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1. Introduction

In this article we construct algebraic cobordism as a non-A1-invariant cohomol-
ogy theory on derived schemes, and establish its basic expected properties: we show
that it is the universal oriented cohomology theory, that it is related to algebraic
K-theory via a Conner–Floyd isomorphism, and that its periodic version can be
obtained from the infinite Grassmannian by inverting the Bott element (Snaith the-
orem). These results refine the analogous theorems in A1-homotopy theory proven
in [PPR08], [SØ09], and [GS09], respectively. To establish our results, we study a
stable ∞-category of non-A1-invariant motivic spectra as in [AI23], which contains
the stable A1-homotopy category of Morel–Voevodsky as its full subcategory of A1-
invariant objects. We prove in particular that this category satisfies P1-homotopy
invariance and weighted A1-homotopy invariance, which are weak forms of A1-
homotopy invariance, allowing us to do “homotopy theory” in algebraic geometry
while keeping the affine line A1 non-contractible. For example, we prove that the
stack of vector bundles BGLn is equivalent to the infinite Grassmannian Grn in
this setting.
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244 TONI ANNALA, MARC HOYOIS, AND RYOMEI IWASA

The A1-homotopy theory of Morel–Voevodsky [MV99] has been highly successful
in the study of A1-invariant cohomology theories, playing an instrumental role in the
resolution of the Milnor [OVV07,Voe03] and the Bloch–Kato [Voe11] conjectures.
On the other hand, A1-homotopy theory is not useful for studying p-adic cohomol-
ogy theories like crystalline and prismatic cohomology [BMS19,BS22], since these
are usually not A1-invariant. This is unfortunate, because deeper understanding
of the p-torsion is often important for various applications: for instance, cohomo-
logical obstructions to the existence of resolution of singularities by blowups in
characteristic p, if they exist, are expected to be p-torsion due to the existence of
resolution by p-alterations [Sul04, Tem17]. Other important examples of non-A1-
invariant cohomology theories are the algebraic and hermitian K-theory of singular
schemes [CHW08,Sch17].

Here, we continue to develop the framework for non-A1-invariant motivic ho-
motopy theory introduced in [AI23], based on the idea of replacing A1-invariance
with (a non-oriented version of) the projective bundle formula. More precisely, for
a derived scheme S, we say that a Zariski sheaf on the ∞-category SmS of smooth
S-schemes satisfies elementary blowup excision if it carries the blowup square

Pn−1
X Bl{0}(An)X

{0}X An
X

to a cartesian square for every X ∈ SmS and n ≥ 1. Let PZar,ebu(SmS , Sp) denote
the ∞-category of Zariski sheaves of spectra on SmS satisfying elementary blowup
excision. Then, for the purposes of this paper, we define the ∞-category of motivic
spectra as the presentably symmetric monoidal ∞-category obtained from the latter
by ⊗-inverting the pointed projective line P1:

MSS = PZar,ebu(SmS , Sp)[(P1)−1] ∈ CAlg(PrL).

The ultimate goal of our framework is to provide efficient tools to study non-A1-
invariant cohomology theories and their cohomology operations. As most cohomol-
ogy theories in algebraic geometry, including all the ones mentioned above, satisfy
the projective bundle formula, this framework is widely applicable.

The main object of interest in this paper is algebraic cobordism. Our treatment
of it follows closely the now classical treatment in A1-homotopy theory [Voe96,
Voe98]. Namely, we define algebraic cobordism as the cohomology theory repre-
sented by a non-A1-invariant Thom spectrum MGL. For a finite locally free sheaf
E on S, we define the Thom space of E by

ThS(E) = P(E⊕ O)/P(E) ∈ P(SmS)∗.

An important technical point is that we are able to promote ThS(−) to a symmetric
monoidal functor

ThS : Vect(S) → PZar,ebu(SmS)∗,

which factors through the K-theory space K(S) after inverting P1 on the target.
Following [BH21, Section 16], we then define the algebraic cobordism spectrum MGL
to be the colimit of the Thom spectra of rank-zero K-theory classes over SmS , i.e.,

MGL = colim
X∈SmS
rk ξ=0

ThX(ξ) ∈ MSS .
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It is clear from this construction that MGL is canonically equipped with an E∞-
algebra structure. After imposing A1-invariance, our motivic spectrum MGL re-
duces to Voevodsky’s. In this sense, the latter theory should be regarded as the
homotopy cobordism theory, analogously to how algebraic K-theory reduces to ho-
motopy K-theory after A1-localization [Wei89,Cis13].

Beyond the construction, three main results on MGL are established. First of all,
we prove that MGL is the universal homotopy commutative oriented ring spectrum,
providing a non-A1-invariant refinement for the analogous claim in A1-homotopy
theory [PPR08].

Theorem 1.1 (Universality of MGL, Theorem 7.5). The algebraic cobordism spec-
trum MGL is the initial oriented object in CAlg(hMSS).

Secondly, we prove that the algebraic K-groups can formally be recovered from
the MGL-cohomology groups, by imposing the multiplicative formal group law for
Chern classes of line bundles. This is a non-A1-invariant refinement of [SØ09,
Theorem 1.2]. Morally, it should also be the “higher version” of the Conner–Floyd
theorem proved in [Ann23].

Theorem 1.2 (Conner–Floyd isomorphism, Theorem 8.11). For any qcqs derived
scheme X, there is an isomorphism of bigraded rings

MGL∗∗(X)⊗L Z[β±1] � K∗∗(X),

where L is the Lazard ring and Kp,q(X) = K2q−p(X).

The above result may be regarded as a sanity check for our construction, because
it establishes a precise relationship between MGL and K-theory, the latter of which
has a generally-accepted definition.

Let PMGL be the periodic algebraic cobordism spectrum, defined to be the colimit
of the Thom spectra of all K-theory classes over SmS . Our third main result
provides a concrete geometric model for PMGL as a motivic spectrum, refining the
A1-homotopical Snaith theorem proved in [GS09].

Theorem 1.3 (Snaith theorem for PMGL, Theorem 9.3). There is a canonical
isomorphism

PMGL � Σ∞
P1Vect∞,+[β

−1]

in CAlg(hMSS).

This result allows us to easily compute maps from PMGL to other motivic spec-
tra. An analogous result was proven in [AI23] for algebraic K-theory. The advantage
of the cobordism version is that algebraic cobordism has a much richer structure
than algebraic K-theory, owing to the fact that K-theory is confined to the first
chromatic level. Hence, algebraic cobordism should be more useful than K-theory
in studying, e.g., torsion in crystalline and syntomic cohomology and other infinite-
chromatic-height phenomena.

In order to obtain the aforementioned results, we significantly advance the foun-
dational understanding of non-A1-invariant motivic spectra. Our main insight is
that ⊗-inverting the pointed projective line P1 leads, in a non-trivial fashion, to
P1-homotopy invariance, and more generally to a twisted form thereof that we call
P-homotopy invariance.
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Theorem 1.4 (P-homotopy invariance, Theorem 4.1). Let E be a finite locally free
sheaf on X ∈ P(SmS) and σ : E → OX a linear map. Then there is a canonical
homotopy h(σ) in MSS between

X
σ−→ V(E) ⊂ P(E⊕ OX)

and the zero section. The homotopy h(σ) is functorial in (S,X,E, σ) and is the
identity if σ = 0.

Using P-homotopy invariance in place of A1-homotopy invariance, we are able
to prove several useful results for motivic spectra.

Theorem 1.5. The following results hold in MSS.

(i) (Bass fundamental theorem, Proposition 4.12) The canonical pointed map

P1 → ΣGm

admits a retraction.
(ii) (Euler class of O(1), Proposition 4.14) Let s, i : P1 ⇒ PP1(O(1)⊕ O) be the

zero section and the inclusion of the fiber at infinity, respectively. Then the
two composites

P1
+ PP1(O(1)⊕ O)+ PP1(O(1)⊕ O)/PP1(O(1)) = ThP1(O(1))

s

−i

are homotopic.
(iii) (Weighted A1-homotopy invariance, Corollary 4.8) Let A1/Gm be the quo-

tient stack with respect to a Gm-action of non-zero weight. Then the canon-
ical map

A1/Gm → BGm = Pic

is an equivalence.
(iv) (Infinite excision, Proposition 5.1) The open embedding

A∞ − 0 ↪→ A∞

is an equivalence.
(v) (Geometric model of the stack of vector bundles, Theorem 5.3) The canon-

ical map

Grn → Vectn

is an equivalence.

In fact, (iii) and (iv) hold more generally; see the mentioned references and
Lemma 5.2. The results listed in Theorem 1.5 are all either well-known or obvious
after A1-localization; (i), (iii), (iv) are obvious, (ii) is contained in [Pan03, proof of
Lemma 3.8], and (v) is [MV99, Section 4, Proposition 3.7]. Without A1-localization,
(v) was previously proved when restricted to oriented theories in [AI23, Theorem
4.4.6] by adapting an argument from [AI22]. The proof presented here is logically
independent from the previous one, more general, and simpler.

The stable ∞-category MSS is by definition the stabilization of

MSunS = PZar,ebu(SmS)∗[(P1)−1].

Combining the Bass fundamental theorem (i) with the stability theorem [AI23,
Theorem 2.4.5], we obtain the following version of Bass delooping.
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Theorem 1.6 (Bass delooping, Corollary 4.13). The functor

Ω∞ : MSS → MSunS

is fully faithful and its essential image consists exactly of the fundamental objects,
i.e., those E ∈ MSunS such that the canonical map P1 ⊗ E → ΣGm ⊗ E admits a
retraction.

Remark 1.7. Theorem 1.5 applies in particular to any spectrum-valued cohomol-
ogy theory satisfying the projective bundle formula (since this implies elementary
blowup excision [AI23, Lemma 3.3.5]), such as the syntomic cohomology of schemes
defined in [BL22]. This shows that the computation of the syntomic cohomology of
X × BGLn [BL22, Theorem 9.3.1] and of the classifying stack of a parabolic sub-
group [BL22, Corollary 9.2.10] are “formal” consequences of the projective bundle
formula [BL22, Theorem 9.1.1], and hence that the p-quasi-syntomicity assumption
in the statements of these results is not necessary.

Remark 1.8. The cohomology groups MGL∗∗(X) are expected to provide higher
algebraic cobordism groups, extending the non-A1-invariant algebraic cobordism
groups Ω∗(X) constructed in characteristic 0 in [Ann20] and over a general Noe-
therian base ring A in [AY23,Ann23,Ann21]. More precisely, for all quasi-projective
derived A-schemesX, we expect canonical isomorphisms Ωn(X) � MGL2n,n(X) for
all n ∈ Z. We prove this with rational coefficients (Corollary 8.13), but establishing
such a comparison with integer coefficients seems difficult, and is not pursued here.

Related work. Other constructions of motivic homotopy categories without A1-
invariance have been developed based on extensions of the category of schemes
itself: one by Kelly and Miyazaki using modulus pairs [KM21] and one by Binda,
Park, and Østvær using log schemes [BPØ23]. Our construction is in some sense
more naive, as it is simply a variant without A1-invariance of the P1-stable motivic
homotopy category of Morel and Voevodsky. Since any scheme may be viewed
as either a modulus pair or a log scheme, there are canonical functors from our
∞-category of motivic spectra to theirs.

Binda, Park, and Østvær also prove similar results to ours in the logarithmic
setting; they define in particular the logarithmic cobordism spectrum logMGL and
prove its universality. Although their definition looks slightly different than our
definition of MGL, the universal properties imply that logMGL is the image of
MGL.

Conventions and notation. We use the word “anima” for spaces/∞-groupoids
and we denote by Ani the ∞-category of anima. We write P(C) for the ∞-category
of presheaves of anima on C. If τ is a Grothendieck topology on C, Pτ (C) ⊂ P(C) is
the full subcategory of τ -sheaves. We write Sp for the ∞-category of spectra and
Sp(C) for the ∞-category of spectrum objects in C. If C admits filtered colimits,
we write Cω ⊂ C for the full subcategory of compact objects. We write hC for the
homotopy category of an ∞-category C.

For a presentably symmetric monoidal ∞-category V and an object X ∈ V,
we write SpX(V) = V[X−1] for the symmetric monoidal ∞-category of symmetric
X-spectra [AI23, Section 1] and Σ∞

X : V → SpX(V) for the canonical functor.
We use the following indexing conventions for cohomology theories represented

by P1-spectra. If X is pointed, we write Ẽn(X) = π0Map(Σ∞
P1X,Σn

P1E) and
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Ẽp,q(X) = (Σp−2qẼ)q(X). If X is unpointed, we write E∗(X) = Ẽ∗(X+) and

E∗∗(X) = Ẽ∗∗(X+).
A scheme is a derived scheme by default. Note that we often use hooked arrows

↪→ for immersions of derived schemes, even though these are not monomorphisms.
We write SchX for the ∞-category of X-schemes and SmX ⊂ SchX for the full
subcategory of smooth X-schemes. The superscript “fp” means “of finite presen-
tation”.

We write Vect(X) for the anima of finite locally free sheaves over a scheme
X, and Pic(X) = Vect1(X) for the subanima of invertible sheaves. For a sheaf
E ∈ Vect(X), we denote by V(E) = Spec(SymE) and P(E) = Proj(SymE) the
associated vector and projective bundles.

2. Smooth blowup excision

Let S be a derived scheme. We refer to [KR19] for the definition of the blowup
of a derived scheme at a quasi-smooth closed subscheme.

Definition 2.1. Let C be an ∞-category and F : Smop
S → C a C-valued presheaf.

(i) We say that F satisfies smooth blowup excision if F (∅) is a final object of
C and for every closed immersion i : Z ↪→ X in SmS , F sends the blowup
square

E BlZX

Z Xi

to a cartesian square.
(ii) A closed immersion i : Z ↪→ X is called elementary if, Zariski-locally on X,

it is the zero section of An
Z 
Y for some n ≥ 0 and some Y . We say that F

satisfies elementary blowup excision if (i) holds whenever i is elementary.

We denote by Psbu(SmS) ⊂ Pebu(SmS) the corresponding full subcategories of
P(SmS), and by Lsbu and Lebu the corresponding localization functors, which pre-
serve finite products.

Definition 2.1 of elementary blowup excision is slightly less elementary than
[AI23, Definition 3.1.1], but it is obviously equivalent for Zariski sheaves. Note
that if F : Smop

S → C satisfies elementary blowup excision, then F preserves finite
products. In particular, we have Pebu(SmS) ⊂ PΣ(SmS). For Nisnevich sheaves of
spectra, there is no difference between elementary and smooth blowup excision:

Proposition 2.2. Suppose that C is stable and that F : Smop
S → C satisfies Nis-

nevich descent and elementary blowup excision. Then F satisfies smooth blowup
excision.

Proof. Let i : Z ↪→ X be a closed immersion in SmS . Zariski-locally on X, there
exist cartesian squares

Z Z Z

X V An
Z ,

i t s

where the horizontal maps are étale and s is the zero section (the proof of [MV99,
Section 3, Lemma 2.28] works without change for derived schemes; alternatively,
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one can observe that the claim depends only on the underlying classical schemes,
by the topological invariance of the étale site). Let B → X be the blowup of X at
Z, E ⊂ B the exceptional divisor, U = X − Z and W = V − Z. We then have a
commutative diagram

E B ×X V W

E B U

Z V W

Z X U.

t

i

Since F satisfies Nisnevich descent, it takes the top and bottom faces on the right-
hand side to cartesian squares, hence also the middle face in the diagram. Hence,
on the left-hand side, we see that F sends the blowup square for i to a cartesian
square if it sends the blowup square for t to a cartesian square, and also conversely
since C is stable. Since the same applies with s instead of i, the claim follows. �

Construction 2.3 (Cubes and total cofibers). For a finite set I, we denote by
�I the poset of subsets of I. We let Cube ⊂ Cat∞ be the subcategory whose
objects are the cubes �I and whose morphisms are the colimit-preserving functors.
A morphism of cubes is called strict if it sends non-initial objects to non-initial
objects; we denote by Cubes ⊂ Cube the wide subcategory of strict morphisms.
Thus:

MapCube(�I ,�J) � Map(I,�J) and MapCubes(�I ,�J) � Map(I,�J − {∅}).
The cartesian symmetric monoidal structure on Cat∞ restricts to a symmetric
monoidal structure on both Cube and Cubes (which is cartesian on Cube but not
on Cubes). Note that the 1-cube �1 is a final object of Cubes and hence admits a
unique structure of commutative monoid in Cubes, whose multiplication is ∪.

