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1. Introduction

In this paper, we continue the study of the defocussing, energy subcritical nonlinear
wave equation,

gy — Au+ |ulP~tu =0, u(0, ) = uo, ut (0, ) = uq, 3<p<5, (1.1)

with initial data in a critical space. A critical space is a space that is invariant under the
scaling symmetry. Observe that (1.1) is invariant under the scaling symmetry

E-mail address: bdodson4@jhu.edu.

https://doi.org/10.1016/j.aim.2024.109811
0001-8708/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training,
and similar technologies.



2 B. Dodson / Advances in Mathematics 452 (2024) 109811

ut,z) = ArTu(Mt, Az), A > 0. (1.2)

Under the above scaling symmetry, the size of the initial data changes by a factor of

_2 s+-—2-—32
N0 (A2) ] s sy = AT 772 [uto | o sy,

p+1 2 _3
I s () | g sy = AP 2 | oo sy (1.3)

Thus, (1.1) is called H* x H?®~!-critical when
3
P 1.4
o= (14)

because this norm is invariant under (1.2).
The scaling symmetry (1.2) completely determines the local well-posedness theory for
(1.1), where local well-posedness is defined in the usual way.

Definition 1 (Locally well-posed). The initial value problem (1.1) is said to be locally
well-posed if there exists an open interval I C R containing 0 such that:

(1) A unique solution u € L H* (I x R?) OLi(f;;l)Li(p*l) (I xR3), uy € L H® (I x
R3) exists.

(2) The solution w is continuous in time, u € C(I; H*(R?)), u; € C(I; H**~*(R?)).

(3) The solution u depends continuously on the initial data in the topology of item one.

Theorem 1. Equation (1.1) is locally well-posed for initial data in (ug,u;) € H*(R?) x
H5—1(R3) on some interval [T (uo, w1 ), T'(ug, u1)]. The time of well-posedness T (ug, u1)
depends on the profile of the initial data (ug,u1), not just its size. For data sufficiently
small in H5e x H%=1, global well-posedness and scattering hold.

Additional regularity is enough to give a lower bound on the time of well-posedness.

Therefore, there exists some T (||uol| g, [[u1 ]| fra=1) > 0 for any s < s < 3.
Negatively, equation (1.1) is ill-posed for ug € H*(R?) and uy € H* '(R®) when
s < Sc.

Proof. See [14]. O

Definition 2 (Scattering). A solution to (1.1) with initial data (ug,u1) is said to be
scattering in some H*(R3) x H*~1(R3) if there exist (ug,u]), (ug,u;) € H® x H*~ "
such that

lim || (u(t), ue(t)) = SE) (g, ul) o gra-r = 0, (1.5)

t—+o0

and
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tiir—noo ”(u(t)vut(t)) - S(t)(uavu;)||HSst—1 =0, (1'6)
where u is the solution to (1.1) with initial data (ug,u1) and S(t)(f,g) is the solution
operator to the linear wave equation. That is, if (u(t), us(t)) = S(¢)(f,g), then

Ut — Au = 0, U(va) = f7 ut(ovl:) =9 (17)

Equation (1.1) is called scattering for data in a certain subset X if the solution to
(1.1) with initial data in X is globally well-posed, the solution scatters both forward and
backward in time, and the scattering states (ug,u]) and (ug,u; ) depend continuously

on the initial data.

For large data, global well-posedness and scattering is known to hold for (1.1) for
sufficiently regular, sufficiently rapidly decaying initial data.

Theorem 2. Fquation (1.1) is globally well-posed and scattering for initial data (ug,uq)
satisfying

<.’E>VUO”L2 + ||U0||L2 + ||<£L’>U1||L2 < 00. (18)
Proof. See [20]. O

For any (ug,u;) satisfying (1.8), (ug,u1) € H* x H%~!. However, the question of the
long time behavior of initial data in the critical Sobolev space that does not belong to
(1.8) remains open. In the radially symmetric case, this question was settled in [4] and

3]

Theorem 3. For 3 < p < 5, the initial value problem (1.1) is globally well-posed and
scattering for radial initial data (ug,u1) € H® (R3) x H*~1(R®). Moreover, there exists
a function f : [3,5) x [0,00) — [0,00) such that if u solves (1.1) with initial data
(ug,ur) € H® x H%~', then

[ull 20— R xray < Fs [0l grae may + 1l rec-2 ms)): (1.9)
and thus the solution scatters both forward and backward in time.

Proof. This was proved in [4] when p = 3 and in [3] when 3 < p < 5. The proof used the
computations on hyperbolic coordinates in [16] and [17]. O

Remark 1. The argument in [14] may be used to show that (1.9) is equivalent to scattering
in the critical Sobolev norm.

An important stepping stone in the proof of Theorem 3 was the result of [2] for radially
symmetric initial data in a critical Besov space.
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Theorem 4. The defocussing, cubic nonlinear wave equation ((1.1) when p = 3) is globally
well-posed and scattering for radially symmetric initial data ug € Bil and uy € B},l.
By , is the Besov space defined by the norm

lull sy ,mey = (D 2P| Prulf) 7. (1.10)
j

The operator Pj is the usual Littlewood—Paley projection operator.

In this paper we generalize Theorem 4 to the case when 3 < p < 4 with nonradial
initial data.

Theorem 5. Equation (1.1) is globally well-posed and scattering when 3 < p < 4 initial
S 3 S 1

data vy € BLTLZ and u; € Blf;”. Furthermore, there exists f : (3,4] x [0,00) — [0, 00)

such that

[ull p2w-0 g ygsy < F(Ps [Juol +luall ooy ) (1.11)
te ) B

.43
B 2 (R? (R?)

Global well-posedness alone holds for 3 < p < 5.

3 1
The chf 2 x Bffr 2 porm is invariant under the scaling symmetry (1.2). By the
3 . 1 .
Sobolev embedding theorem, Bffz C H®e and Bfff_z C H?®~!. The main advantage
3 1
that Bf°1+ 2 X Bic;” provides is the dispersive estimate for the wave equation

1S(t) (w0, ur)llz~ < < 1(V?u0, Vur)llixrt, (1.12)

o~ | =

which implies good behavior for the solution to the linear wave equation with initial
data (ug,u1) for ¢t # 0. Therefore, a helpful heuristic in thinking about Theorem 4 is
that blowup of a solution to (1.1) with initial data in Bil X Bil must occur when ¢ =0
if it occurs at all. Radial symmetry further implies that the blowup must occur at the
origin in space and time.

The results in Theorem 3 addressed initial data that was merely radially symmetric,
but not in Bf ; x Bj 1, so the blowup could occur at any time, but only at the origin in
space, x = 0. Theorem 5 approaches this problem from the other direction. The fact that
(ug,u1) € Bf°1+ : X Bff1+% means that, heuristically, the blowup may occur anywhere in
R3, but only at time ¢ = 0, if it occurs at all.

1.1. Outline of the proof

The only obstacle to proving Theorem 5 is that the A% x H%~! norm of (u,u;) may
blow up either forward or backward in time.
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Theorem 6. Suppose (ug,u1) € H*(R3) x H*~1(R3) and u solves (1.1) on a mazimal
interval 0 € I C R, with 3 <p <5 and

Sup ()l roe sy + [t ()] groe—1(rsy < o0 (1.13)
Then I =R and the solution u scatters both forward and backward in time.

