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HONDA-HUANG’S WORK ON CONTACT CONVEXITY REVISITED

YAKOV ELIASHBERG AND DISHANT PANCHOLI

ABSTRACT. Following the overall strategy of the paper [14] by Ko Honda and Yang Huang
on contact convexity in high dimensions, we present a simplified proof of their main result.

1. INTRODUCTION

A hypersurface in a contact manifold is said to be convex if it admits a transverse contact
vector field (see Section 3.3 below for precise definitions). The central result of the article
“Convex hypersurfaces in contact topology” by Ko Honda and Yang Huang is the following:

Theorem 1.1 (Ko Honda and Yang Huang, [14]). Let (M,&y) be a manifold with a co-
orientable contact structure and ¥ C M a co-oriented hypersurface. Then there exists a
C%-small isotopy sending ¥ to a convex hypersurface Y.

If dim M = 2 then Theorem 1.1 holds, according to a classical result of Emmanuel Giroux,
9], in a stronger form, with a C*-small isotopy instead of a C°-small isotopy. The purpose
of this article is to provide a more accessible proof of Theorem 1.1. While the proof follows
the overall strategy of [14] it is significantly different in its implementation. In particular,
we do not use any contact open book techniques. Besides Theorem 1.1 we do not discuss in
this paper any other results formulated in [14].
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2. DYNAMICS OF VECTOR FIELDS

This section and Section 3 contains some background material which is mostly well-known.

2.1. Lyapunov functions. An isolated zero p of a vector field X on an m-dimensional
manifold ¥ is called non-degenerate if d,X is non-degenerate, and it is called an embryo or
death-birth singularity if the corank of its linearization d,X is equal to 1 and the quadratic
differential d}%X : Kerd,X — Cokerd, X, which is defined up to scaling by a non-zero
coefficient, does not vanish. We will call a non-degenerate or death-birth zero hyperbolic if
d,X has no pure imaginary (non-zero) eigenvalues.

Let X be a vector field on a compact manifold . Let us endow > with a Riemannian
metric. A function f : 3 — R is called Lyapunov for X if df (X) > C(||X||* + ||df||?) for a
positive constant C. Equivalently, one says that X is a gradient like vector field for f.

It is a standard fact that isolated hyperbolic zeroes, non-degenerate or embryos, admit
local Lyapunov function, e.g. see [1]. The stable manifold of a non-degenerate zero is
diffeomorphic to R¥ for some k = 0, ..., m in the non-degenerate case, and to R’_‘; in the case
of an embryo. The dimension k of the stable manifold of a non-degenerate hyperbolic zero
O is called its index and denoted by ind(O). For an embryo the index is usually defined to
be equal to k — %

FIGURE 1

Lemma 2.1. Let X be a vector field with isolated hyperbolic zeroes which are non-degenerate
or of embryo type on a closed m-dimensional manifold . Then X admits a Lyapunov
function if and only if the following conditions are satisfied:

(L1) every trajectory of X originates and terminates at a zero of X;
(L2) there exists an ordering Oy, ...,Op of zeroes such that there are no trajectories of X
which originate at O; and terminate in O; if 1 > j.

Proof. It X admits a Lyapunov function then both conditions (L1) and (L2) are straight-
forward. Suppose that these conditions are satisfied. We construct a Lyapunov function
f X — R by extending it inductively to neighborhoods of stable manifolds of zeroes O;.

We start with a local Lyapunov function near O; (which has to be of index 0) and set
f(O1) = 1. We assume that £; := {f < 2} is a small ball surrounding O;, with boundary
transverse to X.
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Suppose that we already constructed f on a domain ¥;_; := {f < k:—%}, 2 <k < N, such
that zeroes Oy, ..., Ok_1 and their stable manifolds are contained in Int 31 and f(Ox_1) =
k—1. The stable manifold P of Oy transversely intersects 0%;_1. Denote ]Bk = P \Int X _;.
Then P, is an embedded disk (or a half-disc, if Oy, is an embryo) of dimension ind(Oy,) with
boundary transverse to 0%;_;. Extend f to a neighborhood U, D ¥,_; U ﬁk as a Lyapunov
function for X such that f(Oy) = k and the regular level set {f =k + %} is compact and is
contained in Uy, see Figure 1 and [4] for details. Denote X = {f < k+ 1}. For k = N we
have ¥y = {f < N} = X, and this completes the construction. O

Note that condition (L2) is guaranteed by the Morse-Smale property, i.e. transversality
of stable and unstable manifolds for any pair of zeros. While the Morse-Smale property can
be arranged by a C'*°-small perturbation, it is not clear to us whether this perturbation can
be always done without destroying property (L1).

Lemma 2.1 can be extended to 1-parametric families.

Lemma 2.2. Any family of vector fields X, s € [0,1], which satisfy conditions (L1) and
(L2) admits a family of Lyapunov functions.

Proof. The space of Lyapunov functions for a given vector field X is contractible, because
a convex linear combination of two Lyapunov functions for X is again a Lyapunov function
for X. Also note that a Lyapunov function fs, for X, can always be included into a family
fs of Lyapunov functions for X for s close to so. Hence, the projection of the space of pairs
((L1)+(L2) field, Lyapunov function) to the space of (L1)4(L2) fields is a micro-fibration
with a (non-empty!) contractible fiber, and hence, it is a Serre fibration, see [11, 18]. O

Let us also formulate a version of Lemma 2.1 for a (trivial) cobordism. Let W be an (m—1)-
dimensional manifold with boundary and ¥ := W x [0, 1]. Denote by y the coordinate which
corresponds to the second factor. Let X be a vector field on 3 which coincides with a% near
0x.

Lemma 2.3. Suppose that

(L1") every trajectory of X originates and terminates at a zero of X or at a point of 03;
(L2) there exists an ordering Oy, ...,Op of zeroes such that there are no trajectories of X
which originate at O; and terminate in O; if 1 > j.
Then X admits a Lyapunov function which is equal to y near 0.

Proof. We construct f by the process described in the proof of Lemma 2.1 with W x 0 and
W x 1 playing the role of the first and last zeroes, Oy and Op,;. We then adjust f near
OW x [0, 1], by making it linear with respect to y and then scaling it to make equal to 1 on
W x 1. U

2.2. Blocking collections. The material of this section is fairly standard and its various
versions appear in many places (e.g. see [12, 19]). In particular, Lemma 2.5 is a corollary
of [19, Lemma 2].

A non-vanishing vector field X in a neighborhood of a hypersurface V' in an m-dimensional
manifold ¥ is called in general position with respect to V' if it has Thom-Boardman-Morin
tangency singularities of type L1 see [17, 3]. Let us fix a Riemannian metric on .
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Arguing by induction over strata of tangency singularity, it is straightforward to prove the
following statement (e.g. it is a corollary of Morin’s normal forms [15] for 3'!-singularities).

Lemma 2.4. Suppose that X is in general position with respect to V. Then there exists
€0 > 0 such that for any € € (0,€) there exists 6 > 0 such that any connected trajectory
arc of length € contains a connected sub-arc of length C(m)e which does not intersect the
d-neighborhood of V.. Here C(m) denotes a constant which depends only on the dimension
m

Proof. We can assume that the vector field X on a neighborhood of V' has a unit length. We
will be measuring below arcs v of X-trajectories by the flow-parameter. This measurement,
which we call length is equivalent to the diameter of + for sufficiently short arcs.

For any point p € V and € > 0 denote v.(p) = |J X“(p). There exists ¢y > 0 such that

u€[—e,€]
for each point p € V' the arc 3., (p) intersects V' at no more than m points, and moreover
V N Y36 (D) C Yeo(p). Given 6 > 0 denote by Ns(V') the o-tubular neighborhood of V. If For
any € < €g there exists § > 0 such that for every p € V' the intersection 73, (p) N Ns(V)
consists of no more than m components of length < 5. Any trajectory arc o of length €
which intersects Ns(V') is contained in 73, (p) for some p € V. Hence Ns(V') N o consists of
no more than m arcs of length < 5—“=. Thus, the complement ¢ \ N5(V') contains an arc of

mt2”
€ € _ €
length > il ImiZ = Imia |

Let X be a vector field on a compact m-dimensional manifold 3, possibly with boundary.
Given € > 0, a finite collection {D,}1<;j<k of transverse to X embedded into Int ¥ codimen-
sion one discs of diameter < € is called e-blocking if any connected trajectory arc of diameter

K
> € intersects | Int D;.
1

Lemma 2.5. Let X be a vector field on a compact m-dimensional manifold 32, possibly with
boundary. Suppose that all zeros of X are in Int X, isolated and hyperbolic (non-degenerate
or embryos). Suppose that X is in general position with respect to 0X. Then for any € > 0
the field X admits an e-blocking collection.

Proof. Part I. Suppose first that the vector field X |y admits a Lyapunov function f : Y —R.
without critical points. Suppose that min f = 0,max f = 1 and choose N large enough to
guarantee that any connected arc of an X-trajectory in {£ < f < ]%1} has its diameter < §,

7=0,...,N—1. Suppose that € is chosen < ¢y from Lemma 2.4 and ¢ is chosen so small that
any connected trajectory arc of length e contains a connected sub-arc of length % which

does not intersect the d-neighborhood of V. Here C(m) is the constant from Lemma 2.4.
Choose an interior tubular collar 0¥ x [—1,0] C ¥ such that 0¥ = 0¥ x 0 and 93 x (—1) is
at a distance 0 from 0%. Denote ¥y := 3\ (0¥ x (—1,0]). For each j =1,..., N —1 choose
finitely many closed discs of radius € in Int { f = N} whose interiors cover {f = N} NYy. By
shifting these discs to disjoint level sets {f = t;x}, tjx € (%, %), we get the required
e-blocking collection.
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Part II. In the general case let us choose any smooth function f : ¥ — R. Let us surround
zeroes of X by the union B of disjoint closed e-balls. We can assume that X is in general
position with respect to 9B. Denote ¥ := ¥ \ Int B.

Denote

Sp = {df(X) >0}, B o= {df(X) <0}, V= {df(X) =0} =2, nZ_.

By C*-perturbing f, if necessary, we can arrange that V' is a codimension 1 submanifold,

and X is in general position with respect to V. Let us assume that § > 0 is chosen in such

a way that any connected trajectory arc of length € contains a connected sub-arc of length
€

relC)] which does not intersect the §-neighborhood of V. Consider a §-tubular neighborhood

N D V,N C Int Y. Denote ii = ii \ Int N. We can assume that Gii is in general position
with respect to X. By applying Part 1 we can construct g-blocking collections for ¥, and

i+. The union of these collections is the required e-blocking collection for X on .
O

Note that a compact arc v of a non-constant trajectory X has a flow-box neighborhood
U = D x [0,¢| such that D x 0 is an embedded transverse disc, and x x [0,¢c],z € D are
trajectories of X. Denote by 7y : U — D the projection of the flow-box neighborhood to
the first factor. We will call an e-blocking collection {D;} generic, if for any flow-box U
projections my|op,nv — D are transverse to each other. Any e-blocking collection can be
made generic by a C'*°-perturbation.

2.3. Plugs. Given an e-blocking collection {D,}, let us thicken discs D; to disjoint flow-
boxes ); = D; x [0,a] such that intervals x x [0,a], € D; are time a trajectories of X
originated at x € D; = D; x 0. We will assume that a is chosen small enough to guarantee
that flow-boxes (); have diameter < 2e.

