
Consistent Sampling with Smoothed Quantum Walk
1st Tianyi Zhang

Department of Statistics
The University of Georgia

Athens, USA
Tianyi.Zhang@uga.edu

ORCID 0009-0007-5059-4563

2nd Yuan Ke
Department of Statistics

The University of Georgia
Athens, USA

yuan.ke@uga.edu
ORCID 0000-0001-7291-8302

Abstract—This paper introduces a novel sampling technique
based on the dynamics of a 2-state Quantum Walk (QW) in a one-
dimensional space. By leveraging concepts from nonparametric
statistics, specifically the kernel smoothing method, our approach
addresses two key challenges in Quantum Walk sampling: discon-
tinuities in sampling distributions and potential inaccuracies in
limiting distributions. Our innovative method effectively mitigates
these issues, leading to significant improvements in density esti-
mation and sampling efficacy compared to traditional Quantum
Walk distributions and sampling techniques.

Index Terms—Quantum Walk, Limit theorem, Sampling, Den-
sity estimation, Epanechnikov kernels, Transformed kernels

I. INTRODUCTION

Quantum Walks (QWs) are analogues of classical random
walks in a quantum version. They offer a wealth of concepts
in this field. Like their classical counterparts, QWs can be
defined as an evolution process on a graph. In classical random
walks, a walker appears in definite locations (states), and
their transition process stochastically depends on a probability
distribution. However, in QWs, the walker is located in a
superposition of states, and the evolution depends on uni-
tary operators, which are deterministic. For a comprehensive
introduction to QWs, we refer to the works of [1]–[3], and
others. The limit theorems for QWs [4]–[6] also inspired the
development of quantum sampling methods.

An important and fundamental mechanism in QWs is QW
on a line, which is isomorphic to the evolution process on the
set of all integers Z as defined in [7], [8]. In [9], with different
initial states, the author proved limit theorems based on 2-
state QW on the line, which makes it possible to sample from
various target distributions, such as Semicircle distribution,
Uniform distribution, Truncated Gaussian distribution, and
Arcsine distribution. Despite its superior theoretical properties,
at a given QW time t, 2-state QW on the line generates
samples from a discrete distribution that does not have the
same limiting distribution as the target distributions.

To address these challenges, kernel smoothing methods in
nonparametric statistics [10]–[12] could be applied. Among
various kernel functions, the Epanechnikov kernel [13] is se-
lected in this paper, since it stands out for its optimal properties
in terms of minimizing the asymptotic mean integrated square
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error (AMISE) with optimal bandwidth. This kernel is featured
by its compact support and smoothness properties, making it
a popular choice in kernel density estimation (KDE) applica-
tions. It is important to note that both the QW distributions
and target distributions in our case have supports on bounded
sets. Several methods have been proposed to tackle bounded
set KDE problems, such as the reflection method in [14],
boundary kernel method in [15], pseudo data method in [16],
and Beta kernel method in [17]. In this paper, a transformation
method proposed in [18] is considered. We proceed as follows:
(1) We review the 2-state QW on a line and identify its
limitations in sampling; (2) We review the kernel smoothing
method and explain why it complements the 2-state QW on a
line sampling method; (3) Using the Epanechnikov kernel and
transformation method, we develop novel smoothed quantum
sampling methods; (4) We demonstrate the superior empirical
properties of these smoothed quantum sampling methods from
extensive experiments.

II. SAMPLING WITH 2-STATE QUANTUM WALK ON A LINE

Following the state-space postulate introduced in [9], the
discrete-time 2-state QW on the line resides in a tensor
space Hp ⊗ Hc, where Hp is a position Hilbert space and
Hc is a coin Hilbert space. Further, the position space can
be represented by the span of its basis states, i.e. Hp =

Span
(
{|x⟩p : x ∈ Z}

)
, and the coin space can be represented

by Hc = Span ({|0⟩c , |1⟩c}) with ⟨0|c = [1, 0] and ⟨1|c =
[0, 1]. Let |Ψt⟩ be the superposition of 2-state QWs on the
line at time t ∈ {0, 1, 2, . . .}. We can decompose |Ψt⟩ by

|Ψt⟩ =
∑
x∈Z

|x⟩p ⊗ |ψt(x)⟩c ,

where |ψt(x)⟩c ∈ Hc. When |Ψt⟩ is measured, the squared
modulus of |ψt(x)⟩c represents the probability mass function
of observing the quantum walker in position x at time t.

