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Abstract. We present a graph-based numerical method for solving hyperbolic systems of con-
servation laws using discontinuous finite elements. This work fills important gaps in the theory as
well as practice of graph-based schemes. In particular, four building blocks required for the imple-
mentation of flux-limited graph-based methods are developed and tested: a first-order method with
mathematical guarantees of robustness; a high-order method based on the entropy viscosity tech-
nique; a procedure to compute local bounds; and a convex limiting scheme. Two important features
of the current work are the fact that (i) boundary conditions are incorporated into the mathemati-
cal theory as well as the implementation of the scheme. For instance, the first-order version of the
scheme satisfies pointwise entropy inequalities including boundary effects for any boundary data that
is admissible; (ii) sub-cell limiting is built into the convex limiting framework. This is in contrast to
the majority of the existing methodologies that consider a single limiter per cell providing no sub-cell
limiting capabilities.

From a practical point of view, the implementation of graph-based methods is algebraic, meaning
that they operate directly on the stencil of the spatial discretization. In principle, these methods do
not need to use or invoke loops on cells or faces of the mesh. Finally, we verify convergence rates
on various well-known test problems with differing regularity. We propose a simple test in order to
verify the implementation of boundary conditions and their convergence rates.

Key words. discontinuous finite elements, graph-based formulation, hyperbolic systems, invari-
ant sets, convex limiting, boundary conditions.

AMS subject classifications. 35L65, 35Q31, 65M12, 65N30, 65M22, 65M60

1. Introduction. For the last four decades the field of numerical methods for
solving hyperbolic systems of conservation equations has been dominated by a para-
digm that is commonly referred to as high-resolution schemes. These are numerical
methods in which the order of consistency is automatically adjusted locally (in space)
depending on some chosen smoothness criteria; see early references [4, 27, 55, 61].
While a heuristic high-resolution method is a good starting point for practical com-
putations, it is not enough to achieve unconditional robustness of the scheme. Here,
we define unconditional robustness as the guarantee that the computed update at a
given time step remains admissible and maintains crucial physical invariants, such
that the resulting state can be used again as input for the next time step update.
Modern approaches for constructing robust high-order schemes are based on the fol-
lowing ingredients [8, 20, 25, 32, 36, 39, 40, 44–47, 50, 52, 56, 57, 61, 63]: (a) a reference
low-order method with mathematically guarantees of robustness; (b) a formally high-
order method that may or may not guarantee any robustness properties; and (c)
a post-processing procedure based on either flux or slope limiting techniques that
blends the low-order and high-order solutions. A particular incarnation of such post-
processing technique is the convex limiting technique that establishes mathematical
guarantees for maintaining a (local) invariant-set property [20].

First-order graph-based formulations combined with discontinuous spatial dis-
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cretizations are only tersely described in [25, Section 4.3], leaving the path towards
high-performance high-order graph-based methods underdeveloped. Therefore, the
first goal of the present paper is to complete the mathematical theory and discuss
computational aspects of invariant-set preserving schemes for the case of discontinu-
ous finite elements in comprehensive detail. In particular, we incorporate boundary
conditions into the formulation of the scheme, provide proofs of invariant-set preser-
vation and discrete entropy inequalities including the effects of boundary data.

The second goal of this paper is to lay out the elementary building blocks required
to construct a robust high-order scheme with convex limiting, using a graph-based dis-
continuous Galerkin discretization. This requires the development and testing of three
components: (i) a heuristic high-order method, (ii) a suitable strategy for construct-
ing local bounds and their relaxation in order to prevent degradation to first-order
accuracy, and (iii) a convex-limiting procedure that blends the high and low order
methods while maintaining an invariant set.

1.1. Background: graph-based methods. A graph-based formulation [14,42,
51] is a numerical method that operates directly on the stencil or sparsity-graph of
the discretization and its degrees of freedom, bypassing entities such as cells, faces, or
bilinear forms of the underlying discretization paradigm. In its simplest incarnation,
a graph-based formulation takes a solution vector consisting of states Un

i associated
with a (collocated) degree of freedom i at time tn and computes an updated state
Un+1

i for the time tn+1 as follows:

mi
Un+1

i −Un
i

τn
+
∑

j∈I(i)

f(Un
j )cij − dij(U

n
j −Un

i ) = 0.(1.1)

Here, I(i) is the stencil or “adjacency list” of the ith degree of freedom, the expression∑
j∈I(i) f(Un

j )cij is an algebraic representation of the inviscid divergence operator,

and dij(U
n
j − Un

i ) represents artificial viscous fluxes. The graph-based formulation
used in this paper is introduced in detail in Section 3.

The concept of graph-based methods is quite old—one can argue that its roots lie
in finite difference approximations on unstructured grids. A notable modern prede-
cessor of what we call graph-based methods is the group finite element formulation of
Fletcher [14,51]. More recently, the concept of graph-based methods has been associ-
ated with flux-corrected transport techniques; see [37]. There is a rich record of appli-
cations of graph-based (sometimes also called edge-based) methods in computational
fluid dynamics; see [42, Chapter 10] for a historical account. From the mathematical
point of view, invariant-set preserving methods [24] and convex-limiting [20,25] tech-
niques lead to increased interest in graph-based formulations. Computationally, the
algebraic structure of the scheme is a natural idea in order to manipulate individual
degrees of freedom and preserve pointwise stability properties.

1.2. Background: invariant set preservation and convex limiting. As
outlined above, one of the fundamental prerequisites for the development of a robust
high-resolution scheme is the availability of a first-order scheme with mathematically
guaranteed robustness properties. The graph-based methods described in [24,25] pro-
vide such mathematical assurances, by maintaining the so-called invariant-set prop-
erty [24]. These first-order methods provide a discretization agnostic paradigm that
works on arbitrary meshes, arbitrary polynomial degree, and arbitrary space dimen-
sion.
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The convex-limiting framework introduced in [20,25] provides a limiter technique
that works on individual degrees of freedom and maintains the invariant-set prop-
erty. By construction, the limiter formulation is purely algebraic and is not bound
to a specific discretization technique. In the context of finite element discretizations,
it does not distinguish between cell-interior degrees of freedom and those located at
the cell boundary. Therefore, convex limiting is an instance of sub-cell flux limiting.
First-order invariant-set preserving methods, as well as the convex-limiting technique,
were particularly well received by the discontinuous Galerkin spectral element com-
munity [40,46,50] and related sub-cell limiting efforts [36,39].

1.3. Graph-based discontinuous Galerkin formulations and objectives.
The framework of invariant-set preserving methods based on convex limiting have been
discussed in detail in the context of continuous finite element formulations [7,17,18,43].
The low-order stencil-based invariant-set preserving methods have also been combined
effectively with discontinuous Galerkin spectral element methods in [40, 46, 50]. This
requires combining two different discretization techniques: the low-order method is
described and implemented using a purely algebraic (or stencil based) approach, while
the high-order method is most frequently described and implemented with a cell-based
formulation. Unifying the high and low order methods into a single stencil-based
description is very desirable, since it greatly simplifies the analysis, construction, and
implementation of the schemes.

Therefore, we introduce and discuss suitable low-order and high-order methods
based on the algebraic structure introduced in [25, Section 4.3], using the same stencil,
and discuss the convex limiting paradigm adapted to the graph-based discontinuous
Galerkin setting. We will corroborate our analytical formulation with a computational
validation of convergence rates and qualitative fidelity.

1.4. Related works. Regarding other methods, we start by noting that the
dominant body of DG schemes are cell-based, formally high-order methods, poten-
tially supplemented with slope-limiting (e.g. Zhang–Shu limiter [62]) or troubled-cell
indicator. These technique do not use a reference first-order scheme that preserves all
entropy inequalities and all invariant sets. While this may look advantageous, since
they do not compute both a high-order and a low-order solution, they do not have
local bounds to enforce to the high-order method. That explains why the current
slope-limiting paradigm is mostly limited to positivity preservation (ρ > 0 and e > 0)
and rarely even uses local bounds. A noteworthy exceptions of this approach are the
publications [46, 50] which borrow some ideas from [25]. These publications indeed
rely on a low-order finite volume subgrid method, while the high-order method is a
summation-by-parts method. The work in [46, 50] uses high-order and low method
with different spatial discretizations, thus having different stencils and different basis
functions. One of goals of the present work is to present a simple approach that
incorporates some form of sub-cell limiting using a single spatial discretization.

1.5. Paper organization. Section 2 is dedicated to preliminaries and nota-
tion about the spatial discretization and hyperbolic systems of conservation laws. In
Section 3 we define a first-order method by extending the mathematical description
and analysis of graph-based discontinuous Galerkin methods in terms of invariant-set
preservation and entropy inequalities. In Section 4 we discuss the procedures for re-
flecting boundaries, supersonic inflows and outflows as well as subsonic inflows and
outflows. In Section 5 we develop a convex-limited scheme using a robust first-order
method and a high-order method using the entropy-viscosity technique. In Section 6
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we provide a series of numerical experiments demonstrating that the convex-limited
scheme exhibits expected convergence rates. We also propose a simple test for vali-
dating the implementation of outflow and inflow boundary conditions.

2. Preliminaries. We briefly introduce relevant notation, recall the concepts of
hyperbolic conservation laws, invariant sets and entropy inequalities from the litera-
ture and discuss the finite element setting for the proposed graph-based discontinuous
formulations. We loosely follow the notation from [20,25].

2.1. Hyperbolic systems, invariant sets, and entropy inequalities. We
are interested in solving partial differential equations of the form

∂tu+ div f(u) = 0,(2.1)

where u = u(x, t) ∈ Rm is the state (here, m is the number of components of the
system), x ∈ Rd is the spatial coordinate with the space dimension d, and f(u) :
Rm → Rm×d denotes the flux. The divergence of the flux is defined as [div f(u)]i =∑

j∈{1:d} ∂xj
[f(u)]ij . We make the following assumptions, see also [23,24].

