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—— Abstract

High dimensional expanders (HDXs) are a hypergraph generalization of expander graphs. They are
extensively studied in the math and TCS communities due to their many applications. Like expander
graphs, HDXs are especially interesting for applications when they are bounded degree, namely, if
the number of edges adjacent to every vertex is bounded. However, only a handful of constructions
are known to have this property, all of which rely on algebraic techniques. In particular, no random
or combinatorial construction of bounded degree high dimensional expanders is known. As a result,
our understanding of these objects is limited.

The degree of an i-face in an HDX is the number of (i + 1)-faces that contain it. In this work we
construct complexes whose higher dimensional faces have bounded degree. This is done by giving an
elementary and deterministic algorithm that takes as input a regular k-dimensional HDX X and
outputs another regular k-dimensional HDX X with twice as many vertices. While the degree of
vertices in X grows, the degree of the (k — 1)-faces in X stays the same. As a result, we obtain a
new “algebra-free” construction of HDXs whose (k — 1)-face degree is bounded.

Our construction algorithm is based on a simple and natural generalization of the expander
graph construction by Bilu and Linial [12], which build expander graphs using lifts coming from edge
signings. Our construction is based on local lifts of high dimensional expanders, where a local lift is
a new complex whose top-level links are lifts of the links of the original complex. We demonstrate
that a local lift of an HDX is also an HDX in many cases.

In addition, combining local lifts with existing bounded degree constructions creates new families
of bounded degree HDXs with significantly different links than before. For every large enough D, we
use this technique to construct families of bounded degree HDXs with links that have diameter > D.
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1 Introduction

Expander graphs are graphs that are well connected. These objects are studied extensively in
computer science and mathematics [40], and since their discovery they have found numerous
applications in complexity [25, 62], coding theory [64, 66, 26], derandomization [40, 33] and
more. Most of these applications rely on families of expander graphs that have a bounded
degree. It is well known that random regular graphs are expanders, and many explicit
bounded degree constructions are also in hand [55, 51, 63, 12, 54].

Recently, the study of high dimensional expanders (HDXs) emerged (see surveys [49, 37]).
These are hypergraph analogues of expander graphs. While the full potential of high
dimensional expanders is yet to be discovered, they are already important objects of study.
High dimensional expanders, and especially bounded degree high dimensional expanders’
have already yielded exciting applications in various areas such as locally testable codes
[26, 61, 28], quantum complexity [7], sampling and Markov chains [27, 43], agreement testing
[27, 24, 8], high dimensional geometry and topology [38, 30], pseudorandomness [19] and
random (hyper)graph theory [46, 56].

The specific family of high dimensional expanders used in many of the aforementioned
applications is tailor-made to satisfy other desired properties, in addition to high dimensional
expansion. For example, the local neighborhoods in the high dimensional expanders used
in [26, 61, 28] are tailored so that one can define a small locally testable code on them; the
high dimensional expanders in [38, 24, 8] also have a vanishing 1-cohomology over certain
group coefficients.

However, constructing bounded degree high dimensional expanders (for arbitrarily small
spectral expansion of the links) is still a serious challenge. No random model for bounded
degree high dimensional expanders is known, and all deterministic constructions known use
non-trivial algebraic techniques. The fact that we have only a handful of bounded degree
constructions to choose from, makes these objects difficult to understand and to work with.
We believe that many further applications await us once we learn how to diversify these
constructions, in the same way that many of the above-mentioned applications of expander
graphs grew out of more varied expander constructions that were discovered.

Nowadays, all known constructions of HDXs rely on algebraic techniques, including
quotients of the Bruhat Tits buildings [10, 16, 45, 52, 22, 24, 8] and coset complexes
[42, 31, 59] (see also [39] for a more elementary analysis of some of these HDXs). There
have been attempts at constructing bounded degree HDXs with combinatorial tools, but all
these constructions fall short either in bounded degreeness [35, 47] or in their local spectral
expansion [20, 21, 17, 48, 34].

In particular, it is an important open question whether an algorithm a la Zig-Zag product
[63] exists for bounded degree high dimensional expanders. That is, an algorithm that given
a bounded degree high dimensional expander as input, outputs another high dimensional
expander with more vertices and the same bound on the degree and spectral expansion.

As an intermediate result, in this work we develop an algorithm that takes a high
dimensional expander as input, and outputs another high dimensional expander with more
vertices, the same bound on spectral expansion and the same bound on the degree of high
dimensional faces (but not on the degree vertices). This algorithm is entirely combinatorial,
relying only on the theory of graph covers initiated by [5, 12]. While families of complexes

L A family of HDXSs is called bounded degree if there is some M > 0 so that all vertices in every HDX in
the family have degree at most M.
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constructed via such an algorithm are not sufficient for applications that require the vertex
degree to be bounded, we view this as a stepping stone towards an “algebra free” construction
of bounded degree HDXs. One exception to this is the recent work by [3], which analyzes a
variant of the well known Glauber dynamics (or up-down) random walk on HDXs. The walk
that [3] analyzes has bounded degree if and only if the underlying HDX is (k — 1)-bounded
degree.

1.1 Preliminaries on High Dimensional Expanders

To better understand our results, let us introduce some standard definitions and notation
on simplicial complexes (see Section 2.3 for a more elaborated definitions). A simplicial
complex is a hypergraph that is downwards closed to containment. A simplicial complex is
k-dimensional if the largest hyperedge in the complex is of size (k + 1). We denote by X (¢)
the sets (aka faces) of size £ + 1. Let X be a k-dimensional simplicial complex.

The degree of a face 0 € X(€),is d(o) :=|[{r € X({ +1)| 7 D o}|. A family of complexes
{Xi};2, is L-bounded degree if there exists an M > 0 that bounds the degrees of all {-faces
across all the complezes simultaneously. That is, for every ¢ and any o € X;(¢), d(o) < M.
We say that a family of complexes are bounded degree if they are 0-bounded degree. We say
that a complex is (dy,dy, . ..,dr_1)-regular if for every o € X (¢), d(o) = d,.

In this paper we are mainly interested in the local spectral expansion definition of high
dimensional expanders (see [49] for a survey on other definitions). For this we need to define
“links”, the generalization of vertex neighborhoods in graphs. For a face o € X, the link of
o is the simplicial complex X, = {7\ 0| 0 C 7 € X}. We will be interested in the graph
structure underlying the complex and its links. The 1-skeleton of X is the graph whose
vertices are X (0) and whose edges are X (1).

» Definition 1 (High dimensional expander). For A > 0 we say that X is a A-two sided (one
sided) high dimensional expander if for every £ < k —2 and o € X ({), the 1-skeleton of X,
is a A-two sided (one sided) spectral expander.

1.2 Our Results

Our results are based on the notion of a graph lifts. We say a graph G= (‘7, E) is a lift of
a graph G = (V, E) if there exists a graph homomorphism ¢ : V — V such that for every
(NS ‘7, the mapping ¢ is a bijection on the neighborhood of ¢. Intuitively, a lift of a graph
G is a large graph G that locally looks the same as G. Graph lifts are essential in many
constructions of expander graphs [5, 12, 54], and our construction builds on the beautiful
work of [12]. We elaborate more on this below.

Our main result is a construction algorithm that maintains both expansion and the degree
of the (k — 1)-faces of a regular complex. This algorithm takes as input a (do,d, .. .,dk—1)-
regular A-high dimensional expander X, and outputs a (2dy, 2d1, .. ., 2dk_2, dk_1)-regular X
with twice as many vertices that is also a A-HDX (even though the number of intermediate
faces grows like | X (i)| = 2¢|X (i)| for i < k — 1). This algorithm uses the notion of random
lifts [12], and in particular, it requires no algebraic machinery for the construction nor the
analysis. More formally, this is the theorem we prove.

