L))

Check for
updates

Provable Security for PKI Schemes

Sara Wrotniak
School of Computing
University of Connecticut
Storrs, CT
sara.wrotniak@uconn.edu

Ewa Syta’
Department of Computer Science
Trinity College
Hartford, CT
ewa.syta@trincoll.edu

ABSTRACT

PKI schemes provide a critical foundation for applied cryptographic
protocols. However, there are no rigorous security specifications for
realistic PKI schemes, and therefore, no PKI schemes were proven se-
cure. Cryptographic systems that use PKI are analyzed by adopting
overly simplified models of PKI, often simply assuming securely-
distributed public keys. This is problematic given the extensive
reliance on PKI, the multiple failures of PKI systems, and the com-
plexity of both proposed and deployed systems, which involve
complex requirements and models.

We present game-based security specifications for PKI schemes
and analyze important and widely deployed PKIs: PKIX and two
variants of Certificate Transparency (CT). These PKIs are based on
the X.509v3 standard and its CRL revocation mechanism. Our anal-
ysis identified a few subtle vulnerabilities and provides reduction-
based proofs showing that the PKIs ensure specific requirements
under specific models (assumptions). To our knowledge, this is the
first reduction-based proof of security for a realistic PKI scheme,
e.g., supporting certificate chains.

CCS CONCEPTS

« Security and privacy — Security requirements; Formal se-
curity models; Key management.

KEYWORDS
PKI, provable-security

*The work was partially completed during the author’s PhD studies at the Dept.
of Computer Science, Bar-Ilan University, Israel

TThe work was partially completed during a visiting position at the School of
Computing, University of Connecticut, Storrs, CT

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS °24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3670374

1552

Hemi Leibowitz*
Faculty of Computer Science
The College of Management Academic Studies
Rishon LeZion, Israel
menahemle@colman.ac.il

Amir Herzberg
School of Computing
University of Connecticut
Storrs, CT
amir.herzberg@uconn.edu

ACM Reference Format:

Sara Wroétniak, Hemi Leibowitz, Ewa Syta, and Amir Herzberg. 2024. Prov-
able Security for PKI Schemes. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS °24), October
14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3658644.3670374

1 INTRODUCTION

Public Key Infrastructure (PKI) provides an essential foundation for
applications that rely on public key cryptography, which is cru-
cial to ensure security in open networks and systems. Early PKI
ideas were proposed in 1978 [26], and the first version of the X.509
standard [8] was published in 1988. Since then, the deployment of
PKI has been dominated by X.509, specifically, by the IETF PKIX
standard, which adopts version 3 of X.509 (X.509v3) for Internet pro-
tocols, most notably, TLS/SSL [45]. Certificate Transparency (CT) [43,
29] is a recent, widely-deployed extension to PKIX, motivated by
multiple PKI failures, mainly, rogue certificates issued by corrupt
or negligent Certificate Authorities (CAs). A significant number
of other PKI schemes were recently proposed, with different goals
and properties, and different, non-trivial designs, including [48, 13,
35, 25, 53, 2, 58, 51, 52, 33, 15, 1, 54, 27].

Considering the importance, variety and complexity of (some)
PKI schemes, it is essential to ensure their security. Currently, there
are no rigorous security specifications for realistic PKI schemes,
and therefore, no PKI schemes were proven secure. This situation
stands in sharp contrast to the accepted norms in (applied and theo-
retical) modern cryptography, which require well-defined security
requirements and reduction-based proofs of security. These norms
began in the 1980s with the seminal papers defining secure encryp-
tion and secure signature schemes. We present the first complete!
definitions and analysis for (certificate-based) PKI schemes and
their security.

The lack of rigorous specifications and analysis for PKI schemes
is especially alarming, since PKI provides a critical infrastructure to
applied cryptography;, i.e., security of many applied cryptographic
systems depend on the security of the underlying PKI. Extensive
efforts to prove cryptographic protocols may be moot when these
protocols depend on an insecure PKI scheme. The concerns are

!Basic PKI schemes, without even revocation and certificate chains, were pre-
sented in [7, 3, 16]; the long version of [3] describes how revocation could be added.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

even greater, considering that attacks against PKI are not only a
theoretical threat, but also major concerns in practice [50, 12].

Rigorous security specifications are relevant to practical, emerg-
ing developments and applications of PKIs, too. Version 2.0 of the
European Union eIDAS (Electronic Identification, Authentication,
and Trust Services) regulation [10], approved in 2024, aims to estab-
lish a comprehensive digital identity framework across the EU. As
noted in [37, 20], eIDAS 2.0 sets out specific technical requirements
and constraints for the existing Web PKI. It essentially mandates
that web browsers accept and trust CAs controlled by EU member
states, and may limit or prohibit security enhancements such as
CT.

Rigorous definitions and analysis often allow the identification
of subtle yet significant issues that otherwise may go unnoticed.
We identified a few of these. First, the CRL design does not achieve
the intuitively expected, guaranteed notion of revocation, but only
a weaker notion, Accountable A-Revocation. Second, in a similar
fashion, CT does not achieve Guaranteed A-Transparency and only
ensures a weaker version of transparency, HL A-Transparency, as-
suming that a certificate has been logged by at least one honest
logger. Third, the non-standard CTwAudit extension [24] avoids
this assumption, but still ensures only a weaker notion of Audited A-
Transparency. Finally, as also noted in [31], in CT, ensuring awarness
of issued certificates (transparency) requires one or more honest
monitors that collectively cover all the logs that relying parties
trust in validating transparency of certificates.

To address these concerns, we present the first rigorous (game-
based) definitions of security requirements for PKI schemes, and then
the first reduction-based proofs of security for practical PKI schemes.
Table 1 summarizes our results.

Defining and proving security for PKI schemes is challenging,
especially for post-X.509 schemes, whose requirements (goals) and
designs are more advanced and complex. Historically, PKI schemes
evolved without adhering to the traditional process of defining
cryptographic primitives and goals before protocol design. This
deviation stemmed from the simplicity of early PKIs (e.g., PKIX v1),
which used basic signature schemes for certificate issuance, elimi-
nating the perceived need for further definitions or formalizations.
While PKI properties may appear simple, formally defining them
is more challenging due to their rapid evolution and increasing
complexity in addressing real-world demands. PKI schemes vary
in communication, synchronization, and adversary models, and
may even involve different entities; for instance, CT introduces
loggers and monitors alongside certificate authorities. Further, the
distributed nature of PKI systems introduces critical aspects that
require careful consideration in their definition and analysis, such
as using A to represent a ‘propagation delay’ to reflect real-world
constraints of, for example, communication delays. This evolution
has resulted in numerous PKI scheme variations, each with unique
properties and subtleties. As a result, existing works often use in-
formal security requirements and models for PKI schemes.

To illustrate the challenge of properly defining goals of PKI
systems, consider accountability, a basic goal of PKI systems with
surprising subtleties. Intuitively, accountability is the ability to
identify the CA that is responsible for the issuing of an unauthorized
certificate 1. However, who is the responsible CA for y? Instinctively,
we may expect this to be the issuer of ¢, i.e., in X.509 certificates, the

1553

Sara Wrotniak, Hemi Leibowitz, Ewa Syta, and Amir Herzberg

CA identified in the issuer field of ¢, denoted as i/.issuer. However,
surely ¢.issuer should be held accountable for i only if it actually
issued (signed) . On the contrary, .issuer should not be held
accountable if the public verification key pk used to validate ¢ is
not a correct public-key of ¢.issuer. Also, obviously, .issuer can
only be considered accountable if it is a real, supposedly trustworthy
CA. For example, consider a scenario where a rogue CA issues a
certificate ¢/’ which fraudulently specifies pk as a public verification
key of i.issuer; this rogue CA should be held accountable, rather
than the (benign or even non-existing) .issuer.

Revocation is another basic goal of PKI systems which is not
trivial to define. In fact, we found it necessary to define two variants
of revocation: Guaranteed and Accountable. The Guaranteed variant
is more intuitive; basically, a PKI scheme ensures Guaranteed A-
Revocation if a certificate i revoked by a benign CA at some time
t, will not be considered as valid by any benign party after time
t + A. However, during our analysis, we realized that PKIX does not
ensure Guaranteed A-Revocation (Claim 1). Instead, PKIX ensures
a weaker notion which we call Accountable A-Revocation (§3.4).
Intuitively, Accountable A-Revocation means that if i was revoked
at time ¢ by its benign issuing CA yet considered valid after ¢ + A,
then we can identify, and hold accountable, a rogue CA responsible
for this failure to revoke .

Transparency is another important PKI goal, underlying Cer-
tificate Transparency (CT) [28, 46]. Intuitively, transparency aims
to ensure that certificates are available for scrutiny, in the form
of a public log where certificates must appear within a specified
time-frame after being issued. Transparency allows detection of
rogue certificates (and applying accountability), before their use
by attackers, and does not rely on victims detecting their use. CT
was motivated by the detection of the issuance of over 530 fraudu-
lent certificates by DigiNotar CA [56, 28]; the detection was only a
month after the breach of the DigiNotar private key. This incident
motivated the creation of public logs of certificates to enable swift
detection of rogue certificates, aiming to avoid reliance on a set of
trusted third parties [28].

However, our analysis shows that the CT specification [28, 46]
ensures only a weak notion of transparency (HL A-Transparency),
which requires that a certificate has been logged by at least one
honest logger. This is not due to a vulnerability of the cryptographic
mechanisms used by CT, which were shown to be secure by Dowl-
ing et al. [11] and Chase and Meiklejohn [9]. While the underlying
CT cryptography is sound, its deployment in CT is secure only if
at least one logger is honest; e.g., as noted in [11, 9], a rogue logger
can simply ignore some requests. The CT specifications? [43, 46]
also do not specify or require gossip and audit, implicitly assumed
by [11, 9].

We have also analyzed CTwAudit, which is a variant of CT, sup-
ported as an option by Google’s Chrome, where the browser per-
forms auditing of the loggers [24]. We show that CTwAudit ensures
another weak variant of the A-Transparency requirement, Audited
A-Transparency.

We use the Modular Security Specifications (MoSS) framework [17]
to define PKI requirements and the adversary, synchronization,

2Version 1 of the CT specifications [43] incorrectly states that the public logs can
be untrusted.

Provable Security for PKI Schemes

CCS "24, October 14-18, 2024, Salt Lake City, UT, USA

Table 1: PKI requirements defined in this work, and properties we prove for prominent PKI systems.

Requirements
Unforgeability | Accountability | A-Revocation (Definition 3 and Algorithm 4) A-Transparency
PKI scheme (Algorithm 2) | (Algorithm 3) | Accountable Guaranteed (Definition 4 and Algorithm 5)
PKIX (X.509 version 3 with CRL) X (n/a)
cr v (Theorem 3) X (Claim 1) HL_:?;?E:;::ZS(TheOIem 4
CTwAudit pareney
(Theorem 6)

network and other models assumed by different PKIs. The use
of MoSS provides essential modularity, as different PKIs support
different requirements and assume different models. MoSS enabled
us to separate requirements from models, significantly simplifying
the definitions. This modularity is crucial given the complexity of
PKI definitions. However, MoSS has drawbacks, such as its lack
of protocol composition support. We hope that future work will
result in a framework that combines necessary modularity with
composition support, potentially through a new or adapted MoSS
variant, Adapting our approach to a composable framework could
enable the application of our PKI requirements and security proofs
for PKIX, CT, and CTwAudit to analyze the security of other PKI-
dependent protocols or schemes.

We present pseudocode to rigorously define and analyze (min-
imally simplified® versions of) the most well-known and widely-
deployed PKI schemes: PKIX (X.509 version 3 with CRL as defined
in [39]), CT [43, 46] and CTwAudit [24]. Table 1 summarizes the
results of our analysis of these schemes.