Assumption 2.1 (admissible set). We assume that there is a convex set A ⊂ Rm,
called admissible set, such that the matrix

∂x[f(u)n] ∈ Rm×m with x := n · x

has real eigenvalues for all n ∈ Sd−1. We assume that the solution of (2.1) is un-
derstood as the zero-viscosity limit u = limε→0+ u

ǫ, where u
ǫ solves the parabolic

regularization

∂tu
ǫ + div f(uǫ) = ǫ∆u

ǫ.(2.2)

Assumption 2.2 (entropy inequality). Furthermore, we make the important
assumption [23, 24] that there exists at least one entropy-flux pair {η(u), q(u)} asso-
ciated to (2.2), with η(u) : Rm → R and q(u) : Rm → Rd such that

∂tη(u
ǫ) + div q(uǫ) ≤ ǫ∆η(uǫ) for all ǫ > 0,

see [16, p. 28], such that the zero-viscosity limit u = limε→0+ u
ǫ satisfies the entropy

dissipation inequality

∂tη(u) + div q(u) ≤ 0 .

Assumption 2.3 (Finite speed of propagation). Consider the solution u(x, t) of
the projected Riemann problem

∂tu+ ∂x(f(u) · n) = 0, where U0 =

{
uL if x ≤ 0,

uR if x > 0,
(2.3)

and x := x · n. Given the solution u(x, t) of the Riemann problem (2.3), we assume
that there is a maximum wavespeed of propagation, denoted as λmax(uL,uR,n) > 0,
such that

u(x, t) = uL for x · n ≤ 1
2 and u(x, t) = uR for x · n ≥ 1

2

provided that tλmax(uL,uR,n) ≤
1
2 .
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Assumption 2.4 (Invariant set). We assume that the Riemann problem (2.3)
satisfies an invariant-set property of the form: There exist convex subsets B ⊂ A

such that u(t) :=
∫ 1/2

−1/2
u(x, t) dx ∈ B, provided that u(x, t) is the unique entropy

solution of the Riemann problem with left state uL ∈ B and right state uR ∈ B and
that tλmax(uL,uR,n) ≤

1
2 . The precise description of the set B ⊂ Rm depends on the

initial data and the hyperbolic system at hand; see Section 2.2 for a detailed summary
for the compressible Euler equations.

For additional background on entropy inequalities, parabolic regularization principles
and invariant sets we refer the reader to [5, 15, 23, 24, 31] and references therein. A
general reference on hyperbolic systems of conservation laws is [16].

2.2. The compressible Euler equations. For the compressible Euler equa-
tions [16,58] the conserved state is u = [ρ,m, E ]⊤ ∈ Rm with m = d+ 2 is comprised
of the density ρ, momentum m, and total energy E . The flux f(u) : Rd+2 → R(d+2)×d

is given by

f(u) :=
[
m , ρ−1

m⊗m+ p Id , m

ρ (E + p)
]T

,(2.4)

where Id is the d×d identity matrix, and p is the pressure. For the sake of simplicity we
assume that the system is closed with a polytropic ideal gas equation of state [16,58].
This implies that

p = (γ − 1) ε(u), ε(u) := E −
1

2

|m|2

ρ
,(2.5)

where ε(u) is the internal energy and γ > 1 denotes the ratio of specific heats. The
admissible set A is given by

A =
{
[ρ,m, E ]⊤ ∈ Rd+2 | ρ > 0 and ε(u) > 0

}
.(2.6)

For the case of a polytropic ideal gas equation of state, the Euler equations admit a
mathematical entropy-flux pair

{
η(u), q(u)

}
given by

η(u) := −ρs(u), q(u) := −ms(u), where s(u) := log(ρ−γp(u)).(2.7)

Here, s(u) denotes the specific entropy. We note that this choice of entropy-flux
pair {η, q} is not unique, as there are infinitely many entropy-flux pairs for the Euler
equations [26,33].

Let u(x, t) be the unique entropy solution of the Riemann problem (2.3). Then,
the Riemann average u(t) belongs to the invariant set

B =
{
u ∈ A | s(u) ≥ min{s(uL), s(uR)}

}
,

provided that the initial data is admissible; i. e., uL,uR ∈ A; and that tλmax ≤ 1
2 ;

see Assumption 2.3. Note that B characterizes a minimum principle of the specific
entropy s.

2.3. Space discretization. We consider a quadrilateral or hexahedral mesh Th
and a corresponding nodal, scalar-valued discontinuous finite element space Vh for
each component of the hyperbolic system:

Vh =
{
vh(x) ∈ L2(Ω)

∣∣ (vh ◦ TK)(x̂) ∈ Qk(K̂) ∀K ∈ Th
}
.
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Here, TK : K̂ → K denotes a diffeomorphism mapping the unit square or unit cube
K̂ to the physical element K ∈ Th and Qk(K̂) is the space of bi-, or trilinear Lagrange
polynomials of degree k defined on the reference element K̂. That is, the Lagrangian
shape functions are defined by enforcing the property φ̂k(x̂j) = δjk with the Gauß-
Lobatto points {x̂k}k∈N defined on the reference element. Here, N is the number of
local degrees of freedom on the cell K. The basis functions on the physical element
K are then generated using the reference-to-physical map TK : More precisely, for
each physical element K, we define shape functions by setting φK,i(x) := φ̂i(T

−1
K (x))

for all i ∈ N . More detail on the construction and implementation of finite element
spaces we refer the reader to [6, 10].

Remark 2.5 (Choice of basis functions). We have chosen quadrilateral and hexa-
hedral elements for implementational convenience. Our framework can accommodate
the usual set of simplicial elements, tensor-product elements, or even more exotic
spatial discretizations, such as rational barycentric coordinates on arbitrary polygons.
The only restriction is that the chosen basis {φi(x)} is interpolatory, has non-negative
mass, viz.,

∫
φi(x)dx ≥ 0, and satisfies the partition of unity property

∑
i∈V φi(x) = 1

for all x in the domain. The precise location of the nodes is of no consequence.

We define V =
{
i ∈ N | 1 ≤ i ≤ dim(Vh)

}
as the index set of global, scalar-valued

degrees of freedom corresponding to Vh. Similarly, we introduce the set of global
shape functions {φi(x)}i∈V and the set of collocation points {xi}i∈V . Note that, in
the context of nodal discontinuous finite elements, different degrees of freedom can
be collocated at the same spatial coordinates. In other words, the situation xi = xj

with i 6= j ∈ V may occur whenever xi lies on a vertex, edge or face of the mesh. We
introduce the index sets:

I(K) =
{
j ∈ V

∣∣ supp(φj) ∩K 6= ∅
}
,

I(∂K) =
{
j ∈ V

∣∣ φj |∂K 6≡ 0
}
,

I(∂Ω) =
{
j ∈ V

∣∣ φj |∂Ω 6≡ 0
}
.

Note that the set I(∂K) also contains indices of shape functions that have no support
on K but on a neighboring element of K. We also note that when using finite elements
with Gauß-Lobatto points the situation j ∈ I(∂Ω) can only occur if xj lies on the
boundary ∂Ω. We assume that the basis functions satisfy the following partition of
unity property for each element K:

∑

j∈I(K)

φj(x) = 1, x ∈ K.(2.8)

Finally, we introduce some matrices to be used for the algebraic discretization.
We define the consistent mass matrix with entries mij ∈ R and lumped mass matrix
with entries mi ∈ R as

mij :=

∫

K

φiφj dx, mi :=

∫

K

φi dx.(2.9)

In order to discretize the divergence of the flux, we introduce a vector-valued matrix

cij :=

{
cKi

ij − c∂Ki

ij if j ∈ I(Ki),

c∂Ki

ij if j ∈ V\I(Ki),
(2.10)
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where Ki ∈ Th is the uniquely defined element satisfying supp(φi) ∩Ki 6= ∅, and

cKij :=

∫

K

∇φjφi dx , c∂Kij := 1
2

∫

∂K

φjφinK ds , c∂Ωi := 1
2

∫

∂K∩∂Ω

φinK ds ,(2.11)

where nK is the outwards pointing normal of the element K. The stencil at the node
i is defined as I(i) = {j ∈ V | cij 6= 0}. From definitions (2.10) and (2.11) it follows
that cii = 0, see Lemma 3.2 for more details.

3. Low-order method. We now introduce a first-order, graph-based method
for approximating (2.1). The scheme is based on results previously reported in [24,
25, 44]. A particular novelty of the proposed scheme is the inclusion of boundary
conditions in the formulation, which will be discussed in more detail in Section 4. We
introduce the scheme in Section 3.1, discuss conservation in Section 3.2, and prove
invariant-set and entropy-dissipation properties in Section 3.3.

3.1. Description of the low-order scheme. Let u
n
h(x) =

∑
i∈V Un

i φi(x) be
a given (discontinuous) finite element approximation at time tn, where the coefficients

shall be admissible states Un
i ∈ A. In addition, let U

∂Ω,n
i ∈ A with i ∈ I(∂Ω), be a

given vector of admissible boundary data for time tn. We then compute the low order
update U

L,n+1
i at time tn+1 = tn + τn as follows:

(3.1) mi
U

L,n+1
i −Un

i

τn
+
∑

j∈I(i)

{
f(Un

j ) cij − dL,nij (Un
j −Un

i )
}

+ f(U∂Ω,n
i ) c∂Ωi − d∂Ω,n

i (U∂Ω,n
i −Un

i ) = 0, for i ∈ V.

Scheme (3.1) is an algebraic formulation of a discontinuous Galerkin formulation [25]
in which the underlying weak formulation is hidden in the matrices mi and cij . We
note that (3.1) is based on a central flux approximation [25] with subsequent interpo-
lation, using the nodal property of the shape functions [30]:

∑

j∈I(i)

f(Un
j ) cij =

∫

Ki

∇ ·
( ∑

j∈I(Ki)

f(Un
j )φj

)
φi dx

+
1

2

∫

∂Ki

( ∑

j∈I(∂Ki)\I(Ki)

f(Un
j )φj −

∑

j∈I(∂Ki)∩I(Ki)

f(Un
j )φj

)
· nKi

φi dx

≈ −

∫

Ki

f(un
h) · ∇φi dx+

∫

∂Ki

{{
f(un

h)
}}

∂Ki
· nKi

φi dx,

where {{f(un
h)}}∂Ki

denotes the average between the two adjacent states. For more
details, see also [25].

