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1. INTRODUCTION

In this article we construct algebraic cobordism as a non-A'-invariant cohomol-
ogy theory on derived schemes, and establish its basic expected properties: we show
that it is the universal oriented cohomology theory, that it is related to algebraic
K-theory via a Conner—Floyd isomorphism, and that its periodic version can be
obtained from the infinite Grassmannian by inverting the Bott element (Snaith the-
orem). These results refine the analogous theorems in A'-homotopy theory proven
in [PPROS8], [S?09], and [GS09], respectively. To establish our results, we study a
stable oo-category of non-Al-invariant motivic spectra as in [AI23], which contains
the stable Al-homotopy category of Morel-Voevodsky as its full subcategory of Al-
invariant objects. We prove in particular that this category satisfies P'-homotopy
invariance and weighted A'-homotopy invariance, which are weak forms of Al-
homotopy invariance, allowing us to do “homotopy theory” in algebraic geometry
while keeping the affine line A' non-contractible. For example, we prove that the
stack of vector bundles BGL,, is equivalent to the infinite Grassmannian Gr,, in
this setting.
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The A'-homotopy theory of Morel-Voevodsky [MV99] has been highly successful
in the study of A'-invariant cohomology theories, playing an instrumental role in the
resolution of the Milnor [OVV07, Voe03] and the Bloch-Kato [Voell] conjectures.
On the other hand, A'-homotopy theory is not useful for studying p-adic cohomol-
ogy theories like crystalline and prismatic cohomology [BMS19,BS22], since these
are usually not Al-invariant. This is unfortunate, because deeper understanding
of the p-torsion is often important for various applications: for instance, cohomo-
logical obstructions to the existence of resolution of singularities by blowups in
characteristic p, if they exist, are expected to be p-torsion due to the existence of
resolution by p-alterations [Sul04, Tem17]. Other important examples of non-A!-
invariant cohomology theories are the algebraic and hermitian K-theory of singular
schemes [CHWO08, Sch17].

Here, we continue to develop the framework for non-A'-invariant motivic ho-
motopy theory introduced in [AI23], based on the idea of replacing Al-invariance
with (a non-oriented version of) the projective bundle formula. More precisely, for
a derived scheme S, we say that a Zariski sheaf on the co-category Smg of smooth
S-schemes satisfies elementary blowup excision if it carries the blowup square

Pyt —— Bloy (A")x

| |

{0} x —— A%

to a cartesian square for every X € Smg and n > 1. Let Pzar ebu(Smg, Sp) denote
the oo-category of Zariski sheaves of spectra on Smg satisfying elementary blowup
excision. Then, for the purposes of this paper, we define the co-category of motivic
spectra as the presentably symmetric monoidal co-category obtained from the latter
by ®-inverting the pointed projective line P':

MSs = Pzar ebu(Sms, Sp)[(P!) 7] € CAlg(Pr").

The ultimate goal of our framework is to provide efficient tools to study non-A!-
invariant cohomology theories and their cohomology operations. As most cohomol-
ogy theories in algebraic geometry, including all the ones mentioned above, satisfy
the projective bundle formula, this framework is widely applicable.

The main object of interest in this paper is algebraic cobordism. Our treatment
of it follows closely the now classical treatment in A'-homotopy theory [Voe96,
Voe98]. Namely, we define algebraic cobordism as the cohomology theory repre-
sented by a non-A'-invariant Thom spectrum MGL. For a finite locally free sheaf
€ on S, we define the Thom space of € by

Thg(€) = P(€ & O)/P(E) € P(Smg),.

An important technical point is that we are able to promote Thg(—) to a symmetric
monoidal functor

Thg: Vect(S) — ?Zar,ebu(smS)*,
which factors through the K-theory space K(S) after inverting P! on the target.
Following [BH21, Section 16], we then define the algebraic cobordism spectrum MGL
to be the colimit of the Thom spectra of rank-zero K-theory classes over Smg, i.e.,

MGL = )ggslnr% Thx (§) € MSs.
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It is clear from this construction that MGL is canonically equipped with an E..-
algebra structure. After imposing A'-invariance, our motivic spectrum MGL re-
duces to Voevodsky’s. In this sense, the latter theory should be regarded as the
homotopy cobordism theory, analogously to how algebraic K-theory reduces to ho-
motopy K-theory after Al-localization [Wei89, Cis13].

Beyond the construction, three main results on MGL are established. First of all,
we prove that MGL is the universal homotopy commutative oriented ring spectrum,
providing a non-A'-invariant refinement for the analogous claim in A'-homotopy
theory [PPROS].

Theorem 1.1 (Universality of MGL, Theorem 7.5). The algebraic cobordism. spec-
trum MGL is the initial oriented object in CAlg(hMSg).

Secondly, we prove that the algebraic K-groups can formally be recovered from
the MGL-cohomology groups, by imposing the multiplicative formal group law for
Chern classes of line bundles. This is a non-Al-invariant refinement of [S?09,
Theorem 1.2]. Morally, it should also be the “higher version” of the Conner-Floyd
theorem proved in [Ann23|.

Theorem 1.2 (Conner-Floyd isomorphism, Theorem 8.11). For any qcgs derived
scheme X, there is an isomorphism of bigraded rings

MGL**(X) @1, Z[fH] ~ K™ (X),
where L is the Lazard ring and KP1(X) = Kog—p(X).

The above result may be regarded as a sanity check for our construction, because
it establishes a precise relationship between MGL and K-theory, the latter of which
has a generally-accepted definition.

Let PMGL be the periodic algebraic cobordism spectrum, defined to be the colimit
of the Thom spectra of all K-theory classes over Smg. Our third main result
provides a concrete geometric model for PMGL as a motivic spectrum, refining the
A'-homotopical Snaith theorem proved in [GS09].

Theorem 1.3 (Snaith theorem for PMGL, Theorem 9.3). There is a canonical
isomorphism

PMGL ~ 35 Vecto 4+ [3]
in CAlg(hMSg).

This result allows us to easily compute maps from PMGL to other motivic spec-
tra. An analogous result was proven in [AI23] for algebraic K-theory. The advantage
of the cobordism version is that algebraic cobordism has a much richer structure
than algebraic K-theory, owing to the fact that K-theory is confined to the first
chromatic level. Hence, algebraic cobordism should be more useful than K-theory
in studying, e.g., torsion in crystalline and syntomic cohomology and other infinite-
chromatic-height phenomena.

In order to obtain the aforementioned results, we significantly advance the foun-
dational understanding of non-A!-invariant motivic spectra. Our main insight is
that ®-inverting the pointed projective line P! leads, in a non-trivial fashion, to
P'-homotopy invariance, and more generally to a twisted form thereof that we call
P-homotopy invariance.
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Theorem 1.4 (P-homotopy invariance, Theorem 4.1). Let € be a finite locally free
sheaf on X € P(Smg) and 0: € — Ox a linear map. Then there is a canonical
homotopy h(o) in MSg between

X L V(E)CPEDOy)

and the zero section. The homotopy h(o) is functorial in (S, X,&,0) and is the
identity if o = 0.

Using P-homotopy invariance in place of A'-homotopy invariance, we are able
to prove several useful results for motivic spectra.

Theorem 1.5. The following results hold in MSg.

(i) (Bass fundamental theorem, Proposition 4.12) The canonical pointed map
P! - =G,

admits a retraction.

(ii) (Euler class of O(1), Proposition 4.14) Let s,i: P* = Ppi (O(1) © O) be the
zero section and the inclusion of the fiber at infinity, respectively. Then the
two composites

PL ? Pp1 (O(1) & O) . — Ppi (O(1) @ O) /Pp1 (O(1)) = Thps (O(1))

are homotopic.

(iii) (Weighted A'-homotopy invariance, Corollary 4.8) Let A'/G,, be the quo-
tient stack with respect to a G,,-action of non-zero weight. Then the canon-
ical map

A'/G,, = BG,, = Pic

is an equivalence.
(iv) (Infinite excision, Proposition 5.1) The open embedding

A® —0— A

is an equivalence.
(v) (Geometric model of the stack of vector bundles, Theorem 5.3) The canon-
ical map

Gr,, — Vect,,

is an equivalence.

In fact, (iii) and (iv) hold more generally; see the mentioned references and
Lemma 5.2. The results listed in Theorem 1.5 are all either well-known or obvious
after Al-localization; (i), (iii), (iv) are obvious, (ii) is contained in [Pan03, proof of
Lemma 3.8], and (v) is [MV99, Section 4, Proposition 3.7]. Without A!-localization,
(v) was previously proved when restricted to oriented theories in [AI23, Theorem
4.4.6] by adapting an argument from [AI22]. The proof presented here is logically
independent from the previous one, more general, and simpler.

The stable co-category MSg is by definition the stabilization of

M En = ?Zar,ebu(sms)*[(]?l)il}-

Combining the Bass fundamental theorem (i) with the stability theorem [AI23,
Theorem 2.4.5], we obtain the following version of Bass delooping.
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Theorem 1.6 (Bass delooping, Corollary 4.13). The functor
Q% MSg — MSZ"

1s fully faithful and its essential image consists exactly of the fundamental objects,
i.e., those E € MS&" such that the canonical map P! @ E — XG,, ® E admits a
retraction.

Remark 1.7. Theorem 1.5 applies in particular to any spectrum-valued cohomol-
ogy theory satisfying the projective bundle formula (since this implies elementary
blowup excision [AI23, Lemma 3.3.5]), such as the syntomic cohomology of schemes
defined in [BL22]. This shows that the computation of the syntomic cohomology of
X x BGL,, [BL22, Theorem 9.3.1] and of the classifying stack of a parabolic sub-
group [BL22, Corollary 9.2.10] are “formal” consequences of the projective bundle
formula [BL22, Theorem 9.1.1], and hence that the p-quasi-syntomicity assumption
in the statements of these results is not necessary.

Remark 1.8. The cohomology groups MGL**(X) are expected to provide higher
algebraic cobordism groups, extending the non-Al-invariant algebraic cobordism
groups Q*(X) constructed in characteristic 0 in [Ann20] and over a general Noe-
therian base ring A in [AY23,Ann23, Ann21]. More precisely, for all quasi-projective
derived A-schemes X, we expect canonical isomorphisms Q" (X) ~ MGL?""(X) for
all n € Z. We prove this with rational coefficients (Corollary 8.13), but establishing
such a comparison with integer coefficients seems difficult, and is not pursued here.

Related work. Other constructions of motivic homotopy categories without Al-
invariance have been developed based on extensions of the category of schemes
itself: one by Kelly and Miyazaki using modulus pairs [KM21] and one by Binda,
Park, and Ostveer using log schemes [BP?23]. Our construction is in some sense
more naive, as it is simply a variant without Al-invariance of the P'-stable motivic
homotopy category of Morel and Voevodsky. Since any scheme may be viewed
as either a modulus pair or a log scheme, there are canonical functors from our
oo-category of motivic spectra to theirs.

Binda, Park, and Ostveer also prove similar results to ours in the logarithmic
setting; they define in particular the logarithmic cobordism spectrum logMGL and
prove its universality. Although their definition looks slightly different than our
definition of MGL, the universal properties imply that logMGL is the image of
MGL.

Conventions and notation. We use the word “anima” for spaces/oco-groupoids
and we denote by Ani the co-category of anima. We write P(C) for the co-category
of presheaves of anima on €. If 7 is a Grothendieck topology on €, P, (€) C P(€) is
the full subcategory of T-sheaves. We write Sp for the co-category of spectra and
Sp(@) for the co-category of spectrum objects in €. If € admits filtered colimits,
we write C¥ C C for the full subcategory of compact objects. We write hC for the
homotopy category of an co-category C.

For a presentably symmetric monoidal oo-category V and an object X € 'V,
we write Spy (V) = V[X 1] for the symmetric monoidal co-category of symmetric
X-spectra [AI23, Section 1] and ¥: V — Spx (V) for the canonical functor.

We use the following indexing conventions for cohomology theories represented
by Pl-spectra. If X is pointed, we write E™(X) = mMap(X%X, Y% E) and
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Er4(X) = (ZP~2E)4(X). If X is unpointed, we write E*(X) = E*(X,) and
E**(X) = E**(X4).

A scheme is a derived scheme by default. Note that we often use hooked arrows
— for immersions of derived schemes, even though these are not monomorphisms.
We write Schy for the oo-category of X-schemes and Smy C Schy for the full
subcategory of smooth X-schemes. The superscript “fp” means “of finite presen-
tation”.

We write Vect(X) for the anima of finite locally free sheaves over a scheme
X, and Pic(X) = Vecty(X) for the subanima of invertible sheaves. For a sheaf
& € Vect(X), we denote by V() = Spec(Symé€) and P(€) = Proj(Sym &) the
associated vector and projective bundles.

2. SMOOTH BLOWUP EXCISION

Let S be a derived scheme. We refer to [KR19] for the definition of the blowup
of a derived scheme at a quasi-smooth closed subscheme.

Definition 2.1. Let € be an oo-category and F': Sm¢” — € a C-valued presheaf.

(i) We say that F' satisfies smooth blowup excision if F(@) is a final object of
€ and for every closed immersion i: Z — X in Smg, F' sends the blowup
square

E —— BlzX

|

Z— X
to a cartesian square.
(ii) A closed immersion i: Z < X is called elementary if, Zariski-locally on X,
it is the zero section of A% LY for some n > 0 and some Y. We say that F
satisfies elementary blowup excision if (i) holds whenever i is elementary.

We denote by Pypy(Smg) C Pepu(Smg) the corresponding full subcategories of
P(Smg), and by Lgp, and Lepy, the corresponding localization functors, which pre-
serve finite products.

Definition 2.1 of elementary blowup excision is slightly less elementary than
[AI23, Definition 3.1.1], but it is obviously equivalent for Zariski sheaves. Note
that if F': Smg® — € satisfies elementary blowup excision, then F' preserves finite
products. In particular, we have Pep, (Smg) C Px(Smg). For Nisnevich sheaves of
spectra, there is no difference between elementary and smooth blowup excision:

Proposition 2.2. Suppose that € is stable and that F: SmY — € satisfies Nis-
nevich descent and elementary blowup excision. Then F satisfies smooth blowup
excision.