Let D be an (m — 1)-dimensional disc. A vector field Y on D x [0, a] is called a o-plug if
the following conditions are satisfied:

P1. Y coincides with a% on 0Q), where y is the coordinate on D x [0, a] corresponding to
the second factor;

P2. Y satisfies the Morse-Smale condition and admits a Morse Lyapunov function;

P3. for any point p € D with dist(p, D) > o the trajectory of Y through p x 0 converges
to a critical point of Y

P4. given any point p € D the trajectory of Y through p x 0 either converges to a critical
point of Y, or exit @ at a point p’ x a where dist(p’,p) < o.

Lemma 2.6. Let X be a closed manifold of dimension m, and X a vector field on ¥ with
non-degenerate hyperbolic zeroes. Let {D;} be a generic e-blocking collection, and {Q;} a
collection of their disjoint flow-boxes of diameter < 2¢. Then there exists o > 0 such that by
replacing for each j the vector field X|q, by a o-plug Y one gets a vector field X which sat-
isfies condition (L1) and such that all its trajectories has diameter < 3e. Moreover, property

(L1) survives a sufficiently small C*-perturbation X away from flow-bozes and neighborhoods
of zeroes of X.
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Proof. By assumption any point of p belongs to a connected arc v of an X-trajectory of
diameter < €, which has either both ends at Int D; and Int D; for some 4, 7, or it limits at
one of the end to a zero and the other end is at Int D;, or both ends it limits to zeroes. By
compactness argument we can find smaller closed discs D; _ C Int D, such that in the above
condition one can replace Int D; by D; _.

The genericity property for the blocking collection D; implies that if an arc v of an X-
K

trajectory does not intersect |JInt D; then it cannot have more than m — 1 intersection
1

points with dD;. Hence, we can choose the discs D;_ so close to D; that any arc v which

K
does not intersect | J D, _ intersects no more than m — 1 annuli A; := D, \ Int D, _. Choose
1

o< m+r1 mjin(dist(aDjﬁ_ﬁDj). We claim that the vector field X obtained by replacing Xlo,

by o-plugs has the required properties. Indeed, consider any trajectory 7 of X which enters

a flow-box @); through a point p € D, _ = D;_ x 0. Let v be an X-trajectory through p
K
which intersect D;_ at a point p, and does not contain any other points from (J Dy . Then

if 7 is not locked in @Q;, or any other of < m plugs Q. for discs Dy which intelrsect v, then
it enters (); through a point p” with dist(p’, p”) < mo, and thus dist(p”,0D;) > o. But this
means that the trajectory 7 converges to a zero of X in (. Analysis of trajectories with
limiting at one of the ends to a zero of X is similar. Moreover, the trajectories of the vector
field X have their diameter bounded by 3e. It remains to observe that the above analysis

remains valid if X is perturbed by a sufficiently C*-small homotopy outside flow-boxes.
|

F1GURE 2. Blocking discs with their flow-boxes.
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3. CONTACT CONVEXITY

3.1. Characteristic foliation. Let M be a contact manifold of dimension 2n + 1 with a
co-oriented contact structure & = {a = 0}. The volume form u := a A (da)” defines an
orientation of M, and (da)"|¢ defines an orientation of . If n = 2k + 1 then the former
orientation, and if n = 2k than the latter orientation, depends only on &.

Let X C M be a co-oriented hypersurface. If v is a vector field defining its co-orientation
then the orientation of ¥ is given by the 2n-form «(v)p. At any point p € ¥ where &, th 7,3,
there is defined a characteristic line £, := Ker {da|¢,~r,x} C & NT,X. Note that the co-
orientation of X defines a co-orientation of £, NT,% in §,. We orient ¢, by a vector X, € ¢,
such that the 1-form +(X,)da|e, defines that co-orientation.

The line field ¢, which is defined in the complement of the tangency locus T" between &
and Y, integrates to a singular foliation on ¥ with singularities at the points of T". We will
keep the notation ¢ for this foliation, and write /s, f¢ or ¢ s when it is important to stress
the dependence of £ on X, &, or both.

The singular locus T splits as a union of disjoint closed subsets, T'= T, UT_, where T
(resp. T_) consists of positive (resp. negative) points, where the orientations of &, and 7,(X)
coincide (resp. opposite). On neighborhoods Uy D Ty, Uy C 3, the form dS, 5 = alg, is
symplectic. We define a vector field X on ¥ which directs ¢ as equal to the Liouville field
dp-dual to 8 on Uy, and as a vector field df-dual to —f on U_, and extend it to the rest of
¥ as any non-vanishing vector field. The following lemma is due to E. Giroux in [9] and was
pointed out to us by D. Salamon. It provides an equivalent characterization of a vector field
directing the characteristic foliation. Choose a positive volume form p on ¥ equal to (d3)"
on U, and to —(df)™ on U_.

Lemma 3.1. The vector field X defined by the equation
(1) (X)p=nBA(dB)"".
directs the characteristic foliation /.

Proof. On Uy equation (1) is equivalent to ¢(X)df = £f, i.e. X coincides with the Liouville
field dual to # on U, and to the df-dual to —f vector field on U_. Elsewhere, X # 0 and
L(X)(BA(dB)"1) = 0. If n =1 this implies that 8(X) = 0 and hence, X € {. For n > 2 we
have

0= u(X)(BA(dB)") = BX)AB)"™ + (n— 1) ((X)dB) A S A dB" 2.

By restricting to Ker 8 we conclude that 3(X) = 0, and hence, (¢(X)dB) A B A dB"2 = 0.
But then (¢(X)dB) |kerp = 0. Indeed, the form df descends as a symplectic form to the
(2n — 2)-dimensional quotient space @, := (§, N T,X) /T, as a symplectic form. Hence, the
multiplication by d3"~? defines an isomorphism between 1- and (2n — 3)-forms on @,, and

the claim follows.
O

Let us recall that the contact structure on a neighborhood of a hypersurface > is deter-
mined by its restriction to the hypersurface.
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Proposition 3.2 (A. Givental, [2]). Let £ = Kera, & = Kerd' be two contact structures
defined on a neighborhood of ¥ = X x 0 C ¥ x R. Suppose that als = hd!'|ss for a positive
function h : ¥ — R. Then there exists a diffeomorphism g : Op ¥ — Op X which is fixed on
¥ and such that dg(§) = ¢'.

In fact, the statement formulated in [2] is slightly weaker. We thank D. Salamon for
providing the details of the proof of the above result.

All singularities of a vector field X directing the characteristic foliation ¢ can be made
non-degenerate and hyperbolic by a C*°-small perturbation of ¥, see e.g. [4]. For a generic
1-parametric family of characteristic foliations, the directing vector field X, can also have
(hyperbolic) embryo singularities for isolated values of the parameter s.

We will need the following version of Lemma 2.5 for a vector field X directing a characteris-
tic foliation. Define the standard contact (2n — 1)-disc (D = D*~1 &) as contactomorphic
to the hemisphere D = S¥"~' := $2"~1 0 {y, > 0} endowed with the contact structure

= {;@jdw — yydi)| st = o}.

Lemma 3.3. Let X be a vector field directing a characteristic foliation on a closed hyper-
surface X in a contact manifold of dimension 2n+1. Suppose that all zeros of X are isolated
and hyperbolic (non-degenerate or embryos). Then for any € > 0 the field X admits an
e-blocking collection {D;} which consists of standard contact (2n — 1)-dimensional discs.

Proof. We only need to ensure that discs forming the blocking collections can be chosen
contactomorphic to the standard contact disc. We recall that in the proof of Lemma 2.5
discs D; arise as elements of a covering of a transverse contact hypersurface. But the covering
can always be chosen to be formed by standard small Darboux balls. O

3.2. Lyapunov functions for characteristic foliations. For a vector field X directing a
characteristic foliation £ on a hypersurface ¥ stable manifolds of positive zeroes are isotropic
with respect to df, while unstable are coisotropic, see [4]. Near negative zeroes the field —X
is Liouville, and thus stable manifolds of negative zeroes are co-isotropic while unstable are
isotropic, In particular, a local Lyapunov function on Op (T U T_), have critical points of
index < n at the positive points, and of index > n in the negative ones. It is important to
note that critical points of index n can be either negative or positive. The stable manifold
of a positive (resp. negative) embryo is an isotropic (resp. co-isotropic) half-space.

We call a Lyapunov function f : X — R for X good if there exists a regular value ¢ such
that all positive zeroes of X are in {f > ¢} and all negative ones are in {f < c¢}. Sometimes
we will call f a Lyapunov function for ¢, rather than X.

Following Giroux, we call a trajectory v of X a retrograde connection if it originates at a
negative point of X and terminates at a positive one. Lemma 2.1 implies

Corollary 3.4. Suppose that a vector field X satisfies conditions (L1) and (L2) from Lemma
2.1. Then it admits a good Lyapunov function if and only if it has no retrograde connections.
In particular, any X which satisfies (L1) and the Morse-Smale condition admits a good
Lyapunov function.
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Proof. 1f there are no retrograde connections, then one can always order zeroes in such a way
that positive zeroes go first, and hence the construction in 2.1 yields a good Lyapunov func-
tion. The necessity of the absence of retrograde connections for existence of good Lyapunov
function is straightforward. O

Similarly, using Lemma 2.2 we get a parametric version of this statement.

Corollary 3.5. Any family X,, s € [0, 1], which satisfy (L1) and (L2) and have no retrograde
connections admits a family of good Lyapunov functions.

Proof. An additional observation which is needed for the proof, in addition to the argument
in 2.2, is that the space of good Lyapunov functions is contractible. Indeed, if we normalize
Lyapunov functions by the condition that the 0 level is separating positive and negative
points, then their convex linear combination is again a good Lyapunov function. U

3.3. Flavors of contact convexity. The notion of contact convexity was first defined in
[7], and then explored by Emmanuel Giroux, see [9], Ko Honda, see [13], and others.

Definition 3.6. (1) A hypersurface ¥ C (M, €) is called convez if it admits a transverse
contact vector field T.
(2) A hypersurface X is called Weinstein convex if its characteristic foliation ¢ admits a
good Lyapunov function.

As we will see below in Lemma 3.10, Weinstein convexity is a stronger condition which
implies convexity.

E. Giroux proved in [9] that for 2-dimensional surfaces contact convexity can be achieved
by a C*°-perturbation.

Using Corollary 3.4 we can equivalently characterize Weinstein convexity by conditions
(L1) and (L2) (or, equivalently, existence of any Lyapunov function) for X and absence
of retrograde connections. As it was pointed out above, condition (L2) is implied by the
Morse-Smale condition, which is generic for individual hypersurfaces.

Following Giroux, the set S := {z € ¥;Y(x) € &} is called the dividing set of 3.

Lemma 3.7 (E. Giroux, [9]). Suppose X is a contact vector field transverse to a hypersurface
Y and S the corresponding dividing set. Let t be the flow coordinate such that ¥ = {t = 0}
and X = %. Then & on Op X can be defined by a contact 1-form f(x)dt+ 3, where f : ¥ — R
s a function transversely changing sign across S.