The evolution of QWs can be viewed as a stochastic process
[8] that depends on two quantum operators. First, a Hadamard
operator

Hc
.
= cos θ|0⟩c⟨0|+ sin θ|0⟩c⟨1|+ sin θ|1⟩c⟨0| − cos θ|1⟩c⟨1|

=

[
cos θ sin θ
sin θ − cos θ

]
(1)
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with θ ∈ [0, 2π) is applied to the coin state. It is easy to check
that Hc is a unitary matrix. Next, a conditional shift operator
is implemented on the position state. It moves the walker one
step forward if the coin state is |1⟩c and one step backward if
the coin state shows up as |0⟩c. To be specific, the conditional
shift operator could be defined as

Sp
.
=
∑
i∈Z

|i+ 1⟩p⟨i|⊗ |1⟩c⟨1|+
∑
i∈Z

|i− 1⟩p⟨i|⊗ |0⟩c⟨0|. (2)

At time t, QWs update the current superposition |Ψt⟩ to a
new superposition |Ψt+1⟩ through the following mechanism

|Ψt+1⟩ = Sp (Ip ⊗Hc) |Ψt⟩ ,

where Ip is the identity operator on the position state.

The probability of finding the quantum walker Xt in posi-
tion x at time t can be calculated by

P (Xt = x) = ⟨ψt(x)|ψt(x)⟩c . (3)

Utilizing the discrete-time Fourier transformation, we define

|Ψ̂t(k)⟩c =
∑
x∈Z

e−ikx |ψt(x)⟩c , for k ∈ [−π, π).

Subsequently, we can define the inverse transformation as

|ψt(x)⟩c =
1

2π

∫ π

−π

|Ψ̂t(k)⟩c e
ikxdk.

Similar to the discussions in [9], the mathematical formula-
tions above motivate a quantum sampling scheme to generate
a random sample of the target distribution by matching the
moments of the distribution.

Let F : R 7→ R be a real function satisfying

1) F (k + 2π) = F (k),

2)
∫ π

−π
F (k)2dk = 2π,

3) F (k) ∈ C∞[−π, π] almost everywhere,

4) |F (k − π)| = |F (−k)| = |F (k)|.

We introduce a non-localized initial state

|Ψ̂0(k)⟩c = F (k)(α |0⟩c + β |1⟩c),

or equivalently

|ψ0(x)⟩c =
[
1

2π

∫ π

−π

F (k)eikxdk

]
(α |0⟩c + β |1⟩c)

with α, β ∈ C and |α|2 + |β|2 = 1.

Let r be a non-negative integer, c = cos θ, s = sin θ, and
ℜ(z) be the real part of z ∈ C. The limiting moments of Xt/t
satisfy

lim
t→∞

E
[(

Xt

t

)r]
=

∫
R
xrf(x;α, β)F (κ(x))2I(−|c|,|c|)(x)dx,

where

f(x;α, β) =
|s|

π (1− x2)
√
c2 − x2

·
[
1−

{
|α|2 − |β|2 + 2sℜ(αβ̄)

c

}
x

]
,

κ(x) = arccos

(
|s|x

c
√
1− x2

)
,

and I(−|c|,|c|)(x) =

{
1 if x ∈ (−|c|, |c|)
0 otherwise

.

Moreover, if α, β are properly selected such that |α|2 −
|β|2 + 2sℜ(αβ̄)

c = 0 (e.g. α =
√
2
2 , β =

√
2
2 i), one can choose

the form of F to control the (scaled) limiting moments of
Xt. Given a properly chosen initial state |ψ0(x)⟩c, we can
generate Xt,i

t , i = 1, · · · , N , as a random sample from a target
distribution. Here we list a few examples.

1) Wigner semicircle law:

Choose F (k) =
√

2|s|3 sin k

1−c2 sin2 k
. Then,

lim
t→∞

E
[(

Xt

t

)r]
=

∫
(−|c|,|c|)

xr
2
√
c2 − x2

πc2
dx;

2) Uniform distribution:

Choose F (k) =
√

πs2| sin k|
2(1−c2 sin2 k)

3
2

. Then,

lim
t→∞

E
[(

Xt

t

)r]
=

∫
(−|c|,|c|)

xr
1

2|c|
dx;

3) Truncated Gaussian distribution:
Choose
F (k) =

√ √
2π|c|s2| sin k|

2σ erf
(

|c|√
2σ

)
(1−c2 sin2 k)

3
2
exp

{
− c2 cos2 k

4σ2(1−c2 sin2 k)

}
.