Out of scope. We do not address how relying parties select their
trust anchors, i.e., the identities of the ‘root CAs’; and we mostly
ignore constraints on the allowed certificate-chains, such as the
name, length and policy constraints (defined in X.509v3 and PKIX).
A model of such trust decisions for PKI systems was proposed by
Maurer [34], extended by [32, 5], and others [18, 30, 49, 4, 22]. These
constraints and solutions are complementary and orthogonal to
our results; additional constraints can only prevent an adversary
from ‘breaking’ the PKI.

Contributions. The contributions of this work are as follows.

(1) Presents the first definition of a (non-trivial) PKI scheme,
e.g., supporting certificate chains.

(2) Presents the first rigorous security requirements for PKI
schemes, including the unforgeability, accountability, revoca-
tion, and transparency requirements.

(3) Presents the first analysis and proofs of security for the most
widely-deployed PKI standards, PKIX, CT and CTwAudit.

(4) Identifies subtle aspects of these PKIs, especially their fail-
ure to meet the stronger (and simpler, natural) revocation
and transparency requirements; defines weaker notions and
proves they are achieved.

3We included every aspect which appeared to possibly impact the requirements.
Our most significant simplification is that we focus on the standard CRL revocation
mechanism, while the specifications also allow OCSP and proprietary revocation
mechanisms. We also simplify by assuming that each logger keeps only one log, that
the public key used for the log is the same as the logger’s public key, and that loggers’
self-certified keys and issued SCTs do not have a validity period, i.e., never expire. We
expect that automation will be necessary to extend our analysis to cover all aspects of
the specifications.

1554

(5) Introduces and constructs a certificate scheme (Section 4.1), an
abstraction for applying signatures to structured information.
Certificate schemes simplify definition and analysis of PKI
schemes, and may have additional applications.

Organization. The paper is organized as follows. We define PKI
schemes in §2 and define security requirements for PKI in §3. We
present the specifications of PKIX in §4 and CT in [57] and we
analyze their security in §5 and [57]. Finally, we conclude and
discuss future work in §6.

2 PKISCHEMES

PKI schemes define how to issue, manage and use certificates. Usu-
ally, e.g., in X.509, a certificate is a signed object, containing some
certified information. In §2.1, we describe common certificate fields
and different certificate types. In §2.2, we discuss basic PKI enti-
ties. Then, we discuss basic PKI functions: certifying (issuing) and
revoking certificates (§2.3), and evaluating the validity of a certifi-
cate (§2.4). Finally, in §2.5, we define PKI schemes and transparent
PKI schemes, which are PKI schemes with additional entities and
functions used to ensure transparency.

2.1 Certificate Fields and Types

A certificate is a string which encodes the value of multiple fields,
as well as a signature, or other cryptographic mechanism, to vali-
date the authenticity of the certificate. Different PKIs may certify
different information (fields), use different encodings or different
signature algorithms, and, in principle, may even use a different
design (i.e., not a signature over an object). For example, in X.509
and PKIs based on it, certain certified information is encoded as a
‘field’, while other information is encoded as an ‘extension’. That
said, all deployed PKI schemes have similar designs.

PKI standards, including X.509, PKIX and CT, define and refer to
specific named values in certificates. We refer to all of these named
values as ‘fields’. We list in Table 2 some of the important fields®*.
We use the dot notation to refer to a specific field in a certificate, e.g.,
y.issuer refers to the value of the issuer field in certificate 1. The
exceptions are the type and PKIadded fields; they are not defined
in X.509 or other existing PKIs, yet we found them important.

The type field is used to distinguish between different types
of certificates. X.509 defines two types of certificates: public key

4We use the term ‘field’ for all of these named values, and have abstracted away
the encoding. However, PKI specifications often use other terms to refer to these
‘fields’, and may use different encodings for different fields. For example, PKIX uses
the terms dnsName component (in the subjectAltName extension) and cA Boolean (in
the BasicConstraints extension). For simplicity, assume that each cert has one or no
value for each field, ignoring, e.g., that a certificate may contain both dnsName and
email.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

certificates and attribute certificates, which we identify by ¢.type =
‘PubKey’ and y.type = ATTR’, respectively. Public key certificates
associate a public key with a particular subject (‘owner’ of the
public key), whereas attribute certificates do not contain a public
key (ie., if y.type = ATTR’, then ¢.pk = 1). Further, the type
field can mark other types of certificates issued by the PKI, e.g.,
pre-certificates, which can be submitted to loggers in CT, or Route
Origin Authorizations (ROAs), defined in the Resource Public Key
Infrastructure (RPKI) [42], used to specify allowed announcements
for IP prefixes. In the case of ROAs, the issuer certifying a ROA
would have a public-key certificate proving its ownership of a
relevant IP prefix. Certificates can have additional fields indicating
specific constraints of the certificates.

We use the PKIadded field to distinguish between fields that
were submitted prior to the creation of the certificate and fields
that are added during its creation. For example, the ¢.pk field is the
public key provided by the subject, i.e., before the creation of the cer-
tificate, while the i.issuer field in PKIX is added by the CA when it
issues the certificate. Hence, we use the 1.PKIadded field to identify
such fields, e.g., in the previous example: ‘issuer’ € y.PKIadded. To
refer to the entire set of (name, value) fields in certificate ¥, includ-
ing the PKIadded field, we use the notation ¢.tbc, e.g.: (‘pk’, pk) €
¥.tbe or (‘PKladded’, {‘issuer’, ‘type’, PKladded’}) € ¢.tbc.

2.2 PKI Entities

A PKI scheme P is defined by a set of functions, some stateful
and some stateless, and a set N of stateful entities. Entities in N
can perform the stateful functions, e.g., issue certificates. We refer
to the entities in N that issue public key certificates as certificate
authorities (CAs). There could be other entities in N, e.g., Certifi-
cate Transparency (CT) uses loggers and monitors. Entities in N
may be honest (benign) or corrupt, i.e., controlled by an adversary.
Relying parties are entities which use only stateless PKI functions,
in particular, the certificate validation function, which allows the
relying parties to decide whether to rely on the certificate (i.e., use
the certified public key) or not.

The state of the entities in N is initialized using a dedicated ini-
tialization operation P.Init. Typically, P.Init outputs a self-certified
public key certificate, i.e., a certificate which certifies a key for its
issuer (y.issuer = y.subject), and is validated (successfully) using
the certified public key ¢.pk. Self-certified public key certificates
can be outputted by any entity: a CA, logger or a monitor. Typically,
to validate a certificate i, we use a set store.CAs of trusted root
certificates which are self-certified by trusted CAs.

2.3 Certifying and Revoking Certificates

A certificate ¥ is issued using the private certification key of a
CA, which the CA maintains as part of its state st. To issue a
certificate, the CA uses the PKI's #.Certify operation, namely,
P .Certify(st, clk, tbc, aux) — (st,), aux), which takes as input the
entity’s local state st, local clock clk and the set of (name, value)
fields to be certified tbc, and outputs an updated state st, and, if
successful, a signed certificate ¢ s.t. .tbc = tbc.

Since certificates are typically issued for a specific time period,
most PKI schemes provide a way to revoke certificates before their

1555

Sara Wrotniak, Hemi Leibowitz, Ewa Syta, and Amir Herzberg

expiration date, for example, if a certificate is found to be fraudu-
lently issued or the corresponding private key exposed. Revocation
is done by the issuer using a dedicated revoke operation, denoted
as P.Revoke. The P .Revoke operation takes as input a certificate
 and outputs whether the revocation was successful or not, i.e.:
P .Revoke(st, clk,) — (st, T/L). For example, P.Revoke may fail
if attempting to revoke an already expired or revoked certificate,
or a certificate not issued by this issuer.

Most PKIs use a non-revocation mechanism to allow relying
parties to verify that a certificate was not revoked at a given time ¢.
X.509 defines two non-revocation mechanisms, certificate revocation
lists (CRLs) and the online certificate status protocol (OCSP) allowing
relying parties to verify non-revocation status of a certificate by
obtaining a CRL or OCSP response valid at time ¢.

2.4 Certificate Validity

Each PKI has a criteria to determine whether a given certificate is
valid or not. As an example of such criteria, consider a PKI where a
certificate i is valid at time ¢, if (1) t is between . from and i/.to,
(2) ¢ was certified by y.issuer. But, even such straightforward and
intuitive criteria has some important subtleties.

In particular, how can we determine if {y was really certified
by ¢.issuer? In a simple setting, the validating party knows the
validation key of {.issuer, typically by having the self-signed key of
.issuer in store, the set of trusted certificates at the validating party,
which includes trusted root CAs’ self-certificates. The set store, used
to establish the trust, is an input to the validation function; store is
often referred to as the root store or trust anchor. The sequence of
certificates £ = 3 — 2 — ... — ¢, used to validate ¢/, terminating
in a certificate i, € store, is called a certificate chain or a chain of
trust.

However, in a more practical setting, y.issuer is not a trusted
root CA, and therefore, will not exist in store. Instead, the trust
in the public key of i/.issuer is established using a certificate for
y.issuer, which should also be: (1) valid, and in particular, (2) signed
by a trusted CA. This trusted CA “gains trust” either because its
self-certified certificate appears in store, or because it is certified by
a different trusted CA (and so on).

A PKI may have additional requirements for considering a cer-
tificate to be valid. PKIs often require some form of certification
that indicates non-revocation, e.g., certificate ¢ is not included in
a CRL ycgp valid at time ¢. To facilitate such additional require-
ments, the validation function accepts also an auxiliary input aux.
A PKI implementation would define the structure and content of
aux, based on its validity criteria. For example, in PKIX (§4.2) a
certificate is considered valid only together with aux containing a
valid certificate chain and certificate(s) of non-revocation.

Formally, the validity of a certificate ¢ is determined using
the stateless certificate validation predicate of the PKI, namely,
P.Valid(¢, t, store, aux), where the inputs include the certificate
1, the time ¢, the trust-anchor store and the auxiliary information
aux. When P .Valid(y, t, store, aux) = T, this means that #.Valid
managed to establish trust from ¢ to an entity with a self-signed
certificate in store. This trust is typically in the form of a sequence
of certificates which are chained together. To obtain the certificates
used to validate ¢/, the stateless operation .VCerts can be used; in

Provable Security for PKI Schemes

CCS "24, October 14-18, 2024, Salt Lake City, UT, USA

Table 2: Common certificate fields.

Field Description Encoding in X.509

y.issuer The entity that issued the certificate. distinguished name in the Issuer certificate field. X.509 certificates may also include an Issuer Alternative
Name (IAN) extension that may include additional identifiers for the issuer, e.g., as a DNS name.

¥.from The date and time at which the certificate becomes valid. notBefore entry of the Validity certificate field.

V.to The date and time at which the certificate should expire (become invalid). | notAfter entry of the Validity certificate field.

y.serial A number that uniquely identifies the certificate. serialNumber certificate field. In X.509, it must be positive and unique among the rest of the certificates
issued by the issuing CA.

.subject An identifier for the subject of /. distinguished name in the Subject certificate field. X.509 certificates may also include a Subject Alternative
Name (SAN) extension, that may include additional identifiers for the subject, e.g., as a DNS name.

v.pk A public key certified as the public key of the subject. Part of the Subject Public Key Info certificate-field.

.is_CA Whether the subject is a CA, i.e., authorized to issue public key certificates. | Part of the Basic Constraints extension.

y.type, y.PKladded | The specific type of certificate, e.g., public key, and a set of fields added to | These fields are not defined in X.509; see discussion in §2.1.

the certificate by the PKI.
.tbe The set of all (name, value) fields in ¢ This is a notation, not a field.

particular, if $.VCerts is executed on the same inputs as #.Valid,
then the output of P.VCerts should include information sufficient
to validate ¥ using #.Valid.