» Theorem 2 (See Theorem 28 for a more precise statement). There exists a randomized
algorithm A that takes as input a k-dimensional complex Xy and an integer i > 1, runs
in expected time poly((2!|Xo(0))*) at most, and outputs a k-dimensional complex X; with
24 X (0)| vertices. The algorithm has the following guarantees.
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1. If Xg is a (do,d1,...,dg—1)-regular A-two sided high dimensional expander, then X; is
a (2id0,...,2idk,2,dk,1)-regular N -two sided high dimensional erpander where N =
log3 dj_1
0 (max{)\ (1+1log 1), W%})
2. For every 6 € X,;(k —2), the link (X;)s is a lift of (X;—1)s for some o € X;_1(k —2).
For every j < k — 2, |X;(j)] = 20D Xo(5)].

There are various complexes in hand that one can use as the input to this algorithm.
These include the complete complex, the complexes from [50], and even complexes from
bounded degree families that are regular, such as those constructed by [31].

We give two proofs to Theorem 2, building on the techniques developed by [12] to analyze
lifts in expander graphs, and extend them to high dimensional expanders.

While most of the work in [12] regards random lifts of graphs, they also show how to
deterministically find expander graphs using lifts. Building on their method, we also give
a deterministic algorithm for finding the complexes in Theorem 2, albeit under some more
assumptions on the input Xy. This provides a deterministic, polynomial time and elementary
construction of a family of (k — 1)-bounded k-dimensional high dimensional expanders.

» Theorem 3 (See Theorem 35). There exists a deterministic algorithm B that takes as

input a k-dimensional compler Xo and an integer i > 1, runs in time poly((2¢|Xo(0)|)¥) at

most, and outputs a k-dimensional complex X; with 2¢|Xo(0)| vertices. The algorithm has

the following guarantees.

1. If Xo is a (do,dy...,dg—1)-regular A-two sided high dimensional expander,
such that dp_; > 2% and |Xo(k — 2)] < (dk_g)lok, then X; s a

(2%do, ..., 2%dg_2,dx_1)-reqular N'-two sided high dimensional expander where N =
log® dj_
0 (25k max{)\ (1+1log ) ,\/%})
2. For every 6 € X,;(k —2), the link (X;)s is a lift of (Xi—1)s for some o € X;—1(k —2).
For every j < k —2, |X(j)] = 207D Xo(j)]-

Not only is our construction deterministic, but it is also simple and versatile; one can
apply it to various kinds of high dimensional expanders, and the family of HDXs obtained
by doing so is changes according to the initiating HDX given at the beginning of the process.

1.3 Comparing to Random Constructions of HDXs

In the graph case the configuration model yields regular and bounded degree expanders.
In contrast, there is no immediate generalization of this model to higher dimensions, that
leads to bounded degree HDXs, even if one only wishes to bound the degrees of higher
dimensional faces. If one settles for logarithmic degree, then one could use the [46] random
model to construct random HDXs. The degree of the top-level faces of these complexes is
O(logn), where n is the number of vertices, and the degree of the lower dimensional faces is
polynomial in n. For 2-dimensional complexes, the random geometric model in [47] offers an
improvement to the vertex degree that one gets from [46], but it is still polynomial.

It is tempting to try and adapt the [46] model for constructing (k — 1)-bounded degree
HDXSs, but doing so in a straightforward manner falls short of achieving that. The work
by [50] found an appropriate generalization of the random model that gives (k — 1)-bounded
degree HDXs, utilizing the breakthrough work of [44] on Steiner systems. In their model, one
takes a complete (k — 1)-skeleton and samples k-faces by sampling random Steiner systems
on this complex.

Our construction sidesteps this difficulty by taking a different approach; it uses random
local lifts of HDXs (presented in the following subsection) instead of trying to construct
random ones from scratch. In this setting, the high dimensional case behaves more similar
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to the 1-dimensional one - our work shows that random local lifts of HDXs are HDXs with
high probability. Of course, this requires an appropriate modification of the lift notion to
local lifts.

1.4 The Construction

We now dive into the heart of Theorem 2. Our construction builds upon the work of random
lifts of graphs studied in [12]. Random lifts of expanders have been subject to extensive
research (e.g., [6, 12, 2, 54, 14]). However, in this work, we do not try to lift the complex
itself. Instead, we construct another complex where the (k — 2)-links are lifts of links in the
original complex. We call such a complex a local lift.

Let us first explain the idea behind the work of [12]. Their work suggests a construction
of bounded degree family of expander graphs {G;}:-,, where for every i, G;41 is a lift of G;.
The fact that the maximal degree of GG, is equal to the maximal degree of G; promises
that the sequence is bounded degree. Therefore, one only needs to worry about expansion.

The work [12] studies random lifts sampled using signings on the edges of a graph
G = (V, E), that is, functions f : F — {£1}. Given such a signing f, one can construct the
following lift G = (V, E) by setting V =V x {+1} and {(v,4), (u,j)} € E if {v,u} € E and
i-j= f{uv}). .

The work of [12] analyzes when a lift G obtained by random signing f is an expander
graph. They give a proof (based on the Lovasz Local Lemma) that every expander G has
such a “good” signing. They also provide a deterministic algorithm to construct such a lift
using the conditional probabilities method [4]. Our construction generalizes this idea, only
instead of lifts coming from edge signings, we define local lifts coming from face-signings.

Let X be a k-dimensional simplicial complex and let f : X (k) — {£1}. Define the
k-dimensional complex X (where f is implicit in the notation) as a complex whose vertices
are X(0) = X(0) x {£1}, and whose k-faces are

X(k) = {{Uéo,vl ,...7%’“} ‘ {vo,v1,...,v,} € X(k) and Hjl = {U(],’Ul,...,vk})} .
For 1 < /¢ < k — 1 the ¢-faces are independent of the second coordinate, that is,
X(0) = {{vgo,v{d, .,’U'ZZ} ’ {vg,v1,...,00} € X(é)} .

Obviously, the underlying graph of X is not a lift of the underlymg graph of X. Indeed,
the degree of each vertex is doubled. However, for every & € X (k — 2), we show that X is
isomorphic to a lift of X, (where 0 = {v| vi €6}).

Indeed, let us assume for simplicity that k = 2. Consider the link of a vertex v/ € X (0)
and define the function g : X,(1) = {1} by g(uw) = j - f(uw). We claim that X,, is the
cover g induces on X,,. It is easy to see that its vertices are X, (0) = X, (0) x {1}, since the

vertices in XN correspond to edges in X( ). These are precisely all u!,u=* where u € X, (0).

The edges are more delicate. Edges {uj',wj”} € )?,Uj(].) correspond to triangles

vj,uj/,wj”} € X. Indeed, such a triangle is in X if and only {u,w} € X,(1) and
i7" 7" = f({v,u,w}). The second condition occurs if and only if - j" - 7 = g(uw). Hence,
)?vj is the cover g induces on X,,.
As mentioned above, we give two proofs that signings f so that Xisa high dimensional
expander exist. The first proof is based on the Lovasz Local Lemma and follows the argument
n [12, Lemma 3.3], and generalizes it so that multiple links may be taken into account
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simultaneously. The second proof is based on a different way to use the Lovasz Local Lemma
(together with other results from [12]) which we find simpler, to deduce high dimensional
expansion. This proof, while more restrictive on the link sizes, can be combined with the
algorithmic version of the Lovdsz Local Lemma [57], to prove Theorem 2. Afterwards, we
show that if the links of the complex X are already dense, then the derandomization technique
in [12] works for high dimensional expanders, and we can obtain a deterministic construction
for (k — 1)-bounded k-dimensional high dimensional expanders, proving Theorem 3.

1.5 Understanding Vertex vs. Edge Degree in Bounded-Degree
Constructions

We can use Theorem 2 to diversifying links in other existing bounded degree constructions,
and thus gain more understanding on how possible high dimensional expanders may look
like. For simplicity, let us stick to the 2-dimensional case, and consider the question how
small could dy be given dy in a (do, dy)-reqular high dimensional expander?

