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1. Introduction

In this paper, we continue the study of the defocussing, energy subcritical nonlinear 

wave equation,

utt − ∆u + |u|p−1u = 0, u(0, x) = u0, ut(0, x) = u1, 3 ≤ p < 5, (1.1)

with initial data in a critical space. A critical space is a space that is invariant under the 

scaling symmetry. Observe that (1.1) is invariant under the scaling symmetry

E-mail address: bdodson4@jhu.edu.

https://doi.org/10.1016/j.aim.2024.109811
0001-8708/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, 
and similar technologies.



2 B. Dodson / Advances in Mathematics 452 (2024) 109811

u(t, x) �→ λ
2

p−1 u(λt, λx), λ > 0. (1.2)

Under the above scaling symmetry, the size of the initial data changes by a factor of

‖λ
2

p−1 u0(λx)‖Ḣs(R3) = λs+ 2
p−1 − 3

2 ‖u0‖Ḣs(R3),

‖λ
p+1
p−1 u1(λx)‖Ḣs−1(R3) = λs+ 2

p−1 − 3
2 ‖u1‖Ḣs−1(R3). (1.3)

Thus, (1.1) is called Ḣsc × Ḣsc−1-critical when

sc =
3

2
−

2

p − 1
, (1.4)

because this norm is invariant under (1.2).

The scaling symmetry (1.2) completely determines the local well-posedness theory for

(1.1), where local well-posedness is defined in the usual way.

Definition 1 (Locally well-posed). The initial value problem (1.1) is said to be locally 

well-posed if there exists an open interval I ⊂ R containing 0 such that:

(1) A unique solution u ∈ L∞
t Ḣsc(I × R

3) ∩ L
2(p−1)
t,loc L

2(p−1)
x (I × R

3), ut ∈ L∞
t Ḣsc−1(I ×

R
3) exists.

(2) The solution u is continuous in time, u ∈ C(I; Ḣsc(R3)), ut ∈ C(I; Ḣsc−1(R3)).

(3) The solution u depends continuously on the initial data in the topology of item one.

Theorem 1. Equation (1.1) is locally well-posed for initial data in (u0, u1) ∈ Ḣsc(R3) ×

Ḣsc−1(R3) on some interval [−T (u0, u1), T (u0, u1)]. The time of well-posedness T (u0, u1)

depends on the profile of the initial data (u0, u1), not just its size. For data sufficiently 

small in Ḣsc × Ḣsc−1, global well-posedness and scattering hold.

Additional regularity is enough to give a lower bound on the time of well-posedness. 

Therefore, there exists some T (‖u0‖Ḣs , ‖u1‖Ḣs−1) > 0 for any sc < s < 3
2 .

Negatively, equation (1.1) is ill-posed for u0 ∈ Ḣs(R3) and u1 ∈ Ḣs−1(R3) when 

s < sc.

Proof. See [14]. �

Definition 2 (Scattering). A solution to (1.1) with initial data (u0, u1) is said to be 

scattering in some Ḣs(R3) × Ḣs−1(R3) if there exist (u+
0 , u+

1 ), (u−
0 , u−

1 ) ∈ Ḣs × Ḣs−1

such that

lim
t→+∞

‖(u(t), ut(t)) − S(t)(u+
0 , u+

1 )‖Ḣs×Ḣs−1 = 0, (1.5)

and
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lim
t→−∞

‖(u(t), ut(t)) − S(t)(u−
0 , u−

1 )‖Ḣs×Ḣs−1 = 0, (1.6)

where u is the solution to (1.1) with initial data (u0, u1) and S(t)(f, g) is the solution 

operator to the linear wave equation. That is, if (u(t), ut(t)) = S(t)(f, g), then

utt − ∆u = 0, u(0, x) = f, ut(0, x) = g. (1.7)

Equation (1.1) is called scattering for data in a certain subset X if the solution to

(1.1) with initial data in X is globally well-posed, the solution scatters both forward and 

backward in time, and the scattering states (u+
0 , u+

1 ) and (u−
0 , u−

1 ) depend continuously 

on the initial data.

For large data, global well-posedness and scattering is known to hold for (1.1) for 

sufficiently regular, sufficiently rapidly decaying initial data.

Theorem 2. Equation (1.1) is globally well-posed and scattering for initial data (u0, u1)

satisfying

‖〈x〉∇u0‖L2 + ‖u0‖L2 + ‖〈x〉u1‖L2 < ∞. (1.8)

Proof. See [20]. �

For any (u0, u1) satisfying (1.8), (u0, u1) ∈ Ḣsc × Ḣsc−1. However, the question of the 

long time behavior of initial data in the critical Sobolev space that does not belong to

(1.8) remains open. In the radially symmetric case, this question was settled in [4] and 

[3].

Theorem 3. For 3 ≤ p < 5, the initial value problem (1.1) is globally well-posed and 

scattering for radial initial data (u0, u1) ∈ Ḣsc(R3) × Ḣsc−1(R3). Moreover, there exists 

a function f : [3, 5) × [0, ∞) → [0, ∞) such that if u solves (1.1) with initial data 

(u0, u1) ∈ Ḣsc × Ḣsc−1, then

‖u‖
L

2(p−1)
t,x (R×R3)

≤ f(p, ‖u0‖Ḣsc (R3) + ‖u1‖Ḣsc−1(R3)), (1.9)

and thus the solution scatters both forward and backward in time.

Proof. This was proved in [4] when p = 3 and in [3] when 3 < p < 5. The proof used the 

computations on hyperbolic coordinates in [16] and [17]. �

Remark 1. The argument in [14] may be used to show that (1.9) is equivalent to scattering 

in the critical Sobolev norm.

An important stepping stone in the proof of Theorem 3 was the result of [2] for radially 

symmetric initial data in a critical Besov space.
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Theorem 4. The defocussing, cubic nonlinear wave equation ((1.1) when p = 3) is globally 

well-posed and scattering for radially symmetric initial data u0 ∈ B2
1,1 and u1 ∈ B1

1,1. 

Bs
p,q is the Besov space defined by the norm

‖u‖Bs
p,q(R3) = (

∑

j

2jsp‖Pju‖p
Lq )1/p. (1.10)

The operator Pj is the usual Littlewood–Paley projection operator.

In this paper we generalize Theorem 4 to the case when 3 < p ≤ 4 with nonradial 

initial data.

Theorem 5. Equation (1.1) is globally well-posed and scattering when 3 < p ≤ 4 initial 

data u0 ∈ B
sc+ 3

2
1,1 and u1 ∈ B

sc+ 1
2

1,1 . Furthermore, there exists f : (3, 4] × [0, ∞) → [0, ∞)

such that

‖u‖
L

2(p−1)
t,x (R×R3)

≤ f(p, ‖u0‖
B

sc+ 3
2

1,1 (R3)
+ ‖u1‖

B
sc+ 1

2
1,1 (R3)

). (1.11)

Global well-posedness alone holds for 3 ≤ p < 5.

The B
sc+ 3

2
1,1 × B

sc+ 1
2

1,1 norm is invariant under the scaling symmetry (1.2). By the 

Sobolev embedding theorem, B
sc+ 3

2
1,1 ⊂ Ḣsc and B

sc+ 1
2

1,1 ⊂ Ḣsc−1. The main advantage 

that B
sc+ 3

2
1,1 × B

sc+ 1
2

1,1 provides is the dispersive estimate for the wave equation

‖S(t)(u0, u1)‖L∞ �
1

t
‖(∇2u0, ∇u1)‖L1×L1 , (1.12)

which implies good behavior for the solution to the linear wave equation with initial 

data (u0, u1) for t 
= 0. Therefore, a helpful heuristic in thinking about Theorem 4 is 

that blowup of a solution to (1.1) with initial data in B2
1,1 × B1

1,1 must occur when t = 0

if it occurs at all. Radial symmetry further implies that the blowup must occur at the 

origin in space and time.

The results in Theorem 3 addressed initial data that was merely radially symmetric, 

but not in B2
1,1 × B1

1,1, so the blowup could occur at any time, but only at the origin in 

space, x = 0. Theorem 5 approaches this problem from the other direction. The fact that 

(u0, u1) ∈ B
sc+ 3

2
1,1 × B

sc+ 1
2

1,1 means that, heuristically, the blowup may occur anywhere in 

R
3, but only at time t = 0, if it occurs at all.

1.1. Outline of the proof

The only obstacle to proving Theorem 5 is that the Ḣsc × Ḣsc−1 norm of (u, ut) may 

blow up either forward or backward in time.
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Theorem 6. Suppose (u0, u1) ∈ Ḣsc(R3) × Ḣsc−1(R3) and u solves (1.1) on a maximal 

interval 0 ∈ I ⊂ R, with 3 < p < 5 and

sup
t∈I

‖u(t)‖Ḣsc (R3) + ‖ut(t)‖Ḣsc−1(R3) < ∞. (1.13)

Then I = R and the solution u scatters both forward and backward in time.

Proof. This theorem was proved in [1]. The proof uses the concentration compactness 

method. This method has been applicable to many scattering results for nonlinear disper-

sive equations. Two important results in this area are scattering for the cubic nonlinear 

Schrödinger equation for solutions with bounded Ḣ1/2 norm, [12] and scattering/blowup 

phenomena for the focusing nonlinear wave equation [11]. �

While there is no known conserved quantity that controls the Ḣsc × Ḣsc−1 norm of 

(u(t), ut(t)) for a solution to (1.1) with generic initial data (u0, u1) ∈ Ḣsc × Ḣsc−1, a 

solution to (1.1) does have the conserved energy

E(u(t)) =
1

2

ˆ

|∇u(t, x)|2dx +
1

2

ˆ

ut(t, x)2dx +
1

p + 1

ˆ

|u(t, x)|p+1dx = E(u(0)).

(1.14)

For u0 ∈ Ḣ1 ∩ Ḣsc and u1 ∈ L2 ∩ Ḣsc−1, the Sobolev embedding theorem implies

‖u(0)‖p+1
Lp+1(R3) � ‖u0‖p−1

Ḣsc (R3)
‖u0‖2

Ḣ1(R3)
, (1.15)

so

E(u(0)) �‖u0‖Ḣsc
‖u0‖2

Ḣ1 + ‖u1‖2
L2 . (1.16)

Conservation of energy then implies a uniform bound on the ‖(u(t), ut(t))‖Ḣ1×L2 norm 

for the entire time of existence of u, which by Theorem 1 implies that the solution to

(1.1) with initial data u0 ∈ Ḣ1 ∩ Ḣsc and u1 ∈ L2 ∩ Ḣsc−1 is global.