2.5 Definition of a PKI Scheme

DEFINITION 1 (PKI scheme). A PKI scheme P is a set containing (at
least) the following PPT algorithms:

o P.Init(st, clk, params) — (st,y): Takes as input the state®
st, local clock clk, and parameters params, and returns the
initialized local state st and a self-certified certificate af-
ter performing initialization based on the input parameters
params and time clk. A returned value = L indicates failure
to initialize.

P Certify(st, clk, tbe, aux) — (st, , aux): Takes as input the
state st, local clock clk, a set of (name, value) fields to be
certified tbe, and auxiliary information® aux, and returns an
updated state st, a string , and auxiliary information aux.
The string Y may be a valid certificate, information which may
be used to create a valid certificate, or a failure indicator L.
P .Revoke(st, clk,) — (st, T/L): Takes as input the state st,
local clock clk, and a certificate /, and returns an updated state
st and T if y was revoked successfully or L if the revocation
failed.

P Valid(¢, t, store, aux) — (T/L): This (stateless) algorithm
takes as input a certificate \, time t, a root store store, and
auxiliary information aux, and returns either T or L.

P .VCerts(y, t, store, aux) — ({¢;}): This (stateless) algorithm
takes as input the same input as in P Valid. Ify is valid wrt. t,
store, and aux, then the algorithm returns a set containing
information sufficient to validate , typically certificates {{; };
otherwise, the algorithm returns the empty set (.

PKI schemes might include additional inputs or operations. In
particular, we next define transparent PKI schemes; such schemes
have additional operations used to ensure that valid certificates are

5The state st is given in the input to Init (and other stateful operations) for a
technical reason. We use the Modular Security Specifications (MoSS) Framework [17] to
define PKI specifications (see §3.1). In MoSS, operations receive the state st as input.
The Init operation is invoked during the MoSS execution, and, therefore, receives the
state st as input, like other operations.

5The auxiliary information may include e.g. certificate chains and CRLs or other
information used for certificate validation.

publicly available (i.e., “transparent”), allowing to detect discrepan-
cies and suspect certificates. Specifically, transparent PKIs require
the ability to instruct monitors to start the monitoring process of a
given log (#.Monitor), the ability to retrieve what is known to a
monitor regarding a given subject (£.Lookup), and the ability to
identify logs which, based on the local knowledge of a monitor,
should include a given certificate but do not include it (£.Audit).
In addition, in a transparent PKI scheme, the output of £.VCerts
for a given certificate ¢ should also include the log certificates of
the logs which should include .

DEFINITION 2 (Transparent PKI scheme). A transparent PKI scheme
P is a PKI scheme with the following additional PPT algorithms:

e P .Monitor(st,clk,) — st: Takes as input state st, local
clock clk and certificate Y1, and returns an updated state st,
and starts to monitor (certificates logged in) the log correspond-
ing to certificate .

o P.Lookup(st, clk,subject) — (st,¥): Takes as input state
st, local clock clk, and an identifier subject, and returns an
updated state st and a set ¥ = { (Y1, auxy), (2, auxz), ...} of
all pairs (;, aux;) known to the entity s.t. ; is the certificate
of the given subject, i.e., Y;.subject = subject, and aux; is
the corresponding auxiliary information for ;.

o P.Audit(st, ¢, aux) — {yr}: Takes as input state st, certifi-
cate , and auxiliary information aux, and returns a set con-
taining log certificates known to the monitor for logs, which,
to the monitor’s knowledge, should include but do not.

3 PKIREQUIREMENTS

Formally defined requirements are necessary to prove whether a
given PKI implementation meets specific requirements, and if so,
under what assumptions. In §3.1, we briefly discuss the MoSS frame-
work [17], which we use to define the PKI requirements. Then, we
define the following requirements: Existential Unforgeability (§3.2),
Accountability (§3.3), Guaranteed and Accountable A-Revocation
(§3.4), and HL, Audited and Guaranteed A-Transparency (§3.5).

3.1 Modular Security Specifications

PKI schemes, deployed and proposed, vary greatly in their designs,
operate under different models (assumptions) and aim to satisfy
different requirements (goals). To define requirements which apply
to different PKI schemes, even if they assume different models, we

1556

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

use the Modular Security Specifications (MoSS) Framework [17] for
our specifications. MoSS separates the definition of requirements
from the models, simplifying the definition of requirements and
allowing for the evaluation of requirements satisfied by PKI schemes
under different models. For example, we show that CT does not
provide Guaranteed A-Transparency and only a weaker notion, HL
A-Transparency (Table 1).

To illustrate the importance of separating models from require-
ments, consider this simplified A-Revocation requirement: a certifi-
cate revoked at time ¢ by an honest CA would be considered invalid
at any time after ¢ + A (Definition 3). The delay A can be a function
of network delays, clock bias and design decisions (e.g., periodicity
of issuing CRLs). Satisfaction of the A-Revocation requirement de-
pends on the clock synchronization and network/communication
delay models.

This work follows the MoSS framework [17]; we briefly recall
here concepts required for this work. MoSS defines an execution
process Exec g p (params) for a given adversary algorithm A and
protocol . The execution consists of a series of events. In each
event e, the adversary decides on the entity invoked ent|[e], the
operation opr|[e], the input inp[e], the real-time clock z[e] and the
local clock clk[e] of entity ent[e]; and the adversary receives the
output out[e] of the protocol.” When the execution loop of protocol
P with parameters params and adversary A is terminated (by
the adversary), the execution outputs a transcript (trace), denoted
T « Exec p(params). The transcript contains the set of entities
T.N, the set of faulty entities T.F as identified by the adversary, the
adversary’s output T.out 4, and the values of all inputs and outputs
for each event, e.g., T.ent[e].

We use the extended execution process® from [17], which allows
three entity-corruption operations: Get-state (exposing the state of
the entity), Set-state (setting the state of the entity) and Set-output
(causing the entity to output a specified value).

To define assumptions and restrict the adversary, MoSS uses
model predicates, which are computed over the execution transcript.
For example, Algorithm 1 shows the ”AD:;S model predicate, which
ensures bounded clock drift (and may help to understand why we
use both clk[e] and 7[e]). This is one of the models (assumptions)
from [17] that we use in our security analysis (§5).

Algorithm 1 ﬂADrlif Model Predicate (from [17])

1: returnVeé € {1,..., T.e}: > For each event
2: |T.clkle] -T.t[e]] € Acik A

3: ifée>2thenT.z[é] > T.z[e-1]

> Local clock within Acgx drift from real time

> Monotonically increasing real time

An adversary A satisfies model predicate® 7, if for every protocol
P it holds that Pr[7(Exec g p (params)) = L] € Negl(|params]|),

7Since the adversary and protocol may be invoked many times during the execu-
tion, there is the issue of whether their total runtimes will be polynomial if they are
PPT algorithms. [17] discusses this issue and provides an approach to ensure that the
runtimes are polynomial.

8In [17], these operations are included in the set X, which is specified as part of
the parameters of the execution process.

“MoSS [17] defines more general models and requirements, which supports non-
negligible probability § of failures for some predicates; this is not required for our
models and requirements.

1557

Sara Wrotniak, Hemi Leibowitz, Ewa Syta, and Amir Herzberg

i.e., there is a negligible probability that the transcript'? of a random

execution of protocol £ with adversary A will fail to satisfy .
Similarly, MoSS uses requirement predicates, also computed over
the execution transcript T, to define the requirements for a PKI
scheme. We define several requirements in the rest of this section,
e.g., the Accountability requirement (Algorithm 3) and the three
A-Transparency requirements (Definition 4). A PKI scheme P sat-
isfies requirement predicate g assuming model predicate 7 p4, if the
probability that 7 (Exec 4 p (params)) = L is negligible, where
Exec g ¢ (params) is the transcript of a random execution of
interacting with any PPT adversary A that satisfies 7 1.

3.2 Existential Unforgeability Requirement

The first requirement for PKI we define is Existential Unforgeability
(7meuF, Algorithm 2), which is slightly more complex than Existential
Unforgeability for signature schemes. We might think of Existential
Unforgeability for PKI as the requirement that a valid certificate can
only be generated through a proper use of the ‘Certify’ operation.
That is, an adversary cannot generate (with non-negligible probabil-
ity) a valid certificate with respect to a public key pk without having
access to the corresponding private key sk of a subject. However,
this does not capture the primary purpose of PKI schemes, which is
to establish trust in public keys, in particular, in the corresponding
public key pk of the subject. Consider an attacker that generates
a fraudulent yet valid certificate, i.e., a certificate for a public key
pk’ # pk, ie., is not the public key pk generated and self-certified
by the subject. Such attacker does not need access to the ‘real’ sub-
ject’s private key sk, because it can simply falsely claim that pk’
is a public key of the subject. This means that an attacker may be
able to issue a valid certificate without proper use of the ‘Certify’
operation by the subject.

Therefore, intuitively, for a PKI scheme to satisfy Existential
Unforgeability, it means that for every certificate ¥y, either:

(1) o is invalid (Line 3) for the given time ¢, root store store and
auxiliary information aux, or

(2) the ‘Certify’ operation of the PKI scheme was used at the en-
tity yo.issuer to certify the non-PKladded fields of ¢y (Line 4),
which implies that the adversary may have gotten either g
or another certificate with the same non-PKladded fields as
o correctly from 1)g.issuer using the ‘Certify’ operation, or

(3) Yo.issuer is not a benign entity, e.g., it is a rogue entity
(Line 5), which implies that the issuer may have generated
certificates without correctly using the ‘Certify’ operation,
or

(4) the validation of ¢y uses a valid fraudulent certificate i/; for
the issuer of g (Line 6), which implies that the private key
corresponding to i;.pk may be known to or controlled by
the adversary.

To be able to identify such a fraudulent public key certificate ¢,

we require PKI schemes to follow two conventions!!:

10We consider params to be part of the execution transcript instead of giving it as
a separate input parameter to predicates, as in [17].
'The conventions do not require changes to existing PKI implementations.

Provable Security for PKI Schemes

(1) Whenever a benign entity 1 generates a public key pk, it
would output a pair (‘SelfCert’, /) where the issuer and sub-
ject fields are both i, i.e., Y.issuer = Y.subject 1, and
y.pk = pk. We refer to ¢ as a self-certificate.

(2) The PKI supports a function $.VCerts which takes the same
input as #.Valid, and when a certificate ty is found valid by
P Valid, then P.VCerts should return the set of certificates
used by P.Valid to validate ¢/o. These certificates may include
certificates from aux and from store.

We use the first convention in the SELFCERT function (Lines 22-
27). We utilize the second convention and SELFCERT in CANFIND-
FrAUDISSUERCERT (Lines 15-21) to find, in the output of #.VCerts,
a certificate i; which certifies a fraudulent public key for .issuer.

Algorithm 2 7gyr: Existential Unforgeability Requirement

Input: execution transcript 7.

Output: L if the adversary wins and T if the adversary failed. To win, the adversary needs to
present a valid yet forged certificate %, i.e., a valid certificate where 1y.issuer is benign,
was not certified by 1/y.issuer, and the validation of 1, w.r.t a valid fraudulent certificate for
the issuer of .