Let C be an ∞-category. We denote by Cube(C) → Cube the cartesian fibration
classified by the functor

Cubeop → Cat∞, �I �→ Fun(�I,op,C),

and by Cubes(C) ⊂ Cube(C) the wide subcategory given by the preimage of
Cubes ⊂ Cube. Thus:

• An object of Cube(C) is a pair (I,X) consisting of a finite set I and an
I-cube X : �I,op → C.

• A morphism (I,X) → (J, Y ) in Cube(C) is a map of cubes α : �I → �J

together with a natural transformation X → α∗(Y ). It is a morphism in
Cubes(C) if and only if α is strict.

If C admits finite colimits, then each functor α∗ admits a left adjoint α!, so that
the cartesian fibration Cube(C) → Cube is also cocartesian.

Suppose now that C has a symmetric monoidal structure. Then the above func-
tor Cubeop → Cat∞ is lax symmetric monoidal, so that Cube(C) → Cube is a
symmetric monoidal cartesian fibration: the tensor product (I,X) ⊗ (J, Y ) is the
I 
 J-cube K 
 L �→ X(K) ⊗ Y (L). If moreover C admits finite colimits that are
preserved by the tensor product in each variable, then each functor α! is symmet-
ric monoidal, so that Cube(C) → Cube is also a symmetric monoidal cocartesian
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fibration. Over Cubes, the total pushforward to the final object �1 then gives a
symmetric monoidal functor

Cubes(C) → Fun(�1,op,C) � Fun(Δ1,C),

(I,X) �→
(
colim
∅ �=J⊂I

X(J) → X(∅)

)
,

where Fun(Δ1,C) is equipped with the Day convolution (also known as the pushout-
product). If C has a final object ∗, there is a further symmetric monoidal functor
cofib: Fun(Δ1,C) → C∗. Hence, we obtain a symmetric monoidal functor

tcofib: Cubes(C) → C∗

sending a cube in C to its total cofiber.

Definition 2.4. Let S be a derived scheme and let X be a smooth S-scheme. A
relative strict normal crossings divisor ∂X on X is the data of a finite set I and of
an I-cube

�I,op → (SmS)/X , J �→ ∂JX,

such that ∂∅X = X and:

(i) the cube is strongly cartesian in SchS (i.e., it is right Kan extended from

�I,op
≤1 );

(ii) for each subset J ⊂ I, the map ∂JX → X in SmS is a closed immersion,
which is everywhere of codimension |J |.

We let Smsncd
S denote the full subcategory of Cubes(SmS) spanned by the relative

strict normal crossings divisors (X, ∂X).

By definition, a relative strict normal crossings divisor ∂X on X is uniquely
determined by the smooth divisors ∂iX → X with i ∈ I, called the smooth compo-
nents of ∂X. Note that the symmetric monoidal structure on Cubes(SmS) restricts

to Smsncd
S : if ∂X has smooth components ∂iX and ∂Y has smooth components

∂jY , then the tensor product (X, ∂X)⊗ (Y, ∂Y ) is given by the relative strict nor-
mal crossings divisor on the smooth S-scheme X ×S Y with smooth components
∂iX ×S Y and X ×S ∂jY . Given (X, ∂X) ∈ Smsncd

S , we will also denote by ∂X the
colimit of the punctured cube in P(SmS)/X . As explained in Construction 2.3, we
then have symmetric monoidal functors

Smsncd
S → Fun(Δ1,P(SmS)) → P(SmS)∗,

(X, ∂X) �→ (∂X → X) �→ X/∂X.

Remark 2.5. If S is a classical scheme, one can show that the image of the presheaf
∂X in PΣ(SmS)/X depends only on the underlying Cartier divisor

∑
i∈I ∂iX on X,

i.e., it is independent of the choice of smooth components of that divisor (indeed,
such choices form a poset, and one can obtain a common refinement of any two
choices by taking finite coproduct decompositions, see [NS08, Proposition A.0.7]).
We do not expect this to remain true for derived schemes, which is why we take the
smooth components as part of the data of a relative strict normal crossings divisor.
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Remark 2.6 (Functoriality of quasi-smooth blowups). An excess intersection square
is a commutative square of derived schemes

Z ′ X ′

Z X,

i′

g f

i

where i and i′ are quasi-smooth closed immersions, such that the underlying square
of topological spaces is cartesian and such that the induced map g∗(Ni) → Ni′ is sur-
jective [Kha21]. The blowup of quasi-smooth closed immersions is then functorial
with respect to excess intersection squares. In classical geometry, given i : Z ↪→ X
and f : X ′ → X as above, one often speaks of the strict transform ofX ′ with respect
to the blowup of X at Z, which means the blowup of X ′ at Z ×X X ′. In derived
geometry, however, there are usually many ways of forming an excess intersection
square, and it might not be the actual pullback Z ×X X ′ that is geometrically
relevant; for example, given quasi-smooth closed immersions Z ↪→ Y ↪→ X, the
relevant “strict transform” of Y is often the blowup of Y at Z and not at Z ×X Y .
In some of the geometric arguments in Section 3, we will nevertheless use the term
“strict transform” in cases where the intended excess intersection square is clear
from the context. In fact, the geometric situations we will deal with are always
classical in the sense that the universal example lives over a classical stack, where
“strict transform” has its classical meaning.

If X is smooth over S and Z ⊂ X is a smooth closed subscheme, then Z is
Zariski-locally on X the zero locus of a map X → An. We will refer to such a
map as coordinates along Z. If ∂X is a relative strict normal crossings divisor on
X with smooth components (∂iX)i∈I , then for every J ⊂ I there are coordinates
along ∂JX in which the divisors ∂iX with i ∈ J are the coordinate hyperplanes.

By a smooth center Z on (X, ∂X), we mean a closed immersion of I-cubes
(ZJ)J → (∂JX)J in SmS such that, for each J ⊂ I, there are coordinates along ZJ

in which the divisors ∂iX with i ∈ J are some of the coordinate hyperplanes while
Z∅ is the vanishing locus of some subset of the coordinates. We will also write Z
for the underlying smooth closed subscheme Z∅ ↪→ X. Given a smooth center Z
on (X, ∂X), each square

ZJ ∂JX

Z X

is an excess intersection square, and we call the blowup of ∂JX at ZJ the strict
transform of ∂JX. The strict transforms ∂̃iX of the components ∂iX together with
the exceptional divisor E then form a relative strict normal crossings divisor ∂̃X∪E
on the blowup BlZX, with underlying finite set I 
 {e}. Moreover, the intersection⋂

i∈J ∂̃iX is the strict transform ∂̃JX of ∂JX, and E ∩ ∂̃JX is the exceptional
divisor of this blowup.

Let Z be a smooth center on (X, ∂X). Given a subset K ⊂ I, we say that Z is

contained in ∂KX if ZJ∪K
∼−→ ZJ for all J ⊂ I. If K is non-empty, we obtain a

morphism

(BlZX, ∂̃X ∪E) → (X, ∂X)
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in Smsncd
S , whose underlying strict morphism of cubes �I�{e} → �I sends {i} to

{i} and {e} to K.

Proposition 2.7. Let X be a smooth S-scheme, ∂X a relative strict normal cross-
ings divisor on X, and Z a smooth center on (X, ∂X) contained in ∂KX for some
K �= ∅. Then the square

∂̃X ∪ E BlZX

∂X X

is cocartesian in Psbu(SmS). If moreover each closed immersion ZJ ↪→ ∂JX is
elementary, then the square is cocartesian in Pebu(SmS).

Proof. We consider the following commutative diagram in P(SmS):

E ∩ ∂̃X ∂̃X

E ∂̃X ∪ E BlZX

Z ∂X X.

The upper square is a pushout square in P(SmS), and the lower horizontal rectangle
is a smooth blowup square. It remains to show that the left vertical rectangle is a
pushout in Psbu(SmS). This rectangle is the colimit in P(SmS) of the squares

E ∩ ∂̃JX ∂̃JX

ZJ ∂JX,

where J ranges over the non-empty subsets of the underlying finite set of ∂X. Each
of these squares is a smooth blowup square, which proves the claim. �

3. Thom spaces

Let S be a derived scheme. For a smooth S-scheme X (or more generally an
arbitrary presheaf X on SmS) and a finite locally free sheaf E on X, we define the
Thom space of E by

ThX(E) = P(E⊕ O)/P(E) ∈ P(SmS)∗.

Let Vectepi(S) be the ∞-category of finite locally free sheaves on S and epimor-
phisms (i.e., morphisms that are surjective on π0). Recall that an epimorphism
E � F induces a linear embedding P(F) ↪→ P(E). Consequently, the Thom space
construction defines a functor

Vectepi(S)op → P(SmS)∗, E �→ ThS(E) = P(E⊕ O)/P(E).

This functor does not have a lax symmetric monoidal structure, as there is no
natural map between the pointed presheaves

ThS(E⊕ F) and ThS(E) ∧ ThS(F).
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Our goal in this section is to construct a symmetric monoidal structure on the
composite functor

Vectepi(S)op → P(SmS)∗ → Pebu(SmS)∗.

For a finite locally free sheaf E on S, we will regard P(E ⊕ O) as an object of

Smsncd
S with the smooth boundary divisor P(E). The Thom space ThS(E) is thus

the image of P(E⊕ O) by the symmetric monoidal functor

Smsncd
S → P(SmS)∗, (X, ∂X) �→ X/∂X,

defined in Section 2.
Let now E = (Ei)i∈I be a finite collection of finite locally free sheaves on S, and

let us contemplate the problem of relating
∏

i∈I P(Ei ⊕ O) and P(
⊕

i∈I Ei ⊕ O) in

the ∞-category Smsncd
S . To that end, we will construct an object B(E) ∈ Smsncd

S

and a zigzag

(3.1)
∏
i∈I

P(Ei ⊕ O)
bΠ←− B(E) bP−→ P

(⊕
i∈I Ei ⊕ O

)
,

such that both maps become isomorphisms in Pebu(SmS)∗.
1

Let us first consider the special case when I = {1, 2} and E1 = E2 = O. On the
left-hand side of (3.1) we then have P1×P1 with boundary divisor (∞×P1)∪ (P1×
∞), and on the right-hand side we have P2 with boundary divisor P1 at infinity.
In this case, B(O,O) is the blowup of P1 × P1 at the point (∞,∞), which can be
identified with the blowup of P2 at the two points [1 : 0 : 0] and [0 : 1 : 0], and the
boundary divisor ∂B(O,O) is the union of the three exceptional divisors.

We now explain the general construction. For a subset J ⊂ I, let

ZJ = P
(⊕

i/∈J Ei

)
⊂ P

(⊕
i∈I Ei ⊕ O

)
.

Thus, Z∅ is the boundary divisor, the Zi’s are linear subspaces of Z∅ in a ∂ΔI

configuration, and for J �= ∅ we have ZJ =
⋂

i∈J Zi. For a subset K ⊂ I, let

WK =
∏
i∈K

P(Ei)×
∏
i/∈K

P(Ei ⊕ O) ⊂
∏
i∈I

P(Ei ⊕ O).

Thus,
⋃

i∈I Wi is the boundary divisor and WK =
⋂

i∈K Wi.
We first describe the scheme B(E) via its functor of points: a point of B(E) is a

family (YJ )J⊂I , where YJ ⊂ P(
⊕

i∈I Ei ⊕ O) is a linear subspace such that ZJ is a
hyperplane in YJ , and such that if K ⊂ J then YK ⊃ YJ . In other words, a point
of B(E) is a family of factorizations⊕

i∈I Ei ⊕ O � FJ

χJ�
⊕

i/∈J Ei,

such that the kernel LJ of χJ is invertible, and such that if J ′ ⊂ J then FJ

is a quotient of FJ′ . This is in turn equivalent to a family of invertible quotients
ϕJ :

⊕
i∈J Ei⊕O � LJ such that if J ′ ⊂ J then the restriction of ϕJ to

⊕
i∈J′ Ei⊕O

factors through ϕJ′ .2 The epimorphism ϕJ defines a point of P(
⊕

i∈J Ei⊕O), which

1For this construction, it would suffice to work with classical schemes, since the universal
example is classical.

2Factoring through an epimorphism is merely a property when S is a classical scheme, but
it should of course be understood as the data of compatible factorizations when S is a derived
scheme.
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can be thought of as the normal direction to ZJ inside YJ . We thus have canonical
morphisms

πJ : B(E) → P
(⊕

i∈J Ei ⊕ O
)
,

which exhibit B(E) as a closed subscheme of a product of 2|I| projective bundles
over S. Taking J = I yields a morphism

bP : B(E) → P
(⊕

i∈I Ei ⊕ O
)
,

sending the family (YJ)J⊂I to the point YI . Taking J to be a singleton yields a
morphism

bΠ : B(E) →
∏
i∈I

P(Ei ⊕ O),

sending the family (YJ )J⊂I to (Yi)i∈I .
Next, we want to show that both bP and bΠ are sequences of smooth blowups. To

see this, we will need the following description of strict transforms when blowing up
zero loci of sections of vector bundles (the description of the blowup itself already
appears in [Ann22b, Theorem 122]):

Lemma 3.2 (Blowing up zero loci). Let X be a derived scheme, E a finite locally
free sheaf on X, and σ : E → O a linear map. Then the blowup of X at the zero
locus of σ classifies factorizations of σ as

E
ϕ−→ L

τ−→ O,

where L is invertible and ϕ is surjective. The exceptional divisor is then the zero
locus of τ . If moreover μ : F → E is a universally injective morphism of finite locally
free sheaves, then the strict transform of the zero locus of σ ◦ μ is the zero locus of
ϕ ◦ μ.

Proof. We use the description of the functor of points of the blowup from [KR19]:
BlZ(σ)X classifies pairs (τ, f) consisting of a generalized Cartier divisor τ : L → O

and an X-morphism f : Z(τ ) → Z(σ) inducing an isomorphism of underlying clas-
sical schemes and such that the induced morphism of conormal sheaves E|Z(τ) →
L|Z(τ) is surjective. We must show that this data is equivalent to that of a fac-
torization of σ as above. On the one hand, such a factorization induces a map
f : Z(τ ) → Z(σ), which is an isomorphism on classical schemes by the surjectivity
ϕ, and the induced map of conormal sheaves is surjective since it is the restriction
of ϕ. Conversely, let (τ, f) be a pair as above. The map f induces an O-linear map

ϕ : E → fib(O → OZ(σ))
f∗

−→ fib(O → OZ(τ)) = L

over O, whose restriction to Z(τ ) is the morphism of conormal sheaves induced by
f . It remains to observe that ϕ is surjective: it is surjective over the points of
Z(τ ) = Z(σ) by assumption; over the complement, τ is an isomorphism and σ is
surjective, so that ϕ is also surjective.3

In the final statement, the assumption that μ is universally injective guarantees
that Z(σ) is a quasi-smooth closed subscheme of Z(σ ◦μ), namely the zero locus of
the induced map σ̄ : cokerμ → O. It is then clear from the above description that
Z(ϕ ◦ μ) is the blowup of Z(σ ◦ μ) at the zero locus of σ̄. �

3This argument shows that, in the description of the blowup in [KR19, Remark 4.1.3(ii)], we
can replace “isomorphism of classical schemes” by “isomorphism of reduced schemes”.
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By definition, B(E) parametrizes I-cubes of invertible sheaves (LJ)J⊂I with a
surjective map from the I-cube (

⊕
i∈J Ei ⊕ O)J⊂I . We let B≥r(E) be the functor

parametrizing the same data but with |J | ≥ r. The morphism bP can then be
factored as

B(E) = B≥0(E) = B≥1(E) → B≥2(E) → · · · → B≥|I|(E) = P
(⊕

i∈I Ei ⊕ O
)
.

Proposition 3.3. For each 0 ≤ r ≤ |I| − 1, the map B≥r(E) → B≥r+1(E) is a

blowup with center
∐

|J|=r Z̃J , where Z̃J is the strict transform of ZJ . For J ⊂ I

with |J | = r, define

L>J = lim
J�J′

LJ′

in the stable ∞-category of quasi-coherent sheaves on B≥r+1(E). Then L>J is an

invertible sheaf, locally isomorphic to LJ∪{i} with i ∈ I − J , and Z̃J is the zero
locus of the map ⊕

i∈J

Ei ⊕ O → L>J

induced by the maps ϕJ′ for J � J ′.