Proof. Let i: Z — X be a closed immersion in Smg. Zariski-locally on X, there
exist cartesian squares

N

7z ——= Z
I
X ——V —— A7,

where the horizontal maps are étale and s is the zero section (the proof of [MV99,
Section 3, Lemma 2.28] works without change for derived schemes; alternatively,
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one can observe that the claim depends only on the underlying classical schemes,
by the topological invariance of the étale site). Let B — X be the blowup of X at
Z, E C B the exceptional divisor, U = X — Z and W =V — Z. We then have a

commutative diagram

— BxxV<+— W

B
7 v

E B

E

A

L] !

L —|—Vi—|— W
7 L '

g i

X U.

Since F' satisfies Nisnevich descent, it takes the top and bottom faces on the right-
hand side to cartesian squares, hence also the middle face in the diagram. Hence,
on the left-hand side, we see that F' sends the blowup square for i to a cartesian
square if it sends the blowup square for ¢ to a cartesian square, and also conversely
since C is stable. Since the same applies with s instead of i, the claim follows. [

Construction 2.3 (Cubes and total cofibers). For a finite set I, we denote by
! the poset of subsets of I. We let Cube C Cat. be the subcategory whose
objects are the cubes (1 and whose morphisms are the colimit-preserving functors.
A morphism of cubes is called strict if it sends non-initial objects to non-initial
objects; we denote by Cube® C Cube the wide subcategory of strict morphisms.
Thus:

Mapcupe (O0F, 07) ~ Map(I,007)  and Mapgpe (07, 07) >~ Map(I,07 — {@}).

The cartesian symmetric monoidal structure on Cat, restricts to a symmetric
monoidal structure on both Cube and Cube® (which is cartesian on Cube but not
on Cube®). Note that the 1-cube (! is a final object of Cube® and hence admits a
unique structure of commutative monoid in Cube®, whose multiplication is U.

Let C be an co-category. We denote by Cube(€) — Cube the cartesian fibration
classified by the functor

Cube® — Cato,, O+ Fun(O/°P, @),

and by Cube®(€) C Cube(C) the wide subcategory given by the preimage of
Cube’® C Cube. Thus:

e An object of Cube(C) is a pair (I, X) consisting of a finite set I and an
I-cube X : O1°P — €.

e A morphism (I, X) — (J,Y) in Cube(€) is a map of cubes a: Of — 07
together with a natural transformation X — «o*(Y). It is a morphism in
Cube®(@) if and only if « is strict.

If € admits finite colimits, then each functor a* admits a left adjoint ay, so that
the cartesian fibration Cube(€) — Cube is also cocartesian.

Suppose now that € has a symmetric monoidal structure. Then the above func-
tor Cube®” — Caty, is lax symmetric monoidal, so that Cube(€) — Cube is a
symmetric monoidal cartesian fibration: the tensor product (I, X) ® (J,Y) is the
I'uJ-cube KUL — X(K)®Y(L). If moreover € admits finite colimits that are
preserved by the tensor product in each variable, then each functor «y is symmet-
ric monoidal, so that Cube(€) — Cube is also a symmetric monoidal cocartesian
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fibration. Over Cube®, the total pushforward to the final object (! then gives a
symmetric monoidal functor

Cube®(€) — Fun(O"°P, @) ~ Fun(A', @),

(I,X)+— (@CQI}ICHIX(J) — X(@)) ,

where Fun(A!, €) is equipped with the Day convolution (also known as the pushout-
product). If € has a final object *, there is a further symmetric monoidal functor
cofib: Fun(Al, €) — €,. Hence, we obtain a symmetric monoidal functor

teofib: Cube®(€) — C,

sending a cube in C to its total cofiber.

Definition 2.4. Let S be a derived scheme and let X be a smooth S-scheme. A
relative strict normal crossings divisor 0X on X is the data of a finite set I and of
an I-cube

DI’OP — (Sms)/x, J — 8JX,

such that 0z X = X and:

(i) the cube is strongly cartesian in Schg (i.e., it is right Kan extended from
I,opy.
Dgtljp)’
(ii) for each subset J C I, the map 9;X — X in Smg is a closed immersion,
which is everywhere of codimension |J|.

We let Sm$*? denote the full subcategory of Cube®(Smg) spanned by the relative
strict normal crossings divisors (X, 0X).

By definition, a relative strict normal crossings divisor X on X is uniquely
determined by the smooth divisors 9; X — X with i € I, called the smooth compo-
nents of X . Note that the symmetric monoidal structure on Cube®(Smg) restricts
to Smi'qmd: if 0X has smooth components 9;X and dY has smooth components
0;Y, then the tensor product (X, 90X ) ® (Y,9Y) is given by the relative strict nor-
mal crossings divisor on the smooth S-scheme X xg Y with smooth components
0, X xgY and X xg0;Y. Given (X,0X) € Squ“Cd, we will also denote by 0X the
colimit of the punctured cube in P(Smg),x. As explained in Construction 2.3, we

then have symmetric monoidal functors

SmP — Fun(A!, P(Smg)) — P(Smg).,
(X,0X)— (0X — X) — X/0X.

Remark 2.5. If S is a classical scheme, one can show that the image of the presheaf
0X in Px(Smgs),x depends only on the underlying Cartier divisor »,_; 9;X on X,
i.e., it is independent of the choice of smooth components of that divisor (indeed,
such choices form a poset, and one can obtain a common refinement of any two
choices by taking finite coproduct decompositions, see [NS08, Proposition A.0.7]).
We do not expect this to remain true for derived schemes, which is why we take the
smooth components as part of the data of a relative strict normal crossings divisor.
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Remark 2.6 (Functoriality of quasi-smooth blowups). An excess intersection square
is a commutative square of derived schemes

v
i

75 X'

gJ{_J{f

Z s X,

where ¢ and i’ are quasi-smooth closed immersions, such that the underlying square
of topological spaces is cartesian and such that the induced map g*(N;) — Ny is sur-
jective [Kha21]. The blowup of quasi-smooth closed immersions is then functorial
with respect to excess intersection squares. In classical geometry, given i: Z — X
and f: X’ — X as above, one often speaks of the strict transform of X’ with respect
to the blowup of X at Z, which means the blowup of X’ at Z x x X’. In derived
geometry, however, there are usually many ways of forming an excess intersection
square, and it might not be the actual pullback Z x x X’ that is geometrically
relevant; for example, given quasi-smooth closed immersions Z < Y < X, the
relevant “strict transform” of Y is often the blowup of Y at Z and not at Z x x Y.
In some of the geometric arguments in Section 3, we will nevertheless use the term
“strict transform” in cases where the intended excess intersection square is clear
from the context. In fact, the geometric situations we will deal with are always
classical in the sense that the universal example lives over a classical stack, where
“strict transform” has its classical meaning.

If X is smooth over S and Z C X is a smooth closed subscheme, then Z is
Zariski-locally on X the zero locus of a map X — A™. We will refer to such a
map as coordinates along Z. If 0X is a relative strict normal crossings divisor on
X with smooth components (9;X);er, then for every J C I there are coordinates
along 05X in which the divisors 9; X with ¢ € J are the coordinate hyperplanes.

By a smooth center Z on (X,0X), we mean a closed immersion of I-cubes
(Z5); — (0;X) s in Smg such that, for each J C I, there are coordinates along Z;
in which the divisors 0; X with ¢ € J are some of the coordinate hyperplanes while
Z is the vanishing locus of some subset of the coordinates. We will also write Z
for the underlying smooth closed subscheme Zy5 < X. Given a smooth center Z
on (X,0X), each square

7y ‘—>8JX

|

J — X

is an excess intersection square, and we call the blowup of 9;X at Z; the strict
transform of 8;X . The strict transforms ;X of the components ;X together with
the exceptional divisor E then form a relative strict normal crossings divisor OXUE
on the blowup Blz X, with underlying finite set I L {e}. Moreover, the intersection
Nics 9;X is the strict transform 9;X of 8;X, and E N d;X is the exceptional
divisor of this blowup.

Let Z be a smooth center on (X,0X). Given a subset K C I, we say that Z is
contained in Ox X if Z; x — Zj for all J C I. If K is non-empty, we obtain a
morphism

(BlzX,0X UE) — (X,0X)
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in SmSS“Cd, whose underlying strict morphism of cubes O/P{¢} — 7 sends {i} to

{i} and {e} to K.

Proposition 2.7. Let X be a smooth S-scheme, 0X a relative strict normal cross-
ings divisor on X, and Z a smooth center on (X,0X) contained in Ox X for some
K # @. Then the square

OXUE —— BlzX

| |

0X — X

is cocartesian in Pspy(Smg). If moreover each closed immersion Z; — 0;X is
elementary, then the square is cocartesian in Pepy (Smg).

Proof. We consider the following commutative diagram in P(Smg):

ENdX —— 0X

| !

E— 5 XUFE — BlyX

| | |

A 0X X.

The upper square is a pushout square in P(Smg), and the lower horizontal rectangle
is a smooth blowup square. It remains to show that the left vertical rectangle is a
pushout in Py, (Smg). This rectangle is the colimit in P(Smg) of the squares

ENd; X — ;X

| l

ZJ _— 8JX,

where J ranges over the non-empty subsets of the underlying finite set of 9X. Each
of these squares is a smooth blowup square, which proves the claim. O

3. THOM SPACES

Let S be a derived scheme. For a smooth S-scheme X (or more generally an
arbitrary presheaf X on Smg) and a finite locally free sheaf & on X, we define the
Thom space of € by

Thx (&) =P(E® 0)/P(E) € P(Smg)..

Let Vect®!(S) be the co-category of finite locally free sheaves on S and epimor-
phisms (i.e., morphisms that are surjective on my). Recall that an epimorphism
& — T induces a linear embedding P(F) — P(€). Consequently, the Thom space
construction defines a functor

Vect®(S)°P — P(Smg),., &+ Thg(&) =P(E @ O)/P(E).

This functor does not have a lax symmetric monoidal structure, as there is no
natural map between the pointed presheaves

Ths(E®F) and Thg(E) A The(F).
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Our goal in this section is to construct a symmetric monoidal structure on the
composite functor

Vect® (S)° — P(Smg)s — Pepu(Smig)..

For a finite locally free sheaf & on S, we will regard P(€ & O) as an object of
SmP? with the smooth boundary divisor P(€). The Thom space Thg(&) is thus
the image of P(€ @ O) by the symmetric monoidal functor

Smyd - P(Smg)., (X,0X)— X/0X,

defined in Section 2.
Let now & = (&;)ics be a finite collection of finite locally free sheaves on S, and
let us contemplate the problem of relating [[,.; P(€; ® O) and P(P,; €; © O) in
sncd sncd

the oo-category Smg'““. To that end, we will construct an object B(€) € Sm3
and a zigzag

(3.1) [TecE @ 0) < Be)
iel

PP (e, &0 0),

such that both maps become isomorphisms in Pepy(Smg ).t

Let us first consider the special case when I = {1,2} and & = & = 0. On the
left-hand side of (3.1) we then have P* x P! with boundary divisor (oo x P)U (P! x
o0), and on the right-hand side we have P? with boundary divisor P! at infinity.
In this case, B(O, ) is the blowup of P! x P! at the point (0o, o), which can be
identified with the blowup of P? at the two points [1:0:0] and [0:1: 0], and the
boundary divisor dB(0, O) is the union of the three exceptional divisors.

We now explain the general construction. For a subset J C I, let

Z; =P (g, &) CP(Dyes € ®0).
Thus, Zg is the boundary divisor, the Z;’s are linear subspaces of Zg in a AT
configuration, and for J # @ we have Z; = (), ; Z;. For a subset K C I, let
Wi = [[P(&:) x [[ P& @ 0) c [[ P& @ 0).
i€K igK icl
Thus, (J;c; Wi is the boundary divisor and Wx = ;¢ Wi.

We first describe the scheme B(&) via its functor of points: a point of B(E) is a
family (Y)scr, where Y; C P(D,c; € @ O) is a linear subspace such that Z; is a
hyperplane in Y}, and such that if K C J then Yx D Y. In other words, a point
of B(&) is a family of factorizations

Dic;&i®0 >3, = Dig, &
such that the kernel £; of x; is invertible, and such that if J* C J then F;
is a quotient of F;,. This is in turn equivalent to a family of invertible quotients
01 Py EiDO — Ly such that if J* C J then the restriction of p; to B, ;, €;i®0
factors through ¢ ,.2 The epimorphism ¢y defines a point of P(P;c; €i®0), which

1For this construction, it would suffice to work with classical schemes, since the universal
example is classical.

2Factoring through an epimorphism is merely a property when S is a classical scheme, but
it should of course be understood as the data of compatible factorizations when S is a derived
scheme.
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can be thought of as the normal direction to Z; inside Y;. We thus have canonical
morphisms

T BE) =P (Pies i ®0O),

which exhibit B(€) as a closed subscheme of a product of 2!/l projective bundles
over S. Taking J = I yields a morphism

bp: B(E) > P (D & 0O),

sending the family (Y;)jcr to the point Y;. Taking J to be a singleton yields a
morphism
bu: B(E) — [[P(&: @ 0),
i€l
sending the family (Yy)cr to (Yi)ier-

Next, we want to show that both bp and by are sequences of smooth blowups. To
see this, we will need the following description of strict transforms when blowing up
zero loci of sections of vector bundles (the description of the blowup itself already
appears in [Ann22b, Theorem 122]):

Lemma 3.2 (Blowing up zero loci). Let X be a derived scheme, & a finite locally
free sheaf on X, and o: &€ — O a linear map. Then the blowup of X at the zero
locus of o classifies factorizations of o as

e5h o 5ho,
where L is invertible and ¢ s surjective. The exceptional divisor is then the zero

locus of 7. If moreover u: F — & is a universally injective morphism of finite locally
free sheaves, then the strict transform of the zero locus of o o i is the zero locus of

popu.