1: procedure seyr(T)
2: (Yo, t, store, aux) «— T.outxn > Adversary’s output
3: if =P .Valid (v, ¢, store, aux) v > If Yy invalid, or
4: FreLpsCerTIFIED(T, Y, Yy.issuer) V > fields were certified at issuer, or
5: Yy.issuer ¢ TN -T.FVv > issuer is rogue, or
6: CANFINDFRAUDISSUERCERT(T, Yy, ¢, store, aux) = there is a fraudulent issuer cert,
7: then return T > then adversary failed (EU holds)
8: else return L > otherwise, adversary wins
9: end procedure
10: procedure FIELDSCERTIFIED(T, 1/, ent)
11: return Je s.t. T.opr|e] = ‘Certify’ A > If ‘Certify’ operation was executed
12: T.inple] = [(ﬁeld, val) ‘ 3(field, val) € y.tbe A
field ¢ y.PKIladded

> on non-PKladded fields of .tbc
13: T.ent|e| = ent > by entity ent
14: end procedure
15: procedure CANFINDFRAUDISSUERCERT(T, ¥y, , store, aux)
16: veerts < P.VCerts(1, ¢, store, aux) » Certificates used for validating Y
17: return 3¢ € veertss.t. » Contain a certificate yn such that

P .Valid (¢, t, store, aux) v > 1 is a valid certificate, or
18: Yn € store A A > 1 is in store and
Y1.subject = yn.issuer > has same subject and issuer

19: Yn.subject = y.issuer A > The subject of Y is the issuer of Yy
20: —SELFCERT(T, y.issuer, Yn.pk) > Uy is fraudulent
21: end procedure

22: procedure SELFCERT(T, 1, pk)

23 return Je, ¢ s.t. T.ent[e] =1 A > Entity 1

24: T.out|e] = (‘SelfCert’,) A > outputted certificate 1
25: Y.pk = pk A > certifying given pk

26: y.issuer = Y.subject =1 > using the same identity

27: end procedure

3.3 Accountability Requirement

We now define the Accountability requirement (Algorithm 3). Defin-
ing accountability turned out to be more complex than we initially
anticipated. Intuitively, for a PKI scheme to satisfy accountability,

1558

CCS "24, October 14-18, 2024, Salt Lake City, UT, USA

an accountable root CA should be identifiable for every valid cer-
tificate . Let us explain what we mean by an accountable root CA
and why identifying such a root CA is necessary.

Intuitively, if ¢.issuer has issued (certified) the certificate 1/, it
should be considered accountable for yy. While this is typically
the case, recall from §3.2 that ¥ may have been certified by an
attacker using a fraudulent yet valid certificate lﬁ typically where
tﬁ.sub ject = y.issuer, where 1/;.pk may not be the self-certified
key of ll;.sub ject. In fact, there may even be no ‘real entity’ called
Y.issuer if ¢ if fraudulently issued; in particular, certificates may
contain an empty lﬁ.issuerlz.

We say that a valid certificate 1’ is accountable for a certificate i/
if the ‘Certify’ operation of the PKI scheme was used at ¢/’ .subject
to certify the non-PKladded fields of ¢, or to certify those fields
of another certificate 1/; which is accountable for . Note that we
exclude the PKladded fields; this is since they are added by the
Certify operation itself rather than part of the input fields being
certified.

The Accountability requirement requires that for any valid cer-
tificate ¢y, the output of £.VCerts for ¢y contains at least one
root certificate; and for every root certificate ¢, in the output of
P VCerts for yy, either:

(1) ¥ is accountable for ¢ (Line 7), or

(2) Y is a bad certificate (Line 8), where a bad certificate is a
certificate which has a rogue subject or whose public key
was not self-certified by its subject, or

(3) ¥ is accountable for a valid bad certificate ¢’ (Line 9),

By identifying an accountable root certificate, ¢, a relying party
can respond to a problematic-yet-valid certificate, . For example, a
relying party may hold the root CA, ig, which issued i/, responsible
for damages caused by treating ¢ as valid. If 1g does not take cor-
rective action, such as providing compensation, the relying party
may stop trusting i and remove g from the root CA store.

Note that we do not require the identification of non-root ac-
countable CAs, as a relying party may not be able to take action
upon identifying a non-root accountable CA, and it may be impos-
sible to reliably identify an accountable non-root CA.

3.4 Revocation Requirements

Certificates sometimes need to be revoked prior to their expiration
date. Revocation is initiated by the issuer for various reasons, in-
cluding the loss or compromise of the private key corresponding
to a certified public key, or when the certificate contains incorrect
or outdated information.

It takes time to communicate the revocation of a certificate to the
relying parties; we use A to denote the maximum allowed time. The
‘grace period’ A is typically required for three reasons: (1) the bias
between the clock of i/.issuer and the clock of the relying party
validating ¢, (2) the communication delay from y.issuer to the
relying parties, and (3) the time for any proof that ¢ is non-revoked
which was issued prior to its revocation to become stale, i.e., expire.

Guaranteed A-Revocation and the Zombie certificate attack. Prefer-
ably, we would like revocation to be fully enforced, i.e., if the issuer

2The identification of the corresponding issuer’s certificate may be done using
the authority and subject key identifier extensions, see [23, 41].

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 3 macc: Accountability Requirement

Input: execution transcript 7.

Output: L if the adversary wins and T if the adversary failed. To win, the adversary needs
to present a valid certificate 1 where the output of $.VCerts does not include a bad root
certificate, nor a root certificate which is accountable for a valid bad certificate among the
certificates in the output of .VCerts, nor a root certificate which is accountable for .

1: procedure macc(T)

2: (Yo, t, store, aux) « T.outx > Adversary’s output

3: if ~P.Valid(t, t, store, aux) then return T = ;/42/;” }lei;;;ya“d’ then adversary failed
4: veerts « P .VCerts (i, t, store, aux)

5. iF store N veerts £ O A N If veerts contains at least one root certifi-

cate, and

6: V), € storeN veerts : > for every root cert . in veerts:

7: AccouNTABLE(T, ¥y, Yy, veerts) V > 1, is accountable for Yy (see Line 13), or
8: BADCERT(T, ¢/,) V > Y, is bad (see Line 17), or

Y’ € veerts s.t. > a certificate 1/’ in vcerts exists s.t.
o P.Valid (¢, t, store, aux) A >/ is valid, and
’ BADCERT(T, ¢/') A > /" is bad (see Line 17), and
AccouNTABLE(T, ¢, Yy, veerts) | & 1, is accountable for /' (see Line 13)

10: then return T > then adversary failed (Acc. holds)

11: else return L > otherwise, adversary wins

12: end procedure

13: procedure AccounTABLE(T, ¥/, /', veerts)

14: return FIELDSCERTIFIED(T, 1/, /' .subject) vV l;ifjlds U.f Y were ("cr"nﬁ(!d at

Y’ .subject (see Alg. 2), or
Y € veerts s.t. > a certificate Y in veerts exists s.t.
15: AccounNTaBLE(T, ¥, /", veerts) A > 1/’ is accountable for y/, and
FieLpsCertirien (T, Y, ¢/ subject) | . fiolqs of Y were certified at

16: end procedure y'.subject (see Alg. 2)

17: procedure BApCERT(T, /)

18: return . .subject ¢ TN-T.FV > .subject is not benign, or

19: —SELFCERT (T, Y.subject, y.pk) = is fraudulent (see Line 22 in Alg. 2)
20: end procedure

revokes a certificate at time ¢, then no relying party should accept
the certificate after t + A. We refer to this property as Guaranteed A-
Revocation. This ensures that revocation by a benign CA is always
effective, with at most A delay; a relying party cannot be misled to
rely on a revoked certificate after t + A.

The most well-known revocation mechanism is the X.509 stan-
dard Certificate Revocation List (CRL) mechanism, the ‘basic’ revo-
cation mechanism of PKIX and CT; see §4.2 or [41] for details. The
CRL is a timestamped list of revoked certificates signed by their
issuer. CRLs are issued periodically, say once every A seconds. A
relying party R considers certificate i/ as non-revoked at time ¢, if R
received a CRL from the issuer of i/, issued at t — A or later, which
does not list ¢ as a revoked certificate.

The PKIX specifications [41] require the CRL to be validated
using a valid public key certificate /" issued to the issuer of ¥,
ie., ¢ .subject = y.issuer. Additionally, they require that the trust
anchor for the certification path of i’ be the same as the trust anchor
used to validate . However, as we next show, the CRL mechanism
fails to ensure Guaranteed A-Revocation; we later define the weaker
Accountable A-Revocation property, which the CRL mechanism
ensures.

Cram 1 (The Zombie certificate attack). PKIX and CT, using the CRL
revocation mechanism, fail to ensure the Guaranteed A-Revocation
requirement.

1559

Sara Wrotniak, Hemi Leibowitz, Ewa Syta, and Amir Herzberg

Proof: Let i be a certificate issued by a benign CA y.issuer,
with a validity period [¢o.from, ¢y.to], and revoked by y.issuer at
time tg, where p.from < tg < yp.to — A. Assume that y.issuer is
not a root CA; therefore, for ¢y to be valid, it must have come with
a certificate i1 for yj.issuer. Consider the case where 11 .issuer is a
rogue CA. Then, it can issue another certificate] s.t. y/7.subject =
Y1.subject = yy.issuer; in fact,] is identical to 11, except for
having a different public key. Specifically, 1] .pk is chosen by the
adversary, i.e., the adversary knows the corresponding private cer-
tification key. The adversary now uses this key to sign a (fake) CRL
where 1y appears as non-revoked at time tg + A. Using this CRL,
Yo appears still valid at tg + A < t)p.to. Hence, the Guaranteed
A-Revocation requirement is not satisfied. O

Accountable A-Revocation. This requirement allows i to be con-
sidered valid even after being revoked by its benign issuer CA
y.issuer, provided that the PKI can identify a different certificate
Y for a benign subject, which is either a fraudulent root certificate
or a fraudulent-yet-valid certificate. That is, the benign subject
Yr.subject did not output a corresponding self-signed certificate
for the public key yg.pk. For example, in the Zombie certificate
attack of Claim 1, we will have g = ;. To validate ¢ after its
revocation, using the fake CRL, the attacker must include 1//{ =yYR;
therefore, we can identify the rogue issuer 1g. If the PKI can identify
such a the rogue certificate g, and assuming that the PKI ensures
Accountability, then we can identify a root CA which is either ac-
countable for ¢, is a bad certificate, or is accountable for a valid
bad certificate (see Section 3.3).

The Guaranteed A-Revocation requirement is stronger, as it pre-
vents the use of revoked certificates. In contrast, Accountable A-
Revocation only provides accountability after an attack has oc-
curred. Notably, the stipulation in [41] that the trust anchor for
the certification path of ¥’ must be the same as the trust anchor
used to validate { underscores this point. This requirement would
not be necessary if the designers were only aiming for Account-
able A-Revocation. We believe this indicates a clear intention to
prevent the use of revoked certificates (Guaranteed A-Revocation),
rather than merely offering post-attack accountability (Accountable
A-Revocation). Importantly, ensuring Guaranteed A-Revocation is
indeed feasible for PKI. For instance, PKIX could have mandated
the validation of the CRL using the same public key that is used for
validating the certificate itself. More generally, a PKI could require
that a ‘certificate of non-revocation’ (such as a CRL or an OCSP
response) must be validated using the same public key as that is
used to validate the certificate itself. Note that using the same key
to validate the certificate of non-revocation has the disadvantage
that if this key is revoked, then the certificate of non-revocation
can no longer be validated.

We define both the Guaranteed and Accountable A-Revocation
requirement predicates in Definition 3. In §5, we show that PKIX
and CT, with the CRL revocation mechanism, ensure Accountable
A-Revocation.

Provable Security for PKI Schemes

DEFINITION 3 (A-Revocation requirements). We define the Guaran-
teed and Accountable A-Revocation predicates as:

GtdRev _ T l'ffAReV(T) =G,
i 1 = { L otherwise
AccRev _ T iffAReV(T) (S {‘G’, ‘A’},
TTA (1 = .
L otherwise

Algorithm 4 defines the function fARe".

Algorithm 4 f, ARe": A-Revocation Function

Input: transcript T.
Output: ‘G’ if the adversary fails and A-Revocation is guaranteed, ‘A’ if A-Revocation is only
accountable, and L if the adversary wins.