Proof. Assuming the given description of Z̃J for |J | = r, Lemma 3.2 says that

blowing up Z̃J in B≥r+1(E) adds the data of a factorization⊕
i∈J

Ei ⊕ O
ϕJ� LJ → L>J .

We therefore obtain exactly B≥r(E) by blowing up all Z̃J ’s with |J | = r, as claimed.

Consider the right Kan extension L̃ of the diagram of sheaves L on B≥r+1(E)
from the poset of subsets J ⊂ I of size ≥ r + 1 to the poset of all subsets of I, so
that L̃J = L>J when |J | = r. We will show more generally that, for any J ⊂ I

of size ≤ r, L̃J is an invertible sheaf such that the strict transform Z̃J is the zero
locus of the map ⊕

i∈J

Ei ⊕ O → L̃J .

(This is in fact true for all J ⊂ I, but trivial if |J | ≥ r+1.) We assume inductively
that B≥r+1(E) is a sequence of blowups as claimed, and that the strict transforms
of the ZJ ’s up to B≥r+2(E) have the above description.

For every J � I with |J | ≥ r+1, let EJ be the Cartier divisor on B≥r+1(E) which
is the zero locus of LJ → L>J , i.e., the preimage of the exceptional divisor over
the strict transform Z̃J ⊂ B≥|J|+1(E). Let Ui ⊂ B≥r+1(E) be the open complement
of

⋃
i/∈J EJ . Note that EJ ∩ EJ′ = ∅ whenever J and J ′ are not contained in

one another, since then the strict transforms of ZJ and ZJ′ became disjoint in the
blowup B≥|J∪J′|(E). It follows that B≥r+1(E) is covered by any |I| − r of the open
subsets Ui. For any J ⊂ I, we deduce by descending induction on |J | that the open
subsets UR =

⋂
i∈R Ui with |J ∪R| ≥ r + 1 form an open covering of B≥r+1(E).

For J � I with |J | ≥ r+1, let O(−EJ) = LJ ⊗L−1
>J and let σJ : O(−EJ) → O be

the canonical map, whose zero locus is EJ . Taking the determinant of the cartesian
cube defining L>J , we find

O(−EJ ) �
⊗
J⊂J′

L
(−1)|J

′−J|

J′ and hence
⊗

J⊂J′ �=I

O(−EJ′) � LJ ⊗ L−1
I .
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Under this isomorphism, the map LJ → LJ∪{i} corresponds to the tensor product
of the maps σJ′ with i /∈ J ′. In other words, the zero locus of LJ → LJ∪{i} is
the union of the divisors EJ′ with J ⊂ J ′ and i /∈ J ′. Hence, for any R ⊂ I, the
map LJ → LJ∪R is an isomorphism over UR. Passing to the right Kan extension,
this implies that the map L̃J → L̃J∪R is an isomorphism over UR for all subsets
J,R ⊂ I: this follows from the fact that the functor

{J ′ | J ⊂ J ′ and |J ′| ≥ r + 1} → {J ′ | J ∪R ⊂ J ′ and |J ′| ≥ r + 1},
J ′ �→ J ′ ∪R

is coinitial, since it is left adjoint to the inclusion. Since the UR’s with |J∪R| ≥ r+1

form an open covering of B≥r+1(E), we see that L̃J is locally isomorphic to the
invertible sheaves LJ∪R.

Fix J ⊂ I of size ≤ r and let R ⊂ I be such that |J ∪R| = r + 1. It remains to

show that Z̃J ∩ UR is the zero locus of
⊕

i∈J Ei ⊕ O → L̃J over UR, as these UR’s

cover B≥r+1(E). Since L̃J � LJ∪R over UR, this is the same as the zero locus of⊕
i∈J

Ei ⊕ O ↪→
⊕

i∈J∪R

Ei ⊕ O
ϕJ∪R−−−→ LJ∪R.

By the description of strict transforms from Lemma 3.2 and the induction hypoth-
esis, this locus is exactly the strict transform of ZJ in the blowup of B≥r+2(E) at

Z̃J∪R. To conclude, we observe that the other exceptional divisors of the blowup
B≥r+1(E) → B≥r+2(E), i.e., the divisors ES with |S| = r + 1 and S �= J ∪ R, do

not intersect Z̃J ∩ UR. If J �⊂ S, then J ∪ S has size ≥ r + 2 and hence the strict
transforms of ZJ and ZS in B≥r+2(E) are disjoint. If J ⊂ S but S �= J ∪ R, then
R �⊂ S and hence ES ∩ UR = ∅ by definition of UR. �

In order to see that bΠ is analogously a sequence of blowups at the strict trans-
forms of the subschemes WK , we need a dual description of B(E). Let B∨(E) be
the functor parametrizing families of invertible quotients Ei ⊕O � Li for i ∈ I, to-
gether with a compatible family of universally injective maps ψK : MK ↪→

⊕
i∈K Li

for all non-empty subsets K ⊂ I, where MK is an invertible sheaf. By a “com-
patible family” we mean that for any non-empty K ′ ⊂ K, the composition of ψK

with the projection
⊕

i∈K Li �
⊕

i∈K′ Li factors through ψK′ , and moreover that
O →

⊕
i∈I Li factors through ψI ; in other words, the maps ψK form a morphism

of punctured I-cubes under O. Let further B∨
>r(E) be the functor parametrizing

such families with |K| > r. We then have a sequence of forgetful maps

B∨(E) = B∨
>0(E) = B∨

>1(E) → · · · → B∨
>|I|−1(E) → B∨

>|I|(E) =
∏
i∈I

P(Ei ⊕ O).

Proposition 3.4. For each 1 ≤ r ≤ |I|, the map B∨
>r−1(E) → B∨

>r(E) is a blowup

with center
∐

|K|=r W̃K , where W̃K is the strict transform of WK . For K ⊂ I with

|K| = r, define

M>K =

{
O, if K = I,

colimK�K′ MK′ , otherwise,

in the stable ∞-category of quasi-coherent sheaves on B∨
>r(E). Then M>K is an

invertible sheaf, locally isomorphic to MK∪{i} with i ∈ I −K, and W̃K is the zero
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locus of the map

M>K →
⊕
i∈K

Li

induced by the maps ψK′ for K � K ′.

Proof. The proof is similar to that of Proposition 3.3: the colimit defining M>K

(and more generally the left Kan extension of M to a punctured I-cube under O) is
locally trivial, and blowing up the zero locus of M>K →

⊕
i∈K Li in B∨

>r(E) adds
the data of a factorization

M>K → MK
ψK
↪→

⊕
i∈K

Li,

leading to B∨
>r−1(E). �

Lemma 3.5 (Stable duality for punctured cubes). Let I be a finite set, let P be
the poset such that P 	 = (Δ1)I , and let C be a stable ∞-category. Then there is a
canonical isomorphism

Fun(P,C)
∼−→ Fun(P op,C),

F �→
(
p �→ colim

q∈Pp/

F (q)

)
,

with inverse

Fun(P op,C)
∼−→ Fun(P,C),

G �→
(
p �→ lim

q∈(Pp/)op
G(q)

)
.

Proof. Let Catst∞ be the symmetric monoidal ∞-category of small stable ∞-

categories, whose unit is the ∞-category Spfin of finite spectra. LetK be a finite ∞-
category, all of whose mapping anima are also finite (e.g., a finite poset). Then the

stable ∞-category Fun(K, Spfin) is dualizable in Catst∞ with dual Fun(K, Spfin)op =

Fun(Kop, Spfin) (see for example [HSS17, Section 4.3]); the coevaluation is given by

coev : Spfin → Fun(Kop, Spfin)⊗ Fun(K, Spfin) � Fun(Kop ×K, Spfin),

1 �→ Σ∞
+ MapK(−,−).

Consider the symmetric pairing

λ : Fun(K, Spfin)⊗ Fun(K, Spfin)
⊗−→ Fun(K, Spfin)

colim−−−→ Spfin.

By duality, it induces an exact functor

D = (id⊗ λ) ◦ (coev⊗ id) : Fun(K, Spfin) → Fun(Kop, Spfin),

which is explicitly given by the formula

D(F )(x) = colim
y∈K

MapK(x, y)⊗ F (y) = colim
y∈Kx/

F (y).

Here, the second equality is obtained by decomposing the colimit over Kx/ along
the cocartesian fibration Kx/ → K with fibers MapK(x,−).

Let us further assume that (Fun(K, Spfin), colim) is a Frobenius algebra in Catst∞,
i.e., that the above pairing λ is non-degenerate. Then D is an isomorphism satisfying
D = D∨. For a morphism f between dualizable objects in Catst∞, the dual morphism
f∨ is left adjoint to fop, hence is equal to (fop)−1 when f is an isomorphism.
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We therefore have D−1 = Dop. Tensoring D with any C ∈ Catst∞, we obtain an
isomorphism

DC : Fun(K,C)
∼−→ Fun(Kop,C)

such that D−1
C = Dop

Cop . Thus, for F ∈ Fun(K,C) and G ∈ Fun(Kop,C), we have
the desired formulas

DC(F )(x) = colim
y∈Kx/

F (y),

D−1
C (G)(x) = lim

y∈(Kx/)op
G(y).

It remains to show that (Fun(P, Spfin), colim) is a Frobenius algebra in Catst∞.
Passage to opposite categories is a symmetric monoidal automorphism of Catst∞,

sending the pair (Fun(P, Spfin), colim) to the pair (Fun(P op, Spfin), lim). But the
latter is a Frobenius algebra by [Aok23, Example 1.10], since P op is the face poset
of a simplex. �

Proposition 3.6. There is a canonical isomorphism B(E)�B∨(E) over
∏

i∈I P(Ei⊕
O). In particular, both maps∏

i∈I

P(Ei ⊕ O)
bΠ←− B(E) bP−→ P

(⊕
i∈I Ei ⊕ O

)
are sequences of smooth blowups, as described in Propositions 3.3 and 3.4

Proof. Given a point (LJ , ϕJ)J of B(E), we set

MK = lim
∅ �=J⊂K

LJ

for K non-empty, where the limit is computed in the stable ∞-category of quasi-
coherent sheaves. The sheaf MK is then locally isomorphic to Li with i ∈ K.
Indeed, using the notation from Proposition 3.3, we have MI = L>∅, and we can
reduce to the case K = I using the forgetful map B(E) → B(E|K). Moreover,
we have a compatible family of maps ψK : MK →

⊕
i∈K Li, which are universally

injective (since they locally identify MK with some Li). This defines a map B(E) →
B∨(E).

Conversely, given a point (MK , ψK)K of B∨(E), we set L∅ = O and

LJ = colim
∅ �=K⊂J

MK

for J non-empty, where the colimit is computed in the stable ∞-category of quasi-
coherent sheaves. Since (MK)K is a diagram under O, we obtain a factorization⊕

i∈J (Ei ⊕ O)
⊕

i∈J Li

⊕
i∈J Ei ⊕ O LJ .

∇
ϕJ

Using Proposition 3.4 and the forgetful map B∨(E) → B∨(E|J), we see as above
that LJ is locally isomorphic to Li with i ∈ J , so that the right vertical map and
hence ϕJ are surjective. This defines a map B∨(E) → B(E).

The fact that these constructions are inverse to one another follows from
Lemma 3.5. �
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We now define a relative strict normal crossings divisor ∂B(E) on B(E) as follows.
For any J � I, let EJ ⊂ B(E) be the zero locus of LJ → L>J . Dually, for any
non-empty K ⊂ I, let E∨

K ⊂ B∨(E) be the zero locus of M>K → MK . Under the
isomorphism B(E) � B∨(E) of Proposition 3.6, we have EJ = E∨

I−J . We then let

∂B(E) consist of the 2|I| − 1 smooth components EJ , or equivalently of the 2|I| − 1

smooth components E∨
K . The morphisms bP and bΠ are then morphisms in Smsncd

S ,
and it follows from repeated applications of Proposition 2.7 that they both induce
isomorphisms in Pebu(SmS)∗ after collapsing the boundary divisors (in fact, they
both induce pushout squares in Pebu(SmS) prior to quotienting). This completes
the construction of the zigzag (3.1). In particular, the pointed presheaves∧

i∈I

ThS(Ei) and ThS
(⊕

i∈I Ei

)
become isomorphic in Pebu(SmS)∗.

Corollary 3.7. Let E be a finite locally free sheaf on S. Then ThS(E) is invertible
in the symmetric monoidal ∞-category SpP1(PZar,ebu(SmS)∗).

Proof. The assignment S �→ SpP1(PZar,ebu(SmS)∗) is a Zariski sheaf of symmet-
ric monoidal ∞-categories. Since the functor Pic : CAlg(Cat∞) → Sp≥0 preserves
limits, the assertion that ThS(E) is invertible is Zariski-local on S. We may thus
assume that E = On. In this case, the above construction gives a zigzag of isomor-
phisms between ThS(O

n) and ThS(O)
⊗n = (P1)⊗n, which is invertible. �

The construction E �→ B(E) is evidently functorial in the family E ∈ Vectepi(S)I

as well as in the base scheme S. We now examine its functoriality in the indexing
set I. For a morphism of finite sets α : I → J , let us consider more generally

B(E, α) =
∏
j∈J

B(E|α−1(j)) ∈ Smsncd
S .

The points of B(E, α) are thus families of invertible quotients ϕA :
⊕

i∈A Ei ⊕O �
LA with A ⊂ α−1(j) and j ∈ J , such that if A′ ⊂ A then the restriction of ϕA to
the domain of ϕA′ factors through ϕA′ . Consider a morphism

I K

J L

γ

α β

δ

from α to β in the twisted arrow category Tw(Fin). For every l ∈ L and B ⊂ β−1(l),
we then have γ−1(B) ⊂ α−1(δ(j)). We therefore have a well-defined morphism in

Smsncd
S :

(3.8) B(E, α) → B(γ⊕E, β),
(
(ϕA)A⊂α−1(j)

)
j∈J

�→
(
(ϕγ−1(B))B⊂β−1(l)

)
l∈L

.

The span (3.1) is a special case of this functoriality, applied to the span in Tw(Fin)

(I → I) ← (I → ∗) → (∗ → ∗).

Since bΠ and bP are Lebu-equivalences, it follows from 2-out-of-3 that all maps (3.8)
are Lebu-equivalences. In particular, for any iterated decomposition I = I0 →
· · · → In = ∗ of the finite set I, we have a refinement of (3.1) to a diagram of
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Lebu-equivalences Tw(Δn) → Smsncd
S . For example, for I

α→ J → ∗ we get the
diagram
(3.9)

B(E)

∏
j∈J B(E|α−1(j)) B(α⊕E)

∏
i∈I P(Ei ⊕ O)

∏
j∈J P

(⊕
i∈α−1(j) Ei ⊕ O

)
P
(⊕

i∈I Ei ⊕ O
)
.

We now explain how to equip the functor

ThS : Vectepi(S)op → Pebu(SmS)∗

with a symmetric monoidal structure, which is moreover natural in S.4 Both S �→
Vectepi(S)op and S �→ Pebu(SmS)∗ are functors from Schop to CAlg(Cat∞). We let
Vectepi,op,⊗ and Pebu(Sm)⊗∗ denote the total spaces of the corresponding cocartesian
fibrations over Schop × Fin∗. Our goal is thus to construct a functor

(3.10) Th: Vectepi,op,⊗ → Pebu(Sm)⊗∗

over Schop × Fin∗, whose value on a triple (S, I+, (Ei)i∈I) is (S, I+, (ThS(Ei))i∈I).
To give an idea of what is involved, let us consider the desired effect of the

functor (3.10) on morphisms. A morphism from (S, I+, (Ei)i∈I) to (T, J+, (Fj)j∈J )
in Vectepi,op,⊗ consists of

S
f← T, I+

α→ J+,
(⊕

α(i)=j f
∗(Ei)

ϕj� Fj

)
j∈J

.

We assign to it the J-indexed family of morphism
∧

α(i)=j f
∗(ThS(Ei)) → ThT (Fj),

given by precomposing Th(ϕj) : ThT (
⊕

α(i)=j f
∗(Ei)) → ThT (Fj) with f∗ of the

span of Lebu-equivalences∧
α(i)=j

ThS(Ei) ← B((Ei)α(i)=j)/∂B → ThS

(⊕
α(i)=j Ei

)
.