Let us consider the behavior of dy and d; in the known bounded degree constructions
[10, 16, 45, 52, 42, 31, 22, 24, 8]. In all the above, dy grows to infinity as A goes to 0, and
d; = poly(dp)?. In other words, the links themselves are “locally” dense. A natural question
to ask is whether the lower bound of d; > dgz(l) is necessary for bounded degree constructions.
In expander graphs it is well known that one can increase the size of the graph without
increasing the bound on the degree, but this is not the behavior in the known bounded-degree
HDX constructions.

We note that if one allows dj to tend to infinity with n, rather than staying constant,
then works such as [50] (and also infinite families of complexes constructed by iteratively
applying Theorem 3) show that this is false. But this question is more interesting when its
bounded degree.

Theorem 3 gives a negative answer to this question in the 2-dimensional case, by proving
the following.

» Theorem 4. For every A > 0 and any sufficiently large M > 0, there exists an infinite
family of 2-dimensional A-two sided high dimensional expanders that are (do, exp(poly(%)))—
reqular, for M < do < 2M.

In particular, for every large enough D > 0, there exists an infinite family of 2-dimensional
A-two sided HDXs such that the diameter in every link X, is at least D.

We stress that d; = exp(poly(%)) depends only on the spectral expansion and not on the
number of vertices or dg.
The proof of Theorem 4 appears in the full version of this paper [11].

1.6 Related Work
Bounded degree HDX

As discussed above, all known constructions of bounded degree high dimensional expanders
use algebraic techniques. The first bounded degree high dimensional expanders for arbitrarily
small A > 0 was by [10]. This was followed by many other works that aimed to construct the
high dimensional equivalent to Ramanujan graphs [16, 45, 53, 52]. All these constructions

2 Technically most of the constructions above are not regular, only bounded degree, so do and d; should
be average values, but we ignore this point for the sake of presentation.
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are quotients of A-type Bruhat Tits buildings. The work by [22] used this building together
with complex lifts to construct other high dimensional expanders. Recently, high dimensional
expanders that come from C Bruhat Tits buildings were also constructed and studied
[18, 24, 8]. A second type of constructions come from coset complexes, first studied by [42].
More complexes of this type were constructed by [31, 59]. We mention that the work by [39]
simplified the analysis of these coset complexes, and gave a description of the complexes
in [42] in relatively elementary means (albeit still relying on algebraic methods).

Interestingly, [50] give a randomized construction of a (k — 1)-bounded degree family of
A-HDXs for arbitrarily small A > 0. This construction is based on random Steiner systems
and given in the breakthrough result of [44]. The underlying (k—1)-skeletons of the complexes
in that family are complete.

There are other bounded degree constructions [20, 21, 17, 48, 34]. These constructions
5 (where X is
normalized between 0 and 1). There are other constructions of A-HDXs for A < 3, which

have various mixing properties, but none of them are A\-HDXs for A\ <

are not bounded degree, but are still non-trivially sparse. These include [35] - based on
Grassmann posets, and [47] - based on random geometric graphs of the sphere.

Finally, we comment that previous works also considered the possible degrees (dg,d1)
possible in a high dimensional expanders. The work by [31] used irregular algebraic construc-
tions of bounded degree \-HDXs and “regularized” them, thus showing that there exists
bounded degree HDXs that are regular for arbitrarily small A\. The work by [17] gives a lower
bound on the expansion of the underlying graph of the complex in terms of (dg, d), but this
lower bound does not rule out (or construct) such HDXs with d; < dy.

Graph and HDX lifts

The study of random graph lifting was initiated in [5]. Random lifts from signings of
expanders were studied in [12] where it was proven that with high probability they are also
expanders. This was extended to larger lifts as well [60, 1]. Friedman showed that random
lifts of Ramanujan graphs are nearly Ramanujan [32] (see also [14]). In the seminal paper
by [564], Ramanujan bipartite graphs were constructed by using graph lifts. One can also
define lifts of simplicial complexes. Most known bounded degree high dimensional expanders
are constructed using a dual notion of lifts - that is, taking quotients of an infinite object
[10, 16, 45, 53, 52, 42], in a way such that the infinite object is a lift of the complex that
is constructed. [22] studied taking random lifts of simplicial complexes as in [12], but the
construction there needed the use of algebraic techniques as well.

1.7 Open Questions
Combinatorial constructions

As we mention earlier, there is no construction of bounded degree high dimensional expanders
that does not rely on non-trivial algebraic techniques. As an intermediate step towards such
a construction, can one give a construction of k-dimensional simplicial complexes that are
(k — 2)-bounded degree (or i-bounded degree for any i < k —1)7

Links with other properties

Fix a vertex set [n] and graphs {G;}.—, (one graph for every vertex i € [n]). It is interesting
to understand whether there exists a graph whose vertex set is V' = [n], and such that the
neighborhood of every vertex ¢ € V is (isomorphic to) G;. The structure of such graphs is an

68:7
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extensive topic of study, especially in the case where all G;’s are equal (see, e.g., [15, 13, 58]).
One of the major components in the works [26, 61] that constructed asymptotically good
locally testable codes and quantum codes, is a construction of graphs that locally look like a
neighborhood of a graph product, but globally have improved expansion properties.

In this work, we propose a technique that addresses a related problem. Given a graph
G (which is the one skeleton of a regular 2-dimensional complex X), we find a graph G
where every neighborhood in G is a random (or deterministic) 2-lift of a corresponding
neighborhood in G. Is there a technique that allows us to do so for any set of 2-lifts of the
respective vertex neighborhoods?

Other notions of expansion

In this paper we mainly deal with local spectral expansion, but other definitions of high
dimensional expansion also exist. Most notable is the notion of coboundary expansion
defined independently in [46] and [38]. This notion is important for many applications of
high dimensional expanders such as code construction [26], topological expansion [38] and
property testing [41, 36, 23, 9]. Does a local lift maintain coboundary expansion? If not, is
it maintained in interesting special cases?

Better local spectral expansion

Works following [12] such as [54, 14] improved the bounds on the spectrum of lifts of regular
graphs. Can one construct local lifts of regular high dimensional expanders that are also
Ramanujan?

1.7.1 Organization of This Paper

The necessary preliminaries are given in Section 2. We describe local lifts in Section 3 and
describe some of their basic properties. In Section 4 we show existence of good local lifts by
modifying a Lovédsz Local Lemma argument by [12]. In Section 5 we prove Theorem 2 using
the algorithmic Lovasz Local Lemma [57] and derive Theorem 4. In Section 6 we show that
the method of derandomization in [12] could be generalized to our case as well and prove
Theorem 3.

2 Preliminaries

Unless explicitly stated, all logarithms are with base 2. The In function is a logarithm with
base e. We write A LI B to denote a disjoint union of sets A, B. The For n > 0 we write
[n] =40,1,...,n}. For a square matrix (or equivalently, a linear operator on a finite vector
space), we write ||A] to denote the operator norm.

2.1 Graphs

Let G = (V,E) be a graph. For u,v € V we write I'(v) for the set of v’s neighbors in
G and u ~ v if v and v are neighbors. The indicator vector of a set S C V, denoted by
1lg,i8 15 : V. — {0,1} with 1g5(v) =1 <= v € V. For two sets S,T C V we write
Eg(S,T) for the set of edges in G between S and T. The graph induced by S and T is
G' = (SUT,Eq(S,T)). For a d-regular graph we denote £2(V) = {f : V — R} endowed
with the inner product (f,g) = > oy f(v)g(v).
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2.1.1 Expander Graphs

Expander graphs are graphs with good connectivity properties. There are many equivalent
ways to define expanders [40]. In this manuscript we focus on spectral expansion.