Note that the contact condition implies that df # 0 along S, and «|s is a contact form.
In particular, the characteristic foliation /y; transverse to S.
Hence, we have the following:

Lemma 3.8 (E. Giroux, [9]). Dividing set S is a smooth submanifold, which is transverse to
the characteristic foliation, and independent of the choice of a contact vector field transverse
to X2, up to an isotopy transverse to the characteristic foliation.

Indeed, the space of contact vector fields transverse to X is convex subset of the vector
space of all contact vector fields, and hence, contractible.
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The dividing hypersurface S C ¥ divides ¥ into 3, := {f > 0}, ¥_ := {f < 0}. The
form o = (f(x)dt + B)|s\s can be divided by f,

g

f /
Denote Ay := ?!g .. The contact condition then is equivalent to (dA1)"™ # 0. In other words,
A+ are Liouville forms on .. Note that the corresponding Liouville fields Z. directs the
characteristic foliation on X. Indeed, Ay A ¢(Z1)dAe = AL A AL = 0.

Lemma 3.9. Let ¥ C (M, £ = Kera) be a co-oriented hypersurface. Denote 5 := a|x. Then
Y3 is convex if and only if there exists a function f : X — R such that the form (5 + fdt is
contact on 3 x R.

Proof. The necessity is a reformulation of Lemma 3.7. To see the sufficiency we observe
that ¥ =¥ x 0 C (X x R,Ker (8 + fdt)) is convex because the field T := 2 is manifestly
contact. On the other hand, by Proposition 3.2 neighborhoods of ¥ in (M, &) and 3 x 0 in
(X x R,Ker (8 + fdt)) are contactomorphic. O

Lemma 3.10. Any Weinstein convex hypersurface is conver.

Proof. According to Lemma 3.9 it is sufficient to find a function f : ¥ — R such that the

form a := [ + fdt is contact. We claim that in turn this condition is equivalent to the
inequality

(2) F(dB)" +nB A (dB)" A df > 0.

Indeed,

a A (da) = (B+ fdt) A (dB +df Ndt)" = fdt A (dB)" +nB A (dB)" ' Adf Adt
=dt A (f(dB)" +nB A (dB)" Ndf) ,

and hence, the inequality a A (da)™ > 0 is equivalent to (2).

Suppose p is a volume form on ¥ chosen as in Lemma 3.1, and the vector field X directing
¢ satisfies equation (1). Let h : ¥ — R be a good Lyapunov function on 3. We will assume
that S := {h = 0} is a regular level set of h separating values in negative and positive zeroes
of X. In particular, hly, < 0,h|y_ > 0 for neighborhoods Uy D T, of the singular point
loci.

Define a function g : ¥ — R by the equation (d)" = gp. We have g|y, > 0 and g|y_ < 0.
Hence, gh < 0 on U := U, UU_. We have dh(X) > 0on X\ (T =T, UT_)UJS).
Furthermore, dh(X) — hg > 0 on a neighborhood of S = {h = 0}, and for a sufficiently large
constant C' > 0 we have

dh(X) — hg + Ch*dh(X) > 0
everywhere on ¥. The function f : ¥ — R, which satisfies (2) can now be defined by the

formula f := e, Indeed, we have df = —eCThQ(l + Ch?)dh and therefore,

FdB" + nB A (dB)" Ndf = fgp+ n(u(X)p) A df.
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But for any 1-form v we have «(X)p Ay = —u(X)(p A7) —v(X)p = v(X)p, and hence

Fgp+n((X)p) Adf = (fg — df(X))p = —e % (hg — (1 + Ch?)dh(X)) p
— ¢ (dh(X) — hg + Ch2dh(X)) > 0.
]

Corollary 3.4 and Lemma 3.10 reduce Theorem 1.1 (in a stronger form replacing convexity
by Weinstein convexity) to

Theorem 3.11 (Honda-Huang,[14]). Let ¥ C (M,§) be a co-orientable hypersurface in a
contact manifold with a co-orientable contact structure. Then there exists a Co-smgll 1s0topy
deforming ¥ into X C (M, &) such that the characteristic foliation induced on ¥ satisfies
condition (L1) and the Morse-Smale property.

For the case dim M = 2 this result can be deduced from E. Giroux’s theorem about
C>°-genericity of contact convexity in 3-dimensional contact manifolds, [9].

4. CONSTRUCTION OF PLUGS

4.1. Main proposition. In view of Lemmas 2.6 and 3.3, the proof of Theorem 3.11 will be
completed if for any o > 0 one can create a o-plug by a C°-small isotopy of the flow box
of a standard, transverse to the flow contact disc. The next proposition asserts that this is
possible. As the statement will be proven by induction, we need more properties of a o-plug
in order for the induction to go through.

Let (D> ! ay) be the standard contact disc. Choose ¢,b > 0 and consider U’ := D x
T*]0,b] endowed with a contact form ag, + xzdy. Denote

Q" ={r=0ycU=Dx|0,b], U :={|z|<c}CU"
We will omit the superscript b when b = 1.

Proposition 4.1. For any positive € and o < € there exists an isotopy hs : @ — U,
s € [0,1], which is fixzed on Op0Q, begins with the inclusion hy : Q@ — U. and has the
following properties:

a) (Q, X1) is a o-plug, where we denoted by X the vector field directing the characteristic
foliation ls induced by h (o + xdy);

b) for any o1 < o there exists a family of compact manifolds with boundary CF C
Int @ and C; C IntQ, and an extension of the isotopy hs to a 2-parametric isotopy
hst, s,t €10,1], such that

(1) hso = hs, hor = ho for all s,t € [0,1];
— the foliation (s, induced on hs1(Q) has no singular points;
(ii) for any fized s € [0, 1] the isotopy hsy, t € [0,1], is o1-small in the C°-sense and
supported in a oy-neighborhood of Cl;
(iii) For each s € [0,1] the submanifold CF (resp. C; ) contains all positive (resp.
negative) singularities of X5, CTNCg =0 and CF (resp. C ) is invariant with
respect to the backward (resp. forward) flow of Xj;
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(iv) there exists a family of generalized Morse Lyapunov functions s : Q@ — R for
Xs,t such that ws,tl(Qp oQ =Y,

(v) there exists a stratified (n — 1)-dimensional subset E C Q N{y = 0} which
contains all the intersection points of Q N {y = 0} with stable manifolds of
positive singular point of X, for all s,t € [0, 1].

We will refer to the statement of Proposition 4.1 as an installation of a o-plug of height €
over Q = D?"71 x [0,1], where (D?*"~! ay) is the standard contact disc. The same statement
with @, U, are replaced by Q” and U? will be referred as an installation over Q. Note that
the contactomorphism U? — U, induced by the linear map (x,y) — (bx, %) of the second
factor always allows us to reduce the installation to the case b = 1.

If we further replace (D, i) in the statement of 4.1 by any compact (2n — 1)-dimensional
manifold V' manifold with boundary (and possibly with corners) and with a fixed contact
form «, we will say that we are installing a o-plug of height € over V' x [0, b].

4.2. Plan of the proof of Proposition 4.1. We begin the proof in Section 5 by showing
that Proposition 4.1 can be deduced from a weaker Proposition 5.1, where the required
isotopy hg is constructed in Uk for a large K which may depend on o, rather than U,
for an arbitrary small e. This is done by a scaling argument. One of the subtleties here
is that contact scalings are better adjusted to Carnot-Caratheodory type metrics, rather
than Riemannian ones. Thus, we have to analyze separately an effect of the scaling on
measurements in directions tangent and transverse to contact planes.

The continuation of the proof is by induction on dimension 2n — 1. Lemma 6.4 in Section
6.2 serves as the base of the induction for n = 2, as well as an important ingredient in the
proof of the induction step. The Giroux-Fuchs creation-elimination construction, which we
recall in Section 6.1, is an essential ingredient to the proof of Lemma 6.4.

By taking a product of the two-dimensional plug constructed in Lemma 6.4 with a (2n—2)-
dimensional Weinstein domain (W, ) and appropriately adjusting the product over Op OW
we construct in Section 7.1 a 2n-dimensional preliminary plug over (W x [0,1]) x [0,1].
We call the contact domain (W x [0, 1], A + dz) a Weinstein cylinder. Similar to a o-plug,
a preliminary plug blocks all trajectories entering W x [0,1] x 0 at a distance > o from
the boundary of the Weinstein cylinder. However, one has a much weaker control of the
dynamics of the trajectories entering near the boundary. Constructions of 2-dimensional
and preliminary plugs are variations of similar constructions in [14].

Next, we show in Section 7.4 that by a special arrangement of Weinstein cylinders (V; =

Wi x [0,1],..., Vi = Wi x [0,1]), k& > 2, see the definition of a good position in Section 7.3,
and by composing preliminary plugs over V; x [J%, 1], j = 1,...,k, we create, see Lemma

ok
7.8, a o-quasi-plug over (V :=JV;) x [0, 1] which blocks trajectories entering at a distance
1

> o from OV x 0, while a non-blocked trajectory which enters at a point (pg,0) € V x 0 with
dist(po, 8‘7) < o0 exits at a point p; € V x 1 which satisfies the following condition: there
exist points pj, p| € AW such that dist(po, pp), dist(p1, p}) < o and p| belongs to the forward
trajectory of pg for a vector field directing the characteristic foliation £, on dV. We note
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that if the characteristic foliation £, is a o-short, then any o-quasi-plug is automatically a
3o-plug.

Crucial Proposition 7.6 asserts that if a contact domain V' with a Weinstein convex bound-
ary OV and a dividing set S C OV can be C%-approximated by standard contact balls which
coincide with V in Op .S then V can be approximated by 3 Weinstein cylinders in a good
position.

In Section 8.2 we use the induction hypothesis to show that the standard contact ball
D?~! can be be deformed by a o-small in the C°-sense isotopy to a ball D with Weinstein
convex boundary and a dividing set S C 0D such that the characteristic foliations ¢ ob is
o-short and D can be C°- approximated by standard contact balls which coincide with D on
a neighborhood of §.

Together with Proposition 7.6 and Lemma 7.8 this leads in Section 8.3 to a proof of
Proposition 5.1, and with it, of all main results of the paper.

5. REDUCING THE HEIGHT OF A 0-PLUG

The goal of this section is to reduce Proposition 4.1 to the following weaker statement.

Proposition 5.1. For any o > 0 there exists K = K(o) and an isotopy hs : Q — Uk,
€ [0, 1], which satisfy properties a) and b) from Proposition 4.1. In other words, one can
install a o-plug over Q = D*"~1 x [0,1] of height K which may depend on o.

5.1. Changing the base. Let (V, Ker ay), (Va, Ker ay) be two contact manifolds with bound-
ary with corners endowed with contact forms and Riemannian metrics. Any contactomor-
pohism f : Vi — V5 can be extended to a contactomorphism

F: (Vi x T"R,Ker (ay + xzdy)) — (Vo x T*R, Ker (ay + zdy)

by the formula F(v,z,y) = (f(v),g(v)x,y), v € Vi, x,y € R, where the function g is defined
by the equation f*as = gay.

Lemma 5.2. Let hy; : Vi x [0,1] — Vi x T*[0, 1] be an isotopy installing a o-plug of height €
over Vy x [0, 1]. Denote C := max l|dyf]], Ca = maxg. Then the isotopy hs := Fohso F7L:
veVy 1

Vo x [0,1] — Vo x T*[0, 1] is installing a Cro-plug of height Cae over Vy x [0, 1].