Scheme (3.1) imposes the boundary data weakly with a jump condition, defining
a boundary flux through an outer state with the help of boundary conditions in the
usual DG form, see e. g., [3,28,30], albeit with a simplified, diagonal flux, f(U∂Ω,n

i ) c∂Ωi ,

as detailed in Sec. 4 below. Since ci = 0 and d∂Ω,n
i = 0 for i ∈ V \ I(∂Ω), (3.1) is

valid for both boundary and interior degrees of freedom simultaneously. We defer the
discussion on how to construct a suitable boundary data vector U

∂Ω,n
i to Section 4.
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The graph viscosities dL,nij , d∂Ω,n
i > 0 in (3.1) are computed as follows:





dL,nij := |cij |ℓ2λ
+
max(U

n
i ,U

n
j ,nij), where nij =

cij

|cij |ℓ2
, for i 6= j,

d∂Ω,n
i := |c∂Ωi |ℓ2λ

+
max(U

n
i ,U

∂Ω,n
i ,ni), where ni =

c∂Ωi

|c∂Ωi |ℓ2
.

(3.2)

Here, λ+
max(UL,UR,n) : Rm×Rm×Sd−1 −→ R+ is an upper bound of the maximum

wavespeed of the projected Riemann problem (2.3) [24]. We also introduce dL,nii :

dL,nii := −
∑

j∈I(i),j 6=i

dL,nij − d∂Ω,n
i .(3.3)

This definition plays a role in the computation of the largest admissible time-step size,
see (3.11), however, we note that dL,nii is not needed in order to compute the update

U
L,n+1
i with (3.1).

The low order scheme (3.1)–(3.2) is a first-order invariant-set preserving approxi-
mation in the spirit of [24]. To this end we rigorously establish conservation properties
in Section 3.2 and derive a bar state characterization that in turn implies an invariant-
set property and discrete entropy inequalities (see Lemma 3.7). We have summarized
an adaptation of (3.1)–(3.2) for the prescription of boundary conditions in the context
of continuous finite element discretizations in Appendix B.

3.2. Conservation properties. In order to establish conservation properties
of the scheme we make use of some auxiliary results.

Lemma 3.1 (Partition of unity property). It holds that
∑

j∈I(i)

cij + c∂Ωi = 0, for all i ∈ V.(3.4)

Proof. Let i ∈ V be arbitrary and let Ki denote the cell with i ∈ I(K). Using
the definitions (2.10) and (2.11), as well as property (2.8), we can compute
∑

j∈I(i)

cij + c∂Ωi =
∑

j∈I(Ki)

(
cKi

ij − c∂Ki

ij

)
+

∑

j∈I(i)\I(Ki)

c∂Ki

ij + c∂Ωi

=

∫

Ki

∇
( ∑

j∈I(Ki)

φj

)
φi dx−

1

2

∫

∂Ki

( ∑

j∈I(Ki)

φj

)
φinKi

ds

+
1

2

∫

∂Ki\∂Ω

( ∑

j∈I(i)\I(Ki)

φj

)
φinKi

ds +
1

2

∫

∂Ki∩∂Ω

φinKi
ds.

= −
1

2

∫

∂Ki

φinKi
ds +

1

2

∫

∂Ki\∂Ω

φinKi
ds +

1

2

∫

∂Ki∩∂Ω

φinKi
ds

= 0.

Lemma 3.2. The matrix cij is skew-symmetric:

cij = −cji for all i, j ∈ V.(3.5)

Proof. The statement is an immediate consequence of definition (2.10) and the

fact that integration by parts shows cKi

ij − c∂Ki

ij = −c∂Ki

ji + cKi

ji = −(c
∂Kj

ji − c
Kj

ji )

for Ki = Kj ; or that c∂Ki

ij = c∂Ki

ji = −c
∂Kj

ji whenever Ki 6= Kj due to the fact that
nKi

= −nKj
on ∂Ki ∩ ∂Kj .
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Conservation equation (2.1) implies that the following flux-balance of the state Ui

between time tn and tn+1 holds true:

∫

Ω

u(x, tn+1) dx+

∫ tn+1

tn

∫

∂Ω

f(u(x, s))nK dsds =

∫

Ω

u(x, tn) dx.

We now show that the scheme (3.1) satisfies a discrete counterpart of such a flux
balance. We start by deriving an explicit skew-symmetric counterpart of scheme
(3.1):

Lemma 3.3 (Skew symmetric form). Using property (3.4) scheme (3.1) can be
written equivalently as

mi

(
U

L,n+1
i −Un

i

)
+

∑

j∈I(i)

FL
ij + F

∂Ω,L
i = 0,(3.6)

with the fluxes

FL
ij := τn

(
f(Un

j ) + f(Un
i )
)
cij − τnd

L,n
ij (Un

j −Un
i ),

F
∂Ω,L
i := τn

(
f(U∂Ω,n

i ) + f(Un
i )
)
c∂Ωi − τnd

∂Ω,n
i (U∂Ω,n

i −Un
i ),

where the vectors FL
ij ∈ Rm are skew symmetric, i. e., FL

ij = −FL
ji. Note that F

∂Ω,L
i

is a boundary flux.

Summing up (3.6) over the index i and using the skew symmetry of FL
ij leads to the

following corollary.

Corollary 3.4 (Total balance). Scheme (3.1) satisfies the balance equation

∑

i∈V

mi
Un+1

i −Un
i

τn
+

∑

i∈I(∂Ω)

F
∂Ω,L
i = 0(3.7)

for all i ∈ V. Using definitions (2.9) and (2.11) one can write (3.7) equivalently as

∫

Ω

u
n+1
h (x) dx +

τn
2

∫

∂Ω

∑

i∈I(∂Ω)

φi

(
f(U∂Ω,n

i ) + f(Un
i )
)
nK ds

−
∑

i∈I(∂Ω)

d∂Ω,n
i

(
U

∂Ω,n
i −Un

i

)
=

∫

Ω

u
n
h(x) dx.

Remark 3.5. F
∂Ω,L
i can be viewed as a central flux between the boundary state

Un
i and a ghost node with state U∂Ω,n

i in the usual discontinuous Galerkin framework.

3.3. Invariant-set preservation. We now focus on stability properties of the
low-order scheme. In the spirit of [24, 25], we rewrite (3.1) as a convex combination
of bar states. These are states formed by an algebraic combination of interacting
degrees of freedom that, under a suitable CFL condition, correspond to the spatial
average of an associated one dimensional Riemann problem. However, in contrast
to the discussion found in the references above, we end up with an additional set of
bar states that depend on the boundary data. We start with the following algebraic
identity.
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Lemma 3.6 (Convex reformulation). The update procedure (3.1) can equiva-
lently be written as follows:

(3.8) U
L,n+1
i =

(
1 +

2τnd
L,n
ii

mi

)
Un

i +
2τnd

∂Ω,n
i

mi
U

∂Ω,n

i +
∑

j∈I(i)\{i}

2τnd
L,n
ij

mi
U

n

ij ,

where U
n

ij and U
∂Ω,n

i are the bar states defined by,

U
n

ij =
1

2
(Un

j +Un
i )−

|cij |

2dLij

(
f(Un

j )− f(Un
i )
)
nij ,(3.9)

U
∂Ω,n

i =
1

2
(U∂Ω,n

i +Un
i )−

|c∂Ωi |

2d∂Ω,n
i

(
f(U∂Ω,n

i )− f(Un
i )
)
ni.(3.10)

Note that U
∂Ω,n

i depends on the boundary data U
∂Ω,n
i .

Proof. Similarly to the derivation of the skew symmetric form (3.6), we can use
identity (3.4) to rewrite (3.1) as follows:

miU
n+1
i = miU

n
i − τn

∑

j∈I(i)

(
f(Un

j )− f(Un
i )
)
cij − dL,nij (Un

j −Un
i )

− τn
(
f(U∂Ω,n

i )− f(Un
i )
)
c∂Ωi − d∂Ω,n

i (U∂Ω,n
i −Un

i ).

We now add and subtract 2τn
∑

j∈I(i)\{i} d
L,n
ij Un

i and 2τnd
∂Ω,n
i U

∂Ω,n
i :

miU
n+1
i =

(
mi − 2τnd

∂Ω,n
i −

∑

j∈I(i)\{i}

2τnd
L,n
ij

)
Un

i

− τn
∑

j∈I(i)\{i}

(
f(Un

j )− f(Un
i )
)
cij − dL,nij (Un

j +Un
i )

− τn
(
f(U∂Ω,n

i )− f(Un
i )
)
c∂Ωi − d∂Ω,n

i (U∂Ω,n
i +Un

i ).

The result now follows readily dividing both sides of the equality by mi and using
definition (3.3).

Lemma 3.7 (Pointwise entropy inequality). Let {η, q} be any entropy-flux pair
of the hyperbolic system ∂tu + div f(u) = 0 [23, 24]. Assume that the update (3.1) is
performed with a time step size τn satisfying the following CFL condition:

−τn
2 dL,nii

mi
≤ 1 for all i ∈ V.(3.11)

Then the update Un+1
i satisfies the following pointwise entropy inequality:

(3.12) mi
η(Un+1

i )− η(Un
i )

τn
+
∑

j∈I(i)

q(Un
j ) · cij − dL,nij (η(Un

j )− η(Un
i ))

+ q(U∂Ω,n
i ) · c∂Ωi − d∂Ω,n

i (η(U∂Ω,n
i )− η(Un

i )) ≤ 0

for all i ∈ V.
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Proof. Proving inequality (3.12) relies on the convex reformulation (3.8), the con-
vexity of the entropy η and corresponding inequalities that hold true for the bar states
defined in (3.9) and (3.10):

η(U
n

ij) ≤
1

2

(
η(Un

i ) + η(Un
j )
)
−

|cij |ℓ2

2dLij

(
q(Un

j )− q(Un
i )
)
nij ,

η(U
∂Ω,n

i ) ≤
1

2

(
η(U∂Ω,n

i ) + η(Un
i )
)
−

|c∂Ωi |ℓ2

2d∂Ω,n
i

(
q(U∂Ω,n

i )− q(Un
i )
)
ni.