Proof. This theorem was proved in [1]. The proof uses the concentration compactness
method. This method has been applicable to many scattering results for nonlinear disper-
sive equations. Two important results in this area are scattering for the cubic nonlinear
Schrédinger equation for solutions with bounded H'/2 norm, [12] and scattering/blowup
phenomena for the focusing nonlinear wave equation [11]. O

While there is no known conserved quantity that controls the H%¢ x H%~! norm of

(u(t),u(t)) for a solution to (1.1) with generic initial data (ug,u1) € H® x H*~! a
solution to (1.1) does have the conserved energy

1 1 1
E(u(t) == / |Vu(t, z)|>dz + = /ut(t,:r)2dac + — / lu(t, z) [P dx = E(u(0)).
2 2 pt1
(1.14)
For up € H* N H* and u; € L2 N H*~!, the Sobolev embedding theorem implies

+1
a(O) 17551 oy S lollyee gy 1001 1 sy (1.15)

SO

E(u(0)) Sjuolge. luollF + lluslZ-. (1.16)

Conservation of energy then implies a uniform bound on the ||(u(t), u(¢))| 1 2 nOrm
for the entire time of existence of u, which by Theorem 1 implies that the solution to
(1.1) with initial data ug € H' N H* and u; € L?> N H* ! is global.

For generic initial data ug € chfr ® and up € chfr %, there is no reason to think that
the initial data lies in H' x L?. However, using the dispersive estimate (1.12), we can
split a solution u(t) into a piece lying in H' x L? and a piece with good decay estimates
as t becomes large. A similar computation was used in [2] to prove Theorem 4.

The local well-posedness result of Theorem 1 implies that there exists an open neigh-
borhood I of 0 for which (1.1) has a solution, and

HuHL?ffil)(IXRC‘) <e (117)
for some € > 0 small. Rescaling by (1.2),
||u||Lff571)([71,1]XR3) <e (118)
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This solution satisfies Duhamel’s principle
t
u(t) = S(t)(uo, u1) /S (t — 7)(0, [ulP~tu)dr. (1.19)
0

Next, combining the dispersive estimate (1.12) and local well-posedness theory, it is
possible to prove that

7 Jut) | gon, (1.20)
is uniformly bounded for all ¢ € [—1, 1]. Therefore, by standard energy estimates,
I [ 500, [l uhdrl goe S 1 (1.21)
1/2

with implicit constant bounded by the norm of the initial data in By
Let

c+2 Set%
X By ?.

t

v(l) = / S(1—7)(0, [P~ u)dr, ve(1) = 04 / S(t—7)(0, |u|p71u)d'r|t:1, (1.22)
/2

1 1/2

and let
w(l) =u(l) —v(l),  wi(l) =u (1) —ve(1). (1.23)

It follows from (1.18) and Theorem 1 that (1.1) has a local solution on [1,7") for some
T > 1. Decompose this solution © = v + w, which solve

wy — Aw =0, w(l,z) = w(l), wi(1,2) = we(1),

(1.24)
v — Av +ud =0, v(l,2) = v(1), ve(1, ) = ve(1).

To prove that T may be extended to T' = oo, it is enough to prove that E(v(t)), where
E is given by (1.14), is uniformly bounded on any compact subset of [1,00). To see why,
first note that wy; — Aw = 0 has a global solution. Next, the rescaling used to obtain
(1.18) will be used to show that for any 7' > 0,

e}

||wHLi(£71)([T,T+1]><R3) < 5 (125)

Therefore, using standard perturbative arguments,

v — Av 4 [uP "ty = 0, (1.26)
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may be treated as a perturbation of
v — Av + Pl =0, (1.27)

on short time intervals. Therefore, if E(v(tyg)) < oo, (1.1) is locally well-posed on the
interval [to, to + m], so it is enough to prove that E(v(t)) is uniformly bounded on
any compact subset of [1,00).

To prove the uniform bound, standard calculations imply

d p—1 p—1
EE(v(t)) = — (v, [ulPT u — [v|PT o). (1.28)

The most difficult component of (1.28) is a term of the form
(v, 0P w) S (V]2 wl| e B (0(1)). (1.29)

Using the dispersive estimate (1.12) it is possible to prove |[|V[*~ 2w|| g < 1. Plugging
this estimate into (1.29) and using Gronwall’s inequality then proves a uniform bound
on E(v(t)) on any compact subset, completing the proof of global well-posedness.

The above computations are not enough to prove scattering. In fact, even if one
assumed initial data ug € H' N H% and u; € L? N H% ™!, conservation of energy
would not guarantee a uniform bound on ||w(t), ut(t)|| fse « frsc—1- Indeed, recall that [20]
assumed sufficient decay on the initial data.

However, the Lebesgue dominated convergence theorem implies that outside a com-
pact set, the initial data has small H% x H%~! norm. By finite propagation speed,
this implies scattering outside a light cone. Inside the light cone, we follow and use the
conformal energy, as in [20], [5], and [7].

We obtain the bound (1.11) using the profile decomposition argument in [15].
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2. Local behavior of the solution to (1.1)

As was mentioned in the introduction, the main singularity for initial data in a Besov
space occurs when ¢t = 0, from (1.12). To combat this, we study the local behavior of
the solution in greater detail. Using (1.2), it is possible to rescale equation (1.1) so that
(1.1) is locally well-posed on [—1, 1] and the solution satisfies

||u||Lff571)([—1,1]XR3) <e (21)
Proof of (2.1). Recall the Strichartz estimates for the wave equation.

Theorem 7. Let I be a time interval and let v : I x R® — R be a Schwartz solution to
the wave equation

ugg — Au = F), u(0) = wo, Oru(0) = uq, (2.2)
where 0 € I. Then we have the estimates,

lullLorraxre) + l[ullco s (rxmsy + 10l co prs (rxrs)
Sars (luollgre sy + lurll ge-rmsy + 1F N g 1 (1 cms)): (2.3)

forany s>0,2<q,qg <00, and 2 <r,7 < oo obey the scaling condition,

1 3 3 1 3
L=l _s=_4+_9 2.4
q + r 2 ¢ q + 7! ’ (2:4)
and satisfy the wave admissibility conditions
1 1 1 n 1 < 1 (2.5)
q r’ qg 72 '

Proof. This theorem is copied from [23]. See [21], [10], [8], [9], [14], [18], [19], [13] for the
proof of this theorem. O

By Theorem 7, if u solves (2.1), then

ol 20 (g cmsy o I lizee + il e+ 1FN g oy ey (26)
where
1 1 1 1 1 3 2
- = 5S¢ - =37~ 5S¢ Se =35 — —»
q 2 r 2 2 2 p-—1
1 1 1 1 1 1
-4 — =4 2.7
q q + 2’ oo * 2 (2.7)
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When 3 < p < 5, (¢,r) is an admissible pair that satisfies (2.5), and ¢’ and 7 satisfies
(2.4).
. sc+§ sc-i-l . .
Since (ug,u1) € By * x By} *, there exists some jo € Z such that

> YD g+ PP | P < e (28)
J=Jo
for some ¢ > 0 that is determined by the implicit constant in (2.3). Using (1.2) with
~ 97 Jo -1
A 279 (g e+ il rrr2) "5,

rescale. After the rescaling, we have a new j that satisfies (2.8) and furthermore,

gioli=se). i1 < ce 2.9
|I(UO7U1)”BT,C1+%><BI3+%766 (2.9)

Theorem 7 and (2.8) imply

€
HS(t)(PZjouoﬂ PZjoul)|‘L§L;0Lff£*1>(RXR3) < Z (2‘10)

Also, by the Sobolev embedding theorem, (2.8), and the fact that S(t) is a unitary
operator on H*® x H* 1,

€
15@) (P<jouo, Pejour)ll e 2o mxms) < 7 (2.11)
so by Hélder’s inequality,
3e
||S(t)(u0’ul)”Lfg_l)([fl,l]XRs) S Z (212)
A similar calculation also implies
3e
15 (t) (wos wi)ll Larr (1,11 xR3) < T (2.13)

Plugging (2.12) into (1.19) and using (2.3) and Picard iteration implies that for e > 0
sufficiently small, (1.1) is locally well-posed on [—1, 1], and the solution satisfies

||u||Lff571)([—1,1}xR3) <e. (214)

This proof is a modification of the proof of scattering in [14] for small data and local
well-posedness on a time interval depending on the profile of the initial data. O

The constant € > 0 will eventually be chosen to depend on ||ug|

ch;r% + ||’U1| B;c;r% .

