for the 
Operation IceBridge dataset. 
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Figure 8. HO-TRAX training and validation loss and accuracy (a) UNet (b) R2UNet (c) ∇N -Net 
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Figure 9. IceBridge training and validation loss and accuracy (a) UNet (b) R2UNet (c) ∇N -Net 



 
 

 
 
 

4.4 Results 
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(e)                                                                                                 

Figure 10. HO-TRAX database: (a) Original image (b) Ground truth (c) UNet  (d) R2UNet (e) ∇3 -Net  
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Figure 11. Operation IceBridge database: (a) Original image (b) Ground truth (c) UNet (d) R2UNet (e) ∇3 -Net 
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All three trained models were evaluated on the same test images to compare their performance and robustness for 
segmentation.  Under the same experimental and architectural settings for HO-TRAX data, UNet’s accuracy was the lowest 
at 94.65%. The second lowest, R2UNet, showed an accuracy of 94.96%. Finally, ∇3 -Net had the highest accuracy at 
95.44%. The original images, ground truths and predicted images are shown in Fig. 10. Table 1 displays the performance 
of all the models and their comparison with different parameters such as F1-Score, Accuracy, Precision, Recall, Jaccard 
similarity and Mean IoU. 

For Operation IceBridge data, ∇N -Net (N=3) had the highest accuracy at 88.01%, The second highest, R2UNet, showed 
an accuracy of 86.39% and UNet had the lowest accuracy at 85.94%. The original images, ground truths and predicted 
images are shown in Fig. 11. Table 2 displays the performance of all the models and their comparison with different 
parameters such as F1-Score, Accuracy, Precision, Recall, Jaccard similarity and Mean IoU. Due to their ability to 
distinguish positive values from negative values, the classes that were incorrectly labeled by human error were generalized 
and predicted correctly by all of the models [1].  

Table 1. Experimental results of UNet, R2UNet and ∇3 -Net for the segmentation of three regions in HO-TRAX database 

 F1-Score Accuracy Precision Recall Jaccard 
Similarity 

Mean IoU 

UNet 0.8859 0.9465 0.8847 0.8883 0.8016 0.7629 
R2UNet 0.8933 0.9496 0.8992 0.8917 0.8129 0.7754 
∇N -Net (N=3) 0.8997 0.9544 0.9058 0.8941 0.8227 0.7871 

 
Table 2. Experimental results of UNet, R2UNet and ∇3 -Net for the segmentation of three regions in Operation IceBridge 

database 

 F1-Score Accuracy Precision Recall Jaccard 
Similarity 

Mean IoU 

UNet 0.7497 0.8594 0.8363 0.7860 0.6234 0.6204 
R2UNet 0.7767 0.8639 0.8390 0.8122 0.6522 0.6493 
∇N -Net (N=3) 0.7905 0.8814 0.8504 0.8198 0.6714 0.6684 

 
 

5. CONCLUSION 
 

In this work, we proposed and implemented a new architecture, ∇N -Net, for pixel-level multiclass segmentation. Our 
network derives the name from its architectural structure “NABLA” which is an inverted Greek Delta. Our feature 
extraction is based on ∇3 -Net (N=3), which is composed of three latent spaces. It is a CNN based framework 
consisting of encoding unit and several decoding units with multiple latent space enabling enhanced performance 
and better feature representation.  As there are multiple decoding units with multiple latent spaces, the flow of 
high-level information is more efficient. Our framework engenders UNet, R2UNet, LadderNet and FusionNet. The 
model is evaluated on Operation IceBridge and HO-TRAX databases for segmentation. The quantitative and 
qualitative results demonstrate enhanced and robust performance when compared against UNet and R2UNet 
architectures. ∇3 -Net showed superior accuracy of 95.44% on HO-TRAX dataset and 88.14% on Operation 
IceBridge dataset. Our further investigation will include relabeling the Operation IceBridge dataset using the 
results of ∇3-Net and retrain the model for superior results and performance. We would also like to make internal 
tweaks in the model for better feature accumulation and representation. 
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