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Abstract

We prove optimal concentration of measure for lifted functions on high dimensional expanders (HDX).
Let X be a k-dimensional HDX. We show for any ¢ < k and function f : X (¢) — [0, 1]:

seg()(k) [ > E:| < exp (—52§> .

Using this fact, we prove that high dimensional expanders are reverse hypercontractive, a powerful func-
tional inequality from discrete analysis implying that for any sets A,B C X(k), the probability a p-
correlated pair passes between them is at least

E [f(t)] —n
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Our results hold under weak spectral assumptions on X. Namely we prove exponential concentration
of measure for any complex below the ‘Trickling-Down Threshold’ (beyond which concentration may be
arbitrarily poor), and optimal concentration for Vk-skeletons of such complexes. We also show optimal
bounds for the top dimension of stronger HDX among other settings.

We leverage our inequalities to prove several new agreement testing theorems on high dimensional
expanders, including a new 99%-regime test for subsets, and a variant of the ‘Z-test’ achieving inverse
exponential soundness under the stronger assumption of {-c-expansion. The latter gives rise to the first
optimal testers beyond the complete complex and products, a stepping stone toward the use of HDX in
strong soundness PCPs.

We also give applications within expansion, analysis, combinatorics, and coding theory, including
a proof that two-sided HDX have optimal geometric overlap (giving the first explicit bounded-degree
construction), near-optimal double samplers, new super-exponential degree lower bounds for certain
HDX, distance-amplified list-decodable and locally testable codes, a Frankl-R6dl Theorem, and more.
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1 Introduction

Recent years have seen the emergence of high dimensional expanders (HDX) as a core tool in theoretical
computer science, with breakthrough applications in approximate sampling [Ana+19; ALG21], coding theory
[Din+22a; PK22], and quantum complexity [ABN23], and strong promise toward longstanding problems
in hardness of approximation and probabilistically checkable proofs [DK17; DD19; KM20; GK22; HL22;
BLM24; DDL24]. One central force behind the success of HDX in application is their concentration of
measure. Consider (as a warmup) the following fundamental question: given a k-uniform hypergraph X and
a function f: X (1) — [0, 1] on its vertices,! how concentrated is f to its mean across a random hyperedge?

k

ORI

i=1

> a] & B(e, k) (1.1)
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When X is the complete hypergraph, this was classically resolved by Chernoff and Hoeffding [Che52; Hoe94]
who showed B(e, k) < exp(—¢e2k). Over the years, near-matching bounds have been shown for more general
hypergraph families (see e.g. [Paul4; KS18; KKS21]), and even for certain bounded degree systems like walks
on expanders [AKS87; Gil98]. These objects, called sampler graphs or extractors, are by now a core tool in
the field with applications in de-randomization, complexity, and cryptography [Gol97; Wig09].

High dimensional expanders are known to satisfy a ‘Chebyshev-type’ bound 8(e, k) < %g for (1.1) [DK17],
but this is of course not what makes them powerful. Rather, many modern applications in complexity require
concentration of X against broader classes of functions. Of particular interest is the extension of (1.1) to
functions f : X (i) — [0,1] sitting on i-sets of X. Complexes satisfying such a bound are called inclusion
samplers; they arise naturally in the study of agreement and PCPs (forming consistency checks), and play
a critical role in low soundness constructions toward the Sliding Scale Conjecture [TKW12; DM11; Mosl7;
DL17]. Unfortunately, inclusion samplers are notoriously difficult to construct, and no bounded degree
families were known for many years.

This changed with the advent of spectral HDX [Gar73; LSV05b; EK16; KM17; DK17; Oppl8]. A key
motivation behind the modern incarnation of these objects [KM17; DK17; Oppl8] was the fact that their
‘inclusion graphs’ (the bipartite adjacency matrix between k-sets and i-sets) are spectral expanders, and
therefore satisfy ‘Chebyshev-type’ concentration ((e,i,k) < ?’—k This observation played a central role in
recent progress in agreement testing [DK17; Din+18a; DD19; KM20; GK22; DD23a; BM23a], but left an
exponential gap from the Chernoff-type concentration needed for other applications.

In this work we take a major step toward closing this gap, resolving the problem completely in many
regimes of interest. In particular, drawing on ideas from the concentration of measure [BLM13], PCP
[[IKW12], and HDX [DD19; AJT19] literature, we prove HDX are optimal samplers between every two levels.

Theorem 1.1 (HDX are Optimal Inclusion Samplers (Informal)). Let X be a nice enough d-dimensional
HDX.?2 Then for anyi <k <d and any f: X (i) — [0,1] of expectation u:

o o (0 (2)).

Moreover, this is essentially tight—no inclusion sampler achieves better than exp (—O (52§)) error.

E[7(0)] - p

M|
seX (k)

Theorem 1.1 is powerful when i = o(k), but our corresponding lower bounds show non-trivial inclusion
sampling is essentially impossible in the critical regime ¢ = @ (k). In fact this exact issue stood as a barrier
for many years on the complete complex, where Impagliazzo, Kabanets, and Wigderson [IKW12] proved
Theorem 1.1 and used it to construct sub-optimal testers and PCPs by taking i = @( k). In 2017, Dinur
and Livni-Navon [DL17] resolved this problem by appealing to a somewhat surprising player: an underutilized
tool from boolean function analysis called reverse hypercontractivity (RHC).

1We denote by X (i) the subsets of size i in (the downward closure of) X.
2This includes, e.g., d-skeletons of d%—one—sided d?-dimensional HDX or the top level of any 2~ %two-sided HDX. See
Section 2.1 and Definition 4.26 for a formal description of ‘nice enough’ complexes.



Reverse hypercontractivity is a classic functional inequality due to Borell [Bor82] that lower bounds the
correlation between sets on the noisy hypercube. Roughly speaking, it implies that for any two subsets
A, B C {0, 1}d, the probability a p-correlated edge crosses A and B is at least some power of their measure:

B €A B O B0
s5,8")~T)p

Reverse hypercontractivity is an even rarer phenomenon than inclusion sampling—while there are some
moderately de-randomized inclusion graphs (namely the Grassmann [I[KW12]) satisfying Chebyshev-type
variants of Theorem 1.1, none are known to admit reverse hypercontractivity. At outset this may even seem
necessary. The inequality is closely tied to tensorization and (modified) Log-Sobolev Inequalities [MOS13],
which inherently fail on sparse hypergraphs.

In this work, we circumvent this issue by a new combinatorial argument showing any hypergraph satisfying
Theorem 1.1 ‘locally’ is also reverse hypercontractive. This leads to the following corollary for HDX:

Theorem 1.2 (Reverse Hypercontractivity for HDX (Informal)). let X be a nice enough d-dimensional
HDX. Then for any p € (0,1), k< d, and A, B C X (k):

P [s € A s € B] » P[A]%1) p[B]9 (1),
(Svsl)NTp(X)

Here T),(X) is the natural generalization of the noise operator to hypergraphs which, roughly speaking,
generates s’ by re-sampling each vertex in s with probability 1 — p. We also prove a more standard analytical
version of reverse hypercontractivity for all functions by reduction to the above, as well as analog statements
for the heavily studied ‘down-up’ walks which play a critical role in almost all HDX applications.

Applications. The remainder of our work is devoted to proving a variety of applications of Theorem 1.1
and Theorem 1.2 including new families of agreement tests, bounded degree complexes with optimal geomet-
ric overlap, double samplers with near-optimal overhead, new degree lower bounds for HDX, large distance
list-decodable and locally-testable codes, and several extensions of classic combinatorial and analytic results
to HDX. Here we choose to highlight just two of these applications, agreement testing and geometric overlap.
We refer the reader to Section 2.5 and Section 2.6 for a more in-depth discussion of our applications.

Agreement testing is a general property testing paradigm that generalizes classical subroutines in PCP
theory like the plane vs. plane test (e.g. [AS97; GS97; Din07]). Roughly speaking, an agreement test consists
of a universe U and a family of overlapping subsets S C IP(U) (think of U as the vertices of X, and S
as its hyperedges). Given a family of local assignments {fs : s = {0,1}}s¢cs, we’d like to test whether fq
actually agrees with a global function g : U — {0,1} in the sense that fs = g|s for many s. These systems
occur in PCP reductions to ensure the provers (who answer on subsets) can’t ‘cheat’ by using answers not
corresponding to a real solution of the initial problem (corresponding to global functions on U).

Agreement testing has two major regimes, the ‘99%-regime’ (where we’d like to infer global structure
only if the test passes with high probability) and the ‘1%-regime’ (where we’d like to infer global structure
even when the test only passes with non-trivial probability). Leveraging reverse hypercontractivity, we give
new tests in both regimes. In the 99%-regime, we give a new 2-query test where the universe U corresponds
to i-sets of a high dimensional expander, extending a similar result of [DFH19] on the complete complex.
Our test, along with Theorem 1.1, has since appeared as an important sub-routine in the construction of the
first bounded-degree 1% agreement testers in [DD23b; DDL24].

In the 1%-regime, we give a new 3-query tester for a variant of {s-expanders (a strengthened notion
of HDX [KKS21]) with optimal soundness, meaning that if the test passes with probability asymptotically
better than a random function (2_®(k) for a k-dimensional £s-expander), we are able to infer global structure.
In the context of PCPs, such a soundness guarantee is critical to ensure the alphabet size stays polynomial
in the soundness. Our result gives rise to the first families of optimal testers beyond the complete complex
and products [DL17], including (dense) random complexes, skeletons of many well-studied spin systems, the
full linear matroid, and more. We remark that while all such examples are dense, we prove an optimal
‘local’ agreement theorem only under the assumption of local spectral expansion. We lift this guarantee
to the general result using f-expansion, but it is possible this requirement could be relaxed using recent



techniques based on coboundary expansion [GK22; BM23b; DD23b; BLM24; DDL24] to give sparse optimal
testers.

The Geometric Overlap Property is one of the earliest notions of high dimensional expansion [Grol0;
Lubl8]. A d-dimensional complex X has c-geometric overlap if for any embedding of X into R?, there
is a point p € R that is covered by a c-fraction of X’s hyperedges. Geometric overlap was first proven
for the complete complex in 2-dimensions by Boros and Fiiredi [BF84], and later extended to all dimen-
sions by Bérdny [Bar82]. Gromov [Grol0] asked whether there are bounded degree complexes satisfying
geometric overlap. This was resolved in [Fox+12], who gave both an optimal random construction and
several explicit constructions with bounded but sub-optimal overlap (including one from high dimensional
expanders). Several later works [PRT16; Evr17; Oppl8] continued to build the connection between high
dimensional expanders and geometric overlap, but it remained open whether a construction achieving the
best of both worlds (explicit and optimal) could be achieved. Leveraging a variant of Theorem 1.1, we resolve
this problem, showing under mild assumptions that any sufficiently strong high dimensional expander has
near-optimal geometric overlap.

The Trickling-Down Threshold. High dimensional expanders exhibit a phase transition at a certain
expansion parameter called the ‘Trickling-Down (TD)-Threshold’ [Opp18]. Any complex breaking this barrier
immediately has ‘local-to-global’ structure, meaning properties such as global expansion and fast-mixing can
be inferred just from local structure of the complex [Gar73; KM17; Oppl8; AL20]. This barrier shows up
as a major point in constructions of HDX as well. It is relatively easy to build complexes at the threshold
by tensoring an expander with the complete complex [LMY20; Gol21], but breaking the barrier requires
complicated algebraic machinery and is considered the ‘gold standard’ for HDX—indeed only three such
constructions are known [LSV05b; KO18; Dik22].

Theorem 1.1 and Theorem 1.2 hold for v/d-dimensional skeletons of any complex breaking the TD-
Threshold. In fact, we prove that the top level of such complexes satisfy exponential concentration for
all Lipschitz functions, corresponding to (e, i, k) < exp(—s#) in the inclusion sampling setting. On the
other hand, we give examples of complexes at the TD-threshold that exhibit arbitrarily poor concentration.
We view our results in this sense as a significant strengthening of HDX’s ‘local-to-global’ phase transition,
and a partial explanation to the great difficulty of constructing hypergraphs beyond the TD-Threshold.
Whereas graph expansion and mixing are ‘common’ phenomenon, Theorem 1.1 and Theorem 1.2 imply as
soon as one breaks the TD-Threshold X not only satisfies exponential concentration of measure, its skeletons
satisfy optimal concentration and reverse hypercontractivity—rare properties not known for any other sparse
systems.

2 Main Results and Proof Overview

2.1 Background

Before stating our results in somewhat more formality, we cover some basic background on high dimensional
expanders, random walks, and sampling. We refer the reader to Section 4 for formal details and discussion.

Simplicial Complexes. A d-uniform simplicial complex X consists of a d-uniform hypergraph X (d)
together with its downward closure
X=X(1)U...uX(d),

where X (i) C ([7;]), called the ‘i-faces’, are all i-size subsets that sit in some hyperedge in X(d). Given
a face t € X(i), the link of ¢ is the sub-complex induced by localizing to faces that include ¢, that is
Xi={s:sUt e X}. Wesay X is connected if the base graph (X;(1), X;(2)) of every link is connected. A
d-uniform complex is partite if its vertices can be partitioned into d ‘parts’ such that each top-level face has
one part from each component. Finally, the inclusion graph (X (k), X (7)) is the bipartite graph between
k-sets and i-sets of X where edges are given by inclusion.

We emphasize that we have changed convention here from dimension, where X (d) refers to sets of size
d + 1, to uniformity where X (d) consists of sets of size d. We will use the latter notation throughout the
rest of the paper to simplify both the statements and proofs of our results.



High dimensional expanders. A simplicial complex X is a A-one-sided HDX (resp. two-sided) if for
every s € X of co-dimension® at least 2 (X;(1), X¢(2)) is a A-one-sided spectral expander (resp. two sided).
The weakest form of high dimensional expanders are A-Trickling-Down (TD) Complexes. We call
X A-TD if it is connected and every co-dimension 2 link is a dT)‘l—one—sided expander.
Our results hold for a broad class of HDX we call Nice Complexes. We defer the formal definition to
Section 4.8, and here give two basic examples of nice complexes for which our results hold:

— X is the V/d-skeleton of a A-TD complex
— X is a 2~ %two-sided HDX
We note our results also hold on 2-%one-sided partite HDX, albeit with polynomially worse e-dependence.

We discuss this further in the main body (see Theorem 5.1 and Section 7).

High Order Random Walks. Simplicial complexes admit a variety of ‘high order random walks’ general-
izing the standard random walk on a graph. There are three natural walks critically important to our results.
The first are the classical down-up walks of [KM17], denoted Uy, 4Dg ), which walk between s, s’ € X(d)
through a shared k-face ¢ C s,s’. The second are the swap walks of [DD19; AJT19], denoted S; ;, which
walk between disjoint faces s € X(i) and s’ € X(j) via sUs" € X(i+j). The final walk is the noise
operator T),, which walks between s, s’ € X(d) via a random i-subface of s for i ~ Bin(1 — p,d).*

Sampler Graphs. A bipartite graph G = (L, R, F) is an (¢, 8)-function additive sampler if Vf : R — [0, 1]

v,
veEL

G is called an (o, 3, §)-multiplicative sampler if for all f : R — [0,1] of density at least Eycpg [f(u)] > a:

v |
veEL

It is a well-known fact (c.f. [[KW12]) that one can move between additive and multiplicative samplers
without much parameter loss, and moreover that one can ‘flip’ L and R in the sense that if G = (L, R, F)
is an («, 8, §)-sampler, then G? = (R, L, F) is roughly a (8, o, §)-sampler up to slight decay in parameters.
We refer the reader to Section 4 for details.

wer, @] = E [f(u)]

25] < B.

>5E[ﬂmﬂ<a

ueR

2.2 Sampling and Concentration

We can now state and overview the proof of optimal sampling on HDX in somewhat more formality.

Theorem 2.1 (Sampling on HDX (Informal Theorem 5.1)). Let X be a nice, k-uniform HDX and i < k.
The containment graph (X (k), X (3)) is a (g, 8)-function sampler for

B < exp (_o <g2§>) .

In other words, for any f: X (i) — [0,1] of expectation p:

P [ >€} < exp (—Q <52§>) .
seX(k) ?

Since v/d-skeletons of A-TD complexes are nice, we get the following immediate corollary.

E /(0] -1

3Here by co-dimension j we mean sets of size d — j.
4We remark that while definition this may seem odd at outset, it is the natural extension of the noise operator to hypergraphs
and recovers the standard notion on products. See [Baf+22b] or Section 4 for further details.



Corollary 2.2 (Sampling for TD-Complexes (Informal Claim 4.28 4+ Lemma 4.15)). Fiz A < 1 and let
X be a d-uniform \-TD complex. Then for any i < k < \/d, the containment graph of (X(k), X(i)) is a

(e, B)-sampler for
B < exp (—Q ((1 - )\)%£2§>> .

We remark that this (and all following) results also hold in some variation under the popular notion of
spectral independence, which for our purposes act similar to TD complexes. We discuss in the main body.

En route to Theorem 2.1, we also show the top level of any A-TD complex satisfies exponential concen-
tration for Lipschitz functions, which may be of independent interest.

Theorem 2.3 (Exponential Concentration of A-TD Complexes (Informal Corollary 7.3)). For any A < 1,
v>0, and k € N, let X be a k-uniform A-TD complex. For any v-Lipschitz function f: X(k) — R:

P ) ) > ] < e (—o ( /T))

A
where ¢y < O(eT-X).

We refer the reader to Section 4.6 for the definition of v-Lipschitz, and here just note that specialized

to inclusion sampling this implies (X (k), X (7)) is roughly a (e, exp(—a#))—sampler. A similar statement

holds under spectral independence, albeit for a more restricted class of functions (see Corollary 7.4).

Proof Overview. The proof of Theorem 2.1 is broken into two main components: the ‘Chernoff’ (i = 1)
setting, and a bootstrapping argument lifting Chernoff to general i. Here we focus just on the simplest
version of the proof, the case of two-sided HDX, and refer the reader to Section 7 for the general case.

Part I: Chernoff-Hoeffding. Toward Theorem 2.1, we first prove a fairly general “k vs 1” concentration
theorem for any HDX X whose strength depends on X’s underlying quantitative expansion. Under strong
assumptions (2_k—HDX), we recover true Chernoff. Perhaps more surprisingly, even under very weak as-
sumptions (%—HDX) we still recover strong concentration of the form exp(—e?v/k). Taking a v/k-skeleton
of the latter recovers Chernoff (see Section 4.6). We give a simplified statement here:

Theorem 2.4 (Chernoff-Hoeffding for HDX (Informal Theorem 5.3)). Let X be a k-uniform %—two-sided
HDX. Then for any f: X(1) — [0,1]:

k
1
' k i) = 1| > e <exp(=Q(e* Vi
{v1,..., v }eX(K) [ k;f(v) H E] exp( (5 ))

Moreover, if X is a 2~ %-two-sided HDX stronger concentration holds:

1 k

i Z fvi) —p
i=1

For simplicity let f = 14 be the indicator of some A C X (1). The proof of Theorem 2.4 follows the
standard Chernoff-style method of bounding the moment generating function (MGF). Namely for any r > 0:

r
{’Ulv"‘vvk}eX(k) L

> E] < exp(—Q(e%k))

E [ ﬁ erlA(vi)]
< =1

=P erk(pte)

=<

{1, ok EX

k
exp <Z rlA(vi)> > exp(rk (u+¢))
i=1

k
P > Lavi) > k(p+e)
N et
In the classical proof of Chernoff, the variables v; are independent, so one can bound the MGF by

k
k
E rla(v;) — E rlA(v) < rk(y,—«—r) 21
{v1,..,vp}€X (k) |J1:I16 ‘| vEX(1) [e } ¢ ( )



and set r = O(e) to get the desired bound.

When X is an HDX, the variables {v1, ..., v} may be extremely correlated, so the above approach breaks
down naively. Instead, we take inspiration from Healy’s proof [Hea08] of the Expander-Chernoff Theorem
and recursively bound the MGF by ‘splitting’ it into components on lower levels of X using the swap walks.
Toward this end, for any £ < k, define the partial MGF z;: X(¢) — R on a face t = {v1,v2,...,v¢} as

¢
2p(v1,02, ... ,vp) = HerlA('Ui) — orlinAl
=1

Our goal is to bound E[z;] ~ E[21]*. To set up a recursion, we appeal to the elementary observation that a
k-set s € X (k) can be sampled by first drawing a &-set ¢; € X (k/2), then to € Xy, (k/2) conditionally from
its link. We set s = ¢1 Uto. This allows us to ‘split’ z; into two correlated copies of 2 /o:

E [z2(s)]= E [e"ls0Al
seX(k)[k( ) seX(k)[ ]

E [e’r“tlﬂA|e’r“t2ﬂA|]
t1Uta

= tllth[zk/Q(tl)Zk/Q(tZ)]'

The trick is now to observe that (¢1,t2) is distributed exactly as an edge in the swap walk Sy . Since swap
2 k)

2
walks on HDX have excellent spectral expansion [AJT19; DD19; GLL22; AP23], we can ‘de-correlate’ the
above and write the relation
E[z] < (1 =) E[z/2]* + vE[7; 5] (2.2)

where + is the expansion of the swap walk.
We could now recurse if not for the error term vE [zz /2}, which could very well be the dominating factor.

The key is show IE[ZI%/Q} actually can’t be too much bigger than E[z;] itself:
E[22)5] s ¢V E[z). (2.3)
Setting 7 such that *yerzk < 1, (2.2) becomes

l—v
E[z] < —— E[z1/2]? ~ E[z1,/2)"
1—eFy

allowing us to recurse to show an upper bound similar to (2.1). For ‘weak’ HDX, this strategy requires
setting r = @(ek~1/2), while for strong HDX we may set r = @(¢). This results in the gap in the stated
bounds.

To prove (2.3) we in some sense ‘reverse’ the sampling process above, and draw a %—set t by first sampling
a k-set s € X(k), then take ¢ C s uniformly at random. This means we can write the error term as:

()] = B [ |

E E t 2 — E E 2r|tNA|
teX(k/2) seX(k) [Zk/2< ) ]] { [6 ]

tCs seX (k) [Cs

Crucially, the inner expectation is now over the %—uniform complete complex (whose vertices are the k-set s),

so standard concentration implies the exponent, 2r|t N A|, is close to its expectation r|s N A| up to a factor
of roughly r2k with high probability. Thus:

E []E {62r|th|Hs E {er|sﬂA\+r2k}:er2k E [2].
seX(k) [tCs seX(k) seX (k)

Part II: Bootstrapping. We now argue one can lift Chernoff for HDX to optimal sampling for their
inclusion graphs (X (k), X(¢)). The idea, based on the method in [IKW12] for the complete complex, is to
try to reduce to a 7-uniform complex Y whose vertices are i-sets in X (i), and whose %-faces correspond in



some way to the k-sets in X. We could then hope to apply Chernoff to this system to bound the k vs. ¢
sampling behavior in the original complex.

Somewhat more formally, we’ll consider the %—uniform complex generated by the following process: draw
a random k-face {vy,...,vx} € X(k), and partition the face randomly into % subsets of size ¢ denoted
{I,...,Ix}. The resulting complex, called the faces complex of X, inherits local-spectral expansion from

X’s swap walks so we can apply Chernoff for HDX to get concentration of the form exp(—aQ%).
Unfortunately, this does not prove concentration for quite the right object. In particular, given a function
f: X (i) — [0,1], the above really states that a random partitioning of a k-face s into % sub i-faces satisfies

. k/t

. k
P - I;) — >el| e _52_' 7
seX(k), Ujl=s ||k ;f( i) — 1 Xp ( z>

whereas we’d like to bound ]P( : L]ICE [f(t)] —,u’ > 5} Here we are saved by the fact that each I; is
seX(k s

marginally distributed as a random i-set ¢ C s. We prove in such cases it is possible to inherit sampling from
the correlated bound up to a small loss in parameters, completing the proof.

2.3 Reverse Hypercontractivity

Leveraging Theorem 2.1 locally in X, we prove reverse hypercontractivity for high dimensional expanders.

Theorem 2.5 (Reverse Hypercontractivity (Informal Theorem 6.1)). Fiz p € (0,1) and let X be a k-uniform
nice complex for k sufficiently large. Then there exist constants C,q (depending only on p) such that

(£, To9) > Cllfllqllgllg-

In other words T, is “(C, q)-reverse hypercontractive.”

The core of Theorem 2.5 is really a version of the result for the down-up walk which simply states any
two subsets A, B C X (k) of non-trivial size must have correspondingly many edges between them.

Lemma 2.6 (Reverse Hypercontractivity of the Down-Up Walk (Informal Theorem 6.4)). Fiz v € (0,1)
and let X be a k-uniform nice complex for k sufficiently large. There exist constants ¢, q (depending only on
7v) such that for any A, B C X (k) of measure at least exp(—ck):

P [se A, s’ € Bl > P[A]“P[B]".

8,8'~Uqk kD yke

Note that the assumption on the set size in Lemma 2.6 is essentially tight. Even if one walks from s to
s while going down to a single vertex it is possible to find sets A and B of size roughly exp(—k) which are
totally disconnected, even on the complete complex.

Proof Overview. The proof of Lemma 2.6 relies on the following simple observation: since the down-up
walk samples an edge by first sampling ¢ € X (vk) and then independently sampling s, s’ € X (k) containing
t, we can express the vy-correlated mass of A and B as:

P [scAseBl= E [P[A|s;t]u3[3|s;t]].
stlNU’yk,ka,'yk tEX('yk) S s

Now the connection with inclusion sampling becomes clear—if even a non-negligible fraction of ¢t € X (vk)
see a reasonable portion of A and B simultaneously, the righthand side should be large!

Naturally our first thought might be to appeal to Theorem 2.1 which bounds this type of behavior, but
when ¢ = vk the resulting bound is far too weak to be useful. In particular, after swapping from additive
to multiplicative sampling and ‘flipping’ the graph, Theorem 2.1 roughly states that (X (i), X(k)) is an
(a, B, 0)-sampler for a ~ exp(—éQB%). When i = ©(k), this only gives a guarantee for sets of constant size.



The key is to realize that because X expands locally, we don’t have to sample ¢t € X (vk) all at once.
Instead, we’ll sample ¢ in ‘steps’ as t = t1 U...Ut,, where each t; is sampled conditionally (i.e. from the link
of) its predecessors, and apply Theorem 2.1 to each ¢; individually. Toward this end, assume P[A] < IP[B]
and fix the ‘step size’ ¢ = [t;| roughly such that exp(—c¢'%) = P[A] for some sufficiently small ¢/ > 0.

Drawing our first component t1, observe for small enough ¢ we have set our parameters such that
Theorem 2.1 promises (X (¢), X (k)) is an (o, £, 3)-sampler for o < min{IP[A],IP[B]}, so with probability at
least 3 the conditional measures of A and B in t; are at least § P[A] and  IP[B] respectively. Moreover,
moving into the link of ¢; we can apply exactly the same process to t2 (and so forth), so by the i-th step
one can inductively show that with probability at least 27, the conditional mass of A and B are at least
27 P[A] and 27 IP[B] respectively. On the other hand, we only take m = 77’“ = O(log(P[A]71)) total steps
by our choice of ¢, so at the end of the procedure we have that with probability at least 277 = ]P[A}O(l),
the density of A and B in t is at least ]P[A}O(l) as well. Putting everything together, we have

P [scAsecB = E []P[A|s;t]1P[B|s;tﬂ
5,8 ~Uqy 1o 1 Doy teX(vk) Ls s

>27™. (27 P[A]) - (27" P[B])
> P[4]°V P[B]

as desired.

Once one has Lemma 2.6, Theorem 2.5 follows by passing to discrete approximations of f and g that
carefully balance the quality of approximation (namely regarding the mass of f and g and pointwise closeness)
and coarseness (number of discrete values in the approximation). Done correctly, one can then divide the
functions into boolean level-sets and apply Lemma 2.6 to achieve full reverse hypercontractivity at the cost
of a slight decrease in the corresponding norm and an additional constant factor.

2.4 Optimality and the Trickling-Down Threshold

Oppenheim’s Trickling Down Theorem is among the most fundamental results in the theory of spectral high
dimensional expansion [Opp18]. It states that any connected complex whose top links have expansion strictly
better than ﬁ exhibits ‘local-to-global’ behavior: one can immediately give quantitative bounds on the
spectral expansion of all links of X (including its ‘global’ 1-skeleton), as well as on the down-up walks [AT.20].
Our results are in some sense a strengthening of the local-to global behavior of Oppenheim: essentially as
soon as one passes this threshold, not only can one infer ‘Chernoff’-type concentration on skeletons of X,
X itself actually satisfies exponential concentration for any Lipschitz function. This is in stark contrast to
complexes at the TD-Barrier, which we observe may have no concentration properties whatsoever:

Theorem 2.7 (Lower Bounds at the TD-Barrier (Proposition 11.7)). For every 8 < 1 and k € IN, there
exists a family of k-uniform 1-TD complezes {Xp} such that (X (k), Xn(1)) is not a (%, B)-additive sampler.

Theorem 2.1 also gives essentially the best possible parameters for inclusion sampling on any complex.

Theorem 2.8 (Inclusion Sampling Lower Bounds (Informal Theorem 11.1)). Let i < k € N, € € (0,0.1),
and let X be a k-uniform complex, then one of the following holds:

1. (X(k),X (%)) is not an (&, 8)-sampler for 8 < exp (—O (52§))
2. (X(k),X(2)) is not an (%m’ & )-sampler.

Classical lower bounds on samplers (e.g. [CEGI5]) are based on degree and are far from tight in our
setting where inclusion structure is the main barrier. Nevertheless, we are able to argue our bounds are
optimal by reducing to ¢ = 1 where the degree bound is tight. The idea is to show any set A which is a
counter-example to sampling of (X (k), X (1)) can be ‘lifted’ to a counter example to (X (k), X (7)) by taking
A’ to be the family of i-sets that hit A. This works when the measure of A’ is roughly iu(A), and therefore
when 1) A is small, and 2) (X(k), X (7)) is a sampler. We show the original technique of [CEG95] can be
used to analyze sets of any density, thereby giving the desired counter-example.



2.5 Agreement Testing

Leveraging Theorem 2.5, we prove several new agreement theorems in both the 99% and 1%-regimes. In
the former we consider a general setup of [DFH19]. Given a complex X and an ensemble of functions
F ={fs: (3) = Fa}sex(r), we'd like to test whether F ‘comes from’ a global function g : X (i) — Fy. To
be concrete, consider ¢ = 1. Here we are given F = {fs: s — Fa} and can interpret each fs as the indicator
of some subset s C s. We want to test whether there is a ‘global’ subset R C X (1) that approximately
determines most local subsets in the sense that rs ~ RNs. For ¢ = 2, a similar interpretation holds but for
subgraphs of X. Namely, think of fs : (J) — IF2 now as a subgraph of s, i.e. corresponding to the indicator of
an edge-set e; C (5). Now ‘coming from’ a global function means there is a global subgraph £ C X(2) such
that for most local graphs, e; & E Ns. For ¢ > 2 one interprets this similarly as a question about local vs.
global sub-complexes of X. Such ‘subcomplex’ tests have proved useful both in boolean analysis [DFH19]
and as a tool for analyzing the more challenging 1%-regime [DD23b; DDI.24].

We study the classical V-test in this context, which draws a pair of k-faces (s,s") ~ Ugq Dy /2
intersecting on k/2 vertices and checks if s and s’ agree on most i-faces in the intersection. Let Agree) (F)

n
denote the probability (s,s’) agree on at least a 1 —n fraction of their shared i-faces. Similarly, for any

global function g : X (i) — Fa, write fs 2 gls if fs agrees with g on a 1 — 7 fraction of its i-faces. Then:

Theorem 2.9 (The Subcomplex V-Test, 99%-Regime (Informal Theorem 8.1)). Let X be a k-uniform nice
complex. For any n,e > 0 if Agree}; (F)zl-—e:

Jg:X(1)=TFy, P [forgl]>1-¢.
seX(k)

where f < O(n+¢) and & < OV 4 ¢~ (k)

In the ‘1% -regime, our goal is to infer global structure of F even when the test passes with small (but non-
negligible) probability. We focus on the ¢ = 1 setting and aim to construct a test 7 that infers global structure
whenever Agree” (F) > exp(—Q(k)), the best possible bound since a random function passes any such test
with this probability. To this end, we consider a variant of [[KW12]’s Z-test on high dimensional expanders
which samples a triple (¢,0’,0”) € X (k) roughly such that (o,0”) is distributed as the V-test, and o” is
drawn from the link of ¢’ \ 0. The Z-test passes if (¢,0’) and (¢/,0”) are consistent on their intersections.
We prove that the Z-test is sound under the stronger assumption that the complex is “A-global”, meaning

the swap walk Sk & is A-close to its stationary distribution in {s-norm (see Definition 8.6).
272

Theorem 2.10 (The Z-Test, 1%-Regime (Informal Theorem 8.7)). YA,n > 0 and large enough k, let X be
a A-global k-uniform nice complex. Then for any & € (8A 4 e~ k), %) if Agree? (F) > 4:

Jg:X(1) > Fy, P [fs 2 gls] >6/8.
seX (k)

We will not give a true proof overview of our testing results (though it should be mentioned that the high
level strategy closely follows [I[KW12; DL17]), but wish to highlight that the core of Theorem 8.7 is really a
‘weak’ local agreement theorem for the V-test on nice HDX of independent interest. The statement is quite
technical, so we give a very informal version here that captures it in spirit.

