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Abstract 

We report a model to predict equilibrium density profiles for different shaped colloids in 
two-dimensional liquid, nematic, and crystal states in nonuniform external fields. The model 
predictions are validated against Monte Carlo simulations and optical microscopy experiments for 
circular, square, elliptical, and rectangular colloidal particles in AC electric fields between parallel 
electrodes. The model to predict the densities of all states of different shaped particles is based on 
a balance of the local quasi-2D osmotic pressure against a compressive force due to induced 
dipole-field interactions. The osmotic force balance (OFB) employs equations of state for hard 
ellipse liquid, nematic, and crystal state osmotic pressures, which are extended to additional 
particle shapes. The resulting simple analytical model is shown to accurately predict particle 
densities within liquid, liquid crystal, and crystal states for a broad range of particle shapes, system 
sizes, and field conditions. These findings provide a basis for quantitative design and control of 
fields to assemble and reconfigure colloidal particles in interfacial materials and devices. 

keywords:  superelliptical prisms | density profiles | AC electric fields | dipole-field potentials | 
equations of state 

  Introduction 

Understanding how to obtain different colloidal microstructural states assembled from any 
particle shape could enable numerous emerging particle based technologies. More specifically, the 
ability to predict how external fields and particle properties together can be designed to achieve 
target ordered states provides a basis to design, control, and optimize colloidal materials and 
devices. Although particle shape libraries with systematic variations have been related to free 
energy minimum crystal and liquid crystal states in computer simulations in 3D1 and 2D2 
homogeneous systems, there has been limited progress in modeling or experiments to determine 
how to achieve such states in finite, bounded, inhomogeneous systems. Substrates and boundaries 
are common as supports and containers for colloidal materials, and fields (e.g., gravity, shear, 
electric, etc.) are inherently part of processing and often unavoidable. Ultimately, being able to 
predict what colloidal microstructures assemble in a given field, including nonuniform fields, and 
for different particle shapes, is a necessary step for designing colloidal materials, processes, and 
devices in practical applications. 

The role of gravity in producing density profiles in sedimentation equilibrium of colloidal 
dispersions has been known since Perrin,3 which has been confirmed many times over, including 
coexistence between liquid and crystal states, and to high precision using advanced methods.4 
Sedimentation equilibrium of nonspherical colloidal clay platelets has been observed with 
coexistence of liquid, liquid crystal, and crystal states,5 and in increasingly complex mixtures of 
multiple particle shapes.6 The density profiles and phase transitions in sedimentation equilibrium 
are determined by a balance of local osmotic pressure changes and the force on particles due to 
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gravity. Osmotic pressure is well defined for thermodynamically large systems sizes, which is 
easily satisfied for macroscopic test tube scale experiments, but its application on microscopic 
scales is less obvious. However, prior work has validated multistate sedimentation equilibrium 
profiles for density variations approaching particle dimensions,7 and shown other modeling 
approaches are needed for density variations comparable to, or smaller than, particle dimensions 
(i.e., classical density functional theory8-9). Practically, multistate equilibria of spherical, plate, and 
rod shaped colloidal particles in linear gravitational potentials is relatively well understood, 
including experiments and simulations for different particle shapes, interactions, and mixtures.9-10 

It is important to understand equilibrium colloidal phase behavior and assembly in other 
fields other than gravity (e.g., electric, magnetic, optical). Although colloidal transport in external 
fields is studied extensively (e.g., sedimentation, electrophoresis, dielectrophoresis, etc.11-14), 
equilibrium density profiles and microstructural states of colloids in different field types has 
received less attention. For example, colloidal assembly in nonuniform electric fields has been 
shown in experiments for spheres,15-16 ellipsoids,17-18 rods,19-20 rectangular prisms,21 clay 
platelets,22 and a variety of other shapes,23-25 but many studies do not consider spatial variations 
due to field nonuniformity. Concentrating density-matched spherical colloids in nonuniform AC 
electric fields via dipole-field interactions is one of few examples of bulk three dimensional 
systems modelled by an osmotic force balance.26-28 Quasi-2D spherical colloidal density profiles 
in nonuniform AC electric fields have been investigated in experiments, simulations, and osmotic 
force balance models for spheres in radial harmonic wells,29 multipolar field shapes,30 and 2D 
crystals buckled into 3D morphologies (mediated by electric fields and gravity).31 A recent 
simulation study investigated 2D hard ellipses in nonuniform fields with multi-state coexistence 
of inhomogeneous liquid, nematic, and crystal states,32 which employed an osmotic force balance 
based on hard ellipse equations of state. Although other particles, fields, and configurations have 
been modelled via osmotic force balances (e.g., laser laser-induced freezing33), general models 
have not been reported for arbitrary particle shapes and nonuniform fields, particularly with 
experimental validation. 