1: procedure fARev(T)
2: (Y, t, store, aux) «— T.outn > Extract adversary’s output
P .Valid(1), t, store, aux) A > 1 is valid
3 if | yissuer e TN-T.FA > 1 ’s issuer is benign
CERTIFYANDREVOKEREQUESTED(T, ¢/, £, A) > See [57]
if CANFINDFRAUDULENTCERT(T, ¥/, £, store, aux) > See [57]

then return ‘A’ > ¢/ is ‘revoked-yet-valid’, but fraudulent cert was detected

else return L > Adversary wins

> Adversary fails (Guaranteed revocation)

4
5
6:
7 else return ‘G’
8:

end procedure

3.5 Transparency Requirements

Accountability, as described in §3.3, is a reactive defense, whose
goal is to deter rogue or negligent behavior by root CAs. For many
years, this reactive measure was seen as sufficient under the assump-
tion that root CAs, and CAs certified by them, are respectable and
trustworthy entities who would not risk being implicated in issuing
rogue certificates, intentionally or otherwise. However, repeated
cases of rogue certificates issued by compromised or dishonest CAs,
have proven this assumption to be overly optimistic. Punishing root
CAs is non-trivial: beyond negative publicity, punishment has often
been ineffective [47, 21]. Furthermore, punishing a CA requires that
a rogue certificate is discovered. An attacker could reduce the risk
of discovery by minimizing the exposure of the rogue certificate.
Efforts such as Perspectives Project [55] and the EFF SSL Observa-
tory [14] provide some assistance in discovering rogue certificates
but are not sufficient to address this concern.

This motivated transparent PKI designs, most notably, the stan-
dardized and deployed Certificate Transparency (CT) [28, 46]. To
support transparency, a certificate must be logged at one or more
loggers. Loggers are parties committed to including certificates in a
public log they maintain, and to making this log available to third
parties called monitors. Each monitor keeps tabs on the certificates
logged by one or, usually, more loggers; in addition, monitors may
detect suspicious certificates and inform interested parties, such as
domain owners and relying parties.

In other words, transparency aims to prevent a CA from stealthily
generating a rogue certificate ¢ to attack select victims. Trans-
parency facilitates early detection of rogue certificates issued by a
corrupt, compromised or negligent CA. By demanding that a valid
certificate must be transparent, we ensure the detection of rogue
and suspicious certificates. There is some unavoidable delay from

1560

CCS "24, October 14-18, 2024, Salt Lake City, UT, USA

the time a certificate is submitted to a log until the relevant moni-
tors are aware of it. This delay is primarily due to the significant
time allowed between receiving a certificate and including it in a
new version of the log.

The A-Transparency Requirements. Similarly to the case with re-
vocation, we found that the CT standard [46] does not satisfy the nat-
ural, strong and guaranteed transparency. Guaranteed-Transparency
means that an honest monitor which is monitoring the relevant
logs is always aware of a valid certificate!? after a specific delay.

CT, however, satisfies only a weaker notion, HL A-Transparency,
where transparency only holds if a certificate is logged by at least
one benign logger. The Chrome implementation of CT ([24], [57])

also ensures another weak notion of transparency, Audited A-Transparency.

In this case, an honest monitor which is monitoring the relevant
(possibly all corrupt) logs might be unaware of a valid certificate!4,
but when presented with such a certificate during an audit, the
monitor outputs a log certificate of a corrupt logger responsible for
this lack of transparency.

DEFINITION 4 (A-Transparency requirements). We define the Guar-
anteed, HL and Audited A-Transparency predicates as:

GtdTra _ T iffATra(T» =7

A T = { L otherwise

HLTra(T) TiffI™(T.T)=G
A L otherwise

n,AudTra(T) _ T iffATra(T, 1) e{G, A},
A L otherwise

Algorithm 5 defines the function fAT ra,

Algorithm 5 fAT ": A-Transparency Function

Input: transcript T and the Hr flag.

Output: ‘G’, if A-Transparency is guaranteed; if the HL input flag is set, then we require that
at least one honest log should include . ‘A, if A-Transparency is (only) audited. L if neither
guaranteed nor audited A-Transparency holds (adversary wins).

1: procedure AT“(T, HL)
2: (W, t, store, aux, 1p1) < T.outz > Extract adversary’s output
3: LogCerts «— P.VCerts(, ¢, store, aux) N store.logs > Certs of logs for ¢
4: if HL A NoHoNEsTLOG(T ,LogCerts) return ‘G’ > HL w/o honest log (See [57])
Y. from<t—-AN . .
K > 1 is valid
P .Valid(y, ¢, store, aux) A X .
) > 1pp is benign
5. if| meTN-TFA .
> See [57]
MONITORINGLOGS (T, ¢ — A, tpr, LogCerts) A See [57]
> See [5
MOoNITORISUNAWARE (T, ¥, ¢, tar)
6: if AuprTen(T, ¥, ¢, aux, 1pr) > See [57]
7: if FAILEDIDENTIFYCORRUPTED(T, ¥, £, aux, tp, LogCerts) = See [57]
8: then return L > Adversary wins
9: else return ‘A’ > Audited transparency
10: return ‘G’ > Adversary fails (Guaranteed transparency)

11: end procedure

3The monitor may not be aware of all the fields of the certificate. In particular,
a certificate {/ may include a field 1.PKIadded listing fields which were added to
the certificate by the PKI, possibly after the other fields were logged. The monitor
should be aware, however, of the other fields in the certificate (those which are not in
.PKIadded).

This is a simplification. More precisely, in addition to the fields in 1.PKTadded
of which the monitor may be unaware, the monitor may also be unaware of the other
fields in the certificate (those which are not in y.PKIadded).

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

4 PROVABLY-SECURE PKI SCHEMES

In this work, we present three implementation of PKI schemes
based on two PKIs used in practice: PKIX following [41] (see §4.2)
and CT following the CT 2.0 specification [46] (see [57]), using
PKIX for aspects not covered in [46]. In addition, we provide a spec-
ification of CTwAudit, a variant of CT augmented by an auditing
mechanism [24] (see [57]). While this variant is not standardized,
we found it important to include, as it is supported as an option by
Google Chrome, the most popular browser.

In all implementations, we use the CRL revocation mechanism!5.
The schemes cannot, realistically, cover all aspects of the corre-
sponding (lengthy and not fully specified) RFCs, but we have done
our best to retain all aspects related to the security requirements.
For example, we include the details of certificate chains and basic
constraints, but omit the (less deployed and less relevant) length,
name and policy constraints.

4.1 Certificate Scheme

Typical PKI schemes use an encoding scheme © to encode the
certificate fields (Table 2), and a signature scheme S to sign the en-
coded fields. In practice, the PKI schemes use one or more encoding
schemes, e.g., BER, DER, PEM, and SPKI [41, 44, 19, 38], and one or
more signature schemes, e.g., RSA and ECDSA [40]. We could have
specified a PKI implementation with a specific encoding scheme
O and signature scheme S, and then prove security by reduction
to the unforgeability of S; however, this would be inconvenient
and ineflicient, given the many possible encodings and signature
schemes.

Instead, we define an abstract certificate scheme C and its exis-
tential unforgeability requirement (Definition 5). We then present
a simple, generic design of a certificate scheme from a signature
scheme S and an encoding scheme © (Definition 6), and prove that
it satisfies unforgeability by a reduction to the unforgeability of
the signature scheme. Then, we present the implementations of the
PKI schemes (PKIX and CT) using any certificate scheme C.

The new certificate scheme abstraction offers several advantages.
Firstly, it simplifies the description of PKI schemes. Secondly, it
eases the analysis and reductions. Thirdly, analyzing multiple PKI
schemes, each using different encoding and signature schemes,
would be impractical without this abstraction. Fourthly, it may
enable PKI schemes that utilize different constructions than those
in Definition 6, such as signatures over digests of accumulators or
Merkle trees, allowing validation with only parts of the certified
data. Finally, certificate schemes appear useful for applications
beyond PKI schemes.

DEerINITION 5 (Certificate scheme). A certificate scheme C is defined
as a tuple of PPT algorithms:

C = (KeyGen, Certify, Verify, Decode)

where:

5We chose CRL over other existing revocation mechanisms for its simplicity
and the fact that it is not very different from other mechanisms. For example, OCSP
introduces the issues of OCSP responders as distinct parties, stapled OCSP and more,
which introduces more complexity. While the implementation and analysis can be
extended to support additional revocation mechanisms such as OCSP, we leave it for
future work.

1561

Sara Wrotniak, Hemi Leibowitz, Ewa Syta, and Amir Herzberg

e C.KeyGen(1™") — ({0,1}*, {0, 1}*): Takes as input security
parameter 1", and returns a pair (sk, pk) of keys, where sk is
a private (certification) key and pk is a corresponding public
verification key.
o C.Certify (tbc) — : Takes as input a set tbc = {(n;,v;)}
(to be certified) of name-value pairs, where n; is an alphanu-
meric field name andv; € {0,1}" is afield value, and using the
private certifying key sk, returns € {0, 1}*. Field names are
unique, i.e., (Vi # j)(n; # nj). We say that is a certificate
of the.
C.Verifypk(¢) — {T, L}: Takes as input a certificate €
{0, 1}*, and using the public verification key pk, returns T if
the certificate is valid, i.e., was certified using the private ceri-
fying key corresponding to the public key pk, and L otherwise.
o C.Decode(y) — tbec U {L}: Takes as input a certificate y €
{0, 1}*, and returns a set tbc, of name-value pairs, as defined
for the C.Certify algorithm above, or L (when decoding fails).

Dot notation. We use dot notation to extract the value of a field
from a tbe set, e.g., the.issuer denotes the value of the issuer field
in tbc. We also use dot notation to denote the value of a field in
a certificate’s the set, e.g., y.issuer denotes the value of the issuer
field of tbc « C.Decode ().

We say that certificate scheme C ensures correctness if for every
(sk, pk) <« C.KeyGen(1") and for every set of name-value pairs
tbe, with unique names, the following holds:

(1) C.Verifypk(C.Certifysk(tbc)) =T, and
(2) C.Decode(C.Certifyy (tbc)) = tbe

We say that C ensures Existential Unforgeability if for every PPT
A, the probability of A to win in the Existential Certificate Forgery
game (Algorithm 6), Pr[ECF(k, C, A)], is negligible in k. Similarly,
we say that C ensures Multi-key Existential Unforgeability if for
every PPT A, the probability of A to win in the Multi-key Existen-
tial Certificate Forgery game (Algorithm 7), Pr[MECF(k, C, A)], is
negligible in .

Algorithm 6 Existential Certificate Forgery (ECF) Game
ECF(x,C, A):

1: (sk,pk) <« C.KeyGen(1¥) > Generate keys
2 i — ACCetNG () (1%, pk) > Give A oracle access and pk
3: tbc « C.Decode(y/) > Decode tbe from
4 if C.Verify,, (¢) A >/ is valid
5 tbc# LA > tbc is not empty
6: tbc ¢ {A’s inputs to C.Certify,; oracle} > A did not cheat
7: then return 1 > A won
8: else return 0 > A failed
We now define a generic construction C© of a certificate

scheme from a public-key signature S and a pair of invertible en-
coding functions © = (O¢, Og), both mapping sets of name-value
pairs to binary strings. PKIX, CT and other deployed PKI schemes
use certificate schemes following this construction. The invertible
encoding schemes (O¢, Og) are detailed, and composed of different
encodings for specific certificate types, making the use of the cer-
tificate scheme abstraction and this generic construction essential
to understand, analyze and prove security of PKIs.