Theorem 2.11 (The Local Agreement Theorem (Informal Theorem 8.12)). Let X be a nice complex. Then
for any § > exp(—Q(k)) if Agree§ > 0, for an Q5)-fraction of t € X(k/2) there is a ‘smoothing’ of F
which maintains its structure and has (1 — §2)-agreement on the link X;.

In other words, any non-trivial agreement of the V-test must come from the fact that F is locally consistent
with a global function. It is possible Theorem 2.11 could be propogated to a true Z-test under much weaker
conditions than A-globality, e.g. under the recent topological notions of [GK22; DD23b; BM23b]. We leave
this as an open question for the 1%-regime.

2.6 Further Applications

Finally, we discuss our applications of Theorem 2.1 and Theorem 2.5 beyond agreement testing.



Geometric Overlap. A complex X has (d, ¢)-geometric overlap if for every embedding X (1) into R4,
there is a point ¢ € R%! that lies in the convex hulls of at least a c-fraction of X’s embedded d-faces.
[Fox+12] proved every d-uniform bounded degree complex has geometric overlap at best ¢g, where ¢4 is the
overlap of the complete complex. We prove sufficiently strong high dimensional expanders match this bound.

Theorem 2.12 (Geometric Overlap (Informal Theorem 9.13)). For every d € IN and € > 0, there exists
A > 0 such that any A-two-sided HDX with uniform vertezx weights has (d, cq — €)-geometric overlap.

We remark that while geometric overlap is a classical problem in mathematics (dating back to [BF84]),
we are not aware of any applications in computer science. Nevertheless other instances of overlap theorems
have proven powerful (see e.g. [Cha+23]), so it seems plausible such results may be of future use.

Double Samplers. Double samplers are a powerful variant of sampler graphs used in [Din+18a] to con-
struct good list-decodable codes and in [DW22] for the heavy hitters problem. Roughly speaking, double
samplers are ‘three-wise’ inclusion structures (X (k), X(j), X(1)) such that

1. (X(k),X(j)) is a (1/2, B)-additive sampler
2. For all s € X (k), the restriction of (X (j), X (1)) to vertices in s is a (1/2, 8)-additive sampler

The best known prior construction of double samplers [Din+18a] had overhead ng’fg‘l = exp(poly(371)),
leading to poor rate of their resulting list-decodable codes. One of the main open questions asked in [Din+18a]
was to determine the optimal overhead of a double sampler.

We nearly resolve this problem for ‘typical” complexes X which are non-contracting (i.e. | X (5)| > | X (¢)]
whenever j > i), and satisfy a weak ‘hitting-set’ type guarantee. In particular, Theorem 2.1 gives dou-
ble samplers with only quasi-polynomial overhead, while for such typical complexes Theorem 2.8 implies a

corresponding near-matching lower bound.

Theorem 2.13 (Near-Optimal Double Samplers (Informal Theorem 9.3)). For every 8 > 0, there exists an
infinite family of double samplers with exp(O(log®(571))) overhead. Moreover, any ‘typical’ double sampler
has overhead at least exp(Q(log?(671))).

We refer the reader to Section 9.1 for the exact restrictions on X for which the lower bound holds.

Locally Testable and List-Decodable Codes. Wahile it is likely applying our double sampler machinery
to the arguments of [Din+18a] would give list-decodable codes with substantially improved rate, this was
already achieved subsequent to [Din-18a]’s work using walks on expanders [Ale+-20]. Instead, using a variant
of our machinery we give a closely related application to distance amplification for locally testable codes with
near-optimal distance-alphabet trade-off. The resulting codes are list-decodable and preserve testability up
to a log factor in the alphabet.

Theorem 2.14 (Large Distance List-Decodable LTCs (Informal Theorem 10.21)). For all large enough
k €N and € > 0, there exists an explicit family of Fa-linear codes with

1. Distance: 1 — 27k —¢
2. Alphabet Size: 2F
3. Rate: O

Moreover, the codes are efficiently list decodable up to distance 1 — 2-0(k) gnd locally testable in O(1) queries
with soundness Q(m)

Prior distance amplification techniques for LTCs [Kop+17] have exponentially worse distance-alphabet
trade-off, but improved rate. To our knowledge the above are the first large distance list-decodable LTCs.
We also give a candidate technique for amplifying distance while maintaining constant soundness (removing
the k factor in the denominator above) using HDX, and prove the method works on the complete complex.
We refer the reader to Section 10 for further details on these notions.
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Degree Lower Bounds for HDX. One of the formational results in the study of expansion is the Alon-
Boppana theorem [Nil91], roughly stating any family of bounded-degree A-expanders have degree at least
)\%. Despite degree being a critical parameter in application (degree controls the ‘blow-up’ induced by using
an HDX as a gadget), in high dimensions we understand very little about optimal degree. The best known
constructions of \-TD complexes have degree A\O(d®) | Tg this optimal? Could 2°(4®) be achieved?

We take the first step toward answering this question. Combining our sampling results with degree lower
bounds of [CEG95], we show super-exponential lower bounds for certain special classes of HDX, including
polynomial skeletons of any hyper-regular A-TD complex.

Theorem 2.15 (Degree Lower Bounds (Informal Theorem 9.8)). Fiz A <1, d € N, and k < Vd. Let X be
the k-skeleton of a d-uniform hyper-regular \-TD complex. Then

deg(X) > 90 (k%)

Theorem 2.15 exhibits yet another threshold phenomenon at the TD-barrier, since there exist 1-TD
complexes [Gol21] which have exponential degree at any level. While the latter are not hyper-regular, they
are still reasonably balanced and our techniques extend to this regime.®

If one could prove a true Chernoff bound for A-TD complexes (rather than our concentration of
exp(— \/E)), Theorem 2.15 could be improved to showing degree 20(@) at the top level of X, albeit still
under the assumption of hyper-regularity. While bounded-degree hyper-regular HDX do exist [F120], their
degree is substantially worse and removing this constraint from our lower bound remains an important open
problem.

Separating MLSI and Reverse Hypercontractivity. The Modified Log-Sobolev Inequality (MLST)
is a powerful analytic inequality used to bound the mixing time of Markov chains and previous weakest
sufficient condition for reverse hypercontractivity [MOS13]. To the best of our knowledge, it was open until

this work whether MLSI was necessary. We resolve this question for the setting allowing a leading constant
C>1.

Corollary 2.16 (Separating RHC and MLSI (Informal Corollary 9.17)). There exist constants C,q,q such
that for infinitely many N € N, there exist (C,q,q’)-reverse hypercontractive operators on N wvertices with

vanishing MLSI constant:
~ 1
puLst SO ——x

log(N)
This separation is essentially the strongest possible for operators with constant expansion, since any such
operator has LSI (and therefore MLSI) at least Q(—) [DS96].

log(N)
A Frankl-R6d]l Theorem. The Frankl-Rodl Theorem [FR87] is a broadly applied result in extremal com-

binatorics bounding the independence number of the graph on {0, 1}" connecting strings of fixed intersection
size. Lemma 2.6 implies an analogous result for the vk-step down-up walk on HDX.

Corollary 2.17 (Frankl-Rodl for HDX (Informal Claim 9.19)). Fiz v > 0 and let X be a k-uniform nice
complez for k sufficiently large. The ~vk-step down-up walk has independence number

o < exp(~ s ()) - [X (k)|

In comparison to Frankl-R6dl, the above bounds the size of sets avoiding intersections of size at most
instead of exactly (1 —~)k. A similar issue appears when using reverse hypercontractivity toward this end
in the cube and is handled by a separate Fourier analytic argument in [Ben12]. It would be interesting to
extend our results to the exact case to give a true analog of Frankl-Rodl.

5Namely, we only really require that the underlying graph of every link does not have a (roughly) exp(— \/E) fraction of
vertices making up 1/2 the measure. Unfortunately, constructions such as the Ramanujan complex have extremely unbalanced
links, and actually do fail this property. See Section 9.2 for further discussion.
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‘It Ain’t Over Till It’s Over’ Reverse hypercontractivity was used to resolve Friedgut and Kalai’s ‘It
Ain’t Over Till It’s Over’ Conjecture [MOOO05], which bounds the tail of random restrictions in the hypercube.
The core of their proof was an analog for the closely related noise operator previously used in analysis of
non-interactive correlation distillation protocols [Mos+06]. We generalize the latter theorem to HDX:

Theorem 2.18 (Noise Operator Tail Bounds (Informal Theorem 9.18)). Fiz p € (0,1) and k € N sufficiently
large. For any k-uniform nice complex X and f: X(k) — [0,1] of density u:

P [T,f ¢ [5,1— ] < §9me(D)

3 Related Work

High Dimensional Expanders. Spectral high dimensional expansion was developed over a series of
works [EK16; KM17; Oppl8; DK17] building on prior notions of high dimensional expansion in topology
[Gar73; LSV05b; LMO06; Grol0; KL14; KKIL14]. Basic higher order random walks were introduced by
Kaufman and Mass [KM17], with the swap operators later introduced independently in [DD19; AJT19]. A
great deal of work has been done at the intersection of high dimensional expanders and analysis, including
determining the optimal spectral gap of the down-up walks [KM17; KO20; Dik+18; AL20; KT21], developing
a general theory of Fourier analysis [KM20; Dik+18; Gai+22; Baf+22b; GLL22; GK23a], and applications
thereof to agreement testing [DK17; DD19; KM20; GK22], mixing of Markov Chains [Ana+19; ALG21;
CLV21; Che+21; Liu21; Bla+22; Fen+22; Ana+23] (among many others), and algorithms [DW22; Baf+22a;
Bea+23].

Two works [KS20; KIKS21] in the HDX literature also study Chernoff-style bounds, albeit in very different
regimes from our results. Kaufman and Sharakanski [KS20] study concentration for global functions over
repeated random walks on k-faces, which is incomparable to our setting. Kaufman, Kyng, and Song [KKS21]
prove scalar and matrix Chernoff bounds under /o -independence, a strengthening of spectral HDX that only
holds for dense complexes. While in this work we are primarily interested in proving concentration for
bounded-degree complexes, it is interesting to ask whether their stronger result (Chernoff for matrix-valued
functions) extends to the sparse regime.

In [Baf+22b; GLL22|, the authors prove a notion called “global” hypercontractivity for high dimensional
expanders. While it is known that reverse hypercontractivity follows from the standard hypercontractive
inequality [MOS13], we are not aware of a reduction from the weaker global variant. Our work also differs
substantially from [Baf+22b; GLL22] in its tools and regime of application.

Samplers and Chernoff-Hoeffding. Samplers are among the most classical tools in theoretical com-
puter science, see e.g. [Gol97; Sha04; Wig09] for surveys of their many constructions and applications.
De-randomized Chernoff bounds are an important sub-family of sampler graphs that exhibit optimal tails
in the degree of the graph. Sparse examples were constructed in [AKS87; Gil98] using walks on expanders,
and there is a great deal of literature toward understanding what general families of hypergraphs admit such
concentration, e.g. under limited independence [SS89; SS90; SSS95; Pem01], negative correlation [DRI6], for
edge colorings [PS97], under Dobrushin uniqueness [Paul4], for strongly Raleigh distributions [KS18], and
most recently under ¢o-independence [KIKS21]. Such bounds have many interesting applications beyond
those discussed in this work.

Inclusion samplers were first introduced in Impagliazzo, Kabanets, and Wigderson’s [IKW12] work on
agreement testers and PCPs with strong soundness. Prior to Theorem 2.1, there were only two known
systems of inclusion samplers with optimal tails: the complete complex [IKW12], and curves [Mos17]. Both
examples were used toward the construction of PCPs with strong soundness, but failed to achieve optimal
parameters due to their blow-up in size. Several sparse variants of inclusion samplers were known to admit
weaker ‘Chebyshev’ type bounds, including high dimensional expanders [DK17] and the Grassmann [[KW12].
The latter also lead to PCPs with strong soundness [DM11], but failed to achieve optimal parameters due
to its polynomial tail. Theorem 2.1 is the first to achieve the best of both worlds, though there remain
substantial barriers toward its use for PCPs.
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Reverse Hypercontractivity. Reverse hypercontractivity was first shown by Borell [Bor82] and first
utilized in theoretical computer science by [Mos+06] who observed the inequality implies fine-control of
mixing between sets (akin to Lemma 2.6). The result has since found great use in hardness of approximation
[MOO05; FKOO0T7; She09; Benl2; Kau+14], social choice [MR12; Kell2; Mos12], and extremal combinatorics
[Ben12; Kau+14]. In 2013, [MOS13] extended known bounds on reverse hypercontractivity to general product
spaces and settings with bounded modified Log-Sobolev Inequalities, a surprising result given the failure of
standard hypercontractivity in these settings. Dinur and Livni-Navon [DL17] were the first to apply these
results to agreement testing, where they resolved the conjecture of [[KW12] regarding exponential soundness
for the Z-test and built the first ‘combinatorial’ PCPs with optimal soundness.

We note that MLSI bounds (and therefore RHC) are known for many ‘dense’ settings of HDX studied in
the sampling literature (see e.g. [CLV21]), with the most general prior condition being the notions of entropic
independence and fractional log-concavity [Ana+22] which are significant strengthenings of spectral HDX.
These methods all necessarily rely on density and cannot capture our theory.

Agreement Tests. Agreement testing, also known as direct product testing, is a powerful tool in the
construction of PCPs and locally testable codes [RS96; AS97; RS97; GS97; DR06; Din07; Dik+20; Din+22b).
Agreement tests in the 99%-regime were studied by [GS97] and [DS14] in the complete complex, and extended
to high dimensional expanders in [DK17; DD19; KM20]. [DFH19] gave the first ‘subcomplex’ agreement
theorem in the 99%-regime (the setting of Theorem 2.9) in the complete complex. Agreement testing in the
1%-regime was studied in the complete complex in [DG08a; IKW12; DL17], with the lattermost work giving
optimal bounds. [IKW12] also gave a de-randomized test over the Grassmann complex, which is polynomial
size, but suffers from exponentially worse soundness. A different 1%-regime test on the Grassmann was also
used to resolve the 2-2 Games Conjecture [KMS17; Din+18b; BKS19].

Finally, [GK22; BM23b; DD23b; BLM24; DDL24] studied the 1% (or closely related list agreement)
regime on high dimensional expanders. These works identified key topological properties any complex must
exhibit to be a good tester, and subsequently constructed complexes satisfying these notions, giving the first
bounded degree 1%-agreement testers. The methods of [DD23b; DDL24] in particular rely on Theorem 2.1
and Theorem 2.9. The soundness achieved by the above works, however, is inverse logarithmic in the di-
mension instead of inverse exponential (or even polynomial). Achieving inverse exponential soundness as in
Theorem 2.10 for families of bounded degree complexes remains an important open question.

Open questions

1. While we are able to show optimal concentration for a fairly broad class of high dimensional expanders,
in the weakest settings (namely under spectral independence and at the TD-Threshold), we are only
able to prove exponential concentration at the top level. It is unclear whether this is a fundamental
or purely technical barrier: do such complexes satisfy a true Chernoff bound? As discussed above, a
resolution of this question in the positive leads to better degree lower bounds for HDX, and in particular
a 22(@) ower bound for the top level of hyper-regular A-TD complexes.

2. The best known constructions of high dimensional expanders are not hyper-regular. Is it possible to
remove this constraint from our degree lower bound? While our technique holds even for ‘reasonably
balanced’ complexes, it cannot handle objects like the Ramanujan complexes have extremely unbal-
anced links. It seems likely this is a technical rather than inherent barrier, and we conjecture some
finer notion of concentration or application thereof may be able to remove this constraint.

3. In Section 7 we prove near-optimal concentration for partite HDX, but our bounds suffer polynomial
loss in € over the two-sided case. The reason boils down to understanding concentration of a simple

hypergraph we call the swap complex, made up of %-tuples of disjoint i-sets s € ([?]). We prove

a Chernoff bound for this hypergraph when n > 6% Does such a bound hold in the regime where
n = ©(k)? This would imply fully optimal concentration for partite HDX.

4. We show that ‘standard’ simplicial complexes used in the construction of double samplers cannot
achieve better than quasipolynomial overhead. Are there non-simplicial objects better served for this
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purpose?

5. Our 1%-regime test only holds on dense complexes due to the assumption of £o-expansion. However,
the main argument only requires reverse hypercontractivity and spectral gap of the down-up walk. Can
the argument be completed without the assumption of {-expansion to give new sparse agreement
testers in the low acceptance regime?

Roadmap

In Section 4 we give more detailed and formal preliminaries on high dimensional expanders, random walks,
samplers, and reverse hypercontractivity. In Section 5 we prove optimal inclusion sampling for two-sided
HDX, and cover all other cases in Section 7.

In Section 6 we prove reverse hypercontractivity. In Section 8 and Section 9 we give applications of
reverse hypercontractivity to agreement testing, and analysis and combinatorics respectively. In Section 10
we give basic sampling lemmas for splitting trees and construct high distance list-decodable LTCs. Finally
in Section 11 we show optimality of our inclusion sampling results both in terms of spectral requirements on
X and strength of sampling itself.

4 Preliminaries and Notation

4.1 Graphs and Spectral Expansion

A weighted un-directed graph G = (V, E,IP) consists of a finite vertex set V, a set of edges E C (‘2/), and a
distribution on the edges IP : E — (0, 1]. For a vertex v we denote by P [v] = 33, -5 P [uv]. In this paper
all graphs are assumed to be weighted (the weight is implicit in notation). We also assume that there are
no isolated vertices.

Let lo(V) = {f: V — R}. The graph G induces an inner product (f,g) = E, [f(v)g(v)] on £2(V), as
well as a normalized adjacency operator A : £5(V) — £o(V') defined as

where the first ‘trivial’” eigenvalue corresponds to the space of constant functions. A graph is called a spectral
expander if all non-trivial eigenvalues are small.

Definition 4.1 (Spectral expander). A graph G = (V, E) is called a A-one-sided spectral expander if Ay < .
We say that G is a A-two-sided spectral expander if A2 < A and Ay = —A.

We record the following inequality for A-two-sided spectral expanders, a variant of the classical expander-
mizing lemma. For every f,g € {2(V),

(f, Ag) — E[f]E[g]] < All fll2llgll2- (4.1)

4.1.1 Bipartite Graphs and Bipartite Expanders

A bipartite graph is a graph where the vertex set can be partitioned to two independent sets V = LU R,
called sides. We sometimes denote such graphs by G = (L, R, E).
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The Bipartite Adjacency Operator. In a bipartite graph, we view each side as a separate probability
space, where for any v € L (resp. R), IP[v] =", ., P [wv]. We can define the bipartite adjacency operator
as the operator B : lo(L) — f2(R) by

Vf€b(L),ve R, Bi(v) = E |f(u)]

where the expectation is taken with respect to the probability space L, conditioned on being adjacent to
v. There is a similar operator B* : f2(R) — f2(L) as the bipartite operator for the opposite side. As the
notation suggests, B* is adjoint to B with respect to the inner products of ¢o(L), l2(R).

We denote by A(B) the spectral norm of B when restricted to £9(L) = {1}, the orthogonal complement
of the constant functions (according to the inner product the measure induces on L). Namely

A(B) =sup{(Bf, g)| llgll,IIfIl=1,fL1L}.

Definition 4.2 (Bipartite Expander). Let G be a bipartite graph, let A\ < 1. We say G is a A-bipartite
expander, if A\(B) < \.

It is easy to show that a bipartite graph is a A-bipartite expander if and only if it is a A-one-sided spectral
expander. So we use these terms interchangeably on bipartite graphs.
We record the following inequality for A-bipartite expanders similar to (4.1). For every f € f2(L),g €
t2(R),
(f, Ag) — E[f] E[g]| < Allf]l2llgll2- (4.2)

4.2 Reverse Hypercontractivity

Hypercontractivity and reverse hypercontractivity are powerful analytic inequalities from boolean function
analysis that bound the contraction behavior of operators between normed spaces. Recall that for p # 0 and
a function f on a probability space, we denote by || f||, = E[|f|P]'/P (for p < 0 this is only defined for f that
are non-zero almost everywhere). We note that p — || f||, is monotone increasing.

Let V be a finite probability space and let £5(V) = {f : V — R}. A monotone operator is an operator
such that for any non-negative function f : V — [0,00), Af is also non-negative (i.e. for any z € X,
Af(z) 2 0). For example, adjacency operators of graphs are always monotone.

Let A be a monotone operator. Let 1 < p < gand let C > 0. A is typically called (p, ¢, C)-hypercontractive
if for every f:V — IR,

[Afllq < Clifllp-

It is well know that this is equivalent to ‘two-function hypercontractivity’, that for every f,g:V — R

(Af,9) < Clflpllglly

where ¢ = q% is ¢’s Holder conjugate [ODol14]. Reverse hypercontractivity ‘flips’ this inequality in multiple
ways: both in the direction of the inequality, and in the relation of p and g¢.

Definition 4.3 (Reverse hypercontractivity). Let ¢ < p < 1 such that p,q # 0. Let C > 0. Let A be a
monotone operator. We say that A is (p, g, C)-reverse hypercontractive if for every f: V — R>,

[Afllq = Clifllp

or equivalently if for every f,g:V — R>? it holds that

(AS,9)1 = Cllfllpllgllq
q

where ¢ = =1 18 ¢’s Holder conjugate (the equivalence is similar to standard hypercontractivity).

It is sometimes convenient to substitute f/' := fP, ¢’ = gq/ and write the two-function reverse hypercon-
tractivity inequality as

<Af/1/p,g/1/q’> > ]E[f’}l/p]E[g'}l/q,.
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Probably the simplest (and most useful) interpretation of this inequality is when f and g are indicators of
sets M, N C V respectively, and that A is an adjacency operator of a graph (whose vertices are the points
in V). Then this inequality has a combinatorial interpretation as a type of ‘mixing’ lemma. Namely that
the probability a random edge hits M and N:

P [ue M,veN|>P[MYPP[N]V.
weE
This becomes a powerful tool in the regime where the sets are smaller than can be controlled by the expander-
mixing lemma.

4.3 Simplicial Complexes

Simplicial complexes. A pure d-uniform simplicial complex X is a finite set system (hypergraph) con-
sisting of an arbitrary collection of sets of size d together with all their subsets (individually called ‘faces’).
The sets of size ¢ in X are denoted by X (i), and in particular, the vertices of X are denoted by X (1) (we
do not distinguish between vertices and the singletons of vertices). We write X</ to denote faces of X up
to size j.

We note that this notation departs somewhat from the typical convention in the literature which denotes
faces of size i + 1 by X (i), and what we have called a d-uniform simplicial complex is more typically referred
to as a (d — 1)-dimensional simplicial complex. We have chosen to adopt the former notation since most
theorems in this work require a substantial amount of arithmetic on set sizes, and the latter convention
quickly becomes overly cumbersome.

Probability over simplicial complexes. Let X be a simplicial complex and Py : X(d) — (0,1] a
density function on X (d). This density function induces densities on lower level faces Py : X (k) — (0,1] by
Pr(t) = @ ZSEX(d),SDt P4(s). Equivalently Py is the density induced by drawing a d-face from s ~ Py,

and a uniformly random k-face t C s.
When clear from the context, we omit the level of faces and just write P[T'] or P;c x (4 [T] for an event
T C X(k).

Links of faces. Let X be a d-uniform simplicial complex. Let £ < d and s € X (k). The link of s (called
a k-link) is a (d — k)-uniform simplicial complex defined by X = {t\ s| t € X,t D s}. Note the link of the
emptyset is X itself Xy = X.

Let s € X (k) for some k < d. The density function IP; on X induces a density function P_, : X(d — k) —

(0,1] on the link where P_, [t] = ]l]f[[t]?j]). We usually omit s in the probability, and for T' C X, (k) write
Sk
Piex, k) [T]-

Connected Complexes. We call a complex connected if the graph underlying every link is connected.

Partite complexes. A d-partite simplicial complex is a d-uniform complex whose vertices can be parti-
tioned into d disjoint sets (typically called “parts” or “colors”)

X(0)=X[1UX[2]u...uX][d]

such that every s € X(d) has exactly one vertex from each part.

Let X be a d-partite simplicial complex. The color of a face t € X (k) is col(t) = {i € [d]| tNX][i] # 0}.
Let F' C [d]. We denote by X[F| = {s € X| col(s) = F} the faces of X with color F. The projection of
the complez X onto F is the sub-simplicial complex X = {s € X | col(s) C F}. When X is endowed with
a density Py, X has a naturally induced density Pr by sampling ¢ ~ P4, and outputting the projection
or. Quantitatively, the induced distribution can be written as

PF(s)= > P[.

teX(d),sCt
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Finally, when F' = {i} is a singleton we just write X[i], X?, and x; for brevity.

Given a generic complex X, it will often be useful to consider X’s ‘partitification’ P = P(X), which
simply includes every possible ordering of the faces of X as tuples. Formally, endow the faces of X with an
arbitrary order and define

P(k) = { (5,7) = { (500 s (522)s2)s- o (i) 1) | 5 € X(h),m € 51}

where Sy, is the group of permutations on k-letters and the measure of a face (s,7) is inherited naturally
as % Px [s]. Note that P(X) does not depend on the choice of ordering, which is simply a notational
convenience.

Degree of Simplicial Complexes. Degree is a critical parameter of simplicial complexes capturing the
(local) ‘blow-up’ incurred by moving to higher uniform faces. We define the (max) degree of a complex with
respect to i-faces as: _
deg’(X) = ma seX(i):veEs
(X) = max [{s€ X(i) v e s)

We write just deg(X) := deg?(X) to denote degree with respect to top level faces of X, and deg(i)(v)
for the degree of a specific vertex. An infinite family of d-uniform simplicial complexes {X,} is called
bounded-degree if there exists a (dimension-dependent) constant C' such that deg'(X) < C for all i < d.

Hitting Set. It will occasionally be useful for us to use a common variant of sampling on simplicial
complexes called hitting set. We call a complex (v, )-hitting if for any A C X(1):

P Al < PJA] +
aex(i)[GC ] [A]" +~

In other words, if the probability o € X (i) hits X(1)\ A s at least 1 — u(A)? —~. If a complex is (v, )-hitting
for all sizes i, we just call it «-hitting.

4.4 Higher Order Random Walks

Simplicial complexes come equipped with several natural families of random walks generalizing the standard
random walk on a graph. Toward this end, let X be a d-uniform simplicial complex and ¢ < k < d we define
the standard ‘averaging’ or ‘random walk’ operators that move up and down the complex:

Down and up operators. The down operator Dy, : {2(X(k)) — ¢2(X(¢)) is the bipartite operator of
the containment graph of (X (k), X(¢)), that is:

Dyef(s) = E [f(8)].

tDs
The adjoint of Dy, ¢ is the up operator, Upy, : £2(X(£)) — £2(X(k)), given by:

Urkg(t) = E [g(s)].
sCt
We also write Uy, := Ug_1 and Dy = Dy j_1 as shorthand throughout.

The composition of the up and down operators Uy ;, Dy, ¢, called the “down-up” walk, is the normalized
adjacency matrix of the graph whose vertices are X (k) and whose edge distribution is defined by sampling
t ~ Py, then s,s’ ~ Py conditioned on containing ¢. We denote the corresponding (bipartite) graph by
(X(k), X(£)). For brevity, we sometimes just write UD}, ¢ instead of Up Dy, .
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Noise operator. The noise operator is one the most classical objects of study in Boolean function analysis.
Given p € [0,1], the standard noise operator Ty, operates on the hypercube ]P’Q€ by re-sampling each bit
uniformly with probability 1 — p.

The noise operator has a natural extension to simplicial complexes [Baf+22b; GLL22]. It is convenient
to define T}, , : £2(X(k)) — £2(X(k)) by its action on a face 0 € X (k) by the following process:

1. Sample ¢ ~ Bin(k, p)
2. Sub-sample 7 C o of size £
3. sample ¢/ € X (k) conditioned on containing 7.

It is easy to check that when X is a product space,® this exactly recovers the standard noise operator. We
note it is also possible to write the noise operator as a convex combination of down-up walks:

k

k _
T,p = Z (E) p' (1= p)* U Dy

£=0

Swap walks. Let X be a d-uniform simplicial complex. Let ,j be so that i + j < d. The swap walk
Sij = Sij(X) is the bipartite adjacency operator of the graph (X (i), X(j), E). An edge {s;,s;} is chosen
in this graph by first selecting a face t € X (i + j), and then partitioning it to ¢t = s; U s; where s; € X (i)
and s; € X(j) uniformly at random. This walk was defined and studied independently by [AJT19] and by
[DD19).

Colored swap walks. The standard swap walks are not well behaved on partite complexes, but there is
a useful analog for this setting defined in [DD19]. Let X be a d-uniform partite simplicial complex, and
Fy, F> C [d] be two disjoint subsets. The colored swap walk Sp, g, = Sp (X)) is the bipartite adjacency
operator of the graph (X [Fi], X[F|, E). An edge {s1,s2} is chosen in this graph by first selecting a face
te X[F1 U FQ], and then partitioning it to t = s; U so according to its colors.

A useful observation is that the spectral expansion of swap walks (and color swap walks) is monotone in
the following sense.

Observation 4.4. Let X be a d-uniform simplicial complex. Then for every i and j' < j, A(S; ;) < A(Sq ;).
The same holds for partite complexes. For every disjoint Fi, F» and F C F, )\(SFLFQI) <ASE.m)-

Proof. The proof follows from the fact that one can factor
Sij(X) = Dj j5ii(X)

and the observation that D; ;; contracts 2-norms. A similar argument is true for colored swap walks in the
partite case, replacing D; ; with the corresponding bipartite graph between the F-colored faces and the
Fj-colored faces they contain. m|

4.5 Sampler Graphs

Sampler graphs are bipartite graphs G = (L, R, E') where a random vertex v € L “sees” any large enough
set in R with approximately the correct probability. Here we discuss a few classical variants of samplers and
their relations, and refer the reader to [Gol97] for further discussion.

Definition 4.5 (Multiplicative sampler). Let G = (L, R, E) be a bipartite graph and «, 3,8 > 0. G is an
(o, B, 8)-multiplicative sampler if for every set A C R of size P [4] > « it holds that

P

60ne can always express a product space ®;(); as a partite simplicial complex by defining each coordinate as a part, see
[Baf+22b] for further details.

P [ueA}—]P[A” > 0P [4)] < 5.

u~v
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Note that the definition of a sampler is not a priori symmetric, L and R have different roles. We will
also study a related additive notion of samplers.

Definition 4.6 (Additive sampler). Let G = (L, R, F) be a bipartite graph and 8,6 > 0. G is an (¢, 3)-
additive sampler if for every set A C R it holds that

P

P [ueA}—]P[A}‘m] <B.

u~v

Finally, sometimes it is also useful to sample functions instead of sets. toward this we introduce the
following definition in additive notation.

Definition 4.7. Let G = (L, R, E) be a bipartite graph and ¢, 8 > 0. G is a (&, 8)-function additive sampler
if for every f: R — [0, 1] with expectation E,cp [f(v)] = p, it holds that

P

E [f(v)]—u|>¢] <8,

u~v

and similarly for a («, 8, d)-function multiplicative sampler.

4.5.1 Basic Sampler Properties

While the definition of samplers are not symmetric with respect to L and R, a near-tight correspondence
(L,R,FE) and (R, L, F) is given in [[KW12, Lemma 2.5]. We repeat their proof in Appendix C in a more
general setup.

Claim 4.8. Let 3,6 > 0,let & > § and a < w Then for every («,f3,6)-sampler G = (L, R, E), it

holds that Gop = (R, L, E) is a (%ﬂ, 2a, §')-sampler.
We also note that additive samplers and multiplicative are equivalent, at least in the weak sense as below.
We prove this claim in Appendix C.

Claim 4.9. Let G = (L, R, F) be a bipartite graph.
1. If G is a (B, §)-additive sampler then G is a (C9, 3, & )-multiplicative sampler for any C' > 1.

2. If G is a («,,6)-multiplicative sampler for a <
d =max{d, (1+9)(a+p)} and p = max,cg P [v].

Then G is a (8, 0)-additive sampler, where

ol Q=

Under a slightly stronger assumption one can also remove the dependence on ¢ in the second item.
Claim 4.10. Let 8, ¢ > 0. If for every o > ay it holds that G is an (o, 3, a—\/oa)—multiplicative sampler, then
G is a(B,2(a + p))-additive sampler where p = max,cg P [v].