One limitation to predicting colloidal density profiles and states in external fields is a lack 
of equations of state for particles with different shapes and pair potentials. For example, equations 
of state have been developed for 3D hard sphere liquid34 and crystal35 states and more recently 
hard polyhedra liquid states.36 2D equations of state have been reported for liquid states of hard 
disks,37 ellipses,38-41 and general convex shapes,42 as well as hard ellipse nematic states.38-41 
However, equations of state are generally unavailable for liquid, liquid crystal, and crystal states 
of different particle shapes, and particles with pair potentials other than hard interactions. While 
sedimentation equilibrium experiments have tested equations of state for hard spheres,43-44 and 
some studies have employed osmotic balances to probe phase behavior and equations of state in 
novel colloidal (e.g., Janus,45 active particles46) and molecular systems,47-48 in general osmotic 
forces balances have not been used to develop new equations of state. As a result, to understand 
colloidal density profiles and states in nonuniform fields for different shaped particles with 
different potentials, it is also necessary to develop new equations of state to enable predictions 
based on osmotic force balances and related models. 

In this work, we develop an osmotic force balance model that captures quasi-2D density 
profiles and microstructural states of disk, ellipse, square, and rectangular colloidal particles in 
nonuniform AC electric fields (Fig. 1). We first develop the osmotic force balance (OFB) model 
for elliptical prism particles, which is based on recently reported directly measured dipole-field 
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interactions49-50 as well as recently reported equations of state for liquid, nematic, and crystal states 
of 2D elliptical particles.32 The OFB model is tested against Monte Carlo (MC) simulations for 
different particle sizes and concentrations and field parameters and then validated against optical 
microscopy experiments. We explore extensions of the model to different particle shapes to 
systematically vary aspect ratio (disks, ellipses) and introduce corners (squares, rectangles) that 
determine the number, types, and symmetry of assembled states.2, 21, 51 We finally investigate 
modifying ellipse equations of state for liquid, nematic, and crystal states to enable osmotic force 
balance predictions of results for MC simulations and microscopy experiments on different particle 
shapes in nonuniform AC electric fields. The overall approach is designed to predict field 
conditions that produce assembled particle densities and corresponding liquid, liquid crystal, and 
crystal states for a broad range of colloidal particle shapes. 

Theory 

Osmotic Force Balance 

We consider concentration profiles of different effective hard particle shapes in AC electric 
fields, where the profile and field depend only on the x-coordinate (Fig. 1). In the following, 
predictions of concentration profiles in nonuniform fields are based on the local density 
approximation,32, 52 where the equilibrium condition is given by a balance of local osmotic pressure 

 
 
Fig. 1. Overview of quasi-2D assembly of circular, elliptical, square, and rectangular prism colloids 
in nonuniform AC electric fields. The field frequency is 5MHz and increasing voltage compresses 
particles at the electric field minimum in the center between coplanar parallel electrodes (to left and right 
sides of each image) via dipole-field interactions. Columns show optical microscopy images, Monte Carlo 
(MC) computer simulations renderings, and density profiles from microscopy, simulation, and a theoretical 
model for (A) disks, (B) ellipses, (C) squares, and (D) rectangles. Top three rows show increasing densities 
for liquids, dense liquid/liquid crystal, and crystal states. Bottom row shows density profiles (area fraction) 
from (points) MC simulations and (lines) an osmotic force balance expression developed in this work. The 
electrode gap, d=100 m, provides an internal scale bars for each image. 
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difference and local forces (i.e., gradient of potential energy landscape) on particles as,7, 29-31 
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where Π is osmotic pressure, U(x) is a position-dependent energy landscape, and ρ(x) is local 
particle number density. For infinitesimally small changes in position (x  0), Eq. (1) is, 
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which substituting effective area fraction for hard particles, =Ap, based on the effective particle 
area, Ap, and then re-arranging gives, 
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which can be solved to obtain the concentration profile, (x), for a given U(x). The total number 
of particles within the concentration profile is given by, 

    ( )pN h A x dx     (4) 

where h is box height (e.g., image or simulation dimension in Fig. 1), and the limits of integration 
correspond to where the density vanishes. 

Dipole-Field Potential Energy 

To solve the osmotic force balance, it is necessary to specify the potential energy landscape 
in lab coordinates on the right-hand-side of Eqs. (1)-(3). The dipole field potential energy has been 
directly measured and captured by a validated simple model for quasi-2D states of superelliptical 
prism particles in high-frequency nonuniform AC electric fields between coplanar electrodes (Fig. 
1).49 By neglecting the orientation-dependence of the dipole-field potential, the position-dependent 
dipole-field potential energy for input in Eqs. (1)-(3) is simplifies to,49-50 

     2
z

dfU x PE x   (5) 

where the amplitude, P=mvpfcmf, depends on the particle volume, vp, and the particle and medium 
material properties via the Clausius–Mossotti factor, fcm, given by,50, 53 
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where x and x are particle and medium dielectric constants and conductivities, and  is AC field 
frequency. The term f=1-[10-5/exp(10)] accounts for a diminished field within dense crystalline 
domains as observed in past work on spherical54 and anisotropic55 particles (analogous with 3D 
electrorheological fluids56 and crystals,57 but different due to 3D field outside quasi-2D domains). 
The position dependence in Eq. (5) is given by the x-dependence of the z-component of the electric 
field, Ez(x), given by an analytical solution,58 and well approximated by, 
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where E0 = (8-0.5)Vpp/d, where the factor (8-0.5) accounts for time-averaging a sinusoidal waveform, 
(in contrast, the factor is (12-0.5) for a triangular waveform), Vpp is peak-to-peak voltage (for AC 
fields with different waveforms), and d is the electrode gap width. Eq. (7) is accurate to within 
<1% error over the entire position range. 