Such inequalities hold true provided that dL,nij and d∂Ω,n
i are chosen large enough so

that the bar states represent an average value over the Riemann fan [24]. In particular,
the choice (3.2) is sufficient [24]. For further details we refer to the detailed discussion
found in [24, Thm. 4.7] and [25, Thm. 3.8].

Remark 3.8 (Global entropy inequality). Similarly to the procedure in Section 3.2
that establishes global conservation (see Lemma 3.3 and Corollary 3.4), we can rewrite
inequality (3.12) in skew symmetric form and sum up. This leads to a global entropy
inequality:

∑

i∈V

miη(U
n+1
i ) + τn

∑

i∈I(∂Ω)

Q
∂Ω,L
i ≤

∑

i∈V

miη(U
n
i ),(3.13)

with (viscous) boundary fluxes

Q
∂Ω,L
i :=

(
q(U∂Ω,n

i ) + q(Un
i )
)
· c∂Ωi − d∂Ω,n

i

(
η(U∂Ω,n

i )− η(Un
i )
)
.

This is nothing else than the discrete counterpart of a global entropy inequality sat-
isfied by the entropy-flux pair {η, q}.

Remark 3.9 (Time step size restriction). CFL condition (3.11) determines the
largest time step size that can be used for an individual update step. For example,
in practical implementations it is convenient to select a (user specified) constant 0 <
Cr ≤ 1 and then compute a time step size as follows:

τn = Cr ·min
i∈V

(
−

mi

2 dL,nii

)
.(3.14)

Here, mi decreases and dL,n
ii grows with increasing polynomial degree k leading to a

stricter time step size restriction.

Lemma 3.10 (Invariant set property). Under the stated CFL condition (3.11)

and assuming that the provided boundary data U
∂Ω,n
i is in the invariant set A for all

i ∈ I(∂Ω), then the update Un+1
i computed by (3.1) and (3.2) will satisfy Un+1

i ∈ A
as well.

Proof. The statement is a direct consequence of the fact that (3.8) expresses Un+1
i

as a convex combination of bar states, that in turn are located in the invariant set A
provided that the CFL condition (3.11) holds; see Lemma 3.7.

4. Boundary conditions. We now discuss how to construct the boundary data
vector U

∂Ω,n
i ∈ Rm, i ∈ I(∂Ω) for different types of boundary conditions.

The construction of the boundary data vector U
∂Ω,n
i follows well established

procedures, we refer to e. g., [3, 9, 28–30]. For the sake of completeness we briefly
summarize our approach based on [18].
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4.1. Construction of boundary data U
∂Ω,n
i . We distinguish Dirichlet bound-

ary conditions, slip boundary conditions, supersonic and subsonic in- and outflow.
Dirichlet boundary conditions. For Dirichlet boundaries we simply set U∂Ω,n

i ∈ A
to the desired boundary data at position xi for time tn.

Slip boundary conditions. We impose slip boundary conditions for a boundary
state Un

i = [ρni ,m
n
i , E

n
i ]

⊤ at a boundary collocation point xi by setting

U
∂Ω,n
i := [ρni ,m

∂Ω,n
i , En

i ]
⊤, where m

∂Ω,n
i := m

n
i − 2(mn

i · ni)ni,(4.1)

and where we recall the definition ni = c∂Ωi /|c∂Ωi |ℓ2 for a boundary collocation point

xi. This implies that m
∂,n
i and m

n
i have opposite normal components but the same

tangential projection with respect to the normal ni. The boundary flux F
∂Ω,L
i con-

sequently only affects the balance of the normal component of the momentum and
leaves all other components unaffected.

Supersonic in- and outflow. In order to impose supersonic in- and outflow at
portions of the boundary, we proceed as follows. Given a state Un

i = [ρni ,m
n
i , E

n
i ]

⊤

at a boundary collocation point xi with velocity v
n
i , local speed of sound ai(U

n
i ), and

corresponding Dirichlet data U
d,n
i for the inflow, we set

U
∂Ω,n
i =

{
U

d,n
i if vn

i · ni < −ai,

Un
i if vn

i · ni ≥ ai.
(4.2)

Subsonic in-flow and outflow. For the subsonic case, we need to distinguish in-
and outgoing characteristics. To impose conditions only on the ingoing ones, we
construct the boundary data vector U

∂Ω,n
i by blending together the current state

Un
i and the given Dirichlet data U

d,n
i [9, 18, 29]. To this end, we briefly review the

approach described in [18] for the case of our discontinuous formulation.
Given a state U = [ρ,m, E ]⊤ and a unit vector n we introduce the following set

of characteristic variables Rk(U,n) and characteristic speeds λk(U,n), k = 1, . . . , 4:




R(U,n) :=

{
vn − 2a

γ−1 ,
p(U)

ργ
, v − (v · n)n, vn + 2a

γ−1

}
,

λ(U,n) :=
{
vn − a, vn, vn, vn + a

}
.

(4.3)

Here, vn = v·n and a =
√
γ p
ρ is the local speed of sound. The strategy now consists of

constructing the boundary data satisfying: U∂Ω,n
i with Ri(U

∂Ω,n
i ,n) = Ri(U

d,n
i ,n) if

λi(U
n
i ,n) ≤ 0 (incoming characteristics), and Ri(U

∂Ω,n
i ,n) = Ri(U

n
i ,n) otherwise.

Constructing an admissible state U
∂Ω,n
i satisfying such constraint is always possible;

see [18, § 4.3.2]. In addition, the resulting state U
∂Ω,n
i is always admissible provided

Ud
i is admissible, and the construction coincides with (4.2) for the case of supersonic

in- and outflow.

4.2. Multi-valued boundary conditions. As opposed to classical implemen-
tations of discontinuous Galerkin schemes via face integrals, the algebraic approach
implies that more than one boundary condition applies to a given boundary colloca-
tion point xi, for instance:

– For a typical channel flow setup, a small subset of the boundary collocation
points xi (those at corners) lie between the slip boundaries at the top and
bottom as well as the inflow and outflow boundaries at the left and right,
respectively.
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– Another example is given by two parts of the boundary with slip boundary
conditions that meet at an angle, say 90◦. Here, slip boundary conditions
for both normals should rather be enforced instead of a single slip boundary
condition with a combined normal (of 45◦).

In order to treat such boundary states, we first partition the boundary ∂Ω into all K
disjoint components ∂Ωk, where we either apply a different boundary condition, or
where portions of the boundary meet with a large angle. Then we split c∂Ωi accord-
ingly:

∂Ω =
⋃

k∈[1:K]

∂Ωk, c∂Ωi =
∑

k∈[1:K]

c
∂Ω,k
i , with c

∂Ω,k
i := 1

2

∫

∂K∩∂Ωk

φinK ds.

Finally, scheme (3.1) takes the form

(4.4) mi
U

L,n+1
i −Un

i

τn
+
∑

j∈I(i)

{
f(Un

j ) cij − dL,nij (Un
j −Un

i )
}

+
∑

k∈[1:K]

{
f(U∂Ω,k,n

i ) c∂Ω,k
i − d∂Ω,k,n

i (U∂Ω,k,n
i −Un

i )
}
= 0, for i ∈ V,

where U
∂Ω,k,n
i is a modified vector of appropriately chosen boundary data, and the

modified graph viscosity d∂Ω,k,n
i is computed as follows:

d∂Ω,k,n
i := |c∂Ω,k

i |ℓ2 λ
+
max(U

∂Ω,k,n
i ,Un

i ,n
k
i ), where n

k
i =

c
∂Ω,k
i

|c∂Ω,k
i |ℓ2

.(4.5)

5. High-order method and convex limiting. Following the same approach
as discussed in [20, 25], we now introduce a formally high-order method by using the
consistent mass matrix and introducing a high-order graph-viscosity dHij ,

(5.1)
∑

j∈I(i)

mij

U
H,n+1
j −Un

j

τn
+
∑

j∈I(i)

{
f(Un

j ) cij − dH,n
ij (Un

j −Un
i )
}

+ f(U∂Ω,n
i ) c∂Ωi − d∂Ω,H,n

i (U∂Ω,n
i −Un

i ) = 0, for i ∈ V.

Here, mij =
∫
K
φiφj dx denotes the consistent mass matrix. A considerable body

of stabilization techniques have been developed over the years, supplying ideas that
could be adapted to the computation of high-order graph viscosities dH,n

ij . Among
these methods we mention entropy-viscosity [22], smoothness sensors [47], and semi-
discrete entropy-stable flux constructions [12, 13]; see also [45] for a comprehensive
review of approaches. All of these methods have in common that they try to ensure
that dH,n

ij ≈ dL,nij near shocks and discontinuities, while forcing dH,n
ij ≈ 0 in smooth

regions of the solution.
The development of high-order methods for discontinuous spatial discretizations

requires some attention to the minimal amount of viscosity. Without enough viscosity
between the element interfaces, the method might not even be stable for smooth
solutions. Therefore, we will first present a high-order viscosity dmin,n

ij such that if
used in scheme (5.1): (i) it results in a stable approximation of smooth solutions on
structured and unstructured meshes; and (ii) we observe optimal convergence rates
for smooth problems. We will call such a viscosity dmin,n

ij a minimally stabilizing
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viscosity. This viscosity will not have any shock-capturing capability and might not
be best choice of viscosity for non-smooth problems. The sole purpose of such a
viscosity is to define a minimal amount of viscosity that the method should always
have.