Below we show that every additive sampler is also a function additive sampler (albeit with worse param-
eters). We did not try to optimize parameters and it could be the case that a better reduction exists.

Claim 4.11. Let G = (L, R, E) be an (¢, §)-additive sampler such that every r € R has degree at least k and
every v € L has probability at most . Assume that exp(—0.01e%k)) < 1. Then G is also a (48, 2¢)-function
additive sampler.

We prove the claim in Appendix C. We note that [Gol97] also presents a reduction from an additive
sampler to a function additive sampler. The reduction there changes the underlying graph, which is why we
prove a reduction more suitable to our needs.

4.6 Concentration of Measure

Sampler graphs are a special case of the powerful concept of concentration of measure, a viewpoint we will
also take throughout this work. We follow the standard notation of [BLM13] adapted in the natural way
from product measures to simplicial complexes. Given a simplicial complex X and a function f: X (k) — R,
let Z = f(x1,...,x)) denote the random variable distributed as f(x) where x € X (k). We are interested in
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understanding the concentration of Z around its mean. Z is said to satisfy subexponential concentration if
there exists a constant ¢ > 0 such that

P[|Z —E[Z]]| > t] < exp(—ct),

and subgaussian concentration if
P[|Z — E[Z]| > t] < exp(—ct?).

Classical concentration bounds (e.g. on the cube, products) typically hold for functions f satisfying certain
Lipschitz-type conditions. Toward this end, define the Z-dependent variable ZEZ.) = f(z1,.. 25, -, Tk)

where z; is sampled conditional on z_;.” Abusing notation slightly, we will call a function v-Lipschitz if its
squared difference with respect to the down-up walk is bounded:

Definition 4.12 (v-Lipschitz function). Let X be a simplicial complex and v > 0. We call a function
f: X(d) — R v-Lipschitz if with probability 1:

where (2)4+ = max{z,0}.

We will occasionally rely on a stricter variant that requires the difference of f on any two neighboring
k-faces be bounded.

Definition 4.13 (v-bounded difference). We say a function f : X(d) — R has v-bounded difference if for
every s € X(d) and neighboring s’ of the down-up walk:

v
(Fs) = F()? < 5.
Most of our work focuses on a special case of functions with v-bounded difference we call lifted functions.

Definition 4.14 (Lifted functions). Let X be a d-uniform simplicial complex and f : X (k) — R any
function. For any k < k' < d, the k'-lift of f is the function:

Uk,k’f(s) = ]Es’Cs[f(S/)}

We remark that lifted functions (sometimes called ‘degree’ or ‘level’-k functions) are fundamental objects
in boolean analysis and heavily studied in the HDX literature [Dik+18; Baf+22a; Gai+22]. As discussed
in the introduction, inclusion sampling is in one-to-one correspondence with concentration bounds for lifted
functions. More generally, bipartite sampling guarantees on G = (L, R, F) correspond to concentration for
functions of the form Agf, where f : R — [0,1] and Ag : RE — R” is the normalized bipartite adjacency
matrix of G.

On simplicial complexes, we will typically be interested in understanding concentration at various levels
of the complex. One frequently useful fact is that once concentration has been established for k-faces, it can
typically be ‘raised’ or ‘lowered’ to functions on other levels via simple reductions to concentration of the
complete complex. In cases, this can even be used to improve bounds on lower levels by bootstrapping from
stronger bounds from larger set sizes. We record the following basic results to this effect here and use them
throughout. Their proofs are given in Appendix C.

Given integers k < d, a d-uniform simplicial complex X, and a function f: X (k) — R, denote

il ) = mx {2 10~ B (11>}

and similarly

w0 = max {100~ E 1<~}

seX(d) rCs rCs

to be the worst-case concentration of f restricted to the induced complete complex on d-faces of X.

"Recall that even in the non-partite setting, we assign each k-face an arbitrary order, making Z/ . well defined.

(4)
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Lemma 4.15 (Raising Concentration). Let X be a d-uniform simplicial complezx, k < d, and f : X(k) —
[0,1] a function satisfying

1. Upper Tail: Xl[(’k)[f —E[f] > t] <up(t)

2. Lower Tail: X]I(’k)[f —E[f] < —t] < low(t).

for some functions up,low : Ry — [0,1]. Then the d-lift Uy qf : X(d) — R satisfies:

1. Upper Tail: X]I(’d)[UMf—]E[f] > 1] <up(L)(1— bl (L))~
2. Lower Tail: Xl[(ﬁd)[Uk,df—E[f} < —t] < low(L) (1 — =l (£))~1.

We remark that since concentration in the complete complex is typically quite good, for most function
classes of interest the latter term is close to 1 and very little is lost lifting the concentration to level d. We
will also use a variant of this result for ‘lowering’ concentration bounds specified to Lipschitz functions.

Lemma 4.16 (Lowering Concentration). Let X be a d-uniform simplicial complex and k < d. Assume there
exist functions up(t,v) and low(t,v) such that any v-Lipschitz [ : X(d) — R satisfies:

1. Upper Tail: P[f —E[f] > t] <up(t,v)
2. Lower Tail: P[f —E[f] < —t] < low(t,v).
Then any function f': X(k) — R with v-bounded difference satisfies:

4.7 High Dimensional Expanders

In this section we define the notions of high dimensional expansion used throughout this work and dicsuss
their relation with high order random walks.

Local Spectral Expanders. The most standard notion of spectral high dimensional expansion is ‘local-
spectral expansion’; due to [DK17; Oppl8].

Definition 4.17 (Local-spectral expander). Let X be a d-uniform simplicial complex. We say that X is a
A-one-sided (two sided) high dimensional expander if for every i < d — 2 and s € X (i), the graph underlying
X, is a A-one-sided (two sided) spectral expander.

A key property of local-spectral expanders is that they imply the expansion of associated high order
random walks [KM17; DK17; KO20; Dik+18; AL20]. We first state such a bound for the single and multi-
step down-up walks (or more accurately their corresponding bipartite operator).

Theorem 4.18 ([AL20]). Let X be a A-one-sided d-uniform high dimensional expander. Then for every

. ¢ k-t
0 <k <d it holds that \(Dyg) < (/£ (1+2)'7
In the special case of the single step operator, we will occasionally use the following refined bound.
Theorem 4.19 ([AL20]). Let X be a \;-one-sided d-uniform high dimensional expander. Then for every
k—2

¢ <k <d it holds that N(Dg) < (/% [T (1—X;)
=0
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A critical observation of [AJT19; DD19] is that by removing the laziness inherent in the down-up walk,
one can substantially improve expansion. We state an improvement of their bounds for these swap walks by
Gur, Lifshitz, and Liu [GL1.22]:8

Theorem 4.20 ([GLL22]). Let X be a A-two-sided high dimensional expander. Then

)\(351752) < VAl

Recently, [AP23] proved tighter quantitative bounds that are non-trivial for any underlying local-spectral
expansion. We will not need such fine-grain control in this work.

In the partite case, the colored swap walks also have known expansion bounds assuming partite local-
spectral expansion [DD19; GLL22].

Theorem 4.21 ([DD19]). Let X be a partite A-one-sided high dimensional expander. Then
A(SF,m) < [F1][F2| A

We will also need a bound on the spectrum of the averaging operators based on local-spectral expansion.
This has been the subject of intense study [KM17; DK17; Dik+18; KO20; AL20], with the best known
bounds given by Alev and Lau [AL20].

A-Products. Another useful notion of partite high dimensional expansion is to look directly at the expan-
sion of the bipartite graphs between different components. We say that X is a A-product (a term coined
in [GLL22]), if for every face s € X and every two sides X,[i], X;[j], the bipartite graph between the two
sides is a A-one-sided spectral expander. Dikstein and Dinur showed any partite local-spectral expander is a
A-product.

Claim 4.22 ([DD19]). Let X be a k-partite ﬁ)‘)\-one—sided local-spectral expander. Then X is also a A-
product.

A-Trickling-Down Complexes. Oppenheim’s trickling-down theorem [Oppl8] shows that in any con-
nected complex, expansion in the top links ‘trickles down’ to expansion at lower levels.

Theorem 4.23 (The Trickling-Down Theorem [Oppl8]). Let X be a connected d-uniform simplicial complex.
Assume that for every s € X (d—2), it holds that all non-trivial eigenvalues of Xs are in [—7,\| for some
7,A 2 0. Then all non-trivial eigenvalues of X are in

_ T A
1+ (d-2)7"1—(d—2)\]"

As discussed in the introduction, the Trickling-Down Theorem introduces a ‘phase transition’ in the
local-to-global behavior of HDX when co-dimension 2 links have expansion ﬁ. Past this point, expansion
of the 1-skeleton of X can be inferred from expansion of the links. Before it, no guarantee is possible.
This threshold-type behavior naturally suggests studying following definition of complexes ‘approaching’ the
TD-barrier.

Definition 4.24 (A\-Trickling-Down Complex). We call a d-uniform simplicial complex A-Trickling-Down
(A-TD) if it is connected, and all co-dimension 2 links have (one-sided) expansion ﬁ.

Spectral Independence. Spectral independence is a closely related notion to local-spectral expansion
introduced in the sampling literature [ALG21]. Here we give an equivalent version of the definition in terms
of link expansion, and refer the reader to [ALG21] for the original definition and their equivalence.

Definition 4.25 (Spectral independence). For 1 > 0, a d-uniform complex X is called n-spectrally indepen-
dent (n-SI) if the graph underlying every co-dimension j link is a (one-sided) ?—expander.

8Formally this result is stated in [GLL122] for A-products (defined below), but follows for A-two-sided HDX since their
partifications are A-products.
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4.8 Nice Complexes

In the following sections of the paper we prove results for various standard notions of high dimensional
expansion including two sided high dimensional expanders, partite high dimensional expanders and v/d-
skeletons of one-sided high dimensional expanders. To compactify our statements, we bundle these notions
into one definition henceforth dubbed ‘nice complexes’.

Definition 4.26 (Nice complex). Let ¢ > 0. A k-uniform complex X is c-nice if it meets one of the following
conditions:

1. X is a 2% -two-sided HDX.

2. X is a 27 one-sided k-partite HDX (or a skeleton thereof)?.

3. X is the k-skeleton of a d-uniform complex Y with A(Us_1Dg4) =1 — § and d > 2k?.
We call X c-locally nice if every link of the complex is also c-nice.

Remark 4.27. We note that the two-sided condition of Definition 4.26 could be relaxed to instead assuming

o 2
that for some « € [0,1], X is the k-skeleton of a 52_0‘1 -two-sided d-uniform HDX for d > kT+a. We prove
a Chernoff bound in this regime which we believe is of independent interest, but for simplicity focus just on
the o = 1 case for the rest of the paper.

Note that skeletons of nice complexes are nice (see [Lee23, Theorem 3.5] for the third case), and that if
X is c-nice for one of the first two items, it is also c-locally nice. It is simple computation to verify that
skeletons of \-TD and 7-SI complexes are locally nice.

Claim 4.28. Let A < 1 and 1 > 0. For any d-uniform complex Y:
1. If Y is A-TD, then its /(1 — \)d-skeleton is e~ !-locally nice.

2. If Y is n-SI, then its , /m—skeleton is e~2-locally nice.

Proof. We first prove niceness. The first item follows from observing by Theorem 4.23 and Theorem 4.19

that the down-up walk on the & = (1 — \)d skeleton of a A-TD complex has A(Uy_1Dy) =1 — (1‘1;/\1)(1.

For the second item, let k' = By definition one can check the k’-skeleton of Y is a

_d
max{2,n}"

min{%, m}—one—sided local-spectral expander and Theorem 4.19 implies A(Up_1Dyr) <1 — ‘5]%,2

For local niceness, note that n-SI and A\-TD complexes have 7-SI and A-TD links respectively. Further,
one can check directly that if X is a k-skeleton of d-uniform Y, then X, is a (k — |s|)-skeleton of Y5, which is

(d — |s|)-uniform. The rate z:—\j‘ > % thus we can apply the same proof of niceness to every link as well. O

5 Concentration on HDX

With ‘nice’ complexes so defined, we may finally state our main concentration bound in full formality.

Theorem 5.1 (Sampling on HDX). Fiz ¢ > 0. There are constants c1,ca2 > 0 such that for any k € IN,
i < k <d, and d-uniform c-nice complex X, the inclusion graph (X (k), X (i)) is an (e, B)-function sampler

1. = %1 exp (—c2£2%) in the non-partite cases

2. f=%exp (—c258%) in the partite case

Moreover, if X is a k-skeleton of a d-uniform complex 'Y, then for every k < k' < d, the graph (Y(k'),Y(7))
is also an (¢,0(pB))-function sampler.

9A skeleton of a 2~ F-two-sided HDX is still a 2~ ¢*-two-sided HDX, so this distinction is not meaningful in the previous
condition.

23



A few remarks are in order. First, in the \-TD setting, it is worth noting the constant in the exponent
can be taken to be ¢; = @((1 — X\)'/2). Second, we note that in the partite case, the optimal e2-dependence
in the exponent can be recovered whenever k < O(£%d) (see Section 7 for details).

Finally, by applying Claim 4.8 and Claim 4.9, we also get the following useful corollary for multiplicative
sampling of the reversed inclusion graph (X (i), X(k)).

Corollary 5.2. Let X be a k-uniform c-nice complex. Then for every 6,8 € (0,1), (X (), X(k)) is a
(a, B, 0)-sampler for

L e Qe(826%%)

1. a= i) in the non-partite cases

Bev oY

/ k
2. a= %6_00(58587) in the partite case.

We note that in application, we typically take 8 and ¢ in the above to be constant, in which case the
bounds are tight in both regimes.

In this section, we prove Theorem 5.1 only for the two-sided case, and defer the full proof to Section 7.
The proof (and section) are split into two main components: a new ‘Chernoff-Hoeffding’-style bound for
simplicial complexes based on expansion of swap walks, and a bootstrapping technique that lifts this bound
to full inclusion sampling on two-sided HDX.

5.1 Chernoff-Hoeffding

In this section we introduce a new technique to prove ‘k vs. 1’ concentration on simplicial complexes X whose
underlying strength depends on the expansion of the swap walks of X. The general form is fairly cumbersome
(we refer the reader to Proposition 5.5, which bounds the moment generating function in terms of swap walk
expansion), and for readability we only state the result here for %Q_ka—two—sided HDX, interpolating between

2--HDX at o = 0, and 2-*)_HDX at o = 1.

Theorem 5.3. Let o € [0,1] and X be a k-uniform %2_]“& -two-sided local-spectral expander. Then for any
f:X(1)—10,1] and e > 0:

1. Upper tail:
k

1 1 1+
P — E v;) —pu > ¢e| <2min{k, cq}exp <_ 52k7>
{v1,...,ux }€X (k) [k = f< ) H ] { } 2

2. Lower tail:

k
1 1 1+
P = ) —p < —¢| < 2min {k, ——e’k2
o ) [k 2 f(vi) — 51 min {k, co } exp < 3¢ >

1
(2)a

where co < 7 e

We remark it is possible to use this approach to prove similar concentration for any A-TD complex, but
in Section 7.1 we will see a stronger bound for this specific regime based on a variant of the Herbst argument.
As such we allow ourselves the additional constant factor here in expansion for convenience. Second, note
that by setting « appropriately, Theorem 5.3 shows for any ¢ > 0 that the containment graph (X (k), X (1))
of any 2~%*-two-sided local spectral expanders is a (g, 3)-sampler for 3 = exp(—Q¢(—%k)).

The core of Theorem 5.3 centers around the notion of splittability [AJT19], which allows us to de-correlate
the variables in our complex and bound the moment generating function of Uy ;. f. We introduce a slight
variant of the standard definition convenient for our purposes.

Definition 5.4 (Balanced Splittability). We call a d-uniform complex X {7}ic[|10g(a))—1)-Palanced-
splittable if for every i the 2-th swap walk expands:

A(Sgi9i) <7y
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All applications of splittability in the literature lose additive factors in the -;. We introduce a new
approach combining splittability with an ‘internal’ reduction to the complete complex that allows finer
control over this error and instead incurs more manageable multiplicative loss.

Proposition 5.5. For any j € N and r € [0,1], let k = 27, and X be a k-uniform {v;}-balanced-splittable
complex with 622717“2’6")/]',1,1 < 1. Then for any f: X(1) — [0,1]:

k
E W) <o E [e]F
{v1, vk} EX (K) ll}) ] 7

-1 2
h <(TI 1=yj-1-i
where ¢~ < 552k .
i=0 \1—ed Vi—1—i

While the definition of ¢, may be somewhat hard to parse, note at least that for any fixed r, ¢, , goes
to 1 as « tends to 0.

Proof. For any even ¢, denote by z; : X(¢) — R the ‘partial’ moment generating function:

14

ze({vi, .. ve}) = Herf(”i).

i=1

Our goal is to bound [E[z;,] = Elexp(r Y-, f(v;))] by induction on z. Denote by 2z = E[2]1 the projection
of zy to the space of constant functions and by zj‘ =2y — z? its orthogonal part. The first key observation
is that we may split z, into two ‘copies’ of zy,9 using the swap operator:

X]I(Eﬂ) (2] = X(]eE/Q) [20/250/220/2] -

Now splitting z,5 itself into parallel and perpendicular components, we can bound this as

E S = E[20/250/2(20y2 + 21
) [20/250/2%¢/2] (20250722479 + 2772)]

= IE[ZZ/2]2 + <22'/27 52/222'/2>
E[z¢/0)* + 710g(€)—1||zj_/2”%

= (1 - 71og(£)71) ]E[ZZ/Q]Q + Nog(£)—1 ||Z€/2H§- (5.1)

N

The first of these two terms can clearly be bounded by induction. The difficulty lies in the error term, as the
2-norm of the partial MGF may be much larger than its expectation. To handle this, we argue via reduction
to the complete complex the second moment of z,/5 is actually quite close to the original expectation of z,.

Claim 5.6. For any even ¢ and r € [0,1]:

5,2
l2¢/5lI3 < 3" E[]

Let’s first complete the proof given this fact. Plugging the claim back into (5.1) and applying induction
we get the following bound:

T—79-1

E[z] < W]E[zk/Q]Q
L—et™ Ty
1 /y j—2 1 ,7 2i+1
—Yj-1 — Yj—2—i k
< 1— ey, H <1 S L P ) Flal
Vi1 \i=0 —e 4 275024

j—1 1—~ 2
_ At fik
=\ =y E[c"]

i—o \1—e” 1 Vi—1—i

as desired. O
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It is left to prove the claim relating ||z;/2||3 to E[z(].

Proof of Claim 5.6. Recall our goal is to show

E [28/2 tEX

H Sl ] iV [2]

VEL

The key is to observe that we can draw ¢t € X (£/2) by first drawing s € X(¢), and then drawing ¢ C s
uniformly at random:

2rf(v
H ' ] SEX

VEL

1]

tCs
vEL

tEX

The inner expectation is now within the complete complex which is negatively correlated, so may therefore
‘pull out’ the product (e.g. by [Hoe94, Theorem 4]) and write:

H 2rf(v

Let pus = Eyes[f(v)] and observe fus = 3 . f(v). Combining the above, we have

[ 2rf(v)}€/2.

tCs ves

]E[ZZQ/Q] < sEE(f) |:v]gs[62Tf(v)}£/2:|

S o /2
< SEEM) ngs[l +2rf(v) + 5" f(v)] }

5
= E |(1+2rps+=r° ”2]
SEX(0) _( Tls 27' ths)

sex®) {S(H%TW“S}

— _ (r+3r2)f(v)
ség(ﬂ) H o ‘|

LvESs

N

where in the second inequality we've used that e < 14z + 322 for « € [0,2] and that f2(v) < f(v). O
The proof of Theorem 5.3 is now essentially immediate from Chernoff’s method.

Proof of Theorem 5.3. We prove the upper tail. The lower tail follows from applying the upper tail to 1 — f.
a—1

Let k' be the largest power of 2 such that ¥’ < k. Fix r = £ek’"2 , and recall by Theorem 4.20 that

Vi < %2*(k,)a. By Proposition 5.5, we therefore have:

k

f(v) > pk! +ek'| = r exp |7y f(v) ]| =exp(rku+rk'e
{v1,.. 7vk/}€X (k') ; {v1,..,0 FEX () Z (v) ( )

i=1

Mazkov E {Hf;o erf(vi)]
S exp(rk/p 4+ rke)

j—1 1 2t &2 lia
) g(l—wle—%(’f’)“) op <_§(k) i )
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where in the final inequality we have applied Proposition 5.5 and bounded ]E[erf ]k, by standard manipula-
tions. To bound the leading coefficient first note that for any o > 0 we have

Jj—1 1 2t g-1 1 20
= — ) <K
11 (1—2—i—le—%(k’)“> E) (1—2”>

=0

since each individual term in the product is at most % and j = logy(k"). For @ > 0 we may also write

j-1 . 2 gl
H(1—211——’f’ ) \H LB

2t

k/
where the last inequality follows from observing e3*)% is maximized at k' = (3)e
Finally we apply Lemma 4.15 to lift this guarantee to X (k):

/ -1
o ! 17k
P [Uyrf—p > e] <min{k,cq}exp (——(k:/—f—l)1+ > <1—7rl’227U0 f(a/2)>
2 o 200\
< min{k, ¢, } exp (—E—(k—l-l)l%) (1—6_ 5 )

2
< 2min{k, co } exp (——k )

(k)

where in the final inequality we have assumed &2 % (else the stated bound is trivial). m]

5.2 From Chernoff to Inclusion Sampling

We now show how to bootstrap Chernoff-type concentration to optimal sampling for the general inclusion
graph (X (k), X (i)). We focus on the case of two-sided HDX, and give the more involved argument for the
full theorem in Section 7. We restate the theorem in the two-sided case here for convenience.

Theorem 5.7 (Sampling on two-sided HDX). For any ¢ > 0 there exists ¢ > 0 such that for any k € N,
i <k, and k-uniform 2~ -two-sided local spectral expander X, (X (k), X (3)) is an (&, 3) sampler for

b= C—/exp <—QC (52E>) .
€ i

Moreover, if X is a k-skeleton of a d-uniform complex Y, then for every k < k' < d, the graph (Y(k'),Y(i))
is also an (¢,0(B))-function sampler.

The proof of Theorem 5.7 is based on a refinement of an idea of [[KW12], who observed on the complete
complex one can prove an analogous bound by partitioning k-sets into ¢ disjoint %—sets, and treating these
as independent variables. In the world of general simplicial complexes, this type of subdivision is called the
faces complex of X [DD23b].

Definition 5.8 (Faces Complex [DD23b]). Let X be a d-uniform simplicial complex. For any i < d, the

faces complex F )(() is the L;J -uniform complex with vertices X (¢) and top level faces:

F)((?)(EJ) = {51""’SL%J}
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The weight of a face is proportional to the weight of its union in X. We drop X from the notation when
clear from context.

In our setting, subdivided faces have extreme dependencies so [[KW12)’s analysis for the complete complex
fails. Nevertheless, it is in fact possible to generalize this approach to any simplicial complex through
somewhat more careful analysis.

Proposition 5.9. Let X be a d-uniform complex and i < k < d be such that (F(i)(LE,J),F(i)(l)) is an

7

(e, B)-function additive sampler. Then (X (k), X (7)) is a (2¢, %ﬂ)—function additive sampler.

The proof of Proposition 5.9 itself centers around a lemma for general bipartite samplers stating that
sampling over correlated sub-divisions is sufficient to imply sampling for the general graph as long as the
components are appropriately marginally distributed.

Lemma 5.10. Given a graph G = (L, R, E), parameters ¢, > 0 and k € N, and f : L — [0,1], suppose
there is a distribution (v1,ve,. .., v, u) ~ D over LF x R satisfying

1. For every i € [k], the marginal (v;,u) is distributed according to the edges of G.

k
2. ]P(v17vz7 WUk,u)~D {% Z ( ) [f}—i—a] < f.

=1

Then

P [vengwu [f(0)] > E[f] + 2¢| < g. (5.2)

The same statement applies replacing > with < and € with —e inside the probabilities.
We defer the proof to the end of the subsection and first prove Proposition 5.9.

Proof of Proposition 5.9. Let m = [%] and fix a function f : X(i) — [0,1] with expectation p =
E cx (i) [f(v)]. Consider the distribution D which samples (s1,s2,...,sm,t) C X (i)™ x X (k) by draw-
ing {s;}I", from the faces complex, and draws ¢t D (Js; from X (k). We claim D satisfies the requirements
of Lemma 5.10, namely:

1. Vi € [m], (s;,t) is marginally distributed according to the inclusion graph edges (X (k), X (7))

k
2. ]P{sl,sg,...,sm,t}ND |: % z_:lf(sl) _N‘ > 5:| <B.

The first fact follows from the definition of the faces complex, namely that marginally each s; is distributed
as X (i), and ¢ is drawn from X (k) conditional on containing s;. The second fact is immediate from our
assumption that the faces complex is an (e, 3)-sampler.

O

We are now ready to prove the two-sided case of Theorem 5.1.

Proof of Theorem 5.7 (Theorem 5.1 two sided case). By Theorem 5.3 if the faces complex of X is a 27k~

two-sided HDX, then it is an (e, 3)-sampler for 3 < cie Qe(e*1%)) and c1 > 0 some constant dependent only

on ¢. Then by Proposition 5.9, X would be a (2¢, g)—sampler. The proof is completed by observing 2~(*)-
local-spectral expansion of the faces complex is immediate from Theorem 4.20, since the graph underlying
any link of the faces complex is a swap walk within (a link of) X. The ‘moreover’ statement follows directly
from Lemma 4.15. O

It remains to prove Lemma 5.10.

28



Proof of Lemma 5.10. Let Z : R — [0, 1] record the probability 4o € R e-mis-samples f under D:

uzuol.

k
23 ) > ke
=1

k
Z(uo) = P [% Zf(vl) >pu+e
i=1

(V1,020 yvp,u) ~ D

By assumption, the expected mis-sampling probability is small

E [Z(uo)] = <B,

w0 (v1:020s0p0)~D [

so Markov’s inequality implies the following tail bound on Z(ug):

g
P [Z < -
uoER[ (uo) > ¢] €
We argue if ug is such that Eycp, youq [f(vi)] > 1+ 2¢ then Z(ug) > €, thus concluding that (5.2) holds.
The key is the simple observation that the (conditional) expectation A under D and G are equivalent:

k
E @) u=uwl= 13 E [f(w)=ul

(v1,02,...,0,u)~D

I
o
=
<
e
2
N
S,

(5.3)

where the first equality is by linearity of expectation, and the second is by our assumption that (v;,u) is
distributed as G. The result now follows roughly from arguing the random variable % Zle f(v;) restricted
to ug, is non-trivially concentrated around its expectation E,cr, [f(v) | v ~ ug], which is at least 2e-far from
I
In particular, fix ug such that B, o, o w)~p [F(0i) | w = o] = puy > p+2¢. Then, we bound Z(uo)
by its upper tail:
u= uo] .

(Ulzv2:~~~7vk:u

k
1
Z(ug) = Id D E;f(vi)>ﬂw_5

Denote the right-hand side by p, and as f(v) € [0,1] we have

frug < P+ (1= p)(Hug —€).

Re-arranging gives
Zup) >p> ——— >
1— g —¢€
The last inequality follows from the the denominator being in (0,1) (0 < py, —& < 1 because piy, — e >
pte>0and py, —e < py < 1).
Finally, we note the usual trick (changing f in the proof to 1 — f) gives the bounds for

P E —2¢e].
uER |v~u,wEL [f(’l})} <H ©

6 Reverse Hypercontractivity

In this section we recursively leverage optimal inclusion sampling to prove reverse hypercontractivity for
high dimensional expanders.
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Theorem 6.1 (Reverse Hypercontractivity). Fiz ¢ > 0, p € (0,1), and let X be a k-uniform c-locally nice
complex for k sufficiently large. Then there exist constants C,q (dependent only on ¢, p) such that

(£, Tp9) 2 Cl fllgllglla-

At its core, the proof of Theorem 6.1 really only relies on X and its links satisfying optimal i vs k
sampling. With this in mind, we will instead work with the following notion of a Link up-sampler that
captures this core property:

Definition 6.2 (Link up-sampler (LUS)). Let 7 € (0,1) and let X be a k-uniform simplicial complex. We say
that X is a 7-LUS if for every i < k — 2, every j < k — i, and every s € X (i), it holds that (Xs(j), Xs(k —1))
isa (1 exp(—T%), 0.1,0.2)-multiplicative sampler.

We note the constants 0.1,0.2 are essentially arbitrary and fixed for convenience. The notion can also be
further relaxed in a number of ways such as asking for sampling for j only up to a linear number of levels or
only within links up to a certain level and the main results of this section would still hold.

We prove link-up samplers are reverse hypercontractive. Theorem 6.1 is an immediate corollary.

Theorem 6.3. For every p € (0,1) and 7 > 0, there is some £ > 1 and C > 0 such that the following
holds for all sufficiently large k € IN. Let X be k-uniform and 7-LUS. Then T}, is (%, ﬁ,c)—reverse
hypercontractive.

We split the proof of Theorem 6.3 below into two parts, roughly corresponding to reverse hypercontrac-
tivity for boolean functions, and a reduction from the general to boolean case.

6.1 The Boolean Case

The main workhorse behind Theorem 6.3 is to show that any linear-step down-up walk on an LUS is reverse
hypercontractive for sets of size up to exp(—Q(k)).

Theorem 6.4. Let 7 > 0 and v € (0,1). There exist constants c,q > 0 such that the following holds for any
sufficiently large k. Let X be a k-uniform 7-LUS. Then for any sets A, B C X (k) of relative size at least
exp (—ck) and ~' <~y it holds that
[te At e Bl >P[A]'PP [B]?.
t,t'~U Dy |y
It will be convenient for us to assume at least one of the sets A and B is not too large. To this end, we
first handle the case that both are large separately.

Claim 6.5. For every p > 0.5 there exists ¢ > 1 so that the following holds. Let X be a simplicial complex
and A, B C X(k) subsets such that IP [A] ,IP [B] > p. Then for any 7' < :

[te At e Bl >P[A]'P[B]?.
tH~UDy, k)

The proof is largely un-enlightening computation, so we postpone it to the end of the subsection. Hence-
forth, assume without loss of generality that IP [A] <P [B] and has IP [A] < 0.8.

With this out of the way, we overview the main proof strategy. Assume for the moment that +'k is
integral. As discussed in the introduction, Theorem 6.4 relies on the following elementary observation: since
the down-up walk samples an edge by first sampling s € X (vk) and then independently sampling ¢, € X (k)
containing s, we can express the v/-correlated mass of A and B as:

P [teAteBl= E [P[A]t2s]-P[B| D]
tt'~UDy, 1y, sEX(v'k) Lt ¢

This motivates us to consider the set of s € X(vk) that simultaneously see a large enough fraction of A, B.
Toward this end, for any integer £y < k and real number § > 0, let

GX(eo,(S):{seX(eo)} P[A] t25]> 0P [A] and P[B| t 23] > P [B]}
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denote the set of elements in X (¢g) that see a noticeable fraction of both A and B.
Recalling IP [B] > IP [4], to prove Theorem 6.4 it suffices to show for any v <~

P [GX (kP [4]°0)] > P [4]00), (6.1)
since (writing G := GX (v/'k, P [A]°))) we then have
P [teAteB]> P [G]- P [P[teA|seG]1P[teB|seGﬂ
tt'~UDy, 1y, seX(v'k) seX(v'k) Lt t
> P[A]°D P[B] (6.2)

As such, our main goal is to prove (6.1). A key observation toward this end is that G satisfies certain
useful ‘composition’ behavior: we can bound G(v'k,-) by iteratively bounding G(i,-) for smaller ¢ within
repeatedly deeper links of the complex. In particular, for sets A and B and any r € X, define the restrictions
of A and B to the link of r as

A, ={te X, :ruUt e A} and B, ={te X,:rUte B}

and define the local subset GX* (£o,0) as the set of s € X, ({y) that see a sufficiently fraction of A, and B,:

G (£, 6) = {s € X, (fo)

P [A]tDs]>6P[A]and P [By| t2Ds] >61P[B,J}.
teX, (k—r) teXr(k—r)

G and GX compose in the following fashion:

Observation 6.6 (Composition of GX). Let A, B C X(k), £1,02 € N, and let 61, 02,11, 72 > 0. If
L P [GX(t1,61)] = m.
2. Vr € GX(01,01): Py, (1,) [GX7(£2,82)] = 2

Then
P {GX(fl +f2,5152)} > mne.