Hard Superellipse Equations of State 

With specification of the potential energy landscape on the right-hand-side of Eqs. (1)-(3)
, to obtain density profiles, it is necessary on the left-hand-side of the same equations to relate 
and  via equations of state given by, 

 kT Z   (8) 

where k is Boltzmann’s constant, T is the absolute temperature, and Z is the compressibility factor. 
Functional forms for compressibility factors for varying aspect ratio hard ellipses in liquid, nematic, 
and crystal states were recently reported obtained by modifying first-principle forms39 to match 
computer simulations.32, 40 These compressibility factors are reported here with adjustable 
parameters to enable their fit to hard superellipse particle data in this study. In brief, the fluid 
compressibility factor for hard disks is given in terms of area fraction,, by,37  

      22
, 1 8 1F HDZ       (9) 

which can be incorporated into a semi-empirical model39 for the hard ellipse fluid compressibility 
factor, ZF, that was adapted to accurately capture hard ellipse simulated compressibility factor 
data40 with a form given by,32 

        22.5
,1 0.12 1 0.21 1 1 1F F HDZ s s Z                 (10) 

where s=ax/ay is aspect ratio given by particle major and minor radii, ax and ay, and =1 for disks 
and ellipses but is allowed as an adjustable parameter to fit hard superellipse data. The nematic 
compressibility factor, ZN, based on a density functional theory study38 includes corrections to the 
hard ellipse fluid equation of state to accurately capture reported compressibility factor data40 as, 

        1.6

,1.7 1.6 1N F N F HDZ Z s Z              (11) 

where ηN is the fluid-nematic transition area fraction. To estimate a crystal equation of state, we 
consider forms from free volume theory for anisotropic particles,59-60 and simple forms44 for hard 
sphere crystals,35 to arrive at a crystal state compressibility factor, ZC, given by,  

    C CPZ       (12) 

where ηCP is the shape-dependent close packed area fraction, =(ηCP-ηM)(ηF/ηM)ZN(ηF) is a defined 
constant designed to ensure N=C at melting and freezing in Eq. (8), and ηM and ηF are the 
crystal-nematic (melting) and nematic-crystal (freezing) transition area fractions. Each equation 
of state in Eqs. (9)-(12) is applicable for states between boundaries defined by aspect ratio 
dependent area fractions for the nematic, N, freezing, F, and melting, M, transitions given by, 
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which approach infinite system size hard disk2, 61 and hard ellipse32, 40-41 values in the absence of 
fields and are validated for nematic states mediated by dipole field potentials in this study. 

Superelliptical Prisms 

Particle shapes investigated in this work are all superelliptical prisms, where the equation 
of their projected 2D perimeter is given by,  

 1
nn

x yx a y a   (14) 

where n determines particle corner shape. Superellipse shapes include (Fig. 1) disks (n=2, s=1), 
ellipses (n=2, s>1), squares (n, s=1), and rectangles (n, s>1). Superelliptical prism particle 
of thickness 2az have volumes, vp, and areas, Ap, given by, 
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1 1

x y2 ,   4 1 1 2P z P pv a A A a a n n


              (15) 

where Γ is the gamma function. The superellipse particle area can be used to relate the number of 
particles per area, , to quasi-2D area fractions, , for use in equations of states (Eqs. (8)-(12)) as, 

 pA   (16) 

which can be adjusted for particles with short-range interactions compared to particle 
dimensions,62 by adding to ax and ay in Eq. (15), a constant, , given by,63 

     
0
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where in this study we consider a repulsive pair potential between similar sized particles with 
electrostatic double layers given by,12  
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where r is surface separation, e is elemental charge,  is the colloid surface potential, and  is the 
inverse Debye length. This expression is simplified for unit valence electrolyte and valid for thin 
double layers compared to particle radius (κa>>1).12 

Materials & Methods 

Monte Carlo Simulations. Monte Carlo simulations of superelliptical prism particles were 
performed in the canonical (NVT) ensemble using the methods and potentials in our previous 
work.53, 55 In brief, the energy, ui, of each particle i is, 

      
1,

, , , , , , , ,
bN

df dd hp
i i i ij i i j ij ij ij i i j ij ij

j i j
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 

      (19) 

where xi, yi, θi are each particle’s lab position and orientation coordinates, and xij, yij, θij  are relative 
particle position and orientation coordinates. The dipole-field, udf, potential is given in Eq. (5), and 
the exact functional form for the dipole-dipole, udd, potential for superelliptical prisms is described 
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in detail in our previous work.55 Particles were constrained in 2D with periodic boundary 
conditions perpendicular to the electrodes. Particle geometry for the hard overlap condition2 is 
given by the superellipse equation. Simulations were initialized from a stretched hexagonal lattice 
(disk and ellipse) or stretched square lattice (square and rectangle) centered at the electrode gap 
center. All simulations were equilibrated for 75000 steps when potential energy reached a plateau 
minimum. Other simulation parameters are summarized in Tables 1,2. 