Proof. We use the description of the functor of points of the blowup from [KR19]:
Blz(,)X classifies pairs (7, f) consisting of a generalized Cartier divisor 7: £ — O
and an X-morphism f: Z(7) — Z(o) inducing an isomorphism of underlying clas-
sical schemes and such that the induced morphism of conormal sheaves &| Z(r) =
L]z(r) is surjective. We must show that this data is equivalent to that of a fac-
torization of o as above. On the one hand, such a factorization induces a map
f: Z(r) — Z(o0), which is an isomorphism on classical schemes by the surjectivity
¢, and the induced map of conormal sheaves is surjective since it is the restriction
of ¢. Conversely, let (7, f) be a pair as above. The map f induces an O-linear map

p: € = fb(0 = Oz0)) L5 fib(O = 04() = £

over O, whose restriction to Z(7) is the morphism of conormal sheaves induced by
f. It remains to observe that ¢ is surjective: it is surjective over the points of
Z(7) = Z(o) by assumption; over the complement, 7 is an isomorphism and o is
surjective, so that ¢ is also surjective.?

In the final statement, the assumption that p is universally injective guarantees
that Z(o) is a quasi-smooth closed subscheme of Z (o o 11), namely the zero locus of
the induced map &: coker u — O. It is then clear from the above description that
Z(@ o) is the blowup of Z(o o i) at the zero locus of . d

3This argument shows that, in the description of the blowup in [KR19, Remark 4.1.3(ii)], we

can replace “isomorphism of classical schemes” by “isomorphism of reduced schemes”.
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By definition, B(&) parametrizes I-cubes of invertible sheaves (£ ;) c; with a
surjective map from the I-cube (@, ;€ @ 0)jcr. We let B>, (€) be the functor
parametrizing the same data but with |J| > r. The morphism bp can then be
factored as

B(E) = BZ()(E) = BZI(E) — BZQ(S) — e = BZ\”(E) = P(@ie] & ® O) .

Proposition 3.3. For each 0 < r < [I| — 1, the map B>,(&) — B>,4+1(€) is a
blowup with center HIJ\:T Z;, where Z; is the strict transform of Z;. For J C I
with |J| = r, define
L>J = lim ,CJ/
IS

in the stable co-category of quasi-coherent sheaves on B>,41(E). Then L is an
invertible sheaf, locally isomorphic to Ly with i € I —J, and Z; is the zero
locus of the map

@ EZ D0 — L>]

ic€J
induced by the maps @y for J g J'.

Proof. Assuming the given description of Z; for |J| = r, Lemma 3.2 says that
blowing up Z; in B>,1(€) adds the data of a factorization

@8i®(’)ﬁ§£]—>ﬁ>].
ieJ
We therefore obtain exactly Bs,(€) by blowing up all Z;’s with |.J| = r, as claimed.

Consider the right Kan extension £ of the diagram of sheaves £ on B>,11(€)
from the poset of subsets J C I of size > r + 1 to the poset of all subsets of I, so
that £; = £~ when |J| = r. We will show more generally that, for any J C I
of size < r, L is an invertible sheaf such that the strict transform Z; is the zero
locus of the map

Peioo—L,.

ieJ
(This is in fact true for all J C I, but trivial if |J| > r +1.) We assume inductively
that B>,41(€) is a sequence of blowups as claimed, and that the strict transforms
of the Z;’s up to B>,42(&) have the above description.

For every J G I with |J| > r+1, let E; be the Cartier divisor on B>, 1(€) which
is the zero locus of £L; — L, i.e., the preimage of the exceptional divisor over
the strict transform Z; C B> 74+1(€). Let U; C B>, 41(€) be the open complement
of Ui¢J E;. Note that E; N Ey = & whenever J and J’ are not contained in
one another, since then the strict transforms of Z; and Z; became disjoint in the
blowup B>y, (€). It follows that B>, 1(€) is covered by any |I| —r of the open
subsets U;. For any J C I, we deduce by descending induction on |J| that the open
subsets Ur = (), Ui with |[J U R| > r + 1 form an open covering of B>, 1(€).

For J C I with [J| > r+1,let O(—=E;) =L, ®L} and let 0;: O(—E;) — O be
the canonical map, whose zero locus is E;. Taking the determinant of the cartesian
cube defining £~ 5, we find

0(-En) =~ @ LGV andhence Q) O(=Eyp) =Ly 0L
JcJ JCT AT
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Under this isomorphism, the map £; — £ jy(4) corresponds to the tensor product
of the maps o with ¢ ¢ J'. In other words, the zero locus of £; — £y is
the union of the divisors E; with J C J' and i ¢ J'. Hence, for any R C I, the
map £; — L yugr is an isomorphism over Ug. Passing to the right Kan extension,
this implies that the map L 7 — L Jur is an isomorphism over Ug for all subsets
J, R C I: this follows from the fact that the functor

{(J'|JcJ and |J|>r+1} = {J |JURC J and |J'| > r+1},
J —JUR

is coinitial, since it is left adjoint to the inclusion. Since the Ug’s with |JUR| > r+1
form an open covering of B>,1(€), we see that Ly is locally isomorphic to the
invertible sheaves £ jg.

Fix J C I of size < r and let R C I be such that |J U R| =7+ 1. It remains to
show that Z; N U is the zero locus of D, cs&i®0 — LJ over Ug, as these Ur’s

cover B>,11(€). Since LJ ~ [ jur over Ug, this is the same as the zero locus of

@EZ@O% @ Ei@OW—UR)LJUB
ieJ i€ JUR

By the description of strict transforms from Lemma 3.2 and the induction hypoth-
esis, this locus is exactly the strict transform of Z; in the blowup of B>, 2(&) at
7 Jur- To conclude, we observe that the other exceptional divisors of the blowup
B>,11(€) = B>p12(€), L., the divisors Eg with |[S| =r+1 and S # JUR, do
not intersect Z; N Ug. If J ¢ S, then J U S has size > r + 2 and hence the strict
transforms of Z; and Zg in B>,42(€) are disjoint. If J C S but S # J U R, then
R ¢ S and hence Es N Ugr = @ by definition of Ug. O

In order to see that by is analogously a sequence of blowups at the strict trans-
forms of the subschemes Wik, we need a dual description of B(&). Let BY(&) be
the functor parametrizing families of invertible quotients €; & O — L, for i € I, to-
gether with a compatible family of universally injective maps ¢ x: Mg — @, x £
for all non-empty subsets K C I, where My is an invertible sheaf. By a “com-
patible family” we mean that for any non-empty K’ C K, the composition of 9
with the projection €0, £i = D, Li factors through v, and moreover that
0 — EBiE[ L; factors through 17; in other words, the maps 1, form a morphism
of punctured I-cubes under O. Let further BY (&) be the functor parametrizing
such families with |K| > r. We then have a sequence of forgetful maps

BY (&) =[P e 0).
iel

BY(&) =BLo(E) =BLy(E) = — IB3\>/|1\—1(5)

Proposition 3.4. For each 1 < r < |I|, the map BY,_,(€) = BY,.(€) is a blowup
with center H|K\:r Wi, where Wi is the strict transform of Wx . For K C I with

|K| =r, define
. K_{o, ifK =1,
oK =

colimK;K, Mk, otherwise,

in the stable co-category of quasi-coherent sheaves on BY (€). Then Ms g is an
invertible sheaf, locally isomorphic to Mgy with i € I — K, and Wi is the zero
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locus of the map

M>K — @ L;

icK

induced by the maps Y for K G K'.
Proof. The proof is similar to that of Proposition 3.3: the colimit defining M-
(and more generally the left Kan extension of M to a punctured I-cube under O) is
locally trivial, and blowing up the zero locus of My g — @, L4 in BY,(€) adds
the data of a factorization

M>K — Mg g @ ,Ci,
ieK
leading to BY, _,(€). O
Lemma 3.5 (Stable duality for punctured cubes). Let I be a finite set, let P be

the poset such that P> = (AY), and let € be a stable co-category. Then there is a
canonical isomorphism

Fun(P, €) = Fun(P°P, @),
F lim F
> (p = colim (q)) ,
with inverse
Fun(P°P, €) = Fun(P, @),
Gw— (p»—> lim G(q)) .

qe(Pp/)OP

Proof. Let Catsl be the symmetric monoidal co-category of small stable oo-
categories, whose unit is the oo-category Sphi™ of finite spectra. Let K be a finite oo-
category, all of whose mapping anima are also finite (e.g., a finite poset). Then the
stable oo-category Fun(K, Sp™™) is dualizable in Cat®® with dual Fun(K, Sp'™)oP =
Fun(K°P, Spi) (see for example [HSS17, Section 4.3]); the coevaluation is given by
coev: Sp™ — Fun(K°P, Sp™) @ Fun(K, Sp™) ~ Fun(K°P x K, Sp™),
1= XMapg(—, —).
Consider the symmetric pairing
A: Fun(K, Sp™) ® Fun(K, Sp™) £ Fun(K, Sp™) colim, gpfin.
By duality, it induces an exact functor
D = (id ® A) o (coev @ id) : Fun(K, Sp™) — Fun(K°P, Spfi*),

which is explicitly given by the formula

D(F)(z) = colim Map (z,y) ® F(y) = gg}ig:} F(y).
Here, the second equality is obtained by decomposing the colimit over K, along
the cocartesian fibration K, — K with fibers Map  (x, —).

Let us further assume that (Fun(k, Sp™), colim) is a Frobenius algebra in Catst
i.e., that the above pairing A is non-degenerate. Then D is an isomorphism satisfying
D = DV. For a morphism f between dualizable objects in Cat®! , the dual morphism
fV is left adjoint to f°P, hence is equal to (f°P)~! when f is an isomorphism.
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We therefore have D=1 = D°P. Tensoring D with any € € Cats!, we obtain an
isomorphism

De: Fun(K, C) = Fun(K°P,C)
such that Dg' = DE,. Thus, for F' € Fun(K,€) and G € Fun(K°P, €), we have
the desired formulas

De(F)(z) = gg}i{g} F(y),

—1 .
De (G)(x) ye(lfgf/)op G(y).

It remains to show that (Fun(P,Sp™),colim) is a Frobenius algebra in Catst .
Passage to opposite categories is a symmetric monoidal automorphism of Catst,
sending the pair (Fun(P,Sp™),colim) to the pair (Fun(P°,Sp"™),lim). But the
latter is a Frobenius algebra by [Aok23, Example 1.10], since P°P is the face poset
of a simplex. O

Proposition 3.6. There is a canonical isomorphism B(E)~BY () over [],.,; P(&:®
0). In particular, both maps

[TeE @0) &2 BE) 2P (@& ®0)
iel
are sequences of smooth blowups, as described in Propositions 3.3 and 3.4

Proof. Given a point (£, ¢s)s of B(E), we set

MK = lim LJ
@#AICK
for K non-empty, where the limit is computed in the stable co-category of quasi-
coherent sheaves. The sheaf Mg is then locally isomorphic to £; with i € K.
Indeed, using the notation from Proposition 3.3, we have M; = L4, and we can
reduce to the case K = I using the forgetful map B(E) — B(E|x). Moreover,
we have a compatible family of maps ¥ x: Mg — @,k L£i, which are universally
injective (since they locally identify My with some £;). This defines a map B(€) —
BY(€&).
Conversely, given a point (Mg, ¥k )k of BY(E), we set Lz = O and
Ly = colim M
T oAk

for J non-empty, where the colimit is computed in the stable co-category of quasi-
coherent sheaves. Since (Mg )k is a diagram under O, we obtain a factorization

EBieJ(gi & O) — GaieJ Li

7} |

B, 800 -0 £

Using Proposition 3.4 and the forgetful map BY (&) — BY(€|;), we see as above
that £ is locally isomorphic to £; with ¢ € J, so that the right vertical map and
hence ¢ are surjective. This defines a map BY (&) — B(&).

The fact that these constructions are inverse to one another follows from
Lemma 3.5. ]
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We now define a relative strict normal crossings divisor B(€) on B(&) as follows.
For any J g I, let E; C B(&) be the zero locus of £L; — L~ ;. Dually, for any
non-empty K C I, let E}, C BY(&) be the zero locus of M~ g — Mg. Under the
isomorphism B(&) ~ BY(€) of Proposition 3.6, we have E; = E)_;. We then let
OB(&) consist of the 21| — 1 smooth components E, or equivalently of the 21| — 1
smooth components E);. The morphisms bp and by are then morphisms in SmfgnCd,
and it follows from repeated applications of Proposition 2.7 that they both induce
isomorphisms in Pep,y,(Smg), after collapsing the boundary divisors (in fact, they
both induce pushout squares in Pgp,,(Smg) prior to quotienting). This completes
the construction of the zigzag (3.1). In particular, the pointed presheaves

A\ Ths(&;) and Ths (e, &)

i€l
become isomorphic in Pepy (Smg)..

Corollary 3.7. Let € be a finite locally free sheaf on S. Then Thg(&) is invertible
in the symmetric monoidal co-category Sppi (Pzar,ebu(Sms)y).

Proof. The assignment S +— Spp1 (Pzar ebu(Smg).) is a Zariski sheaf of symmet-
ric monoidal oco-categories. Since the functor Pic: CAlg(Cato,) — Sps( preserves
limits, the assertion that Thg(€) is invertible is Zariski-local on S. We may thus
assume that &€ = O™. In this case, the above construction gives a zigzag of isomor-
phisms between Thg(O™) and Thg(0)®" = (P1)®" which is invertible. O

The construction & — B(€) is evidently functorial in the family & € Vect®?i(S)!
as well as in the base scheme S. We now examine its functoriality in the indexing
set I. For a morphism of finite sets a: I — J, let us consider more generally

B(&,a) = [[ B(Ela-1(;)) € SmF.
jed
The points of B(E, a) are thus families of invertible quotients ¢4: P;c4 €SO —
L4 with A C a™!(j) and j € J, such that if A’ C A then the restriction of ¢ to
the domain of ¢4/ factors through ¢ 4/. Consider a morphism
I "5 K

oL b
J<TL

from « to 3 in the twisted arrow category Tw(Fin). For every ! € L and B C 371(l),
we then have v~ 1(B) C a™1(4(j)). We therefore have a well-defined morphism in

sncd,
Smg“:

(38)  B(E,a) > B(16&,8), ((Pa)aca—1();e; = ((Or1m)Bcs—1) e -
The span (3.1) is a special case of this functoriality, applied to the span in Tw(Fin)
(I=1)« (I—=x%)— (x—x*).