Then,

lim
t→∞

E
[(

Xt

t

)r]
=

∫
(−|c|,|c|)

xr
exp

(
− x2

2σ2

)
√
2πσ erf

(
|c|√
2σ

)dx,
where erf(·) is the Gaussian error function, and σ > 0
stands for the standard deviation;

4) Arcsine law:
Choose F (k) =

√
|s|

1−c2 sin2 k
. Then,

lim
t→∞

E
[(

Xt

t

)r]
=

∫
(−|c|,|c|)

xr
1

π
√
c2 − x2

dx.

For most cases, the preparation of the initial state |ψ0(x)⟩c
would not be complex. For example, considering Wigner
semicircle law, Uniform distribution, or Truncated Gaussian
distribution, even if the non-localized initial state cannot be
generated accurately, preparing the initial state |ψ0(x)⟩c only
for those x close to 0 would be enough, and it would
approximate the true initial state on Z with arbitrarily tiny
difference. However, this quantum sampling scheme has two
limitations as shown in Fig. 1. On the one hand, at a finite time
t, Xt

t actually approximates a continuous target distribution on
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(a) Semicircle law, t = 1000.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 target distribution
Quantum Walk distribution

(b) Semicircle law, t = 5000.
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(c) Uniform distribution, t = 1000.
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(d) Uniform distribution, t = 5000.

Fig. 1: Quantum Walk distributions and target distributions. Four
patterns are plotted for different approximation laws and t values.
The red lines are the true probability distributions of the Quantum
Walk sample Xt

t
. The blue areas are PDFs of the target distributions.

the set (−|c|, |c|) by an empirical discrete distribution on the
set

{
i
t : i ∈ Z ∩ (−|c| · t, |c| · t)

}
. This approximation error

may create bias and hence yield sub-optimal finite-sample per-
formance. On the other hand, the analysis above only provides
the asymptotic behavior of the (scaled) moments. The limiting
distribution of Xt (or of Xt

t ), as a more desired theoretical re-
sult, is still lacking. Denote ftarget(·) as the probability density
function (PDF) of the target distribution. It is not guaranteed
that ∀x ∈ (−|c|, |c|), limt→∞ P

(
Xt

t = x
)
= ftarget(x). In fact,

in many cases, limt→∞ P
(
Xt

t = x
)

does not even exist. To
overcome these two limitations, we propose to inovate the
quantum sampling method by borrowing the wisdom from the
statistical kernel smoothing techniques.

III. KERNEL SMOOTHING

In the realm of nonparametric statistics, kernel smoothing is
a widely used technique to obtain estimates through a weighted
average of a “localized” neighborhood in the random sample,
see [10], [19]–[21] and reference therein. A Kernel function
K(·) is usually introduced to assign weights and u usually
represents the “closeness” between two observations. The size
of the local neighborhood is controlled by a bandwidth (or
smoothing) parameter h that can converge to 0 when the
sample size n diverges. For example, a popular choice of the
kernel function in nonparametric regression is the Epanech-
nikov kernel which achieves a high minimax efficiency [22].
To be specific, the Epanechnikov kernel is defined as

K(u) =
3

4

(
1− u2

)
+
, (4)

where (a)+ = a if a ≥ 0 and (a)+ = 0 if a < 0.
Let X1 . . . , Xn be an independent and identically dis-

tributed (i.i.d.) sample drawn from a probability density func-

tion f(·). A kernel smoothing density estimator of f(·) is
defined as follows.

f̂(x) =
1

n

n∑
i=1

Kh (x,Xi) , (5)

where Kh(x, y) = h−1K{(x− y)/h}.
Under mild conditions, the kernel density estimator enjoys

the following two nice statistical properties:

1) limn→∞ E
[
f̂(x)

]
= f(x),

2) limn→∞ Var
[
f̂(x)

]
= 0.