Under (2.1), the behavior of u on the interval [—1,1] is approximatelyy linear.
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Proposition 1. If u is a solution to (1.1) on [—1,1] with ||u||L2<p D([L11]xR3) S < ¢(4),
where (ug,u1) € Bi/f“c X BMQH“ with A = HUOHBf/f“C + Hu1||Bi/1z+sc, then
> 2% || Pjul| e 2 (—1,1xr) S A. (2.15)

Proof. Using the Strichartz estimates in Theorem 7, if (¢, r) and (g, 7) are given by (2.7),

2jsc||PJ'U||L?°L3([—1,1]XR3)+||PJ‘“||L2<P—1)nLgL;([_M]XRs)+2JS ||P U||L4 ([-1,1]xR3)
PRI ey S NP0l 2R Py e
(1-s0)/2 =1
2 IF5 3l it nlst)HJ Rt A e
(2.16)

where P;Fy + P;Fy = Pj(|u|P~'u) is a decomposition of the nonlinearity. Using Taylor’s
theorem, decompose

Fy = |PejulP ™ (Pju),  Fy = [ulP™ u — [Pejul?™ (P<ju) = O([ulP~ P jul).
(2.17)

Proposition 1 follows directly from (2.16) and ug € B1‘+3/2 uy € Bff1+l/2. Indeed,

Fy
I3l 3q+2LT+1([ 1,1]xR3)
<|P P 2.18
PS5 oy Pl 2 218)
and
||F2||L3/° 8/7([~1,1]xR3) ~ ||P>Ju||L8L3/3([ 1,1]xR3) ”u” 2(p D ([21,1]xR3)’ (2.19)

so by Young’s inequality and (2.16), the proof of Proposition 1 is complete. Indeed,
letting X; denote the left hand side of (2.16),

Xj $29%¢|| Pyuo| 2 + 277 V|| Py || 2
) D SRl S b S T 2 X, (2.20)
k> k<j

which implies (2.15). O

The dispersive estimates (1.12) also give additional L]L” bounds on the solution u
n [—1, 1] that lie outside the admissible pairs in Theorem 7. These estimates fail at the
endpoint p = 3, which is the main technical obstacle to proving scattering in the cubic
case.
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Theorem 8. For 3 < p < 5, if% =3_5.= %;
(su_1
lullLapoe (j=1,1xR3) + ZQJ( 2) sup t|Pjulp~ Se (2.21)
J te[—1,1]
Proof. Using the dispersive estimate
1
I1S(0) w0, )l 7o, )l (2.22)
for any j € Z,
Lo jse3)[9i (G tse) J(4+se)
1S@)(BPjuo, Pyur)llze S 2277722027 [ Pyu | pr + 27275 || Pjua [ 1] (2.23)
Interpolating (2.23) with
(s,
1S () (Pyuo, Pyur)|lpoe S 2775 |[(Pyuo, Pyun)|| groc s rec—1 (2.24)

and making use of (2.8) and (2.10), we have proved

g—S
§ S[’ulfl]tz “1S#)(Pyuo, Pyur)||pe + E 1S (#)(Pjuo, Pjur)llLapoe (R xR3)
~ te[—1, -
J

J
+§:2ﬂ‘<8c—%> sup t[|S(t)(Pjuo, Pju)||p= S e
- te[—1,1]

(2.25)

J

Turning to the second term in (1.19) and using the formula for the solution to the
linear wave equation in R3, see for example [18], for any = € R3,

Se=nO @IS = [ WwoPaw.  (@2)
OB (z,t—7)

Once again, split

Pi([ulP~'u) = P;Fy + P;Fy, Fy = |P<jul’~ (P<ju), Fy = O(|Psjul|ulP~).

(2.27)
Plugging F» into (2.26), for any t € [-1,1], z € R3,
; 1
[ 8= 70 B a)drl S a5 iy e g1k
0 (2.28)
sup ([ ) o) s ([ |Pjutr) Py
7€[0,5] T€[0,%]

OB(z,t—T) OB(z,t—T)
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By an argument similar to the Sobolev embedding theorem, for any k € Z,
|Pru(y, 7)[P~ do(y) < 28| Peullf (2.29)
OB(xz,t—T)
Remark 2. To see why this is so, recall that the Littlewood—Paley kernel for P, may be
approximated by 23* multiplied by the characteristic function of a ball of radius 27*.

Then consider the cases when 27% < |t — 7| and 27% > |t — 7| separately. Indeed, for
[t — 7| < 2%, there exists some C such that

|Peu(y, 7)[P~ do(y)
OB(z,t—T)

< 2%t — 7] / | Pru(r,y) [P~ dy S 2| Peu(r) 70 (2.30)
B(z,C2—F)

Meanwhile, for |t — 7| > 27F,
[ 1P npts)
OB(z,t—T)

<o / P, )P~ dy < 28 Pru(r) |25 (2.31)

dist(B(z,t—7),y)<2-F

Now, then, since the Littlewood—Paley kernel obeys the bounds

F(Pi(y)) Sn 2% (1 + 2%y~ Y, (2.32)

for any N, calculations similar to (2.30) and (2.31) imply (2.29). Indeed, for any [ € Z,
[ >0, (2.30) and (2.31) imply,

2Nt [ Rl S 2V Pl

dist(B(z,t—71))<2l—k

which can easily be summed in [.
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Plugging (2.29) into (2.28), by Young’s inequality and (2.15),

t

Y 2ise3) sup tH S(t — 7)(0, P Fy)dr|| oo

J te[—
p—1 e 1 —
Sl 51 ool sup ( u(r, y)[P~do(y))"/?
L, 2 L ([-1,1]xR3) 5 76[71,1]83(1 )
swp ([ |Psjulr) iy (2:33)
T€[—1,1]
OB(z,t—T)
p—1 . 1
<l 2y SHOD s (32RO A IOl
L, 2 LL([-1,1]xR3) 5 te[—1, 1>
—1
<l 2, AT
L, 2 Lg([-1,1]xR3)
Meanwhile, since by Bernstein’s inequality,
Px(Fl) ~ 27V PjFy ~ 279 P<julP~ YV P<jul, (2.34)

277
S(t—71)(0, PjFy)(t, x)dr| < —|||U\ ||L1L°°([0,2]><]R3)

o\

(2.35)

s / u(ra)P o) sup ([ IVPu(r)Pdy)
T€[0,%] T€[0,%]

B(z,t—7) B(z,t—7)

and therefore,

t
2

ZQJ(SC—%) sup t| [ S(t—7)(0, PilulP~ u)dr|p~ < IIUH A=

j te[-1,1] A Ly 2 L ([-1,1]xR3)

For 7 € [£, 1], energy estimates and the Sobolev embedding theorem imply,

_ 1 p—1
15t =)0, Pi(Jul~ u))|re < 5 ( sup 7 [[Ju(r)] "= [l (rs))® sup || Psjullze
TelL t] TE[L 1]
2-J p—1 9
+a( S1[119]T~IIIU(T)I 7 || Lger2)) 7 1P<; V| 2.
TE[L L