Since brr and bp are Lep,y-equivalences, it follows from 2-out-of-3 that all maps (3.8)
are Lepy-equivalences. In particular, for any iterated decomposition I = Iy —
- — I, = * of the finite set I, we have a refinement of (3.1) to a diagram of
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Lebu-equivalences Tw(A™) — Smand. For example, for I % J — % we get the
diagram
(3.9)
HjeJ (Ela—1(5) B(ag€)
HiEI P(S’l & O) jEJIP< i€a=1(j) & @ O P(@iel &i @ O)

We now explain how to equip the functor
Thg: Vect® (S)°P — Pepu(Smg).

with a symmetric monoidal structure, which is moreover natural in S.* Both S —
Vect®(S)°P and S — Pepu(Smy). are functors from Sch®P to CAlg(Cato,). We let
Vect®PhoP:® and Py, (Sm)® denote the total spaces of the corresponding cocartesian
fibrations over Sch®? x Fin,. Our goal is thus to construct a functor

(3.10) Th: VectoP® 5 Py (Sm)®

over Sch°P x Fin,, whose value on a triple (S, I1, (€;)icr) is (S, I+, (Ths(&;))icr)-

To give an idea of what is involved, let us consider the desired effect of the
functor (3.10) on morphisms. A morphism from (S, I, (€;)icr) to (T, J+, (Fj)jer)
in Vect®P°P:@ consists of

f * &
S&T, IS T, (@(y(i)=j (&) < Srj)jeJ.

We assign to it the J-indexed family of morphism A, _; f*(Ths(&:)) = Thr(F;),
given by precomposing Th(y;): Thr (D, )=, f*(€:)) = Thr(F;) with f* of the
span of Lepy-equivalences

A\ Ths(&) < B((€)ag=;)/0B — Ths (B, &) -
a(i)=j

To explain the construction of (3.10) in full, we need a brief categorical digression.

Given an oo-category € with two classes of morphisms £ and R closed under
composition, we denote by A(E, L, R) the simplicial anima whose n-simplices are
diagrams Tw(A™) — & sending (A™)°P to £ and A" to R (when the classes £
and R are stable under base change along one another, the usual complete Segal
anima of spans Span(&, £, R) is the subobject of A(€, L, R) consisting of cartesian
diagrams). We denote by N: Cato, < Fun(A°P, Ani) the fully faithful functor
given by N(C) = A(C,iso,all), which identifies co-categories with complete Segal
anima.

Let now p: & — € be a cocartesian fibration. If p¥: €Y — C°P is the cartesian
fibration classifying the same functor € — Cat., as p, there is by [BGN18, Theorem
1.4] a canonical isomorphism

A(&Y, cart, vert) = Span (&Y, cart, vert) ~ N(¢&),

4For our applications in this paper, we only need the functor Thg on the maximal subgroupoid
Vect(S) C Vect®Pi(S), but this does not simplify the construction.
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where “cart” and “vert” denote the orthogonal classes of cartesian and vertical
morphisms, such that the following diagram commutes:

A(&Y, cart, vert) = N(€)
I

l

A(EY, all, vert) —2 5 A(€°P, all, iso) = N(C).
Our strategy is now to define a morphism of simplicial anima
(3.11) N(Vect®PioP:®) 5 A((Sm*°®)V all, vert)
over N(Sch°P x Fin,) such that the composite
N(Vect®PoP@) 5 A((Sm™H®)V all, vert) — A((Pepu(Sm)®)Y, all, vert)

lands in the subobject A((Pepy(Sm)®)Y, cart, vert) ~ N(Pep,(Sm)®). Since this
isomorphism commutes with the maps to N(Sch°? x Fin,) and the functor N is
fully faithful, this yields the desired functor (3.10).

The construction of (3.11) is straightforward using the already established func-
toriality of the construction B. To keep the notation reasonable, we only spell out
the map (3.11) on 2-simplices, but the general case is similar and the simplicial
structure will be apparent. A 2-simplex of N(Vect®P°P:®) consists of

N . #j
sdriv, n%u 5K, (@a(i>=j F1(&i) « 5‘?)]@,

(@5(a‘>:k 9" (%5) b 9k)

The corresponding 2-simplex Tw(A2) — (Sm*"°®)V s as follows:

keK '

(P(&: ® 0))ier 55— B(f"Ela-1(j)))jes —— B(G""El(Boa)—1 (k) ek

Joon |

(P(F; © 0))jes ——— B Flp-1(0)))ker

b
J/wobrp

(P(Gr @ O0))rek,

where the three columns lie in the fibers over (S, 1), (T, J4), and (U, K ), respec-
tively. The fiber of this diagram over k € K is the diagram (3.9) for the family of
sheaves (¢* f*€;)ic(goa)-1 (k) and the decomposition (8o o)~ (k) — 87 (k) — {k}.
The fact that the maps (3.8) are Lep,-equivalences implies that the horizontal maps
become cartesian in (Pepy (Sm)®)Y. This yields the desired morphism (3.11), hence
the desired functor (3.10).

4. PROJECTIVE BUNDLE HOMOTOPY INVARIANCE
Let S be a derived scheme. We shall write
MSs = Spp1 (Pzar,ebu(Sms, Sp))
and refer to objects of MSg as motivic spectra over S. We shall also write

M g‘n = SpIP’l (TZar,ebu(SmS)*)
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for the unstable version of MSg, so that MSg = Sp(MSg"). There are symmetric
monoidal left adjoint functors

(7 oo

)+ E]F’l un »ee
T(Sms) — ?(Sms)* MSS MSs.

=)
P

As is customary, we will often omit the functors g9 and X33 (—)4 from the notation,
identifying objects in P(Smg). and in P(Smg) with their images in MS¢" or in MSg.
The symmetric monoidal co-category MS§" was denoted by Spp: (Stg°) in [AI23].
We will show below that MSg is equivalent to the full subcategory of fundamental
objects in MSY" (Corollary 4.13), which was denoted by Spp: (St in loc. cit.,
but this is not at all obvious from the definitions.

Of course, we do not claim that MSg is “the” oo-category of motivic spectra,
which we expect to be a further localization thereof (enforcing in particular Nis-
nevich descent, and hence smooth blowup excision by Proposition 2.2). Rather,
MSg is the minimal construction to which all the results of this paper apply. Note
that the full subcategory of either MSg or MSE" consisting of Al-invariant Nis-
nevich sheaves is the Morel-Voevodsky stable A'-homotopy oco-category over S
(since smooth blowup excision holds in the latter [MV99, Section 3, Remark 2.30]).
We will occasionally denote by Ly: the localization onto this full subcategory.

We note the following facts (and analogous ones for MSg"):

e The presheaf of co-categories S — MSg satisfies Zariski descent.

e If Sis qcgs and X € Smfsp, then Y27 X, € MSg is compact. In particular,
if S is qcgs, then the oo-category MSg is compactly generated.

e If S is the limit of a cofiltered diagram of derived schemes S, with affine
transition maps, then MSg = lim, MSg,_ .

Theorem 4.1. Let & be a finite locally free sheaf on X € P(Smg) and let o: € —
Ox be a linear map.

(i) (Euler class of locally free sheaves) There is a canonical homotopy h(c) in
MSS" between

X, LHV(E)y cP(E®Ox), — Thx(€)

and the zero section.
(ii) (P-homotopy invariance) There is a canonical homotopy h(c) in (MSg),x
between
X% V(&) CcP(&®Ox)
and the zero section.

Moreover, the homotopies h(c) and h(c) are functorial in (S, X, &, ), and they are
the identity when o = 0.

Proof. We may assume X = S, as the general case then follows formally from the

functoriality in (S, €, o). The matrix

ide 0
e01(0) = (106 ido) € Aut(€ @ 0)

induces an automorphism e of P(€ @ O) sending the zero section to that induced
by o. Moreover, e fixes P(£) and hence induces an automorphism e of the Thom
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space Thg(&). To prove (i) (resp. (ii)), it will therefore suffice to show that e (resp.
e) is homotopic to the identity in MSg" (resp. in (MSg)/g).
To prove that € is homotopic to the identity, we choose a factorization
E5HF50
of o (to get a functorial construction we can take for example ¥ = &, ¢ = id, and
T = o, but it will be useful to distinguish between € and J in the notation). We will

construct more precisely a homotopy in Spp(Pebu(Smg).), where T'= Thg(E @ F)
(this is sufficient by Corollary 3.7). Consider the span of Lep,-equivalences

Ths(&) A Thg(F) < B/dB — Ths(E @ F),

where B = B(&, F) is the blowup of P(E® F @ 0) at P(E) UP(F), or equivalently of
P(EDO) x P(F@ O) at P(€) x P(F). The matrix

ide O 0
631(0’) = 0 idg 0 € Aut(e OF D O)
g 0 ido

induces an automorphism e’ of P(€ & F @ O), fixing P(€ & F) and thereby inducing
an automorphism & of Thg(€ @ F). It also induces an automorphism e” of the
blowup B, since it fixes the center P(&) U P(F), which preserves the boundary 9B
and hence descends to an automorphism &’ of the quotient B/9B. We then have
a commutative diagram of pointed presheaves

Ths(€) A Thg(F) «—— B/dB — Thg(E @ T)

é/\idl é"l lé’

Ths(€) A Thg(F) «— B/OB —— Ths(€ ® F).

Since the horizontal maps are Lepy-equivalences, it suffices to show that & becomes
homotopic to the identity in Spp(Pebu(Smg).). In Aut(€ @ F @ O) we have the
commutator relation
e31(0) = [e32(7), e21()]-

Since any lower unitriangular matrix fixes P(€ @ F) and hence induces an auto-
morphism of Thg(& & F), we deduce that & is a commutator in the monoid of
endomorphisms of Thg(& @ F). However, the object Thg(€ @ F) is invertible in
the symmetric monoidal co-category Spp(Pebu(Sms).), so its monoid of endomor-
phisms has a canonical structure of E,,-monoid. The above commutator relation
therefore induces a canonical identification of & with the identity.

We now show that e itself is stably homotopic over S to the identity, in fact that
it becomes so after a single suspension in Spy(Pebu(Smg).). Since e restricts to the
identity on P(&), it induces an automorphism of cofiber sequences

P(& ® 0), — Thg(&) —— S(P(&)4)

el él lid
P(& ® 0); — Thg(&) —— B(P(E)4).
Applying the cofiber functor to the endomorphism (&,id) of §, we obtain the en-

domorphism ¥(ey) of L(P(€ @ O)4). We will show that the homotopy between
€ and the identity in Spy(Pebu(Smg).) constructed above can be promoted to a
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homotopy in the slice category over X(IP(€)4). This will in particular give a ho-
motopy between the endomorphism (€,id) of § and the identity in the slice of the
arrow category over the arrow * — 3(S). Taking the cofiber, we will thus obtain
a homotopy over (S ) between (e ) and the identity.

Let us first explain the categorical aspects of the argument. Consider

Y = E(P(8)+) X Th5(8)71 S SPT((Pebu(SmS)*)v

so that we may view § as a morphism §: 1 — Y. The homotopy between & and
the identity comes from writing € as a commutator [a, b] of two automorphisms of
1. We will promote b to an automorphism over Y and show that € over Y can be
decomposed as follows:

/\

1 1 1 1 1
L O L
Y 4V —— Y Y ——,

where the first and third squares commute via the 1-module structure of § and the
lower cell commutes canonically. On the other hand, there is a commutative cube

Yol —9 ,yo1q

S

id®a

b®id
b®id Yl —|— Y®I1,

%@id /&éid

11 “ama 1®1
where the left and right faces are given by b over Y and the morphism between them
is multiplication by a. This cube provides an identification between the commutator
[a, b] and the identity in the slice category over Y. Thus, it will suffice to decompose
€ as above.
To that end let

B = BIP(S)P(E OF D O) and OB = Blp(g)ﬂp(g S¥) :‘F) UFE,

where E =P(€) x P(F@ O) is the exceptional divisor. By Proposition 2.7, we have
Lepu-equivalences

Ths(€) A Thg(F) < BJ/OB — B' /OB’ — Thg(€ & F).

The point is that the homotopy between € A idty, () and the identity was obtained
from a commutator of two automorphisms of Thg(€ @ F), but the morphism of
pointed presheaves § A idry ) does not descend to Thg(& @ F). It does however
descend to B’/0B’, while at the same time the two automorphisms of Thg (€ & F)
lift to B'/OB’.
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Indeed, there is a commutative square of pointed presheaves

Thg (&) A Thg(F) B/OB
S(P(€)+) A Ths(9) z B'/oB/,

which identifies 0 A id with §" in (Pepu(Sms)«)/sece),)aThs(7)- This square is the
cofiber of the following cube in P(Smg):

(B(E®O); x B(F)) U (PE)y x P(FDO)) ¢« OB

PE®O)y xP(FaO) l B
2| P(F) Up(e), xp(z) (P(E)+ x P(F D 0)) - oB'
P(Fa0) B

The bottom face of this cube is functorial with respect to lower unitriangular ma-
trices in Aut(€ @& F @ O), while the whole cube is functorial with respect to the
subgroup Hom(&, O) @ Hom(F, O). In particular, the matrices e31 (o) and ez (7) in-
duce automorphisms of the cube, and the matrix es; () induces an automorphism
of the bottom face. The given automorphism € A id of § A id is induced by the
matrix es1(o), which acts by the identity on the lower left edge of the cube. We
now claim that the commutator relation es; () = [es2(7), e21()] gives the desired
decomposition of € Aid. Indeed, the matrix es; (@) acts by the identity on the lower
left edge of the cube. Moreover, the automorphism of d A id induced by ez2(7) is

Ths(€) A The(F) 224 S(P(E),) A Thg(F)

idA f*l Jid/\ f

Ths(€) A Th(F) % S(P(E) 1) A Ths(F),

where f is given by the matrix es1(7) € Aut(F @ 0), so it is multiplication by an
automorphism of 1 in Spp(Pebu(Sms).), as desired. O

Remark 4.2. The main results of this paper only use the rank 1 case of Theo-
rem 4.1(ii), which is significantly easier to prove. Indeed, when £ is an invertible
sheaf on S, the cofiber sequence

Sy =P(L), — P(L & 0), — Thg(L)

is split by the structure map P(£ @ O); — Sy. This yields a canonical decomposi-
tion P(L @ Og)4 ~ 1@ Thg(L) in the stable oo-category P(Smg, Sp), under which
e = 1id @ € (since e commutes with both the inclusion S = P(£) — P(L & O) and
its retraction). Thus, e is homotopic to the identity if € is.