For generic initial data u0 ∈ B
sc+ 3

2
1,1 and u1 ∈ B

sc+ 1
2

1,1 , there is no reason to think that 

the initial data lies in Ḣ1 × L2. However, using the dispersive estimate (1.12), we can 

split a solution u(t) into a piece lying in Ḣ1 × L2 and a piece with good decay estimates 

as t becomes large. A similar computation was used in [2] to prove Theorem 4.

The local well-posedness result of Theorem 1 implies that there exists an open neigh-

borhood I of 0 for which (1.1) has a solution, and

‖u‖
L

2(p−1)
t,x (I×R3)

≤ ε, (1.17)

for some ε > 0 small. Rescaling by (1.2),

‖u‖
L

2(p−1)
t,x ([−1,1]×R3)

≤ ε. (1.18)
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This solution satisfies Duhamel’s principle

u(t) = S(t)(u0, u1) −

t
ˆ

0

S(t − τ)(0, |u|p−1u)dτ. (1.19)

Next, combining the dispersive estimate (1.12) and local well-posedness theory, it is 

possible to prove that

t
2−sc

p ‖u(t)‖L2p , (1.20)

is uniformly bounded for all t ∈ [−1, 1]. Therefore, by standard energy estimates,

‖

1
ˆ

1/2

S(1 − τ)(0, |u|p−1u)dτ‖Ḣ1×L2 � 1, (1.21)

with implicit constant bounded by the norm of the initial data in B
sc+ 3

2
1,1 × B

sc+ 1
2

1,1 .

Let

v(1) =

1
ˆ

1/2

S(1 − τ)(0, |u|p−1u)dτ, vt(1) = ∂t

t
ˆ

1/2

S(t − τ)(0, |u|p−1u)dτ |t=1, (1.22)

and let

w(1) = u(1) − v(1), wt(1) = ut(1) − vt(1). (1.23)

It follows from (1.18) and Theorem 1 that (1.1) has a local solution on [1, T ) for some 

T > 1. Decompose this solution u = v + w, which solve

wtt − ∆w = 0, w(1, x) = w(1), wt(1, x) = wt(1),

vtt − ∆v + u3 = 0, v(1, x) = v(1), vt(1, x) = vt(1).
(1.24)

To prove that T may be extended to T = ∞, it is enough to prove that E(v(t)), where 

E is given by (1.14), is uniformly bounded on any compact subset of [1, ∞). To see why, 

first note that wtt − ∆w = 0 has a global solution. Next, the rescaling used to obtain

(1.18) will be used to show that for any T ≥ 0,

‖w‖
L

2(p−1)
t,x ([T,T +1]×R3)

≤
ε

2
. (1.25)

Therefore, using standard perturbative arguments,

vtt − ∆v + |u|p−1u = 0, (1.26)
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may be treated as a perturbation of

vtt − ∆v + |v|p−1v = 0, (1.27)

on short time intervals. Therefore, if E(v(t0)) < ∞, (1.1) is locally well-posed on the 

interval [t0, t0 + 1
E(v(t0)) ], so it is enough to prove that E(v(t)) is uniformly bounded on 

any compact subset of [1, ∞).

To prove the uniform bound, standard calculations imply

d

dt
E(v(t)) = −〈vt, |u|p−1u − |v|p−1v〉. (1.28)

The most difficult component of (1.28) is a term of the form

−〈vt, vp−1w〉 � ‖|∇|sc− 1
2 w‖L∞E(v(t)). (1.29)

Using the dispersive estimate (1.12) it is possible to prove ‖|∇|sc− 1
2 w‖L∞ � 1

t . Plugging 

this estimate into (1.29) and using Gronwall’s inequality then proves a uniform bound 

on E(v(t)) on any compact subset, completing the proof of global well-posedness.

The above computations are not enough to prove scattering. In fact, even if one 

assumed initial data u0 ∈ Ḣ1 ∩ Ḣsc and u1 ∈ L2 ∩ Ḣsc−1, conservation of energy 

would not guarantee a uniform bound on ‖u(t), ut(t)‖Ḣsc ×Ḣsc−1 . Indeed, recall that [20]

assumed sufficient decay on the initial data.

However, the Lebesgue dominated convergence theorem implies that outside a com-

pact set, the initial data has small Ḣsc × Ḣsc−1 norm. By finite propagation speed, 

this implies scattering outside a light cone. Inside the light cone, we follow and use the 

conformal energy, as in [20], [5], and [7].

We obtain the bound (1.11) using the profile decomposition argument in [15].
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2. Local behavior of the solution to (1.1)

As was mentioned in the introduction, the main singularity for initial data in a Besov 

space occurs when t = 0, from (1.12). To combat this, we study the local behavior of 

the solution in greater detail. Using (1.2), it is possible to rescale equation (1.1) so that

(1.1) is locally well-posed on [−1, 1] and the solution satisfies

‖u‖
L

2(p−1)
t,x ([−1,1]×R3)

≤ ε. (2.1)

Proof of (2.1). Recall the Strichartz estimates for the wave equation.

Theorem 7. Let I be a time interval and let u : I × R
3 → R be a Schwartz solution to 

the wave equation

utt − ∆u = F, u(0) = u0, ∂tu(0) = u1, (2.2)

where 0 ∈ I. Then we have the estimates,

‖u‖Lq
t Lr

x(I×R3) + ‖u‖C0
t Ḣs

x(I×R3) + ‖∂tu‖C0
t Ḣs

x(I×R3)

�q,r,s (‖u0‖Ḣs(R3) + ‖u1‖Ḣs−1(R3) + ‖F‖
Lq̃′

t Lr̃′
x (I×R3)

), (2.3)

for any s ≥ 0, 2 < q, q̃ ≤ ∞, and 2 ≤ r, ̃r < ∞ obey the scaling condition,

1

q
+

3

r
=

3

2
− s =

1

q̃′
+

3

r̃′
− 2, (2.4)

and satisfy the wave admissibility conditions

1

q
+

1

r
,

1

q̃
+

1

r̃
≤

1

2
. (2.5)

Proof. This theorem is copied from [23]. See [21], [10], [8], [9], [14], [18], [19], [13] for the 

proof of this theorem. �

By Theorem 7, if u solves (2.1), then

‖u‖
Lq

t Lr
x∩L

2(p−1)
t,x ([−1,1]×R3)

�p ‖u0‖Ḣsc + ‖u1‖Ḣsc−1 + ‖F‖
Lq̃′

t Lr̃′
x ([−1,1]×R3)

, (2.6)

where

1

q
=

1

2
sc,

1

r
=

1

2
−

1

2
sc, sc =

3

2
−

2

p − 1
,

1

q̃′
=

1

q
+

1

2
,

1

r̃′
=

1

r
+

1

2
. (2.7)
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When 3 ≤ p < 5, (q, r) is an admissible pair that satisfies (2.5), and q̃′ and r̃′ satisfies

(2.4).

Since (u0, u1) ∈ B
sc+ 3

2
1,1 × B

sc+ 1
2

1,1 , there exists some j0 ∈ Z such that

∑

j≥j0

2j(sc+ 3
2 )‖Pju0‖L1 + 2j(sc+ 1

2 )‖Pju1‖L1 ≤ cε, (2.8)

for some c > 0 that is determined by the implicit constant in (2.3). Using (1.2) with

λ ∼ 2−j0(‖u0‖
B

sc+3/2
1,1

+ ‖u1‖
B

sc+1/2
1,1

)− 1
1−sc ,

rescale. After the rescaling, we have a new j0 that satisfies (2.8) and furthermore,

2j0(1−sc) · ‖(u0, u1)‖
B

sc+ 3
2

1,1 ×B
sc+ 1

2
1,1

≤ cε. (2.9)

Theorem 7 and (2.8) imply

‖S(t)(P≥j0
u0, P≥j0

u1)‖
Lq

t Lr
x∩L

2(p−1)
t,x (R×R3)

≤
ε

4
. (2.10)

Also, by the Sobolev embedding theorem, (2.8), and the fact that S(t) is a unitary 

operator on Ḣs × Ḣs−1,

‖S(t)(P≤j0
u0, P≤j0

u1)‖L∞
t L2(p−1)(R×R3) ≤

ε

4
, (2.11)

so by Hölder’s inequality,

‖S(t)(u0, u1)‖
L

2(p−1)
t,x ([−1,1]×R3)

≤
3ε

4
. (2.12)

A similar calculation also implies

‖S(t)(u0, u1)‖Lq
t Lr

x([−1,1]×R3) ≤
3ε

4
. (2.13)

Plugging (2.12) into (1.19) and using (2.3) and Picard iteration implies that for ε > 0

sufficiently small, (1.1) is locally well-posed on [−1, 1], and the solution satisfies

‖u‖
L

2(p−1)
t,x ([−1,1]×R3)

≤ ε. (2.14)

This proof is a modification of the proof of scattering in [14] for small data and local 

well-posedness on a time interval depending on the profile of the initial data. �

The constant ε > 0 will eventually be chosen to depend on ‖u0‖
B

sc+ 3
2

1,1

+ ‖u1‖
B

sc+ 1
2

1,1

. 

Under (2.1), the behavior of u on the interval [−1, 1] is approximately linear.
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Proposition 1. If u is a solution to (1.1) on [−1, 1] with ‖u‖
L

2(p−1)
t,x ([−1,1]×R3)

≤ ε(A), 

where (u0, u1) ∈ B
3/2+sc

1,1 × B
1/2+sc

1,1 with A = ‖u0‖
B

3/2+sc
1,1

+ ‖u1‖
B

1/2+sc
1,1

, then

∑

j

2jsc‖Pju‖L∞
t L2

x([−1,1]×R3) � A. (2.15)

Proof. Using the Strichartz estimates in Theorem 7, if (q, r) and (q̃, ̃r) are given by (2.7),

2jsc‖Pju‖L∞
t L2

x([−1,1]×R3) + ‖Pju‖
L

2(p−1)
t,x ∩Lq

t Lr
x([−1,1]×R3)

+ 2j(sc− 1
2 )‖Pju‖L4

t,x([−1,1]×R3)

+2−j(1−sc)/2‖Pju‖
L

4q
2+q
t L2r

x ([−1,1]×R3)
� 2jsc‖Pju0‖L2 + 2j(sc−1)‖Pju1‖L2

+2−j(1−sc)/2‖PjF1‖
L

4q
3q+2
t L

2r
r+1
x ([−1,1]×R3)

+ 2j(sc− 1
4 )‖PjF2‖

L
8/5
t L

8/7
x ([−1,1]×R3)

,

(2.16)

where PjF1 + PjF2 = Pj(|u|p−1u) is a decomposition of the nonlinearity. Using Taylor’s 

theorem, decompose

F1 = |P≤ju|p−1(P≤ju), F2 = |u|p−1u − |P≤ju|p−1(P≤ju) = O(|u|p−1|P≥ju|).