Proof. First, we note that ES(VQ x [0,1]) C {|z| < Cae} because hs(Vy x[0,1]) C {|z| < €} by
assumption. If X7 is the vector field on V; x [0, 1] directing the characteristic foliation of the
form A (ay + xdy) then the vector field X7 := df (X]) on V4 x [0, 1] directs the characteristic
foliation defined by the form h*(ag + xdy). Let N} and N? denote metric a-neighborhoods
of 9V} in Vi and V5 in Vs, respectively. Then f(N!) C N%N. Hence, all trajectories of
X7 originated in V3 \ Ng, , are blocked. On the other hand, the non-blocked trajectories
originated in Nélg exit with a distortion for no more than Cio. All other properties of a
Cyo-plug installation isotopy listed in Proposition 4.1 are straightforward. O

Consider a class D of (2n—1)-dimensional compact manifolds with boundary (and possibly
with corners) which are contactomorphic to a domain in the standard contact (R?*~, dz+ M)
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n—1
with boundary transverse to the contact vector field T = 2% +> xj% —i—yja%j. For instance,
1

the standard (2n — 1)-dimensional contact ball belongs to D.

Lemma 5.3. If there exists a domain V € D such that for any o > 0 one can install a plug
of height K = K(o,V) over V x [0, 1], then for any domain V' € D and any o > 0 one can
install a plug of height K' := K(o,V")) over V' x [0, 1]. If there exists a domain V € D such
that for any o > 0 and any € > 0 one can install a plug of height € over V x [0, 1], then the
same is true for any domain V' € D.

Proof. For any domain (V,Ker «) € D its interior Int V' is contactomorphic to the standard
contact R?"~! see [6]. Besides, the boundary 9V is convex, and hence IntV = [JV},
where V; is contactomorphic to V, Hence, for any V,V’' € D IntV’' = (JVj, where V; is
contactomorphic to V. Hence, the statement follows from Lemma 5.2. 0

5.2. Scaling. For a,b > 0 denote R,, = {|zj],]y;| < a,|2] < b, j =1,...,n—1} C
(R*~1 dz + \y). Note that R, € D.

5

A Q20
3 o
2 QY
2| 4 Qo
0 QOO
Q-1
-1
9 Q10
-3 Q>
4 Q20
-5

Y

FIGURE 3. The arrangement of blocks Q*°, i = 0,41,£2, and Q%!, i =
—2,...,1, for the case N = 2.

Lemma 5.4. Choose o > 0. Suppose that one can install a o-plug of height K over R;; X
[0,1]. Then for any integer N > 0 one can install a o-plug of height K over Ry an41 % [0,2].

Proof. Denote @ = Ryan+1 % [0,2], U= Ry ony1 x T%]0,2]. We assume U is endowed with
the contact form dz+ A\g +2dy. Furthermore, for i = 0,41, ..., +N denote Q*° := {z € [2i—
1,2i4+1],y € [0,1]} € Q, U :={z € [2i—1,2i+1],y € [0,1]} C U,and fori = —N,... , N—1
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denote Q' = {z € [2,2i + 2,y € [1,2]} € Q, U™ := {z € [2i,2i + 2],y € [1,2]} c U,
see Flg 3. Note that Q" = R11 x [0,1] and U™ = R;; x T*[0,1]. The diffeomorphisms

(z,y) (Z+2Z y) and (z,y) (z—|—1+2@ y+1) preserves the contact form dz+ A\ +2dy and
identify (U := Ry x T*[0,1],Q := Ry x [0,1]) with (U, Q"%) and (U, Q"1), respectively.
Let hs : @ — U be an isotopy installing a plug of height K over @ = Ry x [0,1]. Then
the isotopy gs : Q — U which is equal to II"° o g, o (%)~ on Q™Y i = 0,..., &N, and to
[T o g, o (TT¥Y) 7! on Q%', i = —N,..., N — 1 is installing the required o-plug of height K
over R1’2N+1 X [0,2] O

, 1] then for any integer
[0,1].
Proof. By applying Lemma 5.4 we install a o-plug of height K over Ry on11)2 x [0,2]. This

is equivalent to a o-plug of height 2K over Ry ony1y2 x [0,1] . Let A, be an isotopy which
installs this plug. Consider a contactomorphism

Lemma 5.5. If one can install a o-plug of height K over Ry; x [0
X

; o : 2K
N >0 one can install a 537=-plug of height GNtTE over R2N1+171

(33'1,3417 oy Tp—1,Yn-1, 2, Y, Z)

i} 21 Y1 Tn—1 Yn—1 T Z
ON+LU2N+1 2N+ 12N+ LU N+ 12 eN+1)2)°
Then the isotopy f o hy o (f)~! is installing the required sni-Plug of height (2]\2[%)2 over
R 1 o1 X [0 1] O
Lemma 5.5 and Proposition 5.1 imply

Corollary 5.6. For any o,e > 0 and p € D*2 there exists Ny such that for any N > N
one can install a < plug of height € over R 19X [0, 1].

For a point p = (a1, b1, ..., a,_1,b,_1) C R?*"2 consider a map
r RETLZR2 X R S R™2 xR
given by the formula

Tp(xlaylv ooy Tp—1,Yn—1, Z)

= (551 +ai,y1+ b1, Tt + Qo1 Yn—1 + Opo1, 2 — Zajyj - bﬁj) :
1

Note the 7, preserves the contact form Ay + dz:
7, (At +d2) = A + dz.
Fix an integer N > 1. Given an integer vector
I:= (i1, 515 in_1,Jn_1) € [1 = N,N — 1]*"2

denote p; = L, oy := 2” 2 and

N
Pr:=1, (R%J) , Pr_ =1y, (R‘l 1761\7) , see Fig. 4.

3N’

Note that we have
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(0,0,1)

[
—
=z~
2|~
2
|
=
i
<

A
z|L
2
=)

—
2=
Z|=
(=}
e

°
(0,0,-1)

R, Piy

1
e

FIGURE 4. Domain R, and its image P, under the shear 7,,,.

Lemma 5.7.
Int (RI_SLN,I_%) c U It (Po) CInt (Riy)

I€[1-N,N—1]2n—2

and the multiplicity of the covering U Int (P_)) D Int <R17¢ 17@) is equal
IE[1—N,N—1]2n—2 N

to 2272,

Reduction of Proposition 4.1 to Proposition 5.1. Suppose that for any ¢ > 0 one can install
a o-plug of some height K = K (o) over D" x [0,1]. As the domain R;; belongs to the
class D it follows that for any o > 0 one can install a o-plug of some height K’ = K'(o) over
Rl,l X [0, 1]

We can assume o < }t. Set o = m,g = 5zm—z. Let N be the integer provided

by Corollary 5.6 for the pair (¢,€). In other words, one can install a %—plug of height €
over R1 ; x [0,1]. Choosing N large enough we will ensure that 2% < ¢ which implies that

dist(aRl_%NJ_%, OR11) < 0. Note that ||dr,|| < v2n for any p = (a1,b1,...,an-1,b,1) €

2no

[—1,1]*"72. Hence, we can apply Lemma 5.2 to install a ¥2%-plug of height € over P; x [0, 1]
for any I.

Let us partition the set Z = [1 — N, N — 1]>*=2 of all indices into 22"~2 subsets Z, indexed
by subsets A C {1,...,2n — 2}: the subset Z4 consists of I = (i1, j1,...,%—1,jn—1) Which
have odd entries at positions of the subset A, and even at other places. For instance, for
A = & the set Z,, consists of I = (i1, j1, ., 0n—1,Jn_1), Where all ig, ji are even. Note that for
I,I' € To, I # I' we have Int PyNInt P, = &. We enumerate all subsets A C {1,...,2n—2}
as Ay, ..., Agen—2, and write Z; instead of Z;.
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We claim that by installing for each I € Z;, j = 1,...,2%"2 a Y229 plug of height

22n=2¢ = ¢ over P x [22" . 227{ 52— we construct the requ1red o- plug of height € over Ry 1 x [0, 1].

Indeed, let hs : Ry3 x [0,1] — Ryy x T%[0,1] be the resulting isotopy. First, note that
hs(Rl,l x [0, 1]) C {|]z| < 2%% = €. Let us verify that the vector field X directing the
characteristic foliation ¢; induced by h}(ag + xdy) is a o-plug. As there are 2272 layers of
plugs, each trajectory v of X; beginning at (p,0) € Ry X 0 intersects no more than 2272
plugs P; x [2% L 572=z). Each of these plugs either blocks +, or displaces it for no more than

Y217 " Hence if v exits through a point (p/,1) € Ry x 1 then dist(p,p') < 22"72y/2nZ = 2
On the other hand, if dist(p,0R11) > o > 2” then p € P;_ for a multi-index I € 7
for some j = 1,...,22"72 If the trajectory 7 originates at (p,0) and it is not blocked
by any of the plugs on the layers [an 7, gm=z) for i < j then by the above argument it
enters the plug Py _ x [27%_12, 2]2n 12] through a pomt (P, 55= A1) with dist(p,p’) < <. Hence,

dist(p/, 0P;) > dist(0P;,0P;_) — & > 5k — 7 > 2% > V212 But (P X [ 12, 1, Xq)

is a 2”" -plug, and therefore, the trajectory v is blocked inside Py _ x [2]%_12, 22;_12]. This

Veriﬁes the property a) of Proposrtlon 4.1. Property b) follows from the fact that it holds
for plugs (P x [23% S 4 Sz L, X,)] for each I € T and transversality arguments.
Finally, we again apply Lemma 5.3 to conclude that the installation for any o, € of a o-plug

of height € over R, is equivalent to the installation for any o, € of a o-plug of height € over
D?~1 x [0, 1], because both domains D?"~! and Ry ; belong to the class D. O

Remark 5.8. Note that the above proof of the height-reduction for o-plugs significantly
simplifies for n = 1, i.e. when the plug is 2-dimensional. Indeed, in this case D*"~' = R;; =
Ry, = [—1,1], and the claim follows directly from Corollary 5.6.

6. THE 2-DIMENSIONAL CASE

We will prove in this section Proposition 5.1 (and hence, Proposition 4.1) in the 2-
dimensional case. In fact, we will establish a stronger statement, Lemma 6.4, which will
enable us to continue the construction by induction on dimension of the plug.

6.1. Creation and elimination of singularities of a 2-dimensional characteristic
foliation. The following statement is a slight modification of the Giroux-Fuchs elimination
lemma, see [9)].

Lemma 6.1. Let X be a 2-dimensional surface in a contact 3-manifold (M, = Ker «t). Let
p € X be a non-singular point of the characteristic foliation ¢ = lx¢. Let v > p be an arc
of the leaf of ¢ through p. Suppose that (da), > 0 Then for any positive € and o < € there
exists an e-small 2-parametric isotopy ¢rs : X — (M, &) supported in an e-neighborhood of
p € X with the following properties. Denote sy = ¢, and let Ly be the characteristic
foliation defined by Bs, and X, the vector field directing ;.

® ¢o: = oo 1S the inclusion ¥ — M ;
the 1-form Bs1 has no zeros for all s € [0,1];
the 1-form B¢ has exactly two zeros, one positive elliptic and one hyperbolic on the
arc y;
the arc v is tangent to X, for all s,t € [0,1].