Particle Fabrication. Anisotropic superelliptical prism epoxy particles (all chemicals from 
MicroChem) were fabricated using photolithography with similar methods to prior studies.21 In 
brief, Omnicoat and SU-8 2002 were spin coated at 3000 rpm on a silicon wafer followed by heat 
treatment. A particle shape photomask was used to pattern particles on a wafer with a UV exposure 
energy of 80 mJ/cm2 and then heat-treated. Uncured excess SU-8 was removed by immersing in 
PG Developer and isopropyl alcohol. Particle dimensions were confirmed with a laser-scanning 
microscope (Keyence). Particles on wafers were treated with 50% sulfuric acid to yield negative 
surface charge and cleaned with deionized water. Particles are released by PG Remover and 
cleaned with isopropyl alcohol and deionized water. These steps yield maximum negative surface 
charge to prevent aggregations and irreversible deposition on electrodes.21, 64 

Microscopy and Particle Tracking. The microscopy cell was similar to prior studies.16, 50, 54-55 An 
O-ring (McMaster-Carr) was placed on microfabricated interdigitated gold electrodes patterned on 
a glass slide. Particles were dispersed and pipetted into the O-ring to give the target particle 
concentration. Electrodes were connected to a function generator (Agilent 33220A) to apply 
sinusoidal AC fields at various field amplitudes and 5MHz frequency. Particles were imaged with 
an inverted microscope (Zeiss) using a 40× objective. Videos were captured using a CCD camera 
(Hamamatsu, Orca-ER) and Streampix (Norpix) or MATLAB software. Particle centroid position 
(x,y) and long-axis orientation (θ) were tracked using previously reported MATLAB algorithms.50 
Experimental density profiles were obtained from ~50~1000 images over 10 min after each sample 
equilibrated at a given field condition. Density profiles were binned according to particle long axis 
dimensions (2ax). Central area fractions, η0, were averaged over the three center bins with error 
bars based on the lowest and highest values observed during all sampling. 

Results & Discussion 

Approach Overview 

We systematically investigate how different shaped particles pack into states with different 
density profiles via induced dipolar interactions with nonuniform AC electric fields (Eq. (5)). 
Because the local density essentially determines whether states are liquid, liquid crystal, or crystal, 
the ability to predict density profiles determines the degree of positional and orientational order of 
particles within electric fields. Equations of state for 2D anisotropic particles have previously been 
investigated in simulation studies of homogeneous systems of ellipses38-41 and more recently by 
our group in inhomogeneous systems.32 As a result, we first investigate density profiles of effective 
hard ellipses in nonuniform AC electric fields as a function of parameters related to the particles 
(number, size, area fraction), field conditions (voltage, electrode gap), and simulation parameters 
(box size). After  developing a simple scaling model based on these parameters, the model is 
compared with measured particle concentration profiles vs. particle numbers and field conditions. 
We then investigate extending this approach to superelliptical prisms by comparing experiments 
and model predictions for density metrics, field conditions, and particle numbers. 
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Elliptical Prism Assemblies 

We start by computing density profiles for hard ellipse assemblies interacting with 
nonuniform AC electric fields via a dipole-field potential (Eq. (5)) from both the osmotic force 
balance, OFB (Eq. (3)), and Monte Carlo (MC) simulations. The potential in Eq. (5) was 
previously found to match microscopy experiments and MC simulations for disks, squares, 
ellipses, and rectangles in liquid, liquid crystal, and crystal states.21 In addition, the equations of 
states used in the OFB (Eq. (3)) for varying aspect ratio hard ellipses in liquid, nematic, and crystal 

 
 

Fig. 2. Comparing OFB model results to MC simulations to identify scaling for elliptical particle and 
field parameters. (left) MC simulation renderings, (middle) density profiles from MC simulations (points) 
and OFB (line) (Eq. (3)), (right) trends in the applied electric field, E0, vs. dependent variables with inset 
scaling relations (with all other variables fixed, see Table 2). Trends are shown for varying: (A) particle 
number in Eq. (4) at fixed central concentration, η0, (B) electrode gap width, d, in Eq. (7), (C) particle area, 
A, in Eqs. (15), (16), and (D) central area fraction.  
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states (Eqs. (10)-(12)) were recently validated in MC simulations,32 but have not been tested 
against experiments. Practically, we simulated and modeled density profiles for a single aspect 
ratio ellipse using the parameters in Tables 1,2 for (Fig. 2): (A) varying particle numbers, N, at a 
fixed central area fraction, 0 (for the bin centered at x=0), (B) varying electrode gap, d, at fixed 
N and 0, (C), varying particle size at fixed aspect ratio, to vary particle area, Ap (Eq. (15)) at fixed 
0, and (D) varying 0 by adjusting the electric field, E0, in Eq. (7) with all other variables fixed. 
For each case, Fig. 2 includes renderings, density profiles from the OFB equation and MC 
simulations, and plots of the two variables that were adjusted with fit equations. 