(2.17)

Proposition 1 follows directly from (2.16) and u0 ∈ B
sc+3/2
1,1 , u1 ∈ B

sc+1/2
1,1 . Indeed,

‖F1‖
L

4q
3q+2
t L

2r
r+1
x ([−1,1]×R3)

� ‖P≤ju‖p−1

L
2(p−1)
t,x ([−1,1]×R3)

‖P≤ju‖
L

4q
q+2
t L2r

x ([−1,1]×R3)
, (2.18)

and

‖F2‖
L

8/5
t L

8/7
x ([−1,1]×R3)

� ‖P≥ju‖
L8

t L
8/3
x ([−1,1]×R3)

‖u‖p−1

L
2(p−1)
t,x ([−1,1]×R3)

, (2.19)

so by Young’s inequality and (2.16), the proof of Proposition 1 is complete. Indeed, 

letting Xj denote the left hand side of (2.16),

Xj �2jsc‖Pju0‖L2 + 2j(sc−1)‖Pju1‖L2

+ εp−1
∑

k≥j

2(j−k)(sc− 1
4 )Xk + εp−1

∑

k≤j

2(k−j) (1−sc)
2 Xk, (2.20)

which implies (2.15). �

The dispersive estimates (1.12) also give additional Lq
t Lr

x bounds on the solution u

in [−1, 1] that lie outside the admissible pairs in Theorem 7. These estimates fail at the 

endpoint p = 3, which is the main technical obstacle to proving scattering in the cubic 

case.
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Theorem 8. For 3 < p < 5, if 1
q = 3

2 − sc = 2
p−1 ,

‖u‖Lq
t L∞

x ([−1,1]×R3) +
∑

j

2j(sc− 1
2 ) sup

t∈[−1,1]

t‖Pju‖L∞ � ε. (2.21)

Proof. Using the dispersive estimate

‖S(t)(u0, u1)‖L∞ �
1

t
‖(u0, u1)‖B2

1,1×B1
1,1

, (2.22)

for any j ∈ Z,

‖S(t)(Pju0, Pju1)‖L∞ �
1

t
2−j(sc− 1

2 )[2j( 3
2 +sc)‖Pju0‖L1 + 2j( 1

2 +sc)‖Pju1‖L1 ]. (2.23)

Interpolating (2.23) with

‖S(t)(Pju0, Pju1)‖L∞ � 2j( 3
2 −sc)‖(Pju0, Pju1)‖Ḣsc ×Ḣsc−1 , (2.24)

and making use of (2.8) and (2.10), we have proved

∑

j

sup
t∈[−1,1]

t
3
2 −sc‖S(t)(Pju0, Pju1)‖L∞ +

∑

j

‖S(t)(Pju0, Pju1)‖Lq
t L∞

x (R×R3)

+
∑

j

2j(sc− 1
2 ) sup

t∈[−1,1]

t‖S(t)(Pju0, Pju1)‖L∞ � ε.
(2.25)

Turning to the second term in (1.19) and using the formula for the solution to the 

linear wave equation in R3, see for example [18], for any x ∈ R
3,

|S(t − τ)(0, |u|p−1u)(x)| �
1

|t − τ |

ˆ

∂B(x,t−τ)

|u(y, τ)|pdσ(y). (2.26)

Once again, split

Pj(|u|p−1u) = PjF1 + PjF2, F1 = |P≤ju|p−1(P≤ju), F2 = O(|P≥ju||u|p−1).

(2.27)

Plugging F2 into (2.26), for any t ∈ [−1, 1], x ∈ R
3,

|

t
2
ˆ

0

S(t − τ)(0, PjF2)(t, x)dτ | �
1

t
‖|u|

p−1
2 ‖L1

τ L∞
x ([0, t

2 ]×R3)

· sup
τ∈[0, t

2 ]

(

ˆ

∂B(x,t−τ)

|u(τ, y)|p−1dσ(y))1/2 · sup
τ∈[0, t

2 ]

(

ˆ

∂B(x,t−τ)

|P≥ju(τ, y)|2dy)1/2.

(2.28)
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By an argument similar to the Sobolev embedding theorem, for any k ∈ Z,

ˆ

∂B(x,t−τ)

|Pku(y, τ)|p−1dσ(y) � 2k‖Pku‖p−1
Lp−1 . (2.29)

Remark 2. To see why this is so, recall that the Littlewood–Paley kernel for Pk may be 

approximated by 23k multiplied by the characteristic function of a ball of radius 2−k. 

Then consider the cases when 2−k ≤ |t − τ | and 2−k > |t − τ | separately. Indeed, for 

|t − τ | � 2−k, there exists some C such that

ˆ

∂B(x,t−τ)

|Pku(y, τ)|p−1dσ(y)

� 23k|t − τ |2
ˆ

B(x,C2−k)

|Pku(τ, y)|p−1dy � 2k‖Pku(τ)‖p−1
Lp−1 . (2.30)

Meanwhile, for |t − τ | � 2−k,

ˆ

∂B(x,t−τ)

|Pku(y, τ)|p−1dσ(y)

� 2k

ˆ

dist(B(x,t−τ),y)≤2−k

|Pku(τ, y)|p−1dy � 2k‖Pku(τ)‖p−1
Lp−1 . (2.31)

Now, then, since the Littlewood–Paley kernel obeys the bounds

F(Pk(y)) �N 23k(1 + 2k|y|)−N , (2.32)

for any N , calculations similar to (2.30) and (2.31) imply (2.29). Indeed, for any l ∈ Z, 

l ≥ 0, (2.30) and (2.31) imply,

2−Nl2k

ˆ

dist(B(x,t−τ))≤2l−k

|Pku(τ, y)|p−1dy � 2−Nl2k‖Pku(τ)‖p−1
Lp−1 ,

which can easily be summed in l.
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Plugging (2.29) into (2.28), by Young’s inequality and (2.15),

∑

j

2j(sc− 1
2

) sup
t∈[−1,1]

t‖

t
2
ˆ

0

S(t − τ)(0, PjF2)dτ‖L∞

� ‖u‖
p−1

2

L
p−1

2
t L∞

x ([−1,1]×R3)

∑

j

2j(sc− 1
2

) · sup
τ∈[−1,1]

(

ˆ

∂B(x,t−τ)

|u(τ, y)|p−1dσ(y))1/2

· sup
τ∈[−1,1]

(

ˆ

∂B(x,t−τ)

|P≥ju(τ, y)|2dy)1/2

� ‖u‖
p−1

2

L
p−1

2
t L∞

x ([−1,1]×R3)

∑

j

2j(sc− 1
2

) sup
t∈[−1,1]

(
∑

l

2l‖Plu(t)‖p−1

L
p−1
x

)1/2(
∑

l≥j

2l‖Plu(t)‖2
L2 )1/2

� ‖u‖
p−1

2

L
p−1

2
t L∞

x ([−1,1]×R3)

A
p+1

2 .

(2.33)

Meanwhile, since by Bernstein’s inequality,

Pj(F1) ∼ 2−j∇PjF1 ∼ 2−j |P≤ju|p−1|∇P≤ju|, (2.34)

|

t
2
ˆ

0

S(t − τ)(0, PjF1)(t, x)dτ | �
2−j

t
‖|u|

p−1
2 ‖L1

τ L∞
x ([0, t

2 ]×R3)

· sup
τ∈[0, t

2 ]

(

ˆ

B(x,t−τ)

|u(τ, y)|p−1dσ(y))1/2 · sup
τ∈[0, t

2 ]

(

ˆ

B(x,t−τ)

|∇P≤ju(τ, y)|2dy)1/2,

(2.35)

and therefore,

∑

j

2j(sc− 1
2 ) sup

t∈[−1,1]

t‖

t
2
ˆ

0

S(t − τ)(0, Pj |u|p−1u)dτ‖L∞ � ‖u‖
p−1

2

L
p−1

2
t L∞

x ([−1,1]×R3)

A
p+1

2 .

(2.36)

For τ ∈ [ t
2 , t], energy estimates and the Sobolev embedding theorem imply,

‖S(t − τ)(0, Pj(|u|p−1u))‖L6 �
1

t2
( sup
τ∈[ t

2 ,t]

τ · ‖|u(τ)|
p−1

2 ‖L∞
x (R3))

2 sup
τ∈[ t

2 ,t]

‖P≥ju‖L2

+
2−j

t2
( sup
τ∈[ t

2 ,t]

τ · ‖|u(τ)|
p−1

2 ‖L∞
x (R3))

2‖P≤j∇u‖L2 .

(2.37)

Therefore, by Young’s inequality, the Sobolev embedding theorem, and Proposition 1,

∑

j

2j(sc−1/2) sup
t∈[−1,1]

t‖

t
ˆ

t/2

S(t − τ)Pj(0, |u|p−1u)dτ‖L∞
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� ( sup
t∈[−1,1]

t
3
2 −sc‖u(t)‖L∞)p−1A. (2.38)

Combining (2.9), (2.23), (2.36), and (2.38),

∑

j

2j(sc− 1
2 ) sup

t∈[−1,1]

t‖Pju(t)‖L∞ �
∑

j

2j(sc− 1
2 ) sup

t∈[−1,1]

t‖PjS(t)(u0, u1)‖L∞

+‖u‖
p−1

2

L
p−1

2
t L∞

x ([−1,1]×R3)

A
p+1

2 + ( sup
t∈[−1,1]

t
3
2 −sc‖u(t)‖L∞)p−1A

+
∑

j≥0

(2j(sc+ 3
2 )‖Pju0‖L1 + 2j(sc+ 1

2 )‖Pju1‖L1) +
∑

j≥0

(23j‖Pju0‖L1 + 22j‖Pju1‖L1)

+‖u‖
p−1

2

L
p−1

2
t L∞

x ([−1,1]×R3)

A
p+1

2 + ( sup
t∈[−1,1]

t
3
2 −sc‖u(t)‖L∞)p−1A

� ε + ‖u‖
p−1

2

L
p−1

2
t L∞

x ([−1,1]×R3)

A
p+1

2 + ( sup
t∈[−1,1]

t
3
2 −sc‖u(t)‖L∞)p−1A.

(2.39)

Now then, for any 3 < p < 5, Proposition 1, (2.10), (2.11), and the Sobolev embedding 

theorem imply

∑

j

‖Pju‖
L

p−1
2

t L∞
x ([−1,1]×R3)

+
∑

j

sup
t∈[−1,1]

t
3
2 −sc‖Pju‖L∞

x (R3)

� ε
p−3
p−1 (

∑

j

2j(sc− 1
2 ) sup

t∈[−1,1]

t‖Pju(t)‖L∞)
2

p−1 . (2.40)

Combining (2.39) with (2.40) proves the Theorem. �

Theorem 8 implies finite energy for a piece of the Duhamel term.