Proof. Sample s € X ({1 + ¢2) by sampling 1 € X(¢1) and then ro € X,({p) setting s = r; Ure. Fix
r1 € GX(f1,61). Observe that if rg € GX71 (2, 82) then

]1;[/” T1UT2gﬂ 252]1;[/” Tlgﬂ
25152][)[14],

and similarly for B. Therefore in this case s € GX (61 + £2,8102). Hence

P [GX(él +£2,5152)} >P [GX(él,él)} P [rz € GXr1 (0, 65) ‘ e GX(él,(sl)]

s=r1Urg

Z N1n2.
O

The proof strategy (modulo details), is then simple. To bound G(y'k,P[A]%), we divide ¢ € X (k) into
pieces as 11 Urg Urs ..., where each r; is viewed as being drawn from the link of 1 U...Ur;—_1. The local
G-set for each r; can be lower bounded by the sampling properties of Xy;_,r;, and by carefully choosing the
size of the r;, we can ensure that composition gives the desired bound on G.

In practice, this approach hits some complications due to the fact that the localized restrictions of A and
B shrink throughout the process. To handle this, we’ll instead use a ‘two-phase’ version of the above. First,
we show that there exists some small absolute constant 7g, potentially much smaller than the desired -y, for
which the above approach does work. We call complexes satisfying such a bound lovely:
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Definition 6.7 (Lovely complex). We say that X is (¢,1 — 0, k, q)-lovely, if for all A,B C X (k) with
E[B] > E[A] > exp(—ck)
P [GX 10k, P[4]%)] > P (4],

We first argue any LUS complex is v-lovely for some 4/ depending only on 7 and +.

Lemma 6.8. For every 7 > 0 and v < 1 there exist ¢,q and 9 > 0 so that following holds for large enough
k. Let X be 7-LUS, then for everyt € X< Xy is (¢,1 —~', k — |t], q)-lovely for any v < 0.

Second, we give a similar argument showing that loveliness itself can be bootstrapped to higher levels.

Claim 6.9. Let X be a k-uniform simplicial complex. Let ¢',¢"” > 1, and ¢/, ¢”,v1,v2 > 0. Assume that:
1. Xis (d,1—m,k, ¢ )-lovely.

2. For every r € X (mik), Xy is (", 1 — 72, (1 — 1)k, ¢")-lovely.
Then X is (¢, (1 —y1)(1 —"2), k,q)-lovely for ¢ = ¢"¢ +¢" + ¢ and c = min{m,c/}.

Combined with some definition chasing, Lemma 6.8 and Claim 6.9 immediately imply Theorem 6.4.

Proof of Theorem 6.4. Recall that by (6.2) it suffices to show X is (¢, 1 —~,k, ¢)-lovely for some constants
¢, q depending only on v and 7. We first prove a slightly different statement by induction:

Ve e H%H © X is (e, (1—70)", k, go)-lovely.

for constants ¢y, ¢ dependent only on 7,~. Note this implicitly assumes (1 — ”yo)e is integer. This is unecessary
and we discuss removing this assumption at the end of the subsection. Finally, observe that for ¢ =

log(1—7)
[bg(l*%)
after showing the above.

—‘ we have (1 —79)¢ < 1 —~. We will argue a slight modification gives exactly 1 — " for any 7" < v

log(1—7) W
log(1—0) |
then X is (c(£), (1 —40)¢, k, q(¢))-lovely. Moreover, for j = 1 — (1 — )¢ < vk, Lemma 6.8 implies every
J-link Xy is (¢”,1 —+',k — j,¢")-lovely for any 7' < 79. Thus by Claim 6.9, we have that X is (cpyq1,1 —
(1 —70)1 k — |t|, goy1)-lovely where co11 and gy are functions of g, ¢(£), q(¢), ¢, and ¢" as described
in Claim 6.9. Since 79, ¢”, and ¢ are themselves functions only of 7 and v, this gives the desired bound.
In order to prove X is (¢, 1 — 1, k, q)-lovely, simply observe that in the final step of this induction we may
choose 7 < 7o such that (1 —70)*(1—~4) = 1 —~. Exactly the same argument as above then gives X is
log(1—
e
better) constants for any v’ < v as well. O

The base case £ = 1 is immediate from Lemma 6.8. Assume the statement is true for some ¢ < {

at least (cg,1—1,k,qp)-lovely for £ = [ ] The same strategy can be used to achieve the same (or

It remains to prove Lemma 6.8 and Claim 6.9. While Lemma 6.8 is the central component, it is instructive
to first prove the simpler Claim 6.9 which is in some sense a ‘one-step’ variant of the former.

Proof of Claim 6.9. Let A, B be sets of size at least exp(—ck). Our goal can be rephrased as showing

1!

GX((FYI _|_,.YQ(1 —”Yl))kJP [A]q q +qrr+q/) > P [A]q//q/+q//+q/

since 1 — (y1 +72(1—=m)) = (1 —71)(1 —2). We prove this via Observation 6.6. In particular since ¢’ < ¢,
(', 1—1,k, ¢ )-loveliness of X implies

GX(11k,P[A]7) > P [A]7 .

Moreover, for every r € GX (y1k, P [A}q/) we have that Px [A],Px, [B] > P [A]q/+1 > exp(—c’(1—71)k).
Therefore by (¢”,1— 2, (1 — 1)k, ¢")-loveliness of X, it holds that

GX (21 =)k, P [A]7) > P [A]7 > P [4] D
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Combining the two bounds and applying Observation 6.6 we then have
G (yik -+ 72(1 =)k, P [A]TTHOH0) > P A

as desired. ]

Finally, we end with the proof of Lemma 6.8. Here, instead of decomposing s = r Ur’, we will need to
more carefully decompose s =1 Ure Urs ... and control in every step how much A and B shrink using the
link-up-sampling property.

Proof of Lemma 6.8. We start with a few simplifying assumptions. First, recall that by Claim 6.5 we may
assume that P [A] < 0.8. Second, note it is sufficient to prove the theorem just for X. The result then
follows for all «vk-links X; since the link of a 7-LUS complex is itself 7-LUS, and the ambient dimension of
each link is at least (1 — )k which we take to be still sufficiently large. Finally we introduce one notational
simplification. Recall in the definition of a 7-LUS that for any i-face s the graph (X(j), Xs(k—1)) is a
(% exp(—r%), 0.1,0.2)-multiplicative sampler. In the proof of this lemma we will only consider links of

faces s with size i < Yok for some sufficiently small 7o, so these are always (L exp(—7(1 — 70)§), 0.1,0.2)-
multiplicative samplers. Moreover, we will also always ensure j < ypk, allowing us to subsume the constant
% into the exponent. In particular, as long as v < ﬁ, we may assume all (examined) links in the proof
are (exp(—ﬂ%), 0.1,0.2)-multiplicative samplers where 7/ = Z.

— 10gC]P[A] and

)

Fix 70 = min{ 77,7}, let ¢ = ”yo%/, and assume P [B] > P [A] > exp(—ck). Fix m =

define the ‘step size’ ¢ = % Observe that 1 < £ < k. Assume for the moment that ¢ is also integer (see
Remark 6.11). We record the following immediate observations:

Observation 6.10.
1. P [A] = exp(—cm).
2. 0.8™ =P [A]? where go = —c~'log0.8 is a constant.
3. For every ¢ < yom:

i k
0.8'P[A] > exp(—7'm) = exp(—T'z),

The first two items are by definition. The third is satisfied for any 7o, ¢ such that ¢(1+~voqo) < 7’. One
can check that taking 7o < min{~y, 31%} suffices. Finally, assume for simplicity k is such that ok € IN.

We now move to the main argument. Let j € {1,2,...,5¢n = [yom]} and for every j < [yom] define
Gj = G¥(jt,(0.8)7)
as above. If jr;, > yom, additionally define

Gy, = GX(y0k,0.877in) C GX (yok, P [A] 00,

Jfin
where in the last step we’ve used the assumption that IP[A] < 0.8. We will show
P |Gy, | > (0.8)7n > P 4]0 (6.3)

Setting ¢ = ~v0qo + 1 proves the lemma. We prove (6.3) by inductively showing that for every j =
1527"'7jfi’n7 )
P [Gj] > (O.S)J .

We start with the base case j = 1, which already contains the main idea. Given S C X (k), define

T(S) = {r eX():P[S| 1] <08P [S]}
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to be the set of ‘terrible’ f-sets which see too little of S. Observe that by construction
G1=X(O\(T(A)UuT(B)).

Since ¢ < Yok, we have (X(k), X(¢)) is a (exp(—7'%),0.1,0.2)-sampler by our earlier discussion. On the

other hand, by Observation 6.10, we can bound the sizes of A and B as:

P[B] > P[A] = exp(—cm) > exp(—T’%).

Thus applying sampling we can bound P [G1] by
P[Gi]21-P[T(A)]-P[T(B)]>1-2-01=0.8

as desired.
The inductive step is similar to the base case, only performed locally within the links of X together with
Observation 6.6. By induction hypothesis P [G;] = 0.8". For every s € G;, by Observation 6.10

181, 1412 057 P14t o)

Thus by the same argument above for X and As = {t\s| s Cte A} ,Bs = {t\s| s Ct € B}, we have

P |GX:(¢,08) | s € Gi| >1—-P[T(A)]-P[T(B)]>1-2-0.1=08.

The inequality IP [G;41] > 0.8F! then follows by Observation 6.6.

Finally, we note that for the last step, going between jt;, —1 to jri, (in the case that jp;, > ym), we
follow the same procedure except that we may need to sample less than ¢ new vertices. This only improves
the sampling so the same analysis as above holds. m|

Remark 6.11. Throughout the proof we have ‘cheated’ in the typical way assuming a priori that various
parameters (£, vk, ok, and (1 —~9)*(1 —+')k) are integer. Note that we did not assume above yom was
integer because of the careful interplay between m and P[A]. In all other cases, however, these assumptions
are benign and taking the appropriate integer floor does not substantially change the proof. The only
modification is that every ‘step’ in the process (e.g., drawing an |£]-size set) potentially moves one fewer
level up the complex. In the worst case, this results in taking a constant multiplicative factor more steps
than under integer assumptions, resulting in additional constant factors in ¢ and gg. We omit the details.

Proof of Claim 6.5. Denote by E(X,Y) the set of directed edges (,t') such that t € X, ¢ € Y. It is easy to
see that IP [E(A, B)] + P [E(A, B¢)] = P [A]. Similarly we have that IP [E(A, B®)]+ P [E(A¢, B¢)] = P [B]
so P [B¢] > P [E(A¢, B®)]. combining these together gives that IP [E(A, B)] > P [A] — P [B€]. Assume that
IP [A] < IP[B], this implies that IP [E(A, B)] > P [A] =P [A°] = 2P [A] — 1. Hence it is sufficient to show
that given A such that IP [A] > p, there exists a constant ¢ > 0 such that 2P [A] — 1 > IP [A]? (which in turn
is at least IP [A]7IP [B]?). Indeed let us consider f(z) = 2z — 1 — 27 and show this function is non-negative
in the range [p, 1] for large enough q.

Assume without loss of generality that ¢ is an integer. In this case f(z) = (1 —x) (Z?;% 2/ —1). This

function is greater than 0 in [p, 1] if and only if E?;} 27 > 1 in this range. In the range [p,0.9] the series
X

Z?;} 27 converges uniformly to 2= which is always greater or equal % > 1. In the range z € [0.9,1] we

can take any g > 3 and one can verify that g;} 27 >09+0.9%> 1. |

6.2 The General Case

We now prove Theorem 6.3 using our restricted reverse hypercontractive inequality for indicators. This is
done via the following reduction from reverse hypercontractivity for sets to the general case.
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14 26(14¢) 1 2(6-1)
5) 18+12
holds. Let V' be a finite probability space and D a monotone linear operator such that for every A,B CV,

Theorem 6.12. For every{ > 1 and e > 0 there exists k' > ( such that the following

(14,D1p) > kP[A]* P [B]". (6.4)
Then for every two arbitrary functions f1, fa : V.— Ryo it holds that

<f17Df2>>m'|\f1||a++g)||f2ll L (6.5)

£(1+¢)

That is, D is (m, m, kK')-reverse hypercontractive.

The proof involves careful discretization and thresholding of f; and fo into level sets in a way that
largely maintains the functions’ moments. We defer the details to Appendix E and prove the main Theorem
assuming this result.

Proof of Theorem 6.3. By Theorem 6.12 it is enough that we show that there exist ¢ > 1,x > 0 such that
for every A, B C X (k)

(14,T,15) > kP [A]'P[B]".
Since v > p, observe we can always take k sufficiently large so that Py g (k) [Y < [7K]] = % Let g, c be

the constants promised by Theorem 6.4 with respect to the UD)| ;. By monotonicity of ¢ and ¢, these
apply to all walks of intersection at most |yk]). Thus if both P [A] ,IP [B] > exp(—ck) then by Theorem 6.4:

1
P [t1€AteB]> P Y <~k]P[A]?P [B]? > - P [A]?IP [B]?.
tm%[l 2 ]ngmmk)[ vk P [A]TP[B]" > S P [A]"P [B]

Otherwise, it holds that IP[A]IP [B] < exp(—ck). On the other hand, the probability of resampling all

vertices in the noise operation is (1 — p)* = exp(—ck)?” for some constant £ > 1 that depends on ¢ and on

p. In particular,

P [heAtzeB]>1-p)PAP[B]>P 4" PB.

t1,t2~T)

Taking £ = max{q, £’ + 1} completes the proof. |

6.3 Proof of Theorem 6.1

Finally, we briefly give the formal proof for reverse hypercontractivity on high dimensional expanders. This
follows from the fact that any c-locally nice complex is 7(¢)-LUS for some appropriate setting of constants.

Corollary 6.13. For every c < 1 there exists a constant 7 > 0 such that any c-locally nice complex is T-LUS.

Proof. By definition every i-link X, is a c-nice complex, so by Corollary 5.2 every (Xs(j), Xs(k—1)) is a

(% exp(—CQ%)), 0.1,0.2)-sampler for some constants ¢y, ca dependent only on c¢. Taking 7 = min{cy, c2}
then suffices. O
Proof of Theorem 6.1. The proof is immediate from Corollary 6.13 and Theorem 6.3. O

7 Concentration for All Nice HDX

In this section we study concentration of measure for partite complexes and complexes whose down-up walk
have an Q(%)—spectral gap, completing the proof of Theorem 5.1. Along the way, we’ll show that complexes
near the TD barrier satisfy exponential concentration for Lipschitz functions.
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7.1 Concentration from Spectral Gap

In this section, we prove concentration inequalities for simplicial complexes under the (typically) weaker
quantitative assumption that the down-up walk has a good spectral gap. The bounds so derived are in-
comparable to the techniques in Section 5 for two-sided HDX: they hold for a broader family of complexes
(and functions), but imply at best exponential (rather than subgaussian) concentration at the top level. We
derive subgaussian bounds in this setting by moving to an appropriate skeleton of X.

Before stating our results, we briefly recall some notation from Section 4.6. Given a function f : X (k) —
R, let Z = f(=x1,...,zx) and ZEi) = f(z1,...2i,...,2x) where z; is sampled conditional on z_;. We call f

v-Lipschitz if with probability 1 over Z, Z’

k

Z(Z - Zéi))i Sv

=1

and say it has v-bounded difference if for all adjacent (s,s’) in the down-up walk:

2
(F(s) ~ F(s)? < ¥
We prove that v-Lipschitz functions on HDX satisfy exponential concentration of measure.

Theorem 7.1. Let X be a d-uniform simplicial complex such that Ao(Ug_1Dg) 21— & for some C > 0.
Then for any 0 < k < d and v-Lipschitz function f: X (k) — R:

1. Upper Tail: P[f —E[f] > t] < 2¢—t/ V/(C+1)v

2. Lower Tuail: P[f —E[f] < —t] < 2e—t/V(C+1)v
Note that the spectral gap case of Theorem 5.1 follows as an almost immediate corollary.

Proof of Theorem 5.1, spectral gap case. Note the ‘moreover’ part follows from Lemma 4.15. Let Y be the
promised d-uniform complex such that X is an (at most) \/g—uniform skeleton of Y such that Y’s down-up

walk has spectral gap A(Ug—1Dq) < 1—§. For any g : X(i) — [0,1] Theorem 7.1 implies U; 4qg has the
following exponential tail:

P[U; 49(s) — Elg] > ] < 26~ () < 90~ 0eleh)

since U; 49 has %—bounded difference. By Lemma 4.16, U; g therefore has tail:
2
P[Uskg(s) ~ Elg] > €] < 2¢7 20 4 2700,
€
where the latter term is from the following concentration bound on the complete complex:

Claim 7.2. For any i <k <nand g: Ay(i) — [0,1]:

2 _0(2h)
P [Uirg—E <= 7
An(k)[ kg —E[g] > e] < e

and likewise for the lower tail.

We prove this claim in Appendix A via a simple application of Lemma 5.10. The lower tail follows
similarly. m|

We also get the following corollaries for TD and SI complexes potentially of independent interest.

Corollary 7.3 (Concentration up to the TD Barrier). Let X be a d-uniform A\-TD complex for A < 1. Then
for any 0 < k < d and v-Lipschitz function f: X(k) - R
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__t

1. Upper tail: P[f —E[f] > t] <2e V&7

__t

2. Lower tail: P[f —E[f] < —t] <2e Vo7

A
where ¢y <1+ e@-2),

Corollary 7.4 (Concentration under Spectral Independence). Fiz n > 0 and let X be a d-uniform n-
spectrally independent complex. Then for any 0 <k <d, g : X(1) — [0,1], and f = Uj g:

1. Upper tail: P[f —E[f] > €] < de—cneVk
2. Lower tail: P[f —E[f] < —¢] < 460715\@

1
where Cn < m.

We note it is possible to extend the latter to lifted Lipschitz functions from an appropriate skeleton.

7.1.1 The Herbst Argument

The proof of Theorem 7.1 is via a variant of the Herbst Argument, a classical strategy for proving concen-
tration of random variables based on applying functional inequalities like MLSI and LSI to the moment
generating function. While sparse simplicial complexes cannot have bounded (modified) log-sobolev con-
stants, a somewhat lesser known variant of the Herbst argument using spectral gap was developed by Aida
and Stroock [AS94], Bobkov and Ledoux [BL97], and Boucheron, Lugosi, and Massart [BLM13]. We will
give an elementary adaption of their method to HDX achieving the above bounds.

The key to Theorem 7.1 is really the following approximate variant of the Efron-Stein inequality, some-
times called ‘approximate tensorization of variance’. We remark that similar inequalities for local-spectral
expanders appear in the literature [KM20; Che+21].

Lemma 7.5 (Approximate Efron-Stein Inequality). Let X be a d-uniform simplicial complex such that
X (Ug_1Dg) <1-— & for some C' > 0. Then for any 0 <k <d, f: X(k) > R, and Z = f(X) we have:

k
Var(f) < (C+1)Y_E [(Z - Zgi))i}

i=1

Proof. Tt is sufficient to instead prove that any k-uniform complex whose down-up walk U,_1 Dy has gap
ﬁ satisfies
k

Var(f) < C/Z]E {<Z_Zzi))3—} .

i=1
The result then follows from [Lee23, Theorem 3.5], who shows that Mo(Uy_1D4) < 1— & implies
Ao (Up_1Dy) <1 — m for any 0 < k < d.
With this in mind, let E; be the ith averaging operator:

Eif(s)= E [f(s—sUs)],

SiNXs,i

where we recall s_; is s without the i¢th vertex in its ordering. Define the ith Laplacian L; = I — E;, and the
total laplacian operator as L =1 —-UD = kL‘H. >~ L;. By assumption on the spectral gap of UD, we have:

Var(f) < Ck{f,Lf)

On the other hand expanding out the Laplacian gives:

k

Ck(f,Lf) =CY (f,Lif)

=1
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k
CY (Lif, Lif)
i—1

C

M=

(4)
>> B Warl(s)

1

Il
—

(4)

where Varg’(f) is the variance of f over the link X, ;. Finally examining this expected variance, we have:

Swg]?(k)[vargi)(f)] = %IE[(Z — ZEz))Q} = IE[(Z _ ZEz))?F]

where both equalities follow from the fact that Z and Z&.) are i.i.d conditioned on s_;. Combining with the
above completes the proof. |

We can now prove Theorem 7.1 closely following the approach of [BLM13].

Proof of Theorem 7.1. We prove only the upper tail. The lower tail follows similarly. It is sufficient to prove
the following exponential integrability of the moment generating function:

E [e\/%(f]Em)} <2, (7.1)

since we then have:

Pl - Elf] > 1 =P [exp (= (7~ Bl ) > exp

1
<2exp | ———=t
p( VCv >
by Markov.

For notational simplicity, let g = f — E[f] and let Z = g(X). Following [BLM13], we use Efron-Stein to
set up a recurrence relating e*? to e*4/2 for small enough A > 0. Applying Efron-Stein to the latter gives:

k !
E[M] — E[M /)2 < CZ]E {(exz/g _ eAZ(i)/z)ﬂ
i=1
. Nz ~2)/2
SCZ]E [67/\2(1—6 (Zw=2 )3_}
i=1

O\
<—E
4

=<

k
e MY (7 - Z(y)?
=1

<[]

=<

since f (and therefore g) are v-bounded. Re-arranging we have the recurrence:

IE[G’\Z] < 1 ]E[e)‘Z/Q}Q.

= 22C
11—
It is then an elementary exercise to solve when A < \/% and derive (7.1) (see [BLM13, Section 3.6] for the
full derivation). ]

We now prove the corollaries for SI/TD-complexes
Proof of Corollary 7.3. By Theorem 4.23, X is a m-one—sided local-spectral expander, so

A
Theorem 4.19 gives A2 (Uy_1Dg) < 1— éeﬂ. Plugging this into Theorem 7.1 gives the result. ]
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In the spectral independence regime, one must be slightly more careful since an n-spectrally independent
system has C' = k. We recover concentration by looking only at lifted functions and analyzing concentration
on some lower skeleton.

Proof of Corollary 7.4. We prove the upper tail. The lower tail follows similarly. We break the proof into
two cases. First, assume that < 2 and let k' = LdJ The k’-skeleton of X is a one-sided %—bcal—
spectral expander. Thus by Theorem 4.19 A(Up_1Dy) < % and Theorem 7.1 implies every k < k' has
concentration:

P[f —E[f] > €] <2 Ve VR

Further, by Lemma 4.15 every k > k' has concentration:

eV _e?

P[f —E[f] > €] < 2672\/% (1—e 5

_ 1
< de e v
< de—TaeVd

assuming k > 6 and &2 > 12 (else the bound is trivial).

Otherwise, assume 1 > 2 and let k' = L%J The k'-skeleton of X is a -one-sided local-spectral

_n_
(1-7)d
expander. Then by Theorem 4.19 A(Up_1Dyr) <1 — EQ% and Theorem 7.1 implies for every k < k':

P[f —E[f] >¢] <2 varl

Further, by Lemma 4.15 every k > k' has concentration:
——A e VF e
Plf—E[f] > ] < 2¢ 2V ¥ (1 e~ 2h)

I W
<de 2 an(e?+1)

<4 12\/_ \/_

1S9

assuming n < 5 and 2> k1_+21 (again, otherwise the stated bound is trivial).

O

Finally before moving to reverse hypercontractivity, we briefly remark one a additional corollary regarding
subgaussian concentration for more general function classes:

Corollary 7.6 (Subgaussian concentration for skeletons). Let X be a d-uniform simplicial complex with
X (Ug1Dg) €1-— & Then for any k < d, v > 0, and function f: X (k) = R with v-bounded difference:

_+.\/E .2
1. Upper Tail: P[f —E[f] >t] <2 VAHC+r VF Lo~

,é.\/@ .2
2. Lower Tail: P[f —E[f] < —t] <2 VACiv V¥ 4 em1p

Proof. The proof is immediate from Theorem 7.1 and Lemma 4.16, setting fup(t,v) = fiow(t,v) =
—1
2e \/(C+1)u. ]

We remark it is likely possible to generalize the above strategy from bounded difference to Lipschitz
functions on sufficiently strong local-spectral expanders by more carefully analyzing the eigenspaces of the
Laplacian and higher order random walks associated with the d-lift (e.g. as in [KO20; Dik+18; Gai+22]).
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7.2 Concentration for Partite HDX

The final component of Theorem 5.1 is the partite case. We re-state the partite version of the theorem here
for convenience.

Theorem 7.7 (Sampling on HDX). Let X be a d-uniform partite 2=¢d_HDX. Then for any i < k < d the
containment graph (X (k), X(2)) is a (¢,8) sampler for

B = %exp <—QC <58E,>) .
€ i

Note that in the special case i = 1 (i.e. the Chernoff-Hoeflding setting), the e-dependence can be
improved to e =2 in the exponent and removed entirely from the leading coefficient. Similarly, the exponent
can be improved to e =2 dependence by Lemma 4.16 whenever k < £%d.

Similar to our approach in the two-sided case, we will split our analysis into a Chernoff-Hoeffding bound,
and a bootstrapping method to lift Chernoff to full inclusion sampling. Both steps require significant mod-
ification from the two-sided case to handle inherent dependencies between coordinates only occuring in the
partite case.

7.2.1 Chernoff-Hoeffding

Unfortunately, partite HDX are not ‘splittable’ in the sense of two-sided HDX. Thus to prove a Chernoff-
Hoeffding bound, we will instead rely on a more classical localization approach, leveraging the local sampling
properties between bipartite components of the complex. The resulting quantitative bounds via this tech-
nique are again incomparable with our prior methods. While they are weaker for large A, they approach
the error of true independent sampling for small enough A and remove the restrictive condition of two-sided
expansion. The latter in particular actually leads to sparser complexes with subgaussian concentration due
to better known degree bounds for partite constructions.

Before stating the result formally, we briefly introduce some relevant notation. Given a complex X, let
X4 denote the complete complex whose vertices are X (1), that is:

X(k) = {{v1,v9,..., 0} v € X(1)}

where each v; is drawn independently from X (1) with repetition.'® Similarly for X partite, let X™%P be the
complete k-partite complex whose sides are X[1], X[2],..., X[k]:

XM (E) = {{v1,v2,..., 0} s v1 € X[1],va € X[2],..., 0, € X[k]}

where each v; is drawn independently from the marginal over X [i].
Finally, let o(X, k, ) denote the worst case ‘k vs 1’ e-sampling error of X.

J(X,k,a):max{ g {
seX (k)

P [Alves]— P [A}}>e]
veX (1) veX (1)

AC X(l)}

We prove that sampling in two-sided and one-sided partite HDX match the bounds in their respective
independent complex up to poly(k)A-error.

2

Theorem 7.8. Let > 0,e € (0,3), and A < 17]6—1;‘ Then

1. If X is k-uniform \-two-sided local-spectral expander:

o(X,k,e) < o(X" k,e) +1

2. If X is a k-partite A-one-sided local-spectral expander:

o(X, k) So(XMP k g) 4

10We remark we have abused notation somewhat as this is not formally a simplicial complex and the faces are multi-sets, but
this is irrelevant for our purposes.
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In particular, in both cases X is then a (¢, B)-sampler for B = 1+ exp(—Q(ek)) by Chernoff-Hoeffding.

In the two-sided case, note that Theorem 5.3 is tighter when A > exp(—Q)(k)), while for small enough X
Theorem 5.3 wins out achieving parameters arbitrarily close to independent sampling. We note that here we
only give a bound on sampling sets, but this can be converted to concentration for lifts of bounded functions
with essentially no loss by Claim 4.11.

The core of Theorem 7.8 is a lower bound on the k-wise correlation across coordinates of a A-product.

Proposition 7.9. Let X be a k-uniform A-product. For every n < 1 and functions f; : X[i] — [0,1]:

k
v; (1- E|f;
{v1,02,.. 7Uk}€X lH fils ] ) lzl_[l i
n'® min {E[f;]*}
V8k3 ’
Proof. The proof relies on the following adaptation of an elementary connection between bipartite expansion
and sampling observed in [DK17]:

Claim 7.10. Let G = (L, R, E) be a A-bipartite expander and let A be its bipartite adjacency operator. Let
f:L—[0,1] be a function with E[f] > p and let 0 < & < . Then

whenever A <

A2
A <p—egl < —-.
P [Af(w) < p—e] <
We prove this in Appendix C for completeness. Using this fact, we prove the following more general

claim. Write u; = E[f;] and fix €1, €2, ..., > 0 such that y; — (i — 1)g; > 0. For € = min;{e;} we show

k

lem} H pi— (i—1)e —AQEQ mln(,uk]_i(i—l)aj) . (7.2)

=1 7>t

{v1,v2,.. :”k}EX

Setting ¢; = &7 and applying our assumed bound on A then gives the desired result.

We prove (7.2) by induction on k, the uniformity of the complex. For k = 1 the bound is trivial since
E[f1] = 1. Assume the statement holds for any (k — 1)-uniform A-product, and for each i = 2, ...,k let T}
denote the vertices in X[1] that under-sample f;:

Ti—{’MEX[l}

E [f(v)] <Mi_5i}'

v € Xy []

Since each (X[1], X[¢]) is a A-bipartite expander, Claim 7.10 implies

k
A2 E—1
< < A\? . .
D AR B TYSII

k

Jr

=2

P

We de-correlate our expected product along the first coordinate by conditioning on G = X[1]\ {Uf:2 T;}:

k

I %)

i=1

E > E

i=1

k
g IE[lG(UO)fO(’UO)} . ﬁé% <{U27U37<-417E1:}k}€—xv1 |J—H2 fl (UZ)]> '

We bound the two terms separately. For the first:

k
1G(U0)Hfi(v¢)]

E[1g(vo) fo(vo)] = E[fo(vo)] — P (7.3)

Jr

1=2
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— 7.4
e? - minjs 1 {p;} (74)

2o — A

To bound the minimum term, we apply the inductive hypothesis on every link X,,,. Toward this end, for
notational simplicity re-index the sides of X,,; to be from 1 to £ —1 and set:

[
L fi= fi+1,

/
2. &, = ¢€it1,

!/ / : !/
3. pi = pi+1 — €it1 and g’ = minjsq ;.

Since Ex, [ [f]] = p; by assumption on the links, applying the inductive hypothesis to Xy, and {f’} bounds
the minimum by
k—1 .
k—1

/ . / 2
H i — (1= 1)gg = A 5——— . ;
i e? min(u; — (i —1)ej)

Combining this with the prior term (corresponding to ¢ = 0) gives the desired bound

k

k—i
| R R e e errerproy rp e
b e?-min(p; — (i —1)e;)

O

We note a more involved variant of the above applying different bounds in each level of induction implies
the following finer-grained bound:
Claim 7.11. Let X be a k-partite A-product. Let f; : X[i] — [0,1] be such that E, cx; [f(vi)] > pi- Let

{0 > 0}1<ice<i and let SE?) = Z}n:e ej,i (and for brevity 37(77:31 ;= 0). Then

: : (h-1)  yax— M~ sttt
E fivi)| > R D Y e 7.5
{vo,v1,.. vk }EX (K) L_l_[l ( )‘| 1:1_[1 7 320 “5?73' i

We omit the proof which is an unenlightening technical extension of the above.

Using our lower bound on negative correlation, we show that for any function tuple f = (f1, f25- -5 fx),
the random variables f(X) and f(X md)' are actually distributionally close. This will allow us to immediately
recover any concentration bound on X™? up to the distributional error. More formally, given a k-partite
simplicial complex X, let D;,,q denote the distribution supported by of X4P_j.e. Pp, ,[{vi,ve,...,v}] =
e, IP x( [vi]. Moreover, for any distribution D over Q = X[1] x X[2] x --- x X[k], and a function f :
Q — R* define the push forward distribution f.D : R¥ — [0,1] as

fD@E)= P [f(w)=1].
w~D
Let Dy = mj, denote the distribution over k-sets of X. We show the pushforward distributions f,Dx and
f«Dinq are close in TV-distance.

Lemma 7.12. Let e, > 0 and let X be a k-partite A-product for A < %. Then for any f; : X[i] — {0,1}

I 8
and f = (f1,fo, -, fr): ) .
dry (f«Dx, f«Dina) < 1.