To explain the construction of (3.10) in full, we need a brief categorical digression.
Given an ∞-category E with two classes of morphisms L and R closed under

composition, we denote by Λ(E,L,R) the simplicial anima whose n-simplices are
diagrams Tw(Δn) → E sending (Δn)op to L and Δn to R (when the classes L

and R are stable under base change along one another, the usual complete Segal
anima of spans Span(E,L,R) is the subobject of Λ(E,L,R) consisting of cartesian
diagrams). We denote by N: Cat∞ ↪→ Fun(Δop,Ani) the fully faithful functor
given by N(C) = Λ(C, iso, all), which identifies ∞-categories with complete Segal
anima.

Let now p : E → C be a cocartesian fibration. If p∨ : E∨ → Cop is the cartesian
fibration classifying the same functor C → Cat∞ as p, there is by [BGN18, Theorem
1.4] a canonical isomorphism

Λ(E∨, cart, vert) = Span(E∨, cart, vert) � N(E),

4For our applications in this paper, we only need the functor ThS on the maximal subgroupoid
Vect(S) ⊂ Vectepi(S), but this does not simplify the construction.
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where “cart” and “vert” denote the orthogonal classes of cartesian and vertical
morphisms, such that the following diagram commutes:

Λ(E∨, cart, vert) N(E)

Λ(E∨, all, vert) Λ(Cop, all, iso) = N(C).

∼

p

p∨

Our strategy is now to define a morphism of simplicial anima

(3.11) N(Vectepi,op,⊗) → Λ((Smsncd,⊗)∨, all, vert)

over N(Schop × Fin∗) such that the composite

N(Vectepi,op,⊗) → Λ((Smsncd,⊗)∨, all, vert) → Λ((Pebu(Sm)⊗∗ )
∨, all, vert)

lands in the subobject Λ((Pebu(Sm)⊗∗ )
∨, cart, vert) � N(Pebu(Sm)⊗∗ ). Since this

isomorphism commutes with the maps to N(Schop × Fin∗) and the functor N is
fully faithful, this yields the desired functor (3.10).

The construction of (3.11) is straightforward using the already established func-
toriality of the construction B. To keep the notation reasonable, we only spell out
the map (3.11) on 2-simplices, but the general case is similar and the simplicial
structure will be apparent. A 2-simplex of N(Vectepi,op,⊗) consists of

S
f←− T

g←− U, I+
α−→ J+

β−→ K+,
(⊕

α(i)=j f
∗(Ei)

ϕj� Fj

)
j∈J

,(⊕
β(j)=k g

∗(Fj)
ψk� Gk

)
k∈K

.

The corresponding 2-simplex Tw(Δ2) → (Smsncd,⊗)∨ is as follows:

(P(Ei ⊕ O))i∈I (B(f∗E|α−1(j)))j∈J (B(g∗f∗E|(β◦α)−1(k)))k∈K

(P(Fj ⊕ O))j∈J (B(g∗F|β−1(k)))k∈K

(P(Gk ⊕ O))k∈K ,

bΠ

ϕ◦bP

bΠ

ψ◦bP

where the three columns lie in the fibers over (S, I+), (T, J+), and (U,K+), respec-
tively. The fiber of this diagram over k ∈ K is the diagram (3.9) for the family of
sheaves (g∗f∗Ei)i∈(β◦α)−1(k) and the decomposition (β ◦α)−1(k) → β−1(k) → {k}.
The fact that the maps (3.8) are Lebu-equivalences implies that the horizontal maps
become cartesian in (Pebu(Sm)⊗∗ )

∨. This yields the desired morphism (3.11), hence
the desired functor (3.10).

4. Projective bundle homotopy invariance

Let S be a derived scheme. We shall write

MSS = SpP1(PZar,ebu(SmS , Sp))

and refer to objects of MSS as motivic spectra over S. We shall also write

MSunS = SpP1(PZar,ebu(SmS)∗)
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for the unstable version of MSS , so that MSS = Sp(MSunS ). There are symmetric
monoidal left adjoint functors

P(SmS) P(SmS)∗ MSunS MSS .
(−)+ Σ∞

P1

Σ∞
P1

Σ∞

As is customary, we will often omit the functors Σ∞
P1 and Σ∞

P1(−)+ from the notation,
identifying objects in P(SmS)∗ and in P(SmS) with their images in MSunS or in MSS .
The symmetric monoidal ∞-category MSunS was denoted by SpP1(StexS ) in [AI23].
We will show below that MSS is equivalent to the full subcategory of fundamental
objects in MSunS (Corollary 4.13), which was denoted by SpP1(StexS )fd in loc. cit.,
but this is not at all obvious from the definitions.

Of course, we do not claim that MSS is “the” ∞-category of motivic spectra,
which we expect to be a further localization thereof (enforcing in particular Nis-
nevich descent, and hence smooth blowup excision by Proposition 2.2). Rather,
MSS is the minimal construction to which all the results of this paper apply. Note
that the full subcategory of either MSS or MSunS consisting of A1-invariant Nis-
nevich sheaves is the Morel–Voevodsky stable A1-homotopy ∞-category over S
(since smooth blowup excision holds in the latter [MV99, Section 3, Remark 2.30]).
We will occasionally denote by LA1 the localization onto this full subcategory.

We note the following facts (and analogous ones for MSunS ):

• The presheaf of ∞-categories S �→ MSS satisfies Zariski descent.

• If S is qcqs and X ∈ Smfp
S , then Σ∞

P1X+ ∈ MSS is compact. In particular,
if S is qcqs, then the ∞-category MSS is compactly generated.

• If S is the limit of a cofiltered diagram of derived schemes Sα with affine
transition maps, then MSS = limα MSSα

.

Theorem 4.1. Let E be a finite locally free sheaf on X ∈ P(SmS) and let σ : E →
OX be a linear map.

(i) (Euler class of locally free sheaves) There is a canonical homotopy h̄(σ) in
MSunS between

X+
σ−→ V(E)+ ⊂ P(E⊕ OX)+ → ThX(E)

and the zero section.
(ii) (P-homotopy invariance) There is a canonical homotopy h(σ) in (MSS)/X

between

X
σ−→ V(E) ⊂ P(E⊕ OX)

and the zero section.

Moreover, the homotopies h̄(σ) and h(σ) are functorial in (S,X,E, σ), and they are
the identity when σ = 0.

Proof. We may assume X = S, as the general case then follows formally from the
functoriality in (S,E, σ). The matrix

e21(σ) =

(
idE 0
σ idO

)
∈ Aut(E⊕ O)

induces an automorphism e of P(E ⊕ O) sending the zero section to that induced
by σ. Moreover, e fixes P(E) and hence induces an automorphism ē of the Thom
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space ThS(E). To prove (i) (resp. (ii)), it will therefore suffice to show that ē (resp.
e) is homotopic to the identity in MSunS (resp. in (MSS)/S).

To prove that ē is homotopic to the identity, we choose a factorization

E
ϕ−→ F

τ−→ O

of σ (to get a functorial construction we can take for example F = E, ϕ = id, and
τ = σ, but it will be useful to distinguish between E and F in the notation). We will
construct more precisely a homotopy in SpT (Pebu(SmS)∗), where T = ThS(E⊕ F)
(this is sufficient by Corollary 3.7). Consider the span of Lebu-equivalences

ThS(E) ∧ ThS(F) ← B/∂B → ThS(E⊕ F),

where B = B(E,F) is the blowup of P(E⊕F⊕O) at P(E)
P(F), or equivalently of
P(E⊕ O)× P(F ⊕ O) at P(E)× P(F). The matrix

e31(σ) =

⎛⎝idE 0 0
0 idF 0
σ 0 idO

⎞⎠ ∈ Aut(E⊕ F ⊕ O)

induces an automorphism e′ of P(E⊕F⊕O), fixing P(E⊕F) and thereby inducing
an automorphism ē′ of ThS(E ⊕ F). It also induces an automorphism e′′ of the
blowup B, since it fixes the center P(E) 
 P(F), which preserves the boundary ∂B
and hence descends to an automorphism ē′′ of the quotient B/∂B. We then have
a commutative diagram of pointed presheaves

ThS(E) ∧ ThS(F) B/∂B ThS(E⊕ F)

ThS(E) ∧ ThS(F) B/∂B ThS(E⊕ F).

ē∧id ē′′ ē′

Since the horizontal maps are Lebu-equivalences, it suffices to show that ē′ becomes
homotopic to the identity in SpT (Pebu(SmS)∗). In Aut(E ⊕ F ⊕ O) we have the
commutator relation

e31(σ) = [e32(τ ), e21(ϕ)].

Since any lower unitriangular matrix fixes P(E ⊕ F) and hence induces an auto-
morphism of ThS(E ⊕ F), we deduce that ē′ is a commutator in the monoid of
endomorphisms of ThS(E ⊕ F). However, the object ThS(E ⊕ F) is invertible in
the symmetric monoidal ∞-category SpT (Pebu(SmS)∗), so its monoid of endomor-
phisms has a canonical structure of E∞-monoid. The above commutator relation
therefore induces a canonical identification of ē′ with the identity.

We now show that e itself is stably homotopic over S to the identity, in fact that
it becomes so after a single suspension in SpT (Pebu(SmS)∗). Since e restricts to the
identity on P(E), it induces an automorphism of cofiber sequences

P(E⊕ O)+ ThS(E) Σ(P(E)+)

P(E⊕ O)+ ThS(E) Σ(P(E)+).

e ē

δ

id

δ

Applying the cofiber functor to the endomorphism (ē, id) of δ, we obtain the en-
domorphism Σ(e+) of Σ(P(E ⊕ O)+). We will show that the homotopy between
ē and the identity in SpT (Pebu(SmS)∗) constructed above can be promoted to a

Licensed to Princeton Univ. Prepared on Wed Aug  6 09:49:03 EDT 2025 for download from IP 128.112.200.49.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



264 TONI ANNALA, MARC HOYOIS, AND RYOMEI IWASA

homotopy in the slice category over Σ(P(E)+). This will in particular give a ho-
motopy between the endomorphism (ē, id) of δ and the identity in the slice of the
arrow category over the arrow ∗ → Σ(S+). Taking the cofiber, we will thus obtain
a homotopy over Σ(S+) between Σ(e+) and the identity.

Let us first explain the categorical aspects of the argument. Consider

Y = Σ(P(E)+)⊗ ThS(E)
−1 ∈ SpT (Pebu(SmS)∗),

so that we may view δ as a morphism δ : 1 → Y . The homotopy between ē and
the identity comes from writing ē as a commutator [a, b] of two automorphisms of
1. We will promote b to an automorphism over Y and show that ē over Y can be
decomposed as follows:

1 1 1 1 1

Y Y Y Y Y,

a

δ

ē

b

δ

a−1

δ

b−1

δ δ

a

id

a−1

where the first and third squares commute via the 1-module structure of δ and the
lower cell commutes canonically. On the other hand, there is a commutative cube

Y ⊗ 1 Y ⊗ 1

1⊗ 1 1⊗ 1

Y ⊗ 1 Y ⊗ 1,

1⊗ 1 1⊗ 1

id⊗a

id⊗a

b⊗id

δ⊗id δ⊗id

id⊗a

δ⊗id

b⊗id

δ⊗id

where the left and right faces are given by b over Y and the morphism between them
is multiplication by a. This cube provides an identification between the commutator
[a, b] and the identity in the slice category over Y . Thus, it will suffice to decompose
ē as above.

To that end let

B′ = BlP(E)P(E⊕ F ⊕ O) and ∂B′ = BlP(E)P(E⊕ F) ∪E,

where E = P(E)×P(F⊕O) is the exceptional divisor. By Proposition 2.7, we have
Lebu-equivalences

ThS(E) ∧ ThS(F) ← B/∂B → B′/∂B′ → ThS(E⊕ F).

The point is that the homotopy between ē ∧ idTh(F) and the identity was obtained
from a commutator of two automorphisms of ThS(E ⊕ F), but the morphism of
pointed presheaves δ ∧ idTh(F) does not descend to ThS(E ⊕ F). It does however
descend to B′/∂B′, while at the same time the two automorphisms of ThS(E⊕ F)
lift to B′/∂B′.
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Indeed, there is a commutative square of pointed presheaves

ThS(E) ∧ ThS(F) B/∂B

Σ(P(E)+) ∧ ThS(F) B′/∂B′,

δ∧id

δ′

which identifies δ ∧ id with δ′ in (Pebu(SmS)∗)/Σ(P(E)+)∧ThS(F). This square is the
cofiber of the following cube in P(SmS):

(P(E⊕ O)+ × P(F)) ∪ (P(E)+ × P(F ⊕ O)) ∂B

P(E⊕ O)+ × P(F ⊕ O) B

P(F) 
P(E)+×P(F) (P(E)+ × P(F ⊕ O)) ∂B′

P(F ⊕ O) B′.

π2

The bottom face of this cube is functorial with respect to lower unitriangular ma-
trices in Aut(E ⊕ F ⊕ O), while the whole cube is functorial with respect to the
subgroup Hom(E,O)⊕Hom(F,O). In particular, the matrices e31(σ) and e32(τ ) in-
duce automorphisms of the cube, and the matrix e21(ϕ) induces an automorphism
of the bottom face. The given automorphism ē ∧ id of δ ∧ id is induced by the
matrix e31(σ), which acts by the identity on the lower left edge of the cube. We
now claim that the commutator relation e31(σ) = [e32(τ ), e21(ϕ)] gives the desired
decomposition of ē∧ id. Indeed, the matrix e21(ϕ) acts by the identity on the lower
left edge of the cube. Moreover, the automorphism of δ ∧ id induced by e32(τ ) is

ThS(E) ∧ ThS(F) Σ(P(E)+) ∧ ThS(F)

ThS(E) ∧ ThS(F) Σ(P(E)+) ∧ ThS(F),

id∧f̄

δ∧id

id∧f̄

δ∧id

where f̄ is given by the matrix e21(τ ) ∈ Aut(F ⊕ O), so it is multiplication by an
automorphism of 1 in SpT (Pebu(SmS)∗), as desired. �

Remark 4.2. The main results of this paper only use the rank 1 case of Theo-
rem 4.1(ii), which is significantly easier to prove. Indeed, when L is an invertible
sheaf on S, the cofiber sequence

S+ = P(L)+ → P(L⊕ O)+ → ThS(L)

is split by the structure map P(L⊕O)+ → S+. This yields a canonical decomposi-
tion P(L⊕OS)+ � 1⊕ThS(L) in the stable ∞-category P(SmS , Sp), under which
e = id ⊕ ē (since e commutes with both the inclusion S = P(L) ↪→ P(L ⊕ O) and
its retraction). Thus, e is homotopic to the identity if ē is.

Definition 4.3 (P1-homotopy). Let C be an ∞-category tensored over Smfp
Z , and

let f, g : X → Y be morphisms in C. A P1-homotopy between f and g is a morphism
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h : P1 ⊗X → Y making the following diagram commute:

∗ ⊗X X

P1 ⊗X Y

∗ ⊗X X.

∼

0⊗id f

h

1⊗id

∼

g

Corollary 4.4 (P1-homotopy invariance). In SpP1(Pebu(SmS , Sp)) and hence in
MSS, P1-homotopic morphisms are homotopic.

Proof. This follows directly from Theorem 4.1(ii), which implies that the two maps
0, 1: S → A1 ⊂ P1 are homotopic (noting that the proof does not use Zariski
descent in this case). �
Corollary 4.5 (Euler class of trivial bundles). Let E be a finite locally free sheaf on
X ∈ P(SmS). If there exists an epimorphism E � O, then the pointed map X+ →
ThX(E) induced by the zero section becomes nullhomotopic in SpP1(Pebu(SmS , Sp))
and hence in MSS .

Proof. We may assume E = O, since the given map for E factors through the one for
O. By Corollary 4.4, the zero section and the section at infinity S+ → P1

+ become
homotopic in SpP1(Pebu(SmS , Sp)), but the latter is nullhomotopic when composed
with the quotient map P1

+ → P1/∞ = ThS(O). �

Definition 4.6 (Weighted A1-homotopy). Let C be an ∞-category tensored over

Smfp
Z , and let f, g : X → Y be morphisms in C. A weighted A1-homotopy or A1/Gm-

homotopy from f to g is a Gm-equivariant morphism h : A1 ⊗X → Y , where Gm

acts on A1 with weight 1 and trivially on X and Y , making the following diagram
commute:

∗ ⊗X X

A1 ⊗X Y

∗ ⊗X X.