Several key findings are obtained from the results in Fig. 2. Overall good agreement is 
obtained between the OFB and MC density profiles for each of the conditions investigated, which 
allows analysis of how electric field, E0, scales with each variable. For varying particle number at 
a fixed central area fractions in nematic states (Eq. (13)), Fig. 2A indicates the electric field scales 
with a N-1 dependence (Fig. 2A) and linear dependence on box height, h, as given by Eq. (4). 
Building on this scaling, we next vary the electrode gap, d, width at a fixed number and central 
concentration (Fig.2B), which shows a simple linear scaling between E0 and d, although the OFB 
and MC density profiles show small variations due to changing field shape (Eq. (7)). Varying 
particle size, at fixed aspect ratio and thickness, changes particle area (Fig.2C), and area fraction 
in the equations of state, but also particle volume in the dipole-field potential (Eq. (5)). The 
resulting field that is necessary to produce the same central density for different particle sizes, with 
all other parameters fixed, scales as Ap

-3/2. Understanding how particle area controls field mediated 
assembly provides an important foundation for analysis of additional superelliptical prism shaped 
particles (where different aspect ratios and corner features contribute to particle area). 

Table 1. Global parameters for modeling dipole-field potentials in simulations and OFB. 
εm/ε0

a 78  (MHz) 5  (mV) -15mV 
εp/ε0

b 3.2 d (μm)f 100  B (kT) 452 
σm (μS/cm)c 12.6 az (μm)f 0.85 -1 (nm)c 30 
  σp (μS/cm)d 110  0.6 (n≥4)  (nm) 100 

fcm
e -0.37     

ahandbook values.65 bmanufacturer value. cconductivity meter, consistent with CO2 saturated deionized H2O 
ionic strength. dprior study.55 ecalculated from Eq. (6).felectrode gap and particle thickness from laser 
scanning microscope. 

Table 2. Parameters for MC simulations in specified figures. 
figure shape ax (μm) ay (μm) n d (μm) h (μm) N ⟨ρ⟩ (μm-2) η0

 

2A ellipse 3.5 1.9 2 100 140 160-280 0.011-0.02 0.7 
2B ellipse 3.5 1.9 2 80-140 140 200 0.01-0.18 0.7 
2C ellipse 2.1-4.2 1.1-2.3 2 100 140 200 0.014 0.7 
2D ellipse 3.5 1.9 2 100 140 200 0.014 0.5-0.8 
4A disk 4 4 2 100 140 100 0.007 0.5-0.8 
4B square 4 4 6 100 140 100 0.007 0.5-0.8 
4C rectangle 4 2 4 100 140 180 0.013 0.5-0.8 
5 disk 4 4 2 100 140 100 0.007 0.5~0.85 
5 ellipse 4 2 2 100 140 200 0.014 0.5~0.85 
5 square 4 4 6 100 140 100 0.007 0.5~0.9 
5 rectangle 4 2 4 100 140 180 0.013 0.5~0.85 

To understand the conditions necessary for liquid, liquid crystal, and crystal states 
assemble at different densities in nonuniform AC electric fields, we finally investigate how central 
density varies with field magnitude (Fig.2D). Density profiles are shown for central densities (and 
states) with η0=0.5 (liquid), 0.6 (liquid), 0.7(nematic), and 0.8(crystal) (where states are related to 
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densities by Eq. (13))). Good agreement is obtained between MC simulations and the OFB, 
indicating the general validity of the equations of state, even for small numbers of particles in 
nonuniform density profiles varying on length scales comparable to particle dimensions. The 
scaling of the applied electric field with the central area fraction can be captured by a function of 
all variables investigated given by, 
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where =N/(hd) is the average number density within the electrode gap and imaging region, and 
ηCP is the close packed area fraction (e.g., ηCP=0.907 for disks and ellipses). Referencing densities 
relative to their close packed state, when the crystal osmotic pressure diverges, is intended for 
subsequent analyses to consider different shaped particles with different close packed area 
fractions (e.g., ηCP=1 for squares and rectangles).  