18 YAKOV ELIASHBERG AND DISHANT PANCHOLI

- dﬁs,t = dB0,0 fO’f’ all st € [07 1];

- If ¢ admits a Lyapunov function f :3 — R then for all s,t € [0, 1] the characteristic
foliation (s, admits a Lyapunov function fs; which coincides with f outside an e-
neighborhood of p.

We split the proof into two parts.

Lemma 6.2. Consider the form § = dz+dx+xdy in R3. Under assumptions of Lemma 6.1
there is a neighborhood U > p in M, a neighborhood U’ of 0 in R® and a contactomorphism
h:(U,8) = (U,a) such that V1 (ZNU)=R*NU".

Proof. We first find a diffeomorphism h; : Op z2(0) — Op x(p) such that hjda = dxAdy, and
then compose it with a symplecomorphism to equate the pull-back of o with dz+zdy. Finally,
we evoke Proposition 3.2 to conclude that two contact structures with the same restriction
to a surface are contactomorphic via a contactomorphism fixed on the surface. 0

Lemma 6.3. For any € > o > 0 there exists a 2-parametric family of C°-functions G :
R? —» R, s,t € [0, 1] which are supported in {|z|, |y| < €} which have the following properties.
Denote oy = xdy + dx + dG .
- Go,o =0;
- G5t — Gsp is supported in {x < 0,y < €}.
- the 1-form a1 has no zeros for all s € [0, 1];
- the 1-form ay o has exactly two positive zeroes, one elliptic and one hyperbolic, on the
line {x = 0}.
- for all s,t € [0, 1] the vector field Yy, directing the characteristic foliation on {x = 0}
generated by o, admits a Lyapunov function which is equal to y outside of a compact

| i

FIGURE 5. Creating and eliminating zeroes.

Proof. Consider an even function 6 : R — R, 6(u) = 8(—u), and for any ¢ > 0 consider an
odd functions 7, : R — R, n.(u) = —n.(u) such that the following properties are satisfied:
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-O0(u) =u*—1-— % onu € [—€/2,¢/2], O(u) =0 for |u| > € and 0 < #'(u) for u > 0;
- ne(u) = u for u € [—co, o], ne(u) = 0 for |u > ce, [n(u)] < |u| and =22 < p/(u) <1

for u > 0.
Consider a family of functions Gy, s € [0, 1] by the formula

Gs(z,y) = s0(y)m ()

and a family of 1-forms
ag = dz + xdy + dGs = (1 + s0(y)n; (x))dx + (x + s0'(y)m(x))dy = fo(z,y)dz + gs(x, y)dy.
Let us check that the form a; have a hyperbolic 0 at the points (z = 0,y = —3), an elliptic

zero at (z = 0,y = £) and no other zeroes. We have

€
50

l91(z, )| = la + 2ym(2)] = |2|(1 = 2Jy[) = (1 = e)|z| for [y < 3

(3) €2 5e? €

=1 1= —ni(x) > == >0 > -

filz,y) =1+ (y 5 ) m@) 2 5= >0, |yl =3
Hence oy has only zeros along the interval {z = 0,—5 <y < §}. In the neighborhood
of this interval we have oy = (y? — %)dm + (1 4 2y)xdy, which has 2 zeroes, elliptic and

hyperbolic, respectively at the points (z =0,y = ¢) and (v =0,y = —%).
Let us now extend the family G to the 2-parametric family of functions Gy, : R* — R by

setting
Gs,t = HS(IL', y) - Ste(y)na(x) = fs,t(xa y)dQ? + fs,t(xv y)dy

Let us verify that the form o, ; = dv+xdy+dG;; has no zeros. First, note that for |z| < =,
we have fs1 =1 and gs:(z,y) = .

Similarly to the above estimates (3) for fs and gs; we conclude that fs; # 0 for |y| >
and z # 0 and g1 #0 [y| < 5.

It remains to show existence of a family of Lyapunov functions for the family of vector
fields Y; ;. According to Corollary 3.4 it is sufficient to verify for Y;, the property (L1) and the
Morse-Smale condition. Because it is the 2-dimensional case then by Poincaré-Bendixson'’s
theorem it is sufficient to show that there are no periodic orbits. But any periodic orbit in R
bounds a disc and the sum of indices of singular points in this disc should be equal to 1. On
the other hand, the only 2 singular points of Y;, are connected by a separatrix trajectory,
and hence the disc bounded by a periodic orbit must enclose both singular points, whose
sum of indices is equal to 0. 0

£
2

6.2. Special 2-dimensional plug. We construct in this section a special 2-dimensional
plug. In the contact space (R3, Ker {dz + xdy}) consider

O:={0<y,2<1,-4<zx<0}, R:=0n{zx=0}.

For a sufficiently small € let us choose non-decreasing C'*-functions ¢, 6 : [0,1] — R such
that

<
—
)
~
I
o m
il
—_
~—
N
N
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Vs

U1

)

F1GURE 6. Graphs of functions ©, ¥y, and ¥s.

e 1 has vanishing derivatives of all orders at the points 0 and 1, and 0 < ¢'(y) < € for
y € (0,1).

Denote . .
(23 3:¢+§> o 1= —¢+(1—¢(1)_§)-

and consider the graphs ©, Wy, U, of the functions 6,1, and )5:

={(y,0)); y € [0,1]}, ¥y == {(y,¥1(y)); v € [0,1]},
Uy = {(y,¥2(y)); y € 0,1]} C R.
Denote

R, = {(y’ 2) €ER,z< Q(y)}v R_:= {(y,Z) €ERz> Q(y)}

Lemma 6.4. For any € > 0 there exists an isotopy hs : R — O, s € [0,1], which is fized
together with its co-jet along OR, constant for s € [0, g] U [%, 1], and such that the following
properties a)-i) are satisfied. Denote 55 := h’(dz + xdy). Let Yy be the vector field directing
the characteristic foliation £y of Bs.

a) df restricted to the interior Int Ry of Ry is positive, and df3 restricted to the interior
Int R_ of R_ is negative for all s € (3,1];

b) Bs has
— no zeros for s < %,
— a positive and negative embryos o, := (,91(3)),0- = (2,42(3)) for s =3,
— a pair
1
ex(s) = (e(5), a(el(9))): iy () = (AL (s), r(PL(9))), 0 < e (s) <Pils) < 5
of positive elliptic and hyperbolic points, and a pair
2
e~(s) = (eL(5),1(e2(9))): A (s) = (AL(s), Y1 (AL(5))), 1> ey (s) > Pi(s) > 3

of negative elliptic and hyperbolic points for s > %.
c) the incoming separatrices of hy(s) and oy for Yy, are contained in ¥y, and outgoing
separatrices of h_(s) and o_ for Yy are contained in Vs, s > %;
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d) there exists €1 € (0,€) such that the outgoing separatrices of hy(s) for Yy terminate
at e_ and (1,€), and the incoming separatrices of h_(s) for Y1 originate at e and
(O, 1-— 61),'

f) Y; fors € [%, 1] is outward transverse to the graph ©, viewed as a part of the boundary
of the domain R ;

g) Y admits a family of good Lyapunov function s : R — R such that Ys|opor = y;

h) B,(£) > 0 everywhere in R for s € [1,1];

i) for any o > 0 the isotopy hs, s € [O 1], can be extended to a 2-parametric isotopy
hst,0 < s,t <1, such that

— hso = hs, hoy = ho for all s,t € [0, 1];

— hgy = hs for s < % —o,t€[0,1];

— for each s € (%, 1] the isotopy hsy,t € [0,1], is supported in a o-neighborhood
of the separatrices connecting hy(s) with ey (s); for each s € [3 — 0,1] hyy is
supported in a o-neighborhood of o4,

— hgy 1s o-close in the CV-sense to hso for all s, t €0, 1];

— the family of vector fields Y;, directing the characteristic foliations ls; of Bss 1=
R} o admits a family good Lyapunov functions 1, : R — R such that hs|opar =
Y

— Y has a pair 0f positive elliptic cmd hyperbolic zeroes at ey (s(1—2t) + 3) an
ha(s(1—2t) + ) for s > 3 < 2, pairs of embryos at o4 for s = 3 b=
no zeroes otherwzse

— hst = hg for s € [0, %],t € [0,1], and hyy = hyy for s € [£,1] t € [0,1];

— X, is outwardly transverse to © for all s € [, 1], t € [0, 1].

nd

1
2

Proof. Choose a function H : R — R such that
(C1) H vanishes on OR together with all its derivatives;
(C2) 0> H(y,z) > —4, y,2z € [0,1];
(C3) H(y, ¥1(y)) = H(y,va(y)) = =¥ ().
(1) @y = ¢ =0 W EM
i >0, (y,2)€ R_;

(C5) H(y,0(y)) < —0'(y).
An additional property (C6) will be imposed later.

Define an isotopy hs : R — R, s € [0,1], as follows. For s € [0, 1/2] we define

hs(y, z) :== (y,2,2sH(y, 2)), (y,2) € R.

Let ¢; be the characteristic foliation defined by h¥zi on R. Leaves of the characteristic
foliation on ¢, are graphs of solutions of the equation

dz
4 = —2sH
() =~ —ast(y.).
For ¢ € [0,1] we denote by £ and (¢ the solutions of (4) with the initial data £;(0) = ¢
and (¢(3) = , respectively. Condition (C3) ensures that £z = 1, (2 = p,.
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y 3

wi= I

FIGURE 7. The characteristic foliation on h4 (R). The red curve is the dividing
set I' = {du = 0} while blue curves depict separatrices connecting e* to h7.

For s € [1/2,1] we use Lemma 6.1 to create for s > % pairs of elliptic-hyperbolic positive

and negative points at ey (s), hy(s) through embryos at oy for s = 2. The isotopy can be
constructed arbitrary C%-small and supported in a neighborhood of separatrices connecting
e+ and hy. It can also be arranged that the isotopy also fixes the leaves W, and ¥, of the

foliation E%, so that these leaves become broken leaves of the characteristic foliation £ for

s € [%, 1]. In particular, these curves contain, respectively, the incoming separatrix of A, (s)
and outgoing separatrix of h_(s). It then follows that one of the outgoing separatrices of
hi(s) terminates at (1,€;) for ¢ < ¢, and it could be arranged that one of the incoming
separatrices of ii_ originates at (1,1 — ¢;).

Suppose that the second outgoing separatrix of /i, (1) intersects the line y = % at a point
(3,a), a € (Y1(3),0(3)), while the second incoming separatrix of ii_(1) intersects the line
y = 2 at a point (2,b), b € (A(3),¢2(3)). We now impose the remaining condition on the
function H:

(C6) H(y,z) < =3 forye[l,2],z € [a,b];

This guarantees that one of the outgoing separatrices of i, (1) terminates at e_(1), and one
of the incoming separatrices of 4_(1) originates at e (1).

Using the extension to the 2-parametric isotopy in Lemma 6.1 we extend the isotopy hg
to a 2-parametric isotopy hs: for s,t € [0, 1] with the required properties. 0

Let us denote by I'4(s), s € [2,1] the (closure of the) trajectory of Y, connecting e (s) and
hi(s) and by A (s) (resp. A_(s)) the (closure of the) incoming (resp. outgoing) separatrix
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of hy(s) (resp. h_(s)). For s = 2 we assume that ey (3) = hy(3) = or. We extend the

definition of T’y (s) and AL(s) to all s € [0,1] by setting I'y(s) = Ay(s) = @ for s < 2.