Further, one can prove that kernel density estimator converges
in probability to true density funciton, i.e. ∀x, f̂(x)

p−→ f(x).
Therefore, we plan to borrow the wisdom of kernel smoothing
to overcome the limitations of the quantum sampling method
as discussed in Section II.

IV. KERNEL SMOOTHED QUANTUM SAMPLING

In this section, we introduce a novel quantum sampling
method by integrating quantum walk and kernel smoothing.
Throughout this section, we denote f∗(·) the density function
of the target distribution, Xt,i the location of ith quantum
walker at time t, and Yt,i =

Xt,i

t for i = 1, . . . , N and
t ∈ Z+.

With the Epanechnikov kernel, we can define a kernel
smoothing density estimator of the target distribution f∗(·)
as

f̂0(x) =
1

Nh

3

4

N∑
i=1

(
1−

(
x− Yt,i

h

)2
)

+

.

As discussed in Section II, the support of the target dis-
tribution for quantum sampling is usually a bounded interval
(−|c|, |c|). However, the support of f̂0(·) is the whole real line.
To make the two supports match, we rescale f̂0(·) by

f̂1(x) =
f̂0(x)∫

(−|c|,|c|) f̂0(z)dz
. (6)

We call f̂1(x) the Smoothed Quantum Sampling (SQS). Ac-
cording to the empirical experiments to be unveiled in Section
V, SQS suffers from biases in the boundary areas.

To reduce the bias in the boundary area, we propose
a Transformed Smoothed Quantum Sampling (TSQS). Let
Tc : (−|c|, |c|) 7→ R be a monotonically increasing function
which is three times continuously differentiable. Such a Tc(·)
function is easy to find or construct. For example, one can
choose Tc(·) as the inverse of a Gaussian distribution function

Tc,1(x) = Φ−1

(
x+ |c|
2|c|

)
, (7)

where Φ(·) is the cumulative distribution function of standard
Gaussian. As another example, one can choose Tc(·) to be a
logit function such as

Tc,2(x) = logit

(
x+ |c|
2|c|

)
= ln

x+ |c|
|c| − x

.
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(a) Semicircle law, t = 5000,
N = 5000, h = 0.4.
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(b) Semicircle law, t = 5000,
N = 5000, h = 0.1.
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(c) Semicircle law, t = 5000,
N = 10000, h = 0.4.
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(d) Semicircle law, t = 5000,
N = 10000, h = 0.1.
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(e) Uniform distribution, t = 5000,
N = 5000, h = 0.1.
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(f) Uniform distribution, t = 5000,
N = 5000, h = 0.05.
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(g) Uniform distribution, t = 5000,
N = 10000, h = 0.1.
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(h) Uniform distribution, t = 5000,
N = 10000, h = 0.05.

Fig. 2: SQS densities. Graph matrix with eight patterns are plotted for different approximation law, sample size N , and bandwidth h. The
light blue lines are the mean functions of Epanechnikov kernel estimators with 500 replications. The orange cross-shaded areas represent
the area given by mean±2 × standard error. The red lines are the true probability distributions of the Quantum Walk sample Yt,i. The
blue areas are PDFs of the target distributions.

With a properly chosen transformation function Tc(·), we
define the TSQS estimator by

f̂2(x) =T
′
c(x) ·

1

Nh

3

4

N∑
i=1

(
1−

(
Tc(x)− Tt,i

h

)2
)

+

, (8)

where Tt,i = Tc(Yt,i), and T ′
c(·) represents the first order

derivative of Tc(·).

V. EXPERIMENTS

In this section, we use several numerical experiments to val-
idate the concepts discussed in the paper. We will also assess
and compare the empirical performances of Quantum Walk
(QW), Smoothed Quantum Sampling (SQS), and Transformed
Smoothed Quantum Sampling (TSQS) in various scenarios.
Throughout this section, we set α =

√
2
2 , β =

√
2
2 i, and θ = π

4 .

A. Empirical analysis for Quantum Sampling Performance

In the first experiment, we assess the empirical perfor-
mances of SQS and TSQS under various settings. We will also
compare SQS and TSQS with QW and the target distribution.
We choose the Wigner semicircle law and the Uniform distri-
bution as introduced in Section II as the target distributions.
We set the running time of QW to be t = 5, 000 and the sample
size to be N = 5, 000 and 10, 000. For SQS and TSQS, we
use the Epanechnikov kernel and evaluate their performances
with both large and small smoothing parameters. Specifically,
we choose h = 0.4 and 0.1 for the Wigner semicircle law
and choose h = 0.1 and 0.05 for the Uniform distribution.
For TSQS, we choose the inverse Gaussian transformation
function Tc,1(·) defined as in (7). For each scenario, we repeat
500 replications. The experiment results for SQS and TSQS
are reported in Fig. 2 and Fig. 3, respectively.