On the other hand, we would like to adapt the entropy viscosity methodology
described in [21,22] to the context of graph-based methods using discontinuous spatial
discretizations. We will denote the entropy viscosity as dev,n

ij . Such viscosity should
provide the required shock capturing capabilities. Ultimately, we set

dH,n
ij := max{dmin,n

ij , dev,n
ij }(5.2)

to guarantee that the high-order scheme (5.1) possesses enough viscosity to deliver
stable solutions and optimal convergence rates in the context of smooth solutions as
well as shock-capturing capabilities in the context of non-smooth problems.

In Section 5.1 we define the minimally stabilizing viscosity dmin
ij while in Section

5.2 we describe the entropy viscosity dev,n
ij . In Section 5.3 we describe the convex

limiting procedure to ensure that the blended method satisfies local bounds at every
collocation point.

5.1. Minimally stabilizing high-order viscosity. The usual Lax–Friedrichs
flux of the form

∫
F
λ[[uh]]φi ds, where λ is an estimate on the maximum wavespeed

between cell interfaces, leads to the usual optimal convergence rate ‖u − uh‖L2(Ω) ≤

O(hk+ 1
2 ). However, it can be observed experimentally that the behaviour of the Lax–

Friedrichs flux is suboptimal for the case of even polynomial degree in the L1-norm.
For instance, for k = 2 when solving the isentropic vortex [40,60,62] a rate of O(h2.75)
can be observed instead of the expected O(h3.0), see Remark 5.1. The phenomenon of
observing suboptimal convergence rates for even polynomial degrees in the L1 norm
has been well known for a while by practitioners but it is rarely commented on in the
literature. Following an argument in [54] we use a different scaling for the cases of
odd and even polynomial degrees in order to define a minimally stabilizing high-order
viscosity that recovers the optimal rate O(hk+1) in the L1-norm when k is even.

Remark 5.1. We note that such a degradation in convergence rates typically man-
ifests only after a sufficiently large number of mesh refinements has been reached.
Therefore, in our numerical results (reported in Section 6) a sufficiently large number
of mesh refinements is used to ensure that we have reached an asymptotic regime.

In light of the discussion above, we set dmin
ij := dL,nij if xi = xj , for the case of odd

polynomial degree. This choice is roughly equivalent the interfacial Lax–Friedrichs
flux. However, for even polynomial degree we adapt the idea outlined in [54] and set

dmin
ij = O(h

1
2 )dL,nij if xi = xj . However, we want to avoid introducing a length scaling

h into the high-order viscosity, therefore we set

dmin
ij :=

{
ckĥ

pk

ij d
L,n
ij if xi = xj ,

0 otherwise,
(5.3)

where ĥij :=
(
1
2
mi+mj

|Ω|

) 1
d is a dimensionless mesh size, and the constants ck and pk

are set to ck = 1, and

pk =

{
1
2 if k is even,

0 if k is odd.
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The graph viscosity dmin
ij is symmetric by construction. The choice of coefficient pk

follows from the theoretical and computational discussion outlined in [54]. Extensive
numerical tests indicate that the power p = 1

2 for the case of even polynomial degree
is indeed optimal; it maintains a stable approximation of smooth solutions on un-
structured meshes, as well as optimal convergence rates in the L1 norm. On the other
hand, the non-dimensional constant ck > 0 can be chosen more freely. For the sake of
reproducibility we simply report our particular choice for the parameters used in our
numerical results (Section 6), which we found to be reasonable for a large number of
test cases.

Remark 5.2 (Superconvergence). We note that discontinuous spatial discretiza-
tions of even polynomial degree (without stabilization) are superconvergent for the
case of linear conservation equations on uniform meshes. For instance, non-stabilized
discontinuous Q2 spatial discretizations have been shown to be fourth order accurate
for smooth linear problems on uniform meshes with periodic boundary conditions,
see [1]. In view of these theoretical results, it seems tempting to simply set dmin

ij = 0
as a minimal viscosity choice. However, we have observed numerically that these the-
oretical results for linear conservation equations do not necessarily translate to the
case of non-linear hyperbolic systems, nor to general unstructured hexahedral meshes.

5.2. Entropy viscosity. The entropy viscosity commutator has been introduced
in [22]. Here, we summarize a variant discussed in [21]. Consider the generalized
Harten entropy f

(
s(u)

)
, where s(u) is the specific entropy (2.7), and f is any function

satisfying the constraints

f ′(s) > 0, f ′(s)c−1
p − f ′′(s) > 0.

Here cp = θ ∂s
∂θ is the specific heat at constant pressure, see [23]. For any admissible

state u = [ρ,m, E ]⊤ ∈ Rd+2 we adopt the shorthand notation f(u) := f
(
s(u)

)
. We

then define a shifted generalized mathematical entropy Φn
i (u) and a corresponding

entropy-flux qni (u):

Φn
i (u) = ρ

[
f(u)− f(Un

i )
]
, qni (u) = m

[
f(u)− f(un

i )
]
.

Let ∇uΦ
n
i (u) ∈ Rd+2 denote the gradient of Φn

i (u) with respect to the state u and
set:

Ri :=
∑

j∈I(i)

[
qi(U

n
j )− (∇uΦ

n
i )

⊤f(Un
j )
]
· cij

Di :=
∣∣ ∑

j∈I(i)

q(Un
j ) · cij

∣∣+
∑

k∈m

∣∣[∇uΦi]k
∣∣∣∣fk(Un

j )cij
∣∣

where [∇uΦi]k is the k-th component of ∇uΦi and fk(U
n
j ) ∈ R1×d denotes the k-th

row of the flux f(Un
j ) ∈ R(d+2)×d. We define the normalized entropy-viscosity residual

Ni and entropy viscosity dev
ij as

Ni :=
Ri

Di
and dev,n

ij := dLij min
{
cev max{|Ni|, |Nj |

}
, 1},

where cev is a constant that will in general depend on the polynomial degree. From
numerical explorations we have chosen to use cev = 1, 0.5, 0.25 for the polynomial
degrees k = 1, 2, 3, respectively.
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5.3. Convex limiting: algebraic reformulation. In analogy to Lemma 3.3,
we rewrite the high-order scheme (5.1) as follows:

mi(U
H,n+1
i −Un

i ) +
∑

j∈I(i)

FH
ij + F

∂Ω,H
i = 0,(5.4)

where the algebraic fluxes FH
ij are given by

FH
ij := τn

(
f(Un

j ) + f(Un
i )
)
cij − τnd

H,n
ij (Un

j −Un
i )

+ (mij − δijmi)(U
H,n+1
j −Un

j −U
H,n+1
i +Un

i ),

F
∂Ω,H
i := τn

(
f(U∂Ω,n

i ) + f(Un
i )
)
c∂Ωi − τnd

∂Ω,H,n
ij (U∂Ω,n

i −Un
i ).

Here, we have used the fact that
∑

j∈I(i)(mij − δijmi) = 0, which is a well known

technique [25,38] for absorbing the consistent mass matrix mij into the fluxes. We note
that the high-order algebraic fluxes are skew symmetric, FH

ij = −FH
ji. Furthermore,

subtracting (3.6) from (5.4), after some reorganization we obtain:

miU
H,n+1
i = miU

L,n+1
i +

∑

j∈I(i)

Aij +A∂Ω
i ,(5.5)

where Aij := FL
ij − FH

ij and A∂Ω
i := F

∂Ω,L
i − F

∂Ω,H
i , with Aij skew symmetric, i.e.

Aij = −Aij . Equation 5.5 now serves as a starting point for the convex limiting
technique. We compute the new, blended update Un+1

i by setting

miU
n+1
i = miU

L,n+1
i +

∑

j∈I(i)

ℓnijAij + ℓ∂Ω,n
i A∂Ω

i ,(5.6)

where ℓnij = ℓnji ∈ [0, 1] and ℓ∂Ω,n
i ∈ [0, 1] are limiter coefficients. From (5.6) and

(5.5), it is evident that ℓij , ℓ
∂Ω
i = 0 recovers the low-order scheme and, conversely,

ℓij , ℓ
∂Ω
i = 1 the high-order scheme. The goal is thus to choose the limiter coefficients

as large as possible while maintaining a pointwise invariant-set property (in the spirit
of Lemma 3.10), i. e., Un+1

i ∈ A.

Remark 5.3 (First-order scheme and high-order polynomials). In this work, we
use the same finite element basis and stencil for both the high-order and low-order
methods. However, we note that several authors [19, 41, 46] have explored the argu-
ment that the first-order method degrades their accuracy with increasing polynomial
degree k. Therefore the first-order scheme should be computed using a subgrid of
low-order polynomial degree, usuall k = 0 or k = 1. While this is indeed true that
the first-order method degrades its accuracy with increasing polynomial degree, the
importance of such a degradation is not substantial for modest polynomial degree, as
illustrated by Table 5. For instance, in the table it can be observed that the error of
the Q2 first-order scheme is 1.6× the error of the Q1 first-order scheme. Similarly, the
error of the Q3 first-order scheme is 2.3× larger than the error of the corresponding
Q1 method using the same total number of DOFs. We believe that this higher error
pre-factor is acceptable: in return we obtain a simpler method with a more straight-
forward code, while avoiding all the complexity associated to have a low-order method
defined in a subgrid. Of course, for very high order polynomial degrees, say k ≥ 5,
this sentiment might not hold true.
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5.4. Convex limiting: local bounds and line search. We want to enforce
local bounds on the density ρ and the specific entropy s(u) given by (2.7). However,
the logarithm in (2.7) makes the specific entropy a rather cumbersome quantity to
work with directly. Following our previous work [18, 20, 25], we use the rescaled
quantity s̃(u) = ρ−γε(u) = 1

γ−1 exp(s(u)) instead. Since it is a monotonic rescaling,

enforcing a minimum bound on s̃(u) will also enforce a minimum bound on s(u). For
each node i ∈ V, we construct local bounds ρmin

i , ρmax

i , s̃min

i , and construct limiter

coefficients ℓnij , ℓ
∂Ω,n
i , such that the final update Un+1

i = [ρn+1
i ,mn+1

i , En+1
i ] given by

(5.6), satisfies bounds:

ρmin

i ≤ ρn+1
i ≤ ρmax

i , s̃(Un+1
i ) ≥ s̃min

i .