Proof. Note that both distributions are supported in {0, 1}k by our assumption on the domain of f. Thus
we need to show for every B C {0, 1}*:



Indeed since P¢ p, [B] =Pz p  [B] =
show the one-sided bound

[B] =P, p, [B] for B ={0,1}*\ B, it is enough to just

]Pf_*Dind
P [B]> P [B]-n.
f«Dx f+Dind

Fix any event B C {0, 1}’“. We’ll decompose B into two parts. First, we’ll look at the subset B; on
which f takes many ‘unlikely’ values, and argue the difference is small just because Dx and D;,q have
the same marginals over each coordinate of {0,1}*. In particular, let I = {z € | E[fi] < Qk} and J =
{i € [k]| E[fi] 21— g} be the sets of coordinates with extreme expectations and let

<\/{fi(:r) = 1}) v VAt =0}

il jeJ

Bi=Bn< «x

Set Bo = B \ Bj.
We first show that Pz . [Bi] =Pz p,  [Bi] < §. Since both distributions have the same marginals, we
can write for either Dx or D;,q by a union bound:

B<Y Plfi=1+> P |1|+|J|)lk<

el jeJ

N3

In particular the difference is no more than g
Moving on to B2, we decompose the probability as a sum over k-wise products:

k
Z ]P zi\l -_b‘| beZB {v1,v2,.. ﬂ)k}ND [H |b _fl vi ]

bEBQ
We note that the functions |b; — f;(v;)| have values in [0, 1] and by assumption have expectation > # (since

otherwise b € By). Then by Proposition 7.9 setting ¢ = ﬂ we have

f*DX

P (B> 1—— ZH E (| = fi(v:)]]

beBy i=1 vieX[i]

1—— ZH P [15

zn

beBy i=1
n k
k
(-5 IR [15ms]
beBy t=1
n
> _ 1
DIELd [32] 2

where we’ve used the marginal equivalence of Dx and D;,4 and independence of D,,, in the second and
third steps respectively. Combining our bounds on B and Bs gives the result. m|

We can now easily prove Theorem 7.8.

Proof of Theorem 7.8. Let f: X(1) — [0,1]. For the partite case, set f; = flxpi)- Consider the set of ‘bad’
k-tuples that mis-sample f:

k
B={ > floj)—p|>e
j=1

By Lemma 7.12, the TV-distance between the distribution over values of f(z) = f(x1,22,...,2;) over X
and X™%P is at most 1 so we have:

o(X,k,e) =max P [B]
/ f*DX
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<max P [B]+n
f f*Dind

< S’(de7p,k,5) +n

as desired. The two-sided case follows the same argument after taking the partitification P(X) of X and
setting f;(v,1) = f(v). mi

7.2.2 Partite Inclusion Sampling

Broadly speaking, the proof of Theorem 7.7 (that is the partite case of Theorem 5.1), follows the same
strategy as the two-sided case. We'd like to lift Chernoff-Hoeffding to sampling of the inclusion graph
via a Chernoff-Hoeffding style bound for the faces complex. Unfortunately, unlike the two-sided case, the
faces complex of a partite HDX is not necessarily an HDX (indeed its links may not even be connected).
Nevertheless, lacking expansion does not necessarily mean the faces complex is a poor sampler. Indeed we
will argue Fx is a near-optimal sampler by splitting its concentration into two components 1) the probability
of sampling a good partition of colors 2) sampling a good subset conditioned on this partition. We show the
first step may be reduced to concentration on the faces complex of the complete complex (which we’ll call
the swap complex), while the second reduces to Chernoff for partite HDX.

With this in mind, before jumping into the proof we will first cover some necessary background on the
swap complex, which is simply the uniform distribution over (families of) disjoint ¢-sets of [n].

Definition 7.13 (The Swap Complex). Let n > k > i € N. The (i, k,n)-swap complex is the L%J—uniform
simplicial complex C' = C; i, , whose vertices are all size-¢ subsets [n]:

and whose top-level faces are all possible pair-wise disjoint f-sets:

k
C<\‘ZJ): {817527"'7SL§J}:USimsj:Q

%]
endowed with the uniform distribution.

In other words, Cyy p, is exactly an(k)’ the faces complex of the k-uniform complete complex on n
vertices, and is simply the complete complex itself when i = 1.

Thus, like the complete complex, one might reasonably hope that the disjointness requirement on the swap
complex does not substantially hinder concentration. Indeed this is relatively easy to show when n > k
(e.g. from {yo-independence [KIKS21], or even just negative correlation for large enough n), but becomes
challenging in the regime where n = ©(k) where disjointness introduces non-trivial positive correlations

between the variables. Nevertheless, in Appendix B, we show these correlations can be handled whenever
n = 0(k):

1153klog( 2)
5

Theorem 7.14. Lete >0,i<k €N, and C = C; 1, for n > . For any f:C(1) = [0,1]:
1. Upper tail: ]I’[Ul7§f —E[f] >¢] < exp(—Q(&%))

2. Lower tail: I[’[Ulﬁ;?f —E[f] < —¢] < exp(—Q(&%))

With this in hand, we are finally ready to handle the partite case of Theorem 5.1.

Proof of Theorem 7.7 (Theorem 5.1, partite case). Let X be a k-uniform skeleton of a d-partite 2-Q(d)_HDX.

We will actually work with k’-skeleton of X where k' = min {k, @d}. Note that if 7 > 10‘8217];;%, the
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stated bound is trivial. Otherwise, by Lemma 4.15, it is enough to show (X (k’), X(4)) is an (e, 3)-sampler

for . .
B8 < —66Xp (—Q <52—,>) )
€ 7

Let m = LkT,J By Proposition 5.9, it is enough to prove the faces complex F)((l)(m) isan (g, 8 exp(—Q(e?m)))
sampler for any ¢ > 0.

Toward this end, fix f: X (i) — [0,1] of expectation u viewed as a function on the vertices of the faces
complex. Consider the random variable J = (col(s1),col(s2),. .., col(sm)) corresponding to the partition
generated by drawing (s1,...,sy) from the faces complex of X. For a fixed J = {I',I%,...,I™}, denote
the conditional expectation of f under J as

no= B [f] colls) € 7]

Further let C7 denote the complex generated by restricting to top-level faces of C' with partition J. We
define two ‘bad’ events based on J outside which our sampling is e-accurate:

1. (Bad Colors): Ej the event that p s deviates significantly from g
lng —pl>e/2.

2. (Bad Sampling): E» the event that (s1,...,Sm) ~ Cz samples u s poorly

L > f(si) —pg|ze/2.

m
i€[m]

It is then sufficient to prove the following three claims:

LS f(si)—p|>e| <PE]+P[Ean-E].

i€[m]

L. P(8178274~78m)~c [

2. P[E1] <2exp (—Q(*m)).
3. P[ExA-E1] <4exp(—Q(e2m)).

The first claim is immediate from definition and the triangle inequality, as the event | f — pu| > ¢ only
occurs if E1 V E holds, the probability of which is bounded by P[E1] + IP[E2 A —FE}] as desired.

Bounding P [F;]. Observe J is equidistributed with the complex Cj i, 4 and define g : C(1) — [0, 1] by
g(I’) =EBglf | IV € col(s)]. For J = {I',...,I™} we then have:

LEl)= B [ELS | col(s) € 1)) =
2 &3 o19) = g

Combining these observations with Theorem 7.14 we can write

P [E1] :E[WJ_M > %}

1 . c
= P — ’)Y—E <
ot || 229 —Eldll > 5

< 2exp (—Q(e?m))

as desired.
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Bounding P [Ey A—E]. Tt is left to argue that for any fixed J = {I',I?,...,I™}, C7 is a partite

2-Q*)_HDX. The result is then immediate from applying Theorem 7.8 with n = exp(—%st):

P[Ey A—F1] < P [Eq| T € —F1]

517~~~75m}N

= B P ||l fs) - ng| >

N JE-E | s~C m
! 7 1€[m)]

1
< dexp (—ZEQm) .

By construction it is easily checked C s is a partite complex whose links are isomorphic to swap walks S, I
within a link of the original complex X. By Theorem 4.21, C s is therefore a partite A-one-sided HDX for
A <270 a5 well. O

8 Agreement Testing

In this section we use our reverse hypercontractive inequality to prove several new agreement testing theorems
on HDX. In the first subsection, we give new agreement tests in the 99%-regime between any two levels of
an HDX. In the second subsection, we explore the role of reverse hypercontractivity in the 1%-regime, and
prove that HDX admit agreemment tests with optimal local soundness (a weaker notion of soundness only
requiring globalness on links), and show under the stronger assumption of /-expansion that this guarantee
can be propagated to a true tester with optimal soundness.

8.1 Background

Suppose U is some finite set of vertices and S C IP(U) are subsets of U. An agreement test is a procedure
that inputs a family of assignments to the subsets {fs : s = {0,1}}scs, and aims to check whether the
assignments are consistent with a global assignment to the ground set G : U — {0,1}. This is a classical
setup in hardness of approximation (in particular in the construction of PCPs), where one repeats a problem
in parallel and needs to check that answers across repetitions are consistent.

Let us give the simplest setup first, slightly generalizing it later on. Let (U, S,X, D) be such that

1. U is a finite set (“Universe”).

2. SCP(U) (“Sets”).

3. X is another finite set (“Alphabet”).

4. A distribution s1, s2 ~ D such that s1,s2 € S (“Distribution”).

An ensemble of functions in this context is a family F = {fs : s = L}scg. An ensemble is called global
if there exists a function G : U — X such that for every s € S it holds that fs = Gs.

We wish to relate the following two quantities. The first quantity is the “agreement” of an ensemble. For
n € [0,1) we denote by

7
Agreeﬂ(]:) = P fs1|51052 ~ f52|51052 s (8.1)

81,82,t~D
where the notation inside the probability means that there is a set t' C s1 N sg of size |[t/| = (1 —n)|s1 N s2]

n
such that fs, | = fs, |- We will also use # to denote the negation of this.
The second quantity is the distance from global functions. For n,e > 0 we say that F is (n,¢)-close to a
global function if the exists some G : U — % such that

]I;{fngM >1—e.
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The probability distribution in which we take s € S above is the marginal distribution of D.!!
We denote by

dist,) (F, Glob) = min {e > 0| there exists G : U — X such that F is (1, e)-close to G} .

)
A high acceptance agreement theorem (also known as a “99% agreement theorem”) is a theorem that states
that if a set of local functions pass the test with almost perfect probability (“99%”), then the functions are
close to being global. In other words, this is a theorem that states for a specific (U, S,%, D) that for every
ensemble F,

Agreey(F)=1—¢ = dist,y(F,Glob) <¢'.

where ¢,¢’,n,1 > 0. Ideally, one wants such a statement for every ¢,7 small enough, with ¢/ = O(e) and
7" = O(n). But other parameter regimes are interesting in applications as well.

Agreement tests originated in low-degree testing results such as [RS96] and were later abstracted by
[GS97] to roughly the setup above. They are an important component of Dinur’s proof of the PCP Theorem
[Din07]. An optimal high acceptance agreement theorem was proven by [DS14] on the complete complex.
This was extended by [DFH19] to another setup related to the complete complex we discuss below. Agreement
theorems on sparse complexes such as high dimensional expanders are also known, pioneered by [DK17].

A low acceptance agreement theorem (also known as a “1% agreement theorem”) deals with the regime
where it is only assumed that the functions pass the agreement test with small (sometimes even sub-constant)
probability (“1%”). This is a theorem of the form

Agreey(F)=02>e =  dist,y(F,Glob) < 1—poly(d).

for some (¢,7,7") (and some explicit polynomial in §). We note here that in this test even when n = 0, an
n’ > 0 is sometimes unavoidable (see discussions in [DG08b; DL17]).

Agreement theorems in the low acceptance regime are typically harder to prove than in the high accep-
tance regime, since the promised structure on the family of functions is mild. However, in applications such
that a parallel repetition theorem [IKW12] and low-degree testing [AS97], they are often crucial. Dinur and
Goldenberg [DG08D] proved a low acceptance agreement theorem on the complete complex. Their proof was
simplified by [IIKW12], who also derived a more sophisticated Z-test (see below) and gave the first sparse
structure supporting such agreement tests using subspaces. Work by [DL17] gave an improved analysis of
[[KW12], asymptotically matching the lower bound of a random set of local functions. Their work heav-
ily relied on reverse hypercontractivity, a strategy we follow below. Recently, [DD23b] and [BM23b] gave
characterizations of high dimensional expanders that support agreement theorems, and [DDL24; BLM24]
constructed such complexes.

There are also other kinds of theorems about agreement tests that don’t strictly fall into any of these
categories. One example such as [GK22] list agreement theorem, that inspired the former line [DD23b;
BM23b; DDL24; BLM24].

8.1.1 Varying the Test

We present two simple extensions to the agreement test above. The first comes from sampling more than
two sets. For example, in the Z-test by [IKW12], three sets s1, s2, s3 are sampled, and the test passes if
fs1 = fso and fsy = fs5 (equality is with respect to the respective intersections). See the formal definition
of this test below.

Another extension to the definition of a test, mainly for technical reasons, is a test that checks fs, |t = fs, ¢
only on some t C s1 N sz which is also sampled by the tester. This is sometimes more convenient to analyze
than the test checking agreement on the whole intersection. To summarize this discussion more formally,
the distribution D in our setup samples ({s;}¥ |, {t: j}1<i<j<x) such that {s;}X_; C S are sets, and for every

. . . n
1< j, t;; € s;iNs;. The agreement test passes if for all 7 < j, f5i|ti,j ~ fs, |ti,j'

M Formally, draw (s,s’) ~ D, then s or s’ with probability 1/2 independently.
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8.2 Agreement Testing for Subsets

We now move to the first setting of interest, agreement tests on simplicial complexes in the 99% regime. In
particular we study the following setup due to [DFH19]. Let j < k < d and let X be a d-uniform simplicial
complex. Let us denote by SS(X,X%,7,k,d) := (U, S, %, D) where:

1L U= X(j).
2. 5={()

3. The distribution D = Dy samples s1, s2 according to the down-up walk. The ‘test’ set ¢ C s1 N s2 is
a randomly chosen k-face.

sex(d)}.

For simplicity of notation we sometimes refer to the sets as s instead of (j), and also index functions by fs

for s € X(d) (and not f(.s)) However, in this context when writing v € s, we mean a j-set instead of a
J
vertex.
In other words, we study the following variant of the classical ‘V-test’ in this setting:

The V-test on X (k):

1. Draw t € X(k), and s1, s2 € X;(d) independently
2. Accept if:

n
ftUSl |t ~ ftUSg |t

When j = 1, this reduces to the heavily studied setting of (de-randomized) ‘direct product testing’
We are now ready state the main result of the subsection, our generalized 99%-tester:

Theorem 8.1. Let j,d be integers, let v,n,c,v < 1. Denote by k = ~d. Suppose that j < k, 77[%] >

192 log % and v < 1. Let X be a d-uniform c-locally nice complex such that for every link of a set v € X(j),
AMUDg—j x—i(Xy)) <v. Then the following holds for the set system SS(X,%,j,k,d); for every alphabet ¥,
family F, and e > 0

Agreey(F) > 1—¢ = distgnic (F, gmaj) < gOrell) 4 9=0nc(d) (8.2)
1—v

where gmaj = plurality {fs(v)} is the plurality decoding.*
seX(d):sDv

We note that every ¢-nice complex has A(UDg_; k—;) < Z%; (1+ m)(lfv)(dfj), so this is not an extra
requirement in most cases (see [Lee23, Theorem 3.5]).

We remark that for the setup of j = 1 there exist agreement theorems that achieve (exact) closeness
1 — O(e) for high dimensional expanders [DK17; DD19; KM20]. Theorem 8.1 is incomparable to these results.
On the one hand, in Theorem 8.1 the resulting ‘globalness’ is weaker than [DK17; DD19; KM20] where one
gets a guarantee of disto(F, gmaej) < O(¢). On the other hand, the initial assumption on the sets of local
functions in the aforementioned results is Agreeg(F) > 1 — ¢, wheras this result assumes Agree,(F) >1—e¢
for n > 0. This relaxed assumption is crucial in the low-soundness regime theorem we give in the next
section.

For 7 > 1, to our knowledge Theorem 8.1 is the first agreement theorem beyond the complete complex,
where Dinur, Filmus, and Harsha [DFH19] showed

Agreeg(F) > 1 —e = disto(F, Glob) > 1 —Oj(e). (8.3)

It is plausible that, with more effort, (8.3) could be proven directly on HDX. The advantage of our method
in this sense lies in its generality and (relative) simplicity.

I2Note that ties may be broken arbitrarily and the weighting is according to the (normalized) complex weights 74.
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Proof of Theorem 8.1. Given a family F = {fs} with high agreement, we show it can be (approximately)
decoded to the majority function G = gmaj. We argue this can be inferred directly from reverse hypercon-
tractivity and the following claim bounding the average probability of disagreement with G for a random
pair v C s drawn from (X (5), X (d)):

Claim 8.2. Pycs [fs(v) # G(v)] < 2.

We first show this implies the result. Define the set of ‘bad’ d-faces which noticeably disagree with G as

— 8(e+n)
B = {SES} vESDcS(U)iG(v)} >ﬁ .
It is enough to show IP [B] < max{e®¢(1) exp(—Q, +(d))}}. Toward bounding B, define an intermediary
set A of ‘good’ faces:
4(e+mn)
= <=V
A {SES‘ U]lejs[fs(v)iG(v)} -
and note that IP[A] > J by Claim 8.2 and Markov’s Inequality. The idea is to argue that, on the one hand,
reverse hypercontractivity implies the number of edges (s1, s2) between A and B is at least some power of
P[B], while, on the other hand, agreement implies the number of such edges is at most O(e) because they
(typically) contain many v € s1 N sg that disagree and therefore fail the test.
More formally, denote the event that (s1,s2) € (A X B) as E4 p. Assuming P[B] > exp(—cd) (for ¢
depending on ¢, as in Theorem 6.4), reverse hypercontractivity lower bounds the measure of this event by

PlEas > (T2)’

2

for some constant ¢ depending only on ¢,y. On the other hand, since the test rejects with probability e, we
can upper bound the measure of E4 g by O(IP [Test rejects]) = O(e) we will obtain a bound of the form

IP [B] < O(¢!/9). To this end, note
5

P E < .
[Ea.s] IP[Test rejects| E4 p]

It is therefore enough to argue the conditional rejection probability is at least some constant (say %) Toward
this end, for a face s € X(d), define

Ts={ves: fs(v) #Gv)}

to be the j-faces on which fs disagrees with majority, and recall that an edge in our test is sampled by first
picking s1 € X(d), then ¢ C s1 in X (vd), then s D t conditionally. Given ¢, denote by t(j) = (;“) the set
of sub j-faces in ¢, for shortness. We define two bad events outside of which the test rejects and prove they
occur with vanishing probability.

1. Mis-sampling A: FEj the event that ¢ sees ‘too many’ v C s; that disagree with majority:

py o {OOTu] e
(j) 14+~

2. Mis-sampling B: E»> the event that ¢ sees ‘too few’” v C sg that disagree with majority:

pyim {00 Tl et
(j) 1+~

Conditioning on —F; and —F» the test rejects since s; and sg disagree on a 2‘if—Z—fraction of t. Thus by a
union bound:
IP[Test Rejects| Eq p| > 1—1P[Ey| Ey ] —P[E2| Eg p]

and it is enough to show that each P[E;| E4 g| < %
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Bounding E; and E2. Events E7 and Ey occur with vanishing probability due to the sampling properties
of the complete complex A (Claim A.1), namely that for any a,d > 0 and j < k, the inclusion graph

. . 2
(A(K),A(5)) is an (o, 2= exp(%a L%J),é)—sampler.
With this in mind, recall ¢ € X (yd) is drawn uniformly at random from s, so we may equivalently view

t as being drawn from a ~yd-uniform complete complex A on the d vertices of s;. By assumption, s; € A, so
Ts, C A(j) is of measure at most 4€+T77, and sampling then implies

4
< (1+7) exp - E Sl.
e+n 96 | J 4

Since we can equivalently sample an edge (s1,s2) by first picking sa, then ¢ C sg, then s1 D ¢, Fa can be
bounded using the lower tail of A in exactly the same fashion to get

4
< (L+7) exp _ E SE.
e+mn 192 | j5 4

Proof of Claim 8.2. Fix v € X(j) and let D((flz denote the conditional distribution over (s1,t,s2) ~ Dy,

|t(j)ﬂT51| >55+77

P k
) Ty

|t(j)ﬂT52| < 75“‘77

r
IR

O

such that v C ¢. Note that by construction, Da(lvlz (after removing v from each face) is distributed exactly

as the down-up walk Dg_; _; within the link of v. Partition the vertices of this graph into sets S’((,U) =

s| fs(v) =0 by the alphabet value they assign v, and observe that since the marginals of D(U) are
{sl fs(v) = o}sex by p y assign v, g Ak

distributed as X, (d — j) we have

1= P 0) #GO)] = BIf(0) =G0 = E [mz {P[s8”] }] ,

where the inner probability is over the v-conditioned marginal.

The idea, which is fairly standard (see e.g. [DK17, Claim 5.2]), is now to relate this maximum partition
size to the local disagreement of F using expansion. In particular, for each v € X(j) define the v-local
disagreement of F as:

€y = P )[fsl(v) # fsy (V)]

(51752)~Dd7jk

It is easy to see that [, [e,] < &+ 7. This follows from observing that sampling a random v € X (j), then

(s1,t,82) ~ Dc(lt}lz is equivalent to first sampling (s1,t,52) ~ Dg, then sampling v uniformly from ¢. The
bound is clear from the latter interpretation since the tester rejects with probability at most e, and otherwise
agrees on all but an 7 fraction of the j-sets in ¢. It is therefore enough to prove

max {P (56|} > 1 - 37—,

Toward this end, define £ = E®) to be the set of edges (s1,s2) ~ Dc(llz that cross the alphabet partition.

as taking expectation on both sides gives the result.
v
Since the marginal is distributed as the down-up walk in v’s link, this7graph is a v-spectral expander by

assumption. Writing S, = S((,v) for simplicity of notation, we have

EvZ]P[E}Z P [5163,7,52%30]
€L (51,52)

=3 (1s,.D})(1-15,))

oEX

=1-Y (15, D )1s,) (8.4)
oEL
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where 1g_ is the indicator of S, and 1 is the all-ones function and the final equality is from by stochasticity

of D((;,z. Let fo = 15, — P [S,] 1 be the projection of 1g, onto 1+. By orthogonality it holds that || fo||? =

15,12 =P [So]*[|1]|2 = PP [Sy] — P [S,]?. Therefore exploiting the expansion of Da(lvlz we have

(1s,,D{)1s,) = P [So) (1,1) + (fo, DY) fo)
<P [So]? + v folf?
=vP[S,]+(1-v)P[S,]2.

Inserting this back to (8.4) we have that

fr1-% (vP [So] + (1 =) P [S,]2)

—(1-v) (1—211)[5012>

€L

>(1-v) <1 — max {]P[Sg]}) .

oEX

Re-arranging gives the desired result. m|

8.2.1 Testing all the intersection

We note that one could also consider the standard V-test where s and s’ are still drawn from the down-up
walk, but we test agreement over ¢t = s1 N sy (whereas in the definition of the test s; and s2 may have some
elements in their intersection not in ¢). The success in these tests are related by the following claim.

Claim 8.3. Let n > 0. Let D; be the test above. Let Dy be the test with a similar distribution to Dy,
with the distinction that ¢ = s1 N s2. Then for any F, Agree, p,(F) > 1 — ¢ implies that Agreey, p, (F) >
1—e—92-00k/35),

Proof of Claim 8.3. Let s1, s2 be a pair supported by D2 such that F passes the Da-test on the pair. Let A
be the set of j-faces contained in s1 N sz on which fs,, fs, disagree on. By assumption |A| < n|s1 N s2|. By the
sampling properties of the complete complex Claim A.1 the fraction of ¢ C s1 N sy such that [ANt| > 2n]¢|

is 2=0v(*k/5)  Thus the probability of failing the D; test is at most the probability of failing the D2 test
plus 2= (W*k/3), m|

Remark 8.4. When 7 < ¢, the ‘additive’ error exp(—Q(d)) can be removed from Theorem 8.1 by interpolating
the result with a standard averaging argument over Claim 8.2. This technique stops working as soon as 7
is much larger than . While the additional exp(—Q(d)) error is not harmful in most applications, it is
nevertheless interesting to ask whether the term can be removed for general 7.

8.2.2 Agreement Testing for the non-Lazy Down-Up Walk

Using a similar technique, we can also prove an agreement test for the following distribution based on the
swap walks. Define the test distribution (s1,s2,t) ~ Agy by the following procedure:

1. Sample t € X (k).
2. Sample r1,72 € X(d — k) in the swap-walk inside X;.
3. Output s; =tWUr; and t.

The resulting edge distribution over (s, s2) is sometimes called the ‘partial’ swap walk [AJT19]. Note this
walk has the property that the intersection is fixed. The following claim shows that when the local swap
walks expand, an agreement theorem for this walk follows as well.
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Claim 8.5. Let j,d be integers, let v,n,¢,\,v < 1. Let k = ~d and suppose j < k, nL%J > 19210g1n—6 and
v < 1. Let X be a (2d — k)-uniform c-locally nice complex such that for every v € X (j), M(Ag—;j x—;(Xy)) < v.
Suppose additionally that for every t € X (k), Sq—k,d—k(X¢) < A. Then the following holds for the set system
SS(X,%,j,k,d); for every alphabet X, family F, and ¢ > 0

Agreey(F) 21— = distgnie (F, gmaj) < £0v.0(1) 1 \Or.e(V), (8.5)
1—-v

where gmaj := plurality {fs(v)} is the plurality decoding.
seX(d):sDv

Proof of Claim 8.5. As in the proof of Theorem 8.1, we define
8
B = {s € s‘ P [f(0) #G(v)] > M} .

1—v

and

— Ae+n)
A= {s € S‘ v]lejs [fs(v) # G(v)] < ﬁ}

As in the proof of Theorem 8.1, IP[4] > % by an argument similar to Claim 8.2 and Markov’s inequality.
More precisely, we need to repeat the proof of Claim 8.2, only instead of using the down-up walk conditioned
on v, we use Agj, conditioned on v € t. This is just Ag_; _; inside X,.

In addition, as in the proof of Theorem 8.1, it also holds that the relative fraction of edges crossing
between A and B is small, i.e. P [EF4 g] < 2e.

Our goal is to show that P [B] < max{e®e() exp(—Q o(d)), \Pve(1)},

Assume otherwise, and that in particular reverse hypercontractivity for indicators applies for sets of size
IP [B]. By Theorem 6.4

. Os,c(1) Oy,c(1)
P | BT B (B> (PLAIPB)00)| > P 4] P 5],

Let us denote by G the set of ¢ satisfying the above condition. Suppose we sampled ¢ € G in the first step
of our agreement distribution. Recall that now we sample and edge by going in the swap walk in the link of
t. The probability we sampled an edge between A and B is therefore

]PS(X ) [tUr; € AjtUrg € Bl > (P [A]][)[B})Ow,c(l) “A=p-P [B]O%C(l) Y
T1,r27~ t

by the expansion of the swap walk and the expander mixing lemma (for some constant p). Thus if
pP [B]?<() > 2) then we have that

QP [B]%" W) < P[G]P[s1 € A, 55 € B| G| <P[Eyp] <4e
and the claim follows. m|

8.3 Low Soundness and the Z-Test

In this section we will apply Theorem 8.1 and reverse hypercontractivity to prove soundness of [[KW12]’s
Z-test in the 1%-regime under certain stronger assumptions on the complex. Before moving on, we briefly
comment on the notation in this subsection. Unlike before, we will use the convention that s,t¢ are %—sets
(and not k-sets as in the previous subsections). We will typically denote k-sets by a capital letter instead.
We first recall their test:
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The Z-test on X (k):

1. Draw t € X(%), and 5,5’ € Xt(g) independently

2. Draw s” ~ Xs/(g)

3. Accept if:
Jrus = fiue and  foup = feusr

We prove soundness for complexes which are ‘A-global’, a slight strengthening of ¢.-independence
[KKS21]:

Definition 8.6 (Global Complex). A k-uniform complex X is called A-global if ¥Vt € X (%)

||St—7T§HTV <A

where S; is the distribution over neighbors of ¢ in Sk » and 7 is the induced distribution on X (%)
2 2

k
2 b

Globality of X essentially promises that every g-set in X ‘sees’ most other %-sets in X, and is equivalent
to bounding the matrix infinity norm of the swap walk from its stationary operator %HS@ E—Iglloo < A

We note that the theorem below really only relies on a somewhat weaker average-case bound on the 1-norm
of the rows of Si r —I1x. However, we are not aware of any complexes satisfying such a notion that are

272 2
not already global in the defined sense, so we stick with this more standard requirement below.

Theorem 8.7. VA, > 0 and large enough k, let X be a k-uniform, \-global, c-locally nice complex. Then
Jor any § € (81 + e~ Qe(nk) %) if Agreef (F) > 4:

n
Jg:X(0) =%, P [fi & >46/8.
0:XO) 2T P2 e()] >0/

A couple of remarks are in order. First, we mention that it is well known that no tester can do better
than exp(—Q(k)) soundness [DGO8b; DL17], so our bound is essentially optimal for small A. Second, we
remark that many (dense) complexes of interest are indeed A-global HDX, including basic examples such as
the complete complex and random complexes, and more involved examples such as skeletons of various Ising
models, independent sets, list-colorings, or more generally essentially any of the myriad complexes studied in
the approximate sampling literature (see e.g. [ALG21; Liu21; CLV21; Fen+22; Bla+22] among many others).
Theorem 8.7 shows the Z-test is sound on these families in a blackbox fashion, even up to exp(—nk) for the
appropriate parameters. We elaborate on these examples further in the end of this section.

The proof of Theorem 8.7 largely follows the strategy of [[KW12; DL17]. The main difference lies in
replacing certain ad-hoc arguments for the complete complex with more general methods based on reverse
hypercontractivity and globality.

8.3.1 A Local Agreement Theorem

The core of Theorem 8.7 is a local structure theorem for the V-test on high dimensional expanders. Stating
this requires a few definitions. We remark that these are standard notions in the literature, and we follow
the notation of [DL17]. We first define restrictions.

Definition 8.8 (Restriction). A restriction is a pair 7 = (f,0) such that ¢t € X(%) and o : t = X is an
assignment to .

Given a family of functions as above, there is a natural distribution over restrictions that comes from
sampling a random function and a random restriction of it. More formally:
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1. Sample t € X(%) and s € Xt(§>.

2. Output 7 = (¢, fsutlt)-

Whenever we mention a distribution over restrictions 7 we always mean 7 = (¢, fsut|¢) sampled as above.
Given such a restriction 7, it will also be useful to have notation for the faces in X that are consistent with
T.

Definition 8.9 (Consistent Strings). Given a restriction 7 = (¢, ), denote by V; the set of faces s € X; (%)

consistent with 7: L
V; = {S € Xt<§> : foutle = 0}

A restriction is called good if it has many consistent faces.
Definition 8.10 (Good Restriction). A restriction 7 = (¢,0) is called §-good if Pyex, [Vr] > %

When § is clear from context, we just call such restrictions good. Finally, a restriction is called ‘DP’ if
its consistent strings agree with a global function (‘DP’ is for ‘direct product’).

Definition 8.11 (DP-Restriction). A restriction 7 = (¢, o) is called (1, §)-DP if there exists g, : X¢(1) = X
such that:

n/4
SFXt ftUs % gr

sevf]@?

As before, when 7,0 are clear from context we just write ‘DP’. We can now state the local agreement
theorem for high dimensional expanders.

Theorem 8.12 (The Local Agreement Theorem). For any n > 0 and k sufficiently large, let X be a
k-uniform c-locally nice complex. Then for all § > e~ nk), if Agreeg(}") >9:

1. Many restrictions are good:

N

P[7 is good] >
o

2. Almost all ‘good’ restrictions are DP:

P[r is DP | T is good] > 1 — &°
-

We remark that while Theorem 8.12 does not give a true agreement tester in its own right, it is a powerful
tool independent of Theorem 8.7. It roughly states that good agreement implies a non-negligible fraction of
good restrictions, and that if fs agrees with a restriction of a face ¢ it is almost certainly a restriction of a
global assignment on the link X;. This tool is a critical part of many of the previous works on agreement
testing [DGO8b; DS14; TKW12; DL17].

We prove Theorem 8.12 in the next section. We first show it implies the main theorem under the
additional assumption of A-globality. The argument is a simple adaptation of [TKW12].

Proof of Theorem 8.7. As in [IKW12], we replace the standard Z-test in Figure 8.3 with a related proxy test
where we first sample (¢, s) as before, but then draw (s',s”) independent of (t,s). If s € X; we continue as
in the Z-test, and if s’ ¢ Xy we accept. The probability of passing the new test is only greater or equal to
the probability of passing the original test, but by A-globalness, the swap walk starting at ¢ is A-close to the
stationary distribution hence the probability that s’ misses the link of ¢ is at most \.