Definition 4.3 (P!-homotopy). Let C be an oco-category tensored over Smpr7 and
let f,g: X — Y be morphisms in €. A P'-homotopy between f and ¢ is a morphism
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h: P! ® X — Y making the following diagram commute:

* X —— X

wi] s

Corollary 4.4 (Pl-homotopy invariance). In Spp: (Pebu(Sms, Sp)) and hence in
MSg, P'-homotopic morphisms are homotopic.

Proof. This follows directly from Theorem 4.1(ii), which implies that the two maps
0,1: S — A! C P! are homotopic (noting that the proof does not use Zariski
descent in this case). O

Corollary 4.5 (Euler class of trivial bundles). Let € be a finite locally free sheaf on
X € P(Smg). If there exists an epimorphism & — O, then the pointed map X —
Thx (€) induced by the zero section becomes nullhomotopic in Sppr (Peny(Smg, Sp))
and hence in MSg.

Proof. We may assume € = O, since the given map for € factors through the one for
O. By Corollary 4.4, the zero section and the section at infinity S, — ]P’}‘_ become
homotopic in Spp1 (Pebu (Smg, Sp)), but the latter is nullhomotopic when composed
with the quotient map PL — P! /oo = Thg(0). O

Definition 4.6 (Weighted Al-homotopy). Let € be an oo-category tensored over
Smpr, and let f,g: X — Y be morphisms in €. A weighted A'-homotopy or A' /G, -
homotopy from f to g is a G,,-equivariant morphism h: A’ ® X — Y, where G,,
acts on A! with weight 1 and trivially on X and Y, making the following diagram
commute:

x@RQX —— X

S

Remark 4.7. For n € Z, let Al(n) denote the quotient A'/G,, where G, acts with
weight n. We can then define an A'(n)-homotopy in the obvious way. However,
the resulting homotopy relations fall in only two classes:

e If n = 0, two morphisms are A'(0)-homotopic if and only if they are Al-
homotopic.

e If n # 0, two morphisms are A'(n)-homotopic if and only if they are A!(1)-
homotopic (and they are then also Al-homotopic). Indeed, for any m € Z,
there is a map

Al(m) = Al(n), t "]
sending 0 to 0 and 1 to 1.

Corollary 4.8 (Weighted Al-homotopy invariance). In MSg, A'/G,,-homotopic
morphisms are homotopic.
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Proof. In Pz,,.(Smg), there is a map P! — A!/G,, sending 0 to 0 and 1 to 1
(classifying the effective Cartier divisor 0 € P!). The claim now follows from
Corollary 4.4. O

Proposition 4.9. Let & and F be finite locally free sheaves on X € P(Smg). Then

the triangle
PEaT) -

l \

— > PEBTF)
commutes up to homotopy in (MSS)IP(S)//X-
Proof. We define a P-homotopy
h: Ppegg)—pr) (T (1) @ 0) = P(EDT)

as follows. A point in the source is an invertible quotient ¢: € ® F — L such that
©|e is still surjective and a further invertible quotient ¢: F ® LY & O — M. We
send this to the quotient

R R AN N Ve

If we precompose h with the zero section
P(E€®TF) = P(F) = Vpeas) ) (F(=1)),

we get the lower composite in the given triangle. The diagonal map is obtained via
the other canonical section, which sends p: EBF — L to FRLY — (EaF)RLY 5
0. Note that this section agrees with the zero section when restricted to P(€). By
Theorem 4.1(ii), h provides the desired homotopy under P(€) and over X. O

Corollary 4.10. Let & and F be finite locally free sheaves on X € P(Smg), and
let o,7: F — & be linear maps. Then the linear embeddings P(E) — P(€ & F)
induced by o and T become homotopic in (MSs),x. In particular, any two linear
embeddings P™ — P™ become homotopic.

Proof. This follows from Proposition 4.9, since any linear map ¥ — & induces a
section of . O

Corollary 4.11. Let F be a finite locally free sheaf on X € P(Smg). Then the
embedding V(F) — P(FBO) becomes homotopic to the constant map V(F) — X RN
P(EF@ O) m (MSS)X//X

Proof. This is the special case of Proposition 4.9 with &€ = O. (]

Proposition 4.12 (Bass fundamental theorem). The canonical map
d: (P',1) = 2(G,,, 1)
in Pyzar(Smg)s admits a retraction in MSg.
Proof. The map 9 is the cofiber of (P! — {oc},1) vV (P! — {0},1) — (P!,1). By
symmetry, it suffices to show that the inclusion (A!,0) — (P!,0) is nullhomotopic.

Since MSg is stable, this inclusion decomposes as (A',0) — A} — PL — (P',0),
and the map A%} — (P',0) is nullhomotopic by Corollary 4.11. O
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Let V be tensored over Pz, (Smg).. Recall that an object E € V is fundamental
if the map

0®idg: (PL1)®E = (G, 1) E

admits a retraction [AI23, Definition 2.3.2]. We write V¢ C V for the full subcate-
gory spanned by the fundamental objects.

Corollary 4.13 (Bass delooping). Let V be presentably tensored over MS".
(i) The adjunction
5V 28p(V): Q

is a smashing localization, i.e., Q°° is fully faithful and Q2°°3>° is given by
tensoring with QX1 € MSY". Moreover, the essential image of Q% is
contained in V4.

(ii) Suppose that V @msuw MSP is compactly generated for every qcgs open
subscheme U C S. Then Q> induces an isomorphism Sp(V) ~ V. In
particular, V4 is stable and presentable.

Proof. The functor Q2 is a priori lax MS§'-linear und commutes with Xp1, hence
preserves fundamental objects. By Proposition 4.12, every object of Sp(V) is fun-
damental. Assertion (ii) now follows from [AI23, Theorem 2.4.5] when S is qcgs,
and by descent in general. In this case, it is clear that the localization is smashing
by definition of “fundamental”. In particular, (i) holds for V = MSY", hence for
arbitrary V by tensoring. O

Proposition 4.14 is an adaptation of a result by Panin and Smirnov [Pan03,
Lemma 3.8], which is crucial to proving the orientability of MGL in A'-homotopy
theory:

Proposition 4.14 (Euler class of O(1)). Let Y = Ppi(O(1) ® O), let so: P! — Y
be the zero section, and let i: P* < Y be the inclusion of the fiber at oo € P*. Let
q: Yy — Thpi (O(1)) be the quotient map. In MSg, we have the following relation:

qoso~—goi: Py — Thpi (O(1)).

Proof. Let p: Y — P! and r: P! — S be the structure maps, let so: P! < Y be
the section at infinity (whose cofiber is ¢), and let b: Y — P? be a map exhibiting
Y as the blowup of P? in one point, with exceptional divisor so(P'). Consider the
map

y=id—spop: Yy = Y,.
Then yo sy ~ 0. By elementary blowup excision, y descends to a map ¥: Pi — Y.

By Corollary 4.10, any two linear embeddings of P! in P? are homotopic, so that
boi~bosy. Composing with g, we get y 04 ~ y 0 5o,. Now:

4080 = qo(80—S00) = —qOYOSee = —qoYoi = —qo(i—sgOpoi) =~ —qoi+qosyoooor.

To conclude, we show that ¢ o sg o co is nullhomotopic. Since 0,00: S — }P’}|r are
homotopic by Corollary 4.4, we have sg o000 >~ 100 =~ 5000 =~ 5, 0 00. Since
q 0 Soo =~ 0, the claim is proved. ]
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5. GRASSMANNIANS AND THE STACK OF VECTOR BUNDLES

Given finite locally free sheaves € and &, we denote by V(&, F) the vector bundle
parametrizing linear maps & — F, and by St(&, F) the open subscheme parametriz-
ing surjections & —» F. When F = 0", this is the usual Stiefel variety St (€).

Proposition 5.1 (Infinite excision). Let & and F be finite locally free sheaves on
X € P(Smg) such that there exists an epimorphism x: €™ — F for some m > 0.
Then the open embedding of ind-X -schemes

St(EX,F) = V(EX,F)
becomes an isomorphism in MSg.

Proof. We may assume rkF > 1, as the assertion is trivial over the summand of X
where J has rank 0. We consider the compactification V(¥ F) C P(€F @ F¥ @ ).
Let Z;, C P(E¥ @ FY @ O) be the closure of the complement of St(&F, F) in V(EF, F)
and let 0Z;, = Z,, NP(E* ® FV). We then have for every k > 0 a Zariski pushout
square

St(ex, ) V(X F)

P(EF @ FY @ 0) — Z), —%s P(EF @ FV @ O) — 0Z.

By Zariski descent and stability, it therefore suffices to prove that the sequence of
open embeddings 7;, induces an isomorphism in the colimit as k — co. To do so we
will construct a diagonal map in the square

PEFQFY @ O) - Z), —=2 5 PEF™ @ FV ©O) — Zitm
zk\[ /’/{’i/'”'/) \[i,ﬁm
PEF @ FY @ 0) — 02, —% PEF+™ @ FY & 0) — 0Z5 1
and homotopies making both triangles commute, such that the composite homotopy
is the identity.® Let
fe:PEF@FY @ 0) - PEMF™ 2TV ©0)
be the closed immersion induced by the epimorphism
(e a0 5 (EFeFY)e(FeF) a0 L (FeFY)e080 5 (EFeFY)50.
We define a P-homotopy
hi: Prergrvao) (0(—1) @ 0) = P(EM™ @ F @ 0)

as follows. A point in the left-hand side is a pair of invertible quotients ¢: ¥ ®
FYPO—» Landy: LY ® O — M. We send this point to the invertible quotient

"o o EFeF o0 L (Em o) ol T 0a L veide oo r

(here we used that rkF > 1, so that the evaluation map F ® F¥ — O is surjec-
tive). Considering the canonical section and the zero section of the vector bundle

51f S is qcgs (which does not restrict the generality), we do not actually need this last condition,
since MSg admits a conservative filtered-colimit-preserving functor to a 1-category. However,
our construction does satisfy this condition and shows that the sequence of morphisms i is an
isomorphism of ind-objects in any context with P-homotopy invariance.
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V(0(-1)) over P(E¥ @ FY @ O) and applying Theorem 4.1(ii), we see that hj defines
a homotopy between fi and the standard embedding ej. It remains to prove the
following three statements:

(i) The restriction of fj, to P(E¥ @ FY @ O) — 07, lands in P(EF" @ FY ¢ 0) —

Zk+m.

(ii) The restriction of hy, to P(E¥ @ F¥ @ O) — Z, lands in P(EF™ @ FV @ O) —
Ziosm-

(iii) The restriction of hy to P(E* @ FY @ 0) — 0Z}, lands in P(EF ™M@ FV ) —
aZker'

The complement of Z, classifies invertible quotients p: E¥ @ F¥ @& O — £ such that
the induced map ¢”: €F — F ® L is surjective, and the complement of 07, is the
union of the latter with V(€ F), which is the locus where ¢|o is surjective (i.e.,
an isomorphism).

For a pair (¢, ) as above, the map hy (¢, ¢)" is the composite

b H id ~
empek X Faet L g (0 L) 28 s M L,

and the map fi(¢)® is the special case with 1 ® idg = ¢l +idg: O © L — L.
Since v and x: €™ — F are surjective, this composite is surjective if either ¢’
is surjective or if ¥|gv is surjective, which proves (i) and (ii). To prove (iii), it
remains to show that hj sends V(Ek, F) to the complement of 0Zky,,. Since the
loci where 9|¢v and ¢|o are surjective form an open covering of P(O(—1) & O),
and the case where v¥|gv is surjective is already established, we may assume that
Y|e is surjective. But when both ¢|o and ¥|o are surjective, the map hi(p,¥)|o
is surjective, i.e., hx (¢, 1) belongs to V(EF™ F). O

Lemma 5.2. Let X € P(Schg), let G be a group object in P(Schg),x containing
G, as a subgroup, and let € be a finite locally free representation of G over X such
that G,, acts with constant non-zero weight. Then the canonical map

Vx(&)/G — BG
is a weighted A'-homotopy equivalence. In particular, it becomes an isomorphism
i MSg.
Proof. If G,, acts on €& with weight n, then the map
AY/G,, x Vx(8)/G = Vx(8)/G, (t,v)—t"ly
is an A'/G,,-homotopy from the zero map to the identity. The last claim follows

from Corollary 4.8. O

Theorem 5.3 (Geometric model of the stack of vector bundles). Let € be a finite
locally free sheaf on S admitting an epimorphism € — O. Then, for every n > 0,
the canonical map

Gr,(£*°) — BGL,, = Vect,

becomes an isomorphism in MSg.
Proof. This map can be decomposed as
Stn(£%°)/GL,, = V(€*°,0")/GL,, — BGL,,.

The first map is the simplicial colimit of St,,(€°°) x GL; — V(€>,0") x GL;,
hence becomes an isomorphism in MSg by Proposition 5.1. The second map is the
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sequential colimit over k of the maps V(€*,0")/GL,, — BGL,,, hence becomes an
isomorphism in MSg by Lemma 5.2. (Il

6. ORIENTATIONS REVISITED

Let E be an object in MSE". Recall from [AI23, Section 3.1] that F is orientable
if the map

O(1))®idg: P'®@ E - Pic® F

admits a retraction, where P! and Pic are viewed as pointed objects. If E € MS¥"
is orientable, then it is fundamental [AI23, Lemma 3.1.7], hence belongs to the
full subcategory MSg of stable objects (Corollary 4.13(ii)). A choice of such a
retraction (in the homotopy category) is called an orientation of E, and we say
that F is oriented if an orientation of E is fixed. An orientation of E defines a
cohomology operation ¢;(£): L, EX+ — EX+ for every X € P(Smg) and every
L € Pic(X), called the first Chern class of L.

If E € MSY" is orientable and has an algebra structure (in the homotopy cate-
gory), then we can always choose an orientation as a right E-linear map. When we
say that an algebra object F is oriented, we will always assume that the orientation
is right E-linear. The first Chern class ¢;(£): E]gllEXJr — EX+ is then given by
left multiplication with a class ¢1(£) € E1(X).