Let G = (V, E) be a d-regular graph. The random walk matriz of G is a matrix A € RV*V
defined by A(u,v) = é if u € T'(v) and otherwise 0. Equivalently, it corresponds to the
random walk operator A : £2(V) — £o(V) with Af(v) = %Zuer(v) f(u). We abuse notation
and use A for both the matrix and the random walk operator it represents. We sometimes
denote this operator by Ag when G is unclear from the context.

The operator A is self adjoint with respect to the inner product. Therefore, it has
an orthonormal basis of real-valued eigenvectors, where the eigenvalues are denoted by
1=X > Xy > > \,. Weelaborate and write \;(G) when the graph in question is unclear
from the context. The spectrum of G is the spectrum of its random walk matrix and is
denoted by Spec(G).

» Definition 5 (spectral expander). For A € [0, 1] we say that G is A-two sided (resp. one
sided) spectral expander (or expander for short) if A > max{ Az, |\n|} (resp. A > A2).

2.1.2 Tensor Product

Let G,H be any graphs. The tensor product of G and H, denoted by
G ® H, is the graph with vertices V(G) x V(H), and edges E(G ® H) =
{(a,b)(a’, V)| {a,a’} € E(G) and {b,b'} € E(H)}. The following fact is well known.

» Fact 6. Let G, H be graphs. If H,G are \, N -two sided spectral expanders respectively,
then G ® H is a max{\, X' }-two sided spectral expander. Moreover, if H is a A-two sided
spectral expander and G is a N-one sided spectral expander, then G ® H is a max{\, X' }-one
sided spectral expander.

2.2 Graph Lifts

Graph lifts are an important notion, studied first by [5, 6] (although the notion of lifts
themselves is a classical notion in algebraic topology known for about a century).

» Definition 7 (lift). For finite, connected and simple graphs G and é, a lift (also known as
a covering map) ¢ : G — G is a graph homomorphism with the property that for all v € V(G),
@ maps the neighborhood of © in G onto the neighborhood of ¢(0) in G. Finally, we say that

~

G is an (-lift of G if there exists an £-to-1 covering map ¢ : G — G.
One way to construct a 2-lift is to use a signing function on the edges as follows.

» Definition 8 (Function induced lift). Let G = (V, E) be a graph and let f : E — {£1}
be a signing. The f-induced lift G = G' is the graph whose vertices are V=Vx {£1} =
{vi| veV,je{£1}} and whose edges are E = {{v7, u'}| {v,u} € E,ij = f({u,v})}.
The lift map is ¢p(v?) = v.

It is elementary to prove this construction is indeed a lift, so we omit this proof. It is also
easy to show that any 2-lift is an induced lift for some signing f : V(G) — {£1}. See [65]
for a more general statement and proof.

In Section 3 we generalize the notion of graph lifts to local lifts of simplicial complexes.
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2.2.1 Signing Functions and Lift Expansion

Fix a graph G and a signing f : F(G) — {£1}. In this subsection, we characterize the
eigenvalues of an f-induced lift. For this, we need to define the f-signing of an adjacency
operator. For a d-regular graph the f-signing of the adjacency operator is the matrix
A (u,v) = f(u,v) - A(u,v) for {u,v} € E and A (u,v) =0 if {u,v} ¢ E.

This signing matrix is closely related to the random walk operator of the lift. In particular,
the following is by now classical.

» Lemma 9. Let G be a d-reqular graph and let G be an f-induced 2-lift. Then the
eigenvalues of Aé\ are the union (with multiplicities) of the eigenvalues of A and those of A7.
In particular, if ||AT|| < X and G is a N -two sided (resp. one sided) spectral expander, then
Gisa max {\, X' }-two sided (resp. one sided) spectral expander.

Using this lemma, [12] gave a criterion for the expansion of the lift graph.

» Lemma 10 ([12, Lemma 3.3]). Let G, f and A be as above and assume that G is a A-two
sided (resp. one sided) spectral expander with no self loops. Assume that for any pair of
disjoint S,T C V(G) it holds that |(1s, AT17)| < a/|S||T], then G' is a X-two sided (resp.
one-sided) spectral expander where N = max {)\7 0] (a (1 + log i))}

We note that there is a nice formula for this inner product, which is <13,Af 1T> =
%Z(v,u):{v,u}EE(G) f(“’ U)IS(U)IT(U)'

2.3 High Dimensional Expanders

» Definition 11 (simplicial complex). A k-dimensional simplicial complex is a finite hypergraph
X that is downwards closed to containment. That is, if T € X and 0 C 7 then o € X.

We write X = X(-1)UX0)UX(1)U---UX(k), where X(¢) = {o € X | |o| =€+ 1} (here
X (—1) = {0} is mainly a formality) and the maximal size of a set o € X is k 4+ 1. We call
elements o € X (¢) ¢-faces, and in this case we say that X is k-dimensional. In this paper we
will always assume the simplicial complex in question is pure, that is, that every o € X (¢)
contained in some 7 € X (k). In addition, we assume it has no self-loops or multifaces.
Namely, every vertex appears at most once in each face and any face appears at most once
in X.

The degree of a face 0 € X (i) is d(0) = {7 € X(i+1)| 7 D o}|. We say that a family
of simplicial complexes {X;}io, is j-bounded degree if there is an integer M > 0 so that for
all X; and all 0 € X;(j), d(o) < M. If the family is 0-bounded degree, we sometimes just
say bounded degree (without the zero).

» Definition 12 (hyper-regularity). Let dy > dy > -+ > di_1 be positive integers. A k-
dimensional simplicial complex X is (do,d1,...,dg_1)-regular if for any i € {0,...,k — 1}
and any i-face o, d(o) = d;.

We say that X is regular if there exists such a tuple so that X is (do,ds,...,dg—1)-regular.
In this case we denote by d;(X) = d;.
The j-skeleton of a simplicial complex X is the simplicial complex obtained by taking all
the i-faces of X, for all 1 < j. The 1-skeleton of a complex is also called an underlying graph.
A link is a generalization of a graph neighborhood.

» Definition 13 (link). For a k-dimensional simplicial complez X and a face o € X, the
link of o is the (k — 1 — |o|)-dimensional simplicial complex X, = {7\ o| 1€ X,7 Do}.

For ¢ <k —2 and o € X(¢) we denote by A, the random walk operator of the 1-skeleton of
X,. We often abuse of notation and for a face o = {vy, ..., v} € X (¢) write 0 =g ... vp.
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Natural analogues of expander graphs to higher dimensions are simplicial complexes
where the neighborhoods of the faces are themselves expander graphs. See Section 1 for more
context on this important definition.

» Definition 14 (\-high dimensional expander). Let A € [0,1]. A k-dimensional simplicial
complex X is a A-two sided (resp. one sided) high dimensional expander if for all i < k — 2
and all o € X (i), the 1-skeleton of X, is a A-two sided (resp. one sided) spectral expander.

2.4 The Lovasz Local Lemma
The Lovéasz Local Lemma is a classical result in the probabilistic method.

» Lemma 15 (Lovasz Local Lemma [29]). Let B = {By,..., B,} be a finite set of events in
some arbitrary probability space. The dependency graph of B is a digraph G = (B, E) so
that any event B; € B is mutually independent of all the events B\ T'(B;), where T'(B;) is
the neighborhood of B; in Gss.

If there exists a real function p: B — [0,1) so that

PB]<p(B) [] (1-n(B) (2.1)
B,~B;

for any B; € B, then with strictly positive probability, none of the events B; occur.

This lemma also has an algorithmic version, first given in the seminal work of [57]. We give
below a slightly less general version than the one in [57].

» Lemma 16 ([57]). Let Q be a finite set and let P = (P, Pa,..., Py) be a tuple of
independent random variables supported on Q™. Let B = {B1, Ba, ..., By} be a finite set of
events in the sigma algebra of *B. Let the dependency graph and the assignment p : B — [0, 1)
be as in Lemma 15. Then there exists a randomized algorithm that finds an assignment
p € Q™ such that p ¢ \U!_, B;. If one can verify whether B; holds in time t, then the

randomized algorithm runs in tny ;| - (pl(?gi) expected time.