With this in mind, let 7 denote the restriction (t, fsut|¢) and observe that if 7 is not good, the new Z-test
accepts with probability at most §/2 + A < 0. Thus it must be the case that conditioned on 7 being good,
the test still accepts with probability at least §. Condition on this event, and observe that by Theorem 8.12,
7 is also a DP-restriction except with probability at most 62 < §/8 (recall that ¢ < %)

Fix such a DP restriction 7, and denote by B the set of faces in V; on which F is 1/4-close to the DP
function g, promised by Theorem 8.12 (if there is more than one, take any such function). Assume toward
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contradiction that F is not (n,d/8)-close to g-. Let S = s’ Us"” and let H denote the event that fg 2 gr. 13
By assumption P [H] < %, because S is drawn as in the distribution of X (k). We define four events, outside
which the test rejects:

1. E1: The event that s’ ¢ Xy,
2. E3: The event that s € V; \ B,
3. Ej3: The event that S € H,

2
4. Ey: The event that S ¢ H, and fs|v "% g,

We first argue the test rejects if none of the E; occurs. In particular, note by E1 N Es, s’ must either be in
B, or in X;\ V. In the latter case, the first query of the proxy Z-test rejects since s’ € X; but fyue # fius-

/4 I
On the other hand, in the former case s’ € B and therefore fy ¢ S gr|sr. However, by E3 N Ey4, we have
n

S ¢ H and, moreover, that the restriction to s’ has disagreement at least fg|y 328 gr|s’- Thus there must be
a vertex on which f; s and fg disagree and the second query rejects.

Finally by a union bound it is enough to prove > IP[E;] < §/2. The first event occurs with probability
at most §/8 by A-globality where A < g. The second event occurs with probability at most 62 < §/8 by
Theorem 8.12. The third event occurs with probability at most 6/8 by assumption. The final event occurs
with probability at most e Q) < §5/8 by Chernoff, since fg n-disagrees with g, and s’ is a random subset,
which completes the proof. |

8.3.2 Proof of the Local Agreement Theorem

Let us begin by proving the first property in Theorem 8.12.
Claim 8.13. Under the assumptions of Theorem 8.12, P, [T is good] > %

Proof. Let p =P, [ is good]. Since Agree} (F) > ¢ and we have

6 < Agreel (F)
= ps]tps, [ftUs = fius' | <t7f|SUt) is gOOd} + (1 _p) P [ftUs = fus' | <t7f|SUt) is not gOOd} :

s,t,s’

By definition Py ; o [fius = frus | (¢, flsut) is not good] < % sod<p+ % which implies the claim. ]

The rest of this section is dedicated to proving the second property in Theorem 8.12, which is more
complicated. The proof has two main steps. First, we will need a variant of the notion of an ezcellent
restriction, that appeared in [DG08b; IKW12; DL17]. Roughly, an excellent restriction is a restriction (¢, )
so that if s1,s2 € V, the probability that fius, |s;nsy & fiusy|sinsy i 1 — poly(8). The probability in which
we choose s1, s2 € X; is stated below. We show most good restrictions are in fact excellent.

Second, we show that excellent restrictions are DP. Here we use a variant of the “smoothing” technique

introduced by [DL17] in order to get an ensemble of local functions {fs 15— X ’ s € Xt(g)} that agree

with high probability 1 — poly(d) and use our 99%-tester (Theorem 8.1) to show the restriction is DP.

Formally we require some additional notation to properly define these notions. First, denote the %-step
down-up walk in the link of ¢ as Ny and denote by (s,t,s’) ~ N; the distribution where s, s’ are chosen
according to Ny and ¢’ is the intermediate set chosen in the first down step (we note that ¢ C sN s’ but
equality doesn’t necessarily hold). Second, let Nt3 denote three steps of Ny. Let (s1,t1, s2, t2, 83,13, $4) ~ Nt3
be the full walk sampled. Finally, let (s1,%2,t',s4) ~ th be such that si,t2, s4 are the marginals as before,
and t' = t; Nty Nt3 the vertices that are in all sets in the sampled walk.

Fix some sufficiently small constant ¢; > 0. We can now define excellence.

Definition 8.14 (Excellent Restriction). A good restriction 7 = (¢, ) is called excellent if:

3Formally here we extend g- to a function on X (1) by arbitrarily assigning values to any vertex in X (1) \ X¢(1).
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/1500
L P sy, {(8, s eV (f5|t/ # fs,|t,)] < ek and,

, n/1500 ek
2. ]P(817t27t/754)NNE’ (S, s € VT) AN fslltl #7 f54|t’ < e 1n .

where we’ve abused notation and written fs as shorthand for fs .

We note that this definition is slightly cumbersome due to the fact that we don’t measure the agreement
of fs, fs (respectively fs,, fs,) on the intersection of s s’ (respectively s1 N s4), but instead on a fixed
subset. This is for technical reasons and we encourage the readers to think of the case of Ny where t' = sNs’
(and analogously for NJ).

For notational convenience, let y = e
is fairly standard [Imp+08; IKW12; DL17]:

ek and 5’ = 1/1500. The following lemma (or variants thereof)

Lemma 8.15 (Good restrictions are excellent). There exists ca > 0 such that

P [7 is good but not excellent] < =2,
T=(t,fsutle)

Proof. We only prove that N} case, which is somewhat less standard. The N; proof is analogous. It is
sufficient to show that over a random restriction 7 = (¢, fsout|t):

,,7/
P P [81, s4 €V A fsy |t’ # f54|t/:| >e k| < eiﬂ(nk) (8.6)
T=(t,fsqutlt) | (51,62, ,54)~N}

where s1,t2,%',54 is chosen independently of sg. In particular if this holds then, by claim Claim 8.13,
conditioning on being good can increase the probability of this event to hold to at most 26—7?@ < e—c2nk
for the right choice of constants.

The key to (8.6) is to observe that this process can be sampled by the following equivalent method:

sample T' € X(% + %), and randomly partition it into T' = ¢ Utg so that |t| = % and [to| = %. The faces s1,

ta, t3, and s4 are now drawn independently from the "up-down-up" walk Uy x Dr Uk x within Xy starting
472 27 2

EUk
1 D

from to.
Observe that || > 3—]“2 with probability e~ k) by a standard Chernoff bound. Conditioning on this event,

,,7/
observe that if s1,s4 € Vr and fs, |¢ # fs,]¢, then it must be the case that

1. to has at least Z’—f elements on which fs, # fs,
2. t has no elements on which fs, |t # fs,]t

However, ¢t and 2 are a uniformly random partition of 7', so such a split occurs with probability at most
e k) by Chernoff as desired. O

To proving excellent restrictions are DP, we’ll use a variant of Dinur and Livni-Navon’s ‘smoothing’
operation that spreads the consistent strings V; over the entire link. Instead of using the noise operator as
in their work, we use the down-up walk which avoids a number of technical complications.

Definition 8.16 (Smoothed Assignment). For every 7 = (¢, fuus,|¢), define the smoothed assignment Fr =

{fS}S€Xt as
fs(v) = Plurality {fs(v)}.
(t,8")~N¢(s):s'€Vr t' 50
We break ties arbitrarily. If the plurality is not well defined (i.e. there are no such s’ € V; that contain v)
we define it to be fi(v) = L.

The main idea is to show that on excellent restrictions, ]-N"T is 1) highly consistent with the original family
F on V;, and 2) has very high agreement on the entire link. This reduces the problem to an (approximate)
99%-regime test within the link of ¢, which we can solve via our tester from the previous section. More
formally, the following lemmata suffice to prove Theorem 8.12.
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Lemma 8.17. Every excellent 7 = (t,0) satisfies:

10n" _
P |fs # [s

SNXt

52
< —
SEVT} 5

!

~ 10n7"
that is, F and F are close on V; (note fs # [s is over just the vertices of s, not sUt)

Lemma 8.18. There exists c3 > 0 such that every excellent T = (t,0) satisfies

_ 10 —eank
(s,t',g)th fsly # foly| <e )

that is, F is highly agreeing on X;.

Proof of Theorem 8.12. The first property is proved in Claim 8.13. Toward the second, we will prove that
every excellent 7 is a D P-restriction. Then by Lemma 8.15 we have that

P [r is DP| 7 is good] > IP [ is excellent | 7 is good] > 1 — 2
T T

where we’ve used the assumption that § > e~ QUk) | Fix any excellent 7 = (¢,0). One can check these satisfy
the conditions of Theorem 8.1 with v = 1/2. Together with Lemma 8.18 and Claim 8.3 that translates
between the agreement guarantee in Lemma 8.18 to that of Theorem 8.1, we have that there exists a global
function ¢ : X;(0) — X such that

_ 3207’ i
P [fs # Q|S] Se
SNXt

where ¢4 is some constant depending on c3, n and the c-local niceness of X. We note that after conditioning
over s € V;, we still have that this is at most 26—70?& < %, where this holds by assumption that § is large
enough.

Combining this with Lemma 8.17, we then have

n/4 109" _ 3207’
P [fs % g(s)| se Vt] < P |fs # fs|seV |+ P {fs % g(s)| se€ Vt]
s~ Xy S~ At s~ Xy
< 62
as desired. O

It is left to prove the key lemmata. This is the main place we use reverse hypercontractivity (other than
the application of Theorem 8.1 in the proof of Theorem 8.12). The proofs for both properties follow the
strategy of [DL17] adapted to our setting.

Proof of Lemma 8.17.  We define two families of ‘bad’ sets outside of which f and f approximately agree.
First, we look at the set of ‘lonely’ strings that don’t sufficiently see V;.

L::{SGXt: ]P()[S/GVT]<6/}

for &' = e~5"* for some c5 > 0 sufficiently small. We will assume below that 6’ < §% (which is possible due
to the assumptions on ¢). We record the following properties of L that we prove at the end of the subsection.

Claim 8.19. There exists a sufficiently small constant c5 > 0 such that the following holds for ¢’ = e=¢57k,

2
1. ]PSEXt [L] < 67

2. For any s ¢ L, the fraction of vertices v € s s.t. Py o), (s) [ € V- | t' 50] <d'/3is at most 7.
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Second, we look at the family of sets within V; with strong disagreement:

n &
B=4seV;: P s €V foly % fo /]2—}.
{sevs, Fle % ol | > 3

We claim that both L and B have measure at most §2/2 within V,. The former follows from the first item
of Claim 8.19 since P[L|V;] < 5—; < % For the latter we have P[B] < 20/ < % from Markov’s inequality
and excellence of 7 (here we also need that the c5 in the definition of §’ is sufficiently smaller than the ¢; in
the definition of w).

100" -
It is left to observe that fs ~ fs for any face s € V; \ (LU B). Fix such an s, and define Dy to be the
set of vertices on which f and f disagree:

Do:={ves: fs(v) # fo(v)}.

We need to argue |Dg| < 107/|s|. Assume toward contradiction otherwise. Let D’ denote the vertices in s
such that Py o)y, (s) [ € Vr | t' 2 0] <'/3 and write D = Do\ D'. By Claim 8.19, we have |D| > 97/|s].

Consider now the following probabilistic experiment. Sample v € D uniformly, then some t',s" ~ N;(s)
conditioned on v € ' and s’ € V,;. We denote this distribution by D. Note that for every fixed v € D, this
is exactly the distribution over which the plurality in the definition of fs(v) was defined.

With this in mind consider the event P = {fs(v) # fy(v)} and observe that IPp [P] > § because for
every fixed v € D, by construction fs(v) disagrees with the plurality vote on v. On the other hand, we show
toward contradiction that P is contained in events whose total probability is strictly less than % Namely:

77/
1. Eq: the event {fs|y # folv}
2. Es: the event [t/ N D| < 61 |¢']
3. FE3: the event P\ (El @] EQ).

Obviously P C E1 U E3 U E3 so it is enough to bound the probability of the three events, starting with Es.
In this case we have that fs, fy disagree on at most an n/-fraction of ¢, but [t/ N D| > 64/|t’|. Conditioned
on t/, v is drawn uniformly from |[D N ¢/, so the probability that fs(v) # fy(v) is at most §.

Moving on to Es, notice that if D is an 9n/-fraction of s, a random ¢’ C s contains less than a 67/-fraction
of D with probability exp(—Q(n'?k)) by Chernoff. While the distribution D doesn’t sample ¢ uniformly
(since it conditions on v € ¢’ and s’ € V;), we do know for any fixed v € D, v € ¢ with probability at least
%, and because s ¢ L and v ¢ D’ the probability that s’ € V; is at least %/ even after conditioning on v.
Hence, even after conditioning on these events the probability that [¢' N D| < 61/ |¢/|-fraction of D is at most
26~ exp(—Q(n%k)) < 15 for large enough k.

Finally, we bound the probability of E; by similar reasoning.

7]/
]P E - ]P ! % 1|41
ple =, Bk s

s ev,ve t’}

3 n'
XX y IP |:S/ S VT AN f5|t’ * fs"t’
v~D,s'~N¢(s)

s¢B 3 ¢ _1
\W%P[Uet,} <

vet/]

O] =

Thus 3 <P[P] <P [Ei]+P[Ey] + P [E3] < 3 and a contradiction is reached. o

Proof of Lemma 8.18. The proof is similar to the first property. Let L be as in Lemma 8.17. This time we
define a set of bad triples as follows. For a set (s,t,s") ~ N we consider the following quantity

/

n
! AN . 4l 0
F(s,t',s") = Id 51,84 €V A fsylin 2 foln | s2=s,ta =153 =5
(51,t1,52,t2,53,t3,54)~N;
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where t” = to Nt3Nty. We define B to be the set of triples with large F-value:
/ / / / 6/2
Bi=4(s,t' ¢): F(s,t,s) >\
{(S’ 8) (s, t,s) 80}
and keep L as in the proof of Lemma 8.17. By excellence of 7 and Markov’s inequality (s y o), [B] <

% < exp(—Q(nk)). Since s and s are both marginally distributed as X; (%), we also have by Claim 8.19

and a union bound that either one of s € L or §' € L with probability at most 8’2 = e~2¢57%, Tt is therefore

L 1og
enough to show fsy ~ fs| under the assumption that (s,¢',s’) ¢ B and s,s" ¢ L.
Toward this end, fix (s,t’,s’) and consider the set of disagreeing vertices on the smoothings at s and s':

Do={vet: fi(v)# fo(v)}.

Assume for the sake of contradiction that |Dg| > 107/|¢'|. Similar to before, we actually consider D = Dy \ D’
where D' is the set of vertices in ¢ such that P, ;) n,(s)[54 € Vr[t3 5 v] (likewise for s1,t1 ~ Ni(s)). By
Claim 8.19, both s and s’ have at most 7/|s| such vertices so |D| > 67/|'|.

We now consider the following probabilistic experiment. Sample v € D uniformly and
(s1,t1,82,t2,83,t3,54) conditioned on sy = s,t3 = t',s3 = s’. We then condition this experiment on:

1l.vet =t1NtaNts.
2. 81,84 € V.

Note that for a fixed v € D, the marginals (s1,t1,s2 = s) and (s3 = §', 13, s4) are precisely the distributions
that were used in the definition of fs(v), fo(v) respectively. As before, define the event P = {fs, (v) #
fs4(v)} and observe that Pp [P] > % because for every v € D the plurality labeling for v over N; under our
conditioned process is different at s and s'.

We now define events whose union contains P which occur with total probability less than % These are
17/

1. Eq: the event {fs, |¢ # fsyle}

2. Ey: the event [t N D| < 57/|t"].

3. E3: the event P\ (E1 U E»).

By the same analysis as Lemma 8.17 we have P [E3] < 1 and P [E3] < {5 (we omit the repeated details).
As for E; we have

,,7/
P|E| = P " n| 81,8 EV,’UEtN
piEl= B {fslu Fualer| 5151 € Vs
9 77/ 1
= 572 v~D sl’[:Nt(S) s E VT : f81 |t” * f84 |t” vet
(s,t/;s)eB g §72 a1 1
;S 572%]13[’0615} <g
We reach a similar contradiction as before. ]

Proof of Claim 8.19. Let us begin with the first item. Recall under the assumptions of Theorem 8.7 Ny is
reverse hypercontractive for indicators. Namely let cg be the constant promised by Theorem 6.4, and observe
that by assumption P, [V;] > 6/2 > e ", If Py, [L] < 2¢72¢"% we are done, so assume otherwise. Then
by definition of L and Theorem 6.4 we have the chain of inequalities:

P[L]d > ( Ig’ N [s€ L,s" € V] >2 1 P[L].
8,8 )~ Ny

§2

1
where ¢ is the constant given in Theorem 6.4. Re-arranging gives P[L] < (27716'677)7-T < exp(—cmnk) < &

for the appropriate choice of constant ¢ > 0. Thus if ¢5 is sufficiently small we get the first item.
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For the second item, let D’ denote the set of v € s such that P o). n,(5)[s" € V7 | ' 2 0] < %/ Define
9 (o) = [0,1] to be g(to) = Py o)n(s) [$' € Vr| ' =to]. Observe that E[g] > ¢’ since by assumption

s ¢ L. Moreover by construction we have v € D' if and only if E¢,s, [g(t0)] < 3 E[g(to)]-
The problem is now reduced to sampling on the complete complex. In other words let L = (‘t5,|), R = sand

v~ tifv € t. By Chernoff for every a, this graph is an («, 38, & )-multiplicative sampler for 3 = exp(—Q(ak)).
By Claim 4.8, this implies that the opposite graph is a (%, 2a, %)—multiplicative sampler. We take o = 1 /2,
and the constant c5 > 0 defined above small enough so that % < ¢'. As such we have for every function

g : L — [0,1] of expectation at least ¢’ the fraction of vertices v € s such that Eycg yep [g] < %]Et’gs [g(t")]
is at most 7 as desired. |

8.4 Examples of Global Complexes

We conclude the section with several examples of ‘global HDX’ to which Theorem 8.7 applies in a blackbox
manner. We start with a few basic direct examples and then argue a vast array of complexes studied in the
approximate sampling literature give rise to global HDX. These are:

1. The complete complex.

2. Erdos-Renyi Hypergraphs.

3. Skeletons of the full linear matroid over ]Fg.

4. Skeletons of /s-independent complexes, including many classic spin systems.
5. Faces complexes of any of the above.

The first and simplest example of global complexes (other than the complete complex) come from the
classical random model of Linial and Meshulam [LMO0G6].

Definition 8.20 (Erdos-Renyi Hypergraphs). The Erdos-Renyi hypergraph X ~ G (n,p) is a random k-
uniform simplicial complex whose (k — 1)-skeleton is complete, and such that every k-face is sampled into
X with probability p independently.

d

q» Whose faces consist of

The second direct example we’ll give is based on the full linear matroid over [F
linearly independent vectors over ]Fg:

X)) = {{v1,v2,...,vi}| v1,v2,...,v; are independent},
endowed with the uniform distribution.
Claim 8.21 (Global complexes). The following families are global and HDX:
1. The k-uniform complete complex on n vertices for large enough n is:
— (one-sided) 0-local-spectral HDX
- n‘Q(k)—global
2. The Erdos-Renyi hypergraph G (n,p) for large enough n is w.h.p:

— op(1)-local-spectral HDX
— (1 =p-+o0p(1))-global
3. The k-skeleton of the full linear matroid over lF;l for large enough ¢, d is :

— (one-sided) 0-local-spectral HDX

— qu(d)—global

Proof. We cover each case individually:
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Complete Complex. All links of the complete complex are complete and therefore 0-one-sided local
spectral expanders. For globalness, observe that the only —-sets which do not appear in the link of some ¢

(")

are those that intersect it, which are an 1 — R < n k) fraction.
k

Random Hypergraphs. It is well known for fixed p that this complex is an o, (1)-local-spectral expander

with high probability so long as p > k IOg( ) (the top links are simply random G(n, p) graphs). Since all other
links are at least connected with high probability, Theorem 4.23 implies the local-spectral bound. Toward

globality, fix any g—set t C ( k[7]2) By Chernoff the probability that more than (1 — p + 0,(1))-fraction of

%—sets disjoint from ¢ fail to appear in X is much less than n~ k) for large enough n. Thus union bounding
over t, the worst-case total variation of S¢ from uniform over (%) is at most 1 — p + o0y, (1) as desired.'4
2

Linear Matroid. All matroids (and therefore their skeletons) are 0-local spectral expanders [Ana+19]
(for this matroid specifically, it is folklore). Toward globality, fix % linearly independent vectors By =

{v1,...,vk/2}. The set By = {w1,...,wy 2} only fails to appear in the link of By if By and By are linearly
dependent, which happens with probability roughly %Ud < q*Q(d) (ignoring low-order terms). Since

I1j /o is uniform over linearly independent sets this gives the result. O

The sampling literature is rife with examples of “/.-independent” complexes (a term formally coined in
[KKS21]), which are closely related to global complexes. We’ll consider the variant implicit in [CLV21]. Let
p be a distribution over [g]¢, and observe y induces a natural d-partite simplicial complex X, with

X, (d) ={(1,a1),...,(d,aq) : (a1,...,aq) € Supp(p)}
and 7x((1,a1),...,(d,aq)) = pu(ai,...,aq). Let S C [d] and z € [g]° be such that Py, [zs = 2] > 0 (we

call such configurations ‘feasible’). The (S, z)-influence matriz ¥ ,_, s has entries

. . Poopylxi =ulx; =v,25 = 2| —Ppoplz; =ulzg = 2| if j#1i
wzﬁs<<u,z>,<v,g>>:{0““ . el e =

A complex is called ¢oo-independent if ||'¥||co is bounded for all feasible configurations.

Definition 8.22 ({s-independence). Fix ¢,d € N and let p be a distribution over [¢]?. p is called D-foo-
independent if for all feasible S C [d] and z € {0,1}°:

H‘YS—)ZHOO <D.

We remark that in this regime, one typically thinks of ¢ as fixed or small and the uniformity d as going to
infinity. We show any sufficiently low-dimensional skeleton of an ¢y-independent complex is a global HDX:

Proposition 8.23. Let p be a D-l -independent distribution over [q}d and 3 < k < d. Then the k-skeleton
Xjk satisfies:

1. Xsk is a df?) L _two-sided local-spectral expander

2. Xk is B D _glopal.

We remark that (tighter) spectral variants of both items above are well known (see e.g. [ALG21; AP23]).
Proposition 8.23 implies essentially every spin-system studied in the recent breakthrough line of work on
approximate sampling through spectral independence admits optimal 1% agreement testers (taking k <

log(d) skeletons).!® See [KIKXS21, Section 3] for an overview including distributions with the stochastic
covering property, independent sets, various Ising/Potts models, list colorings, and more.

The proof of Proposition 8.23 relies on an intermediate notion of [Hop22] called local-£-expansion.

14Formally, distance here should be measured from 7rk , but this is within 0, (1) of uniform in TV with high probability.

15Note while spectral independence is weaker than What we require, almost all known methods for spin systems actually
bound £~ -independence.
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Definition 8.24 ((), co)-expansion). A simplicial complex X is called a (A, 0o)-local expander if for every
7€ X with |7| <d—2:
[Ar =TIr oo < A

where A, is the weighted adjacency matrix of X,;’s 1-skeleton, and Il; is its corresponding stationary
operator.

We require two lemmas regarding this notion. First, we note that up to dependence on the alphabet ¢
(typically thought of as constant in this regime) f.o-expansion is essentially equivalent to {~-independence.

Lemma 8.25. Let p be a D-lo-independent distribution over [q]%. Then for every feasible S C [d] and
rs € {0,1}5:
D+gq

Proof. We prove the case where S = (). The general statement follows from applying this argument to the
links of X,,. With this in mind, observe that by definition:

HA@—HHOO—max ’—IP [x; = u|zy = j] —

1 1
< = max Z |Plz; = ulz; = v] — Plz; = u]| + —— Pla; = ulz; = v]
(’Uvj)ex(u,i)

<——|—lmax Z |Plz; = u|z; = v] — Pla; = u|

d (u) (0,7)EX ()

ISHES

1
:%—FEI&%{ Z |Plz; = ulz; = v] — Plz; = u]|
('UJ)GX(u,i)
D+q
d

<
O

Second, we'll need the slightly more involved fact from [Hop22] that any ¢oo-local expander is global. We
reproduce the proof here for completeness.

Lemma 8.26. Let X be a d-uniform A-foo-local expander. Then X is Céfz)\-global.
Proof. Recall that it is sufficient to bound the infinity norm:

d2

1Sa a —T1a allo TN
272 272

We prove a slightly stronger statement by induction. For any 7 € X and feasible i, j both the co-norm and
1l-norm are bounded by:
1575 = T jlls 19,5 = T jlloo < 25

We induct on ¢ + j. For the base case i = j = 1, first observe the co-norm is exactly the A-fo,-expansion
of the 1-skeleton. A classical consequence of Holder duality states that for any Holder conjugates (p, ¢) and
operator M

[M]lp = [[M"]lq,

where M* is M’s adjoint. Since S1,1 — Iy 1 is self-adjoint we therefore have
156,0 = g0l = 156,0 = 1o ollcc <A

as desired.
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Assume now by induction that, for some fixed i + 7 > 0, all i’ + j' < i+ j and 7 € X satisfy
157 5 =TT jrlloe < 4'5°A.

Let p € {1, 00} and let p denote the complement of p. We first argue we may assume without loss of generality
that ¢ > 1. This is again by Holder duality since

1i; — i jllp = 1S5, — il

Thus we are done if we show the result for both p € {1, 00} just for the case ¢ > j (and thus i > 1).
Toward this end, fix any f : X(j) — R. As is typically the case, the idea is to localize the input by first
drawing an (i — 1)-face, then a vertex from its link:

I1Si5f =i jfllp = H||(Si7jf)|s = (i )lsllpwex.)

p,s€X(i—1)

where for any g € X (i) = R, g|s(v) = g(sUwv) denotes the localization of g to the link of s. For concreteness,
we write out the above explicitly for the p = 1 case in slightly less compact notation. The p = oo case is the
same replacing expectations with absolute maxima:

18i5f =i fllp = E 1155 (0) =T (1))
=B LB, [|S”f(st) i,jf(st)H]
:SEX]}(EFU UeXs [IS”fI (v) = Hmfls(v)ﬂl
= Esex(i-1) [Boex, )15 f1s(v) = Hi,jfls(v)lll
= Eyex(i-1) | |Evex, 1185 fs(v) - Hi,jfls(v)l}H

( ,Jf)| ( i7jf)|5||p7U€Xs(1)

|

We stick to the more compact norm notation for the remainder of the proof. The trick is now to observe
that as a function of X,(1), S;;fs is exactly Sj ;f°, where f*: X;(j) — R is the restriction f°(7) = f(7).
Then by adding and subtracting the correspondlng local stationary operator we have:

p,s€X(i—1)

195 f =L fllp = ||I157,; £ =111 ;£° + 103 ; £° — (Wi s ) sl poex. )

p,sEX (i—1)

15T 50° =TI 1 /%l pwexs(n) L5 ° = (T g )lsllpwexa(r)

p,s€EX (i—1) p,s€X (i—1)

by the triangle inequality. The first term is now bounded by the inductive hypothesis applied in the link of

I x5 = il fllp,x (5)

157,3.7° = T3 llpvex. (1)

p,s€X(i—1) p,s€X (i—1)
Toward analyzing the second term, observe that I1] ; f* = S;_1;f(s) and (IL;; f)[s(v) = ILi—1,;f(s) so

= [1Si—1,5f = ic1,j fllpsexio1) < (0= DFAfllp,x ()
p,s€X(i—1)

HHHijfs = (i )lsllpwex. (o)
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by the inductive hypothesis. Altogether this gives
[1Si,5.f =i i fllp < Aj+ AP = 1)j = ijA
as desired. O
The proof of Proposition 8.23 is now essentially immediate.

Proof of Proposition 8.23. The first fact is immediate from Lemma 8.25 and the fact that ||A; — T1-||2 <
[|[A7 —=I1;||co. The second fact is an immediate consequence of combining Lemma 8.25 and Lemma 8.26. O

We conclude the subsection by the observation that if a complex X is global, then so is its faces complex
(Definition 5.8). Since the faces complex also inherits the two-sided expansion of the original complex up
to factors in uniformity (c.f. the proof of Theorem 5.1), this shows that one can also take as examples faces
complexes of any of the examples above.

Claim 8.27. Let X be a k-uniform and A-global complex. Let ¢ be such that ¢ divides k, then the ¢-faces
complex F' )‘} is A-global.

Proof. Let m = % for notational convenience. Fix t = {s1, s9, ..., s%} € Fff(%) Observe that the set of
neighbors of ¢ with respect to the swap walk in FYX are exactly those ¢’ such that Ut and Ut’ are neighbors
in the swap walk on X(%) (here Ut = sy UsaU---U sm and similarly for ¢'). Moreover, one samples a

neighbor of ¢t by sampling a random neighbor 7 of Ut, and then sampling a uniform at random partition of
Ttot ={s),sh, ..., s%} (the partition is chosen independent of t).
Thus one observes that the T'V-distance between S; and IT can be written as

DI NGES GIEE S DRI AN GRS 10

¢
tertx(z) Si(FEX)

I
N =
(]

.l. >
=l

=
=)
|
|
=
=)

where p is one over the number of partitions of 7 to t'. Obviously this is equal to

Teg(: )SUJEX) [7] —Hl&) [7] = dry (Sue(X),TI(X)) < A

as desired. m]

N =

[NIE

9 Analytic, Geometric, and Combinatorial Applications

In this section, we cover several brief applications of sampling and reverse hypercontractivity in well-studied
combinatorial and analytic settings.

9.1 New Double Samplers

Double samplers are a strengthened notion of sampling introduced in [DK17; Din+18a] that consist of
two “stacked” samplers with additional local sampling properties under ‘closure’ of the top layer. These
interesting objects have powerful applications in agreement testing [DK17] and list-decoding [Din+18a], and
have even seen algorithmic use in the construction of space-efficient data structures for the heavy hitter
problem [DW22].

Definition 9.1 (Double sampler, [Din+18a]). A double sampler consists of a triple (Va2, V1, Vo), where V} is
the ground set, V] is a collection of ¢-subsets of Vy and V3 is a collection of k-subsets of Vj, where k > i € IN.
We say that (Va, V1, Vo) is an (e, 8, €0, Bo)-double sampler if
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— The inclusion graphs on (Va, V1) and (Va2, V) are (g, 8)-additive samplers and the inclusion graph on
(V1,Vo) is an (e + €0, 8 + Bo)-additive sampler'® (recall the inclusion graph is defined by connecting
two subsets by an edge if one contains the other).

— For every T € Va, let Vi(T) ={S € V1 : S C T} be the sets in V] that are contained in T'. Let Gr
be the bipartite inclusion graph connecting elements in T' (viewed as elements in the ground set Vj) to
subsets in V1 (7'). We require that for every T' € V5, the graph G|7 is an (S, €9)-additive sampler.

Double samplers are only known to arise from high dimensional expanders. In their original work, [DK17;
Din+18a] use the Ramanujan complexes [L.SV05a] to construct explicit double samplers for all (e, 3, €9, Bo):

Theorem 9.2 ([Din+18a, Theorem 2.11)). For every (g, 8,0, Bo) > 0, there exists an explicit infinite family
of double samplers {(Vo(n), Vl(n), VQ(H))} such that for all n:

AR ( (1 11 1>)
) :eXp POIY Sy 9y oy T .
Vel vy B B0’ e o

One of the main open questions posed in [Din+18a] is to settle the overhead of double samplers. In
particular, while it is known that exponential dependence on ¢; is necessary (even for standard samplers),
it is plausible the dependence on the ‘failure probability’ 8; could be improved, perhaps even to match the
corresponding polynomial dependence of optimal standard samplers. Since typical related applications (e.g.
for low soundness agreement tests and PCPs [IKW12; DL17]) take € to be constant (or at most some polylog
in (), this latter dependence is where the crux of the problem lies.

To the best of our knowledge, there have been no lower bounds or improvements over Theorem 9.2
since [Din-+18a]’s original work. Leveraging our concentration bounds and their corresponding optimality
(see Section 11.1) we take a significant step toward resolving this problem: quasi-polynomial size double
samplers exist and, under reasonable assumptions on the underlying complex, are the best possible.

Theorem 9.3 (Quasi-Polynomial Double Samplers). for every (e, ,0,80) > 0, there exists an explicit
amily of (B,¢),(Bo,c0) double samplers V(n), (n),V(n) of size at most:
2 1 0

|V1(”)| |V2(")| ~ ] log? % log* % log® % log® %
T <exp | O | min 52 , e .
Vo1 1V £7¢0 £

Moreover, for e € (0,0.01), if the underlying complex family {X,} is §-hitting, vertex-uniform, and non-
contracting,'” this is optimal up to polynomial factors in the exponent:

n 1 1
|V2( )| s e [ O log(3)102g(%)
|VO(")| e2ed

Note the above does not fully rule out the existence of simplicial poly-size double samplers. While the
assumption on regularity in the lower bound can be easily relaxed, it is unclear to what extent the assumption
on hitting-set is an artifact of our proof technique (see Section 11.1 for details), though it is certainly a
natural property for such objects to satisfy. Moreover, our bound strongly relies on the assumption that
[Va| = exp(d)|Vp| (implied by X being non-contracting), which is not generically true. Nevertheless, high
dimensional expanders exhibit both good hitting set behavior (see Proposition 10.12) and at least exponential
degree (see Proposition 9.6), so it is at least accurate to say double samplers arising from HDX are at best
quasi-polynomial in 1.