Suppose that E € MS§" is oriented. Then E satisfies projective bundle formula
by [AI23, Lemma 3.3.5]: for a locally free sheaf € of rank  on X € P(Smg), we
have an isomorphism

r—1 r—1
> (o) @l EX & EFx G
=0 =0

By naturality of ¢1, we have a commutative square

EPx(E®0)y | pPx(&)4
ZCI((D(l))lTZ chl(o(l))i
Do S BY —— @i S B,

where the bottom horizontal map is the inclusion of the first » summands. This
induces an isomorphism

t(&): Loy BX+ & pThx(E)

between the cofiber of the lower map and the fiber of the upper map, called the
Thom isomorphism. When E is an algebra, t(€) is right EX+-linear and can be
identified with a class t(€) € E"(Thx(&)), called the Thom class of €.

The higher Chern classes ¢;(€): E]PffEXJr — EX+ for 0 < ¢ < r are then defined
by the formula

(6.1) HE) =D (1) e (0(1)" - eri(€),
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which is to be understood as an equality between maps EI;ITEX+ — EPES0)+ I
particular, if s a global section of &V, then the following diagram commutes:

norpXs U8, ()

(6.2) \ JH)%*
cr(€)

EX+.

Using the isomorphism Vect,, ~ Gr, in MSg proved in Theorem 5.3, we can
considerably simplify the proof of the main result of [AI23, Section 4]:

Theorem 6.3 (Oriented cohomology of the stack of vector bundles). Let E be an
oriented object in CAlg(hMSg). Then, for all X € P(Smg) and n > 0, there is an
isomorphism of bigraded rings

E**(X x Vect,) ~ E*(X)[[c1,- .., cnl],

where ¢; € E*(Vect,,) is the ith Chern class of the universal rank n locally free
sheaf.

Proof. By Theorem 5.3, this follows from the computation of the oriented cohomol-
ogy of Grassmannians as in [AI22, Corollary 4.6]; see also [AI23, Corollary 4.4.5].
This computation only uses Zariski descent, the projective bundle formula, and the
isomorphism Pic ~ P> which is actually a consequence of the first two as proved
in Theorem 5.3. |

Applying Theorem 6.3 with n = 1 and X = Pic yields in the usual way a formal
group law over the graded ring E*(S). This formal group law computes the first
Chern class of the tensor product of two invertible sheaves on any X € P(Smg)
whose image in MSg is compact (this ensures that Chern classes on X are nilpotent,
since Pic ~ colim,, P™).

Using weighted Al-invariance, we can further compute the oriented cohomology
of the stack B, of u,-torsors (i.e., the fppf-local delooping of ,):

Proposition 6.4 (Oriented cohomology of the stack of pu,-torsors). Let E € MSg
be oriented and let n > 1. Then there is a cofiber sequence of motivic spectra

_ el (LO®™
E[p:llEBG"'"" —)1( ) EBGm+ EB‘u"*a

where L is the universal invertible sheaf on BG,,, = Pic. Hence, if E € CAlg(hMSg)
is oriented with formal group law F, there is for any X € P(Smg) a long ezxact
sequence

o B0 T B (X)[[d] = E(X x Buy) — B (X)[[d]] = - -

Proof. Let P*(n) be the quotient P!/G,,, where G,, acts with weight n on P!. In
other words, P!(n) is the projective bundle Pgg, (£ @ O). Then P!(n) admits
an open cover by the weighted lines Al(+n), such that Al(n) N A'(—n) ~ Bu,.
Hence, we obtain a cofiber sequence

EP ()4 _y At () o EA (=4 _y EBang

Applying the projective bundle formula to E]Pl("”7 the weighted A'-invariance to
EA'(En)+ (Corollary 4.8), and the fact that O(1) restricts to O on Al(n) and £L&"
on A'(—n), we obtain the desired cofiber sequence. O
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Next we prove that an orientation is uniquely recovered from the Thom class of
the universal invertible sheaf. To that end, we introduce the auxiliary notion of
Thom orientation. Let £ be the universal invertible sheaf on Pic and ¢ the canonical
map

t: P = Th,(£L].) = Thpi(L).
Definition 6.5 (Thom orientation). We say that E € MSg" is Thom orientable if
the map
1 ®idg: P' ® E — Thpi(L) @ E
admits a retraction. A choice of such a retraction (in the homotopy category)

is called a Thom orientation of E. We say that E is Thom oriented if a Thom
orientation of F is fixed.

Remark 6.6. If E € MSY" is oriented, then the map Thp;.(£)® E — P! ® E adjoint
to the composite

SolE o St EPier X8, pThe(s)
is a Thom orientation of F.

Let s be the zero section of Vp;.(£). Consider the following diagram in P(Smg).:

S0 — 5 Pic, — Pic

-
S0 //’:
L// S0

Pl Thpic (L)

The left vertical map is canonically nullhomotopic in MSg by Corollary 4.5. There-
fore, we obtain a lift 59 in MSg as indicated.

Lemma 6.7. Let E be an object in MSg with a Thom orientation t. Then the
composite
Pic® E —% Thpi(L) @ E 5P @ E

is an orientation of E.

Proof. Consider the diagram

Pic® E —° Thpi(L)® E —-— P'® E

I

Pl @ E —% Thp: (0(1)) ® E,

where the vertical maps are induced by the map P! — Pic classifying O(1). The
goal is to show that the end-to-end composite is homotopic to the identity. By the
definition of Thom orientation, it suffices to show that the bottom horizontal map
—3p is homotopic to the map induced by ¢: P! — Thpi(O(1)). This follows from
Proposition 4.14. O

Let £ be an object in MS§" and F the internal hom object Hom(E, E). Then
we define Ori(E) to be the subset of F’ L(Pic) consisting of orientations of F, and we
define TOri(E) to be the subset of F!(Thp;.(£)) consisting of Thom orientations
of E.
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Proposition 6.8. A motivic spectrum E € MSg is orientable if and only if it is
Thom orientable. More precisely, there is a bijection

Ori(E) = TOri(E)

given by taking the Thom class of the universal invertible sheaf. Furthermore, if E
s an algebra in the homotopy category, then an orientation of E is E-linear if and
only if the corresponding Thom orientation is E-linear.

Proof. We show that the map Ori(E) — TOri(E) given by taking the Thom class
of the universal invertible sheaf £ is a bijection with inverse

—s4: TOri(E) — Ori(E),
which is well-defined by Lemma 6.7. Given an orientation ¢ = ¢1(£), we have
=5(t(£)) = —55(c1(0(1)) — e1(£)) = —c1(Opic) + c1(£L) = e1(L),

where the first equality holds by (6.1), the second by the naturality of ¢;, and
the third by definition of an orientation. It remains to show that —sj is injective,
and for this we may assume that F has an orientation ¢ € F' L(Pic). Then, by the
diagram (6.2), the injectivity of —sj is equivalent to the injectivity of left multi-
plication by ¢ on F*(Pic). By Theorem 5.3, we have F*(Pic) ~ F*(P>). By the
projective bundle formula, F*(P™) is a free right F*-module with basis 1,¢,...,c".
It then follows from the Milnor exact sequence that F*(Pic) ~ lim, F*(P"). By
[A123, Lemma 3.1.8], we further have ¢"*1 = 0 in F*(P"), from which we deduce

the desired injectivity. The final statement is obvious. O

Remark 6.9. In MS§", Thom orientability is a priori a weaker condition than ori-
entability, since there may be Thom orientable objects that are not fundamental.

Remark 6.10. One can consider a variant of Definition 6.5 with Thp (O(1)) instead
of Thpi.(£). Since P> ~ Pic, the proofs of Lemma 6.7 and Proposition 6.8 go
through for this definition and imply that it is in fact equivalent to Definition 6.5
for objects of MSg. However, we do not know if Thp=(O(1)) and Thp;i.(L) are
actually isomorphic in MSg.

7. ALGEBRAIC COBORDISM AND THE UNIVERSAL ORIENTATION
We consider the symmetric monoidal natural transformation

Th: Vect — MS"™: Sch®? — CAlg(Cato,)

constructed in Section 3. By Corollary 3.7, it lands in the presheaf of E..-groups
Pic(MS""), which is a Zariski sheaf. Hence, it factors through the Zariski-local
group completion of Vect, which coincides with the Zariski sheafification of con-
nective algebraic K-theory. We therefore obtain a symmetric monoidal natural
transformation

Th: K — MS": Sch°? — CAlg(Caty).

Using the general formalism of Thom spectra/relative colimits developed in [BH21,
Section 16], we obtain a symmetric monoidal functor

M: ':P(Sms)/K — MS‘§“,
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natural in S. As in loc. cit., we then define MGL = M(e), where e: Kyx—¢ — K is
the kernel of the rank map rk: K — Z. Explicitly, we have

MGL = colim Thx(¢),
(X,8)€Xrk=0

where K, .—9 — Smg is the cartesian fibration classified by K,x—g. Since e is an
Eoo-map, MGL is an E..-algebra. Moreover, MGL is stable under arbitrary base
change T — S, since K-theory is Zariski-locally left Kan extended from smooth
schemes [EHK 20, Example A.0.6]. The A'-localization of MGL is exactly Vo-
evodsky’s algebraic cobordism spectrum (using the description of the latter from
[BH21, Theorem 16.13]).

The periodic version is similarly defined by

PMGL = M(idk) = colim Thy (€),
(idk) Solim, x(§)

where X — Smg is the cartesian fibration classified by K. Then PMGL is an
E-algebra and is stable under arbitrary base change.
We will denote by MGL(n) the Thom spectrum of the map Vect,, — K, & —
& — O™, that is:
MGL(”) = E];lnThVectn (E'IL)v
where &,, € Vect,(Vect,,) is the universal locally free sheaf of rank n.

Proposition 7.1. The canonical map Vecty, = colim,, Vect,, = K,x—o induces an
isomorphism in MSg
colim MGL(n) ~ MGL.
n

Proof. The canonical map f: Vect,, — Kik—o is acyclic in the co-topos of Zariski
sheaves on Smg [EHK'20, Lemma 2.1.1], which means that its pushout along
itself is an isomorphism. Since the Thom spectrum functor M induces a colimit-
preserving functor

M: ipzar(sms)/K — MS;“,

cf. [BH21, Proposition 16.9(1)], we obtain a pushout square
M(eo f) —— M(e)

| |

M(e) —— M(e)

in MSS". In the stabilization MSg, this square becomes a pullback square, which
proves the claim. (I

Remark 7.2. Similarly, we have an isomorphism PMGL =~ colim,, ¥5," Thyec(€) in
MSg, where & € Vect(Vect) is the universal finite locally free sheaf.

The canonical map MGL(1) — MGL is clearly a Thom orientation of MGL,
which in turn gives a canonical orientation of MGL in MSg by Proposition 6.8. We
now prove the universality of MGL as an oriented ring spectrum.

Lemma 7.3 (Multiplicativity of Thom classes). Let E be an oriented object in
CAlg(hMSg). Let &, F be finite locally free sheaves on X, Y € P(Smg), respectively.
Then the Thom class t(€ B F) is identified with the external product of the Thom
classes t(E) x t(F) under the canonical isomorphism

E*(Thxy (6 BF)) ~ E*(Thx (&) A Thy (F)).

Licensed to Princeton Univ. Prepared on Wed Aug 6 09:49:03 EDT 2025 for download from IP 128.112.200.49.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



276 TONI ANNALA, MARC HOYOIS, AND RYOMEI IWASA

Proof. We may assume that & and F are the universal sheaves on Vect,, and Vect,,
respectively. Let s be the zero section of V(EH F) ~ V(&) x V(F). Consider the

diagram
E* (ThVectm xVect,, (8 B St)) .
t(EEHCF)/N) <
E*(Vect,, x Vect,,) Jz E*(Vect,, x Vecty,)
HE)xt(T) = —

E*(Thyeet,, (€) A Thyect, (F)).
The right triangle commutes, since the maps
P(E @ O) x P(F & 0) &L B(ri e, miF) B P(EBF) @ 0)

inducing the vertical isomorphism are both isomorphisms over the open V(&) xV(F).
The boundary of the diagram commutes since

(=)™ "s*#H(EBF)) = cman(EBTF) = (&) X cn(F) = (=1)"T"s*(¢(€) x t(F)),

where the first and third equalities hold by (6.2) and the second by the Whitney
sum formula [AI23, Lemma 4.4.3]. Furthermore, the map s* is injective since

E*(Vect,, x Vect,) ~ E*(S)[[c1(77E),...,cm (&), c1(m3F), ..., en(m3F)]]

by Theorem 6.3. Therefore, the left triangle commutes as desired. O

Proposition 7.4. Let E be an oriented object in CAlg(hMSg). Then there is a
unique isomorphism

E**(Vects) ~ E**(MGL)
lifting the Thom isomorphisms E**(Vect,) ~ E**(MGL(n)) for all n > 0.

Proof. By Proposition 7.1, we have MGL = colim,, MGL(n). We apply Lemma 7.3
to the pair of the universal locally free sheaf &, on Vect,, and the sheaf O on S.
Then it follows that the diagram

E**(Vectn41) TN)> E**(MGL(n + 1))
n+1

| |

E**(Vect,,) TN)> E**(MGL(n))
commutes, where the left vertical map is induced by the map Vect,, — Vect, 1
classifying &€,, @ O, and is surjective by Theorem 6.3. By taking limits and using
the Milnor exact sequence, we obtain the desired isomorphism. O

Theorem 7.5 (Universality of MGL). MGL is the initial oriented object in
CAlg(hMSg), i.e., for every oriented object E in CAlg(hMSg), there is a unique
orientation-preserving morphism MGL — E in CAlg(hMSg).

Proof. Let E be an oriented object in CAlg(hMSg). Let t: MGL — E be the
morphism in MSg corresponding to 1 € E%(Vecty,) ~ EY(MGL), where the iso-
morphism is that of Proposition 7.4. Then t obviously preserves orientations. Let
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t, denote the restriction of ¢ to MGL(n). Then the diagram

MGL(n) ® MGL(m) =& E® E

! |

MGL(n +m) —" 5

commutes by Lemma 7.3. Also, ¢ preserves units by construction. Hence, ¢ is a
morphism in CAlg(hMSg).