The algorithm described in this lemma is simple. The algorithm starts with randomly
sampling some p € Q™. While there exists some B; such that p € B;, the algorithm takes an
arbitrary such B;, and resamples all the coordinates P; that B; depends upon. Of course,

if the algorithm halts, then p ¢ (J;_, B;. The paper [57] shows that the expected number
p(B;)

T-p(B1) which explains the runtime of this

of times an event B; is resampled is at most

algorithm.

3 Local lifts

This section presents our basic construction, the local lift of a complex. We will define this
construction formally and describe some of its properties.

» Construction 17 (Local Lift). Let X be a k-dimensional simplicial complex and let
f: X (k) = {£1}. The f-local lift of X denoted by X = )/(:f, is the following k-dimensional
simplicial complex:
X(0) = X(0) x {£1} and we denote the vertices by X (0) = {vI] ve X(0),j e {£1}}.
Forany 1 </¢<k-—1,

X0y = {{eo, ol o} | {oo o1 vek € X(0), o, e € {1} ]

68:11
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~

Finally, X (k) is the set of all faces o0 = vé“,v{l yen ,vé’“} so that the face without the

signs is {vg, v1,...,vk} € X(k), and the product of the j;’s are equal to f(o). Namely,
X(k) = { {Ug)O,’U{l,...,Uik} ‘ {vo,v1,..., v} € X(k), f({vo,v1,...,0k}) —H]Z}
i=0

One can already see that the (k — 1)-skeleton of X doesn’t depend on f and is just some
inflation of the original complex. The dependence on f is only in the top-level faces. Thus,
in particular, X is not a lift of (the underlying graph) of X, except when k = 1. However,
the links of (k — 2)-faces in X are lifts of links in X , which is why we named this complex a
local lift. We will see this in the next subsection.

3.1 Local Properties of Local Lifts

For the rest of this subsection, we fix X to be a k-dimensional pure simplicial complex,
f:X(k) = {£1} to be a signing function, and X to be the f-local lift of X. We also need
the following three pieces of notation:

1. Let 7 : )?(0) — X(0) be the projection map m(v?) = v, and we extend it to higher

dimensional faces as well by w({véo,vil, . v”}) = {vo,v1,-..,0;}.

2. Let sign: X — {£1} be sign(6) — [[,esJ-
3. For any 6 € X(k — 2) with ¢ = 7(5) we denote by f, : X,(1) — {£1} the function
fo(e) = f(oUe) and by f5 : X5(1) — {£1} the function f5(e) = sign(d) - f»(e).

The first observation is that the degrees of X are twice the degrees of X, except for dj_1,
which stays the same.

» Observation 18. If X is (dy, ..., dr_1)-reqular then X is (2do,2d; ..., 2dg_2,dk—1)-regular.

J

It is a direct calculation, so we have omitted its proof. We just comment that the reason that
dj—1 remains the same is that for every 6 € X(k — 1) and v € X(5)(0) there is exactly one
j € {1} such that 6U {v/} € X (k). Therefore, dy_1(X) = |Xx(5)(0)] = [ X5(0)] = dp—1(X).

The next lemma gives a complete description of the links of X.

» Lemma 19 (on the structure of the links). Let & € X and denote by o = m ().

1. If dim(6) < k — 2, then the I-skeleton of X, (the &-link of X’), is isomorphic to the
1-skeleton of X, tensored with the complete graph on two vertices with self loops>.

2. If dim(6) = k — 2, then X, is isomorphic to a lift of X, induced by f5.

Proof. The first item directly follows from the definition of a tensor product. For the second
item, suppose dim(6) = k — 2. Both the vertices of X5 and of the fs-induced lift of X,
are X,(0) x {£1}. As for the edges, {u’,v7} € X;(1) if and only if {u,v} € X,(1) and
ij - sign(6) = f(o U {u,v}) (or equivalently ij = fs({u,v})). This is precisely the relation
that defines edges in the fs-induced lift of X, . |

3 Note that this is also true for the link of o = 0, i.e. X itself.
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The following corollary that bounds the spectrum of the links is direct.

» Corollary 20. Let 6 € X and denote o = w(5).

1. If dim(6) < k — 2 then M(X;) = M(X,).

2. If dim(6) = k — 2 then Spec()?g,) = Spec(A,) U Spec(Af), where A, is the normalized
adjacency matrices of Xy and Al is its signed normalized adjacency matriz with respect

to f&,

Proof. The first item follows from the first item in Lemma 19 that shows the link of )?; is
isomorphic to the link of X, tensored with a complete graph, and Fact 6 that bounds the
expansion of such a graph. The second item follows from Lemma 9 and the fact that the
link is the fs-induced lift of X, as we saw in Lemma 19. <

4 Families of HDXs via Random Local Lifts

This section is dedicated to existential proofs of high dimensional expanders based on our
local lifts from Construction 17. We start by stating the main theorem of this section which
asserts that given an arbitrary HDX X, there exists a family of HDXs with parameters
comparable to those of X so that any member of the family is a local lift of the former.
Formally,

» Theorem 21. Let X be a (dy,dy, ..., dx_1)-reqular A-two sided (resp. one sided) HDX over

n vertices, for A € [0,1]. Then there exists a family of max {)\, 0] (\ / %) }—two sided

(resp. one sided) high dimensional expanders {X;}5°, so that X; is a (2'dy, ..., 2'dg—o,dk—1)-
reqular complex over 2in vertices and X;y1 is a local lift of X;.

The proof of Theorem 21 is based on proving the single-step version of it, given in
Theorem 22, and applying it iteratively.

» Theorem 22. Let ) € [0,1]. For any k-dimensional, (do,...,dk—1)-regular, A-two sided
(resp. one sided) high dimensional expander X over n vertices, there exists a signing f :

X (k) — {£1} so that X is a max {)\,O (1/%) }—two sided (resp. one sided) high

dimensional expander with regularity (2dy, ..., 2dg—2,dr—1) and 2n vertices.

We start by proving Theorem 21 given Theorem 22. The proof of Theorem 22 is more
involved and is provided in the remainder of this section.

Proof of Theorem 21 assuming Theorem 22. Let X as specified in Theorem 21 and de-

note \ := max {)\, 0] ( kgl‘:iii’f’“’l) } The proof is by induction on 7. Clearly X holds the
requirements.

For the induction step, let X; be a (2idy,...,2%dy_o,dr_1)-regular N-two sided (resp.
one sided) HDX with 2¢n vertices received in the i-th step of the process. By Theorem 22,
there exists a singing function f; : X;(k) — {£1} so that the f;-local lift of X; (denoted by
X;) is a (2i+1dy, ..., 20+ d),_o, dj_q)-regular N-two sided (resp. one sided) HDX over 27+1n
vertices. Setting X411 := 5(: concludes the proof. <

4.1 Proof Outline of Theorem 22

The proof of Theorem 22 is based on Lovédsz Local Lemma [29] and Lemma 10, and closely
follows the lines of the existential proof in [12].
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Recall that one approach for proving a given k-dimensional simplicial complex is A-HDX,
is considering all of its ¢-links for £ < k—2 and bound the spectrum of each of their 1-skeletons
by A. By Corollary 20, the only links one should be concerned with are those obtained by
(k — 2)-faces, as the links of all other faces inherent the expansion from the initial HDX. In
addition, by the same corollary, it’s enough to analyze the spectra of the signed random walk
matrices of the (k — 2)-links of X, with respect to the signing induced on them as defined in
Lemma 19. Indeed, doing so is the most technical part of the proof and follows by the next
lemma combined with Lemma 10:

» Lemma 23. For any k-dimensional pure (do, ..., di—1)-reqular simplicial complex X over
n vertices, there exists a signing function f : X (k) = {£1} such that for any (k — 2)-face
& € X and any disjoint subsets of vertices S,T C X,(0) for o = 7(5),

kZlogdy_1

S||T 4.1
2L 5| (1)

(15, A 17)| < 10\/

where f4 is the signing on X, ’s edges induced by f as defined in Section 3.1.