It is important to note that the OFB model agrees with MC simulations that include dipole-
dipole interactions (Eq. (19)). While the OFB model is based on equations of state for hard 
particles (or effective hard particles via Eq. (17)), the MC simulations have dipole-dipole 
interactions that are not accounted for in either the equations of state (Eqs. (10)-(12)) or the 
potential energy (Eq. (5)) in the OFB (Eq. (3)). However, the dipole-dipole interactions have a 
negligible effect for the states investigated in this work based on the good agreement in Fig. 2. 
This result is consistent with prior work for spherical particles in nonuniform AC electric fields 
with different morphologies and symmetries.29-31 This behavior is generally understood as arising 
in nonuniform fields when the average dipole-dipole interaction is relatively negligible compared 
to dipole-field interactions in states with isotropically distributed dipoles, including crystal 
states,11, 26-27, 66-67 as well as the dense liquid and liquid crystal states in this work. The relative 
balance of interactions also depends on field nonuniformity, where dipole-field interactions 
dominate in non-uniform fields (as in dielectrophoresis11) and dipole-dipole interactions are 
relatively more important in more uniform fields (as in electrorheological fluids56-57, 68). 

Model Predictions vs. Experiments: Elliptical Prisms 

To test the validity of the scaling captured by Eq. (20), we measure N, η0, and E0 in both 
MC simulations and optical microscopy experiments for elliptical prism particles between 
coplanar parallel electrodes (Fig. 3). Overall good agreement is observed between the OFB (lines) 
and the MC simulations (circles) for a broad range of conditions including liquid, nematic, and 
crystalline states. The greatest deviations are observed around η0≈0.75 where the continuous 
function, g(Δη), is less well-suited to account for the discontinuous density change at the nematic-
crystal transition (ηF=0.76, ηM=0.78 via Eq. (13)). Although a more complex form for g(Δη) could 
be chosen to better match the model predictions and simulation data, a simple form was retained 
based on the precision needed to match with experimental results within their uncertainty 
(discussed in the following, including additional particle shapes). Results are only shown for 
η0=0.5-0.87 since low density fluids are straightforward, and in experiments, higher density 
crystals approaching close packing can buckle into a three-dimensional system (as we have 
previously shown for spherical colloids29, 31). 
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Table 3. Parameters for optical microscopy experiments in specified figures. 
Fig. shape ax (μm)a ay (μm)a na h (μm)b Nc ⟨ρ⟩ (μm-2)d η0 ηH, ηL E0(V/mm) 
3B1 ellipse 3.35 1.7 2 114 164 0.014 0.52 0.52-0.52 1.4 
3B2 ellipse 3.35 1.7 2 114 163 0.014 0.55 0.55-0.57 2.1 
3B3 ellipse 3.35 1.7 2 114 157 0.014 0.55 0.52-0.57 2.6 
3B4 ellipse 3.4 1.8 2 140 197 0.014 0.54 0.53-0.55 1.3 
3B5 ellipse 3.4 1.8 2 140 185 0.013 0.61 0.58-0.62 1.9 
3B6 ellipse 3.4 1.8 2 140 184 0.013 0.61 0.55-0.66 2.6 
3B7 ellipse 3.5 1.9 2 140 258 0.018 0.62 0.61-0.63 1.2 
3B8 ellipse 3.5 1.9 2 140 256 0.018 0.65 0.63-0.67 1.7 
3B9 ellipse 3.5 1.9 2 140 255 0.018 0.68 0.63-0.72 2.4 
3B10 ellipse 3.5 1.9 2 58 92 0.016 0.86 0.84-0.87 7.3 
3B11 ellipse 3.6 2.1 2 46 69 0.015 0.84 0.79-0.87 7.3 
3B12 ellipse 3.5 1.9 2 58 93 0.016 0.79 0.76-0.81 5.4 
6B1 disk 3.9 3.9 2 112 130 0.012 0.86 0.85-0.86 3.6 
6B2 disk 4 4 2 140 141 0.010 0.78 0.76-0.82 1.4 
6B3 disk 3.9 3.9 2 112 74 0.007 0.46 0.44-0.47 0.4 
6B4 square 3.4 3.4 6 140 152 0.011 0.87 0.79-0.92 2.5 
6B5 square 3.4 3.4 6 140 183 0.013 0.77 0.74-0.79 0.9 
6B6 square 3.4 3.4 6 140 123 0.009 0.56 0.54-0.57 0.4 
6B7 rectangle 4 2 4 85 116 0.014 0.81 0.79-0.82 3.3 
6B8 rectangle 4 2 4 140 202 0.014 0.70 0.66-0.70 1.4 
6B9 rectangle 4 2 4 140 202 0.014 0.62 0.61-0.63 0.7 

alaser scanning microscope (error ±0.1μm). bimage analysis (error ±pixel size), ctime average based on 
fluctuations at imaging window edge. dbased on d=100 μm as given in Table 1. 