Provable Security for PKI Schemes

Algorithm 7 Multi-key Existential Certificate Forgery (MECF)
Game
MECEF(x,C,A):

. sk[-],pk[-] « global arrays for the KeyGen and Certify oracles
: procedure KeyGen(t) > KeyGen oracle
(sk[t], pk[t]) « C.KeyGen(1¥) > Generate key pair
return pk|:] > Return public key
: procedure Certify(s, tbc) > Certify oracle

return C.Certify) ()
: end procedure

. (l) 1//) — ﬂKeyGen().Certify(-,) (1r<)

1

2

3

4

5: end procedure
6

7 > Certify tbc and return cert
8

9

> Give A oracle access and pk

10: tbc < C.Decode(y) > Decode tbc from i
11: if C.Verify,p(, (¥) A >y is valid

12: pk[i]# LA > pk|t] is not empty
13: tbc# LA > tbc is not empty
14: (1, tbe) ¢ {A’s inputs to Certify oracle} > A did not cheat
15: then return 1 > A won

16: else return 0 > A failed

DEFINITION 6. Let © = (©¢, Os) be a pair of invertible functions

from sequences of name-value pairs with unique names, to binary

strings, and let S be a signature scheme. The cse certificate scheme
{ (tbs’, Oc (tbe)),

is defined as:
(‘0 S.Signg (Oc(tbe))) })
CSO Verify ;. (1) = 8. Verify . (051 (¥)[tbs, 05 (¥) [@])
€50 Decode i (1) = 71 (051 () [ths)

CS’Q.KeyGen(ln) = S.KeyGen(1™)

CSO Certifyy (the) = O

LEMMA 2. Let S be an existentially-unforgeable signature scheme,
and © = (O¢, ©g) be a pair of invertible functions (from sequences
of name-value pairs with unique names to binary strings). Then
CS®, defined in Definition 6, is an existentially-unforgeable certifi-
cate scheme.

Proof: Direct reduction to the security of S.]

4.2 PKIX (with CRLs)

We now explain the construction of PKIXC, which implements PKIX
and the CRL revocation mechanism using an underlying certificate
scheme C.

Entities and state. In PKIXC, the set N of stateful entities is com-
prised of certificate authorities (CAs) which issue and revoke public
key certificates. Some CAs are root CAs (trust anchors), which
relying parties trust directly (by maintaining their self-signed cer-
tificates in store). Other CAs are intermediate CAs, which relying
parties trust based on a certificate chain ending at a root CA. Each
CA maintains a local state st which contains the following infor-
mation:

st.1 : the identifier of the CA.

st.sk : the CA’s secret signing key.

st.pk : the CA’s public verification key.

st.certs : the set of certificates issued by the CA.
st.CRL : the list of all revoked certificates.

e o o o o

1562

CCS "24, October 14-18, 2024, Salt Lake City, UT, USA

e st.A, : CRL’s validity period.

Certificate fields and scheme. PKIXC and CT use the generic certi-
fication scheme CS© of Definition 6, where the encoding schemes
are defined in [41] and the certificate fields listed in Table 2.

Implementation. We now present the PKIX implementation, with
CRLs, consisting of the operations in Definition 1.

PKIXC Init (See [57]). The algorithm initializes the state st of
the CA using params: the CA’s identity st.;, the CRL validity pe-
riod st.A,, and defines the sets of certificates issued (st.certs) and
revoked (st.CRL) by the CA as empty. Then, it generates the CA’s
keypair and self-certifies the public key. Finally, it outputs the ini-
tialized state and the self-certificate.

PKIXC.Certify (See [57]). The algorithm does not certify: self-
certificates, certificates with type ‘SelfCert’or ‘CRL’, nor certificates
with an empty serial number. Hence, in any of these cases, the
algorithm returns L. Otherwise, the algorithm sets the tbc.issuer
field the entity’s identifier. If the inputted tbc.type field is L, then
the algorithm sets it to ‘PubKey’. Then, the algorithm adds the field
names ‘issuer’, ‘type’, and ‘PKladded’ to the tbc.PKIadded field,
and then it signs tbc using C.Certify and the CA’s secret signing
key. Then, a copy of ¢ is stored locally and the algorithm outputs 1.
The PKIXC Certify algorithm does not use or modify the inputted
auxiliary information aux and returns the same aux in its output.16

PKIXC Revoke (See [57]). The algorithm verifies that the cer-
tificate to be revoked was issued by the CA and is not expired. If so,
the algorithm adds the certificate to the list of revoked certificates.

PKIXC .valid (See [57]). The algorithm ensures two main things:
(1) the inputted certificate i has a valid chain of certificates from i
to one of the root CAs, and that (2) every certificate in the chain (in-
cluding ¢) was not revoked. The algorithm starts by validating that
the inputted certificate ¢ has type PubKey’. Then, the algorithm
verifies that for some root certificate ¢/, the inputted aux parameter
contains a chain ¢ which contains a sequence of certificates from ¢/
to a certificate £[j] which has ¢,.subject as its issuer such that:

(1) For each certificate £[k| from ¢ to &[], the inputted time ¢

is within the validity period of £[k], and

(2) For each certificate £[k] from ¢ to &[], €[k + 1] has indeed

issued £[k], and

(3) For each certificate £[k] from ¢ to the certificate before €[],

E[k + 1] is a public key certificate for a certificate authority.

To ensure that none of the certificates were revoked, the al-
gorithm ensures that aux contains a valid CRL cgr for every
certificate £[k] such that:

(1) YR is a CRL certificate, and

(2) Ycrr has the same issuer as £[k], and

(3) The relevant CRL does not contain the serial of £[k], and

(4) Ycrr has a valid chain that terminates in a root CA.

If any of the aforementioned checks fail, the algorithm outputs
1, otherwise, the certificate is considered valid, and therefore, the
algorithm outputs T.

16 Although the PKIXC Certify operation returns the inputted auxiliary informa-
tion aux unchanged, the Certify operations of other PKIs may use or output other
auxiliary information.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

PKIXC.VCerts (See [57]). First, the algorithm ensures the in-
putted certificate is valid. Then, it identifies a certificate of a root
CA that is the trust anchor of ¥, along with the minimal subset of
certificates from the inputted auxiliary information aux, and output
their union.

PKIXC.GetCRL (See [57]). First, the algorithm removes all the
certificates that expired from the current CRL. Then, it generates an
updated CRL, i.e., defines data to be certified tbc with CRL type, sets
the issuer and validity period, and sets the list of revoked certificates.
Finally, the algorithm signs tbc using C.Certify and the CA’s secret
signing key and outputs the CRL certificate.

5 SECURITY ANALYSIS

We analyze the security of the three schemes we present (PKIXC,
CTSMT and CTwAuditS-M7) against the security requirements
defined in §3. First, in §5.1, we describe the models assumed by
these protocols, following [17]; we provide model predicates in [57].
Then, in §5.2, we prove that all three PKIs satisfy Existential Un-
forgeability, Accountability and Accountable A-Revocation. Lastly,
in [57] we sum up the results of the analysis of A-Transparency for
CTEMT and CTwAuditcM7; we present the complete analysis

in [57].

5.1 Model Predicates

We reuse the following adversary and clock drift model predicates
defined in [17]:

e The xf predicate ensures that all benign entities, i.e., not
in T.F, follow the protocol correctly. T.F is the set of faulty
entities outputted by the adversary. More precisely, the ad-
versary can view the state, corrupt the state, or corrupt the
output of the entities in T.F but not of any other entity.

e The ”Efift predicate ensures that clock drifts from real time
are bounded by A_jx. We presented it in Algorithm 1 (§3.1).

In addition, we reuse the standard communication model pred-
icate Jrg::‘n, also from [17], which ensures reliable communica-
tion between non-faulty parties, with delays bounded by Acom.
The ﬂgf::n predicate in [17] ensures that if an operation outputs
a (‘send’, m, j) triplet, then after at most Acom, entity j would re-
ceive m. Since the CT implementation in [57] has several request-
response operations, we used a simpler notation for sending mes-
sages, and make the following small adjustment to the predicate:

(1) Whenever an entity 1 includes in its output a triplet of the
form (@-req,/’ ,x), where a-req is one of the request opera-
tions of CT, then, within Acom, there is an a-req event at //
with input x.

(2) Whenever an entity 1’ outputs a pair of the form (a-resp,y) in
the output of an a-req operation, and this a-req was invoked
by some entity i, then, within Acom, there is an a-resp event
at ¢ with input y.

The 7™ model predicate (See [57]) ensures correct initialization

of all entities at the beginning of the execution.

The CTSMT PKI requires periodic operations; to support that,

we define the 7 Wakeat
Atk D

ports waking up at a specified local time (within A,,) and allows

predicate shown in [57] . This model sup-

1563

Sara Wrotniak, Hemi Leibowitz, Ewa Syta, and Amir Herzberg

passing values to the wake-up event!’; it is likely to be useful

for the analysis of other protocols. According to the predicate, if
(‘WakeAt', t, context) is outputted, t is the current local time or
later, and execution did not end too early, then there is a Wakeup
event at the same entity at local time!® at least t and at most ¢ + Ay,
with input context.

Finally, the 7'L°8Ce™ model predicate ensures that honest moni-
tors do not receive multiple different log certificates with the same
log identifier as input to the ‘Monitor’ operation (See [57]).

5.2 Analysis of Existential Unforgeability,
Accountability and Accountable Revocation

We first show that the three PKIs satisfy Existential Unforgeability,
Accountability and Accountable Arey-Revocation, where Agey is
defined in Theorem 3.

Turorem 3. LetC be an existentially-unforgeable certificate scheme!®.
PKIXC, CTOMT gnd CTwAuditS-M7 satisfy the following require-
ments:

e Existential Unforgeability, under the 7™ A zF model.
o Accountability, under the trivial (always true) model.

e Accountable Aey-Revocation, under the 7™t A #F A ﬂfrl’f
Ik
model, where Apey = Agji + Ay and Ay is the CRL validity

period used in PKIXC.

Proor. The proof'is identical for the three PKIs; for convenience,
we refer to PKIXC. We show that if each of the three requirements
does not hold, then there is a PPT adversary A¢ that can forge
C-certificates with non-negligible probability, contradicting the as-
sumption that C is an existentially-unforgeable certificate scheme.

Existential Unforgeability. Assume to the contrary that PKIXC
does not ensure Existential Unforgeability. By definition, this means
that there exists a PPT adversary Agyr that satisfies:

meur (T) = L, where

Pri 7o Exec params)

¢ Negl(|params|) (1)

Arur,PKIXe (

From Equation (1), with non-negligible probability over the tran-
scripts T of executions of PKIX¢ with Agyf, we have mgyr (T) =
1. Following the implementation of wgyr (Algorithm 2) and of
PKIXC.VCerts and PKIXC Valid, the adversary Agyr managed to
generate a certificate /9 which is valid for time ¢, root store store
and auxiliary information aux, and yet: (1) p.issuer is a benign en-
tity, (2) the PKIXC Certify operation was not invoked at the benign
issuer yy.issuer with the non-PKladded fields of g given as input,
and (3) the validation of ¢y does not use a fraudulent certificate for
the issuer ig.issuer. In addition, from PKIXC Valid we know that
o.type ="PubKey’, since 1 is valid.

We first show that Agyr could not have generated ¢ by abus-
ing PKIXC’s implementation and could not have used C.Certify

"The ”Zvcall;:-up predicate in [17] supports waking up after a delay (within Aczx),
which is not optimal for CT¢M as it could cause gradual drift from the correct period
time. Also, it does not support passing values from the request to the wake-up event.

8The reason why we use the local time is to keep the model realistic; if we required
the wake-ups to be at real time at least ¢ and at most ¢ + A,,, then entities may be
able to use wake-ups to determine something about the real time, which should not
be possible.