By the (dp,...,dg—1)-regularity of X, X, is a dyx_j-regular graph over dj_o-vertices.
Furthermore, since any signing over the k-faces induces a signing function on the edges of
any (k — 2)-link, our goal is to find a single signing function f such that these lifts of all the
links of the (k — 2)-dimensional faces expand.

The proof of Lemma 23 is by the Lovasz Local Lemma Lemma 15. We define the set of
“bad” events B = {B>T}. The event BT is that (4.1) doesn’t hold for a fixed o € X (k — 2)
and fixed disjoint sets 5,7 C X, (0). In [12], similar bad events were considered, but only
the sets S, T needed to be specified. The main difference between our proof and theirs is
that we need to take care of the dependencies between events corresponding to different
(k — 2)-faces o,0”.

To apply the lemma and deduce Lemma 23, one needs to understand and analyze the
dependency relation of the events in 8.

On the dependency of bad events in ‘B

Fix 6 € )?(k —2) and disjoint S,T C X,(0) for o = 7(6), and define F(0,5,T) C X (k) to
be the set of all k-faces of X so that 0 C 7 and 7\ o is an edge in the graph induces by
SUT on X,. Recall that sign : X — {#1} is defined by sign() = [],,c, j, and note that

dpr (s, Allr) = > fo(ww) =sign() Y floUuv) =sign(s) Y  f(7).
uv€eXs (1) uveXs (1) TEF(0,5,T)
s.t. ueS,weT s.t. ueS,weT

Since the signs f assigns to the k-faces are chosen independently, if the event BT is not
mutually independent of a subset 2 C B, there must exists some event Bf,/ T" ¢ 9 for which
F(o,5,T)NF(c',S',T") is not empty.

Towards using the Lovasz Local Lemma, we need to bound the probability of the event
BT as well as the number of neighbors it has in the dependency graph considered in the
Local Lemma. The bound on the probability follows directly from the arguments in [12], but
bounding the number of neighbors each event is more involved. In contrast to the expander
graph case considered in [12] (where the “bad” events only depend on S and T'), in simplicial
complexes events corresponding to different faces o,¢’ (and therefore to different links) can
depend on one another as long as they have a common k-face in F(o,S,T)N F(c', S, T").
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A naive count of the number of such k-faces won’t suffice, and would lead the bound in
Equation (4.1) to scale with di_o. Therefore, we need to carefully characterize when exactly
F(0,8,T) and F(o',5’,T') intersect.

The first case where dependency can occur is when ¢ = ¢’. In this case, we are in the
same setting as in [12], which observed that there must be an edge in the subgraph induced
by SUT as well as in the one induced by S’ UT’ for a dependency to happen.

In the second case, which is new to our proof, o # ¢’ meaning that each of the events
considers a different graph. In this case, we observe that this implies both that there is
a k-face 7 containing both 0,0’ and that either there exist vertices v € o N (S’ UT") and
s € SUT so that 7\ o/ = {v, s}, or that 7\ ¢’ C 0. As we show below, this characterization
is useful to bound the number of possible events that are dependent on a certain B5Z. The
following claim gives this characterization formally.

> Claim 24. Let an event B5'T € B and some subset 2 C B. If
for any Bf,/’T/ € A with o = ¢’ there is no edge lying in both Ex_(S,T) and Ex_(S',T"),
and
for any Bf,/’T/ € 2 with o # ¢’ there is no k-face 7 € X containing both o and ¢’, so
that 7\ o and 7\ ¢’ are edges in Ex_(S,T) and Ex_, (S',T") respectively,

then B2T is mutually independent of 2.

All left to conclude the proof of Lemma 23 is carefully counting the number of events that
fulfill one of the claim conditions and provide a real function that bounds the probability of
each event as in Equation (2.1). We leave the details for the formal proof, which is given in
the next section.

4.2 Proving Lemma 23

This subsection is dedicated to the proof of Lemma 23 together with the subclaims it requires.
We start by setting notations and highlighting features that will be needed for the proof.

Notations

We say that sets S,T C X,(0) induce a connected subgraph if the subgraph obtained by
projecting X, on S UT is connected. In addition, we write Ex_(S,T) to indicate the set of
edges between S and T in X,,. For ¢ € )A((k —2), we denote o = 7(6). When the face &
being considered is clear from the context we abbreviate and write f for fs5.

In addition, we rely on the following observation:

» Observation 25. If a signing f : X (k) — {£1} independently assigns a uniform sign to
each k-face, then for any 6 € X (k —2), fs independently assigns a uniform sign to each edge
mn X,.

Proof. Let 6 € X(k—2) and let e # ¢/ € X,(1). Then for any j,j’ € {£1}

Plfs(e) = j A fs(e') = j'] = Psign(6) - f(o Ue) = j Asign(6) - floUe') = j]

1
= Blsien(s) - f(sUe) = ] - Blsien(s) - foUe) = /] = ;. <

In addition, as in [12], we can restrict the proof to consider only a pair of sets inducing
connected subgraphs and deduce the result to any pair of sets. In addition, we can assume that
d is as large as 996 as it is always the case that (15, AL17) < /|S||T|and 1 < 10 %
for di—1 € [1,996].

We are now ready to prove Lemma 23.
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Proof of Lemma 23. We set f to be a randomized signing of X (k) by setting a uniform and
independent sign from {£1} to any k-face. Fix some face 6 € X (k — 2) with n(6) = o, and
disjoint sets S,T C X,(0). Denote the “bad” event in which the claim does not hold for our

fixed face and sets by BS'T. That is, P[BST] = P[\(lg,A{ilTﬂ > 104/ %\Sﬂﬂ .

Fix for a moment some edge uv € X, (1), and consider the (u,v)-th entry of AL. By
Definition 8, Af(u,v) = f{l fo(uv), which, per Observation 25, distributed uniformly in
{#£1} and is independent of all other edges signs. In addition, since

<15,A£1T> = dl Z f&(uv),

k=1 weEx, (S,T)

(1s, A£1T> is a sum of independent uniform random variables over {£1}, implying that

1
E[(15,4717)] = > Elfs(w)]=0.

k=1 uwwe€Ex, (S,T)

Hence, by Hoeffding’s inequality,

2
P[B3T] = P[|<15,A{;1T>| > 10\/k1;gdk_l|S|T|
k—1

k2 Indg_1
2- 1007%_1 |S]|T|
<2exp | — . (4.2)

1 1 2
de—1 (_dk—l )>

wv€Ex, (S,T)(
Assuming w.l.o.g. that |S| > |T| we get

k2 Indy_
200~ == ISIIT| _ 200k%dy—y(Indy—1)|S||T| _ 50k*di—s(Indi_1)|S|IT|
( L ))2 4 Ex (S, T)| - dg—1|T|

dr—1 T d_1

uwweEx, (S,T)
> 25k Indy,_1|SUT|.