Corollary 1. For any t ∈ [−1, 1],

t
ˆ

t/2

‖up(τ)‖L2dτ �
Ap

t1−sc
. (2.41)

Proof. Use the energy estimate in (2.37). �

In the cubic case, Theorem 8 is out of reach, but we are still able to prove some decay 

estimates.

Proposition 2. For all t ∈ [−1, 1],

sup
t∈[−1,1]

t1/2‖u(t)‖L6 � A. (2.42)
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Proof. Interpolating the dispersive estimate

‖S(t)(u0, u1)‖L∞ �
1

t
‖(u0, u1)‖B2

1,1×B1
1,1

�
A

t
, (2.43)

with the trivial bound

‖S(t)(u0, u1)‖L3 � ‖(u0, u1)‖Ḣ1/2×Ḣ1/2 � A, (2.44)

gives the dispersive estimate

‖S(t)(u0, u1)‖L6 �
A

t1/2
. (2.45)

Next, by dispersive estimates,

‖

t
ˆ

0

S(t − τ)(0, u3)dτ‖L6 �

t
ˆ

0

1

|t − τ |2/3
‖|∇|1/3u3‖L6/5dτ. (2.46)

Then by the fractional product rule,

‖

t
ˆ

0

S(t − τ)(0, u3)dτ‖L6 �

t
ˆ

0

1

|t − τ |2/3
‖|∇|1/2u‖

2/3
L2 ‖u‖

2/3
L4 ‖u‖

4/3
L6 ‖u‖

1/3
L3 dτ. (2.47)

Plugging (2.9) into (2.47),

‖

t
ˆ

0

S(t − τ)(0, u3)dτ‖L6 � A

t
ˆ

0

1

|t − τ |2/3
‖u(τ)‖

2/3
L4 ‖u(τ)‖

4/3
L6 dτ

�A ε1/6( sup
t∈[−1,1]

t1/2‖u(τ)‖L6)4/3. (2.48)

In the last line, we used the fact that ‖u‖L4
t,x([−1,1]×R3) �A ε. This follows from (2.8)

and (2.9). By (2.8) and Strichartz estimates,

‖S(t)(P≥j0
u0, P≥j0

u1)‖L4
t,x

� ε. (2.49)

Meanwhile, by the Sobolev embedding theorem and (2.9),

‖S(t)(P≤j0
u0, P≤j0

u1)‖L∞
t L6

x
� 2j0/2(‖P≤j0

u0‖Ḣ1/2 + ‖P≤j0
u1‖Ḣ−1/2) � ε. (2.50)

Therefore,

‖S(t)(u0, u1)‖L4
t,x([−1,1]×R3) �A ε, (2.51)
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which by small data arguments implies ‖u‖L4
t,x([−1,1]×R3) �A ε, for ε(A) > 0 sufficiently 

small. Choosing ε(A) > 0 sufficiently small, combined with (2.45), gives (2.42). �

Then by direct computation,

Corollary 2. For any t ∈ [−1, 1],

t
ˆ

t/2

‖u3(τ)‖L2dτ �
A3

t1/2
. (2.52)

An argument similar to Proposition 2 also proves u ∈ L2
t L6

x([−1, 1] × R
3) in the cubic 

case.

Proposition 3.

∑

j

‖Pju‖L2
t L6

x([−1,1]×R3) � A3. (2.53)

Proof. Interpolating

‖S(t)Pk(u0, u1)‖L∞ �
1

t
(22k‖Pku0‖L1 + 2k‖Pku1‖L1), (2.54)

with

‖S(t)Pk(u0, u1)‖L2 � 2−k/2(‖Pku0‖Ḣ1/2 + ‖Pku1‖Ḣ−1/2)

� 2−k/2(22k‖Pku0‖L1 + 2k‖Pku1‖L1), (2.55)

implies that

‖S(t)Pk(u0, u1)‖L6 �
2−k/6

t2/3
(22k‖Pku0‖L1 + 2k‖Pku1‖L1). (2.56)

Since the Sobolev embedding theorem implies that

‖S(t)Pk(u0, u1)‖L6 � 2k/2‖Pk(u0, u1)‖Ḣ1/2×Ḣ−1/2

� 2k/2(22k‖Pku0‖L1 + 2k‖Pku1‖L1). (2.57)

Therefore,

∑

k

‖S(t)Pk(u0, u1)‖L2
t L6

x
� A. (2.58)
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Now then, plugging in Propositions 1 and 2,

‖

t
ˆ

0

S(t − τ)(0, Pk(u3))dτ‖L6 � 2k/3

t
ˆ

0

1

|t − τ |2/3
‖P≥k−3u‖L36/17‖u‖

11/6
L6 ‖u‖

1/6
L3 dτ

�A 2−k/12(
∑

j≥k−3

2
5

12 (k−j)2j/2‖Pju‖L∞
t L2

x([−1,1]×R3))

t
ˆ

0

1

|t − τ |2/3
·

1

|τ |11/12
dτ

�A
2−k/12

t1/12

1

t1/2
(

∑

j≥k−3

2
5

12 (k−j)2j/2‖Pju‖L∞
t L2

x([−1,1]×R3)).

(2.59)

Also, by the Sobolev embedding theorem and the proof of Proposition 2,

‖

t
ˆ

0

S(t − τ)(0, Pk(u3))dτ‖L6
x([−1,1]) �A 2k/2‖Pku‖L∞

t Ḣ1/2([−1,1]×R3). (2.60)

Summing up (2.58), (2.59), and (2.60) using Young’s inequality,

∑

k

‖Pju‖L2
t L6

x([−1,1]×R3) �A 1. � (2.61)

Proposition 4.

∑

j

2j/3 sup
t∈[−1,1]

t1/3‖Pju‖L3 �A 1. (2.62)

Proof. Again using dispersive estimates and the Sobolev embedding theorem,

2k/3‖

t
ˆ

0

S(t − τ)(0, Pk(u3))dτ‖L3 �

t
ˆ

0

2k/2

|t − τ |1/3
‖P≥k−3u(t)‖L2‖u‖2

L6dτ. (2.63)

Splitting this integral into two pieces, by Proposition 3,

t/2
ˆ

0

2k/2

|t − τ |1/3
‖P≥k−3u(t)‖L2‖u‖2

L6dτ

� t−1/3(
∑

j≥k−3

2j/22
k−j

2 ‖Pju‖L∞
t L2

x
)‖u‖2

L2
t L6

x([−1,1]×R3)

�A t−1/3(
∑

j≥k−3

2j/22
k−j

2 ‖Pju‖L∞
t L2

x
).

(2.64)

Meanwhile, by Proposition 2,
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t
ˆ

t/2

2k/2

|t − τ |1/3
‖P≥k−3u(t)‖L2‖u‖2

L6dτ �A (
∑

j≥k−3

2j/22
k−j

2 ‖Pju‖L∞
t L2

x
)

t
ˆ

t/2

1

τ

1

|t − τ |1/3
dτ

�A t−1/3(
∑

j≥k−3

2j/22
k−j

2 ‖Pju‖L∞
t L2

x
).

(2.65)

Therefore, by Young’s inequality and Proposition 1, the proof is complete. �

Remark 3. For the rest of the paper, we will wish to study long time behavior for the 

nonlinear wave equation. All of the above estimates also hold for small data solutions to

(1.1), as well as free solutions of the form

1/2
ˆ

0

S(t − τ)(0, |u|p−1u)dτ, (2.66)

even when t > 1. We will frequently use this fact in the rest of the paper.

3. Proof of global well-posedness for 3 < p < 5

By time reversal symmetry and local well-posedness on the interval [−1, 1], to prove 

global well-posedness, it suffices to prove global well-posedness in the positive time di-

rection, t > 1 for (1.1) with initial data (u(1, x), ut(1, x)). The local well-posedness 

arguments used to prove Theorem 1 imply that (1.1) has a solution on some open in-

terval [0, T ) for some T > 1, so to prove global well-posedness it suffices to show that T

can be taken to go to infinity.

Split

(

u(1, x)
ut(1, x)

)

=S(1)(u0, u1)

+

1/2
ˆ

0

S(1 − τ)(0, |u|p−1u)dτ +

1
ˆ

1/2

S(1 − τ)(0, |u|p−1u)dτ. (3.1)

By Corollary 1, the second Duhamel term has finite energy.

‖

(

v(1, x)
vt(1, x)

)

‖Ḣ1×L2 = ‖

1
ˆ

1/2

S(1 − τ)(0, |u|p−1u)dτ‖Ḣ1×L2 �A 1. (3.2)

Now let u be the solution to (1.1) on [1, T ). Split u = v + w, where v solves

vtt − ∆v + |u|p−1u = 0, (3.3)
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on [1, T ) with initial data given by (3.2), and

wtt − ∆w = 0, w(1, x) = u(1, x) − v(1, x), wt(1, x) = ut(1, x) − vt(1, x). (3.4)

Set

E(v) =

ˆ

[
1

2
|vt|

2 +
1

2
|∇v|2 +

1

p + 1
|v|p+1]dx, (3.5)

and compute

d

dt
E(v) = 〈vt, −|u|p−1u + |v|p−1v〉. (3.6)

By Taylor’s theorem,

|u|p−1u − |v|p−1v = p|v|p−1w + O(|w|2|v|p−2) + O(|w|p). (3.7)

By Hölder’s inequality,

〈O(|w|2|v|p−2), vt〉 � ‖vt‖L2‖v‖p−2
Lp+1‖w‖

p−1
2

L∞ ‖w‖
5−p

2

Lp+1 � E(v(t))
1
2 + p−2

p+1 ‖w‖
p−1

2

L∞ ‖w‖
5−p

2

Lp+1 .

(3.8)

Interpolating (2.21) with ‖w‖
L

3(p−1)
2

� ‖w‖Ḣsc �A 1, proves ‖w‖Lp+1 �A 1. Also,

〈|w|p, vt〉 � ‖vt‖L2‖w‖
p−1

2

L∞ ‖w‖
p+1

2

Lp+1 � E(v(t))1/2‖w‖
p−1

2

L∞ ‖w‖
p+1

2

Lp+1 . (3.9)

If we could ignore the term

〈vt, p|v|p−1w〉, (3.10)

then E(v(t)) would be uniformly bounded on R by Gronwall’s inequality. Indeed, by

(2.21),

T̂

1

E(v(t))
1
2 + p−2

p+1 ‖w‖
p−1

2

L∞ ‖w‖
5−p

2

Lp+1dt +

ˆ

E(v(t))1/2‖w‖
p−1

2

L∞ ‖w‖
p+1

2

Lp+1dt

� sup
t∈[1,T )

εE(v(t))
1
2 + p−2

p+1 + sup
t∈[1,T )

εE(v(t))1/2,

(3.11)

which implies a uniform bound on E(v(t)).