YFrom Lemma 2, this is equivalent to the unforgeability of the underlying signature
scheme.

Provable Security for PKI Schemes

(through PKIXC) at yg.issuer to certify tbc « C.Decode(¢p). Then,
we complete the proof by showing reduction to the security of C,
i.e., the existence of Agyr means that C is not a secure certificate
scheme.

According to the implementation of PKIXC, the private key of
an entity is generated using C.KeyGen in the PKIXC .Init operation
and stored locally in the state st. Following Mt no operation is
called before the Init operation has been called at an entity, and the
Init operation is always called with the correct inputs. Since the
MoSS execution process ensures correctness of the states of benign
entities, then following PKIXC Init, an entity calls C.KeyGen from
PKIXC .Init at most once, the first time that PKIXC Init is called
at the entity. Non-faulty entities output a self-signed certificate
only for a public key generated by the entity using C.KeyGen in
PKIXC Init, and never output the corresponding private key. Thus,
the adversary did not have direct access to the private key, and
therefore, could not use it directly to generate 1.

Moreover, the only time the private key is accessed is when used
by the entity to certify information using C.Certify in PKIXC Init,
PKIXC Certify and PKIXC.GetCRL. However, out of these three
functions, the only function where a certificate with type ‘PubKey’
is certified is PKIXC.Certify, and as mentioned earlier, following
TEUF, we know that PKIXC.Certify was not invoked at the benign
issuer Y.issuer with the non-PKladded fields of /o given as input.
Following the implementation of PKIXC Certify, this implies that
Agur could not have used C.Certify (through PKIXC) at yyg.issuer
to certify tbc « C.Decode(¢p).

Consider an adversary A that receives as input a security pa-
rameter 1% and oracle access to the KeyGen(-) and Certify(-,-)
oracles defined in the MECF game (Algorithm 7). A¢ runs Agyr
internally against PKIXC, with the following changes. First, when-
ever a benign entity : calls C.KeyGen, A¢ replaces this call with a
call to the KeyGen oracle with input : and then sets (st.sk, st.pk) «
(L, pk), where pk is the public key returned by the KeyGen oracle.
Second, whenever a benign entity : calls C.Certify with input tbc,
Ac replaces this call with a call to the Certify oracle with inputs ¢
and tbe. After the execution of Agyr and PKIXC ends and A gets
the execution transcript T, then A gets the certificate 1o which is
part of T.out # and outputs (yy.issuer, Yo). If ApyF succeeds with
non-negligible probability in 7¢yF against PKIXC, then A also
succeeds with non-negligible probability in the MECF game, i.e., C
does not ensure Multi-key Existential Unforgeability. Since if C does
not ensure Multi-key Existential Unforgeability then it also does
not ensure Existential Unforgeability (See [57]). This contradicts
the assumption that C ensures Existential Unforgeability. O

Accountability. Assume to the contrary that PKIXC does not
ensure Accountability. By definition, there exists a PPT adversary
Aacc which satisfies:

mace (T) = L, where

r
T « Exec arams
Ancc,PKIXC (p)

P ¢ Negl(|params|) (2)

Namely, there is a non-negligible probability that zacc (T) = L,
where the probability is over the coin tosses in executions of PKIX¢
with Aacc. Following macc, the adversary Axcc outputted a cer-
tificate ¢ which is valid for time t, root store store and auxiliary

information aux, and yet, the output of PKIX C vCerts for Yo, t,

1564

CCS "24, October 14-18, 2024, Salt Lake City, UT, USA

store, and aux does not ensure accountability. By saying that the out-
put does not ensure accountability we mean that either it includes
no root certificate, or it includes some root certificate i such that
none of the following three cases is true: (1) ¢, is accountable for
Yo, (2) Yr is a bad certificate (as defined in Section 3.3), or (3) ¥ is
accountable for a valid bad certificate among the certificates in the
output of P .VCerts.

The proof follows from the following three claims. Claim 1shows
that if PKIXC Valid outputs true for some inputs ¥y, ¢, store, and
aux, then, for the same inputs, PKIXC VCerts outputs a root cer-
tificate and a valid certificate chain. Claim 2 shows that if Aacc
outputted o which is valid for ¢, store, and aux, and yet the output
of PKIXC VCerts for o, t, store, and aux does not ensure account-
ability, then Aacc has forged a certificate which is valid w.r.t. the
public key of a benign entity. Claim 3 completes the proof by a re-
duction to the security of C, i.e., showing that if an efficient Axcc
can forge a certificate which is valid w.r.t. the public key of a benign
entity, then C does not ensure Existential Unforgeability.

Claim 1: if PKIXC Valid is true, then the output of PKIXC VCerts
(for the same inputs) contains a root certificate and a corresponding
valid certificate chain.

Proof of claim 1: PKIXC Valid outputs T if and only if there exists
a certificate i, in store such that there exists a valid chain & in the
output of VALIDCHAIN (Yo, £, ¥, aux). PKIXC VCerts outputs {1/ }U
{Cert € &} where ;. € storeand ¢’ € VALIDCHAIN (1, t, ., aux);

Claim 2: if Aacc outputted o which is valid for t, store, and aux,
and yet the output ofPKIXC.VCerts for o, t, store, and aux does
not ensure accountability, then Aacc has forged a certificate which
is valid w.r.t. the public key of a benign entity.

Proof of claim 2: From claim 1, the output of PKIXC .VCerts
contains a root certificate, which we denote ¥/, as well as a corre-
sponding valid certificate chain from ¥, to .

If ¢ is bad, then accountability holds, which contradicts the
conditions of the claim. Therefore, ;- is not bad.

If for every certificate y; in the chain, i.e., for every i s.t.r > i >
0), holds that ¢;.issuer has certified ¢/;, then ¢, is accountable for
o; in this case, accountability also holds, which contradicts the
conditions of the claim.

Consider, therefore, the other case, where for some ¥; on the
chain (r > i > 0), ;.issuer did not certify ;. WLOG, assume that
i is the largest index for which this holds. It follows that either
Yi+1 = Yy or is accountable for i;y1.

If Yiv1 # ¥ and Y41 is bad, then again accountability holds in
contradiction to the conditions of the claim. Therefore, assume that
Yi41 is not bad, i.e., Yj1.subject is benign and has self-certified
Yir1.pk. But ¢; is valid w.r.t. ¥i41.pk, which is the public key of the
benign entity ;41.subject; and i;.issuer did not certify ;. Namely,
Aacc has forged ¢;, which is valid w.r.t. the public key of the
benign entity ;+1.subject, proving the claim.

Claim 3: if an efficient Apcc can forge a certificate which is valid
w.r.t. the public key of a benign entity, then C does not ensure Exis-
tential Unforgeability.

Proof of claim 3: The proof follows similar reasoning to the proof
of Existential Unforgeability for PKIXC. Namely, we show that
there exists an adversary Ag which runs Aacc internally against
PKIXC such that if Axcc succeeds with non-negligible probability

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

in macc against PKIXC, then A also succeeds with non-negligible
probability in the MECF game (Algorithm 7), i.e., C does not ensure
Multi-key Existential Unforgeability.

Consider an adversary A that receives as input a security pa-
rameter 1¢ and oracle access to the KeyGen(-) and Certify(-,)
oracles defined in the MECF game (Algorithm 7). A runs Axcc
internally against PKIXC, with the following changes. First, when-
ever a benign entity : calls C.KeyGen, A replaces this call with a
call to the KeyGen oracle with input : and then sets (st.sk, st.pk) «
(L, pk), where pk is the public key returned by the KeyGen oracle.
Second, whenever a benign entity ¢ calls C.Certify with input tbc,
A replaces this call with a call to the Certify oracle with inputs
1 and tbe. After the execution of Axcc and PKIXC ends and Ac
gets the execution transcript T, it runs PKIXC VCerts on the values
in T.out # and then searches for a forged certificate in the output
of PKIXC VCerts. If A finds such a forged certificate 1, then
it outputs (¢.issuer, ¢); otherwise it outputs (L, L). If Axcc suc-
ceeds with non-negligible probability in zacc against PKIXC, then
Ac also succeeds with non-negligible probability in the MECF
game, i.e., C does not ensure Multi-key Existential Unforgeability.
The claim follows, since if C does not ensure Multi-key Existential
Unforgeability then it also does not ensure Existential Unforge-
ability (See [57]). This contradicts the assumption that C ensures
Existential Unforgeability. O

Accountable Ag.,-Revocation. See [57] for this proof. O

5.3 Analysis of Transparency

We now provide an overview of the main results of our analysis of
CTEMT and CTwAudit®M7. The proofs and details are in [57].

53.1 CTSMT ensures HL Atya-Transparency.

THEOREM 4. Let C be an existentially-unforgeable certificate scheme
and MT be a collision-resistant Merkle tree. Denote A1y, = 7 Acji +
2-ApMD + 2 Ay +5 - Acom. Then, CTOMT satisfies the HL Aty,-
Transparency requirement under model predicate:

rift

D Com
T
Actke

P N N ﬂlLogCert A A 7§
com

WakeAt
ﬂAclew

®)

ProOF. See [57]. O

532 CTSMT does not ensure Guaranteed A-Transparency or Au-
dited A-Transparency.

THEOREM 5. Let C be a secure certificate scheme and MT be a
collision-resistant Merkle tree, and let A be any finite delay. Then,
CTEMT does not satisfy the Guaranteed A-Transparency require-
ment or the Audited A-Transparency requirement under the model
predicate of Equation 3.

ProOF. See [57].

533 CTwAudit®MT ensures Audited A{v>-Transparency.

THEOREM 6. Let C be an existentially-unforgeable certificate scheme
and MT" be a collision-resistant Merkle tree. Denote AL7" = 9+ Agyi +
2-ApMMD +2 Ay +5- Acom, where Aypyp is the maximal merge de-
lay. Then, CTwAuditM7 satisfies the Audited Af1>-Transparency

requirement under the model predicate of Equation 3.

PRrOOF. See [57].

1565

Sara Wrotniak, Hemi Leibowitz, Ewa Syta, and Amir Herzberg

6 CONCLUSIONS AND FUTURE WORK

PKI provides the foundation for the security of many deployed,
critical distributed systems, in particular, the web and other applica-
tions using TLS, software signing, email security, and more. In spite
of that, this work is the first to define security specifications for
realistic PKI systems, supporting revocation, transitive trust (typi-
cally, certificate chains) and transparency, and considering realistic
models allowing for corruptions, clock drift, delays and more.

A possible reason for this fundamental security infrastructure
to remain without precise specifications and analysis may be that
defining the requirements is tricky; they appear ‘obvious’ yet are
hard to clearly define.

We applied our specifications to analyze the security of the two
predominant PKI systems: PKIX and CT, as well as CTwAuditC’MT,
a variant of CT implemented in the Chrome browser. Our analysis
exposed several subtle issues with these systems, related to revoca-
tion and transparency. Due to these issues, the systems satisfy only
relaxed variants of revocation and transparency.

This work makes only the first steps toward provable security of
PKI schemes. Much work remains, including design and analysis
of PKIs that will meet the stronger revocation and transparency
requirements; formally defining other PKI schemes for the entire
ecosystem (including browser specific implementations) and apply-
ing our specifications to such schemes; extending our specifications
for non-certificate PKIs (e.g., [36]) or to additional properties (e.g.,
privacy, non-equivocation); and showing similar specifications and
proofs under UC [6] or another framework allowing compositions
of protocols. We also hope that similar specifications and analy-
sis can be applied to other applied cryptographic protocols, e.g.,
blockchains.

ACKNOWLEDGEMENTS

We thank the reviewers for their insightful and constructive feed-
back. This work is partially supported by the National Science Foun-
dation under Grants No. 2149765 and 2149766, by the United States-
Israel Binational Science Foundation under Grant No. 2022701, by
the Research Authority Fund of the College of Management Aca-
demic Studies, Rishon LeZion, Israel, and by the Comcast Corpora-
tion and by Synchrony Financial. The opinions expressed in this
paper are those of the researchers and not of their university or
funding sources.