Hence, denoting ¢ = |S U T,
Equation (4.2) < 2exp (—25¢k* Indj,_,) < d;}?ek2. (4.3)

We turn to analyze the dependency graph of the “bad” events:* Recall that 9B is the set of all
events B>'T for 0 € X(k — 2) and disjoint subsets S, T C X,(0). Using the characterization
of correlated events in 8 given in Claim 24, we get the following bound on the neighborhood
size of the events in the dependency graph:

> Claim 26. Let B5T € 9B and denote ¢ = |S UT|. Then B5T has at most 3k2cde 1
neighbors B2,""" with [’ UT'| = ¢.
Now, to apply Lovédsz Local Lemma, one needs to define a function p : 8 — [0,1) such

that P[BST] < p(BET) [] yor.r (1 - p(Bf,/’Tl)) _Set p(BST) = d % Indeed

~BZY

4 Recall that the dependency graph of a set of events B is a digraph with a vertex for each event B € B
and any event B is mutually independent of B \ I'(B).
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pB®) T (e =art T (-a)

’ ’ ’ ’
BS Te~B3™ BT ABST
’ ’
2¢ 2 4c¢'—1
_ d*?}ck2 H (1 i d*3C,k‘2> 3ckdy Zy (4 4)
- Yk—-1 k—1 .
c¢’€[n]

> d 2 exp | —6ck? Y 27dy a2 | (45)
c’€[n]

2 d];fik2e—7ck2

> di 0 > P [BST] (4.6)

where Equation (4.4) is since for any U C X, (0) of cardinality ¢/, there are at most 2¢ pairs
of disjoint sets S’, 7" with S"UT" = U, Equation (4.5) is by e™* < 1— § for any x € [0, 1.59]
and Equation (4.6) is by taking di_; > 3. Together with Equation (4.3), this concludes the
proof. |

The formal proofs of Claim 24 and Claim 26, and the proof of Theorem 22 given Lemma 23
appear in the full version of this paper [11].

4.3 Concluding Theorem 22

Proof of Theorem 22. Let X be a (dp, ..., dg_1)-regular, A(X)-two sided (resp. one sided)
HDX over n vertices, fix f to be the signing provided by Lemma 23, and set X to be the
f-local lift of X.

By Observation 18, X isa (2do, . .., 2dk—2,d)—1)-regular graph over 2n vertices. We
need to prove that for any 6 € X of dimension < k — 2, the 1-skeleton of )A(& is a

max {/\(X), 0 (1 / %ﬁ“) }—two sided (resp. one sided) expander.

By Corollary 20, the spectra of all links )/(\'& with & of dimension < k — 2 are bounded by
A(X). In addition, by Lemma 23, for any 6 € X (k — 2) and any disjoint sets S,T C X,(0)
for o = (&), we have that |(1g, AL17)| <O ( %WHTD where A/ is the f;-signed
random walk matrix of X,. Together with Lemma 10 this implies

k2logd;_ [ di_
AMX,)=0 ( ;’]ilk 1 (1 + log ( Plond L loké dlk1>>>
2 2 3
<0 k?logdy_1 -log\/a ) k?log” d_1
dk_1 dk—l

hence, by Lemma 9, A\(X,) = max {)\(X), @) (\ / %)} and by Corollary 20, this is
also the case for A(X). <

5 An Algorithmic Version of Theorem 21

In this subsection, we prove that there is a randomized algorithm that finds a family of local
lifts as in Theorem 21 when X is a high dimensional expander under mild assumptions on
the degree sequence which we encapsulate in the following definition.

68:17

APPROX/RANDOM 2024



68:18

Sparse High Dimensional Expanders via Local Lifts

» Definition 27 (Nice complex). Let X be a k-dimensional simplicial complez. We say that
X is nice if X is reqular, and

. 2
dl 4logdy—1 . 5.1
k2 S elht Dkdpy + 1 (5-1)

We prove the following.

» Theorem 28. There exists a randomized algorithm A that takes as input a k-dimensional
compler Xo and an integer i > 1, runs in expected time poly((2!|Xo(0)|)¥) at most, and
outputs a k-dimensional complex X; with 2¢|Xo(0)| vertices. The algorithm has the following
quarantee.

If Xy is a nice (dy,...,dp—1)-reqular A-two sided high dimensional expander, then X;

is a (2%dy,...,2%dy_o,dx_1)-reqular N'-two sided high dimensional expander where N =
@) (max{)\ (1+1log¥) ,./%}) 5,
Moreover, one can modify the algorithm so that it outputs a sequence X1, Xa, ..., X; of

complezes all satisfying the same guarantees (instead of just the last one), so that for every
j=0,1,...,¢ =1, Xj41 is a local lift of X;.

Loosely speaking, in order to prove Theorem 28, we need to prove that there is an

algorithm A4 that finds a single local lift for X in polynomial time (just as Theorem 21 was
proved by the “one-step theorem” Theorem 22) with good enough spectral expansion. Then
we just iteratively use A on its own output, setting X;11 = A(X};), until reaching j =i — 1.
For this to work, we also need to address the issue that A’ > X so naively the expansion
deteriorates as we reiterate. We differ the proof of Theorem 28 for the full version of this
paper [11].
» Remark 29 (A non-uniform algorithm for any HDX). Theorem 28 requires that Xy be a nice
complex, i.e. that (5.1) holds. However, in any family {X,}.-, where X;;1 is a local lift of
X, the degree di_o(X;) tends to infinity with ¢ while the other side of both inequalities stays
fixed. Thus, the inequalities will eventually hold for any family of consecutive local lifts. In
fact, they should hold for any ¢ > C'log(k + dig—1(Xp)) for some large enough constant C' > 0.
Thus we can modify the algorithm to work even if X is not nice (albeit with the spectral
expansion bound guaranteed in Theorem 21, which is slightly worse than the expansion in
Theorem 28). This is done by allowing the algorithm to do a brute-force search for the first
few steps, to produce a nice X;, and then continuing as the original algorithm does. The
first few steps will eventually stop because Theorem 21 promises the existence of such an X;.
This process takes poly(|X;|*) + exp(O(]Xo|*)) time.

Towards the proof of Theorem 28, we need the following definition and lemma from [12].

» Definition 30. A graph G with adjacency operator A is said to be ([8,t)-sparse if for
every S, T C V(G) such that |SUT| < t, (1g,Alyr) < B\/|IS||T|. For a k-dimensional
hyper-reqular complex X, we say that it is (8,t)-sparse if for every o € X (k — 2), the graph
X, is (B,t)-sparse.

» Remark 31. While the definition here regards any S,T with |[SUT| < ¢, it is in fact
equivalent to regarding only S,T with |SUT| < ¢t such that the graph induced on SUT
is connected. We also remark that if X is (8, t)-sparse then it is also (8’,t)-sparse for any

g =p.

5 We will not calculate the constants in the big O notation explicitly.
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The reason we need this definition of sparseness is that in a random local lift, sparseness
does not deteriorate with high probability. More formally, the following lemma was proven
in [12].
» Lemma 32 ([12, Lemma 3.4]). Let G = (V, E) be a d-regular graph with n vertices that is
(8,1log n)-sparse for g > 10\/%. Then with probability > 1 —n=%1°8d oper f: B — {£1}:
For every S, T CV, |<15,Af1T>’ < BVI|S|IT| and,
G7 is (8,logn + 1)-sparse,
We comment that [12, Lemma 3.4] does not explicitly calculate the probability 1 —n
rather, they only say the events happen with high probability. This is the probability that is

—4logd.
)

implicit in their proof. They also prove this theorem for g = 10 % but the same proof
extends to § > 104/ % with no additional changes.

This next claim easily follows from the definition of expansion and says that a spectral
expander is sparse.

> Claim 33. Let G be a d-regular A-two sided spectral expander over n vertices such that

A> % and d > 3. Then G is (2], logn)-sparse.

Proof. Fix S,T such that with |SUT| < logn. By the A-expansion and the expander
mixing lemma (see e.g. [40]), (1g,Alp) < % + A\/|S||T|. We bound this term by

()\ + 1"%) VIS|IT]. As k’% < ﬁ < ﬁ < X the claim follows. <

We are ready to state our one-step theorem.

» Theorem 34. There exists a randomized algorithm A with the following guarantees.
Let X be a k-dimensional d-regular \-two sided (resp. one sided) high dimensional ex-

pander over n wvertices, where d = (doy ... dk—1). Let B > 101/% and denote by
N o= maX{A,O(ﬁ(l +log%))}. Assume that X is (8,logdi_2)-sparse, and suppose that

di_o and di_1 satisfy dp_o > d%_l and (5.1). Then A(X) = X is a local lift of X such that:
1. The complex X is a N-two sided (resp. one sided) high dimensional expander.