The experiment results clearly show that with a given time
t, the samples generated by both SQS and TSQS, with well-
chosen N and smoothing parameter h, are much closer to
the target density compared to the samples generated from
QW, thanks to the bias correction made by kernel smoothing.
Correspondingly, the samples generated by SQS and TSQS
converge to the target density as t and N increase. Still,
the choice of the smoothing parameter plays an important
role in smoothed quantum sampling methods to control the
bias-variance trade-off. A large value of h creates a smoother
estimate which may have low variance but a bias. Conversely,
a small value of h produces a more “localized” estimate which
may have a small bias but can suffer from larger variance. In
practice, we can choose h through a multi-fold cross-validate
approach.

Furthermore, as shown in Fig. 2, both QW and SQS suffer
from the boundary bias issue. For the Wigner semicircle law
experiment, f̂1(·) shows densities outside (−|c|, |c|), indicating
that f̂1(x) > 0 when x = −|c| or x = |c|, by the continuity
of f̂1(x). This results in a positive bias at the boundary for
the samples generated by SQS. For the Uniform distribution
case, when x is close to the boundaries, f̂1(x) only uses
interior observations, leading to an underestimation of the
target density and hence a negative bias. Although this issue
diminishes as N → ∞ and h → 0, it remains significant in
practice with a finite sample. We are happy to see, from Fig. 3,
this boundary bias issue is mitigated by TSQS as we expected.

B. Statistical analysis for Quantum Sampling Performance
Next, we make a statistical inference analysis for quantum

sampling methods. We use the Kolmogorov–Smirnov (KS)
test to determine if the observations (of size m) generated
from a quantum sampling method originates from the target
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(a) Semicircle law, t = 5000,
N = 5000, h = 0.4.
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(b) Semicircle law, t = 5000,
N = 5000, h = 0.1.
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(c) Semicircle law, t = 5000,
N = 10000, h = 0.4.
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(d) Semicircle law, t = 5000,
N = 10000, h = 0.1.
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(e) Uniform distribution, t = 5000,
N = 5000, h = 0.1.
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(f) Uniform distribution, t = 5000,
N = 5000, h = 0.05.
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(g) Uniform distribution, t = 5000,
N = 10000, h = 0.1.
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Fig. 3: TSQS densities. Graph matrix with eight patterns are plotted for different approximation law, sample size N , and bandwidth h. The
light blue lines are the mean functions of Epanechnikov kernel estimators with 500 replications. The orange cross-shaded areas represent
the area given by mean±2 × standard error. The red lines are the true probability distributions of the Quantum Walk sample Yt,i. The
blue areas are PDFs of the target distributions.

distribution. The KS test is a nonparametric test for the
equivalence of two continuous one-dimensional probability
distributions. In the context of our study, the KS test evaluates
how well the sample distributions conform to theoretical distri-
butions by comparing their cumulative distribution functions.
The p-values from the KS test indicate the probability that
the observed differences between the sample and reference
distributions could occur by chance. A high p-value suggests
a lack of evidence against the null hypothesis that the sample
distribution matches the target distribution.

We consider a similar experiment setting as Section V-A.
We set t = 5000 and N = 200000 for QW. We also set the
sample size of the obsevations in KS tests to be m = 50, 000,
200, 000 and 500, 000. For the Wigner semicircle law case,
we choose h = 0.02 for SQS and h = 0.05 for TSQS.
For the Uniform distribution case, we choose h = 0.006
for SQS and h = 0.08 for TSQS. The histograms of p-
values over 500 replications are presented in Fig. 4. When
the null hypothesis of the KS test is true, the p-value of the
test statistic should follow a uniform distribution between 0
and 1. In Fig. 4, the QW samples and SQS samples exhibit
comparable performance when N is small, with all methods
displaying evenly distributed p-values across [0, 1]. However,
as N increases, all methods tend to fail as their p-values
concentrate increasingly towards 0. Notably, TSQS samples
are preferable since their p-values are less biased towards 0
compared to the QW and SQS samples. This suggests that
TSQS samples better approximate the target distributions as
sample sizes increase.