~+

(2.37)
Therefore, by Young’s inequality, the Sobolev embedding theorem, and Proposition 1,

t

> 26D sup ]| [ S(t—7)P;(0, [ul T u)dr | e
J te[—1,1]
t/2
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< (sup 375 ||u(t)|| )P A (2.38)
te[—1,1]

Combining (2.9), (2.23), (2.36), and (2.38),

1

§:2j<sq> sup t||Pju(t)||Loc§§:2j(S“%) sup t||P;S(t)(uo, u1)|| e
J

te[-1,1 ; te[—1,1]
el P
Hull 5 A 4 (Csup #370u(t) g )P A
Ly ? Lg([-1,1]xR3) te[-1,1]
+ @D P+ 2D P 1a) + (@1 Pyuollsa + 2% Py 1)
Jj=0 j>0
p=1 i ‘
Hull 5 AP 4 (Csup 130 u(t)]| )P A
Ly ? Lg([-1,1]xR3) te[—1,1]
ol P
Set )z, AT 1 (Csup £ fu(t)|| e )P AL
L, % Lg([-1,1)xR3) te[—1,1]

(2.39)
Now then, for any 3 < p < 5, Proposition 1, (2.10), (2.11), and the Sobolev embedding
theorem imply

3
|1P;u|l p-1 + sup t27°%¢||Piul| poo(r3
zj:' ! ||Lt2 L ([-1,1]xR?) ;te[—l,l] 1Erelleg @
St (Y262 sup || Pyu(t)] )7 (2.40)
- te[—1,1]
J

Combining (2.39) with (2.40) proves the Theorem. O
Theorem 8 implies finite energy for a piece of the Duhamel term.

Corollary 1. For any t € [—1,1],

t
AP
/HuP(T)HdeT S A

/2

(2.41)

Proof. Use the energy estimate in (2.37). O

In the cubic case, Theorem 8 is out of reach, but we are still able to prove some decay
estimates.

Proposition 2. For allt € [-1,1],

sup 2 |lu(t)||s < A. (2.42)
te[—1,1]
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Proof. Interpolating the dispersive estimate

IS0 o, )|z~ < 7o, )z, S 2 (2.43)
with the trivial bound
15() (o, ua)llLs S [1(wo, wa)ll g1z grie S A (2.44)
gives the dispersive estimate
IS0, 1)z S o7 (2.45)
Next, by dispersive estimates,
t t
I [ st =m0yl 5 [ gV i (2.46)
0 0

Then by the fractional product rule,

t

2/3 2/3 4/3 3
I [ (= no.a)drlue < / VI Al . (2a7)
0

Plugging (2.9) into (2.47),

t

[ / S(t—7)(0,u®)dr|1s S A / m||u< I ()| dr
0
Sa /5 sup M2 u(r)| o). (248)
te[—1,1]

In the last line, we used the fact that [lul[zs (—11)xr3) Sa € This follows from (2.8)
and (2.9). By (2.8) and Strichartz estimates,

1S()(P>jouo, P>jour)lps S (2.49)
Meanwhile, by the Sobolev embedding theorem and (2.9),
1S(t)(Pjouo, P<joun)llzgere S 22 Pejottoll grae + | Pejotia | fr-12) Se. (2.50)
Therefore,

15 (@) (w0, ur)lls , (—1.1xR3) Sa € (2.51)
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which by small data arguments implies ||ul|ps ((_1,1]xrs) Sa €, for €(A) > 0 sufficiently

small. Choosing ¢(A) > 0 sufficiently small, combined with (2.45), gives (2.42).

Then by direct computation,

Corollary 2. For any t € [—1,1],

t
A3
[l @ldr < 225
/2

O

(2.52)

An argument similar to Proposition 2 also proves u € L?L8([—1,1] x R3) in the cubic

case.

Proposition 3.

Z IPjullrzre (—1,1)xre) S A%
J

Proof. Interpolating

1S(t)Pi(uo, un)llz < 5 (2| Pruollzr + 25| Pl ),

| =

with

1S(t)Pe(uo,un)lze S 27 2(1 Prsoll s + 1| P 5-1.2)
< 27F2(2%%) Puo | 1r + 28| P || 10),

implies that

—k/6

2
1S () Pe(uo, u)lLs < 273

Since the Sobolev embedding theorem implies that

15(8) Pi(uo, wr) | 2o < 2%2 | Pa(uo, us) | o 110

< 282(2%|| P |1 + 28| Peua | ).
Therefore,

D IS Preluo,u)llzz e S A
k

(2°%)| Peuol| o + 2% || Prual| 1)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)
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Now then, plugging in Propositions 1 and 2,
t
11/6) 111/6
[ / S(t—7)(0, Py(u®))dr| 1o S 2°/° / mn&k st oo [l ] 5
0
1
<a /f/12 15 (k=3)97/2 - .
2” J§32 2 2 ||P u||L L2([- 11><]R3 |t—T|2/3 |7’|11/12d
—k/12 1 (b )
5A Sz a2 (> 235 (=D93/2|| Pyu|| Lo 12 ((-1,11xR3))-
j>k—3
(2.59)
Also, by the Sobolev embedding theorem and the proof of Proposition 2,
| /S(t —7)(0, Pe(u®))dr | Lo —1,1)) Sa 221 Pevll oo g2 (1.1 xR3)- (2.60)
Summing up (2.58), (2.59), and (2.60) using Young’s inequality,
Z | Pjullpzs ((—1,1)xR3) Sa 1. O (2.61)
k
Proposition 4.
Zzﬂ/?’ sup V3| Pjullzs <a 1. (2.62)

te[—1,1]

Proof. Again using dispersive estimates and the Sobolev embedding theorem,

t t
2k/2
25 [ 5= )0, Pwarls 5 [ Pocanlzlulear. (263)
0

Splitting this integral into two pieces, by Proposition 3,

9k/2 )
[ P a0l lar
0

— /20 k=i
St 1/3( Z 277727 HPJ’“HL?Li)HU”%ng([le}xW) (2.64)

Jj=k—3

SatH3( Z 21/29"3" | P, ullLser2)-
j>k—3

Meanwhile, by Proposition 2,
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t ok/2 , B /20 b t 1 1
mHsz%U(t)HL?|\U||L6d7 Sa Z 2777277 | Pjull e r2) ;de
/2 j2k=3 /2
oo ki
Sat B0 2727 |Pull e r2).

Jjzk=3
(2.65)
Therefore, by Young’s inequality and Proposition 1, the proof is complete. O

Remark 3. For the rest of the paper, we will wish to study long time behavior for the
nonlinear wave equation. All of the above estimates also hold for small data solutions to
(1.1), as well as free solutions of the form

1/2

/ S(t —7)(0, [u|P~tu)dr, (2.66)

0

even when t > 1. We will frequently use this fact in the rest of the paper.
3. Proof of global well-posedness for 3 < p < 5

By time reversal symmetry and local well-posedness on the interval [—1, 1], to prove
global well-posedness, it suffices to prove global well-posedness in the positive time di-
rection, ¢ > 1 for (1.1) with initial data (u(1,),u:(1,2)). The local well-posedness
arguments used to prove Theorem 1 imply that (1.1) has a solution on some open in-
terval [0,T") for some T > 1, so to prove global well-posedness it suffices to show that T'
can be taken to go to infinity.