∼

0⊗id f

h

1⊗id

∼

g

Remark 4.7. For n ∈ Z, let A1(n) denote the quotient A1/Gm where Gm acts with
weight n. We can then define an A1(n)-homotopy in the obvious way. However,
the resulting homotopy relations fall in only two classes:

• If n = 0, two morphisms are A1(0)-homotopic if and only if they are A1-
homotopic.

• If n �= 0, two morphisms are A1(n)-homotopic if and only if they are A1(1)-
homotopic (and they are then also A1-homotopic). Indeed, for any m ∈ Z,
there is a map

A1(m) → A1(n), t �→ t|n|,

sending 0 to 0 and 1 to 1.

Corollary 4.8 (Weighted A1-homotopy invariance). In MSS, A1/Gm-homotopic
morphisms are homotopic.
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Proof. In PZar(SmS), there is a map P1 → A1/Gm sending 0 to 0 and 1 to 1
(classifying the effective Cartier divisor 0 ∈ P1). The claim now follows from
Corollary 4.4. �

Proposition 4.9. Let E and F be finite locally free sheaves on X ∈ P(SmS). Then
the triangle

P(E⊕ F)− P(F)

P(E) P(E⊕ F)

π

commutes up to homotopy in (MSS)P(E)//X .

Proof. We define a P-homotopy

h : PP(E⊕F)−P(F)(F(−1)⊕ O) → P(E⊕ F)

as follows. A point in the source is an invertible quotient ϕ : E⊕ F � L such that
ϕ|E is still surjective and a further invertible quotient ψ : F ⊗ L∨ ⊕ O � M. We
send this to the quotient

E⊕ F
ϕ|E⊕id−−−−→ L⊕ F

ψ−→ L⊗M.

If we precompose h with the zero section

P(E⊕ F)− P(F) ↪→ VP(E⊕F)−P(F)(F(−1)),

we get the lower composite in the given triangle. The diagonal map is obtained via

the other canonical section, which sends ϕ : E⊕F � L to F⊗L∨ ↪→ (E⊕F)⊗L∨ ϕ−→
O. Note that this section agrees with the zero section when restricted to P(E). By
Theorem 4.1(ii), h provides the desired homotopy under P(E) and over X. �

Corollary 4.10. Let E and F be finite locally free sheaves on X ∈ P(SmS), and
let σ, τ : F → E be linear maps. Then the linear embeddings P(E) ↪→ P(E ⊕ F)
induced by σ and τ become homotopic in (MSS)/X . In particular, any two linear
embeddings Pm ↪→ Pn become homotopic.

Proof. This follows from Proposition 4.9, since any linear map F → E induces a
section of π. �

Corollary 4.11. Let F be a finite locally free sheaf on X ∈ P(SmS). Then the

embedding V(F) ↪→ P(F⊕O) becomes homotopic to the constant map V(F) → X
0−→

P(F ⊕ O) in (MSS)X//X .

Proof. This is the special case of Proposition 4.9 with E = O. �

Proposition 4.12 (Bass fundamental theorem). The canonical map

∂ : (P1, 1) → Σ(Gm, 1)

in PZar(SmS)∗ admits a retraction in MSS .

Proof. The map ∂ is the cofiber of (P1 − {∞}, 1) ∨ (P1 − {0}, 1) → (P1, 1). By
symmetry, it suffices to show that the inclusion (A1, 0) → (P1, 0) is nullhomotopic.
Since MSS is stable, this inclusion decomposes as (A1, 0) → A1

+ → P1
+ → (P1, 0),

and the map A1
+ → (P1, 0) is nullhomotopic by Corollary 4.11. �
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Let V be tensored over PZar(SmS)∗. Recall that an object E ∈ V is fundamental
if the map

∂ ⊗ idE : (P1, 1)⊗ E → Σ(Gm, 1)⊗ E

admits a retraction [AI23, Definition 2.3.2]. We write Vfd ⊂ V for the full subcate-
gory spanned by the fundamental objects.

Corollary 4.13 (Bass delooping). Let V be presentably tensored over MSunS .

(i) The adjunction

Σ∞ : V � Sp(V) : Ω∞

is a smashing localization, i.e., Ω∞ is fully faithful and Ω∞Σ∞ is given by
tensoring with Ω∞Σ∞1 ∈ MSunS . Moreover, the essential image of Ω∞ is
contained in Vfd.

(ii) Suppose that V ⊗MSun
S

MSunU is compactly generated for every qcqs open

subscheme U ⊂ S. Then Ω∞ induces an isomorphism Sp(V) � Vfd. In
particular, Vfd is stable and presentable.

Proof. The functor Ω∞ is a priori lax MSunS -linear und commutes with ΣP1 , hence
preserves fundamental objects. By Proposition 4.12, every object of Sp(V) is fun-
damental. Assertion (ii) now follows from [AI23, Theorem 2.4.5] when S is qcqs,
and by descent in general. In this case, it is clear that the localization is smashing
by definition of “fundamental”. In particular, (i) holds for V = MSunS , hence for
arbitrary V by tensoring. �

Proposition 4.14 is an adaptation of a result by Panin and Smirnov [Pan03,
Lemma 3.8], which is crucial to proving the orientability of MGL in A1-homotopy
theory:

Proposition 4.14 (Euler class of O(1)). Let Y = PP1(O(1) ⊕ O), let s0 : P1 ↪→ Y
be the zero section, and let i : P1 ↪→ Y be the inclusion of the fiber at ∞ ∈ P1. Let
q : Y+ → ThP1(O(1)) be the quotient map. In MSS, we have the following relation:

q ◦ s0 � −q ◦ i : P1
+ → ThP1(O(1)).

Proof. Let p : Y → P1 and r : P1 → S be the structure maps, let s∞ : P1 ↪→ Y be
the section at infinity (whose cofiber is q), and let b : Y → P2 be a map exhibiting
Y as the blowup of P2 in one point, with exceptional divisor s0(P1). Consider the
map

y = id− s0 ◦ p : Y+ → Y+.

Then y ◦s0 � 0. By elementary blowup excision, y descends to a map ȳ : P2
+ → Y+.

By Corollary 4.10, any two linear embeddings of P1 in P2 are homotopic, so that
b ◦ i � b ◦ s∞. Composing with ȳ, we get y ◦ i � y ◦ s∞. Now:

q◦s0 � q◦(s0−s∞) � −q◦y◦s∞ � −q◦y◦i � −q◦(i−s0◦p◦i) � −q◦i+q◦s0◦∞◦r.

To conclude, we show that q ◦ s0 ◦ ∞ is nullhomotopic. Since 0,∞ : S+ → P1
+ are

homotopic by Corollary 4.4, we have s0 ◦ ∞ � i ◦ 0 � i ◦ ∞ � s∞ ◦ ∞. Since
q ◦ s∞ � 0, the claim is proved. �
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5. Grassmannians and the stack of vector bundles

Given finite locally free sheaves E and F, we denote by V(E,F) the vector bundle
parametrizing linear maps E → F, and by St(E,F) the open subscheme parametriz-
ing surjections E � F. When F = On, this is the usual Stiefel variety Stn(E).

Proposition 5.1 (Infinite excision). Let E and F be finite locally free sheaves on
X ∈ P(SmS) such that there exists an epimorphism χ : Em � F for some m ≥ 0.
Then the open embedding of ind-X-schemes

St(E∞,F) ↪→ V(E∞,F)

becomes an isomorphism in MSS .

Proof. We may assume rkF ≥ 1, as the assertion is trivial over the summand of X
where F has rank 0. We consider the compactification V(Ek,F) ⊂ P(Ek ⊗F∨ ⊕O).
Let Zk ⊂ P(Ek ⊗F∨⊕O) be the closure of the complement of St(Ek,F) in V(Ek,F)
and let ∂Zk = Zk ∩ P(Ek ⊗ F∨). We then have for every k ≥ 0 a Zariski pushout
square

St(Ek,F) V(Ek,F)

P(Ek ⊗ F∨ ⊕ O)− Zk P(Ek ⊗ F∨ ⊕ O)− ∂Zk.
ik

By Zariski descent and stability, it therefore suffices to prove that the sequence of
open embeddings ik induces an isomorphism in the colimit as k → ∞. To do so we
will construct a diagonal map in the square

P(Ek ⊗ F∨ ⊕ O)− Zk P(Ek+m ⊗ F∨ ⊕ O)− Zk+m

P(Ek ⊗ F∨ ⊕ O)− ∂Zk P(Ek+m ⊗ F∨ ⊕ O)− ∂Zk+m

ek

ik ik+m

ek

fk

and homotopies making both triangles commute, such that the composite homotopy
is the identity.5 Let

fk : P(Ek ⊗ F∨ ⊕ O) → P(Ek+m ⊗ F∨ ⊕ O)

be the closed immersion induced by the epimorphism

(Ek+m⊗F∨)⊕O
χ−→ (Ek⊗F∨)⊕(F⊗F∨)⊕O

ev−→ (Ek⊗F∨)⊕O⊕O
+−→ (Ek⊗F∨)⊕O.

We define a P-homotopy

hk : PP(Ek⊗F∨⊕O)(O(−1)⊕ O) → P(Ek+m ⊗ F∨ ⊕ O)

as follows. A point in the left-hand side is a pair of invertible quotients ϕ : Ek ⊗
F∨ ⊕ O � L and ψ : L∨ ⊕ O � M. We send this point to the invertible quotient

(Em ⊗ F∨)⊕ (Ek ⊗ F∨)⊕ O
ϕ−→ (Em ⊗ F∨)⊕ L

ev◦χ−−−→ O⊕ L
ψ⊗idL−−−−→ M⊗ L

(here we used that rkF ≥ 1, so that the evaluation map F ⊗ F∨ → O is surjec-
tive). Considering the canonical section and the zero section of the vector bundle

5If S is qcqs (which does not restrict the generality), we do not actually need this last condition,
since MSS admits a conservative filtered-colimit-preserving functor to a 1-category. However,
our construction does satisfy this condition and shows that the sequence of morphisms ik is an
isomorphism of ind-objects in any context with P-homotopy invariance.
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V(O(−1)) over P(Ek⊗F∨⊕O) and applying Theorem 4.1(ii), we see that hk defines
a homotopy between fk and the standard embedding ek. It remains to prove the
following three statements:

(i) The restriction of fk to P(Ek⊗F∨⊕O)−∂Zk lands in P(Ek+m⊗F∨⊕O)−
Zk+m.

(ii) The restriction of hk to P(Ek ⊗F∨ ⊕O)−Zk lands in P(Ek+m ⊗F∨ ⊕O)−
Zk+m.

(iii) The restriction of hk to P(Ek⊗F∨⊕O)−∂Zk lands in P(Ek+m⊗F∨⊕O)−
∂Zk+m.

The complement of Zk classifies invertible quotients ϕ : Ek ⊗F∨⊕O � L such that
the induced map ϕ� : Ek → F ⊗ L is surjective, and the complement of ∂Zk is the
union of the latter with V(Ek,F), which is the locus where ϕ|O is surjective (i.e.,
an isomorphism).

For a pair (ϕ, ψ) as above, the map hk(ϕ, ψ)
� is the composite

Em ⊕ Ek χ−→ F ⊕ Ek ϕ�

−→ F ⊗ (O⊕ L)
idF⊗ψ⊗idL−−−−−−−−→ F ⊗M⊗ L,

and the map fk(ϕ)
� is the special case with ψ ⊗ idL = ϕ|O + idL : O ⊕ L � L.

Since ψ and χ : Em → F are surjective, this composite is surjective if either ϕ�

is surjective or if ψ|L∨ is surjective, which proves (i) and (ii). To prove (iii), it
remains to show that hk sends V(Ek,F) to the complement of ∂Zk+m. Since the
loci where ψ|L∨ and ψ|O are surjective form an open covering of P(O(−1) ⊕ O),
and the case where ψ|L∨ is surjective is already established, we may assume that
ψ|O is surjective. But when both ϕ|O and ψ|O are surjective, the map hk(ϕ, ψ)|O
is surjective, i.e., hk(ϕ, ψ) belongs to V(Ek+m,F). �

Lemma 5.2. Let X ∈ P(SchS), let G be a group object in P(SchS)/X containing
Gm as a subgroup, and let E be a finite locally free representation of G over X such
that Gm acts with constant non-zero weight. Then the canonical map

VX(E)/G → BG

is a weighted A1-homotopy equivalence. In particular, it becomes an isomorphism
in MSS.

Proof. If Gm acts on E with weight n, then the map

A1/Gm × VX(E)/G → VX(E)/G, (t, v) �→ t|n|v

is an A1/Gm-homotopy from the zero map to the identity. The last claim follows
from Corollary 4.8. �

Theorem 5.3 (Geometric model of the stack of vector bundles). Let E be a finite
locally free sheaf on S admitting an epimorphism E � O. Then, for every n ≥ 0,
the canonical map

Grn(E
∞) → BGLn = Vectn

becomes an isomorphism in MSS .

Proof. This map can be decomposed as

Stn(E
∞)/GLn → V(E∞,On)/GLn → BGLn.

The first map is the simplicial colimit of Stn(E
∞) × GL•

n → V(E∞,On) × GL•
n,

hence becomes an isomorphism in MSS by Proposition 5.1. The second map is the

Licensed to Princeton Univ. Prepared on Wed Aug  6 09:49:03 EDT 2025 for download from IP 128.112.200.49.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CONNER–FLOYD ISOMORPHISM FOR ALGEBRAIC K-THEORY 271

sequential colimit over k of the maps V(Ek,On)/GLn → BGLn, hence becomes an
isomorphism in MSS by Lemma 5.2. �

6. Orientations revisited

Let E be an object in MSunS . Recall from [AI23, Section 3.1] that E is orientable
if the map

[O(1)]⊗ idE : P1 ⊗ E → Pic⊗ E

admits a retraction, where P1 and Pic are viewed as pointed objects. If E ∈ MSunS
is orientable, then it is fundamental [AI23, Lemma 3.1.7], hence belongs to the
full subcategory MSS of stable objects (Corollary 4.13(ii)). A choice of such a
retraction (in the homotopy category) is called an orientation of E, and we say
that E is oriented if an orientation of E is fixed. An orientation of E defines a
cohomology operation c1(L) : Σ

−1
P1 EX+ → EX+ for every X ∈ P(SmS) and every

L ∈ Pic(X), called the first Chern class of L.
If E ∈ MSunS is orientable and has an algebra structure (in the homotopy cate-

gory), then we can always choose an orientation as a right E-linear map. When we
say that an algebra object E is oriented, we will always assume that the orientation
is right E-linear. The first Chern class c1(L) : Σ

−1
P1 EX+ → EX+ is then given by

left multiplication with a class c1(L) ∈ E1(X).
Suppose that E ∈ MSunS is oriented. Then E satisfies projective bundle formula

by [AI23, Lemma 3.3.5]: for a locally free sheaf E of rank r on X ∈ P(SmS), we
have an isomorphism

r−1∑
i=0

c1(O(1))
i :

r−1⊕
i=0

Σ−i
P1 E

X+
∼−→ EPX(E)+ .

By naturality of c1, we have a commutative square

EPX(E⊕O)+ EPX(E)+

⊕r
i=0 Σ

−i
P1 EX+

⊕r−1
i=0 Σ−i

P1 EX+ ,

∑
c1(O(1))i ∼

∑
c1(O(1))i∼

where the bottom horizontal map is the inclusion of the first r summands. This
induces an isomorphism

t(E) : Σ−r
P1 E

X+
∼−→ EThX (E)

between the cofiber of the lower map and the fiber of the upper map, called the
Thom isomorphism. When E is an algebra, t(E) is right EX+-linear and can be

identified with a class t(E) ∈ Ẽr(ThX(E)), called the Thom class of E.
The higher Chern classes ci(E) : Σ

−i
P1 EX+ → EX+ for 0 ≤ i ≤ r are then defined

by the formula

(6.1) t(E) =

r∑
i=0

(−1)r−ic1(O(1))
i · cr−i(E),
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which is to be understood as an equality between maps Σ−r
P1 EX+ → EP(E⊕O)+ . In

particular, if s a global section of E∨, then the following diagram commutes:

(6.2)

Σ−r
P1 E

X+ EThX(E)

EX+ .

t(E)

cr(E)
(−1)rs∗

Using the isomorphism Vectn � Grn in MSS proved in Theorem 5.3, we can
considerably simplify the proof of the main result of [AI23, Section 4]:

Theorem 6.3 (Oriented cohomology of the stack of vector bundles). Let E be an
oriented object in CAlg(hMSS). Then, for all X ∈ P(SmS) and n ≥ 0, there is an
isomorphism of bigraded rings

E∗∗(X ×Vectn) � E∗∗(X)[[c1, . . . , cn]],

where ci ∈ Ei(Vectn) is the ith Chern class of the universal rank n locally free
sheaf.