It remains to show the uniqueness. Suppose that we are given another morphism
t': MGL — E in CAlg(hMSg), which preserves orientations. Since E°(MGL) =
lim,, E°(MGL(n)), it suffices to show that the restriction of ¢ to MGL(n), which
we denote by t,, agrees with ¢,, for each n > 1. This is clear for n = 1, because
both ¢; and t] are given by the Thom class of the universal invertible sheaf. Since
t and ¢’ are morphisms of commutative algebras, t, and ¢, agree with each other
when restricted to MGL(1)®". However, it follows from Theorem 6.3 that the map

E°(MCL(n)) — E°(MGL(1)®™)
is injective, and thus ¢, = t/,. This completes the proof. O

Remark 7.6. Slightly more generally, the above argument shows that MGL is initial
among oriented associative algebras in hMSg whose orientation class is central
(equivalently, whose Thom isomorphisms are bimodule maps). However, MGL is
not initial among oriented associative algebras: this would imply that orientations
are equivalent to MGL-module structures, but the free oriented motivic spectrum
on the unit, colim, MGL(1)®", is not an MGL-module. In fact, an MGL-module
is precisely an oriented spectrum whose Thom isomorphisms are compatible with
direct sums.

Remark 7.7. By Theorem 5.3, the map Gr,, — Vecty, becomes an isomorphism in
MSg. But this does not imply that it induces an isomorphism of Thom spectra, i.e.,
MGL is a colimit of Thom spectra over Grassmannians as in A'-homotopy theory.
We suspect that this is nevertheless the case. Denoting by MGr the latter colimit,
we note that the map ¢: MGr — MGL is an isomorphism from the perspective
of any oriented object in CAlg(hMSg). If we could promote ¢ to a morphism
of commutative algebras in hMSg, then MGr would be oriented by Remark 6.10
and we would deduce that ¢ is an isomorphism. It seems possible to construct
such a monoid structure by imitating [PPRO8, Section 2.1] and using the results of
Section 3.

We say that E € CAlg(hMSg) is periodic if a unit 8 € E~1(1), called the Bott
element, is given. Note that PMGL is periodic with the Bott element given by the
canonical map P* = Th,(O0) — Thp;c(€1).

Corollary 7.8 (Universality of PMGL). PMGL is the initial periodic oriented ob-
ject in CAlg(hMSg), i.e., for every periodic oriented object E in CAlg(hMSg), there
is a unique morphism PMGL — E in CAlg(hMSg) that preserves the orientation
and the Bott element.

Proof. This follows immediately from Theorem 7.5. (]

For later purposes, we record the computation of the oriented homology of MGL.
This is a standard computation once we know that MGL ® (Gr,, 1)+ is a finite free
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MGL-module (see for example [NS@09, Proposition 6.2] for the analogue in Al-
homotopy theory).

Proposition 7.9. Let E be an oriented object in CAlg(hMSg).

(i) There is an isomorphism of E..-algebras

E**(VeCtoo) = E**[ﬁmﬁh .- ]/(ﬁo - 1)7
where the ring structure on the left-hand side comes from the algebra struc-
ture of 333 (Vectoo )+ ~ 338 (Krk—0)+ and B; € E;(Pic) is the predual basis
to ' € E*(Pic).
(ii) There is an isomorphism of E..-algebras

E**(MGL) ~ E**[bo,bl, .. ]/(bo — 1),

where b; is the image of B; under the Thom isomorphism E;(MGL) ~
E;(Vects,). Moreover, if cg and cyar, are the images in (E @ MGL)!(Pic
of the orientations of E and MGL, we have

— E i+1
CMGL — biclE .
>0

Proof. (i) By [AI23, Lemma 4.4.4], the Grassmannian formula holds for all MGL-
modules M in MSg: the map

S (@) @M arGrns

e

is an isomorphism, where o = (ayq,...,ay) runs over all n-tuples of non-negative
integers with ). o; < k—n and we write ||af = ), ioy; and ¢ =[], ¢;"*. It follows
that MGL ® (Gry )+ is a finite free MGL-module. Hence, for a commutative
MGL-algebra FE in hMSg, the map

BE** (Grmk) — E** (Grn,k)v

is an isomorphism of F,,-modules for finite k£ and thus for £ = oo too. Then
it follows from Theorem 5.3 that E**(Vect,) is the dual of E..(Vect,). Since
E**(Vect,) = (E**(Pic)(@”)zn, we have F..(Vect,) = Sym" E,.(Pic). Moreover,
the direct sum pairing Vect,, x Vect,, — Vecty, 4, induces the canonical map
Sym™ ® Sym™ — Sym™*™ in homology. The map E.. — FE..(Pic) induced by the
base point of Pic is multiplication by Sy, and hence so is the map E..(Vect,) —
E..(Vecty41) induced by € — £ @ 0. Thus, under the identification

i>0 i>1
given by By — 1, the map E,.(Vect,) = E..(Vect,41) corresponds to the inclusion

Sym=" — Sym=""!. In the colimit, we obtain the claimed isomorphism of E,.,-

algebras
E..(Vecty) = colim E,.(Vect,) ~ F..[f1, B2, .. .].

(ii) Since we have Thom isomorphisms #(€,): MVectn+ = NMGL() for all
MGL-modules M in MSg, we get an isomorphism of MGL-modules

MGL ® MGL(n) ~ MGL ® Vect,, 4,
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hence an isomorphism of E,,-modules E**(MGL(n)) ~ F..(Vect,). It follows from
Lemma 7.3 that this isomorphism is natural in n, and that we obtain an isomor-
phism of rings E.«(MGL) ~ E,.(Vecty) in the colimit. By definition of 3;, the last
formula is equivalent to the following statement: the map E.(Pic) — F,_;(MGL)
induced by the universal orientation c: Pic — Xp1 MGL sends ;11 to b;. By def-
inition, ¢ factors through —5§g: Pic — Yp1t MGL(1), and so we must show that the
induced map E,(Pic) — E,_;(MGL(1)) composed with the Thom isomorphism
E*_l(MGL(l)) ~ FE,_1(Pic) sends B;+1 to ;. Dualizing, this is equivalent to
—550t(&1): E*~'(Pic) — E*(Pic) being multiplication by ¢, which is a special case
of (6.2). O

Corollary 7.10. Let E be an oriented object in CAlg(hMSg). Then there is an
isomorphism of E-algebras

E®MGL = E[by, b, ...] = P sa*™E,

where m ranges over the monomials in the variables b; and deg(b;) = i.

Proof. Proposition 7.9(ii) gives a map of E-algebras from the right-hand side to
the left-hand side. It is an isomorphism since Proposition 7.9 holds not just over S
but also over any smooth S-scheme. (|

8. ALGEBRAIC CONNER—FLOYD ISOMORPHISM

We shall prove the Conner-Floyd isomorphism for algebraic K-theory by fol-
lowing the argument of Spitzweck and @Dstveer in the Al-invariant setting [SO09)],
i.e., by comparing universal properties of cohomology theories defined on compact
motivic spectra. A key input is the isomorphism Xg9(Gry,)y ~ X3¢ (Vect, )4 of
Theorem 5.3. We first introduce some terminology for such cohomology theories:

Definition 8.1. Let S be a qcgs derived scheme.

e A cohomology theory on MS is a homological functor
E°: MSg°P — Ab,

i.e., a functor that preserves finite products and sends cofiber sequences to
exact sequences. We then write B9 = E° 0¥, BP9 = B0 %27 P and we
denote by

EP7: MSP — Pro(Ab)

the extension of EP? that preserves cofiltered limits (which is again a ho-
mological functor). For a presheaf X € P(Smg) we write EP4 (X) instead
of (X ).

e A ring cohomology theory will mean a commutative monoid in cohomology
theories, with respect to the Day convolution in Fun(MSg°P, Ab).

o A periodic cohomology theory is a ring cohomology theory E° with a unit
B e E(1).

e An oriented cohomology theory is a ring cohomology theory E° with an
element c € El(Pic) = lim,, E*(P"), whose restriction to E'(P') ~ E*(1)®
E°(1) is (0,1).
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o A G,,-preoriented cohomology theory is a ring cohomology theory E° with
an element u € E°(Pic) such that ulpt = 1 and ®*(u) = ujug, where
u; = 7 (u) € E°(Picx Pic). We then define the Bott element 8 € E=1(1) =
EO(IP’l) to be the element 1 — ulp1, and we say that (EY, u) is G,,-oriented
if B is unit.®
Remark 8.2. Let X € MSg and let EY be a cohomology theory on MS¢. Then

there is a canonical isomorphism between the limit of the pro-group Epra (X) and
the group of natural transformations X°(—) — EP9(—) on MS%.

Let (E°, ¢) be an oriented cohomology theory on MS%. For an arbitrary presheaf
X € P(Smg) and an invertible sheaf £ € Pic(X), we define the first Chern class
(L) € EI(X) to be the pullback of ¢ along the map X — Pic classifying £. The
theory E** then satisfies the projective bundle formula: for any X € P(Smg) and
any locally free sheaf € of rank n over X, the map of pro-groups

ne1 n—1
P B2 (X) = E*(BE)), (ag,...,an-1) = Y c1(Opey(1))p*(ar)
izo i=0

is an isomorphism. To see this, consider the full subcategory of P(Sms),x where
the projective bundle formula holds for the pullback of €. This subcategory contains
representable presheaves by the proof of [AI23, Lemma 3.3.5]. It also contains the
initial object, is closed under pushouts by the 5-lemma, and is closed under filtered
colimits by definition of E**. Tt therefore contains X itself. Consequently, we also
have the Thom isomorphism

E**(Thx(E)) ~ E*—Zn,*—n(X)

and higher Chern classes ¢;(&) € Ei(X).

One can further compute the ring structure on the cohomology of a finite product
of projective spaces as in [AI23, Lemma 3.1.8], using that for a scheme X € Smfsp
and quasi-compact open subschemes Uy, ..., U, C X we have a refined cup product

E™(X/U) ® - ® E*(X/Uy,) — E™(X/(UyU---UUy)).

Together with the isomorphism 7P ~ ¥piPic, of Theorem 5.3, we obtain an
isomorphism of pro-rings

E**(Pic™) = E™*[[z1, ..., 2],

where z; = 7f(c). Since (Pic,®) is an E.-group, the power series ®*(c) €
E*[[z1,x2]] is a commutative formal group law over E*, homogeneous of coho-
mological degree 1. By construction, this formal group law computes ¢;(£1 ® Lo)
in terms of ¢1(£1) and ¢1(£2) for any X € P(Smg) and any £, L2 € Pic(X) (and
first Chern classes are nilpotent when X29 X is compact). Using the formal group

law, one may prove the Whitney sum formula for the Chern classes in E* exactly
as in [AI23, Lemma 4.4.3].
Lemma 8.3 explains the relationship between orientations and G,,-orientations:

6The element u is automatically a unit since Pic is a group. It should be understood as defining
a preorientation of the group scheme Gy, over the ring F in the sense of Lurie [Lur09, Definition
3.2].
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Lemma 8.3 (Orientations vs. G,,-orientations). Let E° be a ring cohomology the-
ory on MSg. Then the assignment

UH(B,C), le—uhpl, czﬁil(l_u)a

gives a bijection between G,,-orientations of E° and pairs (8,¢) consisting of a unit
B € E71(1) and an orientation c € E'(Pic) satisfying

®*(¢c) = x1 + 22 — fr129,
where x; = 7} (c) € EY(Pic x Pic). The inverse is given by (8,c¢) — 1 — Bc.

Proof. Tt is clear that the given formulas are inverse to each other. Suppose v is a
G,-orientation with associated unit 3, and let ¢ = 8~1(1—u) € E*(Pic). Then the
formula for ®*(u) yields the desired formula for ®*(c). Moreover, since u|p; = 1,
we have c[p1 = 711 — ulp) = 710, 8) = (0, 1), so that c is an orientation.

Conversely, let (8,c¢) be a pair as in the statement and let u = 1 — Sc. Then
upr=1—0-0=1and

@ (u)=1-=8-®%(c) =1—=58(x1 + 22 — Br122) = (1 — Ba1)(1 — Bas) = uyus,
so that u is a Gy,-preorientation. Moreover, 1 — u|pr = Se|pr = (0,5) and 3 is a

unit. O

Example 8.4. Let KGL € CAlg(MSg) be the motivic spectrum representing al-
gebraic K-theory. The class

u=[0(-1)] € limKo(P") = KGL°(Pic)

is a G,,-preorientation of KGL’(—): MSZ°” — Ab (as one sees using the Segre
embeddings). The induced element § = 1 — u[p € KGL™*(1) is the usual Bott
element, given by the structure sheaf of the point co € P!. Since 3 is a unit,
KGL"(-) is G,,-oriented.

Proposition 8.5 (Universality of MGL-cohomology). Let S be gegs derived scheme.
Then the ring cohomology theory

MGL’(—): MS%°P — Ab
is the initial object in the category of oriented cohomology theories on MS%.

Proof. The proof is a straightforward modification of the one of Theorem 7.5. The
point is that, if EY is an oriented cohomology theory on MSY, then E** has the
correct formula for Vect,,:

E**(X x Vecty,) ~ E™*(X)[[c1, . .., cnl]-

This follows from Theorem 5.3 and the computation of the cohomology of Grass-
mannians using the projective bundle formula (see [AI22, Lemma 4.5]). Then the
multiplicativity of Thom classes in E** follows as in Lemma 7.3, and we get the
infinite Thom isomorphism

E**(Vects) ~ E**(MGL)
as in Proposition 7.4. The cohomology class 1 € E°(Vects) ~ E9(MGL) then

gives the desired unique morphism MGL® — E° of oriented cohomology theories
as in Theorem 7.5. ([l
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Corollary 8.6 (Universality of PMGL-cohomology). Let S be qcgs derived scheme.
Then the ring cohomology theory
PMGL’(-): MS5°P — Ab
is the initial object in the category of periodic oriented cohomology theories on MS§.

Proof. This follows immediately from Proposition 8.5. |

Lemma 8.7. Let C be a symmetric monoidal cocomplete stable co-category whose
tensor product preserves colimits in each variable and whose unit is compact. Let
E € CAlg(hC) be such that there is an isomorphism of E-modules

E@E:@E@La

with L, € Pic(C). Then the Amitsur complex of E defines a Pic(C)-graded Hopf
algebroid (Ey, ELE) such that the functors

E.(—): € = Modp, ,
E*(—): €¥°P — Modpg,
factor through the category of (Ey, E,E)-comodules.