The proof of Theorem 9.3 relies on two further results. The first, toward our upper bound, is Lubotzky,
Samuels, and Vishne’s [LSV05b] classical construction of Ramanujan complexes.

16The weights over edges in (V;, V;) are the marginals of the probabilistic experiment where we first choose T' € Va2 (according
to some given weight distribution IT), and then choose v € Vp and S € Vi such that v € S C T, uniformly at random over all

such pairs S, v.
"Here we mean 1) mo(v) = |X(1)|7! for all v € X (1), and 2) |X(i)] > | X (i — 1)| for all 2 < i < d.
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Theorem 9.4 (LSV-Complexes [LSV05b]). For any A > 0 and d € IN, there exists an explicit infinite family
of d-partite one-sided A-local-spectral expanders {X("),H(”)} with degree deg(X) < A—O(d) Moreover, for
every d > k> £ 2 0, max{m} < op(1).

The second, toward the lower bound, is the following optimality result we prove in Section 11.1.

Corollary 9.5 (Corollary of Theorem 11.1). For any € € (0,0.01), let X be a d-uniform, §-hitting verteax-
uniform complex and i < k < d. Then there exists a set A C X (i) such that:

HUzklA( ) = hal > €] > exp <0 <€2§)> :

We are now ready to prove Theorem 9.3.

seX

Proof of Theorem 9.3. We split into the upper and lower bounds.

Upper Bound. We prove the two bounds within the minimum separately. For the first, we use d-
dimensional LSV-complexes with A = % and d = O (k’g (1/ 5)4101% (1/50)) for top layer, and set i =

EEO

@(%3/5—0)) for the middle layer. By Corollary 7.3, (V2, V1) is an (e, 3)-sampler for the right choice of

log(1/80)
(Lellfn)

constants. Moreover, every closure graph is simply the -uniform complex on k vertices, which is

negatively correlated and therefore also a (g9, 8y )-sampler by standard Chernoff-Hoeffding for negatively cor-
related variables. The overhead bound is then immediate from the degree of LSV complexes in Theorem 9.4.
For the latter, we will use d-dimensional LSV-complexes with A = 2=% and d = O (MQM) for

EEO

for the middle layer. The result then follows from Theorem 5.1 and the

top layer, and set i = @(%2/5_0))
0

above.

Lower Bound. Recall that by definition VO(") = X,(1) = [n], Vl(n) = X, (i), and A Xy (k) for
some family of simplicial complexes {X,,} and set sizes 1 < ¢ < k. By Corollary 9.5, for any € € (0,0.01),

(X(k),X (7)) is at best an (e, 60(52§))-sampler, therefore any such double sampler requires:

£y a ()

i g2

On the other hand, it is also required for every T' € X (k) that the induced graphs G| = (Va|p, Vi|r) are

O(edi

(20, Bo)-samplers. By standard sampling lower bounds [CEGO5], this graph is at best a (g, €?(¢6)))-sampler,

forcing
log(1
i>Q<0g( 2/ﬂo)>'
€0
Combining these bounds we have that for any valid choice of 7 the top uniformity k of an (e, 3, €9, 8p)-double

sampler is at least
log log( 4+
1o ()
€€

It is therefore enough to argue that the overhead is at least exponential in the uniformity k:

V2| > 9Q(k)

Vol
This is true for any non-contracting complex. In particular, since | X (k)| = | X (k/2)|, the average degree of
every (k/2)-face (and hence every vertex) is at least 22, i

We remark that it may also be possible to construct double samplers with smaller overhead by removing
the simplicial requirement from the definition (see e.g. the relaxed notion in [DW22]). It is likely, for instance,
that ‘Grassmannian HDX’ [K'T21; Gol23; DLZ23] based on subspace structure lead to double-samplers with
different parameters-overhead trade-offs.
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9.2 A Degree Lower Bound for HDX

One of the most classical results in the study of expander graphs is the Alon-Boppana Theorem [Nil91],
roughly stating that any family of bounded-degree A-expanders must have degree at least XQZ In higher
dimensions, the situation is less understood. Not only should degree scale in some way with the local
expansion A, but dependence on dimension becomes a critical parameter in application. In this section, we
give (to our knowledge) the first systematic study of the degree of high dimensional expanders. In particular,
we prove that various families of hyper-regular HDX require super-exponential degree and prove a threshold-
phenomenon exists at the TD-barrier: there exist (reasonably balanced) constructions of 1-TD complexes
achieving exponential degree at every level, while any (reasonably balanced) A-TD complex must have degree
2-Q(F?) for any level k < V/d.

Before applying our stronger concentration bounds, we first look at what one can infer about the degree
of HDX directly from spectral methods. The following proposition, though not to our knowledge appearing
anywhere in the literature, is the result of applying elementary spectral methods to the problem:

Proposition 9.6 (Spectral Lower Bound). Let X be a d-uniform {\;}-two-sided local-spectral expander.
Then for every k < d, the degree of X ’s k-skeleton is at least:

- 1
deg(k)( H x

Proof. Observe the k-th degree of a vertex v € X (1) can be bounded by

_1'H mln {X:(1)]}

teX(i

simply by counting the number of ways a face {ve,...,vx_1} € Xy, (k) can be sampled by choosing vy ~
Xy (1), v2 € Xyy) 0y (1) and correcting for the (k+1)' possible orderings of the face. The result now follows

from the elementary fact (see e.g. [Gai+22, Lemma A.7]) that any two-sided A-expander has at least %
vertices. d

We remark that one might reasonably think to use Alon-Boppana [Nil91] (the classic ‘optimal’ trade-off
between expansion and degree) to prove a version of the above for one-sided expansion. This does not work
for high dimensional expanders, since their links may have low diameter.

Proposition 9.6 implies that any (hyper-regular) o(é)-two-sided HDX must have super-exponential de-
gree but is essentially trivial for complexes near the TD-barrier, under spectral independence, or even for
arbitrarily strong partite one-sided HDX. In these cases, even if one is willing to look e.g. at polynomial size
cutoffs (as is quite common in the literature) Proposition 9.6 only gives a slightly super-exponential lower
bound:

deg® (X) > exp(Q(klog(k))).

Using concentration, we improve this bound to strongly super-exponential. We start with the partite case.

Theorem 9.7. Fiz c € [0,1] and let X be a d-uniform hyper-reqular partite 2~ Qd°)_HDX. Then either:

1. X’s 1-skeleton is dense:'®

(X
2

deg!(X) >
2. X has super-exponential degree:
deg!™ (X) > exp(Q(max{d”, d}))

Second we prove an analogous bound for skeletons of TD and SI-complexes.

8While this condition may seem strange, note it is necessary to handle dense settings. Take, e.g., {0,1}", which is a
hyper-regular 0-local-spectral expander whose +/n-skeleton has degree exp( v/nlog(n)).
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Theorem 9.8. Let A\,c € [0,1), 71> 0, and d € N. If X is a d-uniform hyper-regular \-TD or n-SI complex
then for any k < d°:

1. X'’s 1-skeleton is dense:
X (1)

2

deg!'(X) >
2. X'’s k-skeleton has super-exponential degree:
deg™(X) > exp(Qy, (min{k?, k/<}))

The latter setting above is tight in the sense that when A = 1, that is at the TD-barrier, there exist
(reasonably balanced) complexes where deg!®)(X) = exp(O(k)) for all k < d. On the other hand, beyond
the TD barrier the best known degree upper bound for a hyper-regular (or even reasonably balanced) HDX
is exp(exp(d)) [F120], leaving a substantial gap with the above. Nevertheless, Theorem 9.8 is the first to
exhibit quantitative threshold behavior for degree at the TD-barrier.

Theorem 9.7 and Theorem 9.8 leave open two critical questions:

1. Can we prove super-exponential bounds for the top level of a \-TD/n-SI complex?
2. Can the assumption of hyper-regularity be dropped?

As we will see in the proof of Theorem 9.8, the first question would be resolved if one could give any
asymptotic improvement over exponential concentration for weak HDX. In other words, any bound of the
form: ) )
segl(j(d) a|s NAl —p> 3 < exp(w(Vd))

for X and its links would imply a super-exponential degree lower bound. If, for instance, we have a bound
of exp(—Q(d)) holds, this would imply a degree lower bound of exp(Q(d?)) on the top level of X.

Regarding the second question, our proof technique extends to any complex whose links are reasonably
‘balanced’ in the sense that there should not be a 2=V fraction of vertices making up an (1) fraction
of the mass. Unfortunately, many classical HDX constructions, e.g. the Ramanujan complexes of [LSV05b],
actually are highly unbalanced in this sense. The links of these constructions essentially approximate an
‘unbalanced product’: they are partite complexes which are regular on each individual part, but many of
the parts are vanishingly small and therefore make up a significant portion of the mass. While known
constructions of this type all have minimum part size at least exponential in d (and therefore result in degree
exp(d?)), it is unclear how to rule out a construction whose links look, e.g., like {0,1}¢ x [2¢]. Such a
complex could potentially satisfy optimal inclusion sampling while maintaining exponential degree.

We leave the possible extension of our lower bounds to the top level of unbalanced complexes (or conversely
the construction of highly locally unbalanced exponential-size HDX) as one of the main open problems
suggested by this work:

Question 9.9 (Lower Bounds for Locally Unbalanced HDX). Let {X,} be an infinite family of bounded-
degree HDX that are either \-TD or 7-SI. Is the degree of every (sufficiently large) X,, super-exponential:

deg(Xy) = exp(w(d))?

Question 9.9 is critical from the standpoint of applying HDX in other areas of theoretical computer
science where degree dependence corresponds to the ‘overhead’ incurred by using the complex as a gadget.
For instance, the lower bound in Theorem 9.3 can be achieved by HDX essentially if and only if Question 9.9
is false. Similarly, a variant of Question 9.9 where d may depend on n is critical to the study of agreement
testers whose soundness scale with the number of vertices of the system. Constructing polynomial size testers
with inverse polynomial soundness is the combinatorial core of the so-called sliding scale conjecture in PCP
theory. If the above lower bound holds, HDX cannot give such objects: d must be taken to be o(log(n)) to
maintain polynomial size, and the resulting soundness of any HDX-based poly-size agreement tester would
be at best 2_"(log(”)), missing the inverse polynomial mark.
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We now move to the proofs of Theorem 9.7 and Theorem 9.8 which are inspired by our localization
technique for proving concentration that samples s = {v1,v1,...,v4} by iteratively sampling vy € X, then
v2 € Xu;, v3 € Xy 4}~ and analyzing the local concentration at each step. Upon further inspection, this
technique yields the fact that the 1-skeleton of a complex with good sampling in 0 and 1-links must itself be
an excellent sampler graph.

Lemma 9.10. Fix £,61,02 > 0. Let X be a d-uniform simplicial complex such that:
1. (X(d),X(1)) is a (5, 01)-additive sampler.
2. For every v € X(1), (Xy(d), Xu(1)) is an (5, 02)-additive sampler.

Then the partite double cover of X ’s 1-skeleton is a (e, 12_652 )-sampler.

Proof. Fix A C X(1). At a high level, the proof follows from observing that if the base graph is a poor
sampler, then after drawing the first vertex v of our d-set t = {v1,...,v4}, there is a non-trivial chance
that the neighborhood of vq (i.e. Xy, (1)) ‘sees” A in the wrong proportion. However, since the remainder of
the face {va,...,v4} € Xy, (d), if (Xy,(d), Xy, (1)) is indeed a good sampler it will maintain this incorrect
proportion from the first step and violate sampling of A in (X (d), X(1)).

We now formalize this argument. Given our assumptions we’d like to show:

01
1—469

P { P [A}>1P[A]+s]<
veX (1) [ueXy (1)

The lower tail follows from applying this on the complement set. Toward this end, denote by B the set of
‘bad’ vertices in A that over-sample the base graph:

B_{veX(l)

ue)lg(l)[A]>]P[A}+a}.

We need to show P[B] < 15152. We bound IP[B] by relating it to the set of bad d-faces:

C_{teX(d)’

Bla-Pla > 5}

which has measure at most IP[C] < 1 by Condition (2). The key to relate B and C is to observe we can

sample a random d-face ¢ by first sampling a vertex v € X (1), then sampling ¢ from its link:

> P [B] g];()
veX(1

E [1c(t)] |veB

teXy (d)

Pic]= E, [o®]= E [ E,, 1)

When v € B, we have P ¢ x, (1) [A] > P [A] + ¢ by assumption, but then by Condition (1)

E
veX(1)

E [1c(t)] |veB

teXy (d)

> P {]P[A|t]> P [A]——]>1—52.
te Xy, (d) u€Xy(1)

Putting everything together we have

(1—52)][3[0] S]P[B} < d1.

and P [C] < 1515 as desired. o
2

Combining this fact with standard degree lower bounds for sampler graphs [CEG95] gives the following
degree lower bound for the 1-skeletons of such complexes:

Corollary 9.11. Let X be a d-uniform simplicial complex satisfying:
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1. (X(d),X(1)) is a ({5,01)-sampler
2. For allv € X(1), (Xy(d), Xy(1)) is a ({5, 02)-sampler.

Then X ’s 1-skeleton has high maz-degree:

dv e X( ) deg( )( ) min { |X§1)|, 2<15g152)}

Proof. By Lemma 9.10 the underlying graph of X is a ( § = 251 ) sampler. [CEG95, Theorem 2| states

. . B . 1X(1)]
the following relation on a graph G = (L, R, F) that is an (e, 5)-sampler of max degree t < T)
|L|(1 —2¢)
tiR| > —————.
|R| 55
Here L = R = X(1) and this inequality gives ¢ > % = 2(155162). O

Notice this bound is substantially stronger than what can be inferred from spectral expansion alone. For
instance, when X is a A = poly(d~!)-HDX, Alon-Boppana only implies a degree lower bound of Q(\72) =
poly(d—1), whereas combining the above with Corollary 7.3 gives degree at least exp(— v/d). Given this fact,
Theorem 9.7 and Theorem 9.8 follows by recursive application of Corollary 9.11 on each link of the HDX.

Proof of Theorem 9.7 and Theorem 9.8. Similar to the spectral argument, since X is hyper-regular the kth
degree of any vertex vg € X(1) can be bounded by:

deg™ (vp) oD Htgén {deg (X )}

It is therefore sufficient to bound the degree of the 1-skeleton of the links of X. We split the analysis into
the partite and TD/SI cases.

Partite Case. Let k' = max{/d,d}. By Theorem 7.8, there exists a universal constant ¢/ > 0 such that
for every t € XS%, the link X; satisfies:

Lo (Xe(d—t]), X¢(1)) is a (5, exp(—c'K))-sampler

2. For all v € X¢(1), (Xyuquy(d —[t] = 1), Xy (1)) is a (75, exp(—c'k’))-sampler.
Setting t € X (1), Corollary 9.11 implies

deg™(X) > min {&21)', exp(—c’k')} :

Assume exp(—c'k’) < ‘Xél)‘ (else Condition (1) is satisfied and we are done). Under this assumption, we

argue by induction that the max degree of any i-link is at least:
d

o d 1
Vi < 3 tg}? {degV(X;)} > yexp(c ). (9.1)

We remark the restriction on i is to enforce that links of this level are still (15, exp(—c'k’))-samplers. Plugging
this back into our bound on degree gives exp(—Q (k")) > exp(—Q(max{d, d*¢})) as desired.

To prove (9.1), observe the base case ¢ = 1 is given by assumption. The inductive step simply follows
from observing that the minimum number of vertices in any i-link is exactly the minimum degree of the
1-skeleton of any (i — 1)-link. Thus applying Corollary 9.11, we have:

! exp(c'k').

VteX(i):deé”(Xﬂ?min{@ p(— ck)} o

as desired.
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TD/SI Case. When X is A-TD or n-SI, we’d like to run the same argument as above but run into a slight
problem. We can still bound the kth degree of a vertex v by:

deg® (v) _1 o0 H mln {deg )(Xt)},
but because X satisfies only exponential concentration, (9.1) becomes

d 1
e 2 : (1) = /
Vi < 5 .tér)léléli){deg (Xe)} > 5 exp(c Vd).

This bound is now only non-trivial up to i < O( \/E) levels of X, stopping us from proving super-exponential
concentration for X’s top level. Nevertheless, when k = d°, plugging the above into the degree calculation
gives exp(d) = exp(k'/¢) whenever ¢ > 1/2, and exp(k \/_) > exp(k?) whenever ¢ < 1/2. o

9.3 Geometric Overlap

The geometric overlap property is a classical notion of high dimensional expansion (see e.g. [Lub18]) which
promises every embedding of the complex has a point in space hit by at least a constant fraction of the faces.

Definition 9.12. Let X be a d-uniform simplicial complex and let k < d — 1. Let ¢ > 0. We say that X
has (k, ¢)-geometric overlap if for every p: X(1) — R”, there exists a point ¢y € R such that

se;I(J(d) [q0 € conv(p(s))] = c.

Here conv(p(s)) is the convex hull of the points of p(s) = {p(v)| v € s}. While we are not aware of
any applications of geometric overlap in computer science, it is a popular topic in geometry and topology
and related ideas (e.g. an overlap variant of the Borsuk-Ulam theorem) have seen recent use in the study of
algorithmic stability [Cha+23].

Boros and Fiiredi [BF84] showed that the 2-dimensional complete complex has geometric overlap, a
result which was later generalized to all dimensions by Bardny [Bar82]. The notion was extended to general
simplicial complexes by Gromov [Grol0], who asked whether there are bounded degree complexes that have
this property. Followup work by Fox, Gromov, Lafforgue, Naor, and Pach [Fox+12] gave an affirmative answer
to this question both via random construction and through [LSV05a]’s Ramanujan complexes. Finally, a
series of works [PRT16; Evr17; Oppl8] extended their ideas to general spectral high dimensional expanders
by leveraging high dimensional expander-mixing properties. We note that Gromov also defined a closely
related (but stricter) notion of topological overlap [Grol0], which was later studied by [KKL14; EK16]
among others. We focus only on the geometric setting here.

While prior works have succeeded in showing optimal geometric overlap for random bounded-degree
complexes [Fox+12, Theorem 1.7], it has been open since Gromov’s work to construct such a family explicitly.
In this subsection, building on the approach of these prior works, we show sufficiently strong high dimensional
expanders have optimal overlap, resolving this problem.

To state our result, it is useful to first understand the overlap properties of the complete complex. Let
Ckn be the largest constant so that Ay (k4 1) has (k, g, )-geometric overlap, and let c(k) = limg, oo Ck .-
By [B4r82] this limit exists and is positive. Similarly, let CZ, ko be the largest constant so that the complete

d-partite complex with n-vertices on every side has (, cs & n)-geometric overlap, and let cs e = limy 00 cs b

Existence and positivity of this limit follows from [Pac98]. The former constant, c¢(k), is known to be the
best possible for bounded degree simplicial complexes [Fox+12, Theorem 1.6].

We show that every sufficiently strong (partite) high dimensional expanders has geometric overlap nearly
matching the (partite) complete complex:

Theorem 9.13. For every e >0 and k < d € N, there exist A\, \p > 0, and ng,nop € IN such that

1. Two-sided case: If X is d-uniform A-two-sided high dimensional expander on at least ng vertices so
that the measure on the vertices is uniform, then X has (k, cj — €)-geometric overlap.
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2. Partite case: If X is d-partite Ap-one-sided HDX on at least ng p vertices so that the measure on the
vertices is uniform, then X has (k, Csk — g)-geometric overlap.

We comment that this theorem applies to many of the complexes constructed in [LSV05a] (for the non-
partite setting we need to take lower uniform skeletons).

The proof of Theorem 9.13 combines our concentration bounds with tools developed in [Fox+12]. We
have not tried to find the optimal dependence on A or on the degree of the complex. Finally before moving
to the proof, we remark that the result really only relies on the weaker ‘high-dimensional expander-mixing’
type inequality which actually holds for the more general family of splitting-trees such as expander walks
(see Section 10.1). Thus it is possible to obtain explicit complexes with geometric overlap approaching that
of the complete (partite) complex through this more general family as well, though we omit the details.

Homogeneous tuples. The core of [Fox+12]’s proof of geometric overlap is the following partitioning
theorem. We follow their definitions and presentation precisely. A tuple of subsets S1,...,Sp+1 C R” is said
to be homogeneous with respect to a point g € RF if either:

1. All simplices with one vertex in each of the sets S, ..., Spy1 contain q.
2. None of these simplices contain q.
An equipartition of a finite set is a partition of the set into subsets whose sizes differ by at most one.

Theorem 9.14 ([Fox-+12, Corollary 1.9]). Let k be a positive integer and € > 0. There exists a positive
integer K = K(e,k) > k+ 1 such that for any K' > K the following statement holds. For any finite set
P C R* and for any point ¢ € R¥, there is an equipartition P = P{\U---J Pys such that all but at most an

e-fraction of the (k+ 1)-tuples Py, ..., P;, ., are homogeneous with respect to q.

Our proof adapts the idea in [Fox+12, Theorem 1.7].

Proof of Theorem 9.13. We split the proof into the two-sided and partite cases.

Two-sided Case. Let K = K(e/16,k) be the constant promised in Theorem 9.14 and K’ > K be the
smallest constant so that for any equipartition of the n-vertices to K’ parts, the fraction of faces in the
complete complex (over the same vertex set) that touch every part at most once is at least 1 — 1%..19 Let

20 = % and let ng be such that for any n > no and sets A1, Ag, ..., Ax11 C [n] of measure at least % — 20

it holds that
k+1

€
P Vi=1,...,k+1: v; € A;| > P[A;] — —.
{”1:U27-~-:Uk+1}eAn(k+1)[ ’ ’ i ]1:[1 4 16

Let X be as in the statement and p : X (1) — R* an embedding. There is a point gg € R¥ so that o is
contained in ¢ — 15 of the faces of Ap(k + 1) embedded via p.

Let Pi, Pa,...,Pgs be the partition we obtain from Theorem 9.14 with respect to p and the com-
plete complex. Let H = {{Bl,Pi2, s Py} | Vs € E(Piy,Piy,..., Py, ), qo € conv(p(s))}. Here
E(P;,P,,,..., P, ) are the faces s € X(k + 1) such that for every j = 1,...,k+1, ‘sﬂPij| = 1. Recall
that at most an {5-fraction of the tuples are not homogeneous and that at most {5 of the faces in Ay, (k + 1)
touch a part in this partition more than once. Thus,

k+1

3e
> IIre] > cr = o (9.2)

(Pij);?i}Eszl

On the other hand,

P [qo € conv(p(s))] = Z P [E(Py,Piy,....Py.,)]. (9.3)
seX(k+1) {Piy PiyoPiyy YEH seX(k+1)

90ne can verify as in [Fox+12, Theorem 1.7] that K’ = max{K,16(d + 1)/e} for large enough n.
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By Proposition 7.9 (applied for indicators of the corresponding functions) for small enough A = A(K’, ¢, 2),
for every k + 1 parts P, P;,,..., P, of size at least % — 20,

k41
c k+1
P Vi=1,... k+lv,eP l>(1-TIP[P.].
{”1:v2:~-~:vk+1}€X(k+1)[ ’ ’ lj] | 2)j1:[1 [ ZJ

Combining (9.2) and (9.3) gives Py x(x41) (20 € p(s)] > (1 = 5)(ck — §) > cx — € as desired.

Partite Case. The argument is similar. Let K = K(¢/16,k) be the constant promised in Theorem 9.14.
Let K’ > K be the smallest constant so that for any equipartition over K’ parts, the fraction of faces in the
complete partite complex that touch every part at most once is at least 1 — 5.

Let z = % be as before. As before we first identify the points of X with the complete partite complex

with the same number of vertices in every side. Then we find a point gg such that cs w — 1g of the faces of

the complete partite complex contain go. We find an equipartition Pi, Ps, ..., Pgs of p(X (1)) to K’ parts
such that 1 — {5 of the parts are homogeneous with respect to qo.

We partition further every P; according to the colors of the vertices to Pij for j =1,2,...,d. Then we

remove from the partition every subset Pij whose relative size is smaller than m. We note that by

taking only the remaining sets in the partition the fraction of vertices we removed from every color is no

more than § vertices in any side. This is because for every P;, colors j that have that IP [Pf ] < m can

account for no more than ﬁ out of at least % —z = 2}(,. Thus we have not removed more than

vertices in total, or g-fraction out of each color.

£

8d

2K
case. O

‘We now have subsets Pij that such that m <P [Pf } < 52. The proof now follows as in the two-sided

9.4 Separating MLSI from Reverse Hypercontractivity

As discussed in Section 1, prior techniques for establishing reverse hypercontractivity relied on tensorization
or bounded (Modified) Log-Sobolev constant (MLSI). To our knowledge, all known reverse-hypercontractive
objects prior to this work also have bounded MLSI. In this section, we give the first separation between
these analytic notions in the case where the leading hypercontractive constant C' may be greater than 1 (or,
alternatively, for the indicator variant). To start, recall the definition of MLSI.

Definition 9.15 (Modified Log-Sobolev Inequality). Let M be a reversible markov chain with stationary
distribution ms. The modified log-sobolev constant of M is:

U=
Prst = 0T 2Enty, (f?)

MLSTI is classically used to bound the mizing time of its associated Markov chain,
Tinix (M, €) = min max|mg; M* — 7|7y <e,
init

due to the following upper bound:

Fact 9.16. The mizing time of a reversible Markov chain M with stationary distribution m is at most:

1 log ;1
Tiz(M, ) < log ( 08 T« ) ,
Pursi €
where Ty s the minimum stationary probability.

High dimensional expanders (at least in the bounded degree setting), are slow-mizing, so they cannot
have small MLSI constant. In particular, applying this fact to the Ramanujan complexes gives an infinite
family of reverse-hypercontractive operators with at least inverse logarithmic dependence on the domain size.
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Corollary 9.17. There exist constants £ > 1 and C > 0 and an infinite family {Tp(”>} of (%, ﬁ, C)-reverse
hypercontractive operators with at most inverse logarithmic MLSI:

log? log(m)

pymrLst < Ca ]
0g T«

Proof. Set p = %, let ¢ be as in Theorem 6.3, and let {X(”)} be the family of k = k(n)-uniform LSV
complexes promised in Theorem 9.4 for k = loglogn and A = 27%, and recall that

1. The degree of every vertex is at most 202k for some universal constant Co >0
2. The stationary distribution of 77 /9 on X is uniform

By Theorem 6.3, there exist (universal) constants C, £ such that the noise operator T} /o is (%, ﬁ, C)-reverse
hypercontractive for every complex in the family. On the other hand, we will argue that:

1 . [2F Chlog(n)
Tmix (Tp,§> >m1n{z,2T y

which combined with Fact 9.16 completes the result.
Define the e-support of a distribution
suppZ () = {z : 7(x) > €}.
Setting € = -, observe that any distribution 7 with [suppZ ()| < % has |7 — ms|l7y > 4. We will argue
this holds for minit?? whenever i is any indicator and t is sufficiently small.
3

To see this, we separate out the bounded-degree and stationary components of 7’1 as:
2
T =T1 —27F11
3 2

where IT is the stationary operator, and note that 71 = T + 2~FII. Observe that after ¢ steps, we can
2 b

write any initial distribution 7 as:

2 2

Ty = 77(TF + 27 M) = 27 (T) + (1 - (1 - 27F))n,
2
For large enough k, as long as ¢t < 27%/4 the latter term contributes strictly less than % to each coordinate.
On the other hand for 7 an indicator, the first term contributes positive weight to at most deg(T,+)*
2

coordinates, so setting ¢ such that deg(T LI 7 completes the result. m|
2

9.5 It Ain’t Over Till It’s Over

Friedgut and Kalai’s ‘It Ain’t Over Till It’s Over’ Theorem is a classical result in social choice which states
that even after taking a significant random restriction, any balanced function still has some uncertainty with
high probability (in other words, it is a tail bound on the random restriction operator). The precursor to
this Theorem was a version for the noise operator proved in [MOOO05, Appendix C]. We prove the result
holds for any LUS, which implies the same for any c-nice complex.

Theorem 9.18. For any p € (0,1) and 7 > 0, let X be a d-uniform 7-LUS for d sufficiently large. Then
there exists a constant ¢ = q(p, ) such that for any § > 0 and f: X(d) — [0,1] with density up = E[f]:

]P[Tpf >1-4] < Cpu,107
1
where c;,1 = (%) “, and
]P[Tpf <] < 207

1
8(27,u)‘1+1)5

where c;2 = ( s
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Proof. We prove the former. The latter follows from considering 1 — f. Let T of the set of elements whose
neighborhoods are dense in f:
T={x:T,f(x) >1—-0},
and consider the indicator cut-off h = 1 plin We will argue that on the one hand the correlation of T
=72

and h cannot be large, since when z € T', y ~, v must be mostly above the cutoff. On the other hand, the
correlation is at least some power of p(7T) by reverse hypercontractivity, so u(7T') must be small.
Formally, observe that for any « € T', Markov’s inequality gives that T,h(z) < % SO
2
E[17T,h] < p(T)d——.
I—p
On the other hand, we also have by Markov that E[h] > %; so reverse hypercontractivity for indicators

“
+u?
(Theorem 6.4) implies there exists some ¢ such that:

I+p
Combining the equations and setting ¢ = ¢ — 1 gives the desired result. |

14
E[17T,h] > i (M(T) 1= “>

We note we have made no attempt to optimize the constants, and it may be possible to improve depen-
dence on p. [MOOO05] combine a variant of Theorem 9.18 with the invariance principle to prove the classical
form of the conjecture with respect to random restrictions. It is not clear what the correct form of this
conjecture should be for HDX, or even for product spaces.?? We leave this as an open question.

9.6 A Frankl-Rodl Theorem

The Frankl-Rédl Theorem [FR87] is a powerful result from extremal combinatorics that states that the
independence number of the graph whose vertices are {0,1}" and whose edges are given by fixed weight
intersection k (typically for some k = ©@(n)) is at most exp(—Q(k))|V|. Benabbas, Hatami, and Magen
[Ben12] proved a variant of this Theorem via reverse hypercontractivity on the cube, later leading to several
applications in hardness of approximation [Kau+14]. Their method, which also bounds classical properties
such as the chromatic and dominating set numbers, is based on the following claim:

Claim 9.19. Let pp,qo > 0 and let G = (V, E) be a weighted graph with minimum vertex weight go such
that for every A, B C V of relative size at least pg:

P [SleA,SQEB]>O.
(s1,82)~E

Then the maximal independent set in G has size at most 2pg + ¢o, the minimal dominating set has relative
size at least 1 — (2po + qo), and the chromatic number is at least

2pol+qo'

As a corollary we have that the down-up walks in any of the discussed LUS-complexes in Section 6.3 have
maximal independent sets of relative size at most exp(—Q(k)), a chromatic number of at least exp(Q)(k))
and minimal dominating sets of size at least 1 — exp(—Q(k)). As discussed in the introduction, we remark
that these graphs are not quite the correct analog of Frankl-Ro6dl, since they have edges with intersection
up to some fixed vk instead of vk exactly. Benabbas, Hatami and Magen [Ben12] handle this by analyzing
the closeness of the exact intersection versus noise operator on the cube, using tools from Fourier analysis.
It would be interesting to see if a variant of this result holds on HDX. If this could be shown generally, then
our reverse hypercontractivity theorem would recover Frankl-Ro6dl up to constants in the exponent.

Proof of Claim 9.19. We prove the statement for independent sets. The chromatic number statement follows
since every coloring is a partition to independent sets, and the statement for dominating sets follows since
the complement of any dominating set is an independent set. Let I C G be an independent set and assume
toward contradiction that IP [I] > 2pg + qo. We partition I into I1, I such that P [I1],IP [[2] > po (we can
do so by greedily adding vertices to 7 until its probability is between pg and pg + go). Then by assumption
P (s, s0)~E [s1 € I1, 82 € I5] > 0, which gives the desired contradiction. i

20We remark it should be possible to give a version of the result for suitably ‘global’ functions via tools of [Kee+21; GLL22;
Baf+22b], but it is not clear such a notion would have significant qualitative meaning
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Remark 9.20. Although the graphs we discussed in this paper have self loops. The claim above continues to
hold after removing these self loops, as is evident from the proof.

10 Codes and Splitting Trees

Error correcting codes, and in particular the powerful notions of list-decoding and local-testability, are among
the earliest successful applications of inclusion samplers [Imp-+08; TJK09; TKW12] and HDX [Din+18a;
Ale+20; JST21; PK22; Din+22a]. In this section we explore the implications of our tools and related
ideas over the weaker family of ‘splitting trees’ in this classical setting. Our main application is the first
construction of constant rate codes over large alphabets which simultaneously have 1) near-optimal distance
2) list-decodability and 3) local-testability. At the end of the section we introduce a (conjectural) HDX-based
approach toward ‘lossless’ distance-amplification of LTCs that experiences no decay in soundness.