To deal with the contribution of (3.10), take the modified energy

E(v(t)) = E(v(t)) + 〈|v|p−1v, w〉. (3.12)

Then (3.6) and (3.7) imply
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d

dt
E(v(t)) = 〈vt, −|u|p−1u + |v|p−1v〉 + 〈p|v|p−1w, vt〉 + 〈|v|p−1v, wt〉

= 〈|v|p−1v, wt〉 + O(E(v(t))
1
2 + p−2

p+1 ‖w‖
2

p−1

L∞ ‖w‖
5−p

2

Lp+1) + O(E(v(t))1/2‖w‖
p−1

2

L∞ ‖w‖
p+1

2

Lp+1).

(3.13)

Remark 4. In the last line we use the fact that

−|u|p−1u + |v|p−1v + p|v|p−1w = O(|w|2|v|p−2) + O(|w|p).

Also,

〈|v|p−1v, w〉 � ‖v‖p
Lp+1‖w‖Lp+1 � E(v(t))

p
p+1 , (3.14)

so when E(v(t)) is large,

E(v(t)) ∼ E(v(t)), (3.15)

and

d

dt
E(v(t)) =〈|v|p−1v, wt〉 + O(E(v(t))

1
2 + p−2

p+1 ‖w‖
2

p−1

L∞ ‖w‖
5−p

2

Lp+1)

+ O(E(v(t))1/2‖w‖
p−1

2

L∞ ‖w‖
p+1

2

Lp+1). (3.16)

Splitting wt =
∑

j Pjwt,

〈|v|p−1v, wt〉 =
∑

j

〈Pj(|v|p−1v), Pjwt〉. (3.17)

Now by Bernstein’s inequality and (2.21),

∑

j

〈Pj(|v|p−1v − |P≤jv|p−1(P≤jv)), Pjwt〉

�
∑

j

‖Pjwt‖L∞‖P≥jv‖
L

p+1
2

‖v‖p−1
Lp+1 �

ε

t
E(v(t)). (3.18)

Indeed, by (2.21) and the fact that since w is a solution to the linear wave equation, 

when t > 1, and thus, ‖Pjwt‖L∞ ∼ 2j‖Pjw‖L∞ ,

∑

j

2j(sc− 1
2 )2−j‖Pjwt‖L∞ �

ε

t
. (3.19)

Meanwhile, by Bernstein’s inequality, for any fixed j ∈ Z,
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ε

t
2j2−j(sc− 1

2 )‖P≥jv‖
L

p+1
2

‖v‖p−1
Lp+1 �

ε

t
2j( 3

2 −sc)‖P≥jv‖
2

p−1

L2 ‖v‖
p−3
p−1 +p−1

Lp+1

�
ε

t
‖∇v‖

2
p−1

L2 ‖v‖
(p−2)(p+1)

p−1

Lp+1 �
ε

t
E(v(t)). (3.20)

Also, by Bernstein’s inequality,

∑

j

〈Pj(|P≤jv|p−1(P≤jv), Pjwt〉

�
∑

j

2−j( 2
p−1 )‖∇v‖

2
p−1

L2 ‖Pjwt‖L∞‖v‖
(p+1) p−2

p−1

Lp+1 �
ε

t
E(v(t)). (3.21)

Therefore, by Gronwall’s inequality,

E(v(t)) < ∞, and E(v(t)) < ∞, (3.22)

for any t ∈ R. This proves global well-posedness.

4. Proof of global well-posedness in the cubic case

The argument for global well-posedness for the cubic wave equation

utt − ∆u + u3 = 0, u(0, x) = u0, ut(0, x) = u1, (4.1)

is similar.

Theorem 9. Equation (4.1) is globally well-posed for initial data u0 ∈ B2
1,1 and u1 ∈ B1

1,1.

Proof of Theorem 9. Again by time reversal symmetry and local well-posedness on the 

interval [−1, 1], to prove Theorem 9, it suffices to prove global well-posedness in the 

positive time direction, t > 1 for (1.1) with initial data (u(1, x), ut(1, x)).

Again, split

(

u(1, x)
ut(1, x)

)

= S(1)(u0, u1) +

1/2
ˆ

0

S(1 − τ)(0, u3)dτ +

1
ˆ

1/2

S(1 − τ)(0, u3)dτ. (4.2)

By Proposition 2, the second Duhamel term has finite energy. Indeed,

‖

(

v(1, x)
vt(1, x)

)

‖Ḣ1×L2 = ‖

1
ˆ

1/2

S(1 − τ)(0, u3)dτ‖Ḣ1×L2 �

1
ˆ

1/2

‖u(τ)‖3
L6dτ �A 1. (4.3)

Now suppose v solves

vtt − ∆v + u3 = 0, (4.4)
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on [1, T ) with initial data given by (4.2), and u = v + w, where

wtt − ∆w = 0, w(1, x) = u(1, x) − v(1, x), wt(1, x) = ut(1, x) − vt(1, x). (4.5)

Computing,

d

dt
E(v) = 〈vt, −u3 + v3〉 � ‖vt‖L2‖v2w‖L2 + ‖vt‖L2‖vw2‖L2 + ‖vt‖L2‖w3‖L2 . (4.6)

By Proposition 2,

‖w3‖L2 � ‖w‖3
L6 �A

1

t3/2
, (4.7)

so

‖vt‖L2‖w3‖L2 �A
1

t3/2
E(v(t))1/2. (4.8)

Also, by Proposition 2,

‖vw2‖L2 � ‖v‖L6‖w‖2
L6 �

1

t
E(v)1/2, (4.9)

so

‖vt‖L2‖vw2‖L2 �
1

t
E(v(t)). (4.10)

Next, split

S(t − 1)S(1)(u0, u1) +

1/2
ˆ

0

S(t − τ)(0, u3)dτ = w1 + w2. (4.11)

By the dispersive estimate (1.12),

‖S(t − 1)S(1)(u0, u1)‖L∞ �A
1

t
, (4.12)

so

‖v2w1‖L2 � ‖v‖2
L4‖w1‖L∞ �A

1

t
E(v(t)))1/2. (4.13)

To control the term ‖w2v2‖L2 , split w2 = w21 + w22,

w21 =

E(t)−κ
ˆ

0

S(t − τ)(0, u3)dτ, w22 =

1/2
ˆ

E(t)−κ

S(t − τ)(0, u3)dτ, (4.14)
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for some κ > 0 to be specified later. Following (2.47),

‖w21‖L6 �

E(t)−κ
ˆ

0

1

|t − τ |2/3
‖|∇|1/2u‖

2/3
L2 ‖u‖

4/3
L4 ‖u‖L6dτ �A

1

t2/3
E(t)−κ/6. (4.15)

Taking κ = 3,

‖w21 · v2‖L2 � ‖w21‖L6‖v‖2
L6 �A

1

t2/3
E(t)1/2. (4.16)

Following (2.26)–(2.32),

|S(t − τ)(0, u3)(x)| �
1

|t − τ |

ˆ

∂B(x,t−τ)

|u(y, τ)|3dσ(y), (4.17)

and

ˆ

∂B(x,t−τ)

|Pku(y, τ)|3dσ(y) � 2k‖Pku‖3
L3 . (4.18)

Therefore, by (2.62),

ˆ

∂B(x,t−τ)

|u(τ, y)|3dσ(y) � (
∑

k

(

ˆ

∂B(x,t−τ)

|Pku|3dσ(y))1/3)3

� (
∑

k

2k/3‖Pku‖L3)3 �A
1

τ
,

so

‖w22(t)‖L∞ �A

1/2
ˆ

E(t)−κ

1

τ

1

|t − τ |
dτ �

1

t
ln(E), (4.19)

and

‖w22v2‖L2 �
1

t
ln(E(v(t)))‖v‖2

L4 �
1

t
ln(E(v(t)))E(v(t)). (4.20)

Therefore, since we are only concerned with E large,

d

dt
E �

1

t
E +

ln(t)

t
ln(E) · E +

1

t2
�

ln(t)

t
ln(E)E +

1

t2
. (4.21)

Doing some algebra,
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1

E

d

dt
E =

d

dt
ln(E) �

ln(t)

t
ln(E) +

1

E

1

t2
. (4.22)

1

ln(E)

d

dt
ln(E) =

d

dt
ln(ln(E)) �

ln(t)

t
+

1

E ln(E)
·

1

t2
. (4.23)

Therefore,

ln(ln(E(T ))) � ln(T )2 + C. (4.24)

Therefore,

E(T ) � exp(exp(C + C ln(T )2)). (4.25)

This proves Theorem 9. �

5. Scattering

To prove scattering, we make use of the conformal energy of a wave equation in [20]

and [22]. See also [23]. Indeed, if v solves

vtt − ∆v + |v|p−1v = 0, (5.1)

then define the conformal energy,

E(t) =
1

4
〈(t + |x|)Lv + 2v, (t + |x|)Lv + 2v〉 +

1

4
〈(t − |x|)Lv + 2v, (t − |x|)Lv + 2v〉

+
1

2

ˆ

(t2 + |x|2)|��∇v|2dx +
1

p + 1

ˆ

(t2 + |x|2)|v|p+1dx,

(5.2)

where L = ∂t + x
|x| · ∇ and L = ∂t − x

|x| · ∇.

By direct computation,

d

dt
E(t) =

8

p + 1
t

ˆ

|v|p+1dx − 2t

ˆ

|v|p+1dx. (5.3)

Therefore, when p ≥ 3, 0 ≤ E(t) ≤ E(0), which implies

‖u‖Lp+1
t,x (R×R3) < ∞, (5.4)

when E(0) < ∞, since ‖v(t, ·)‖Lp+1 � E(0)
1

p+1 t− 2
p+1 . Combining (5.4) with the usual 

conservation of energy implies scattering.

Usually, if (u0, u1) ∈ B
sc+ 3

2
1,1 × B

sc+ 1
2

1,1 , it is not true that E(0) < ∞. Therefore, we 

make an argument similar to the argument in [5] and [7] to prove scattering.
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Theorem 10. Let r satisfy

1

r
=

2

p − 1
−

3

p + 1
. (5.5)

Then,

‖v‖Lr
t Lp+1

x (R×R3) < ∞. (5.6)

Remark 5. Notice that when p = 3, which is the conformal case, r = p + 1, and when 

p = 5, the energy-critical case, r = ∞.