REFERENCES

[1] Louise Axon and Michael Goldsmith. 2017. PB-PKI: A Privacy-aware Blockchain-
based PKI. In SECRYPT.

[2] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse,

and Pawel Szalachowski. 2014. ARPKI: Attack Resilient Public-Key Infrastruc-

ture. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security. ACM, 382-393.

Alexandra Boldyreva, Marc Fischlin, Adriana Palacio, and Bogdan Warinschi.

2007. A Closer Look at PKI: Security and Efficiency. In International Workshop

on Public Key Cryptography. Springer, 458—-475.

Johannes Braun. 2015. Maintaining Security and Trust in Large Scale Public Key

Infrastructures. Ph.D. Dissertation. Technische Universitat.

Johannes Braun, Franziskus Kiefer, and Andreas Hiilsing. 2013. Revocation &

Non-Repudiation: When the first destroys the latter. In European Public Key

Infrastructure Workshop. Springer, 31-46.

Ran Canetti. 2020. Universally composable security. Journal of the ACM (JACM),

67,5,1-94.

(3]

Provable Security for PKI Schemes

[71

(8]

[9]

(10]
(1]

[12]
[13]

(14]
(15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]
(30]

(31]

[32]

[33]

Ran Canetti, Daniel Shahaf, and Margarita Vald. 2016. Universally Composable
Authentication and Key-exchange with Global PKI. In Public-Key Cryptography—
PKC 2016. Springer, 265-296.

BLUE BOOK CCITT. 1988. Recommendations X. 509 and ISO 9594-8. Infor-
mation Processing Systems-OSI-The Directory Authentication Framework
(Geneva: CCITT). (1988).

Melissa Chase and Sarah Meiklejohn. 2016. Transparency Overlays and Appli-
cations. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 168-179.

Council of European Union. 2021. Com/2021/281, Revision of the eIDAS Regu-
lation - European Digital Identity (EUid). (2021).

Benjamin Dowling, Felix Giinther, Udyani Herath, and Douglas Stebila. 2016.
Secure Logging Schemes and Certificate Transparency. In European Symposium
on Research in Computer Security. Springer, 140-158.

John Dyer. 2015. China Accused of Doling Out Counterfeit Digital Certificates
in ‘Serious’ Web Security Breach. VICE News. (Apr. 2015).

Peter Eckersley. 2012. Sovereign Key Cryptography for Internet Domains.
https://git.eff.org/?p=sovereign-keys.git;a=blob;f =sovereign-key-design.txt
:hb=HEAD. (2012).

Electronic Frontier Foundation (EFF). [n. d.] The EFF SSL Observatory. Re-
trieved May 30, 2019 from https://www.eff.org/observatory.

Conner Fromknecht, Dragos Velicanu, and Sophia Yakoubov. 2014. A Decen-
tralized Public Key Infrastructure with Identity Retention. IACR Cryptology
ePrint Archive, 2014, 803.

Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and
Jorg Schwenk. 2008. Universally Composable Security Analysis of TLS. In
International Conference on Provable Security. Springer, 313-327.

Amir Herzberg, Hemi Leibowitz, Ewa Syta, and Sara Wrétniak. 2021. MoSS:
Modular Security Specifications framework. In CRYPTO’ 2021. Full version at:
https://eprint.iacr.org/2020/1040, 33-63.

Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor, and Yiftach Ravid. 2000. Ac-
cess Control Meets Public Key Infrastructure, Or: Assigning Roles to Strangers.
In Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000. IEEE,
2-14.

P. Hoffman, M. Blanchet, E. Lafon, Y. Galand, C. Elphick, and M. Moeller. 2002.
International organization for standardization, information technology - asn.1 -
basic encoding rules (ber). In ITU-T Recommendation X.690 | ISO/IEC 8825-1:2002.
Also covers DER, 1-105.

Jacob Hoffman-Andrews. 2023. Article 45 Will Roll Back Web Security by 12
Years. ACLU. https://www.eff .org/deeplinks/2023/11/article-45-will-roll-back-
web-security-12-years. (Nov. 2023).

Joel Hruska. 2015. Apple, Microsoft buck trend, refuse to block unauthorized
Chinese root certificates. ExtremeTech. (Apr. 2015).

Jingwei Huang and David M Nicol. 2017. An anatomy of trust in public key
infrastructure. International Journal of Critical Infrastructures, 13, 2-3, 238-258.
International Telecommunication Union. 1997. ITU-T X.509 recommendation
version 3: information technology - open systems interconnection - the direc-
tory: authentication framework. (June 1997). https://www.itu.int/rec/T-REC-
X.509-199708-S.

Google LLC Joe DeBlasio. [n. d.] Opt-out SCT Auditing in Chrome. Other.
https://docs.google.com/document/d/16G- Q7iN3kB46GSW5b- stH5SMO3n
KSYyEb77YsM7TMZGE/. ().

Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson, and
Virgil Gligor. 2013. Accountable Key Infrastructure (AKI): A Proposal for a
Public-Key Validation Infrastructure. In Proceedings of the 22nd international
conference on World Wide Web. ACM, 679-690.

Loren M Kohnfelder. 1978. Towards a practical public-key cryptosystem. Ph.D.
Dissertation. Massachusetts Institute of Technology.

Murat Yasin Kubilay, Mehmet Sabir Kiraz, and Haci Ali Mantar. 2018. Cer-
tLedger: A new PKI model with Certificate Transparency based on blockchain.
arXiv preprint arXiv:1806.03914.

Ben Laurie. 2014. Certificate transparency. Communications of the ACM, 57, 10,
40-46.

Ben Laurie and Emilia Kasper. 2012. Revocation Transparency. Google Research,
September.

Dimitrios Lekkas. 2003. Establishing and managing trust within the Public Key
Infrastructure. Computer Communications, 26, 16, 1815-1825.

Bingyu Li, Jingqiang Lin, Fengjun Li, Qiongxiao Wang, Qi Li, Jiwu Jing, and
Congli Wang. 2019. Certificate transparency in the wild: exploring the reliability
of monitors. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 2505-2520.

John Marchesini and Sean Smith. 2005. Modeling Public Key Infrastructure
in the Real World. In European Public Key Infrastructure Workshop. Springer,
118-134.

Stephanos Matsumoto and Raphael M Reischuk. 2017. IKP: Turning a PKI
Around with Decentralized Automated Incentives. In Security and Privacy (SP),
2017 IEEE Symposium on. IEEE, 410-426.

1566

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

CCS "24, October 14-18, 2024, Salt Lake City, UT, USA

Ueli Maurer. 1996. Modelling a Public-Key Infrastructure. In European Sympo-
sium on Research in Computer Security. Springer, 325-350.

Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and
Michael J Freedman. 2015. CONIKS: Bringing Key Transparency to End Users.
In USENIX Security Symposium, 383-398.

[n. d.] Namecoin. (). https://www.namecoin.org/.

Scientists Organisations and Researchers as signed. 2023. Joint statement of
scientists and NGOs on the EU’s proposed eIDAS reform. Other. https://nce.m
pi-sp.org/index.php/s/cG88cptFdaDNyRr. (Nov. 2023).

C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. 1999.
SPKI Certificate Theory. RFC 2693 (Experimental). RFC. Fremont, CA, USA:
RFC Editor, (Sept. 1999). por: 10.17487/RFC2693.

R. Housley, W. Polk, W. Ford, and D. Solo. 2002. Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile. REC
3280 (Proposed Standard). REC. Obsoleted by RFC 5280, updated by RFCs 4325,
4630. Fremont, CA, USA: RFC Editor, (Apr. 2002). por: 10.17487/RFC3280.

J. Jonsson and B. Kaliski. 2003. Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications Version 2.1. RFC 3447 (Informational).
RFC. Obsoleted by RFC 8017. Fremont, CA, USA: RFC Editor, (Feb. 2003). por:
10.17487/RFC3447.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. 2008.
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile. RFC 5280 (Proposed Standard). RFC. Updated by RFCs 6818,
8398, 8399. Fremont, CA, USA: RFC Editor, (May 2008). por: 10.17487/RFC5280.
M. Lepinski and S. Kent. 2012. An Infrastructure to Support Secure Internet
Routing. RFC 6480 (Informational). RFC. Fremont, CA, USA: RFC Editor, (Feb.
2012). DOI: 10.17487/REC6480.

B. Laurie, A. Langley, and E. Kasper. 2013. Certificate Transparency. RFC 6962
(Experimental). RFC. Obsoleted by RFC 9162. Fremont, CA, USA: RFC Editor,
(June 2013). por: 10.17487/RFC6962.

S. Josefsson and S. Leonard. 2015. Textual Encodings of PKIX, PKCS, and CMS
Structures. RFC 7468 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor,
(Apr. 2015). DOL: 10.17487/RFC7468.

E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, (Aug. 2018).
DoI: 10.17487/RFC8446.

B. Laurie, E. Messeri, and R. Stradling. 2021. Certificate Transparency Version
2.0. RFC 9162 (Experimental). RFC. Fremont, CA, USA: RFC Editor, (Dec. 2021).
DOI: 10.17487/RFC9162.

Steven B Roosa and Stephen Schultze. 2010. The "Certificate Authority” Trust
Model for SSL: A Defective Foundation for Encrypted Web Traffic and a Legal
Quagmire. Intellectual property & technology law journal, 22, 11, 3.

Mark Dermot Ryan. 2014. Enhanced certificate transparency and end-to-end
encrypted mail. In NDSS.

‘Wazan Ahmad Samer, Laborde Romain, Barrere Francois, and Benzekri Ab-
delMalek. 2011. A formal model of trust for calculating the quality of X. 509
certificate. Security and Communication Networks, 4, 6, 651-665.

Nicolas Serrano, Hilda Hadan, and Jean L. Camp. 2019. A complete study of P.K.L
(PKI’s Known Incidents). Available at SSRN, https://ssrn.com/abstract=3425554.
(July 2019).

Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, and Bryan Ford.
2015. Certificate Cothority: Towards Trustworthy Collective CAs. Hot Topics
in Privacy Enhancing Technologies (HotPETs), 7.

Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,
Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. 2016. Keeping
Authorities “Honest or Bust” with Decentralized Witness Cosigning. In Security
and Privacy (SP), 2016 IEEE Symposium on. leee, 526—-545.

Pawel Szalachowski, Stephanos Matsumoto, and Adrian Perrig. 2014. PoliCert:
Secure and Flexible TLS Certificate Management. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. ACM,
406-417.

Alin Tomescu and Srinivas Devadas. 2017. Catena: Efficient Non-equivocation
via Bitcoin. In 2017 38th IEEE Symposium on Security and Privacy (SP). IEEE,
393-409.

Dan Wendlandt, David G Andersen, and Adrian Perrig. 2008. Perspectives:
Improving SSH-style Host Authentication with Multi-Path Probing. In USENIX
Annual Technical Conference. Vol. 8, 321-334.

Wikipedia contributors. 2021. Diginotar — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=DigiNotar& oldid=1036090956.
[Online; accessed 7-August-2021]. (2021).

Sara Wrotniak, Hemi Leibowitz, Ewa Syta, and Amir Herzberg. 2019. Provable
security for PKI schemes. Cryptology ePrint Archive, Paper 2019/807. https://e
print.iacr.org/2019/807. (2019). https://eprint.iacr.org/2019/807.

Jiangshan Yu, Vincent Cheval, and Mark Ryan. 2016. DTKI: A New Formalized
PKI with Verifiable Trusted Parties. The Computer Journal, 59, 11, 1695-1713.