7. PRELIMINARY AND QUASI-PLUGS

7.1. Preliminary plug. Let (W, ) be a Weinstein domain. We denote by Z the Liouville

field dual to A. Consider an interior boundary collar C' := OW X [1 —¢, 1] such that OW x 1 =

OW and M¢ = 7y, 7 € [1 —¢,1], for a contact form v = Agw. Denote Wy := W\ C.

Furthermore, denote by Skel(W, Z) the skeleton of W, i.e. the union of stable manifolds of

zeroes of Z. Alternatively, Skel(W, Z) = (| Z~*(W). Here we denote by Z~* the flow of
)

s€[0,00

— 7, which is defined for all s > 0.

Consider a contact manifold (V := W x [0, 1], Ker (A4 dz)), and in (V x 770, 1], Ker (A +
dz + xdy)) take the domain U = {—4 < 2 < 0} and a hypersurface Q = {z = 0}. Note that
Q =V x [0,1], and we can naturally identify V' x T*[0,1] and @ with W x O and W x R
respectively, where we use the notation O, R introduced above in Section 6.2.

Let hsy : R — O be the isotopy constructed in Lemma 6.4. Define an isotopy

gst  Q=WxXxR-=-U=WxO
by the formula

gs(w, q) = (w,hs4(q)), weWyqeR
st (W, (W, hez1(q)), w=(v,7)€C=0W X[l —e€e|, T= 1_TT

Denote B\S,t = gi (A +dz + zdy) and let X, ; be the vector field directing the characteristic

foliation defined by the form Es,t- Set BS = 3370 and X, := Xo. It follows from the
corresponding properties of the isotopy hs, that for each fixed s € [0,1] the isotopy gs.,
t € [0,1], is o-close to g, in the C°-sense.

Denote

"=V x0CQ, MMV:=Vx1cCaQ,
i”P::WOX[e,l—g]XOCmV, O“tP::WOX[el,l—g]xlcomV,
T =Wy x (1 — %,1] x 0C ™V, T =Wy x[0,6) x 1 C V.

Furthermore, denote

PomWox (U | () xTa(@) c@ 7=——"

uedW, 1—e<7<1 €
The following proposition lists the necessary for our application properties of the family
of vector field X ;.
Proposition 7.1. The vector field X, on Q, s,t € [0,1], has the following properties.

(1) every trajectory of X,
(a) which starts at ™™ P converges to a zero of Xi;
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F1GURE 8. Regions in the preliminary block with controlled dynamics.

(b) which starts at a point (u,z,0) € ™T exits at a point (v',2',1) € V, then v/ =
Z7%u),a >0 and 2" € (1= §,1];
(¢) which ends “*P originates at a zero of Xi;
(d) which terminates at a point (u,z,1) € ““*T begins at a point (v, z',0) such that
u' = Z7%u),a>0, and 2’ €[0,5);
2) wector fields X1, s € |0, 1], have no zeroes;
(2) 1 1], ;
(3) Ty is invariant with respect to the negative flow of X1, and T'_ is invariant with
respect to the positive one;
(4) All trajectories of X which converge to positive singularities either do not intersect

0Q and are contained in I'y, or intersect it at points of Skel(W) x § C ny - oall
trajectories of X, which originate at negative singularities either do not intersect oQ
and are contained in T'_, or intersect it at points of Skel(W) x (1 —§) C *V;

(5) the family of vector fields X, admits a family of good Lyapunov functions s, equal

toy on 0Q);

We begin the proof with an explicit computation of the vector field X;;. Let Z denote
the Liouville field on W corresponding to the Liouville form A. Recall that A¢ = 77,
7 € [1 — €, 1], where 7 is a contact form on OW. We have Z|c = Ta%. Let R be the Reeb
vector field on OW lifted to C' = OW X [1 — €, €] via the projection to the first factor.

Let us view Q = W x R as the fiber bundle over W. The form Bs,t restricts to the fiber
wxQ, weWas s, if we W, and for w = (u,7) € C = 0W X [1 —¢,1] as fs4, where

T = 1%’ To simplify the notation we will write iz instead of 5, X instead of X, y instead
of s+ and p, instead of Bs. Denote fi := dur

=i
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For each 7 € [1 — ¢, 1] consider a form k, := p, — 71, on @ and choose a vector field Y;
directing Ker k..

Consider a tangent to fibers w x @, w € W, vector field Y which is equal to X, on w x Q
for w € Wy and to Y, on w x @ for w = (u,7) € C =W x [1 — ¢, 1].

Lemma 7.2. We have

1. X =Y 4+ aZ over Wy x Q, where the function a : Q — R is determined by the
equation

(5) ap = 1(Y)dp.
2. X =Y +aZ + bR over C x Q, where the functions a,b: Q — R are determined by
the equations

ks = L(Y;')d,ura

(6) b + pr(Y7) = 0.

Remark 7.3. Note that for any vector v and a symplectic form w we have «(v)w(v) = 0.
Hence, the equation (5) and the first equation (6) are always solvable for some function
a:@Q — R.

Proof. 1. According to Remark 7.3 we can solve equation (5) with respect to a function a.
We have
aZ +Y)d(p+ X)) = u(Y)dp+ a(Z)d\ = a(p + N).
But this means that aZ + Y is tangent to the characteristic foliation defined by the form
w4 A=
2. Note that dp = du, + d(77y) = d1 A piy + dp + dm Ay + 7dy. Hence, we get that
WY +aZ +bR)dp = —(u(Y;) + b)dr + ap + aty = a(p + 77),
where we used the second equation (6) to conclude that f(Y;)+b = 0. But this implies that
gAY +aZ+bR)dp) =0,

which means that Y + aZ + bR generates the characteristic foliation on C' x ) defined by

the form 7, as required.
O

Proof of Proposition 7.1. (1a) When a trajectory of X; which enters at a point of P it is
in the region where X; = Y] +aZ with a < 0. Since a is negative the trajectory continues to
remain in the region where the plug is given by W, x R, and hence projects onto trajectories
of —Z and Y, when projected to the corresponding factors. Moreover, the projection to R
remains in R_, according to Property f) of Lemma 6.4, and therefore remains in the region
where the coefficient a is negative. But in R_ any trajectory of Y] entering at a point in
[e,1 —€1) x 0 converges to a negative zero of Y;, while every trajectory of —Z converges to
a zero of Z. Hence, any trajectory of Y; entering through P converges to a 0 of the vector

field Xj;.

(1b) If a trajectory enters at a (u,z) € "7 then similarly to la) we have X; = Y] + aZ
for a negative coefficient a, and therefore, it projects onto trajectories of —Z and Y} in the
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factors W and R. But every trajectory of Y7 which enters through (1 — ey, 1] x 0 exits R
at a point of [1 — §,1], and hence the corresponding trajectory of X exits “V at a point
(u' = Z7%(u), 2') for some positive ¢ > 0 and 2’ € (—5.1].

(1c) and (1d) follows from the same arguments as, respectively, (1a) and (1b) applied to
the vector field —X;.

Properties (2)-(4) are straightforward from the corresponding properties in Lemma 6.4
and Lemma 7.2.
(5) According to Corollary 3.4 it is sufficient to verify that

e cach trajectory of X, either originates at V' x 0, or at a critical point of X ;
e cach trajectories of X, either terminates at V' x 1, or at a critical point of Xj;
e X, has no retrograde connections.

In addition to the Weinstein subdomain Wy = W \ W x (1 — ¢, 1] consider also a larger
subdomain W) = W\ OW x (1—-5,1]. Denote Q4+ := W1 x Ry, Qy := (W\W1) xR C Q. We
have Q = Q4 UQ_ U Q. Let us first analyze the forward trajectory X (p) = (w(u),r(u)),
u € R, of a point p = (w,r) € Q.

If p e Q_ and r € W then w(u) belongs to the negative Liouville trajectory |J Z7 " (w) as

>0

long as r(u) € R_. Similarly, if w € W1\ Wy = OW x [L —¢, 1 — §] the second coordinate of w
decreases as long as w(u) € R_. But the Q-component Y ; of X, is by construction inwardly
transverse to the boundary of R_, and hence, remains in R_ for all u > 0. Therefore, the
trajectory either converges to a singular point of X ;, or exits through V' x 1.

Suppose p € Q. Recall that the ()-component Y5, of X, has in (), a positive projection
to the y-direction. Hence, X¢,(p) either exits through V' x 1, or enters Qy UQ_. But in that
case it only can enter ()_, and therefore, the analysis of the previous case does apply.

Suppose now that p € Q. If w € Wy then w(u) moves along a positive Liouville trajectory
of w, and if w € OW x [1 —¢,1 — 5], then the second coordinate of w(u) increases as long as
r(u) € Ry. Hence, the trajectory either exits through V' x 1, or enters either @, or )_, and
therefore, the previous analysis applies.

The incoming trajectories could be analyzed similarly, with exchanging (), and )_ cases.
The absence of retrograde connections follow from (4).

O

7.2. Approximating balls by Weinstein cylinders. A hypersurface ¥ C (M, ¢) is said
to have an admissible corner along a smooth hypersurface S C X if

e S is a codimension 2 contact submanifold of (M, ¢);
e XN0OpS =%, U2, where 37 and X5 are two manifolds with common boundary .S
which transversely intersect along S.

We will call the hypersurface S C 3 the corner locus of ¥ and denoted by Corner(X).
Suppose X is a smooth hypersurface, let us choose its tubular e-neighborhood N and
denote by 7 the hyperplane field on IV orthogonal to the fibers of the projection N — ¥. We

say that a hypersurface with admissible corners ¥ C N is C* e-close to ¥ if all its tangent
planes do not deviate for more than e from 7.
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Given a Weinstein domain (W, \), a domain U in a contact manifold (M,¢) is called a
Weinstein cylinder if there is given a contactomorphism ¢ : (W x [0,al, Ker (A + dz)) —
(U, €&|y). We already encountered Weinstein cylinders in Proposition 7.1.

Note that the boundary of a Weinstein cylinder ¢(W x [0,a]) is a hypersurface with
admissible corners along Corner(U) = W x0UOW xa. We denote 0_U := ¢p(W x0), 0,U :=
(W x a).

For a general W the contact topology of the Weinstein cylinder W x [0, a] is very sensitive
to the value of the parameter a. However, there is one exception (see e.g. [8]):

Lemma 7.4. Let D = D?" 2 be the unit ball on R?**~2 endowed with the Liouville form

n—1

At i = > (xjdy; — y;dx;). Then for any a > 0 there is a contactomorphism
1

A, = (D x [0,a],Ker (A +dz)) — Ay := (D x [0, 1], Ker (A + dz)).
Hence, we will use the notation A for any Weinstein cylinder of the type D x [0, al.

Lemma 7.5. Let D be the standard contact ball and p+ € 0D its poles. Then for any
€ > 0 there exists a contact embedding h : A — D such that h(0;A) C 9D, 9D \ h(0LA) is
contained in an e-neighborhood of the pole p_ and D \ A is contained in the e-neighborhood
of 0D.