Proof. It is clear from Theorem 8 that (5.6) holds for the interval [−1, 1]. Therefore, by 

time reversal symmetry, it suffices to show that (5.6) holds on the interval [1, ∞). By 

interpolation, (5.6) follows from

∞̂

1

1

t2(sc− 1
2 )

‖v(t)‖p+1
Lp+1dt < ∞, (5.7)

and

sup
t≥1

t2(1−sc)‖v(t)‖p+1
Lp+1 < ∞. (5.8)

As in the proof of global well-posedness, decompose the initial data

u|t=1 = v0 + w0, ∂tu(t, ·)|t=1 = v1 + w1, (5.9)

where this time,

v0 = Ç(
x

R
)P≤j0

u|t=1, v1 = Ç(
x

R
)P≤j0

∂tu(t, ·)|t=1. (5.10)

In this case, j0 satisfies (2.9) and (2.10). Here Ç ∈ C∞
0 (R3) is a smooth cutoff function, 

Ç(x) = 1 for |x| ≤ 1, and Ç(x) = 0 for |x| > 2. Also, R is chosen so that

‖w0‖Ḣsc (R3) + ‖w1‖Ḣsc−1(R3) ≤ ε � 1. (5.11)

Now, let u = v + w, where v and w solve,

vtt − ∆v + |u|p−1u − |w|p−1w = 0, v(0, x) = v0, vt(0, x) = v1,

wtt − ∆w + |w|p−1w = 0, w(0, x) = w0, wt(0, x) = w1,
(5.12)

starting from t = 1. Then by (5.2) and (5.3),
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d

dt
E(t) =

8t

p + 1

ˆ

|v|p+1dx − 2t

ˆ

|v|p+1dx

−
1

2
〈(t + |x|)Lv + 2v, (t + |x|){|u|p−1u − |v|p−1v − |w|p−1w}〉

−
1

2
〈(t − |x|)Lv + 2v, (t − |x|){|u|p−1u − |v|p−1v − |w|p−1w}〉.

(5.13)

Again by Taylor’s theorem, as in (3.7),

|u|p−1u − |v|p−1v − |w|p−1w = p|v|p−1w + O(|w|2|v|p−2) + O(|v||w|p−1). (5.14)

Furthermore, by finite propagation speed, v is supported on the set {x : |x| ≤ t + R}.

Remark 6. This is the main reason for the difference between (5.12) and (3.3). Here, we 

seek to take advantage of finite propagation speed when computing (5.13).

As in section three,

〈(t + |x|)Lv + 2v, (t + |x|)|w|2|v|p−2〉

� (t + R)‖(t + |x|)Lv + 2v‖L2‖v‖p−2
Lp+1‖w‖

5−p
2

Lp+1‖w‖
p−1

2

L∞ . (5.15)

Modifying the proof of Theorem 8 to a small data result,

‖w‖
p−1

2

L∞ �
ε

t
. (5.16)

Remark 7. This is why we cannot use the methods in this paper to prove scattering in 

the p = 3 case, since in that case we would have ln(t)
t decay (as in (4.21)), which is not 

enough.

Therefore, for t ≥ 1,

(t + R)‖(t + |x|)Lv + 2v‖L2‖v‖p−2
Lp+1‖w‖

5−p
2

Lp+1‖w‖
p−1

2

L∞

�R E(t)1/2‖v‖p−2
Lp+1‖w‖

5−p
2

Lp+1 �
E(t)

1
2 + p−2

p+1

t
2(p−2)

p+1

‖w‖
5−p

2

Lp+1 . (5.17)

By Proposition 1 and Theorem 8,

‖w‖Lr
t Lp+1

x (R×R3) � ε, (5.18)

where r satisfies (5.5). Furthermore,

Lemma 1. If w solves (5.12), and (w0, w1) has B
sc+3/2
1,1 × B

sc+1/2
1,1 norm of size ε � 1, 

and 1
2 ≤ sc < 1,
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∞̂

1

1

t2(sc− 1
2 )

‖w(t)‖p+1
Lp+1dt � εp+1. (5.19)

Proof. By direct computation, using Theorem 8,

∞̂

1

1

t2(sc− 1
2 )

‖Pjw‖p+1
Lp+1dt �

∞̂

1

1

t2(sc− 1
2 )

‖Pjw‖2
L2‖Pjw‖p−1

L∞ dt

� a
p+1
j

∞̂

1

1

t2(sc− 1
2 )

2−2jsc inf{(2j( 3
2 −sc))p−1, (

2−j(sc− 1
2 )

t
)p−1}dt � a

p+1
j ,

(5.20)

where

aj = 2j(sc− 1
2 ) sup

t
|t|‖Pjw‖L∞ + 2jsc‖Pjw‖L∞

t L2
x
,

∑

aj � ε. � (5.21)

Following the computations in [7],

∞̂

1

1

t2(sc− 1
2 )

1

t2

t
ˆ

1

E(τ)
1
2 + p−2

p+1

τ
2(p−2)

p+1

‖w‖
5−p

2

Lp+1dτdt �

∞̂

1

1

t2(sc− 1
2 )

E(t)
1
2 + p−2

p+1

t1+ 2(p−2)
p+1

(‖w(t)‖p+1

Lp+1
x

)
5−p

2(p+1) dt

� (

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt)

1
2 + p−2

p+1 (

∞̂

1

1

t2(sc− 1
2 )

‖w(t)‖p+1
Lp+1dt)

5−p
2(p+1) .

(5.22)

Similarly,

〈(t + |x|)Lv + 2v, (t + |x|)|w|p−1|v|〉

� (t + R)‖(t + |x|)Lv + 2v‖L2‖v‖Lp+1‖w‖
p−1

2

Lp+1‖w‖
p−1

2

L∞ (5.23)

�R
E(t)

1
2 + 1

p+1

t
2

p+1

‖w‖
p−1

2

Lp+1 . (5.24)

Again by Lemma 1,

∞̂

1

1

t2(sc− 1
2 )

1

t2

t
ˆ

1

E(τ)
1
2 + 1

p+1

τ
2

p+1

‖w‖
p−1

2

Lp+1dτdt

� (

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt)

1
2 + 1

p+1 (

∞̂

1

1

t2(sc− 1
2 )

‖w(t)‖p+1

Lp+1
x

dt)
p−1

2(p+1) . (5.25)
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By (5.22) and (5.25), it only remains to compute

p

ˆ

{(t + |x|)Lv + 2v}(t + |x|)|v|p−1wdxdt, (5.26)

and

p

ˆ

{(t − |x|)Lv + 2v}(t − |x|)|v|p−1wdxdt. (5.27)

Using the computations in the proof of Theorem 8, we see that w is summable in 

Littlewood–Paley. Therefore, it suffices to compute (5.26) and (5.27) for one specific 

frequency, Pjw, provided our final estimates can be summed.

First compute

ẗ

1

(τ + |x|)|v|p−1v(Pjw)dxdτ �

t
ˆ

1

(τ + R)
E(τ)

p
p+1

τ
2p

p+1

‖Pjw‖Lp+1dτ. (5.28)

Therefore, as in (5.22)

∞̂

1

1

t2(sc− 1
2 )

t
ˆ

1

(τ + R)
E(τ)

p
p+1

τ
2p

p+1

‖Pjw‖Lp+1dτdt

� (

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt)

p
p+1 (

∞̂

1

1

t2(sc− 1
2 )

‖Pjw‖p+1

Lp+1
x

)
1

p+1 . (5.29)

Next, for (5.26) with L and (5.27) with L, we consider three areas separately, inside 

the light cone, near the boundary of the light cone, and outside the light cone. Let 

Ç ∈ C∞
0 (R3) be a radially symmetric function such that Ç(x) = 1 for |x| ≤ 9

10 and 

Ç(x) = 0 for |x| > 19
20 . Then, we decompose

(τ+|x|)Lv = Ç(
x

τ
)(τ+|x|)Lv+Ç(

τx

|x|2
)(τ+|x|)Lv+(1−Ç(

x

τ
)−Ç(

τx

|x|2
))(τ+|x|)Lv. (5.30)

Remark 8. Observe that Ç( τx
|x|2 ) is supported on |x| ≥ 20

19 τ .

By the product rule,

p

ẗ

1

Ç(
x

τ
){(τ + |x|)Lv}(τ + |x|)|v|p−1(Pjw)dxdτ

=

ẗ

1

Ç(
x

4τ
)(Pjw)(τ + |x|)2L(|v|p−1v)dxdτ. (5.31)
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If 2−j � τ , then the computations are rather easy. If we integrate by parts with L, then 

we pick up either a 1
τ multiplier or a 1

|x| multiplier, and we then proceed by the analysis 

shown below in (5.34). There is no need to split |v|p−1v.

When 2j � τ , we do decompose |v|p−1v. By Theorem 8, as in (3.18),

ẗ

1

Ç(
x

τ
)(Pjw)(τ + |x|)2L(|P≤jv|p−1(P≤jv))dxdτ

�

t
ˆ

1

2j(sc−1/2)‖τPjw‖L∞

τ
‖(t + |x|)Lv‖

2
p−1

L2 ‖(t2 + |x|2)
1

p+1 v‖
p− 2

p−1

Lp+1 dτ

�

t
ˆ

1

2j(sc−1/2)‖τPjw‖L∞

τ
E(τ)dτ +

t
ˆ

1

(τ + R)
E(τ)

p
p+1

τ
2p

p+1

‖Pjw‖Lp+1dτ.

(5.32)

By straightforward computation,

∞̂

1

1

t2(sc− 1
2 )

1

t2

t
ˆ

1

‖τPjw‖L∞

τ
E(τ)dτdt

� sup
t∈[1,∞)

2j(sc−1/2)‖tPjw‖L∞ ·

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt. (5.33)

Next, integrating by parts,

ẗ

1

Ç(
x

τ
)(Pjw)(τ + |x|)2L(|v|p−1v − |P≤jv|p−1(P≤jv))dxdτ

= −

ẗ

1

Ç(
x

τ
)L(Pjw)(τ + |x|)2{|v|p−1v − |P≤jv|p−1(P≤jv))}dxdτ

−2

ẗ

1

Ç(
x

τ
)(Pjw)(τ + |x|){|v|p−1v − |P≤jv|p−1(P≤jv))}dxdτ

−

ẗ

1

L(Ç(
x

τ
))(Pjw)(τ + |x|)2{|v|p−1v − |P≤jv|p−1(P≤jv))}dxdτ

−

ẗ

1

Ç(
x

τ
)(Pjw)(τ + |x|)2 1

|x|
{|v|p−1v − |P≤jv|p−1(P≤jv)}dxdτ

+

ˆ

Ç(
x

τ
)(Pjw)(τ + |x|)2{|v|p−1v − |P≤jv|p−1(P≤jv)}dx|τ=t

τ=1.