We next compare optical microscopy experiments with elliptical prism particles (Fig. 3B) 
with the OFB model predictions in Eq. (20). Because the potentials used in the MC simulations 

 
 

Fig. 3. Comparing OFB model and optical microscopy experiments on elliptical prism particles to 
test ρ, η0, E0 relationship. (A) Plot of normalized field, E*=E0A1.5, vs. average particle number density, 
ρ, with (lines) constant density curves given by Eq. (20), (circles) OFB points from Eqs. (3),(4), and 
(triangles) optical microscopy measurements of time-averaged density photolithographic epoxy particles 
for parameters and error bars in Table 3. Dashed lines indicate nematic, freezing, and melting (from bottom 
to top) transitions from Eq. (13). (B) Microscopy images of particle configurations corresponding to each 
point in panel A as indicated by colored symbol with central area fraction indicated. Density increases from 
left to right from liquid to nematic to crystal states. The electrode gap, d=100 m, and the particle sizes 
listed in Table 3 provide internal scale bars for each image.  
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were obtained from inverse Boltzmann49-50 and inverse MC55 analyses of experiments on identical 
particle materials and similar shapes, the experimentally measured scaling of N, η0, and E0 are also 
expected to agree with the MC and OFB results in Fig. 3A. Specific experimental details of the 
particle and field characteristics are reported in Tables 1-3. Practically, particles were measured 
for different N, η0, and E0 corresponding to liquid, liquid crystal, and crystal states (using methods 
described in detail in prior work21). 

The agreement between the microcopy measurements, simulations, and the OFB scaling 
are good in terms of capturing the observed system state and central concentration at each 
condition. Discrepancies between experiments and the model are observed primarily for 
experimental conditions that are perhaps less satisfactory in terms of meeting the assumptions in 
the OFB model. For example, particles approaching the electrode edge encounter strong field 
gradients that may influence the validity of the local density approximation, and crystals with 
vacancies, misoriented particles, grain boundaries and other defects can significantly influence 
density profiles for the very small system sizes probed in the measurements. Despite these possible 
limitations based on practical experimental considerations, overall, the model performs well for 
predicting the system density and states for given particle numbers and field strengths. 

 
 
Fig. 4.  Comparing OFB model results to MC simulations to identify scaling for disks, squares, and 
rectangles (superelliptical) particles and field parameters. (left) MC simulation renderings, (middle) 
density profiles from MC simulations (points) and OFB (line) (Eq. (3)), (right) trends in the applied electric 
field, E0, vs. central density (with all other variables fixed, see Table 2). Trends are shown for varying central 
density of: (A) disks, (B) squares, and (C) rectangles. Lines in right panels are given by Eq. (20). 
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Extension to Additional Anisotropic Particle Shapes 

Given the success of the OFB model in Eq. (20) for capturing experimental systems of 
quasi-2D elliptical prism particles, we next explore the suitability of the model for quasi-2D 
assembly of other particle shapes in nonuniform AC electric fields. Practically, we investigate the 
scaling of density profiles and field parameters in MC simulations and the OFB model for disk, 
square, and rectangular prism particles (Fig. 4), which we can also fabricate as in prior 
experimental microscopy studies.21 To aid comparison and contrast of different shapes, we fix 
each particles largest axis to the same dimension in all cases (i.e., ax=4μm) and then adjust aspect 
ratio via the smaller axis dimension (ay) and introduce corners via n in Eq. (14). MC simulations 
of each particle shape at different central densities and electric field amplitudes (Fig. 4), which 
also have different particle numbers and areas, show Eq. (20) is also effective at capturing the 
scaling of relevant variables similar to trends for ellipses (Fig. 2). The predicted density profiles 
from the OFB (Eq. (3)) quantitively capture the MC simulation density profiles for each shape 
using the equations of state in Eqs. (8)-(12) (with =0.6 for squares and rectangles in Eq. (10)). 
The OFB and MC density profiles are also in good agreement for all liquid, liquid crystal, and 
crystal states. The greatest discrepancy is observed for the high density crystalline disk state (Fig. 
4A) that approaches an exceptionally small system size with large density variations comparable 
to particle dimensions. These results demonstrate the accuracy of the model in Eq. (20) and the 
equations of state for quasi-2D liquid, nematic, and crystal states of circular, elliptical, square, and 
rectangular prism particles in nonuniform AC electric fields. 

 

 
 

Fig. 5. Understanding concentration dependent electric field magnitude by comparing equations of 
state for particle shapes. (A) Electric field vs. central area fraction for the particle shapes in Fig . 4 from 
(circles) OFB model predictions and (lines) Eq. (20) using individually fit functions for g(Δη) (see Table 2 
for details). (B) Osmotic pressure vs. concentration for four particle shapes for: (dotted) fluid (Eq. (10)), 
(dashed) nematic (Eq. (11)), and (solid) crystal (Eq. (12)) with transition given by Eq. (13). (C) 
Compressibility factors, Z, for four particle shapes vs. concentration relative to close packed crystal state, 
Δη=η-ηCP. (D) Re-scaling electric field with scaling from Fig. 2 vs. Δη=η0-ηCP for four particle shapes to give 
g(Δη) in Eq. (20) (black line). 
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To understand how the functional form for g() in Eq. (20) was designed to capture the 
scaling of relevant parameters for all shapes in Figs. 2-4, a number of unscaled and re-scaled 
quantities are reported to demonstrate the relevant factors for consideration (Fig. 5). Plotting the 
unscaled values for E0 vs. η0 from the OFB produces unique trends for each particle shape (Fig. 
5A) without any obvious trends dependent on particle shape metrics (e.g., anisotropy, corners, area, 
etc.). likewise, the equations of state for each particle shape for all states and concentrations (Fig. 
5B) show different intercepts, gradients, transitions, and a different order from the trends in the 
unscaled E0 vs. η0 data (Fig. 5A).  