In this manuscript we use the following local bounds





ρmin

i := r−h min
{
ρ(U

∂Ω,n

i ) , min
j∈I(i)

min
k∈I(j)

ρnk , min
j∈I(i)

min
k∈I(j)

ρ(U
n

jk)
}
,

ρmax

i := r+h max
{
ρ(U

∂Ω,n

i ) , max
j∈I(i)

max
k∈I(j)

ρnk , max
j∈I(i)

max
k∈I(j)

ρ(U
n

jk)
}
,

s̃min

i := r−h min
{
s̃(U

∂Ω,n

i ) , min
j∈I(i)

min
k∈I(j)

s̃(Un
k ) , min

j∈I(i)
min

k∈I(j)
s̃(U

n

jk)
}
,

(5.7)

where the bar states U
n

jk and U
∂Ω,n

i are defined in (3.9) and (3.10) respectively. We
note that the use of the bar states in (5.7) is owed to equation (3.8): the low-order
update is a convex combination of the bar states; see also the discussion in [20, Section
4.1] and [25, Lemma 7.15]. The relaxation coefficients r±h are defined as follows:

r−h := 1− crĥ
pr

i , r+h := 1 + crĥ
pr

i ,

where ĥi =
(
mi

|Ω|

) 1
d is a dimensionless mesh size. For the numerical tests in Section 6

we use the constants

cr = 4.0 and pr = 1.5(5.8)

for all polynomial degrees throughout. The constants have been chosen with a quick
parametric study such that we observe expected convergence rates for the numerical
tests summarized in Section 6. The relaxation coefficients (5.8) are necessary to
recover optimal convergence rates because a strict enforcement of the local minimum
principle on the specific entropy would result in a first order scheme; see [20,34]. We
note that this relaxation has no consequence on the robustness of the scheme: As long
as the initial data is admissible, the update will result again in an admissible state.

A tempting alternative to the relaxation of the local bounds (5.7) is to dispense
with using local bounds altogether and replacing them with a single set of global
bounds, {ρglobal

min , ρglobal
max , s̃global

min } with ρglobal
min > 0 and s̃global

min > 0, for all degrees
of freedom. While positivity preserving, such a limiter strategy–at least from our
experience—lacks control on over- and undershoots and leads to unsatisfying numer-
ical results for benchmark configurations.

The limiter coefficients ℓnij , ℓ∂Ω,n
i are now constructed with the help of one di-

mensional line searches [20]. For this, we first rewrite (5.7) in terms of a convex
set,

Bi =
{
U = [ρ,m, E ]⊤ ∈ Rd+2

∣∣∣ ρmin

i ≤ ρ ≤ ρmax

i , s̃(U) ≥ s̃min

i

}
,(5.9)
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and rewrite (5.6) as follows:

Un+1
i =

∑

j∈I(i)

κi

(
U

L,n+1
i + ℓnijPij

)
+ κi

(
U

L,n+1
i + ℓ∂Ω,n

i P∂Ω
i

)
,(5.10)

with Pij :=
1

κimi
Aij , P

∂Ω
i = 1

κimi
A∂Ω

i , and κi :=
(
cardI(i) + 1

)−1
.

Equation (5.10) describes the update Un+1
i as a convex combination of limited,

unidirectional updates U
L,n+1
i + ℓnijPij . This allows us to reduce the construction of

ℓnij and ℓ∂Ω,n
i to solving one dimensional line searches [20, Lemma 4.3]:

Lemma 5.4. Assume that U
L,n+1
i + ℓijPij ∈ Bi for all j ∈ I(i) and U

L,n+1
i +

ℓ∂Ωi P∂Ω
i ∈ Bi. Then, Un+1

i as defined by (5.10), belongs to the set Bi as well. If lij
are symmetric, meaning ℓij = ℓji, then the convex limited high-order update Un+1

i is
also conservative.

In summary, the limiter coefficients are chosen such that

U
L,n+1
i + ℓijPij ∈ Bi for all j ∈ I(i), and U

L,n+1
i + ℓ∂Ωi P∂Ω

i ∈ Bi,

which in turn implies that Un+1
i ∈ Bi.

6. High-performance implementation and computational results. We
now outline a high-performance implementation of the numerical scheme in the hy-
drodynamic solver framework ryujin [18, 43]. The code supports discontinuous and
continuous finite elements on quadrangular meshes for the spatial approximation and
is built upon the deal.II finite element library [2]. We conclude the section by
discussing a number of validation and benchmark results.

6.1. Implementation. Due to the graph-based construction of the method,
the implementation of the proposed discontinuous Galerkin scheme can be realized in
analogy to the scheme described for continuous elements in [43], and can be applied
to arbitrarily unstructured meshes including local adaptive refinement. The imple-
mentation computes the necessary information row-by-row by a (parallel) loop over
the index range of variable i, with single-instruction multiple-data (SIMD) vectoriza-
tion across several rows to ensure a high utilization of data-level parallelism. The
kernels are written to balance data access and computations for optimal performance
on modern CPU-based high-performance architecture, performing the following main
steps:

– For the computation of the low-order update, the flux f(un
h) is evaluated

point-wise and the graph viscosity (3.2) is computed with a point-wise Rie-
mann solver. For data locality reasons, most of the factors for the high-order
viscosity are also computed in the necessary sweep over all mesh nodes.

– The high-order update and convex-limiting steps (5.10) involve combinations
of the fluxes along the i and j indices as well as the high-order viscosity (5.2),
together with the evaluation of the limiter coefficients ℓnij .

– In order to obtain converged results of the one-dimensional line searches, the
limiter step is executed twice, necessitating two sweeps through all nodes.

As described in [43], the computational cost of the above steps is not only dominated
by the actual flux computations, and the elevated number of around 14–20 divisions
per non-zero entry (i, j) of the stencil, but also by four transcendental power functions
per non-zero (using Padé-type approximations) that play a crucial role. Furthermore,
the cost for indirect addressing into generic sparse matrix data structures along the
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index j are also relatively high. Overall, the proposed scheme yields an arithmetic cost
proportional to O((k + 1)d) operations per degree of freedom. This is a substantial
cost when compared to state-of-the-art cell-based implementations of discontinuous
Galerkin methods, where modern implementations typically utilize on-the-fly evalua-
tion of the underlying finite-element integrals using sum-factorization techniques for
O(k + 1) complexity per degree of freedom [11, 35], or related properties deduced by
spectral polynomial bases and one-dimensional differentiation operations [49]. The
cost has to be contrasted against the mathematically proven robust realization pro-
posed here.

Note that the chosen implementation does not utilize the additional structure
provided by the element-wise basis functions, which could allow to fuse some of the
indirect addressing and additional computations for the unknowns inside a finite ele-
ment cell, compared to the abstract row-by-row processing of our approach. However,
as the computational part with expensive transcendental functions is the more restric-
tive bottleneck on current architectures [43], which is addressed in ongoing research.

6.2. Validation tests. We now verify the proposed method for three different
solution regimes: (i) a smooth analytic solution given by the isentropic vortex [59];
(ii) a semi-smooth solution (continuous with second derivatives of bounded variation)
given by a single rarefaction wave; and (iii) the discontinuous solution of the LeBlanc
shock tube that has large pressure and density jumps. For all three cases analytic
expressions for the solution can be found in [20], specifically we use [20, Eq. 5.3],
[20, Tab. 2], and [20, Tab. 4] with the same choices for computational domains and
parameters. As a figure of merit we introduce a consolidated error norm:

Lp-error :=
‖ρh − ρ‖Lp(Ω)

‖ρ‖Lp(Ω)
+

‖mh −m‖Lp(Ω)

‖m‖Lp(Ω)
+

‖Eh − E‖Lp(Ω)

‖E‖Lp(Ω)
,

for p = 1, 2,∞ evaluated at the final time. We enforce Dirichlet boundary condi-
tions throughout by setting the boundary data U

∂Ω,n
i to the exact (time-dependent)

solution. We describe each test with more details in the following bullets:
Isentropic vortex (test case (i)). We set the computational domain for the smooth

test case (isentropic vortex) to the square [−5, 5]2; see [20, Eq. 5.3]. For the sake of
completeness we repeat the formulas of the exact analytical solution [59]:

ρ(x, t) = (ρ∞ + δρ(x, t))
1

γ−1 , v = v∞ + δv , p(x, t) = ρ(x, t)γ

δv(x, t) = β
2π e

1−r2 [−x2,x1]
⊤ , δρ(x, t) = − (γ−1)β2

8γπ2 e1−r2

x = x−x0−tv∞, x = [x1,x2]
⊤ are the space coordinates, x0 = [x10,x20] is the initial

position of the vortex, and r = |x|ℓ2 . For all our tests: ρ∞ = 1, v∞ = [1, 1]⊤, x0 =
[−1,−1], γ = 5/3, and β = 5.0. The initial time is t0 = 0 and final time is tF = 2. We
discretize the domain with uniform grids with ne elements per edge, where ne = nk ·2

r

with nk = 24, 16, 12 for the cases polynomial degrees k = 1, 2, 3, respectively. We now
create a series of increasingly refined meshes by varying r from 0 to 5. The values of
nk are chosen such that each refinement level r has the same number of degrees of
freedom for all polynomial degrees k = 1, 2, 3. For time integration we use SSPRK-
54 throughout, a fourth order strong stability preserving Runge Kutta method [53].
Computational results are summarized in Table 1 in page 24. Classical error analysis
for linear advection problems indicate that the expected rate in the L2(Ω)-norm is

of order O(hk+ 1
2 ). In general, we observe expected convergence rates for all reported



20 KRONBICHLER, MAIER, TOMAS

test cases. A notable exception is a slight reduction of convergence rates in the L1(Ω)
and L∞(Ω) norms for polynomial degree k = 3.