Split

1/2 1
+ O/ S(1 —7)(0, |uP~tu)dr +1//2 S(1 —7)(0, [ulP~tu)dr.  (3.1)

By Corollary 1, the second Duhamel term has finite energy.
1
v(l,x _
|| (vt((lym))) lazs =1 [ SU= DO P w)drlnsre a1 (32
1/2
Now let u be the solution to (1.1) on [1,T). Split u = v + w, where v solves

v — Av + |uP "t =0, (3.3)
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on [1,T) with initial data given by (3.2), and

wy — Aw = 0, w(l,z) =u(l,z) —v(1,2), w(1,2) = w (1, 2) — ve(1,2). (3.4)

Set
B() = [l + 3190 + S o de (3.5)
ot 2 p+1 ’ '
and compute
d 1 -1
B () = (ve, —[uf""u+ [P o). (3.6)
By Taylor’s theorem,
[ulP = — P~ = ploP~ w + Ofuwl[o[P2) + O(ful?). (3.7)

By Holder’s inequality,

(O(Jwl?oP~2),ve) S =2 1P TR < B(o() E 5 P (]
o) S el ol 2 o2 wll s S BTl &l -

3.8
Interpolating (2.21) with Hw||L3(p;1> S llwllgse Sa 1, proves |w]|pe+r Sa 1. Also, .
Jwf?,ve) S TorllzelwllfZ wlly2e S B@E) 2wl ol . (39)

If we could ignore the term
(v, plvP~ w), (3.10)

then F(v(t)) would be uniformly bounded on R by Gronwall’s inequality. Indeed, by
(2.21),

T
14022 Bt 832 1/2 2t 2l
E(u(t))? " »  lwl % wllpedt + [ E(u@) " llwll 2% l|lw] 3+ dt
1

(3.11)
< sup eB(u(t)PTE 4+ sup eB(u(t)/?,
te[1,T) te[1,T)
which implies a uniform bound on E(v(t)).
To deal with the contribution of (3.10), take the modified energy
E((t)) = E(v(t)) + (P~ v, w). (3.12)

Then (3.6) and (3.7) imply
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d
€)= (v, —[ul" ™ u+ o)+ (plof" T w, v +

= (JoP~! OB 355 w7 w250 ) + O(E ()2 [[w] % [lw]| 2
= ([v]P" v, we) + O(E(v(t))2 T 71 |w|| [ |w]| 211) + O(E(w(t)) = |lw] % ||w]l 2

Remark 4. In the last line we use the fact that
—[ufP" u + [vP o + plofPrw = O(Jw]?[vfP~?) + O(Jw|?).

Also,

P

([o]P~ v, w) S [0l llwllLee S Eo(8) 77,

so when F(v(t)) is large,

and

d _ 1,p=2 21 5-e
5 E®) =(ll? Yo, we) + O(E(v(t) 277 [Jw| 72wl 24)

p+1

+ O(E W) 2wl 2 o] h)-

Sphttlng we = Z] ijt7

(Jol" " o, we) = Y (P[0~ v), Pyu).

J

Now by Bernstein’s inequality and (2.21),

> (Pi(jo]P~ o — |P<jolP (P<jv), Pwy)
j
€

Sy P well = | Pojoll g 0l S 7 E((t).
J

([o[P~ v, wy)

)
3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Indeed, by (2.21) and the fact that since w is a solution to the linear wave equation,

when ¢ > 1, and thus, ||Pjw;||r= ~ 27| Pjw|| =,

> 2D P £ 5
J

Meanwhile, by Bernstein’s inequality, for any fixed j € Z,

(3.19)
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€ o1 _ €03, 2 2=31p-1
L2979 DY Py ol g ol Es SS9 Pooll 227 ol £, 127

(p=2)(p+1)

€ T
SEIVOlE ol S S E@E).

€
t
Also, by Bernstein’s inequality,

> (Pi(|P<jvlP~ (P<jv), Pywy)
i

(-2 2 (p+1)2=3
S 27|V 2 [ Pjwe | o [0l s T S

J

E(v(t))-

¢
t
Therefore, by Gronwall’s inequality,
E(v(t)) < oo, and E(v(t)) < oo,

for any t € R. This proves global well-posedness.
4. Proof of global well-posedness in the cubic case

The argument for global well-posedness for the cubic wave equation

Uy — Au+ud =0, u(0, z) = wo, ut (0, ) = uq,

is similar.

21

(3.21)

(3.22)

(4.1)

Theorem 9. Equation (4.1) is globally well-posed for initial data uy € Bil anduy € B%,l'

Proof of Theorem 9. Again by time reversal symmetry and local well-posedness on the

interval [—1,1], to prove Theorem 9, it suffices to prove global well-posedness in the

positive time direction, ¢ > 1 for (1.1) with initial data (u(1,z), u:(1, x)).
Again, split

<zZ(<117,§)>> = S(1)(uo, ur) + ://25(1 —7)(0,u®)dr + //1 S(1 — 7)(0,u®)dr.

By Proposition 2, the second Duhamel term has finite energy. Indeed,

1 1
v(l,x
() Hivsse =1 [ 86 =008l 5 [ Tutladr <1

1/2 1/2

Now suppose v solves

vy — Av+ud =0,

(4.2)

(4.3)
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on [1,T) with initial data given by (4.2), and u = v + w, where

wy — Aw = 0, w(l,z) =u(l,z) —v(1,), we(1,2) = we (1, 2) — ve(1, x).

Computing,

d
T E@) = (v, —0® + %) S foell 20wl 2 + [loell 2 llow?l| 2 + oz 0?2

By Proposition 2,

1
lw?llze S wlZe Sa ek
SO
1
el 2 [w?]| 22 Sa WE(U(t))1/2~
Also, by Proposition 2,
1
low?|| 22 $ ol zellwlize < ;E(U)m»

SO

1
oellz2llow?llz2 S < B(v(1)).

Next, split

1/2
St — 1)S(1) (o, w1 ) + / S(t = 7)(0, u®)dr = w1 + ws.

By the dispersive estimate (1.12),

1
15( = 1)S@)(uo, ur)llz Sa <,
SO
1
lv?*willze < [lvllZallwille Sa ;E(v(t)))m-

To control the term ||wav?||z2, split we = wa1 + waa,

BE(t)~" 1/2

Wy = / S(t —7)(0,u®)dr, Wag = / S(t—7)(0,u”)dr,

0 E(t)—*~

(4.5)

(4.7)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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for some x > 0 to be specified later. Following (2.47),

E()™"
1 1 k
lwarllzs S e VY 2 32 ull P ull podr Sa 5 E()7/C. (4.15)
t — 7] t2/
Taking k = 3,
1
lwar - ?|z= S llwarllelollfe Sa 575 B0 (4.16)
Following (2.26)—(2.32),
1
1S(t = 7)(0,u%)(z)| < P lu(y, 7)PPdo(y), (4.17)
OB(z,t—T)
and

| Pru(y, 7)do(y) S 2% (| Peul|s. (4.18)

OB(z,t—T)

Therefore, by (2.62),

/ fu(r, ) Pdo(y) < (3 / Peuf3do(y))/?)®

OB (z,t—) F oB(zt-1)
1
< k/3 3, =
S O 28 3 Peul 15)? Sa =
k
SO
1/2
< 1 1 < 1
BE(t)—r
and
2 1 2 1
lwa2v[ 22 S < In(B(w®)vllze S 5 In(E()))E(u(t). (4.20)
Therefore, since we are only concerned with E large,
d 1 In(t) 1 _ In(?) 1
—FE<S-FE+—In(E)-E+ =< —In(E)E+ —. 4.21
GESE+—"W(E) B+ 55—~ hE)E+ 5 (4.21)

Doing some algebra,
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é%E _ %ln(E) < @ (E) + %ti? (4.22)
ln(lE) % In(E) = — In(In(E)) < @ + Eh}(E) : %2 (4.23)

Therefore,
In(In(E(T))) < In(T)% + C. (4.24)

Therefore,
E(T) < exp(exp(C + C'In(T)?%)). (4.25)