Because the particles are different sizes in Figs. 2-4, and therefore have different local 
number densities, , for the same local area fraction, the compressibility factor is plotted (Fig. 5C) 
to focus on area fraction without the kT prefactor in Eq. (8). In addition, area fractions referenced 
to the close packed crystal area fraction aligns the osmotic pressure divergence for each particle 
shape. The disk and ellipses have the same close packed limit (ηCP=0.907) and squares and 
rectangles have the same limits for the same value of n in Eq. (14) (ηCP1 as n∞). This rescaling 
acts as a sort of reference to corresponding states (e.g., compare with 3D polyhedral liquids36), 
which collapses the compressibility factors for low density liquid and high density crystal states 
for all particle shapes. Because the OFB is based on integrating Z, and because different particle 
sizes produce different particle numbers and areas, rescaling the E0 vs. η0 data (Fig. 5A) as 
E0/A1.5⟨ρ⟩  vs. Δη (Fig. 5D) collapses the data onto a single trend. While the collapse is imperfect 
with minor residual systematic variations in the vicinity of the transition regions, the deviations 
relative to individual g() data sets are within the uncertainty in the equations of states (and 
experimental uncertainty in microscopy measurements in this work). As such, the small deviations 
are not significant when comparing Eq. (20) to the MC simulation results in Fig. 4. 

 
 

Fig. 6.  Comparing OFB model and optical microscopy experiments on circular, square, and 
rectangular (superelliptical) prism particles to test ρ, η0, E0 relationship. (A) Plot of normalized field, 
E*=E0A1.5, vs. average particle number density, ρ, with (lines) constant density curves given by Eq. (20)
and (points) optical microscopy measurements of time-averaged density photolithographic epoxy particles 
for parameters and error bars in Table 3. (B) Microscopy images of particle configurations corresponding 
to each point in panel A as indicated by colored symbol with central area fraction indicated. Density 
increases from liquid to nematic to crystal states. The electrode gap, d=100 m, and the particle sizes listed 
in Table 3 provide internal scale bars for each image.  
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Model Predictions vs. Experiments: Superelliptical Prisms 

As in the test of the OFB model against optical microscopy experiments on elliptical prisms 
particles (Fig. 3), we now investigate the validity of the scaling in Eq. (20) for modeling N, η0, and 
E0 in quasi-2D systems of superelliptical prism particles including disks, squares, and rectangles 
(Fig. 6). Results in Fig. 6 directly compare the OFB predictions against optical microscopy data 
for different concentrations of each particle shape representing predominantly liquid, liquid crystal, 
and crystal states between coplanar parallel electrodes (Fig. 3). We don’t compare again with MC 
simulations given that they are already used to validate the OFB model for different shaped 
particles in Figs. 4, 5, and the potential in Eq. (5) was already validated via inverse analyses of 
similar experiments.49 As in all comparisons of the OFB prediction with simulations and 
experiments thus far, the agreement is good overall within the uncertainty in the equations of state, 
statistical uncertainty in the microscopy experiments, and experimental parameter uncertainty (see 
Tables 1-3). The overall good agreement between the OFB model, MC simulations, and 
experiments shows the generality of the model in Eq. (20) and equations of state for different 
particle shapes, sizes, numbers, and states in nonuniform AC electric fields. 

Conclusions 

We developed a model to predict the electric field strength to assemble different shaped 
particles into quasi-2D fluid, nematic, and crystal states with known densities. The model was 
derived by balancing the quasi-2D osmotic pressure of different shaped particles within different 
states against the force due to a nonuniform AC electric field compressing particles at the electric 
field minimum (due to an induced dipole-field potential). The model includes new simple 
equations of state for all superelliptical shapes within liquid, nematic, and crystal states, which 
accurately capture multistate density profiles from MC simulations. By comparing the applied 
electric field and central density within states in the model and MC simulations, we demonstrate 
the model accurately predicts the central density and state for different particle shapes sizes, 
electrode gap dimensions, and system sizes. After demonstrating agreement between the model 
and MC simulations, the model is compared against optical microscopy experiments on quasi-2D 
assemblies of micron sized circular, elliptical, square, and rectangular prism particles, and is shown 
to accurately capture liquid, liquid crystal, and crystal states and densities within the limits of 
experimental uncertainty. In short, the osmotic force balance model provides accurate predictions 
of electric field magnitudes to obtain specific microstructures of different particle shapes in quasi-
2D systems. The ability of the model to predict equilibrium liquid, liquid crystal, and crystal states 
of different shaped particles in AC electric fields provides a basis to further develop models that 
capture non-equilibrium dynamics and control of transient assembly processes between different 
states using electric field mediated assembly mechanisms. 
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