Rarefaction wave (test case (ii)). Similarly, for the rarefaction test case (ii) we
split the unit interval [0, 1] into ne = nk · 2

r uniform subintervals with nk = 60, 40, 30
for k = 1, 2, 3, respectively, and by varying r from 0 to 7. Regarding time-integration,
we use the SSPRK3 scheme for all polynomial degrees. We note that the error for the
rarefaction wave is dominated by the fact that the initial data is non-differentiable
in x = 0.2. This test also has the added difficulty that there is a sonic point at
x = 0.2: numerical methods without enough artificial viscosity will not produce an
entropic solution. Error estimates from polynomial interpolation suggest a limit of
O(h2) for the convergence rate in the L1-norm. However, we are not aware of any
scheme capable of delivering second order rates for the rarefaction wave test. For
instance, finite volume methods with piecewise linear reconstructions deliver rates
O(hp) with p ∈ [1.333, 1.50], see [48]; semi-discretely entropy-stable methods yield
p ≤ 1.50 regardless of the polynomial degree, see [40]; first-order continuous finite
elements with using entropy-viscosity and convex limiting achieve p ∈ [1.60, 1.65],
see [21]. Our results are reported in Table 2 on page 25. We observe a convergence
order O(hp) in the L1-norm with average p ≈ 1.70, 1.60, and 1.63 for polynomial
degrees k = 1, 2, and 3, respectively.

Leblanc shock tube (test case (iii)). Results for the LeBlanc shocktube are sum-
marized in Table 3 page 25. We observe the expected linear convergence rate for
all polynomial degrees k = 1, 2, 3. From mathematical approximation theory, it is
well known that high order polynomial degrees offer no advantage when approximat-
ing discontinuous problems. In this sense, the numerical results in Table 3 for the
LeBlanc shocktube test are optimal. Note that, in Table 3, the exact same number
of global degrees of freedom is used on each refinement level for Q1, Q2 and Q3 ele-
ments. Comparing the obtained L1-error for all three cases we tend to conclude that
Q1 elements are the optimal choice—at least for the case of discontinuous solutions
with strong shocks. For the same number of global degrees of freedom they offer
the smallest L1-error while having low computational complexity, and comparatively
large time-step sizes.

Remark 6.1 (Verification of boundary conditions with isentropic vortex). In order
to test our implementation of boundary conditions, in Section 6.3 we modify the
isentropic vortex benchmark. We increase the final time tF so that the simulation
ends with the center of the isentropic situated exactly above the top right corner of
the computational domain. By doing so, the correct treatment of boundary data is
essential for recovering optimal convergence rates.

6.3. Accuracy of boundary condition enforcement. We now briefly eval-
uate the performance of the boundary condition enforcement in (3.1) and (5.1) by
repeating the smooth isentropic vortex test, case (i), with a modified final time tF
for the convex-limited method and bilinear finite elements (k = 1). Specifically, we
choose a final time of tF = 6

M for increasing choices of (directional) vortex speed
M = 1, 1.5, 2.0, 2.5. Here, M = 1 implies that the center of the vortex is moving
exactly with the speed of sound a in x and in y direction individually. We note that
for M = 1 and M = 1.5 a significant portion of the top and right edges (outflow
boundaries) will be subsonic. With the choice of final time tF = 6

M , the center of the
vortex is located exactly on top of the top right corner at final time tF . As a rigorous
figure of merit we examine convergence rates in the L1-norm. Four different strategies
are tested for the construction of boundary data U

∂Ω,n
i :
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(a) exact Dirichlet data by setting U
∂Ω,n
i := U

sol,n
i on the entirety of the bound-

ary, where U
sol,n
i is the analytical solution;

(b) sub/super-sonic boundary conditions with exact data: U
d,n
i = U

sol,n
i ;

(c) sub/super-sonic boundary conditions with a far-field state: U
d,n
i = Ufar,n;

(d) sub/super-sonic boundary conditions with the old state: we set U
d,n
i = Un

i .
Strategies (a) and (b) are intended to evaluate the formal consistency of the method
when the exact boundary data is available. On the other hand, strategies (c) and (d)
are meant to evaluate the performance of the method when exact boundary data is
not available. For strategies (c) and (d) no rates can be expected as we evaluate the
error up to the boundary. The behaviour of strategies (c) and (d) are of particular
interest in the context of channel flows and transonic exterior aerodynamics. For
such applications exact boundary data is unavailable and the specific subsonic or
supersonic nature is unknown as well. The numerical results for the four strategies
are summarized in Table 4 for the case of Q1 spatial discretization. We see that
strategies (a) and (b) deliver the proper convergence rates. On the other hand, even
though no rates should be expected for the case of strategies (c) and (d), we still
observe proper convergence rates once the regime becomes fully supersonic (M = 2
and M = 2.5). This indicates that the sub/super-sonic boundary condition approach
is indeed capable of selecting the boundary-data from the proper upwind direction.

6.4. High fidelity simulation: Mach 3 flow past a cylinder. We now
present numerical results for a 2D benchmark configuration consisting of a Mach 3 flow
past a cylinder with with radius 0.25 is centered along (0.6, 0, z). The computational
domain is Ω = [0, 4] × [−1, 1] and is equipped with Dirichlet boundary conditions
on the left of the domain, slip boundary conditions on the cylinder and the top and
bottom of the domain, and do nothing boundary outflow conditions on the right
side. The initial flow configuration is that of a uniform flow at Mach 3 [20]. The
computational domain is meshed with an unstructured quadrilateral coarse mesh. A
higher resolution is obtained by subdividing every quadrilateral into 4 children an
fixed number of times and adjusting newly generated nodes on the cylinder boundary
to lie on the curved surface. Figure 1 shows a temporal snapshot at time t = 4.0.
The computations where performed with a mesh consisting of 9.4M quadrilaterals
corresponding to 9.4M degrees of freedom per component for Q1, and with a mesh
consisting of 2.4M quadrilaterals for Q2 and Q3, corresponding to 5.3M (Q2) and 9.4M
(Q3) degrees of freedom per component. We observe qualitatively that all spatial
discretizations lead to a comparable results with well captured (unstable) contact
discontinuities emerging from primary and secondary triple points.

7. Conclusion and outlook. We have introduced a graph-based discontinuous
Galerkin method for solving hyperbolic systems of conservation laws. The method
has three main ingredients: a first-order scheme, a high-order scheme (based on the
entropy-viscosity technique), and a convex-limiting procedure that blends the high
and low order schemes. The first-order update satisfies both the invariant-domain
property as well as a pointwise discrete entropy inequality for any entropy of the
system. The resulting convex-limited scheme preserves the invariant set using relaxed
local bounds.

A notable feature of the method is the direct incorporation of boundary condi-
tions. The state at each node is guaranteed to be admissible provided the boundary
data supplied to the scheme is admissible. For the case of the first-order method,
this allows to prove invariant-set preservation as well as local entropy inequalities in-
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(a) Q1, 9.4M DOFs per component

(b) Q2, 5.3M DOFs per component

(c) Q3, 9.4M DOFs per component

Figure 1: Temporal snapshot at time t = 4.0 of the density profiles of a supersonic
Mach 3 flow past a cylinder. Computed for increasing polynomial degree: (a) Q1, (b)
Q2, (c) Q3. The density is visualized on a rainbow colormap to highlight discontinu-
ities.
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cluding the effect of boundary contributions. For the high-order and convex-limited
scheme, we have tested the implementation of boundary conditions using the isen-
tropic vortex test with sufficiently large final time, allowing interaction of the vortex
with the boundary. If the boundary data is the exact analytical solution, the method
delivers optimal convergence rates. On the other hand, if the boundary data consists
of the far-field state or the data from the previous time step, the implementation is
convergent in the fully supersonic regime.

The convex-limited scheme has been evaluated with a number of numerical tests
ranging from a smooth analytic solution to a discontinuous one, observing expected
convergence rates. The discontinuous test has verified robustness of our scheme and
first-order convergence in the shock-hydrodynamics regime. Consistent with approxi-
mation theory, for the same number of global degrees of freedom, the lowest order Q1

ansatz offers the smallest L1-error while having the lowest computational complexity,
and comparatively large time-step sizes. Finally, the semi-smooth rarefaction test
has verified a rather subtle aspect of high resolution methods, which is the ability
to produce better than first-order rates for solutions that are continuous with second
derivatives of bounded variation. Finally, we verified that the proposed method is
suitable for high fidelty simulations with a 2D benchmark configuration of a Mach 3
flow past a cylinder.
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Appendix A. Convergence tables.