(5.34)
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Following (5.29),

∞̂

1

1

t2(sc− 1
2 )

1

t2
{2

ẗ

1

Ç(
x

τ
)(Pjw)(τ + |x|){|v|p−1v − |P≤jv|p−1(P≤jv))}dxdτ}dt

� (

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt)

p
p+1 (

∞̂

1

1

t2(sc− 1
2 )

‖Pjw‖p+1

Lp+1
x

dt)
1

p+1 .

(5.35)

Similarly, since (τ+|x|)2

τ � (τ + R),

ˆ

1

t2(sc− 1
2 )

1

t2
{

ẗ

1

L(Ç(
x

τ
))(Pjw)(τ + |x|)2{|v|p−1v − |P≤jv|p−1(P≤jv))}dxdτ}dt

� (

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt)

p
p+1 (

∞̂

1

1

t2(sc− 1
2 )

‖Pjw‖p+1

Lp+1
x

dt)
1

p+1 . (5.36)

Split (τ+|x|)2

|x| = τ2

|x| + O(τ + R). The contribution of the O(τ + R) term is estimated 

identically to (5.36). We set aside the contribution of

−

∞̂

1

1

t2(sc− 1
2 )

1

t2
{2

ẗ

1

Ç(
x

τ
)(Pjw)

τ2

|x|
{|v|p−1v − |P≤jv|p−1(P≤jv))}dxdτ}dt, (5.37)

for now.

Next, it is straightforward to compute

ˆ

1

t
2(sc− 1

2
)

1

t2

ˆ

χ(
x

τ
)(Pjw)(τ + |x|)2{|v|p−1v − |P≤jv|p−1(P≤jv)}dx|τ=t

τ=1dt

� (

∞̂

1

1

t
2(sc− 1

2
)

E(t)

t2
dt)

p

p+1 (

∞̂

1

1

t
2(sc− 1

2
)

‖Pjw‖p+1
Lp+1

x
dt)

1

p+1 + ‖Pjw(1)‖Lp+1 ‖v(1)‖p
Lp+1

∞̂

1

1

t
2(sc− 1

2
)

1

t2
dt

� (

∞̂

1

1

t
2(sc− 1

2
)

E(t)

t2
dt)

p

p+1 (

∞̂

1

1

t
2(sc− 1

2
)

‖Pjw‖p+1
Lp+1

x
dt)

1

p+1 + ‖Pjw(1)‖Lp+1 E(1)
p

p+1 .

(5.38)

Finally, by Bernstein’s inequality, examining the kernel of the Littlewood–Paley projec-

tion, for any N < ∞, for 2−j � τ ,

‖Ç(
x

τ
)P≥jv‖L2 � 2−j‖Ç(

x

τ
)∇v‖L2 +

2−j

τ
‖Ç′(

x

τ
)v‖L2 + ‖[P≥j , Ç(

x

τ
)]v‖L2

� 2−j‖Ç(
x

τ
)∇v‖L2 +

2−j

τ
‖v‖L2(|x|≤τ) + CN

2−j

τ
‖

1

〈2j |x|〉N
v‖L2(|x|≥τ).

(5.39)
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Now then, since

‖(τ2 + |x|2)1/2Ç(
x

τ
)∇t,xv‖L2 ∼‖(τ + |x|)Ç(

x

τ
)Lv‖L2 + ‖(τ − |x|)Ç(

x

τ
)Lv‖L2

+ ‖(τ2 + |x|2)1/2
��∇v‖L2 , (5.40)

2−j‖Ç(
x

τ
)∇v‖L2 �

2−j

τ
E(τ)1/2. (5.41)

Therefore, as in (5.33), using the proof of Theorem 8, from which we can see that the 

contribution of ∂t can be analyzed in a manner identical to the contribution of ∂r, 

‖∂tPjw‖L∞ + ‖∂rPjw‖L∞ � 2j‖Pjw‖L∞ ,

∞̂

1

1

t2(sc− 1
2 )

1

t2

ẗ

1

Ç(
x

τ
)L(Pjw)(τ + |x|)2{|v|p−1v − |P≤jv|p−1(P≤jv))}dxdτdt

�

∞̂

1

1

t2(sc− 1
2 )

1

t2

t
ˆ

1

2j(sc−1/2)‖τPjw‖L∞

τ
E(τ)dτdt

+ (

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt)

p
p+1 (

∞̂

1

1

t2(sc− 1
2 )

‖Pjw‖p+1

Lp+1
x

dt)
1

p+1 . (5.42)

The computations involving the L are virtually identical, the only difference being that 

since L = ∂t − ∂r, we have a term that is the negative of (5.37), canceling it out. Thus, 

the contribution of the Ç(x
τ ) term is complete.

For Ç( τx
|x|2 ), (5.40) also holds, so we can use the same arguments as in the Ç(x

τ ) case.

For the case when |x| is close to t, it is useful to work in the diagonal coordinates 

t − |x| = c1 and t + |x| = c2. It is also useful to let È(x
τ ) = 1 − Ç(x

τ ) − Ç( τx
|x|2 ). For any 

T , by a change of variables,

p

T̈

T
2

È(
x

t
){(t + |x|)Lv}(t + |x|)|v|p−1(Pjw)dxdt

=

ˆ

c�T

ˆ

t−|x|=c: T
2 ≤t≤T

È(
x

t
)(t + |x|)2(Pjw)L(|v|p−1v)dxdc.

(5.43)

As before, we would like to integrate by parts and move part of the L onto (Pjw)

while keeping the rest of the L on v. To do this successfully, we will need to make a 

Littlewood–Paley decomposition along the coordinates t − |x| = c. Indeed, let

1 T
2 ≤t≤T (c + |x|)v(c + |x|, x) = fc,T (x), (5.44)
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and then let P̃≤jv and P̃≥jv denote the standard Littlewood–Paley projections of fc,T (x). 

Now, compute

ˆ

t−|x|=c: T
2 ≤t≤T

È(
x

t
)(t + |x|)2(Pjw)L(|P̃jv|p−1P̃jv)dx

�
2j(sc− 1

2 )

τ
sup

τ∈[1,∞)

‖τPjw‖L∞‖(t + |x|)Lv‖
2

p−1

L2 ‖(t + |x|)
2

p+1 v‖
(p−2)(p+1)

p−1

Lp+1 ,

(5.45)

where Lr is the norm of f(c + |x|, x) on the set T
2 ≤ t ≤ T .

Remark 9. In the above computation, we are using the fact that fc,T is supported on 

the annulus of integration in (5.45). Indeed, if Ω is an annulus,

‖1ΩLP̃jfc,T ‖p+1
Lp+1 ≤ ‖LP̃jfc,T ‖p+1

Lp+1 � 2j‖fc,T ‖p+1
Lp+1 = 2j‖1Ωfc,T ‖p+1

Lp+1 .

Therefore,

ˆ

c�T

ˆ

t−|x|=c: T
2 ≤t≤T

È(
x

t
)(t + |x|)2(Pjw)L(|P̃jv|p−1P̃jv)dxdc

�

T̂

T
2

2j(sc−1/2)‖τPjw‖L∞

τ
E(τ)dτ.

(5.46)

Meanwhile, for

ˆ

c�T

ˆ

t−|x|=c: T
2 ≤t≤T

È(
x

t
)(t + |x|)2(Pjw)L(|v|p−1v − |P̃jv|p−1P̃jv)dxdc, (5.47)

we can integrate by parts, obtaining terms in the form of (5.34). The computations 

are similar for the L terms. The only potential difficulty lies in the fact that when we 

integrate by parts

ˆ

c�T

ˆ

t−|x|=c: T
2 ≤t≤T

È(
x

t
)(t − |x|)2(Pjw)L(|v|p−1v − |P̃jv|p−1P̃jv)dxdc, (5.48)

L may hit (t − |x|)2, since in this case it is not true that L(t − |x|)2 ∼ (t−|x|)2

t . However, 

this is no problem, since following (5.35),
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ˆ

c�T

ˆ

t−|x|=c: T
2 ≤t≤T

È(
x

t
)(t − |x|)(Pjw)(|v|p−1v − |P̃jv|p−1P̃jv)dxdc

� T‖Pjw‖Lp+1
t,x ([ T

2 ,T ]×R3)‖v‖p

Lp+1
t,x ([ T

2 ,T ]×R3)

� (

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt)

p
p+1 (

∞̂

1

1

t2(sc− 1
2 )

‖Pjw‖p+1
Lp+1dt)

1
p+1 .

(5.49)

Finally, it should be noted that (5.47) only includes an integral over T
2 ≤ t ≤ T , 

whereas before, our integrals were always on the interval 1 ≤ τ ≤ t. This means that we 

will pick up several boundary terms. However, the boundary terms are easily summed. 

Indeed,

1

t2

∑

k

ˆ

È(
x

τ
)(τ + |x|)2(Pjw)(|v|p−1v)dx|τ=2−kt

�
1

t2

∑

k

(2−kt)
2

p+1 E(2−kt)
p

p+1 ‖Pjw(2−kt)‖Lp+1 . (5.50)

By a straightforward change of variables, using Proposition 1 and Theorem 8,

∑

j,k

∞̂

1

1

t2(sc− 1
2 )

1

t2
(2−kt)

2
p+1 E(2−kt)

p
p+1 ‖Pjw(2−kt)‖Lp+1dt

�
∑

j,k

(

∞̂

1

1

t2(sc− 1
2 )

E(2−kt)

t2
dt)

p
p+1 (

∞̂

1

1

t2(sc− 1
2 )

‖Pjw‖p+1

Lp+1
x

dt)
1

p+1

�
∑

j,k

2−k· p
p+1 2−2k(sc− 1

2 )2k· 1
p+1 (

∞̂

1

1

t2(sc− 1
2 )

1

t2
E(t)dt)

p
p+1 (

∞̂

1

1

t2(sc− 1
2 )

‖Pjw(t)‖p+1
Lp+1dt)

1
p+1

� ε(

∞̂

1

1

t2(sc− 1
2 )

1

t2
E(t)dt)

p
p+1 .

(5.51)

In conclusion, we have proved

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt � ε

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt

+ c(R)(

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt)

1
2 + p−2

p+1 (

∞̂

1

1

t2(sc− 1
2 )

‖w‖p+1

Lp+1
x

dt)
5−p

2(p+1)
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+ c(R)(

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt)

p
p+1 (

∞̂

1

1

t2(sc− 1
2 )

‖w‖p+1

Lp+1
x

dt)
1

p+1 + E(1). (5.52)

Then by standard bootstrap arguments, we have proved

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt < ∞, (5.53)

which implies (5.7).