This proves Theorem 9. O
5. Scattering

To prove scattering, we make use of the conformal energy of a wave equation in [20]
and [22]. See also [23]. Indeed, if v solves

vie — Av + |v[P~ o = 0, (5.1)

then define the conformal energy,

£t) = i<(t+|x|)Lv+2v (t+ |2[) Lo + 20) + i<(t7 |z[)Lv + 2v, (t — |z|) Lo + 20)
+ / (t + o) ¥ofda + ﬁ / (8 + [2f*) 0| da,
(5.2)

whereLz@t—i-l%I~VandL:3t—li—|-V.
By direct computation,

% _ +1 /|v\p+1d:v—2t/\v|p+1dx (5.3)
p

Therefore, when p > 3, 0 < £(t) < £(0), which implies
”u”LfY‘;l(Rx]RS) < 00, (5.4)

when £(0) < oo, since ||v(t, )|+ S E(O )ﬁt_#. Combining (5.4) with the usual
conservation of energy implies scatterlng

Usually, if (ug,u1) € Bf1+2 X B1°1+2, it is not true that £(0) < oco. Therefore, we
make an argument similar to the argument in [5] and [7] to prove scattering.
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Theorem 10. Let r satisfy

1 2 3
S . (5.5)
r p—1 p+1
Then,
10l 1y 1ot ey < 00 (5.6)

Remark 5. Notice that when p = 3, which is the conformal case, r = p 4+ 1, and when
p = b, the energy-critical case, r = cc.

Proof. It is clear from Theorem 8 that (5.6) holds for the interval [—1, 1]. Therefore, by
time reversal symmetry, it suffices to show that (5.6) holds on the interval [1,00). By
interpolation, (5.6) follows from

oo

1
[ e ol < o, 6.7
1

and

vl < oo (5.8)

sup ¢2(1=s¢)
t>1

As in the proof of global well-posedness, decompose the initial data

uli=1 = vo + wo, opu(t, )e=1 = v1 + w1, (5.9)
where this time,
a X
vy = X(E)Péjou\t:h v = X(E)Pﬁjoatu(ta e=1- (5.10)

In this case, jo satisfies (2.9) and (2.10). Here x € C§°(R3) is a smooth cutoff function,
x(z) =1 for |z| <1, and x(z) =0 for |z| > 2. Also, R is chosen so that

[woll gree ray + Wil grac—1 (may < € < 1. (5.11)
Now, let u = v + w, where v and w solve,

Uit — Av + |u|17—1u - |w|p—1w = 07 U(O, (E) = Yo, Ut(07x) = 1, (5 12)
wiy — Aw + |w|P~rw = 0, w(0,x) = wo, wi (0, z) = wy, .

starting from ¢ = 1. Then by (5.2) and (5.3),



26 B. Dodson / Advances in Mathematics 452 (2024) 109811

d
Pl g, p+1
dtS(t) P /|v| dx 2t/ [P dx
((t + |z|) Lo + 2v, (t + |z {|ulP " u — |v|P~ v — Jw[P~ w}) (5.13)

I
ool =

((t = |z Lo + 20, (t = e {[ul" " u = [o]P "o — [w]P~ w}).

|
N |

Again by Taylor’s theorem, as in (3.7),
Pt — [P~ — [P = ploPT e + O(Jw P [v[P?) + O(Jol[w[P~). (5.14)
Furthermore, by finite propagation speed, v is supported on the set {z : |z| <t + R}.

Remark 6. This is the main reason for the difference between (5.12) and (3.3). Here, we
seek to take advantage of finite propagation speed when computing (5.13).

As in section three,
((t+ [ Lo + 2v, (¢ + [a]) [w]?*[o[P~2)
S (t+ B+ L) Lo+ 2]l ][22 ] 22 wll (5.15)

Modifying the proof of Theorem 8 to a small data result,

-

pP—1
lwllz% < (5.16)

€
t.

Remark 7. This is why we cannot use the methods in this paper to prove scattering in

In(t)
t

the p = 3 case, since in that case we would have decay (as in (4.21)), which is not

enough.

Therefore, for ¢t > 1,

bt
(t+ R)|(t + |2]) Lo + 20 g2 |02, |w||Lp+1 [w]| %

< piniya _E)rtEE
Sk EOYln2 wl o S e lwll - (5.17)
t el
By Proposition 1 and Theorem 8,
”w”L;LgH(RXRa) Se, (5.18)

where r satisfies (5.5). Furthermore,

Lemma 1. If w solves (5.12), and (wo,w1) has Bfffrg/2 X Bfflﬂ/z norm of size € < 1,
and % <se. <1,
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oo

1
[ gl s e, (5.19)
1

Proof. By direct computation, using Theorem 8,

o0 o0

1 1 1 1
/7t2('5 —||P; w||’;,f+1dt</7é — | Pjwl|3 || Pjwl|5 = dt
1

(5.20)

Q*j(scfl)
S S ettt

< a§+1/ 1 )272jsc inf{(2j(%7s‘f))p71,(
1

where
a; = 270D sup t|| Pjwlp~ + 27| Ppwl ez, Y a;Se O (5.21)
t

Following the computations in [7],

) 00 -
(e 1 E)ztim 5p
/ T ) IIw\IL,,+1det</ T s (lo()|[P 1) 2050 dt
se=32) T pF1 t“\Sc—2 t+—P+1 z
1 1
[ 1 € i
3+2E p+1
5(/ t2(sc— 5) t2 dt)2 (/ t2(se—3 ” ()||LP+1dt)2(p+1)
1 1
(5.22)
Similarly,
((t+ |z Lo + 20, (t + |a]) [ w]P~ o))
po1 po1
S (t+ R)|(t + [ Lo + 20] 2 o]l oo ol 2o o (5.23)
1 1
E(t)zTmet -1
SR tlewHLpﬂ (5.24)
Again by Lemma 1,
Tl 1 [e(mite
T P
1 1
< ( 1 5(t)dt)%+#( #Hw()” dt)2<P+1> (5.25)
~A ) s 2 25— %) g+ - :

1 1
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By (5.22) and (5.25), it only remains to compute

p/{(t ) Lo + 204t + [2) o]~ wdadt, (5.26)
and
p/{(t — |z|) Lo + 20} (t — |=|)|v[P~ L wdzdt. (5.27)

Using the computations in the proof of Theorem 8, we see that w is summable in
Littlewood—Paley. Therefore, it suffices to compute (5.26) and (5.27) for one specific
frequency, Pjw, provided our final estimates can be summed.

First compute

t t »

//(T + |$‘)|U‘p71U(ij)d£CdT < /(7’ + R)g( i | Pjw|| Lo+ dT. (5.28)

T pr+1
1 1

Therefore, as in (5.22)

()%

||P w||Lp+1 drdt

H\g
~
©
=
|
N\I/
T
\1
_|_
=
m

o0

Fo1 &), . 1 N
(/ el 2 7 W/mHPWHZL)“P (5.29)
1

1

A

Next, for (5.26) with L and (5.27) with L, we consider three areas separately, inside

the light cone, near the boundary of the light cone, and outside the light cone. Let

X € C§°(R3) be a radially symmetric function such that y(z) = 1 for |2| < 2 and

x(x) =0 for |z| > . Then, we decompose 10
(r+|el) Lo = x( )(T+|x|)Lv+X(| ‘2)(T+Iw|)Lv+(1—x(§) M) T+ Le. (5.30)

Remark 8. Observe that X(—‘) is supported on |z| > 22

By the product rule,

t

p [[ X+ L)+ e o (Pyw)dadr

_ //X(%)(pjw)(wr ()2 L(|v|P~ v)dadr. (5.31)

1
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If 277 > 7, then the computations are rather easy. If we integrate by parts with L, then