2. The complex X is (8,log 2dy_2)-sparse.

Upon input X satisfying the above, the algorithm runs in time poly(| X (0)[¥).

Proof of Theorem 34. We intend to use Lemma 16. For this, we fix the following “bad”
events € = {Cy | 0 € X(k—2)} where C, C {f: X(k) — {£1}} is the event where :

. —=*fs . .
1. Either X, is not a M'-two sided spectral expander, or
—~*tfs
2. X, is not (8, log 2dy_2)-sparse.

By Lemma 32 (and Lemma 10 that relates the first item in Lemma 32 to spectral
expansion), Py [C,] < 2d,*}°% ™' Moreover, because every link of a 6 € X (k — 2) is a lift
of X, with respect to fs, then if none of the events C, occur, then X satisfies both items in
Theorem 34. We will use Lemma 16 to find such an assignment.

We now construct a dependency graph for €. Let 0 € X(k —2) and U C X (k — 2). The
event C, only depends on f,, so it only depends on k-faces 7 O o. Therefore, if C, and
{Cy | o' € U} are not mutually independent, then in particular there is a k-face 7 € X and
o’ € U such that 7 D ¢,0’. Hence, in our dependency graph we connect C, ~ C, if there
exists such a k-face containing both o and ¢’. Let us upper bound the neighborhood size

of an event C,. The number of neighbors that C, has is upper bounded by the number
k+1
k—1
number of neighbors is bounded by

of k-faces containing o times ( ) (the number of ways to choose ¢’/ C 7). Therefore, the
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D= <Zi_1) HreX(k)| T20} = (Z+1)|X ()] = W(lk—%ikfb

By setting p: € — [0,1) to be the constant function p(Cy) = ﬁ we have that P [C,] <

D

P(Co) Tlorno (1 = PCo), Decause p(Co) [Lns(1 = p(Co)) = ph5 (1= 545) 2 sy

and P[C,] < 24,13 < by by (5.1).

Let us now verify that the algorithm in Lemma 16 runs in polynomial time. We note that
there the number of events in € is poly(|X (0)|¥), and checking whether C, occurs could be
done in poly(]X(0)])-time because it amounts to:

1. Find the spectrum of a signed adjacency operator of a dj_o-sized graph.

2. Going over all connected sets U C )/foif” of size < log2dj_s for every o € X(k — 2),
finding S, T such that SUT = U, and counting the number of edges between S and T to
check if the pair S, T violates sparseness. There is a poly(]X(0)|) such U, S,T at most.

Therefore, the randomized algorithm in Lemma 16 will find a signing in poly(|X (0)[*) -

Y oex(k_2) B = Poly(| X (0)[")-time. <

6 Derandomizing the Construction

In this section we provide a deterministic construction of (k — 1)-bounded families of high
dimensional expanders, as referred to in Theorem 3. For the rest of this section, we denote

ar(d) = 104/ & logd (when k is clear from context, we will write «(d)).
We will prove the following theorem.

» Theorem 35 (Restatement of Theorem 3). There exists a deterministic algorithm B
that takes as input a k-dimensional complex Xy and an integer i > 1, runs in time
poly((2¢|Xo(0))*), and outputs a k-dimensional compler X; with 2!|Xo(0)| vertices. The
algorithm has the following guarantee: If Xo is a (do,...,dx—1)-reqular A\-two sided high
dimensional expander, with A > ax(dg—1), dr—1 > 21% and |Xo(k — 2)| < di%, then
X; is a (2%do,...,2'dy_o,d,_1)-regular N -two sided high dimensional expander where
N =0 (25k)\ (1+log%)) 8. In particular, for every n € N, choosing i = logn yields a
complex with at least n-vertices.

This explicit construction generalizes the explicit construction for expanders given in [12],
which is based on the conditional probabilities method [4, Chapter 16].

We first observe that under the assumption that the base complex is sparse (as in
Definition 30) and that | X (k —2)| is not too large, then a random local lift of X is also sparse
and is a high dimensional expander with high probability. Then, we explain how we can find
such a lift deterministically by greedily selecting the values f(7) one k-face at a time.

» Lemma 36. Let X be a k-dimensional, (dg,...,dx—1)-regular and (5,log di_2)-sparse
simplicial complez so that 8 > a(dk—1) and | X (k —2)| < dffg;k’l.

Then, for f : X(k) — {x1} drawn uniformly at random, with probability at least
1— d]:3;ogdk 1.
1. For every o € X (k —2) and every S,T C X,(0): |(1s, AL17)| < B\/IS|[T].
2. The local lift X =X7is (8,log dy—_o + 1)-sparse. J

6 We will not calculate the constants in the big O notation explicitly.
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We comment that the condition |X (k—2)| < dff; *~! may seem odd at first glance. However,

similar to Remark 29, this is eventually satisfied by every sequence {X;};~, where X; 1 is a
local lift of X;. Thus, we do not lose too much generality by assuming it.

The proof of Lemma 36 follows by applying Lemma 32 to every link and taking a union
bound over the links. We omit the proof since it is a direct calculation.

The deterministic construction mentioned at the beginning of this section is composed of
iterative applications of the local lift, where each application is according to the algorithm
described in the following lemma.

» Lemma 37. Let X be a k-dimensional (dy, . . .,dk—1)-reqular (8,log di._2)-sparse simplicial
complex with dy_1 > 219 B8 > a(di_1) and such that | X (k — 2)| < d}°%,.

Then, there is a deterministic poly (| X (0)|*) time algorithm for finding a function f :
X (k) = {£1} such that:
1. For every o € X(k—2), |AL|| =0 (25kﬂ (1 + log %))

2. X7 is (8,log d—2 + 1)-sparse.

The proof of Lemma 37 appears in the full version of this paper [11]. We give here a
short discussion of the techniques used there. The proof uses the method of conditional
probabilities. The main idea is that, given the conditions on the input complex, we can
define random variables denoted Z(?), which serve as “error” indicators, where these errors
occur with very small probability. By defining another set of random variables Y (%) which
correlate with the links’ expansions, and amplifying the impact of each error, we are able to
choose f(7) k-face by k-face, while tracking the expected value of the sum of those variables
efficiently and making sure no error occurs. We are now ready to prove our main result in
this section.

Proof of Theorem 35. Let d = (dy,d1,...,dx_1 = d) and let X be a d-regular A-two sided
high dimensional expander for A > ay(d), such that | Xo(k — 2)| < d}°%,. By Claim 33, it is
also (2, log dy—2)-sparse.

Denote by B’ the algorithm suggested by Lemma 37, and let X3, Xo, ..., X; be such that
X, =B'(X;_1) for j € [i]. We set X; to be B’s output.

Let us show that, X; meets the guarantees of Theorem 35. By Observation 18, for every
j€lil, Xjis (27do, 27dy, . .., 27 dy_o, d)-regular and |X;(0)| = 27|X(0)|.

In addition, one can verify by a direct calculation that, for any j € [i], |X,;(k — 2)| =
2k_1|Xj_1(k‘—2)|, so if |Xj_1(k‘—2)| < dk_g(Xj_l)lok then |Xj(k‘—2)| = 2k_1|Xj_1(k‘—2)| <
dr—2(X;-1)10 . 2k=1 < g _5(X;)'%%. Thus, by induction and the fact that this inequality
holds for Xy, this holds for every j.

Finally, by Lemma 37 one inductively obtains that for any j:

1. X;isan O (25’“)\ (1 + log %))—high dimensional expander.

2. X, is (2), log di—2(X;))-sparse.

3. X, computed in time poly(]X;_1(0)|*) = poly(29=1 X (0)|*).

as required. <
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