Proof. By Theorem 5.3, this follows from the computation of the oriented cohomol-
ogy of Grassmannians as in [AI22, Corollary 4.6]; see also [AI23, Corollary 4.4.5].
This computation only uses Zariski descent, the projective bundle formula, and the
isomorphism Pic � P∞, which is actually a consequence of the first two as proved
in Theorem 5.3. �

Applying Theorem 6.3 with n = 1 and X = Pic yields in the usual way a formal
group law over the graded ring E∗(S). This formal group law computes the first
Chern class of the tensor product of two invertible sheaves on any X ∈ P(SmS)
whose image in MSS is compact (this ensures that Chern classes on X are nilpotent,
since Pic � colimn Pn).

Using weighted A1-invariance, we can further compute the oriented cohomology
of the stack Bμn of μn-torsors (i.e., the fppf-local delooping of μn):

Proposition 6.4 (Oriented cohomology of the stack of μn-torsors). Let E ∈ MSS
be oriented and let n ≥ 1. Then there is a cofiber sequence of motivic spectra

Σ−1
P1 E

BGm+
c1(L

⊗n)−−−−−→ EBGm+ → EBμn+ ,

where L is the universal invertible sheaf on BGm = Pic. Hence, if E ∈ CAlg(hMSS)
is oriented with formal group law F , there is for any X ∈ P(SmS) a long exact
sequence

· · · → E∗∗(X)[[c]]
[n]F−−−→ E∗∗(X)[[c]] → E∗∗(X × Bμn) → E∗+1,∗(X)[[c]] → · · · .

Proof. Let P1(n) be the quotient P1/Gm, where Gm acts with weight n on P1. In
other words, P1(n) is the projective bundle PBGm

(L⊗n ⊕ O). Then P1(n) admits
an open cover by the weighted lines A1(±n), such that A1(n) ∩ A1(−n) � Bμn.
Hence, we obtain a cofiber sequence

EP1(n)+ → EA1(n)+ ⊕ EA1(−n)+ → EBμn+ .

Applying the projective bundle formula to EP1(n)+ , the weighted A1-invariance to

EA1(±n)+ (Corollary 4.8), and the fact that O(1) restricts to O on A1(n) and L⊗n

on A1(−n), we obtain the desired cofiber sequence. �

Licensed to Princeton Univ. Prepared on Wed Aug  6 09:49:03 EDT 2025 for download from IP 128.112.200.49.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CONNER–FLOYD ISOMORPHISM FOR ALGEBRAIC K-THEORY 273

Next we prove that an orientation is uniquely recovered from the Thom class of
the universal invertible sheaf. To that end, we introduce the auxiliary notion of
Thom orientation. Let L be the universal invertible sheaf on Pic and ι the canonical
map

ι : P1 = Th∗(L|∗) → ThPic(L).

Definition 6.5 (Thom orientation). We say that E ∈ MSunS is Thom orientable if
the map

ι⊗ idE : P1 ⊗ E → ThPic(L)⊗ E

admits a retraction. A choice of such a retraction (in the homotopy category)
is called a Thom orientation of E. We say that E is Thom oriented if a Thom
orientation of E is fixed.

Remark 6.6. If E ∈ MSunS is oriented, then the map ThPic(L)⊗E → P1⊗E adjoint
to the composite

Σ−1
P1 E → Σ−1

P1 E
Pic+ t(L)−−−→ EThPic(L)

is a Thom orientation of E.

Let s0 be the zero section of VPic(L). Consider the following diagram in P(SmS)∗:

S0 Pic+ Pic

P1 ThPic(L).

s0
s̃0

ι

The left vertical map is canonically nullhomotopic in MSS by Corollary 4.5. There-
fore, we obtain a lift s̃0 in MSS as indicated.

Lemma 6.7. Let E be an object in MSS with a Thom orientation t. Then the
composite

Pic⊗ E
−s̃0−−→ ThPic(L)⊗ E

t−→ P1 ⊗ E

is an orientation of E.

Proof. Consider the diagram

Pic⊗ E ThPic(L)⊗ E P1 ⊗ E

P1 ⊗ E ThP1(O(1))⊗ E,

−s̃0 t

−s̃0

where the vertical maps are induced by the map P1 → Pic classifying O(1). The
goal is to show that the end-to-end composite is homotopic to the identity. By the
definition of Thom orientation, it suffices to show that the bottom horizontal map
−s̃0 is homotopic to the map induced by ι : P1 → ThP1(O(1)). This follows from
Proposition 4.14. �

Let E be an object in MSunS and F the internal hom object Hom(E,E). Then

we define Ori(E) to be the subset of F̃ 1(Pic) consisting of orientations of E, and we

define TOri(E) to be the subset of F̃ 1(ThPic(L)) consisting of Thom orientations
of E.
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Proposition 6.8. A motivic spectrum E ∈ MSS is orientable if and only if it is
Thom orientable. More precisely, there is a bijection

Ori(E)
∼−→ TOri(E)

given by taking the Thom class of the universal invertible sheaf. Furthermore, if E
is an algebra in the homotopy category, then an orientation of E is E-linear if and
only if the corresponding Thom orientation is E-linear.

Proof. We show that the map Ori(E) → TOri(E) given by taking the Thom class
of the universal invertible sheaf L is a bijection with inverse

−s∗0 : TOri(E) → Ori(E),

which is well-defined by Lemma 6.7. Given an orientation c = c1(L), we have

−s∗0(t(L)) = −s∗0(c1(O(1))− c1(L)) = −c1(OPic) + c1(L) = c1(L),

where the first equality holds by (6.1), the second by the naturality of c1, and
the third by definition of an orientation. It remains to show that −s∗0 is injective,

and for this we may assume that E has an orientation c ∈ F̃ 1(Pic). Then, by the
diagram (6.2), the injectivity of −s∗0 is equivalent to the injectivity of left multi-
plication by c on F ∗(Pic). By Theorem 5.3, we have F ∗(Pic) � F ∗(P∞). By the
projective bundle formula, F ∗(Pn) is a free right F ∗-module with basis 1, c, . . . , cn.
It then follows from the Milnor exact sequence that F ∗(Pic) � limn F

∗(Pn). By
[AI23, Lemma 3.1.8], we further have cn+1 = 0 in F ∗(Pn), from which we deduce
the desired injectivity. The final statement is obvious. �

Remark 6.9. In MSunS , Thom orientability is a priori a weaker condition than ori-
entability, since there may be Thom orientable objects that are not fundamental.

Remark 6.10. One can consider a variant of Definition 6.5 with ThP∞(O(1)) instead
of ThPic(L). Since P∞ � Pic, the proofs of Lemma 6.7 and Proposition 6.8 go
through for this definition and imply that it is in fact equivalent to Definition 6.5
for objects of MSS . However, we do not know if ThP∞(O(1)) and ThPic(L) are
actually isomorphic in MSS .

7. Algebraic cobordism and the universal orientation

We consider the symmetric monoidal natural transformation

Th: Vect → MSun : Schop → CAlg(Cat∞)

constructed in Section 3. By Corollary 3.7, it lands in the presheaf of E∞-groups
Pic(MSun), which is a Zariski sheaf. Hence, it factors through the Zariski-local
group completion of Vect, which coincides with the Zariski sheafification of con-
nective algebraic K-theory. We therefore obtain a symmetric monoidal natural
transformation

Th: K → MSun : Schop → CAlg(Cat∞).

Using the general formalism of Thom spectra/relative colimits developed in [BH21,
Section 16], we obtain a symmetric monoidal functor

M: P(SmS)/K → MSunS ,
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natural in S. As in loc. cit., we then define MGL = M(e), where e : Krk=0 ↪→ K is
the kernel of the rank map rk: K → Z. Explicitly, we have

MGL = colim
(X,ξ)∈Krk=0

ThX(ξ),

where Krk=0 → SmS is the cartesian fibration classified by Krk=0. Since e is an
E∞-map, MGL is an E∞-algebra. Moreover, MGL is stable under arbitrary base
change T → S, since K-theory is Zariski-locally left Kan extended from smooth
schemes [EHK+20, Example A.0.6]. The A1-localization of MGL is exactly Vo-
evodsky’s algebraic cobordism spectrum (using the description of the latter from
[BH21, Theorem 16.13]).

The periodic version is similarly defined by

PMGL = M(idK) = colim
(X,ξ)∈K

ThX(ξ),

where K → SmS is the cartesian fibration classified by K. Then PMGL is an
E∞-algebra and is stable under arbitrary base change.

We will denote by MGL(n) the Thom spectrum of the map Vectn → K, E �→
E− On, that is:

MGL(n) = Σ−n
P1 ThVectn(En),

where En ∈ Vectn(Vectn) is the universal locally free sheaf of rank n.

Proposition 7.1. The canonical map Vect∞ = colimn Vectn → Krk=0 induces an
isomorphism in MSS

colim
n

MGL(n) � MGL.

Proof. The canonical map f : Vect∞ → Krk=0 is acyclic in the ∞-topos of Zariski
sheaves on SmS [EHK+20, Lemma 2.1.1], which means that its pushout along
itself is an isomorphism. Since the Thom spectrum functor M induces a colimit-
preserving functor

M: PZar(SmS)/K → MSunS ,

cf. [BH21, Proposition 16.9(1)], we obtain a pushout square

M(e ◦ f) M(e)

M(e) M(e)

in MSunS . In the stabilization MSS , this square becomes a pullback square, which
proves the claim. �
Remark 7.2. Similarly, we have an isomorphism PMGL � colimn Σ

−n
P1 ThVect(E) in

MSS , where E ∈ Vect(Vect) is the universal finite locally free sheaf.

The canonical map MGL(1) → MGL is clearly a Thom orientation of MGL,
which in turn gives a canonical orientation of MGL in MSS by Proposition 6.8. We
now prove the universality of MGL as an oriented ring spectrum.

Lemma 7.3 (Multiplicativity of Thom classes). Let E be an oriented object in
CAlg(hMSS). Let E,F be finite locally free sheaves on X,Y ∈ P(SmS), respectively.
Then the Thom class t(E � F) is identified with the external product of the Thom
classes t(E)× t(F) under the canonical isomorphism

Ẽ∗(ThX×Y (E� F)) � Ẽ∗(ThX(E) ∧ ThY (F)).
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Proof. We may assume that E and F are the universal sheaves on Vectm and Vectn,
respectively. Let s be the zero section of V(E � F) � V(E) × V(F). Consider the
diagram

Ẽ∗(ThVectm×Vectn(E� F))

E∗(Vectm × Vectn) E∗(Vectm ×Vectn)

Ẽ∗(ThVectm(E) ∧ ThVectn(F)).

s∗

∼

t(E�F)
∼

t(E)×t(F)

∼
s∗

The right triangle commutes, since the maps

P(E⊕ O)× P(F ⊕ O)
bΠ←− B(π∗

1E, π
∗
2F)

bP−→ P((E� F)⊕ O)

inducing the vertical isomorphism are both isomorphisms over the open V(E)×V(F).
The boundary of the diagram commutes since

(−1)m+ns∗(t(E� F)) = cm+n(E� F) = cm(E)× cn(F) = (−1)m+ns∗(t(E)× t(F)),

where the first and third equalities hold by (6.2) and the second by the Whitney
sum formula [AI23, Lemma 4.4.3]. Furthermore, the map s∗ is injective since

E∗(Vectm ×Vectn) � E∗(S)[[c1(π
∗
1E), . . . , cm(π∗

1E), c1(π
∗
2F), . . . , cn(π

∗
2F)]]

by Theorem 6.3. Therefore, the left triangle commutes as desired. �

Proposition 7.4. Let E be an oriented object in CAlg(hMSS). Then there is a
unique isomorphism

E∗∗(Vect∞) � E∗∗(MGL)

lifting the Thom isomorphisms E∗∗(Vectn) � E∗∗(MGL(n)) for all n ≥ 0.

Proof. By Proposition 7.1, we have MGL = colimn MGL(n). We apply Lemma 7.3
to the pair of the universal locally free sheaf En on Vectn and the sheaf O on S.
Then it follows that the diagram

E∗∗(Vectn+1) E∗∗(MGL(n+ 1))

E∗∗(Vectn) E∗∗(MGL(n))

∼
t(En+1)

∼
t(En)

commutes, where the left vertical map is induced by the map Vectn → Vectn+1

classifying En ⊕ O, and is surjective by Theorem 6.3. By taking limits and using
the Milnor exact sequence, we obtain the desired isomorphism. �

Theorem 7.5 (Universality of MGL). MGL is the initial oriented object in
CAlg(hMSS), i.e., for every oriented object E in CAlg(hMSS), there is a unique
orientation-preserving morphism MGL → E in CAlg(hMSS).

Proof. Let E be an oriented object in CAlg(hMSS). Let t : MGL → E be the
morphism in MSS corresponding to 1 ∈ E0(Vect∞) � E0(MGL), where the iso-
morphism is that of Proposition 7.4. Then t obviously preserves orientations. Let
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tn denote the restriction of t to MGL(n). Then the diagram

MGL(n)⊗MGL(m) E ⊗ E

MGL(n+m) E

tn⊗tm

tn+m

commutes by Lemma 7.3. Also, t preserves units by construction. Hence, t is a
morphism in CAlg(hMSS).

It remains to show the uniqueness. Suppose that we are given another morphism
t′ : MGL → E in CAlg(hMSS), which preserves orientations. Since E0(MGL) =
limn E

0(MGL(n)), it suffices to show that the restriction of t′ to MGL(n), which
we denote by t′n, agrees with tn for each n ≥ 1. This is clear for n = 1, because
both t1 and t′1 are given by the Thom class of the universal invertible sheaf. Since
t and t′ are morphisms of commutative algebras, tn and t′n agree with each other
when restricted to MGL(1)⊗n. However, it follows from Theorem 6.3 that the map

E0(MGL(n)) → E0(MGL(1)⊗n)

is injective, and thus tn = t′n. This completes the proof. �
Remark 7.6. Slightly more generally, the above argument shows that MGL is initial
among oriented associative algebras in hMSS whose orientation class is central
(equivalently, whose Thom isomorphisms are bimodule maps). However, MGL is
not initial among oriented associative algebras: this would imply that orientations
are equivalent to MGL-module structures, but the free oriented motivic spectrum
on the unit, colimn MGL(1)⊗n, is not an MGL-module. In fact, an MGL-module
is precisely an oriented spectrum whose Thom isomorphisms are compatible with
direct sums.

Remark 7.7. By Theorem 5.3, the map Gr∞ → Vect∞ becomes an isomorphism in
MSS . But this does not imply that it induces an isomorphism of Thom spectra, i.e.,
MGL is a colimit of Thom spectra over Grassmannians as in A1-homotopy theory.
We suspect that this is nevertheless the case. Denoting by MGr the latter colimit,
we note that the map ϕ : MGr → MGL is an isomorphism from the perspective
of any oriented object in CAlg(hMSS). If we could promote ϕ to a morphism
of commutative algebras in hMSS , then MGr would be oriented by Remark 6.10
and we would deduce that ϕ is an isomorphism. It seems possible to construct
such a monoid structure by imitating [PPR08, Section 2.1] and using the results of
Section 3.

We say that E ∈ CAlg(hMSS) is periodic if a unit β ∈ E−1(1), called the Bott
element, is given. Note that PMGL is periodic with the Bott element given by the
canonical map P1 = Th∗(O) → ThPic(E1).

Corollary 7.8 (Universality of PMGL). PMGL is the initial periodic oriented ob-
ject in CAlg(hMSS), i.e., for every periodic oriented object E in CAlg(hMSS), there
is a unique morphism PMGL → E in CAlg(hMSS) that preserves the orientation
and the Bott element.

Proof. This follows immediately from Theorem 7.5. �
For later purposes, we record the computation of the oriented homology of MGL.

This is a standard computation once we know that MGL⊗ (Grn,k)+ is a finite free
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MGL-module (see for example [NSØ09, Proposition 6.2] for the analogue in A1-
homotopy theory).

Proposition 7.9. Let E be an oriented object in CAlg(hMSS).