1

we pick up either a % multiplier or a Tal multiplier, and we then proceed by the analysis

shown below in (5.34). There is no need to split |v[P~!v.
When 27 > 7, we do decompose |v|P~1v. By Theorem 8, as in (3.18),

// )(Pjw)(r + |2])*L(| P<jv [P~ (P<jv))dudr

2 1 po2
I+ l2D) Lol 727 1 + |2 ) 7ol 27 dr (5.32)

A

t
/ o | i L
T

A

t
23 (se=1/2) || 1 P. ~ f
/ ”T sl ¢ dT+/T+R | Pyl dr
1 1

By straightforward computation,

/tQ(SC 2 3/ )det
1

o)
. 1 E(t)
< sup 227GV |tp.aw oo-/ At 5.33
Nte[l,lzo) ltPwlle 2(se—%) 12 ( )

1

Next, integrating by parts,

// (Pyw)(r + )P Lol — | Pyl (Pejo)dadr
// DPu)(r+ e o~ o = | Pejol ™ (Pejo)) pdadr
2 [ )P+ lal) (oo — [Pejol? ™ (Pejo)dadr

// ’ (5.34)

// (P + fa) oo~ |Pesol ™ (Peyo) Yods

// Py + ol ‘{|v|p*1vf|ngv|P*1<ngv>}dzdr

+ [ XENBw) -+ a0 = [Pejol? ™ (Pejo) el
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Following (5.29),

/ >t2{2 // )(Pyw)(r + ) { v~ o — | P<julP = (P<jv)) bdadr Yt

0o (5.35)
1 E@#) . » 1 )
5 (/ tQ(SC_%) t—th)p 1 (/ tQ(SC—%) ||ij|‘§t+1dt)
1 1
Similarly, since M <(r+R),
/t2<s —-)t2{// ) (Pyw) (T + x])*{|v|P~ v — |P<jolP~ (P<jv)) badr }dt
Tl . T
5(/Wt—2dt)” 1(/T||Pwllitildt) (5.36)
1 1

Split el % + O(7 + R). The contribution of the O(7 + R) term is estimated

||

identically to (5.36). We set aside the contribution of

/ s et // Tl = Pesol ™ (Pego))dadr )i, (527)

for now.
Next, it is straightforward to compute

L
[ o [ E e+ ) ot — [Pegol ! (e el =S at

o0 o0
1 &) b1 L . 11
S i s (/ S Il T+ NP oI [ o 7t
1 1

T 1 &
S gy </ ey 1Pl A d) 7T + ([P0 £,
1

(5.38)

Finally, by Bernstein’s inequality, examining the kernel of the Littlewood—Paley projec-
tion, for any N < oo, for 277 < 7,

X
Ix (2 “)Psjolle S 27X (Z)Volle: + —IIX( Jullze + [I1P5, x (T)}UHB

- NV (5.39)
S27 ]||X( )Vl 2 + —\|U||L2(\x\<r) + CN HWU”LZ(MZT)-
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Now then, since
2 ni/2. L z I £ I
672 + )2 () Vol ~Ir -+ DX () Lol + 1 = ehx(E) Lol
(7 + ) 2% 2, (5.40)
2" JHX( )WVollrz S —5( )2, (5.41)
Therefore, as in (5.33), using the proof of Theorem 8, from which we can see that the

contribution of 0; can be analyzed in a manner identical to the contribution of 9,,
18: Pjwl| o + [|10- Pjw| Lo < 27| Pyw| L,

/ 1 i //X(é)L(ij)(T + |x|)2{‘v|p71”0 - |P§jv‘p71(P§jU))}d:Edet
1

[ 1 1 2 epu
Se TL5W|| [oe
< — J
N/tz(sr%)tz/ - E(T)drdt
1 1
[ 1 &w e [ 1 -
+</t2(5c7%) 2 dt)erl(/tQ(SCf%)”Pj ||Lp+1dt) (542)
1 1

The computations involving the L are virtually identical, the only difference being that
since L = 0; — O,, we have a term that is the negative of (5.37), canceling it out. Thus,
the contribution of the x(¥) term is complete.
For x( IwP) (5.40) also holds, so we can use the same arguments as in the x(£) case.
For the case when |z| is close to ¢, it is useful to work in the diagonal coordinates
t —|z| = c; and t + |z| = cy. It is also useful to let (%) =1 — x(%) — X(\r\2> For any
T, by a change of variables,

. // VDA + fa) Lo} (¢ + ) ol (Pyo)dzt
(5.43)
/ / w<§><t a2 (Pyw) Lol o) dade:

As before, we would like to integrate by parts and move part of the L onto (Pjw)
while keeping the rest of the L on v. To do this successfully, we will need to make a
Littlewood—Paley decomposition along the coordinates t — |x| = ¢. Indeed, let

Lrcier(c fz)v(e +[a],2) = fer(z), (5.44)
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and then let PS ;v and pzjv denote the standard Littlewood—Paley projections of f. r(z).

Now, compute

[ e el LBl P
t—|z|=c: L <t<T (5.45)

2i(sc=3) 2 @=2+1)
ST—— swp |IrPuwlll(t + o) Lol F2T [+ |2 ol a
T TE[1,00)

where L" is the norm of f(c+ |z|,z) on the set £ <t <T.

Remark 9. In the above computation, we are using the fact that f.r is supported on
the annulus of integration in (5.45). Indeed, if §2 is an annulus,

5 1 s 1 i 1 i 1
11QLP; fer|[5his < LB ferlibis S 20\ ferrllinin = 27 Lo ferlbhi.

Therefore,

/ / ¢<§><t+ 2 (Pyw) L( Pyole ™ Pyo)dade

2‘7 se=1/2 P oo
/ ”T il E(r)dr.
Meanwhile, for
[ [ e e Ee)nor e - Pl Podede, (547)

cST t—|z|=c: L <t<T

we can integrate by parts, obtaining terms in the form of (5.34). The computations
are similar for the L terms. The only potential difficulty lies in the fact that when we

integrate by parts

/ / wé)(t — ) 2P Lo = | B)dade, (549

ST t—|z|=c: L <t

L may hit (t — |z|)?, since in this case it is not true that L(t — |x])? ~ M However,

this is no problem, since following (5.35),
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/ / wé)(t — e (Py)(ol" o = Bl Pyo)dade
c<Tt— |z|=c: %
(5.49)

< . CnllP
< T‘|wa||Lf§1<[%,T1de> 1ol 2 7yxme

< (7;‘5;(2)&) (/OOtZ(S%l)

t2(se—3
1 1
Finally, it should be noted that (5.47) only includes an integral over £ < ¢ < T,
whereas before, our integrals were always on the interval 1 < 7 < ¢. This means that we
will pick up several boundary terms. However, the boundary terms are easily summed.

|Pwlfthdt)7e.

Indeed,
1
5 3 [+ e (Prw) (ol o)l e
k

1 V- E N A _
< o S FTEQ ) P2 M) o (5.50)
k
By a straightforward change of variables, using Proposition 1 and Theorem 8
(27 k)5 £(27F ) 7T || Pjw (27 FE) || s dt

1
Z tQ(SC—— _2
t _p_ 1
/t2 dt) P (/mllewlliﬁldt) P
1 1

Jk
00

Pt

—k-5 —2k(sc—3) k:p FEs
522 712 2M 5 ( /t2 - )t2 E(t)dt) +1(/t 26D
Jk 1 1
711
56(/152(71);5(t)dt)#~
Sc—3

1
(5.51)

In conclusion, we have proved

o0 o0
1
dt<
/tQ(sc 3 NE/tQ(c 2)
1 1

1 ptl dt) ey

(oo}
elB)( [ gy S R (el
1

]
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(oo}
_p_ 1 1
/ sc—3) t2 t)P 1(/ tz(sc—%)H Hiﬁldt)”l +E(1). (5.52)

1 1

Then by standard bootstrap arguments, we have proved

/ ! i(f)dt@o, (5.53)

t2(sc 2

1

which implies (5.7).
Plugging (5.53) back into (5.22)—(5.52), but taking sup, rather than integrating over
[1,00) implies

supt~ 2 £(t) < oo, (5.54)
t>1

which implies (5.8). O
Remark 10. We have actually proved something more. By (5.13), we have actually proved

t

o1 e 37 1 1
/ (1) gy 2 =3 ()| drdt < oo, (5.55)

$2(sc—3) 2 p+1) 26— ¢
1 1

which will be useful in the proof of scattering.