Proof. Consider a (2n — 2)-dimensional open disc B_ C 9D of radius € centered at p_ with
boundary 0B_ transverse to the characteristic foliation fyp. Denote Dy := 0D \ B_ By
scaling the contact form along 0D we can arrange that D, with the resulted form is the
standard Liouville ball, and flowing for some time ¢ with the corresponding Reeb field T,
inwardly transverse to Dy, we construct a Weinstein cylinder A = |J Y% Dy) C D. Let
te[0,0]
D', D" C D be smaller standard contact balls such that D’ C Int A, D’ C Int D" and D\ D"
is in an e-neighborhood of dD. Note that the space of contact embeddings of a standard
contact ball into any connected contact manifold is connected. Hence, there exists a contact
diffeotopy h; : D — D, t € [0,1], which is fixed on Op dD, and such that hy(D’) = D".
Then the Weinstein cylinder h;(A) has the required properties. U

7.3. Weinstein cylinders in a good position. We say that Weinstein cylinders Vi, ..., Vj
are in a good position, see Fig. 9, if
e ViNVio=oforall j=1,...,k—2;
e OV \ Vo C Int 0_Vi;
e for each j =2,....k we have 0V} \ V;_y C Int 0,.U};
e for each j =2,...,k — q we have 9V, \ V41 C Int 0, V};
e 0V and 0V, j =1,...,k—1, intersect transversely along a codimension 2 contact
submanifold S;, and the orientations induced on S; from 0V;4; \ IntV; and from
oV, \ Int V; 1, are opposite.

k
Note that if V;,...,V} are in a good position then 0 (U Vi> is a piecewise smooth hy-
1

persurface with admissible corners, and it can be made Weinstein convex by a (C°°-small
perturbation.
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Wy x I Wy x 1 Wi x I

outTl inTQ ’st
FIGURE 9. Three Weinstein cylinders V; = Wy x I, Vo = Wy x I, and V3 =
W5 x I in a good position. The blue region is °“/T, while the green ones are
outT2 and outTg‘

Let V' C (M,€) be a domain diffeomorphic to a closed ball with a Weinstein convex
boundary dV. Let S C 9V be a dividing set. We say that (V,S) can be approximated by
standard contact balls if there exists a neighborhoood N of S in M such that for every o > 0
there is a (iso-)contact embedding g : D — (M, &) of the standard contact ball such that

- g(0D) is contained in a o-neighborhood of OV
- g(0D)NN =0V NN.

Proposition 7.6. Let V C (M,&) be a domain with a Weinstein convex boundary 0V and
S C OV be a dividing set. Suppose that (V,S) can be approxrimated by standard contact balls.
Then for any € > 0 there exist three Weinstein cylinders Vi, Vo, V3 C V' in a good position
such that a piecewise smooth hypersurface (Vi U Vo U V3) is C e-close to OV, see Fig. 10.

Proof. Choose an inwardly pointing transverse to X := 0V contact vector field and consider
an interior collar C':= 0% x [0,1] C V such that ¥ x 0 = X, x x [0, 1],z € ¥ are trajectories
of T and YT/(X) = ¥ x t. By scaling X we can assume that C' is contained in an e-small
neighborhood of 3. Choose an {-approximation of (Xz(V), X1(9)) by a standard ball h(D).
By assumption the standard sphere 3= h(0D) coincides with Z% =X X % along a tubular
neighborhood N = S x [-1,1] C E%. We can assume that S x ¢t C N is transverse to

the characteristic foliation on X1 for all ¢ € [—1,1]. Take a C*°-function 6 : [0,1] — R

which is equal to 1 — u for u € [4,3], equal to 0 near 1 and has non-positive derivative

everywhere. Let © : ¥ — R be a function supported in N and defined on N by the formula
O(z,u) =0(|u]), (z,u) € N =5 x [-1,1]. For o € (0, 3) define an isotopy g, : © — V:

gs(w) = T (), u € B, 5 € [0, 0].
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F1GURE 10. Three Weinstein cylinders in good position approximating a do-
main which admits an approximation by standard balls.

If o is chosen sufficiently small then the spheres gs(i), s € [0, 0], are almost standard, and
hence, by Lemma 8.2 a C%small adjustment near one of the poles makes them standard.
Assuming this is done we can extend the isotopy to a global compactly supported contact
diffeotopy G4 : V — V,s € [0, 0].

The dividing set S C X 1 divides ¥ into domains X 1y with the common boundary S.
Denote

Consider two Weinstein cylinders: Wy = Sy x —%,51= U T#(S4), see Fig. 10. We have
|s|<§
LW, = TF5 5(3,) and aiW — T*%(3_). Consider the standard ball D := G, (h(D)) C V.

The standard sphere 9D transversely intersects 8W+ along T3(S x (—1)) € 8, W,, and

transversely intersects OW._ along T3(S x3) € o W_. Note that the South pole of the

sphere 0D is contained in Int TV _. Hence, using Lemma 7.5 we can Cl-approximate D by a
contact embedding f : A = D x I — D such that f(Corner(dA)) is contained in Int W_. It
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then follows that the Weinstein cylinders /W+, f(A) and W_ are in good position, while the
boundary W, U f(A) UW_ Cl-approximates . O

7.4. Quasi-plugs. Let V C (M, €) be a domain whose boundary OU is a hypersurface with
admissible corners. Denote ) := V' x [0, a] and let y be the coordinate corresponding to the
second factor. Given sufficiently small o > 0 and a vector field Y on @, we call (Q,Y) a
o-quasi-plug if the following conditions are satisfied:
QP1. Y coincides with a% on Op 0Q);
QP2. Y admits a Morse Lyapunov function which is equal to y on Op 0Q);
QP3. for any point p € V with dist(p, V') > o the trajectory of Y through p x 0 converges
to a critical point of Y;
QP4. given any point p € V with dist(p, V) < o, there exists a point p’ € 9V and a
positive u(p) such that the trajectory of Y through a point p x 0 either converges to
a critical point of Y, or exit @ at a point p” x a with dist(p”, Y*®)p') < 0.

We will use quasi-plugs in combination with the following simple observation.

Lemma 7.7. Suppose that the characteristic foliation on OV is o-short. Then any o-quasi-
plug is a 3o-plug.

Lemma 7.8. Let Vy,..., Vi, k > 2 be k Weinstein cylinders in a good position. Denote
V= LkJV}, Q:=Vx 0,k], Q; :=V; x[j—1,4], j=1,...,k. Denote by Y; the vector field
X4 colnstzucted mn jzmposition 7.1 and implanted to QQ;, j = 1,..., k. LetY be the resulted
field on Q. Then (Q,Y) is a Co-quasi-plug for some constant C.

Proof. For each j = 1,...,k we denote " PJ outpi in{ji out[]j ’”TJ and °“T7 the corre-
sponding domains defined in Proposition 7.1 for @);. Denote 179- = OVJ, @gi = Vg X [0, 7].
We will prove the following more precise statement by induction in 17,

(@Sia Y|@<i) 18 a o-quasi-plug for any i > 2. Moreover, any non-blocked trajectory entering

‘7<k x 0 exit through **U, UJT;.
2

Suppose i = 2. For a sufficiently small o we have “V;\*“ R, C " P, and ™V,\" Ry C °“' P;.
This implies that not blocked trajectories which enter V! x 0 either exit through *“U?! x 2,
or through °“T? x 2. In the former case the exit point moves, possibly with a o-error, in the
positive direction of the Liouville flow of W7, and in the latter one in the negative direction
of the Liouville flow of W. which means that in both cases they are moved forward along
the characteristic foliation on V. Similarly, not blocked trajectories entering V2 \ V! must
enter through "U? x 0 zgld exit through °“T, x 2, and hence, also are moved forward by the
characteristic flow on V.

Suppose now that the statement holds for < ¢ blocks. By the induction assumption all the

i—1
non-blocked trajectories which enter through Vo; 4 x 0 exit through (“*U; U |J T;) x (i —1).
2
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i—1
On the other hand, V; N (|J °“Ty) C *“T;—1 N ("U; U™P;). But all trajectories entering Q;
2

through ™P; x (i — 1) are blocked and those entering through ™U; x (i — 1) exit through
outT: and are pulled in the negative direction by the flow of Y;. Finally, trajectory entering
(Vi \ V<i—1) x 0 which are not blocked similarly exit through °“T; and are pulled in the
negative direction by the flow of Y;.

O

8. FROM A QUASI-PLUG TO A 0-PLUG

As we already mentioned above, we prove Proposition 4.1 by induction on dimension.
Lemma 6.4 (together with the height reduction argument from Section 5, see also Remark
5.8) serves as the base of the induction for 2n = 2. Suppose that Proposition 4.1 is already
proven in dimension < 2n.

8.1. Standard and almost standard spheres in a contact manifold. Recall that we

defined the standard contact (2n+1)-ball as the upper hemisphere D := S3"*! = {y,,, > 0}
n+1
in the unit sphere S?"*! = { Yty = 1} C R?"*2 endowed with the standard contact
1

n+1
structure & = { Y x;dy; — y;dz; = 0}.
1

We call a germ of a contact structure on S?* = 9D standard if it contactomorphic to the
germ of of & along 0D and coincides with &; on a neighborhood of poles

pr i ={rp1 ==x1, z;=0forj=1,....,n, y; =0forj=1,....,n+1}.

A germ £ along a sphere is called almost standard if it coincides with & on a neighborhood
of poles p+ and its is characteristic foliation on S*" admits a Lyapunov Morse function with
exactly 2 critical points. Recall (see Proposition 3.2) that a germ of a contact structure
along a hypersurface ¥ is determined by its restriction to % up to a diffeomorphism fixed on
Y. Hence, we will not distinguish below between the germs and their restrictions.

Recall that any linear (conformal) symplectic structure w on a vector space E defines
a canonical contact structure ¢, on its sphere at infinity S(E), i.e. the space of oriented
lines through the origin. The group Sp(F,w) of linear symplectic transformations acts by
linear projective contactomorphisms on (S(F), (,) and this representation is faithful. Hence,
we can view Sp(F,w) as a subgroup of the group of contactomorphisms of (S(E),(,). In
particular, given a hypersurface ¥ in a contact manifold (M, §) the contact structure £ defines
a conformal symplectic structure on 7,% for each singularity p of the characteristic foliation
s, ¢. We denote the corresponding contact structure on the sphere S, = S(T,X) by (.

For the contact structure & along S?" = 9D the holonomy along the leaves of the
characteristic foliation /¢, allows us to identify the contact spheres at infinity (S4,(y) :=
(S (T,.(S?)) , ¢y ) - In turn, the contact sphere (S, ;) can be canonically identified with
the standard contact sphere (S*"~1 &) Hence, for any almost standard germ ¢ along S*"
the holonomy along the leaves of ¢ can be viewed as a contactomorphism hg : (5?71, &) —
(8?1 &). We will call he the clutching contactomorphism of an almost standard germ &.
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Let AlSt be the space of almost standard contact germs on S** and D the group of contacto-
morphisms of the standard contact sphere (S?"71 &;). The image of the map 7 : AlSt — D
is the subgroup Dy C D which consists of contactomorphisms which are pseudo-isotopic to
the identity. Denote by St the subspace of AlSt which consists of standard contact germs.
For £ € St we have he € D := Sp(R?", wg) C Dy. The following lemma is straightforward.

Lemma 8.1. The projection 7 : AlSt — Dy is a Serre fibration. If he € Sp(R*,wg) then &
is standard, i.e. St =71 (Dy).