(i) There is an isomorphism of E∗∗-algebras

E∗∗(Vect∞) � E∗∗[β0, β1, . . . ]/(β0 − 1),

where the ring structure on the left-hand side comes from the algebra struc-
ture of Σ∞

P1(Vect∞)+ � Σ∞
P1(Krk=0)+ and βi ∈ Ei(Pic) is the predual basis

to ci ∈ Ei(Pic).
(ii) There is an isomorphism of E∗∗-algebras

E∗∗(MGL) � E∗∗[b0, b1, . . . ]/(b0 − 1),

where bi is the image of βi under the Thom isomorphism Ei(MGL) �
Ei(Vect∞). Moreover, if cE and cMGL are the images in (E⊗MGL)1(Pic)
of the orientations of E and MGL, we have

cMGL =
∑
i≥0

bic
i+1
E .

Proof. (i) By [AI23, Lemma 4.4.4], the Grassmannian formula holds for all MGL-
modules M in MSS : the map∑

α

c(Q)α :
⊕
α

Σ
−‖α‖
P1 M → M (Grn,k)+

is an isomorphism, where α = (α1, . . . , αn) runs over all n-tuples of non-negative
integers with

∑
i αi ≤ k−n and we write ‖α‖ =

∑
i iαi and cα =

∏
i c

αi
i . It follows

that MGL ⊗ (Grn,k)+ is a finite free MGL-module. Hence, for a commutative
MGL-algebra E in hMSS , the map

E∗∗(Grn,k) → E∗∗(Grn,k)
∨

is an isomorphism of E∗∗-modules for finite k and thus for k = ∞ too. Then
it follows from Theorem 5.3 that E∗∗(Vectn) is the dual of E∗∗(Vectn). Since

E∗∗(Vectn) = (E∗∗(Pic)⊗̂n)Σn , we have E∗∗(Vectn) = Symn E∗∗(Pic). Moreover,
the direct sum pairing Vectm × Vectn → Vectm+n induces the canonical map
Symm ⊗ Symn → Symm+n in homology. The map E∗∗ → E∗∗(Pic) induced by the
base point of Pic is multiplication by β0, and hence so is the map E∗∗(Vectn) →
E∗∗(Vectn+1) induced by E �→ E⊕ O. Thus, under the identification

E∗∗(Vectn) = Symn

(⊕
i≥0

E∗∗βi

)
� Sym≤n

(⊕
i≥1

E∗∗βi

)
given by β0 �→ 1, the map E∗∗(Vectn) → E∗∗(Vectn+1) corresponds to the inclusion

Sym≤n → Sym≤n+1. In the colimit, we obtain the claimed isomorphism of E∗∗-
algebras

E∗∗(Vect∞) = colim
n

E∗∗(Vectn) � E∗∗[β1, β2, . . . ].

(ii) Since we have Thom isomorphisms t(En) : M
Vectn,+

∼−→ MMGL(n) for all
MGL-modules M in MSS , we get an isomorphism of MGL-modules

MGL⊗MGL(n) � MGL⊗Vectn,+,
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hence an isomorphism of E∗∗-modules Ẽ∗∗(MGL(n)) � E∗∗(Vectn). It follows from
Lemma 7.3 that this isomorphism is natural in n, and that we obtain an isomor-
phism of rings E∗∗(MGL) � E∗∗(Vect∞) in the colimit. By definition of βi, the last

formula is equivalent to the following statement: the map Ẽ∗(Pic) → E∗−1(MGL)
induced by the universal orientation c : Pic → ΣP1MGL sends βi+1 to bi. By def-
inition, c factors through −s̃0 : Pic → ΣP1MGL(1), and so we must show that the

induced map Ẽ∗(Pic) → Ẽ∗−1(MGL(1)) composed with the Thom isomorphism

Ẽ∗−1(MGL(1)) � E∗−1(Pic) sends βi+1 to βi. Dualizing, this is equivalent to

−s̃∗0 ◦ t(E1) : E
∗−1(Pic) → Ẽ∗(Pic) being multiplication by c, which is a special case

of (6.2). �

Corollary 7.10. Let E be an oriented object in CAlg(hMSS). Then there is an
isomorphism of E-algebras

E ⊗MGL � E[b1, b2, . . . ] =
⊕
m

Σ
deg(m)
P1 E,

where m ranges over the monomials in the variables bi and deg(bi) = i.

Proof. Proposition 7.9(ii) gives a map of E-algebras from the right-hand side to
the left-hand side. It is an isomorphism since Proposition 7.9 holds not just over S
but also over any smooth S-scheme. �

8. Algebraic Conner–Floyd isomorphism

We shall prove the Conner–Floyd isomorphism for algebraic K-theory by fol-
lowing the argument of Spitzweck and Østvær in the A1-invariant setting [SØ09],
i.e., by comparing universal properties of cohomology theories defined on compact
motivic spectra. A key input is the isomorphism Σ∞

P1(Grn)+ � Σ∞
P1(Vectn)+ of

Theorem 5.3. We first introduce some terminology for such cohomology theories:

Definition 8.1. Let S be a qcqs derived scheme.

• A cohomology theory on MSωS is a homological functor

E0 : MSω,op
S → Ab,

i.e., a functor that preserves finite products and sends cofiber sequences to
exact sequences. We then write Eq = E0 ◦Σ−q

P1 , Ep,q = Eq ◦Σ2q−p, and we
denote by

Êp,q : MSopS → Pro(Ab)

the extension of Ep,q that preserves cofiltered limits (which is again a ho-

mological functor). For a presheaf X ∈ P(SmS) we write Êp,q(X) instead

of Êp,q(Σ∞
P1X+).

• A ring cohomology theory will mean a commutative monoid in cohomology
theories, with respect to the Day convolution in Fun(MSω,op

S ,Ab).
• A periodic cohomology theory is a ring cohomology theory E0 with a unit
β ∈ E−1(1).

• An oriented cohomology theory is a ring cohomology theory E0 with an

element c ∈ Ê1(Pic) = limn E
1(Pn), whose restriction to E1(P1) � E1(1)⊕

E0(1) is (0, 1).
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• A Gm-preoriented cohomology theory is a ring cohomology theory E0 with

an element u ∈ Ê0(Pic) such that u|pt = 1 and ⊗∗(u) = u1u2, where

ui = π∗
i (u) ∈ Ê0(Pic×Pic). We then define the Bott element β ∈ E−1(1) =

Ẽ0(P1) to be the element 1− u|P1 , and we say that (E0, u) is Gm-oriented
if β is unit.6

Remark 8.2. Let X ∈ MSS and let E0 be a cohomology theory on MSωS . Then

there is a canonical isomorphism between the limit of the pro-group Êp,q(X) and
the group of natural transformations X0(−) → Ep,q(−) on MSωS .

Let (E0, c) be an oriented cohomology theory on MSωS . For an arbitrary presheaf
X ∈ P(SmS) and an invertible sheaf L ∈ Pic(X), we define the first Chern class

c1(L) ∈ Ê1(X) to be the pullback of c along the map X → Pic classifying L. The

theory Ê∗∗ then satisfies the projective bundle formula: for any X ∈ P(SmS) and
any locally free sheaf E of rank n over X, the map of pro-groups

n−1⊕
i=0

Ê∗−2i,∗−i(X) → Ê∗∗(P(E)), (a0, . . . , an−1) �→
n−1∑
i=0

c1(OP(E)(1))
ip∗(ai)

is an isomorphism. To see this, consider the full subcategory of P(SmS)/X where
the projective bundle formula holds for the pullback of E. This subcategory contains
representable presheaves by the proof of [AI23, Lemma 3.3.5]. It also contains the
initial object, is closed under pushouts by the 5-lemma, and is closed under filtered

colimits by definition of Ê∗∗. It therefore contains X itself. Consequently, we also
have the Thom isomorphism

Ê∗∗(ThX(E)) � Ê∗−2n,∗−n(X)

and higher Chern classes ci(E) ∈ Êi(X).
One can further compute the ring structure on the cohomology of a finite product

of projective spaces as in [AI23, Lemma 3.1.8], using that for a scheme X ∈ Smfp
S

and quasi-compact open subschemes U1, . . . , Un ⊂ X we have a refined cup product

E∗∗(X/U1)⊗ · · · ⊗ E∗∗(X/Un) → E∗∗(X/(U1 ∪ · · · ∪ Un)).

Together with the isomorphism Σ∞
P1P∞

+ � Σ∞
P1Pic+ of Theorem 5.3, we obtain an

isomorphism of pro-rings

Ê∗∗(Picn) = E∗∗[[x1, . . . , xn]],

where xi = π∗
i (c). Since (Pic,⊗) is an E∞-group, the power series ⊗∗(c) ∈

E∗[[x1, x2]] is a commutative formal group law over E∗, homogeneous of coho-
mological degree 1. By construction, this formal group law computes c1(L1 ⊗ L2)
in terms of c1(L1) and c1(L2) for any X ∈ P(SmS) and any L1,L2 ∈ Pic(X) (and
first Chern classes are nilpotent when Σ∞

P1X+ is compact). Using the formal group

law, one may prove the Whitney sum formula for the Chern classes in Ê∗ exactly
as in [AI23, Lemma 4.4.3].

Lemma 8.3 explains the relationship between orientations and Gm-orientations:

6The element u is automatically a unit since Pic is a group. It should be understood as defining
a preorientation of the group scheme Gm over the ring E in the sense of Lurie [Lur09, Definition
3.2].
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Lemma 8.3 (Orientations vs. Gm-orientations). Let E0 be a ring cohomology the-
ory on MSωS. Then the assignment

u �→ (β, c), β = 1− u|P1 , c = β−1(1− u),

gives a bijection between Gm-orientations of E0 and pairs (β, c) consisting of a unit

β ∈ E−1(1) and an orientation c ∈ Ê1(Pic) satisfying

⊗∗(c) = x1 + x2 − βx1x2,

where xi = π∗
i (c) ∈ Ê1(Pic× Pic). The inverse is given by (β, c) �→ 1− βc.

Proof. It is clear that the given formulas are inverse to each other. Suppose u is a

Gm-orientation with associated unit β, and let c = β−1(1−u) ∈ Ê1(Pic). Then the
formula for ⊗∗(u) yields the desired formula for ⊗∗(c). Moreover, since u|pt = 1,
we have c|P1 = β−1(1− u|P1) = β−1(0, β) = (0, 1), so that c is an orientation.

Conversely, let (β, c) be a pair as in the statement and let u = 1 − βc. Then
u|pt = 1− β · 0 = 1 and

⊗∗(u) = 1− β · ⊗∗(c) = 1− β(x1 + x2 − βx1x2) = (1− βx1)(1− βx2) = u1u2,

so that u is a Gm-preorientation. Moreover, 1 − u|P1 = βc|P1 = (0, β) and β is a
unit. �

Example 8.4. Let KGL ∈ CAlg(MSS) be the motivic spectrum representing al-
gebraic K-theory. The class

u = [O(−1)] ∈ lim
n

K0(Pn) = K̂GL0(Pic)

is a Gm-preorientation of KGL0(−) : MSω,op
S → Ab (as one sees using the Segre

embeddings). The induced element β = 1 − u|P1 ∈ KGL−1(1) is the usual Bott
element, given by the structure sheaf of the point ∞ ∈ P1. Since β is a unit,
KGL0(−) is Gm-oriented.

Proposition 8.5 (Universality of MGL-cohomology). Let S be qcqs derived scheme.
Then the ring cohomology theory

MGL0(−) : MSω,op
S → Ab

is the initial object in the category of oriented cohomology theories on MSωS.

Proof. The proof is a straightforward modification of the one of Theorem 7.5. The

point is that, if E0 is an oriented cohomology theory on MSωS , then Ê∗∗ has the
correct formula for Vectn:

Ê∗∗(X ×Vectn) � Ê∗∗(X)[[c1, . . . , cn]].

This follows from Theorem 5.3 and the computation of the cohomology of Grass-
mannians using the projective bundle formula (see [AI22, Lemma 4.5]). Then the

multiplicativity of Thom classes in Ê∗∗ follows as in Lemma 7.3, and we get the
infinite Thom isomorphism

Ê∗∗(Vect∞) � Ê∗∗(MGL)

as in Proposition 7.4. The cohomology class 1 ∈ Ê0(Vect∞) � Ê0(MGL) then
gives the desired unique morphism MGL0 → E0 of oriented cohomology theories
as in Theorem 7.5. �
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Corollary 8.6 (Universality of PMGL-cohomology). Let S be qcqs derived scheme.
Then the ring cohomology theory

PMGL0(−) : MSω,op
S → Ab

is the initial object in the category of periodic oriented cohomology theories on MSωS.

Proof. This follows immediately from Proposition 8.5. �

Lemma 8.7. Let C be a symmetric monoidal cocomplete stable ∞-category whose
tensor product preserves colimits in each variable and whose unit is compact. Let
E ∈ CAlg(hC) be such that there is an isomorphism of E-modules

E ⊗ E �
⊕
α

E ⊗ Lα

with Lα ∈ Pic(C). Then the Amitsur complex of E defines a Pic(C)-graded Hopf
algebroid (E�, E�E) such that the functors

E�(−) : C → ModE�
,

E�(−) : Cω,op → ModE�

factor through the category of (E�, E�E)-comodules.

Proof. The assumption on E implies that, for any X ∈ C and n ≥ 1, the canonical
map

(E⊗n)� ⊗E�
E�X → (E⊗n)�X

is an isomorphism, and that when X is compact, the canonical map

(E⊗n)� ⊗E�
E�X → (E⊗n)�X

is an isomorphism. Let ηL : E � E ⊗ 1 → E ⊗ E be the left unit. Taking X = E
itself and n ≤ 3 yields the Hopf algebroid (E�, E�E) with comultiplication

E�E
ηL−−→ (E ⊗ E)�E

∼←− E�E ⊗E�
E�E.

The coaction on E�X is then given by the composite

E�X
ηL−−→ (E ⊗ E)�X

∼←− E�E ⊗E�
E�X,

and the coaction on E�X for X compact is given by the composite

E�X
ηL−−→ (E ⊗ E)�X

∼←− E�E ⊗E�
E�X. �

By Corollary 7.10, we have an isomorphism of MGL-modules

MGL⊗MGL � MGL[b1, b2, . . . ] =
⊕
m

Σ
deg(m)
P1 MGL,

where m ranges over the monomials in the variables bi and deg(bi) = i. Lemma 8.7
therefore applies to MGL ∈ CAlg(hMSS) and yields a Z-graded Hopf algebroid
(MGL∗,MGL∗MGL).7 Note that if c and c′ are two orientations of E∈CAlg(hMSS),
then there is a unique power series f(t) ∈ t+t2E∗[[t]] such that f(c) = c′ in E1(Pic),
which defines a strict isomorphism between the associated formal group laws over

7This Hopf algebroid is a priori only τ≤1S-graded, but it turns out to be Z-graded as the swap

map on P1 ⊗ P1 induces the identity on MGL2(−), by the naturality of the Thom isomorphism.
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E∗. The graded formal group law F over MGL∗ and the strict isomorphism be-
tween the two formal group laws η∗L(F ) and η∗R(F ) over MGL∗MGL then induce a
morphism of graded Hopf algebroids

(L,LB) → (MGL∗,MGL∗MGL),

where (L,LB) is the Hopf algebroid classifying the strict groupoid of formal group
laws and strict isomorphisms. Recall that LB is a polynomial ring

L[b0, b1, b2, . . . ]/(b0 − 1),

over which the power series
∑

i≥0 bix
i+1 is the universal strict isomorphism [Rav86,

Proposition A2.1.15]. Proposition 7.9(ii) implies that the above morphism is a
cocartesian natural transformation of cosimplicial commutative rings, so that a
structure of (MGL∗,MGL∗MGL)-comodule on an MGL∗-module is equivalent to a
structure of (L,LB)-comodule on the underlying L-module.

Proposition 8.8. Let S be qcqs derived scheme. Then the ring cohomology theory

(MGL∗(−)⊗L Z[β±1])0 : MSω,op
S → Ab

is the initial object in the category of Gm-oriented cohomology theories on MSωS.

Proof. By Lemma 8.7, the functor MGL∗(−) on compact spectra is valued in
(L,LB)-comodules. Since Z[β±1] is a flat (L,LB)-comodule by Landweber’s cri-
terion [Lur10, Lecture 15, Example 12], the given functor is indeed a homological
functor. It then follows from Lemma 8.3 that it has the stated universal prop-
erty. �

Lemma 8.9. Let S be qcqs derived scheme. Then the ring cohomology theory

(Σ∞
P1Pic+)

0(−) : MSω,op
S → Ab

is the initial object in the category of Gm-preoriented cohomology theories on MSωS.