Plugging (5.53) back into (5.22)–(5.52), but taking supt rather than integrating over 

[1, ∞) implies

sup
t≥1

t−2scE(t) < ∞, (5.54)

which implies (5.8). �

Remark 10. We have actually proved something more. By (5.13), we have actually proved

∞̂

1

1

t2(sc− 1
2 )

E(t)

t2
dt +

p − 3

p + 1

∞̂

1

1

t2(sc− 1
2 )

1

t2

t
ˆ

1

τ‖v(τ)‖p+1
Lp+1dτdt < ∞, (5.55)

which will be useful in the proof of scattering.

Unlike in the case of the nonlinear Schrödinger equation, see [6], (5.6) is not enough 

to prove scattering, even though we have a uniform bound on a norm of v, and thus 

v + w, which can partitioned into finitely many small intervals. To prove scattering, we 

will utilize integrals on cones.

Theorem 11. For 3 < p ≤ 4,

‖v‖
L

2(p−1)
t,x (R×R3)

< ∞. (5.56)

Proof. Again by (5.40),

‖(τ2 + |x|2)1/2Ç(
x

τ
)∇v‖2

L2 � E(τ) + ‖Ç(
x

τ
)v‖2

L2 . (5.57)

Therefore, by the Sobolev embedding theorem,

‖(τ2 + |x|2)1/2Ç(
x

τ
)v‖2

L6 � ‖(τ2 + |x|2)1/2Ç(
x

τ
)∇v‖2

L2

+ ‖(τ2 + |x|2)1/2 1

τ
Ç′(

x

τ
)v‖2

L2 + ‖Ç(
x

τ
)v‖2

L2
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� E(τ) + τ
3(p−1)

p+1
E(τ)

2
p+1

τ
4

p+1

. (5.58)

Therefore, by (5.8),

‖(τ2 + |x|2)1/2Ç(
x

τ
)v‖2

L6 � τ
3(p−1)

p+1
E(τ)

2
p+1

τ
4

p+1

(5.59)

Combining (5.59),

‖Ç(
x

τ
)v‖Lp+1 �

E(τ)
1

p+1

τ
2

p+1

, (5.60)

and (5.53) implies

‖Ç(
x

τ
)v‖

L
2(p−1)
t,x (R×R3)

< ∞. (5.61)

Remark 11. It is here that it is necessary to use the restriction 3 < p ≤ 4, since it is only 

here that p + 1 < 2(p − 1) ≤ 6.

The same exact computations, combined with the support of v implies

‖Ç(
τx

|x|2
)v‖

L
2(p−1)
t,x (R×R3)

< ∞. (5.62)

For r close to t, let Ẽ denote the conformal energy inside a cone,

Ẽ(t) =
1

4

ˆ

r≤t+c

((t + r)Lv + 2v)2dx +
1

4

ˆ

r≤t+c

((t − r)Lv + 2v)2dx

+
1

2

ˆ

r≤t+c

(t2 + r2)|��∇v|2dx +
1

p + 1

ˆ

r≤t+c

(t2 + r2)|v|p+1dx.

(5.63)

If v solves (5.1),

d

dt
Ẽ(t) =

1

4

ˆ

r=t+c

((t + r)Lv + 2v)2dσ −
1

2(p + 1)

ˆ

r=t+c

(t + r)2|v|p+1dσ

−
1

4

ˆ

r=t+c

((t − r)Lv + 2v)2 +
1

2(p + 1)

ˆ

r=t+c

(t − r)2|v|p+1dσ

+
1

4

ˆ

r=t+c

((t + r)Lv + 2v)2dσ +
1

4

ˆ

r=t+c

((t − r)Lv + 2v)2dσ

+
1

p + 1

ˆ

r=t+c

(t2 + r2)|v|p+1dσ
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+
1

2

ˆ

r=t+c

(t2 + r2)|��∇v|2dσ + t(
8

p + 1
− 2)

ˆ

r≤t+c

|v|p+1dx, (5.64)

where dσ is the surface measure on the cone r = t + c. Summing up,

d

dt
Ẽ(t) =

1

2

ˆ

r=t+c

((t + r)Lv + 2v)2dσ +
1

p + 1

ˆ

r=t+c

(t + r)2|v|p+1dσ

+
1

2

ˆ

r=t+c

(t2 + r2)|��∇v|2dσ + t(
8

p + 1
− 2)

ˆ

r≤t+c

|v|p+1dx.

(5.65)

Computing

Ẽ(T ) − Ẽ(
T

2
), (5.66)

when v solves (5.12) using the fundamental theorem of calculus implies, by (5.53), (5.54),

(5.55), and the proof of Theorem 10,

ˆ

c∼T, T
2 ≤t≤T

1

t2
·

1

t2(sc− 1
2 )

ˆ

r=t+c

((t + r)Lv + 2v)2dσdc

+

ˆ

c∼T, T
2 ≤t≤T

1

t2
·

1

t2(sc− 1
2 )

ˆ

r=t+c

(t + r)2|v|p+1dσdc

+

ˆ

c∼T, T
2 ≤t≤T

1

t2
·

1

t2(sc− 1
2 )

ˆ

r=t+c

(t2 + r2)|��∇v|2dσdc �

2T
ˆ

T

1

t2(sc− 1
2 )

E(t)

t2
dt < ∞.

(5.67)

Therefore, following the proof of (5.61), only integrating along cones instead of in dx,

∞̂

1

1

t2(sc− 1
2 )

ˆ

È(
x

τ
)|v|2(p−1)dxdt < ∞, (5.68)

which proves the Theorem. �

6. Profile decomposition argument

Having obtained a scattering result for any u0 ∈ B
3
2 +sc

1,1 , u1 ∈ B
1
2 +sc

1,1 , it only remains 

to show that this bound is uniform over all (u0, u1) satisfying

‖(u0, u1)‖
B

3
2

+sc
1,1 ×B

1
2

+sc
1,1

≤ A, (6.1)
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for some A < ∞. The proof argument is exactly parallel to the arguments in [4], [3], and 

especially in [2]. Here we are in the nonradial setting, however, we are aided by the fact 

that the nonlinearity is not the Lorentz invariant nonlinearity.

Let (un
0 , un

1 ) be a bounded sequence in B
3
2 +sc

1,1 ×B
1
2 +sc

1,1 . Since this sequence is bounded 

in Ḣsc × Ḣsc−1, then by Theorem 3.1 in [15], we may make the profile decomposition

S(t)(u0,n, u1,n) =

N
∑

j=1

Γn
j S(t)(φj

0, φ
j
1) + S(t)(RN

0,n, RN
1,n), (6.2)

where

lim
N→∞

lim sup
n→∞

‖S(t)(RN
0,n, RN

1,n)‖
L

2(p−1)
t,x (R×R3)

= 0. (6.3)

The group Γn
j is the group of operators generated by translation in space and in time, 

and also by the scaling symmetry. That is, there exist xn
j ∈ R

3, tn
j ∈ R, and λn

j ∈ (0, ∞)

such that

Γn
j v(t, x) = (λn

j )
2

p−1 v(λn
j (t − tn

j ), λn
j (x − xn

j )). (6.4)

Furthermore, the Γn
j ’s have the asymptotic orthogonality property that when j 
= k,

lim
n→∞

| ln(
λn

j

λn
k

)| + (λn
j )1/2(λn

k )1/2(|xn
j − xn

k | + |tn
j − tn

k |) = ∞. (6.5)

Using the dispersive estimate in (1.12), 
|tn

j |

λn
j

is uniformly bounded for any j.

Lemma 2. If 
|tn

j |

λn
j

→ ∞ then φj
0 = 0 and φj

1 = 0.

Proof. Indeed, from [15], for any fixed j,

lim
n→∞

(Γn
j )−1S(t)(un

0 , un
1 ) ⇀ S(t)(φj

0, φ
j
1) (6.6)

weakly in L
2(p−1)
t,x . Rewriting (Γn

j )−1,

(Γn
j )−1S(t)(un

0 , un
1 ) = S(t +

tn
j

λn
j

)((λn
j )− 2

p−1 un
0 (

x + xn
j

λn
j

), (λn
j )− p+1

p−1 un
1 (

x + xn
j

λn
j

)), (6.7)

and then by the dispersive estimate (1.12), for any fixed Littlewood–Paley projection, if 
tj

n

λj
n

→ ±∞,

S(t +
tn
j

λn
j

)((λn
j )− 2

p−1 un
0 (

x + xn
j

λn
j

), (λn
j )− p+1

p−1 un
1 (

x + xn
j

λn
j

)) ⇀ 0, (6.8)
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weakly in L
2(p−1)
t,x , which proves the lemma. �

Since tn
j is bounded for any j, after passing to a subsequence, tn

j → tj . Absorbing the 

remainder into RN , we may rewrite (6.2) with Γn
j having no translation in time, that is,

Γn
j v(t, x) = (λn

j )
2

p−1 v(λn
j t, λn

j (x + xn
j )). (6.9)

Furthermore, since

(λn
j )

2
p−1 u0(λn

j x) ⇀ φ
j
0, and (λn

j )
2

p−1 +1u1(λn
j x) ⇀ φ

j
1, (6.10)

we have the bounds

‖φ
j
0‖

B
3
2

+sc
1,1

+ ‖φ
j
1‖

B
1
2

+sc
1,1

≤ A. (6.11)

Therefore, the solution to (1.1) with initial data equal to (φj
0, φj

1) has a finite L
2(p−1)
t,x

norm. Furthermore,

lim
N→∞

N
∑

j=1

‖(φj
0, φ

j
1)‖2

Ḣsc ×Ḣsc−1 ≤ lim sup
n→∞

‖(u0,n, u1,n)‖2
Ḣsc ×Ḣsc−1 , (6.12)

so for only finitely many j, ‖(φj
0, φj

1)‖Ḣsc ×Ḣsc−1 ≥ ε. If ‖(φj
0, φj

1)‖Ḣsc ×Ḣsc−1 ≤ ε, then 

the solution to (1.1) with initial data (φj
0, φj

1) has the bound

‖u‖
L

2(p−1)
t,x

� ‖(φj
0, φ

j
1)‖Ḣsc ×Ḣsc−1 . (6.13)

Therefore, by standard perturbative arguments combined with the asymptotic orthogo-

nality in (6.5), if un is the solution to (1.1) with initial data (u0,n, u1,n),

lim
n→∞

‖un‖
L

2(p−1)
t,x

< ∞. (6.14)

Thus, there must exist a uniform upper bound on the L
2(p−1)
t,x norm of a solution u to

(1.1) whose initial data has bounded Besov norm.
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