Proof. The assumption on F implies that, for any X € € and n > 1, the canonical
map

(E®™), ®@p, B, X — (B®™), X
is an isomorphism, and that when X is compact, the canonical map

(E®™), ®@p, B*X — (E®")*X

is an isomorphism. Let n: E ~ F® 1 — E ® E be the left unit. Taking X = F
itself and n < 3 yields the Hopf algebroid (Ey, E,E) with comultiplication

E.E (E®QE),E < E,E®gp, E.E.
The coaction on F, X is then given by the composite
EX ™ (E® E),X < E,E®g, E,X,
and the coaction on E*X for X compact is given by the composite
E'X ™ (E® E)*X <& E.E®p, E*X. O
By Corollary 7.10, we have an isomorphism of MGL-modules
MGL ® MGL ~ MGLIby, bs, . . . @ sdemMGL,

where m ranges over the monomials in the variables b; and deg(b;) = i. Lemma 8.7
therefore applies to MGL € CAlg(hMSg) and yields a Z-graded Hopf algebroid
(MGL,, MGL,MGL).” Note that if c and ¢’ are two orientations of E€CAlg(hMSs),
then there is a unique power series f(t) € t+t2E,[[t]] such that f(c) = ¢’ in E(Pic),
which defines a strict isomorphism between the associated formal group laws over

"This Hopf algebroid is a priori only T<1S-graded, but it turns out to be Z-graded as the swap

map on P! ® P! induces the identity on MGLa(—), by the naturality of the Thom isomorphism.
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FE,. The graded formal group law F' over MGL, and the strict isomorphism be-
tween the two formal group laws nj (F') and ng(F') over MGL,MGL then induce a
morphism of graded Hopf algebroids

(L,LB) — (MGL,, MGL,MGL),

where (L, LB) is the Hopf algebroid classifying the strict groupoid of formal group
laws and strict isomorphisms. Recall that LB is a polynomial ring

Llbo, b1,b2,...]/(bo — 1),

over which the power series Y, b;z*™! is the universal strict isomorphism [Rav86,
Proposition A2.1.15]. Proposition 7.9(ii) implies that the above morphism is a
cocartesian natural transformation of cosimplicial commutative rings, so that a
structure of (MGL,, MGL,.MGL)-comodule on an MGL,-module is equivalent to a
structure of (L, LB)-comodule on the underlying L-module.

Proposition 8.8. Let S be gcgs derived scheme. Then the ring cohomology theory
(MGL*(—) ®r, Z[BE])o: MSEP — Ab

is the initial object in the category of G, -oriented cohomology theories on MS%.

Proof. By Lemma 8.7, the functor MGL*(—) on compact spectra is valued in

(L, LB)-comodules. Since Z[3*!] is a flat (L, LB)-comodule by Landweber’s cri-

terion [Lurl0, Lecture 15, Example 12], the given functor is indeed a homological

functor. It then follows from Lemma 8.3 that it has the stated universal prop-
erty. O

Lemma 8.9. Let S be qcqs derived scheme. Then the ring cohomology theory

(Ep3Picy)?(—): MSE°? — Ab
is the initial object in the category of G, -preoriented cohomology theories on MS§.
Proof. This is clear by Remark 8.2. ]
Proposition 8.10 (Universality of KGL-cohomology). Let S be qcgs derived
scheme. Then the ring cohomology theory

KGL"(—): MSg5°? — Ab

is the initial object in the category of Gy, -oriented cohomology theories on MSY.

Proof. By [AI23, Theorem 5.3.3], there is an isomorphism of motivic Eo-ring spec-
tra

KGL ~ ¥3¢Picy [871],
where f =1 —[O(—1)]. This is the Bott element associated with the G,,-preorien-
tation on (X55Picy)"(—) given by the dual of the universal invertible sheaf, which
is a universal G,,-preorientation by Lemma 8.9. Hence, the cohomology theory
defined by ¥29Picy[87!] has the desired universal property. O

Theorem 8.11 (Algebraic Conner—Floyd isomorphism). Let X be a qcgs derived
scheme. Then there is an isomorphism of bigraded rings

MGL**(X) ®r, Z[8*!] ~ KGL*™(X).
Proof. Combine Propositions 8.8 and 8.10. (]
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Theorem 8.12 (Rational PMGL-cohomology). Let X be a gcgs derived scheme.
Then there is an isomorphism of bigraded rings

Q ® PMGL"(X) ~ Lo ® KGL™(X),
where Lg is shorthand for Q ® L.

Proof. Both cohomology theories Q @ PMGL*(—) and Lo @ KGL*(—) take values in
graded Lg[u®!]-algebras, where the degree —1 element u acts as the canonical unit
on Q® PMGL*(—) and as 8 on Lo @ KGL*(—). Let cq and cx be the orientations
of Q ® PMGL’(—) and KGL°(—), respectively. By abuse of notation, we will also
denote by ck the orientation 1 ® ck of Lo @ KGLY(—).

Since all formal group laws with coefficients in a ring containing the rationals are
equivalent [Haz78, Theorem 1.6.2], there exists a power series f(t) € ¢+ t*Lo[u][[t]]
such that the orientation f(cq) of Q ® PMGL®(—) satisfies the formal group law
x4y — By, and the orientation f~'(ck) of Lo ® KGL’(—) satisfies the universal
formal group law of Lg. Here, f~1(¢) denotes the compositional inverse of f(t).
By Corollary 8.6 and Proposition 8.10 and extension of scalars, there exist unique
morphisms of oriented cohomology theories

T: (Q@PMGLY cq) — (Lg ® KGL’, f~!(ck))
and

®: (Lo ® KGL, ck) — (Q @ PMGLY, f(cq)),
the latter of which is required to be Lg-linear. By the hypothesis on f~!(ck), ¥ is
also Lg-linear. As ® oV is orientation-preserving, it is the identity by the universal
property of PMGLY(—). As ¥ o & is orientation-preserving and Lg-linear, it is the
identity by the universal property of KGL%(—). |

Recall that the universal precobordism ring Q*(X) of a derived scheme X is
defined as the group completion of the monoid of equivalence classes [V — X] of
projective quasi-smooth derived schemes over X, modulo the relations

Wo = X]=[A = X] +[B = X] = [Panp(0(4) © 0)]

for every quasi-smooth projective W — P with fibers Wy and A + B over 0 and
oo respectively [AY23, Ann23]. Here, A + B denotes the sum of virtual effective
Cartier divisors.

Corollary 8.13. Let X be a Noetherian derived scheme of finite Krull dimen-
sion, and assume that X admits an ample line bundle.® Then there is a natural
isomorphism of rings

Qe PMEL(X) ~ Q& P Q" (X).

nez neZ
Proof. Combine Theorem 8.12 with [Ann22b, Theorem 236]. |

Remark 8.14. Periodization loses track of the grading, and therefore we do not
immediately obtain an isomorphism of graded rings. However, by constructing
enough transfers for MGL”, it would be possible to obtain a comparison map Q* —
MGL" of graded rings with integer coefficients [Ann22b, Theorem 192]. It is an
interesting question under which conditions this map, or rather its refinement Q2* —

8By employing a slightly more complicated construction of Q*, it is possible to weaken the
assumptions on X to merely admitting an ample family of line bundles, see [Ann22a].
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MGL*, where Q* is the derived algebraic cobordism [Ann21], is an isomorphism.
The only known instance seems to be Levine’s result [Lev09], which states that the
natural map Q*(X) — (LyyMGL)*(X) is an isomorphism for all schemes X that
are smooth and quasi-projective over a field of characteristic 0.

Remark 8.15 (Conner-Floyd isomorphism for Selmer K-theory). Let MS§ and
1\/ISif;"hyp be the full subcategories of MSg spanned by the étale sheaves and the
étale hypersheaves, respectively. The image of KGL in MS‘fgt then represents the
Zariski sheafification of Selmer K-theory K¢, see [AI23, Section 5.4]. If S is qcgs
of finite Krull dimension and of finite punctual étale cohomological dimension, then
MS?’]nle is compactly generated and the localization functor MSg — MS?J1le pre-
serves compact objects (combine [CM21, Corollary 3.29] and [Bac21, Lemma 2.16]).
In this case, K5 is also an étale hypersheaf on Smep [CM21, Corollary 7.15]. One
can easily see that the arguments in this section go through if we replace MSg
by any commutative MSg-algebra in PrY [Lur09, Notation 5.5.7.7]. Under this
finiteness assumption on .S, we therefore obtain an isomorphism of bigraded rings

MGLét,hyp**(S) L Z[ﬁil] ~ KSCI**(S).

9. SNAITH THEOREM FOR PERIODIC ALGEBRAIC COBORDISM

We prove the Snaith theorem for PMGL, which is a non-A'-localized refinement
of a theorem of Gepner—Snaith [GS09, Corollary 3.10]. Our proof is however quite
different from theirs? and uses instead the same strategy as the proof of the Conner—
Floyd isomorphism in Section 8.

For Definition 9.1, we recall that the map Vect,, — K,x—9 becomes an isomor-
phism in the oo-category of Zariski sheaves of spectra (see the proof of Proposi-
tion 7.1). In particular, 3¢ Vecto 4 has a canonical structure of E..-algebra in
MSg, whose multiplication we denote by ®.

Definition 9.1. Let S be a qcgs derived scheme. A t-preoriented cohomology theory
on MSY is a ring cohomology theory E? with an element u € EO(Vectoo) such that
ulpe = 1 and &*(u) = uiug, where u; = 7 (u) € E°(Vectos X Vects,). We then
define the Bott element f € E~1(1) = E°(P') to be the element 1 — ulp1, and we
say that EV is t-oriented if B is a unit.

Let E° be an oriented cohomology theory on MS¢. If &, is the universal rank
n locally free sheaf on Vect,, then the restriction of the Chern class ¢;(&,) €
Ei(Vecty,) to Vect,_; is the Chern class ¢;(€,_1). Thus, the sequence (ci(En))n>0
defines a canonical element

¢; € lim E*(Vect,,) = E*(Vects),
n
such that for any X € P(Smg) we have
E**(X x Vectog) ~ E**(X)[[c1, a5 - . . ]].
Lemma 9.2 is the analogue of Lemma 8.3 for ¢t-orientations:
9n fact, the argument in loc. cit. seems to contain a crucial mistake: the proof of [GS09,

Theorem 3.9] uses a universal property of localization of ring spectra in the homotopy category,
which is not valid.

Licensed to Princeton Univ. Prepared on Wed Aug 6 09:49:03 EDT 2025 for download from IP 128.112.200.49.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



286 TONI ANNALA, MARC HOYOIS, AND RYOMEI IWASA

Lemma 9.2 (Orientations vs. t-orientations). Let E° be a ring cohomology theory
on MS§. Then the assignment

’U,}—)(B,C), le_ulﬁ”l7 C:B_l(l_uh:’i(:)

gives a bijection between t-orientations u of E° and pairs (B3,c) consisting of a unit
B € E71(1) and an orientation c € E'(Pic). The inverse is given by the formula

u=> (=B)ci € E'(Vects).

i>0

Proof. Suppose u is a t-orientation with associated unit 3, and let ¢ = 371(1 —
ulpic) € E'(Pic). Since uly = 1, we have c|pr = 871 (1 —ulp1) = 5710, 8) = (0,1),
so that c is an orientation. Conversely, suppose that EY is periodic and oriented,
with Bott element 8 and orientation ¢, and let u = Y ,(—f8)%c;. Then it is clear
that u|p, = 1 and that 8 = 1 —u|p:. Furthermore, it follows from the Whitney sum
formula that @*(u) = ujusg, so that u is a t-orientation.

It remains to show that the two assignments are inverse to each other. It is
clear that the composite (8, ¢) — u +— (5, ¢) is the identity. Conversely, given a ¢-
orientation u, we have to prove the equality u = Y. (—f)‘c;. Since E%(Vecto) =
lim,, E°(Vect,,), it suffices to show that these two elements coincide in E°(Vect,,)
for every n. This is clear for n = 1. Note that the map

E*(Vect,,) — E*(Pic")

induced by the direct sum @: Pic" — Vect,, is injective. We now conclude by
observing that the two elements coincide in the right-hand side, by the case n =1,
the formula &*(u) = ujug, and the Whitney sum formula for Chern classes. g

Theorem 9.3 (Snaith theorem for PMGL). For any derived scheme S, there is a
canonical isomorphism
PMGL ~ ¥ Vectq +[871]

in CAlg(hMSg), where § =1 — [0(—1)].

Proof. Let u € (387 Vects,+)°(Vects) be the element induced by minus the uni-
versal K-theory element of rank 0, so that 3 = 1 — u|pi. Then B71(1 — ulp;.) is
an orientation of the periodic ring spectrum Z;?Vectoo7+[,6’_1]. By the universal
property of PMGL (Corollary 7.8), we obtain a canonical map

PMGL — S35 Vecto +[37)]

in CAlg(hMSg). To prove that it is an isomorphism, we may assume S qcgs. In
this case, u defines a t-preorientation of (X85 Vecto, 4+)°(—) with associated Bott
element 3, which by Remark 8.2 is the initial ¢-preorientation. By Corollary 8.6
and Lemma 9.2, both sides then have the same universal property as cohomology
theories on MS%, and it follows that the map is an isomorphism. O

Remark 9.4. Under the Snaith isomorphisms
PMGL ~ ¥ Vecto [871],
KGL ~ %55 Pic, 7]

of Theorem 9.3 and [AI23, Theorem 5.3.3], the orientation map PMGL — KGL in
CAlg(hMSg) provided by Corollary 7.8 is induced by the determinant det: Kyx—¢ —
Pic. This follows from the fact that $5% dety sends ulpic € (359 Vectos 4)°(Pic) to
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the class in (£55Pic;)?(Pic) represented by the dual of the universal invertible
sheaf.

Remark 9.5. Both PMGL and X3¢ Vects, 1 [37!] have canonical E-algebra struc-
tures, but they are not isomorphic as E.-algebras in general, since they are known
not to be isomorphic as Es-algebras after Betti realization [HY20, Theorem 1.4].
One might expect that they are at least isomorphic as E;-algebras, but this is not
known even after A'-localization.

Note that the determinant induces an E,,-map

Y Vectoo +[871] — KGL
(see Remark 9.4). At this point we do not know if there is also an E,,-map
PMGL — KGL,

although this is known in A!-homotopy theory using the formalism of framed cor-
respondences [HIN'24, Proposition 6.2].
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