Unlike in the case of the nonlinear Schrédinger equation, see [6], (5.6) is not enough
to prove scattering, even though we have a uniform bound on a norm of v, and thus
v + w, which can partitioned into finitely many small intervals. To prove scattering, we
will utilize integrals on cones.
Theorem 11. For 3 <p <4,

|lv < 0. (5.56)

260 R xrs)
Proof. Again by (5.40),
2 21/2 % oli2, < & Tyo2
177+ 215X (2)Vollze S E(m) + [Ix(2)vllze- (5.57)
Therefore, by the Sobolev embedding theorem,

X
12+ )2 x(E)elge S 1 + [al?)/2(2) Vol s

(7 + | )1/27 ( )vlle+IIX( ol
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SE(T)+ 7'3(;+11) £ )
TP

Therefore, by (5.8),
(72 + |=[*)!/x (T) vlte ST
Combining (5.59),
x
Ix(=)vllLe+r S ——=—,
T

and (5.53) implies

X
||X(;)U”L3Y(5*1)(RXR3) < 0.
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(5.58)

(5.59)

(5.60)

(5.61)

Remark 11. It is here that it is necessary to use the restriction 3 < p < 4, since it is only

here that p+1 < 2(p— 1) <6.

The same exact computations, combined with the support of v implies
T
”X(W)U”Lfgfl)(RxRB) < 00.

For r close to t, let E denote the conformal energy inside a cone,

- 1 1
E(t) = 1 / ((t+7)Lv + 2v)*dz + 1 / ((t —r)Lv + 2v)*dz
r<t+c r<t+c
1 2, .2 2 1 / 2 | 2\[, p+l
+2 / (t* + %)W) dx+p+1 (t* + ro)|v|PT de.
r<t+c r<t+c
If v solves (5.1),
L =L / ((t+ ) Lo+ 20)%do — ——— / (t + 1) o] do
dt 4 2(p+1)

r=t+c r=t+c

1
- t—r) Lo+ 20)2 + ——— — r)2Jypt
1 / ((t—7r)Lv+20)° + 3 1) / (t—r) P do
r=t+c r=t+c
1 2 1 2
+ 1 ((t+7)Lv + 2v)*do + 1 ((t —r)Lv + 2v)°do
r=t+c r=t+c
1
2 42\ |plPty
+ p_+ 7 / (t* +r°)|v] o

r=t+c

(5.62)

(5.63)
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1 8
ty [ @it -2 [t
r=t+c r<t+c

where do is the surface measure on the cone r =t + ¢. Summing up,

d -~ 1 1
@E(t): B / ((t+7")Lv+2v)2dg+m / (t +7)2|v|Pdo
r=t+c r=t+c
+3 / (2 + 1)\ 2do + H(—— — 2) / o] da
2 p+1 '
r=ttc r<t+c
Computing
- T
B(T) - B(3),

(5.64)

(5.65)

(5.66)

when v solves (5.12) using the fundamental theorem of calculus implies, by (5.53), (5.54),

(5.55), and the proof of Theorem 10,

1 1
/ 2 261 / ((t 4+ r)Lv + 2v)*dodc

e~T, T <t<T r=tt+c
+ o1 (t +7)? v dode
12 tQ(Sc*%)
e~T, L <t<T r=t+c

2T
+ / i # / (t2+r2)Wv|2dadc§/ ! @dt < 0.

2 p2(sc—3%) 20— %) 12

e~T, L <t<T r=t+c T

(5.67)

Therefore, following the proof of (5.61), only integrating along cones instead of in dz,

oo

1 T -
/m/w(;)WF@ Ddzdt < oo,

1

which proves the Theorem. O

6. Profile decomposition argument

(5.68)

3 1
Having obtained a scattering result for any ug € ijsc, uy € Bf_;rs“, it only remains

to show that this bound is uniform over all (ug,u;) satisfying

(w0, wr)|| 34s, 140, <A,

14sc
2 2
Bi, xBi,

(6.1)
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for some A < oo. The proof argument is exactly parallel to the arguments in [4], [3], and
especially in [2]. Here we are in the nonradial setting, however, we are aided by the fact
that the nonlinearity is not the Lorentz 1nvar1ant nonhnearity.

Let (ug, uf) be a bounded sequence in By T% x B +SC . Since this sequence is bounded

in H% x H%~! then by Theorem 3.1 in [15], we may make the profile decomposition

N
S(t)(uon, urm) = Y TFS(8)(65, 61) + SRy, RY), (6.2)
j=1
where
hm lim sup ||S(¢ )(ROan )||Lz(p D Rxr?) = 0- (6.3)

N—0oo nooco

The group I'} is the group of operators generated by translation in space and in time,
and also by the scaling symmetry. That is, there exist ] € R3, t7? € R, and A} € (0,00)
such that
n n 2 n n n n
Lot ) = (N])r=To(N] (t = t7), N} (x — 27)). (6.4)

Furthermore, the I'}’s have the asymptotic orthogonality property that when j #+ k,

lim | 1n<A—7>| MO0 2 (g — ] 18— t]) = (6.5)
Using the dispersive estimate in (1.12), l%l is uniformly bounded for any j.
Lemma 2. If % — oo then (bé =0 and ¢]1 =0.
Proof. Indeed, from [15], for any fixed 7,
lim (%) ~'S(8) (ug, uft) — S(£)(é0, 41) (6.6)

n—oo

weakly in L Y. Rewriting (Tt

n

() S0) ) = S0+ %)((A?rﬁug(

) O (). (67)

and then by the dispersive estimate (1.12), for any fixed Littlewood—Paley projection, if
— 00,

]
>m

L), ()T () = 0, (6.8)
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2(17 1)

weakly in L, , which proves the lemma. O

Since ¢} is bounded for any j, after passing to a subsequence, ' — ¢;. Absorbing the
remainder into Ry, we may rewrite (6.2) with I} having no translation in time, that is,

To(t,a) = (AT To(A2, Nz + 21). (6.9)
Furthermore, since
A7 Tug(\rz) = @), and (A7 luy (M) — ¢, (6.10)
we have the bounds
681 30ec + 1611 < A (6.11)

Therefore, the solution to (1.1) with initial data equal to (¢}, #]) has a finite L?’(ffl)
norm. Furthermore,

hm Z” ¢j ”HscstC 1 <thU-p||<u0 n, Ul n)||H3c><H5C 13 (6'12)

so for only finitely many 7, ||(¢) (b])HHscstc L > e IE () ¢]1')||HSCXHSC71 < ¢, then
the solution to (1.1) with initial data (¢, ¢?) has the bound

ull 20 S (80 P groe x o1 (6.13)

Therefore, by standard perturbative arguments combined with the asymptotic orthogo-
nality in (6.5), if u, is the solution to (1.1) with initial data (uon,u1.5),

T}ergo ”u”HLff;’*l) < 0. (6.14)

2(17 1)

Thus, there must exist a uniform upper bound on the L; norm of a solution u to

(1.1) whose initial data has bounded Besov norm.
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