FiGURE 11. Adjusting a characteristic foliation near a pole.

Lemma 8.2. Let & be a family of contact structures on Op 0D C (S?" 1, &) such that their
germs along OD are almost standard. Suppose that fort € [0, %] the germ & is standard. Then
there exists a diffeotopy g; : Op 0D — Op dD supported in an arbitrarily small neighborhood
of p+ such that the germs g;& along 0D are standard and gy is the identity. See Fig. 11.

Proof. Recall that by assumption & = & = & in a neighborhood U D {p,},U € OpadD.
There exists a smaller neighborhood U’ C U such that the pair (U’,0DNU’; &) is contacto-

morphic to (D?" x (—e, €), D*" x 0; Ker (v := ; z;dy; — y;dx; +dz)). Denote u := ;(xi—i-yf),

and consider the splitting D?"\ 0 = S?"~1 x (0, 1], given by the radial projection to the unit
sphere and the u-coordinate. With respect to this splitting the form ~ can be written as
dz + uoy;, where oy is the standard contact form of the standard contact (2n — 1)-sphere.
Choose a positive 0 < ¢, and consider a C*°-function 6 : [0, 00) — [—30, 0], see 12 which
is supported in [0, 60|, and such that 6(u) = 0 for u < o, 0(u) = —30 for u € [40,50], O(u) =
o —u for u € [20,30] and &' (u) < 0 for u € [0,50]. Let us view u € [0,1],z € (—¢,¢€) and
w € S?" ! as coordinates in the neighborhood U’, so that the equation z = 0 defines 9DNU".
Consider the family of hypersurfaces ©5, C Op 0D which coincides with graphs {z = sf(u)}
in U’ and equal to 0D elsewhere. Take a neighborhood U” := {u < 70, |z| < 0} € U’. There
exists a supported in U” diffeotopy ¢s : Op 9D — Op 0D such that ¢y = Id, ¢5(0D) = O.
Define a diffeotopy 1y : Op D — Op 9D as ¢, := ¢g;, for t € [0, 5], 1, = ¢ for ¢ € [§, ]
and ¢, = ¢g_g for t € [%, 1]. Note that the germs of contact structures & := ¢, along
0D are almost standard, and moreover, for each ¢ € [0, 1] the clutching diffeomorphism

hy = hg, differs from hg, by a unitary rotation w eC®ivy of the sphere S~ 1 c C".
Consider the domain U := {u <30, =20 < z < —o} C U”. Note that for ¢ € [, I] we
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FIGURE 12. The function 6(u).

have ¢,(0D) N U= {u =0—2 —20 < 2z < —0o}. Consider the space K of functions
K : [-20,—0] x §*"! — (0, 30] which are equal to ¢ — z near the boundary. Given K € K
consider its graph T'x := {u = K(z,w); (z,w) € [-20,—0] x §2"~1} c U. The contact
structures & in Uis given by the form %dz + ag, and hence, the holonomy along the leaves of
the characteristic foliation fr, is equal to the time o map of the contact flow of the contact

Hamiltonian m We view here z € [—20, —0]| as the time parameter.

Define a contact isotopy g, := hy' = (hg) ™" : §**' — "=, While its contact Hamil-
tonian Gy : S**7!' — S is not necessarily positive, it can be made positive and even
arbitrarily large by composing ¢; with appropriate unitary rotations w > e“®% of the
sphere S?"~! ¢ C". We will keep the notation g, for the modified isotopy. Hence, there
exists a family of functions K; € K, t € [%, %] such that Ky = o — z for t = %, %, and such
that the holonomy along the leaves of the characteristic foliation fr, coincide with g; up

to a unitary rotation of the sphere S?"~!. Let us modify the diffeotopy 1, for ¢t € [%, %],
keeping it supported in U , so that ¥, (0D N U ) = I'k,. Denote & := 1¢¢,. By construction
the clutching diffeomorphisms hg, : S2n=1l 5 §2n=1 are unitary rotations, and hence, the

germs of contact structures é; along 0D are standard.

OJ
8.2. Making the characteristic foliation short.

Proposition 8.3. Suppose that Proposition 4.1 holds for plug installation over D*"~3x[0,1].
Let ¥ be the standard (2n — 2)-dimensional sphere in (M*"~ ', & = Kera). Then for any
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o > 0 there exists an o-small in the C°-sense isotopy f, : ¥ — M starting with the inclusion
fo: X = M such that

a) fs is fixzed on a neighborhood of poles of the characteristic foliation € of ¥;

b) the family of characteristic foliations {5, s € [0,1], induced on ¥ by fra; admits a
family of good Lyapunov functions Fy : ¥ — R;

c) the characteristic foliation ¢ is o-short;

d) for any o > 0 the isotopy fs can be included into a 2-parametric isotopy fsi, S,t €
[0,1], such that

(1) fs,O = fs; f07t = f() fO?" all S,t S [O, 1],

(ii) the spheres fs1(X) are almost standard for all s € [0, 1];

(ili) fs s o-close to fso for all (s,t) € [0,1];

(iv) the isotopy fis,t € [0,1], is fized on a neighborhood of a dividing set Sy of

21 == fl(Z)

Proof. Using Corollary 3.4 we can find an o-blocking system {D,}, 7 = 1,..., N, of transverse

standard contact discs. We can assume that the Lyapunov function F' for X on X is constant

on each D;. Denote c¢; = F|Dj and assume that ¢; < c; <--- <ecn. Let @; C X be disjoint

flow-boxes of D; of diameter < 20. Let hs; : Q := D x [0,1] = D x T*[0,1] be a C° small

isotopy constructed in Proposition 4.1. We define the required isotopy fs: by successively

deforming flow-boxes @;. Denote A; := [&1, L] € [0,1], 1 < j < N. For s € At € [0,1]

define f,; 1= CIDjOth,j+17t0<I)J~_1 on Qj, fs1 = CIDiOtho(I)i_l on @; fors < 7, and fixed elsewhere

on X. Then Proposition 4.1 guarantees all the required properties of the isotopy fs: except

b), d)(ii) and d)(iv). More precisely, for b) we automatically get a family of Lyapunov

functions for X, but not necessarily good ones. Moreover, we get a family of Lyapunov

functions for the whole 2-parametric family X ;. In particular, Lyapunov functions for Xj;

have no critical points except the maximum and the minimum of the original Lyapunov

function F'. This implies that the sphere f,;(X) are almost standard. Recall that according

to Corollary 3.5 it is sufficient to ensure properties (1) and (1.2) and absence of retrograde

connections. According to property c)(v) of Proposition 4.1 trajectories of X, converging

to positive zeroes enter each plug through the same (n — 2)-dimensional stratified subset

E; c D; C 6@j. According to our staged construction of the isotopy, the isotopy fso

for s € [J%, %], 7 =1,..., N, which creates a plug in @j does not change trajectories of

Xs = X50 in F < ¢;. Hence, by a C*°-small adjustment of embeddings ¢; before each step

of the isotopy we can arrange that the closure G; of the negative tail |J X ;-1 (E;) of the set
u>0 N
E; does not contain any negative zeroes of X;—1, and hence, the same property holds for all
N

s> ]%1 The deformation f,; for a fixed s € A; changes the field X, only in an arbitrarily
small neighborhood of éj, and hence thanks to compactness of the set of zeroes, one can
arrange that X, have no retrograde connections. Corollary 3.4 then guaranteed that f;,(3)
are Weinstein convex. It remains to satisfy property d)(iv). Consider the dividing set S for
X;. Using Property c)(iii) of Proposition 4.1 we can find an isotopy of 3 preserving leaves of
¢, with disjoins S with compact subsets C5°, and hence with their neighborhoods U* > Cf.
According to c)(ii) we can arrange the isotopy fi; to be supported in U%, which implies
property d)(iv).
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U

Proposition 8.4. Suppose that Proposition 4.1 holds for plug installation over D=3 x [0, 1].
Let D = (D*"7 ! Keray) be the standard contact disc. Then for any o > 0 there erists a
o-small in the C°-sense isotopy hs : D — D such that hy(D) C Int D for all s > 0 and

(i) the ball D := hy(D) has a Weinstein convex boundary dD with the dividing set
S cobD;

(ii) the characteristic foliation {45 is o-short;
(iii) (D,S) can be approzimated by standard contact balls.

Remark 8.5. In the case n = 2 property (iii) is automatic from the classification of tight
contact structures on the 3-ball, see [5].

Proof. Let us first shrink D — Int D by a C'*°-small contracting contact isotopy and then
apply to the image D’ Proposition 8.3. Let us extend the constructed there isotopy fs: :
0D" — D, s,t € [0, 1], to an isotopy D’ — D. We will continue using the notation f;, for the
extension. We claim that that the isotopy obtained by concatenating the shrinking isotopy
with the isotopy fso has the required properties. Indeed, the balls D) := f;((D’) have
Weinstein convex boundaries with dividing sets S5 C 9D’ and the characteristic foliation on
0D is o-short and the family of spheres X, := f;1(0D’), s € [0, 1] are almost standard and
hence, can be made standard by an arbitrarily C%-small adjustment away from the poles
and dividing sets by applying Lemma 8.2. Th sphere ¥y = 0D’ bounds the standard ball,
and hence, the same holds, by continuation of the contact isotopy argument, for ;. But by
construction ¥ coincides with D] on a neighborhood of the dividing set S; C dD] and can
be made arbitrarily C%close to D}, i.e. (Dj,S;) can be approximated by standard contact
balls. ([l

8.3. Proofs on main results.
Proof of Proposition 5.1. Applying the induction hypothesis and Proposition 8.4 we find a
disc D C D such that

D has a Weinstein convex boundary dD with the dividing set S C 613;
the characteristic foliation £, 7 is o-short;

- (ﬁ, S) can be approximated by standard contact balls;
D\ f(0D) is contained in o-small neighborhood of 9D,

Next, we apply Proposition 7.6 and find 3 Weinstein cylinders V;, Vo, V3 C f(D) such that a
piecewise smooth hypersurface 9(V; UV, UV3) is C! o-close to df (D). Applying now Lemma
7.8 we install into D x [0,1] a o-quasi-plug in (V; U Vo U V5) x [0,1] C f(D) x [0,1]. But
the characteristic foliation on f(9D) is o-short, and hence the constructed plug is a genuine
Co-plug for D x [0,1] for some universal constant C' > 0.

This concludes the proof of Proposition 5.1, and hence, of Proposition 4.1. 0

Proof of Theorem 3.11. First, we adjust X by a C'*°-isotopy to make all singularities of its
characteristic foliation {5, non-degenerate and hyperbolic. Next we apply Lemma 3.3 to find
a blocking collection of transverse standard contact discs D; C X. According to Lemma 2.6
there exists ¢ > 0 such that by installing o-plugs instead of flow boxes one can arrange
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the resulting flow to satisfy condition (L1). Proposition 4.1 asserts that such plugs can be
installed by deforming flow-boxes via an arbitrarily small in the C°-sense isotopy. By an
additional C'*°-perturbation of the hypersurface outside plugs we can satisfy the Morse-Smale
property, while still preserving condition (L1), see Lemma 2.6, and hence, by Corollary 3.4
the resulting > is Weinstein convex. This concludes the proof of Theorem 3.11, and in
combination with Lemma 3.10 of Theorem 1.1. O
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