L1-error

#DOFs Q1 rate Q2 rate Q3 rate

2304 2.255× 10−2 9.787× 10−3 3.354× 10−3

9216 7.281× 10−3 1.63 1.149× 10−3 3.09 2.568× 10−4 3.71
36864 2.063× 10−3 1.82 1.562× 10−4 2.88 1.706× 10−5 3.91
147456 5.487× 10−4 1.91 2.012× 10−5 2.96 1.145× 10−6 3.9
589824 1.415× 10−4 1.96 2.539× 10−6 2.99 7.789× 10−8 3.88
2359296 3.594× 10−5 1.98 3.193× 10−7 2.99 5.496× 10−9 3.82

L2-error

#DOFs Q1 rate Q2 rate Q3 rate

2304 5.523× 10−2 2.082× 10−2 8.588× 10−3

9216 1.834× 10−2 1.59 2.851× 10−3 2.87 6.845× 10−4 3.65
36864 5.338× 10−3 1.78 4.298× 10−4 2.73 4.530× 10−5 3.92
147456 1.455× 10−3 1.88 6.097× 10−5 2.82 3.280× 10−6 3.79
589824 3.822× 10−4 1.93 8.428× 10−6 2.85 2.390× 10−7 3.78
2359296 9.825× 10−5 1.96 1.178× 10−6 2.84 1.922× 10−8 3.64

L∞-error

#DOFs Q1 rate Q2 rate Q3 rate

2304 3.467× 10−1 – 1.446× 10−1 – 1.028× 10−1 –
9216 1.298× 10−1 1.42 3.532× 10−2 2.03 6.514× 10−3 3.98
36864 4.697× 10−2 1.47 9.308× 10−3 1.92 5.469× 10−4 3.57
147456 1.695× 10−2 1.47 1.826× 10−3 2.35 6.232× 10−5 3.13
589824 5.613× 10−3 1.59 3.715× 10−4 2.30 5.252× 10−6 3.57
2359296 1.750× 10−3 1.68 7.391× 10−5 2.33 5.763× 10−7 3.19

Table 1: Convex-limited scheme: (i) isentropic vortex test. Error delivered
by scheme described by (5.6); see Section 5. We consider the cases of Qk spatial
discretizations for k = 1, 2, 3.
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L1-error

#DOFs Q1 rate Q2 rate Q3 rate

120 1.772× 10−3 – 1.068× 10−3 – 3.001× 10−4 –
240 5.174× 10−4 1.78 2.813× 10−4 1.92 1.029× 10−4 1.54
480 1.564× 10−4 1.73 1.121× 10−4 1.33 3.455× 10−5 1.57
960 4.628× 10−5 1.76 3.542× 10−5 1.66 1.158× 10−5 1.58
1920 1.301× 10−5 1.83 1.269× 10−5 1.48 3.946× 10−6 1.55
3840 4.204× 10−6 1.63 3.863× 10−6 1.72 1.049× 10−6 1.91
7680 1.365× 10−6 1.62 1.423× 10−6 1.44 3.573× 10−7 1.55
15360 4.516× 10−7 1.6 4.335× 10−7 1.71 1.070× 10−7 1.74

Table 2: Convex-limited scheme: (ii) rarefaction test. Convergence rates
for scheme (5.6). We consider the cases of Qk spatial discretizations for k = 1, 2, 3.
The number of elements for each case k = 1, 2, 3 has been chosen in a way that the
number of degrees of freedom of each refinement case match exactly. Note that the
best expected rate for this test is O(h2) for all polynomial degrees.

L1-error

#DOFs Q1 rate Q2 rate Q3 rate

120 1.362× 10−1 – 1.256× 10−1 – 1.158× 10−1 –
240 9.516× 10−2 0.52 6.863× 10−2 0.87 5.957× 10−2 0.96
480 5.519× 10−2 0.79 3.840× 10−2 0.84 3.995× 10−2 0.58
960 3.195× 10−2 0.79 2.903× 10−2 0.4 2.052× 10−2 0.96
1920 1.639× 10−2 0.96 1.441× 10−2 1.01 1.214× 10−2 0.76
3840 8.704× 10−3 0.91 8.494× 10−3 0.76 6.559× 10−3 0.89
7680 4.324× 10−3 1.01 4.730× 10−3 0.84 4.345× 10−3 0.59
15360 2.290× 10−3 0.92 2.626× 10−3 0.85 2.296× 10−3 0.92

Table 3: Convex-limited scheme: (iii) LeBlanc test. Error delivered by scheme
described by (5.6); see Section 5. We consider the cases of Qk spatial discretizations
for k = 1, 2, 3.
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#DOFs Q1 Q2 Q3

2304 1.2799e-01 1.5639e-01 1.7400e-01
9216 8.5427e-02 1.1676e-01 1.4080e-01
36864 5.1002e-02 7.6054e-02 9.8985e-02
147456 2.8281e-02 4.4705e-02 6.1502e-02
589824 1.4981e-02 2.4553e-02 3.5023e-02

Table 5: Error of the first-order method with respect polynomial degree.
This tables illustrates the growth of the L1-error of the first-order scheme (3.1)-

(3.2) as the polynomial degree grows for the isentropic vortex problem. For every
polynomial degree the error halves with each mesh refinement (as expected from a
first-order scheme). However, the error constant, or “error pre-factor”, grows with the
polynomial degree.
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Strategy (a): exact Dirichlet data

#DOFs M = 1.0 rate M = 1.5 rate M = 2.0 rate M = 2.5 rate

2304 4.37E-03 - 3.05E-03 - 3.05E-03 - 2.79E-03 -
9216 8.63E-04 2.34 6.26E-04 2.28 6.13E-04 2.31 5.68E-04 2.29
36864 1.78E-04 2.27 1.34E-04 2.21 1.26E-04 2.28 1.15E-04 2.29
147456 4.03E-05 2.14 3.15E-05 2.09 2.85E-05 2.14 2.60E-05 2.15
589824 9.61E-06 2.06 7.63E-06 2.04 6.79E-06 2.07 6.18E-06 2.07
2359296 2.45E-06 1.97 1.87E-06 2.02 1.65E-06 2.03 1.50E-06 2.03

Strategy (b): sub/super-sonic boundary conditions with exact Dirichlet data

#DOFs M = 1.0 rate M = 1.5 rate M = 2.0 rate M = 2.5 rate

2304 4.05E-03 - 2.98E-03 - 2.41E-03 - 1.99E-03 -
9216 8.36E-04 2.27 6.19E-04 2.270 5.15E-04 2.22 4.29E-04 2.21
36864 1.79E-04 2.22 1.33E-04 2.210 1.13E-04 2.18 9.88E-05 2.12
147456 4.12E-05 2.12 3.13E-05 2.094 2.67E-05 2.08 2.37E-05 2.05
589824 9.92E-06 2.05 7.60E-06 2.044 6.52E-06 2.03 5.85E-06 2.02
2359296 2.54E-06 1.96 1.87E-06 2.024 1.60E-06 2.01 1.45E-06 2.01

Strategy (c): sub/super-sonic boundary conditions with far-field approximation

#DOFs M = 1.0 rate M = 1.5 rate M = 2.0 rate M = 2.5 rate

2304 1.36E-02 - 4.09E-03 - 2.41E-03 - 1.99E-03 -
9216 1.07E-02 0.35 1.70E-03 1.26 5.15E-04 2.22 4.29E-04 2.21
36864 9.65E-03 0.14 1.14E-03 0.56 1.14E-04 2.17 9.88E-05 2.12
147456 9.20E-03 0.06 1.01E-03 0.17 2.73E-05 2.05 2.37E-05 2.05
589824 8.98E-03 0.03 9.31E-04 0.12 6.86E-06 1.99 5.85E-06 2.02
2359296 8.86E-03 0.02 8.72E-04 0.09 1.79E-06 1.93 1.45E-06 2.01

Strategy (d): sub/super-sonic boundary conditions with current state

#DOFs M = 1.0 rate M = 1.5 rate M = 2.0 rate M = 2.5 rate

2304 6.12E-03 - 3.02E-03 - 2.41E-03 - 2.03E-03 -
9216 3.99E-03 0.61 6.58E-04 2.20 5.08E-04 2.24 4.33E-04 2.22
36864 3.59E-03 0.15 1.76E-04 1.90 1.13E-04 2.16 9.88E-05 2.13
147456 1.05E-02 -1.56 7.09E-05 1.31 2.67E-05 2.08 2.37E-05 2.05
589824 3.97E-03 1.41 4.45E-05 0.67 6.52E-06 2.03 5.85E-06 2.02
2359296 4.66E-03 -0.22 3.64E-05 0.29 1.60E-06 2.01 1.45E-06 2.01

Table 4: Boundary condition validation: modified isentropic vortex test.
We use a modified isentropic vortex test to verify the accuracy of the boundary value
enforcement outlined in Section 4. We test four different strategies for the construction
of boundary data: (a) exact Dirichlet data, (b) sub/super-sonic boundaries with exact
analytical data, (c) sub/super-sonic boundaries with far-field state; and (d) sub/super-
sonic boundaries using data from the previous time-step; see Section 6.3. The test is
repeated for different Mach numbers, M = 1, 1.5, 2.0, and 2.5. In every case we use
Q1 spatial discretization We note that for M = 1 and M = 1.5 a significant portion of
the outflow boundary (top and right edges of the domain) is subsonic. Strategies (a)
and (b) deliver proper convergence rates. Strategies (c) and (d) are only convergent
for sufficiently large Mach numbers.
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Appendix B. Implementation of boundary conditions: adaptation to
continuous finite elements.

The scheme (3.1)–(3.2) and the mathematical theory developed in this manuscript
is entirely valid for the case of continuous finite elements. However, slight changes
are required in definitions of (2.10)–(2.11). Here provide the required mathematical
statements but avoid doing the proofs since they are just adaptations of the the proof
already presented for the discontinuous case in Section 3.

In the context of continuous finite elements we have to use the following defini-
tions:

cij :=

∫

Ω

∇φjφi dx− 1
2

∫

∂Ω

φjφin∂Ω ds, c∂Ωi = 1
2

∫

∂Ω

φin∂Ω ds .(B.1)

Note that the face integral 1
2

∫
∂Ω

φjφin∂Ω ds can only be nonzero if both φj and
φi have support on the boundary.

Proposition B.1. The vectors cij as defined in (B.1) satisfy the usual skew-
symmetry property cij = −cji for all i, j ∈ V

Proof. The proof follows by integration by parts arguments. However, in this case,
since the shape functions {φi}i∈V are compactly supported and weakly differentiable
in Ω, we do not need to use integration by parts on each element K, but rather
integration by parts in entire domain Ω, see also [25].

Proposition B.2 (Partition of unity properties). The vectors cij and c∂Ωi as de-
fined in (B.1) satisfy the partition of unity property

∑
j∈I(i) cij + c∂Ωi = 0.

The proof follows using arguments similar to those of Lemma 3.1.

Lemma B.3 (Total balance). The scheme (3.1) with cij and c∂Ωi as defined in
(B.1) satisfies the flux-balance (3.7)

The proof of this lemma is omitted since it is identical to the proof of Lemma 3.4.
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