VI. DISCUSSION AND FUTURE WORK

Although the experiments in Section V show SQS and
TSQS exhibit superior empirical performances in statistical

sampling, the theoretical properties of these methods are yet
to be investigated, which is our main research focus in the next
stage. Here we propose a few research objectives we aim to
investigate in future work. As discussed in Subsection III, we
would like to show that SQS and TSQS satisfy the convergence
in probability. For i = 1, 2 and ∀x, we aim to prove

1) lim(N,t)→∞ E
[
f̂i(x)

]
= ftarget(x),

2) lim(N,t)→∞ Var
[
f̂i(x)

]
= 0.

Additionally, as discussed in Subsection V-A, selecting the
smoothing parameter h is crucial for the practical application
of the method. This process typically involves determining the
expected L2 risk function, also known as the mean integrated
squared error (MISE),

MISEt,N,i(h) = E

{∫ |c|

−|c|

[
f̂i(x)− ftarget(x)

]2
dx

}
,

for given t, N , and i = 1, 2. The explicit form of MISE is
often difficult to derive, and as an alternative, its asymptotic
version, AMISE, is used:

AMISEt,N,i(h)

=

∫ |c|

−|c|
Bias2

[
f̂i(x)

]
+Var

[
f̂i(x)

]
dx

=

∫ |c|

−|c|

{
E
[
f̂i(x)

]
− ftarget(x)

}2

+Var
[
f̂i(x)

]
dx.

Consequently, the smoothing parameter h can be selected by
finding h∗ = argminh AMISEt,N,i(h).
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in Annales Henri Poincaré, vol. 16. Springer, 2015, pp. 15–43.

[6] N. Konno, “Limit theorem for continuous-time quantum walk on the
line,” Physical Review E, vol. 72, no. 2, p. 026113, 2005.

[7] A. Nayak and A. Vishwanath, “Quantum walk on the line,” 2000.
[8] S. E. Venegas-Andraca, “Quantum walks: a comprehensive review,”

Quantum Information Processing, vol. 11, no. 5, pp. 1015–1106, 2012.
[9] T. Machida, “Realization of the probability laws in the quantum central

limit theorems by a quantum walk,” Quantum Info. Comput., vol. 13,
no. 5–6, p. 430–438, may 2013.

[10] M. P. Wand and M. C. Jones, Kernel smoothing. CRC press, 1994.
[11] D. W. Scott, Multivariate density estimation: theory, practice, and

visualization. John Wiley & Sons, 2015.
[12] B. W. Silverman, Density estimation for statistics and data analysis.

Routledge, 2018.
[13] V. A. Epanechnikov, “Non-parametric estimation of a multivariate prob-

ability density,” Theory of Probability & Its Applications, vol. 14, no. 1,
pp. 153–158, 1969.

[14] E. F. Schuster, “Incorporating support constraints into nonparametric
estimators of densities,” Communications in Statistics-Theory and meth-
ods, vol. 14, no. 5, pp. 1123–1136, 1985.

[15] T. Gasser and H.-G. Müller, “Kernel estimation of regression functions,”
in Smoothing Techniques for Curve Estimation: Proceedings of a Work-
shop held in Heidelberg, April 2–4, 1979. Springer, 1979, pp. 23–68.

[16] A. Cowling and P. Hall, “On pseudodata methods for removing boundary
effects in kernel density estimation,” Journal of the Royal Statistical
Society Series B: Statistical Methodology, vol. 58, no. 3, pp. 551–563,
1996.

[17] S. X. Chen, “Beta kernel estimators for density functions,” Computa-
tional Statistics & Data Analysis, vol. 31, no. 2, pp. 131–145, 1999.

[18] J. S. Marron and D. Ruppert, “Transformations to reduce boundary bias
in kernel density estimation,” Journal of the Royal Statistical Society:
Series B (Methodological), vol. 56, no. 4, pp. 653–671, 1994.

[19] E. A. Nadaraya, “On estimating regression,” Theory of Probability &
Its Applications, vol. 9, no. 1, pp. 141–142, 1964.

[20] G. S. Watson, “Smooth regression analysis,” Sankhyā: The Indian
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