Proof. This is clear by Remark 8.2. �

Proposition 8.10 (Universality of KGL-cohomology). Let S be qcqs derived
scheme. Then the ring cohomology theory

KGL0(−) : MSω,op
S → Ab

is the initial object in the category of Gm-oriented cohomology theories on MSωS.

Proof. By [AI23, Theorem 5.3.3], there is an isomorphism of motivic E∞-ring spec-
tra

KGL � Σ∞
P1Pic+[β

−1],

where β = 1− [O(−1)]. This is the Bott element associated with the Gm-preorien-
tation on (Σ∞

P1Pic+)
0(−) given by the dual of the universal invertible sheaf, which

is a universal Gm-preorientation by Lemma 8.9. Hence, the cohomology theory
defined by Σ∞

P1Pic+[β
−1] has the desired universal property. �

Theorem 8.11 (Algebraic Conner–Floyd isomorphism). Let X be a qcqs derived
scheme. Then there is an isomorphism of bigraded rings

MGL∗∗(X)⊗L Z[β±1] � KGL∗∗(X).

Proof. Combine Propositions 8.8 and 8.10. �
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Theorem 8.12 (Rational PMGL-cohomology). Let X be a qcqs derived scheme.
Then there is an isomorphism of bigraded rings

Q⊗ PMGL∗∗(X) � LQ ⊗KGL∗∗(X),

where LQ is shorthand for Q⊗ L.

Proof. Both cohomology theories Q⊗PMGL∗(−) and LQ⊗KGL∗(−) take values in
graded LQ[u

±1]-algebras, where the degree −1 element u acts as the canonical unit
on Q⊗PMGL∗(−) and as β on LQ ⊗KGL∗(−). Let cΩ and cK be the orientations

of Q ⊗ PMGL0(−) and KGL0(−), respectively. By abuse of notation, we will also
denote by cK the orientation 1⊗ cK of LQ ⊗KGL0(−).

Since all formal group laws with coefficients in a ring containing the rationals are
equivalent [Haz78, Theorem 1.6.2], there exists a power series f(t) ∈ t+ t2LQ[u][[t]]

such that the orientation f(cΩ) of Q ⊗ PMGL0(−) satisfies the formal group law
x+ y − βxy, and the orientation f−1(cK) of LQ ⊗KGL0(−) satisfies the universal
formal group law of LQ. Here, f−1(t) denotes the compositional inverse of f(t).
By Corollary 8.6 and Proposition 8.10 and extension of scalars, there exist unique
morphisms of oriented cohomology theories

Ψ:
(
Q⊗ PMGL0, cΩ

)
→

(
LQ ⊗KGL0, f−1(cK)

)
and

Φ:
(
LQ ⊗KGL0, cK

)
→

(
Q⊗ PMGL0, f(cΩ)

)
,

the latter of which is required to be LQ-linear. By the hypothesis on f−1(cK), Ψ is
also LQ-linear. As Φ◦Ψ is orientation-preserving, it is the identity by the universal

property of PMGL0(−). As Ψ ◦Φ is orientation-preserving and LQ-linear, it is the

identity by the universal property of KGL0(−). �
Recall that the universal precobordism ring Ω∗(X) of a derived scheme X is

defined as the group completion of the monoid of equivalence classes [V → X] of
projective quasi-smooth derived schemes over X, modulo the relations

[W0 → X] = [A → X] + [B → X]− [PA∩B(O(A)⊕ O)]

for every quasi-smooth projective W → P1
X with fibers W0 and A + B over 0 and

∞ respectively [AY23, Ann23]. Here, A + B denotes the sum of virtual effective
Cartier divisors.

Corollary 8.13. Let X be a Noetherian derived scheme of finite Krull dimen-
sion, and assume that X admits an ample line bundle.8 Then there is a natural
isomorphism of rings

Q⊗
⊕
n∈Z

MGLn(X) � Q⊗
⊕
n∈Z

Ωn(X).

Proof. Combine Theorem 8.12 with [Ann22b, Theorem 236]. �
Remark 8.14. Periodization loses track of the grading, and therefore we do not
immediately obtain an isomorphism of graded rings. However, by constructing
enough transfers for MGL∗, it would be possible to obtain a comparison map Ω∗ →
MGL∗ of graded rings with integer coefficients [Ann22b, Theorem 192]. It is an
interesting question under which conditions this map, or rather its refinement Ω∗ →

8By employing a slightly more complicated construction of Ω∗, it is possible to weaken the
assumptions on X to merely admitting an ample family of line bundles, see [Ann22a].
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MGL∗, where Ω∗ is the derived algebraic cobordism [Ann21], is an isomorphism.
The only known instance seems to be Levine’s result [Lev09], which states that the
natural map Ω∗(X) → (LA1MGL)∗(X) is an isomorphism for all schemes X that
are smooth and quasi-projective over a field of characteristic 0.

Remark 8.15 (Conner–Floyd isomorphism for Selmer K-theory). Let MSétS and

MSét,hypS be the full subcategories of MSS spanned by the étale sheaves and the

étale hypersheaves, respectively. The image of KGL in MSétS then represents the
Zariski sheafification of Selmer K-theory KSel, see [AI23, Section 5.4]. If S is qcqs
of finite Krull dimension and of finite punctual étale cohomological dimension, then

MSét,hypS is compactly generated and the localization functor MSS → MSét,hypS pre-
serves compact objects (combine [CM21, Corollary 3.29] and [Bac21, Lemma 2.16]).

In this case, KSel is also an étale hypersheaf on Smfp
S [CM21, Corollary 7.15]. One

can easily see that the arguments in this section go through if we replace MSS
by any commutative MSS-algebra in PrLω [Lur09, Notation 5.5.7.7]. Under this
finiteness assumption on S, we therefore obtain an isomorphism of bigraded rings

MGLét,hyp∗∗(S)⊗L Z[β±1] � KSel∗∗(S).

9. Snaith theorem for periodic algebraic cobordism

We prove the Snaith theorem for PMGL, which is a non-A1-localized refinement
of a theorem of Gepner–Snaith [GS09, Corollary 3.10]. Our proof is however quite
different from theirs9 and uses instead the same strategy as the proof of the Conner–
Floyd isomorphism in Section 8.

For Definition 9.1, we recall that the map Vect∞ → Krk=0 becomes an isomor-
phism in the ∞-category of Zariski sheaves of spectra (see the proof of Proposi-
tion 7.1). In particular, Σ∞

P1Vect∞,+ has a canonical structure of E∞-algebra in
MSS , whose multiplication we denote by ⊕.

Definition 9.1. Let S be a qcqs derived scheme. A t-preoriented cohomology theory

on MSωS is a ring cohomology theory E0 with an element u ∈ Ê0(Vect∞) such that

u|pt = 1 and ⊕∗(u) = u1u2, where ui = π∗
i (u) ∈ Ê0(Vect∞ × Vect∞). We then

define the Bott element β ∈ E−1(1) = Ẽ0(P1) to be the element 1 − u|P1 , and we
say that E0 is t-oriented if β is a unit.

Let E0 be an oriented cohomology theory on MSωS . If En is the universal rank
n locally free sheaf on Vectn, then the restriction of the Chern class ci(En) ∈
Êi(Vectn) to Vectn−1 is the Chern class ci(En−1). Thus, the sequence (ci(En))n≥0

defines a canonical element

ci ∈ lim
n

Êi(Vectn) = Êi(Vect∞),

such that for any X ∈ P(SmS) we have

Ê∗∗(X ×Vect∞) � Ê∗∗(X)[[c1, c2, . . . ]].

Lemma 9.2 is the analogue of Lemma 8.3 for t-orientations:

9In fact, the argument in loc. cit. seems to contain a crucial mistake: the proof of [GS09,
Theorem 3.9] uses a universal property of localization of ring spectra in the homotopy category,
which is not valid.
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Lemma 9.2 (Orientations vs. t-orientations). Let E0 be a ring cohomology theory
on MSωS. Then the assignment

u �→ (β, c), β = 1− u|P1 , c = β−1(1− u|Pic)

gives a bijection between t-orientations u of E0 and pairs (β, c) consisting of a unit

β ∈ E−1(1) and an orientation c ∈ Ê1(Pic). The inverse is given by the formula

u =
∑
i≥0

(−β)ici ∈ Ê0(Vect∞).

Proof. Suppose u is a t-orientation with associated unit β, and let c = β−1(1 −
u|Pic) ∈ Ê1(Pic). Since u|pt = 1, we have c|P1 = β−1(1−u|P1) = β−1(0, β) = (0, 1),
so that c is an orientation. Conversely, suppose that E0 is periodic and oriented,
with Bott element β and orientation c, and let u =

∑
i(−β)ici. Then it is clear

that u|pt = 1 and that β = 1−u|P1 . Furthermore, it follows from the Whitney sum
formula that ⊕∗(u) = u1u2, so that u is a t-orientation.

It remains to show that the two assignments are inverse to each other. It is
clear that the composite (β, c) �→ u �→ (β, c) is the identity. Conversely, given a t-

orientation u, we have to prove the equality u =
∑

i≥0(−β)ici. Since Ê
0(Vect∞) =

limn Ê
0(Vectn), it suffices to show that these two elements coincide in Ê0(Vectn)

for every n. This is clear for n = 1. Note that the map

Ê∗(Vectn) → Ê∗(Picn)

induced by the direct sum ⊕ : Picn → Vectn is injective. We now conclude by
observing that the two elements coincide in the right-hand side, by the case n = 1,
the formula ⊕∗(u) = u1u2, and the Whitney sum formula for Chern classes. �
Theorem 9.3 (Snaith theorem for PMGL). For any derived scheme S, there is a
canonical isomorphism

PMGL � Σ∞
P1Vect∞,+[β

−1]

in CAlg(hMSS), where β = 1− [O(−1)].

Proof. Let u ∈ (Σ∞
P1Vect∞,+)

0(Vect∞) be the element induced by minus the uni-
versal K-theory element of rank 0, so that β = 1 − u|P1 . Then β−1(1 − u|Pic) is
an orientation of the periodic ring spectrum Σ∞

P1Vect∞,+[β
−1]. By the universal

property of PMGL (Corollary 7.8), we obtain a canonical map

PMGL → Σ∞
P1Vect∞,+[β

−1]

in CAlg(hMSS). To prove that it is an isomorphism, we may assume S qcqs. In
this case, u defines a t-preorientation of (Σ∞

P1Vect∞,+)
0(−) with associated Bott

element β, which by Remark 8.2 is the initial t-preorientation. By Corollary 8.6
and Lemma 9.2, both sides then have the same universal property as cohomology
theories on MSωS , and it follows that the map is an isomorphism. �

Remark 9.4. Under the Snaith isomorphisms

PMGL � Σ∞
P1Vect∞,+[β

−1],

KGL � Σ∞
P1Pic+[β

−1]

of Theorem 9.3 and [AI23, Theorem 5.3.3], the orientation map PMGL → KGL in
CAlg(hMSS) provided by Corollary 7.8 is induced by the determinant det : Krk=0 →
Pic. This follows from the fact that Σ∞

P1 det+ sends u|Pic ∈ (Σ∞
P1Vect∞,+)

0(Pic) to
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the class in (Σ∞
P1Pic+)

0(Pic) represented by the dual of the universal invertible
sheaf.

Remark 9.5. Both PMGL and Σ∞
P1Vect∞,+[β

−1] have canonical E∞-algebra struc-
tures, but they are not isomorphic as E∞-algebras in general, since they are known
not to be isomorphic as E5-algebras after Betti realization [HY20, Theorem 1.4].
One might expect that they are at least isomorphic as E1-algebras, but this is not
known even after A1-localization.

Note that the determinant induces an E∞-map

Σ∞
P1Vect∞,+[β

−1] → KGL

(see Remark 9.4). At this point we do not know if there is also an E∞-map

PMGL → KGL,

although this is known in A1-homotopy theory using the formalism of framed cor-
respondences [HJN+24, Proposition 6.2].

Acknowledgments

We thank Dustin Clausen for helpful discussions about weighted A1-homotopy
invariance and infinite excision, Jacob Lurie for useful discussions and answering
questions about his recent work with Bhargav Bhatt, and Vova Sosnilo for useful
discussions and insights about weighted A1-homotopy invariance.

References

[AI22] Toni Annala and Ryomei Iwasa, Cohomology of the moduli stack of algebraic vector
bundles. part A, Adv. Math. 409 (2022), no. part A, Paper No. 108638, 25, DOI
10.1016/j.aim.2022.108638. MR4473636

[AI23] Toni Annala and Ryomei Iwasa, Motivic spectra and universality of K-theory,
arXiv:2204.03434, 2023.

[Ann20] Toni Annala, Bivariant derived algebraic cobordism, J. Algebraic Geom. 30 (2021),

no. 2, 205–252, DOI 10.1090/jag/754. MR4233182
[Ann21] Toni Annala, Precobordism and cobordism, Algebra Number Theory 15 (2021), no. 10,

2571–2646, DOI 10.2140/ant.2021.15.2571. MR4377859
[Ann22a] Toni Annala, Base independent algebraic cobordism, J. Pure Appl. Algebra 226 (2022),

no. 6, Paper No. 106977, 44, DOI 10.1016/j.jpaa.2021.106977. MR4346005
[Ann23] Toni Annala, Chern classes in precobordism theories, J. Eur. Math. Soc. (JEMS) 25

(2023), no. 4, 1379–1422, DOI 10.4171/jems/1219. MR4577967
[Ann22b] Toni Annala, Derived algebraic cobordism, Ph.D. Thesis, University of British

Columbia, arXiv:2203.12096, 2022.
[Aok23] Ko Aoki, Posets for which Verdier duality holds, Selecta Math. (N.S.) 29 (2023), no. 5,

Paper No. 78, 22, DOI 10.1007/s00029-023-00887-2. MR4656893
[AY23] Toni Annala and Shoji Yokura, Bivariant algebraic cobordism with bundles, Algebr.

Geom. 10 (2023), no. 4, 461–488, DOI 10.14231/ag-2023-015. MR4606410
[Bac21] Tom Bachmann, Rigidity in étale motivic stable homotopy theory, Algebr. Geom.

Topol. 21 (2021), no. 1, 173–209, DOI 10.2140/agt.2021.21.173. MR4224739
[BGN18] Clark Barwick, Saul Glasman, and Denis Nardin, Dualizing cartesian and cocartesian

fibrations, Theory Appl. Categ. 33 (2018), Paper No. 4, 67–94. MR3746613
[BH21] Tom Bachmann and Marc Hoyois, Norms in motivic homotopy theory (English, with
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motives, and the categorified Chern character, Adv. Math. 309 (2017), 97–154, DOI
10.1016/j.aim.2017.01.008. MR3607274

[HY20] Jeremy Hahn and Allen Yuan, Exotic multiplications on periodic complex bordism, J.
Topol. 13 (2020), no. 4, 1839–1852, DOI 10.1112/topo.12169. MR4186145

[Kha21] Adeel A. Khan, Virtual excess intersection theory, Ann. K-Theory 6 (2021), no. 3,
559–570, DOI 10.2140/akt.2021.6.559. MR4310329

[KM21] S. Kelly and H. Miyazaki, Modulus sheaves with transfers, arXiv:2106.12837, 2021.
[KR19] A. A. Khan and D. Rydh, Virtual Cartier divisors and blow-ups, arXiv:1802.05702v2,

2019.
[Lev09] Marc Levine, Comparison of cobordism theories, J. Algebra 322 (2009), no. 9, 3291–

3317, DOI 10.1016/j.jalgebra.2009.03.032. MR2567421
[Lur09] J. Lurie, A survey of elliptic cohomology, Algebraic topology, Abel Symp., vol. 4,

Springer, Berlin, 2009, pp. 219–277, DOI 10.1007/978-3-642-01200-6 9. MR2597740
[Lur10] J. Lurie, Chromatic homotopy theory, Lecture Notes, 2010, https://www.math.ias.

edu/~lurie/252x.html.
[Lur09] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton

University Press, Princeton, NJ, 2009, DOI 10.1515/9781400830558. MR2522659
[MV99] Fabien Morel and Vladimir Voevodsky, A1-homotopy theory of schemes, Inst. Hautes
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