10.1 Splitting Trees

We start with a fairly substantial detour into the world of splitting trees, which are a weakening of high
dimensional expanders introduced in [AJT19] which only requires certain patterns of swap walks to expand.
We will prove a high-dimensional expander mixing lemma and some basic sampling properties for general
splitting trees that will be useful for our applications to coding theory.

10.1.1 Splitting Preliminaries

Given a binary tree T, let £(T') denote T’s leaves and Z(T') its internal nodes. We drop 7T from the notation
when clear from context. For every internal node v € Z, denote the left and right children of v by ¢, and r,
respectively.

Definition 10.1 (Ordered Binary Tree). A d-uniform ordered binary tree is a pair (T, p) where T is a
rooted binary tree with d leaves, and p : T — [d] is a labeling such that:

1. The label of every leaf u € L is p(u) = 1.
2. For every interior u € Z, it holds that p(u) = p(€y) + p(ru).
We call such a p well-ordered with respect to T'.

A complex is called splittable if it can be decomposed by an ordered tree where every non-leaf node
corresponds to an expanding swap walk.

Definition 10.2 (Splitting tree). Let v > 0. A d-uniform ~-splitting tree is a triple (X, T, p) where X is a
d-uniform simplicial complex and (7', p) is an ordered binary tree such that for every u € Z(T):

/\(Sp(éu),p(ru)) <
We will also work with the corresponding partite notion of splitting trees.

Definition 10.3 (Partite Ordered Binary Tree). A d-uniform partite ordered binary tree is a pair (T, p)
where T is a rooted binary tree with d leaves, and p: T — P{[d]} \ {0} is a labeling such that:

1. p|z is a bijection to the singletons of [d].
2. For every interior u € Z, it holds that p(u) = p(€y) U p(ry,).

We remark that when convenient, we may use a general set S of size d + 1 as the domain of p (generally
corresponding to a labeling of the "parts" of an associated d-uniform partite complex).

Definition 10.4 (Tuple splitting tree). Let v > 0. A d-uniform ~y-tuple splitting tree is a triple (X, T, p)
where X is a d-uniform simplicial complex and (T, p) is an ordered partite binary tree such that for every
non-leaf vertex u € T

ASp(t0) p(ra)) <
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Since all swap walks on two-sided HDX expand, these give rise to a basic family of splitting trees.

Example 10.5 ([AJT19; DD19; GLL22]). Let A > 0 and let X be a d-uniform two-sided A-high dimensional
expander. Then for any binary tree T and labeling p that satisfies the first and second item in Definition 10.2,
(X,T,p) is a d\-splitting tree.

An easy consequence of [DD19] is that partite one-sided HDX also give rise to tuple-splitting trees.

Example 10.6. Let A > 0 and let X be a d-uniform two-sided A-high dimensional expander. Then for any
binary tree T and labeling p that satisfy the first and second item in Definition 10.4, (X, T, p) is a d?M-tuple
splitting tree.

Finally, [Ale+20, Corollary 9.18] also prove that walks on expander graphs are splittable. Let us define
the complex formally. Let G = (V, E) be a graph and k¥ € IN. Let W be the following k-partite simplicial
complex

WG(l) =Vx [k]v
Wa (k) = {{(v1,1), (v2,2),..., (vk, k) }| (vi,v2,...,v%) is a walk in G} .
We choose a face in Wg (k) by choosing a vertex v1 € V according to the stationary distribution over vertices

in G and then taking a (k — 1)-length random walk on that vertex.

Example 10.7. Let G be a A-expander and T, p an ordered partite tree. If every u € Z satisfies:
max p(£y) < min p(ry),

then (Wq, T, p) is a A-splittable tree.

10.1.2 Operations on splitting trees

We will need several further operations on splitting trees for our analysis: a pruning method that allow us to
analyze higher dimensionalT faces, and a partitification technique that allows us to reduce standard splitting
trees to the tuple setting.

We start with the latter. Recall X’s partitification is the complex

P(k) = {(s,w) = {(sﬂm, 1), (5n(2,2)s ..,(s,r(k),k)} \ se X(k),e sk} ,
This notion extends naturally to splitting trees.

Definition 10.8. Let (X, T, p) be a d-uniform A-splitting tree, and p’ : T — [d] a well-ordered labeling such
that |p'(u)| = p(u) for every uw € T. The p'-partitification of (X,T,p) is defined to be the tuple splitting
tree (P, T, p').

Any un-ordered splitting tree can be embed into a tuple splitting tree by taking any partitification.
Claim 10.9. Let (X, T, p) be a A-splitting tree. Every p/-partitification of (X, T, p) is a A-tuple splitting tree.

Proof. Tt suffices to show for every internal node u € Z with p'(¢(u)) = A and p'(r(u)) = B that S4 g(P)
is a A-bipartite expander. This follows from the observation that S4 p(P) is isomorphic to the bipartite
graph with left vertices L = X(]A|) x [|A]!], right vertices R = X (|B|) x [|B]!], and edges (s,i) — (¢,7)
for alli € A,j € B, and (s,t) such that s ~ ¢ in Sp(gu%p(ru).ﬂ It is a standard fact that such a bipartite
construction inherits its expansion from S p(Cu),p(ru ) and is therefore a A-bipartite expander. |

Finally, we note that tuple splitting trees can be pruned to create new splitting trees. Let (X,T),p)
be a tuple splitting tree with k leaves. Let u € Z be an internal node whose label is ' = p(u). Let
P = P(X, F) be the partite complex with vertices P(1) = X [F\F'(1) 1w X[F] and top level faces ¢ {s} such
that ¢ Us € X(k), inheriting the corresponding densities. In other words, we replace the vertices of X in
XF(1) with the set of faces X [F].

P(st)

21Formally, the edge (s,i) — (t,7) also inherits the weight TATTE]

from Sy0,),0(r,)-
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Let T'(u) be the sub-tree of T rooted by u. Let T = (T'\ T'(u)) U {u}. Let p' : T" — ([k]\ F) U{F'} be
the labeling that replaces the subset F' with a single replacement index f:

o) = {(p(v) \F)U{f} FCp(v)

p(v) otherwise

Definition 10.10 (Pruning Trees). Let (X, T, p) be a A-tuple splitting tree with k leaves. Let u € T be a
non-leaf node whose label is F' = p(u). The u-pruning of the tree is the triple (P(X, F),T", p).

Claim 10.11. Let (X, T, p) be a A-tuple splitting tree. Let u € T be a non-leaf node. Then the u-pruning is
also a A-splitting tree. O

The proof follows directly from the definitions and we therefore omit it.

Finally, it will be convenient to introduce notation for sequential pruning, that is given a collection
of disjoint color sets F = {Fi,...,F,}, we denote the sequential pruning of X by F as P(X,F) =
P(..P(X,F1),F>),Fy). Note that the resulting complex is independent of the order of F, so P(X,F)
is well-defined. One can similarly define a sequentially pruned splitting tree as above. It is immediate from
Claim 10.11 that these are also A-tuple splitting.

10.1.3 Hitting set and Bias amplification

In this section, we prove two basic ‘sampling-type’ properties for splitting trees: hitting set and bias ampli-
fication. We start with the former. Recall a complex is (v, %)-hitting if for any A C X(0):

P Al < p(A)!
UGX@[UC | <u(A) +~

Proposition 10.12 (Hitting Set). Any depth D \-(tuple) splitting tree with k leaves is (3P \, k)-hitting.
Splitting trees also exhibit strong bias amplification, used to build balanced error correcting codes.

Proposition 10.13 (Bias-Amplification). Let (X,T,p) be a A-tuple splitting tree for A < %. For any
0<e< % and family of mean € functions {f; : X[i] — {:I:l}}ie[k], 11 fi is a {£1}-valued function with bias

at most:
H fz az

While Proposition 10.12 and Proposition 10.13 are elementary, to the authors’ knowledge they do not
appear in the literature. Prior works on HDX (e.g. [DK17; Ale+20]) use weaker variants of these lemmas
which require super-exponential overhead to achieve a given distance or bias, while the above only requires
quasi-polynomial overhead. We discuss this in greater detail in Section 10.

These results are immediate corollaries of a functional variant of [DD19)’s “high dimensional expander-
mixing lemma” (HD-EML) extended to splitting trees. We give the statement here and include a proof in
the appendix for completeness along with the proofs of Proposition 10.12 and Proposition 10.13.

<l 42 (10.1)

aEX

Theorem 10.14 (high dimensional expander Mixing Lemma). Let (X, T, p) be a depth D A-tuple splitting
tree with k leaves. Denote by d; the depth of the leaf labeled i. Then for any family of functions {f; : X[i] —

]R}ie[k] :

E
acX (k)

[0 -1, 5, 5o

i=1 1 9:€ X1

k
<3PAT ]I fillya, (10.2)
=1

If (X,T,p) is instead a depth D standard \-splitting tree, we take {f; : X(1) — R} and have:

k
<3PATI il - (10.3)

i=1

[ toni)| -1, &, l5te)

IE
acX(k),meSy o1 iy JEX(1
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In the future, we state our results only for the partite setting unless there is a substantial difference in
proof or parameters for the results. Otherwise, we collect analog statements for the unordered case at the
end of Appendix D for completeness.

We close the subsection with a few remarks. First it should be noted that for the special case of expander
walks, better hitting set and bias amplification methods are known (indeed one can achieve polynomial
overhead vs our quasipolynomial bound above). Nevertheless, it is useful to have these lemmas on structures
like HDX that admit stronger properties like agreement tests. We remark it is also actually possible to
use the high dimensional expander mixing lemma for splitting trees directly to prove a different variant
of Chernoff-Hoeffding by reduction to the complete complex. However, this results in exponentially worse
parameters than our arguments in Section 5, and we will not need the result in the following.

10.2 Coding Preliminaries

A g-ary error correcting code C over a finite size-q alphabet X is a subset C' C X", where n € N is called
the block length. We say a code is linear if ¥ = IF,, for prime power p and C' is a subspace, and IF,,-linear if
¥ = IF} for some k € N and C is a subspace of (FK)".

I C
The rate of a code C', which measures its overhead, is r = w, and its distance, which captures the

codes error correction capability, is the minimum normalized hamming distance between any two codewords

S (COURLULEGHIY

c1,c2€C n

We remark that for any IFp-linear code, the distance is the minimum weight of a non-zero codeword. For
ease of notation, we will call a g-ary code with rate r and distance d an (r, d)4-code.

We will be interested in so-called “good” families of codes, which are infinite families with growing block
length and constant rate and distance. We will focus in particular in this section on building large distance
[Fa-linear codes over X = ]P’QC . In this regime there is a classical upper bound due to McEliece, Rodemich,
Rumsey, and Welch [McE+77] stating that good g-ary codes have distance at most 1 — %, or more exactly:

Theorem 10.15 (MRRW Bound [McE+77]). For all € > 0 and ¢ € N, any family of q-ary codes with
distance 1 — % — € has rate at most:

r <O (elog(1/e)).

Given a code C, a unique decoding algorithm with radius v € [0,1/2] is a (possibly randomized) algorithm
Dec : " — C which given any w € ¥" such that dist(w,C) < v outputs the uniquely closest y € C to w.
Note that unique decoding is only possible up to radius L”g;l < 1/2, even with large alphabet, as there
may be no unique closest codeword beyond this point.

List-decoding is the natural extension of unique decoding beyond the % barrier. A code is said to be
list-decodable with radius ¢ if there is an algorithm which outputs a list of all codewords within radius ¢ of
the given word. We first give the combinatorial definition, which simply bounds the number of codewords

around any fixed point.

Definition 10.16 (Combinatorial List-decoding). For v € (0,1) and L € IN, a code C' is said to be (v, L)
list-decodable if for every z € Y, there are at most L codewords x € C such that dist(z,z) < 7.

In this section, we will be interested in efficient algorithms for list-decoding, typically a much more
challening task than the existential definition.

Definition 10.17 (Efficient List-decoding). For § > 0, v € (0,1) and L € N, a family of codes {C}, } is said
to be efficiently (v, L) list-decodable with confidence § if it is combinatorially (v, L) list-decodable and there
exists a (randomized) polynomial time?? algorithm DEc: £ — P(C) such that for every word w € ¥":

Dec(w) = {c € C : dist(c,w) < 7}

except with probability .

22Here we mean polynomial in the block length.
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Another classical approach to handling the high error regime is local testability. A code C is said to be
locally testable if there is a (randomized, non-adaptive) algorithm T¢ which on input of a word w € X",
queries constantly many symbols of w and rejects with high probability if it is far from the code. In practice,
if one receives such a word, instead of trying to list decode they could simply request re-transmission. More
formally, we consider the following standard notion of ‘strong’ local testability:

Definition 10.18 (Locally Testable Code). For any s > 0 and ¢ € IN, a code C of blocklength n is said
to be (g, s)-locally testable if there exists a function T¢ : [n]? x £9 — {0,1} and a distribution D over [n]?
such that on any word w € X", the pair (T, D) (called the tester) satisfies:

1. Completeness: If w € C, then P ;. p[To(J,wy) =1] =1
2. Soundness: P p[To(J,wy) = 0] > s - dist(w, C)
We call g the locality, and s the soundness.

Typically we will simply think of 7¢ as a randomized algorithm and write 7¢(w) to denote its application
on the word w, dropping the distribution of the tester when clear from context. We will work with testers
that have one additional constraint: their queries should be marginally uniform.

Definition 10.19 (Uniform LTC). (7,D) is called uniform if every marginal of D is uniform over [n].

We remark that focusing on uniform LTCs is not particularly restrictive—since codes do not typically
have ‘preferred’ coordinates, most natural constructions are uniform.

Finally, though not strictly necessary, we will assume throughout that all complexes in this section are
“homogenous” subsets X C [n}k , meaning that their marginal distribution over each part is uniform over
[n]. We remark that in the context of high dimensional expanders, any partite ‘type-regular’ complex can
be homogenized in this fashion while maintaining expansion and bounded degree (see [F120] for details). As
most known constructions of HDX are type-regular, this is not a particularly restrictive assumption, and it
is also known to hold for other classical splitting trees such as expander walks [Ale+20].

10.3 The ABNNR Construction

In the previous section, we proved several ‘agreement theorems’ on simplicial complexes. These well-studied
tests are actually very closely related to both local testability and list decoding of a particular family of
codes called direct product codes, corresponding exactly to the set of ‘global functions’ discussed in Section 8.
At a broader level, these are themselves a special case of a well-studied family of codes introduced in the
seminal work Alon, Bruck, Naor, Naor and Roth [Alo+92] called the ‘ABNNR/’-construction. We focus on
the case of Fa for simplicity, though our results extend naturally to larger fields.

Definition 10.20 (the ABNNR Construction). Given a right k-regular bipartite graph G = (L, R, F)) and
a base code C' C FL, the “ABNNR-Encoding” of C' with respect to G is the code Im(FE¢(C)) where Eg is

an “encoding” map Eq : IF|2L‘ — (IFIZ“)'R‘ defined by setting for each ¢ € C' and v € R:

EG(C)U = C|N(v)'

In other words, each right vertex concatenates the symbols of its neighbors to create a new code over
R. One can check that in Section 8, the set of global functions is exactly the ABNNR encoding over the
inclusion graph (X (j), X(k)). For a general k-uniform complex X and j < i < k, we write Egg’l) to mean
the ABNNR-encoding on the vertex inclusion graph (X (4), X (j)). In the special case where i = k and j = 1,
we write just Ex to denote the ABNNR-encoding over the inclusion graph ([n], X(k)), where inclusion is
viewed taking X (k) C [n]¥ as ‘ordered tuples’ of [n], rather than as faces of a simplicial complex. This is a
minor difference, but is a bit more convenient in the setting of amplifying base codes.

Recent years have seen a great deal of work on instantiating the ABNNR construction on high dimensional
expanders and splitting trees [DK17; Din+18a; Ale+20; JST21; BD22; JST23], in particular in the context
of efficient list-decoding. Building on tools from these works, we give the first family of large alphabet codes
with near-optimal distance that are simultaneously locally testable and list-decodable.
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Theorem 10.21. For all large enough k € N and all ¢ > 0, there exists an explicit family of Fa-linear
ABNNR-Codes that are simultaneously:

1. (e90) 1 —27F — &), -codes

o1
2. (0O(1), ﬁ(l)/s))—locally testable.

3. (1- 270(’“), 2O(k))-eﬁciciently list-decodable with confidence 2-Q=k) whenever e < 27K

We remark that very recently, Jeronimo, Srivastava, and Tulsiani [JST23] gave a direct list-decoding
algorithm for the LTCs of [Din+22a] (which have some small constant distance d < %) To our knowledge,
these are the only other examples of codes that are simultaneously ¢*>-LTC and efficiently list-decodable.

The remainder if this section is split into three parts focused respectively on distance amplification, local-
testability, and list-decoding of the ABNNR construction, and a short fourth section devoted to a conjectural
approach to removing the soundness decay in Theorem 10.21. Each section is independent, containing both
the corresponding component of Theorem 10.21 as well as more general results within the framework. To
facilitate this structure we first give a brief proof overview of Theorem 10.21 that doubles as a roadmap for
the section.

Proof Overview. The high level idea behind Theorem 10.21 is simple: starting with a binary locally
testable ‘base code’ C' with distance near %, we will argue that the ABNNR-encoding of C' on any k-partite
splitting tree?? has distance near 1 —27% (Corollary 10.24), is list-decodable (Theorem 10.32), and maintains
local testability (Theorem 10.25). Instantiating this framework on ezpander walks (the sparsest known family
of splitting trees) gives codes with the claimed parameters. We give a brief description of each step.

Distance amplification on splitting trees is fairly elementary, and follows from the hitting-set lemma. This
is a standard argument: one observes that the two encoded symbols E(z), E(z') differ in any face which hits
the vertex set 1,.,s,. Since by assumption the base code has distance roughly 1/2; the hitting set lemma
promises this set is hit except with roughly 2=¢ probability (see Corollary 10.24). Theorem 10.21 actually
uses a slightly stronger distance amplification lemma for expander-walks and is given in Corollary 10.30. The
weaker amplification lemma (in particular its bias variant) appears later in the proof as a sub-component of
the list-decoding algorithm.

List-Decoding the ABNNR construction, despite being heavily studied on HDX and splitting trees, is
surprisingly tricky. Roughly speaking there are two main issues. First, known list-decoding algorithms for
this setting are actually either for an Fa-valued variant of ABNNR called the direct sum construction [Ale+20;
JST21; BD22], or only hold on two-sided HDX [Ale+20; Din+18a] (which have exponentially worse rate). To
handle this, we build a reduction from list-decoding the ABNNR-encoding on X to list-decoding the direct
sum encodings of its projected sub-complexes X¥. The second issue with this strategy is that known list-
decoding algorithms for direct sum [JST21; BD22] actually requires the base code to be e-biased, a stronger
condition than simply having distance near % We will discuss how to construct such base codes shortly. We
instantiate this framework in Corollary 10.35 to prove the list-decoding component of Theorem 10.21.

Local Testability of the ABNNR construction, to our knowledge, has not been studied outside the special
case of agreement testing. Our test follows a very simple strategy. We first check whether the given word
f is a direct product (in the sense of Section 8) via a simple 2-query agreement test: pick a random vertex
v € [n], and independently s,s’ D v, and check whether fs and fy match on v. If this test passes, we
then simulate the tester on the ‘direct product decoding’ of f. That is, for every location the base tester
queries, we pick a random face including that vertex and feed the tester its value in the word f. We prove
this procedure is sound in Theorem 10.25, and instantiate the process in Corollary 10.30 to prove the local
testability component of Theorem 10.21.

The Base Code for our construction, as discussed above, must be an e-biased ¢3-LTC. 3-LTCs with
distance near % are now known due to the breakthrough works of [Din+22a; PK22] combined with LTC
distance-amplification techniques of [Kop+17], but the latter amplification causes several core issues that
make the tecnique largely useless for our setting: 1) the resulting codes make poly(1/¢) queries, 2) may
not be e-biased, and 3) are heavily randomized. We remedy these issues via the ABNNR-construction

23Formally for list-decoding actually require a slightly stronger notion called ‘complete’ splittability, c.f. Definition 10.31.
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itself. In particular, starting with the base LTC of [Din+22a], we encode it into log(1/e)-uniform
walks on an expander graph using ABNNR, and then concatenate with the Hadamard code. This code
is e-biased roughly because concatenating with the perfectly balanced Hadamard code converts the
good distance of the ABNNR-~encoding into good bias, and the resulting code is locally testable using the
Hadamard’s classical local decoding and local testing algorithms. We formalize this step in Proposition 10.29

Finally we summarize the construction and proof below:

Code underlying Theorem 10.21:

1. Start with the base ¢3-LTC C of [Din+22a]
2. Amplify C’s distance via expander walks
3. Reduce alphabet and bias by concatenating with Hadamard

4. Re-amplify the resulting code via a second set of expander walks.

Proof of Theorem 10.21. Bias, rate, and local-testability are proven in Corollary 10.30. List-decodability is
proved in Corollary 10.35. |

10.4 Distance Amplification

The ABNNR construction is one of the most classical distance amplification methods in coding theory. The
standard result to this effect is that instantiating the framework on a (bounded degree) additive sampler
amplifies distance while maintaining rate up to a constant factor.

Lemma 10.22 ([Alo+92]). Let G = (L, R, E) be a right k-reqular bipartite graph such that (R, L, E) is an

(o, B)-sampler. If C C IF|2L‘ is a code of distance o and rate r, then Eg(C) is a (r%, 1 — B)qk-code.

This observation was used in [DK17; Din+18a] to give distance amplification for codes defined on HDX.
Our sampling lemmas imply an exponential improvement in the rate-distance trade-off of such codes. We
choose a fairly arbitrary setting of our parameters for simplicity, but any setup with good sampling works:

Corollary 10.23 (Distance Amplification on HDX). For any a,r,c > 0, let C' be a base code of distance
a and rate r. Let X be a d-uniform c-nice complex. Then for any i < j < d and G = (X(i),X(j)) the

ABNNR code Eé’(j(c) is an (r',d')|g|-code for

y = r||§§8||, d=1- éexp (Q <a8%>) oz =20,

Note that when i = 1, Corollary 10.23 has alphabet size |X| = 2/ and distance 1 — poly(|Z|~!), optimal
up to polynomial factors by Theorem 10.15. However, in this special case, it is actually possible achieve
optimal amplification directly via the hitting set lemma (Proposition 10.12).

Corollary 10.24 (Distance Amplification for Splitting Trees). For any a,r > 0, let C be a base code of
distance o and rater. If X is a k-uniform \-(tuple)-splitting tree of depth D, then Ex (C) is an (r',d’)|z|-code
for
Per——  d=1-(1-a)*=3Px  |z[=2"
| X (k)|

Moreover when o = 3(1—¢), thend > 1 — 2Lk(l +e)k—3PA.

Proof. Rate and alphabet size are immediate from construction. Let x, 2’ € C be any two distinct non-zero
codewords. We wish to bound the distance between their encodings Fx (z) and Ex ('), which is exactly the
hitting probability of 1,., in the inclusion graph ([n], X (k)). By the distance of C' we are promised that

82



u(ly—p) €1 —a, so Proposition 10.12 gives the desired result.?* Plugging a = %(1 — ¢) into the resulting
bound gives the final line. O

10.5 Local Testability of ABNNR
In this section, we prove the ABNNR encoding of a locally testable code is locally testable.

Theorem 10.25 (Local Testability of ABNNR). For any uniform (q,s)-LTC of blocklength n and (kr,kr)-
regular bipartite graph G = (L, R, E) on |L| = n vertices, Eq(C) has a uniform (q+ 2, ﬁ)-local tester.

Our proof relies on the following elementary agreement test. Given a word f, denote by 7g(f) the
following process:

1. Pick a uniformly random vertex v € L
2. Pick two uniformly random neighbors w,w’ € N (v)
3. Accept if and only if fi,(v) = fur(v)

In the agreement notation of the previous section, we’d write the word f as an ensemble F = {fy, : N(w) —
Fa}wer and denote the acceptance probability of this test as Agreeg(F). We will move between these two
viewpoints interchangeably. T¢ is clearly complete. Its soundness follows from a general result of [GC19]:

Lemma 10.26 ([GC19, Lemma 5.2]). There exists a universal constant ¢ > 1 such that for all € > 0 and
any ensemble F:
Agreeg(F) 21— = dist(F, gmaj) < ckre

where for v € L we define gmqj(v) = plumlitywe]v(v){fw(v)}.25

With this in mind, we prove Theorem 10.25 via the following natural tester: given a word f € (]F];R)R,
run the DP-tester on w, and the base code tester on the plurality decoding of f if it passes:

1. Run 7g on f
2. For every v € L that 7¢ would query:

— Sample a random neighbor of v: w ~ N (v)

— Denote the ‘decoded’ plurality as gqec(v) = fu (v)
3. Run 7¢ on ggec

Proof of Theorem 10.25. Query complexity and completeness are immediate from construction. The tester is
uniform since the base code is uniform, and picking a uniformly random vertex v € L and random w € N(v)
is uniformly distributed over R.

Toward analyzing soundness, fix any ¢ € [0,1] and f some word at distance dist(f, Ex(C)) = d. We
need to show the test rejects on f with probability at least dc’ ﬁ for some ¢’ > 0. Observe that we may

assume 7 (f) passes with probability at least 1 —§ ﬁﬁ, since otherwise Step (1) rejects with probability

at least 5% ﬁ and we are done. We claim that conditioned on this event, the following two properties hold:

1. ggec matches gmaj with high probability:

s
SN]PTC[Elv € 5t gdec(V) # gmaj(v)] < m

2. gmaj is far from the base code:
. 1
dist(gmaj, C) = =—9.
2%kp
24Proposition 10.12 is formally for (X (1), X (k)), but because X is homogenous the bound carries over by simply setting each
partite component of A to be A; = 1,_,/.
25Tjes can be broken arbitrarily.
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Soundness is then immediate: as long as the base tester 7¢ receives the ‘correct’ symbols from gmaj, it rejects
with probability s - dist(gmaj) > 2,;9 0 by Item 2. Since the former occurs with probability at least ﬁ& by
Item 1, the total rejection probablhty is at least 2k 0— 4k36 ,chS as desired.

It is left to prove the claimed properties.

Proof of Item 1. Observe that since the queries are marginally uniform, by a union bound it is enough to
show that the decoding of a uniformly random vertex succeeds except with probability i k 0. The proof is
essentially a simpler variant of Claim 8.2. For a fixed v € L define the set of ‘bad’ nelghbors as those whose
labeling disagrees with the plurality decoding as:

v = {w € N(v): fu(v) # gmaj(v)}.
The failure probability of our single-query decoding procedure is exactly ]EL[BU], so it is enough to show
ve

S

E[B,] <

This follows from the fact that the test 75 can be written as an expectation over complete local distributions.
In particular, observe that we can decompose T as:

Agreeo(f) = PP [fw( ) = fur(v)] > 1

v~ Law,w!~N (v deqkp

0.
deqkp

S

J.

This implies that the expected probability that fy,(v) # f.s(v) in the local distribution is at most:

S

E [fw( ) # fuwr (V)] <

d.
v~L w,w NN 4quR

Since w and w’ are independent neighbors of v, the inner term is at least

[fw( ) # fu (U)] - 2]E[BI]IE[B_U] > IE[BU}

w w’NN

since E[B,] > % by construction, which completes the proof.

Proof of Item 2. The proof follows from the fact that conditioned on Step (1) (the agreement test) passing,
Ex (gmaj) is close to a DP-codeword. Thus if gmaj itself is too close to C it’s encoding will be close to Eg(C)
violating our original assumption on the distance. Formally, assume for the sake of contradiction that gma;
is not %—far from C. Then there exists z € C such that dist(gmaj, ) < %. Since G is bi-regular, this
further implies a bound on the distance of the encodings of gmaj and x:

dist(E¢ (gmai), EG(2)) = P [Ec(gmay) (w) # Ea(w)(w)]

<k P E i)(w)y # Eg(z)(w
B P o [E6 ) (), # Eg() ),

= kpdist(gmaj, )

0

5"

where the second equality follows from the fact that since G is bi-regular, sampling a uniformly random
vertex v € R and a random s € N (v) is equidistributed with sampling a random w € L. Finally closeness of
the encoded words contradicts the fact that f is §-far from Eg(C), since Eg(z) is a codeword and by the
triangle inequality:

dist(f, Eq(z)) < dist(f, Eq(gmaj)) + dist(Eq(gmaj), Ec(z)) < 4,

where we have used the fact that since Agreeg(f) =1 — Tegky; Py assumption, f is i d-close to Eg (gmaj) by
Lemma 10.26. |
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We remark that it is likely possible to reduce the query complexity of the above argument to just ¢ + 1 by
re-using the first query of 7o for the agreement test and performing a more careful conditioned analysis on
the latter passing. Since ¢ for us is some small constant, the difference between ¢ 4 1 and ¢ + 2 is negligible
so we only give the simpler independent version above.

To prove Theorem 10.21, we need a good explicit family of binary linear LTCs with near optimal distance
to amplify via Theorem 10.25. In fact, as discussed in the proof overview we will need base codes with the
stronger property of having small bias:

€

Note that an e-biased linear code always has distance at least 1< since for every ¢ € C, ‘Eie[n] [(—1)%]

1 — 2dist(e,0). Our base codes start with the breakthrough construction of ¢3-LTCs by Dinur, Evra, Livne,
Lubotzky, and Moses [Din+22a]:

bias(C) = o {‘]Eie[n] [(=1)“]

Theorem 10.27 ([Din+22a]). There exists an explicit infinite family of binary, linear, uniform LTCs with
constant rate, distance, locality, and soundness, and a linear time unique decoder up to constant radius.

We remark that while [Din+22a] do not argue their testers are uniform, it is easy to check from their
construction that this is the case. As discussed in the overview, it is possible to use the distance amplification
techniques of [Kop+17] to achieve ¢3-LTCs with distance near 1/2 (even hitting the GV bound), but these
codes may not be e-biased and incur a heavy poly(¢~1) cost in the query complexity. We will take a different
amplification strategy that avoids these issues almost entirely at the cost of a small polynomial blowup in
rate. The idea is to concatenate our amplification procedure in Theorem 10.25 with the Hadamard code:

<a7 >

Had: F5 — FZ, o 14

We denote the resulting code (the image of this map), by Ciaq.

The Hadamard code comes with three properties critical to our construction. First, it is easy to check

that the code is binary, linear, and perfectly balanced (0-biased). Second, it is a classical result that the
Hadamard code is an excellent LTC:

Theorem 10.28 ([BLRI0]). The Hadamard code is a uniform (3,1)-LTC.

Finally, it is well-known folklore (and an easy exercise) to show the Hadamard code is locally decodable.
We will not go into the formal details of locally decodable codes, but it suffices to say there is a randomized
algorithm Dec : ]F%k x [k] — F2 which given a word y such that d(y, Chaq) < i and a coordinate 7, queries

only 2 bits of y and outputs the correct decoding with probability proportional to its distance from the code:
P[Dec(y,i) # z;] < 2d(y, Chad) (10.4)

where x = Had™!(y) is the pre-image of the unique closest codeword to y.

Note that this is essentially the same property we used in Theorem 10.25 in decoding the ABNNR-
encoding. We will show that concatenating with the Hadamard code similarly allows us to amplify the bias
and distance of the base code while only incurring constant blow-up in query complexity and logarithmic
loss in soundness.

Proposition 10.29 (The Base Code). For every ¢ > 0 there is an explicit infinite family of uniform, e-
biased, linear (poly(e), 3 — €)2-codes that are (O(1),log™*(1/¢)))-locally testable. Morecover, there exists
t < 1 such that these codes are uniquely decodable up to radius t in time nexp(poly(e~1)).

Proof. We apply Theorem 10.25 to [Din+22a]’s LTCs using the complex X = Wg generated by length
k = O(log(1/¢)) random walks on any constant degree, regular 3-spectral expander G (such expanders are
known to exist for any n, see e.g. [Alo21]). This results in a poly(e)-rate code with distance at least 1 — §
by the classical expander hitting set lemma [HLWO06] which states that for any set T C X(1) of measure p

1+p>k1

5 (10.5)

P pllon s nTI=0 <p(

(81,-8%) €
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The argument is then as in Corollary 10.24. Finally by Theorem 10.25 this encoding has a uniform

Cl

(c, W)-local tester for some universal constants ¢, ¢’ > 0.
The key step is now to concatenate this resulting family with the Hadamard code:

C = Had(Ex(C)),

where the Hadamard encoding is applied pointwise to each symbol in Ex(C). This encoding maintains
linearity and decreases the rate by a factor of at most 2% = poly(g). To compute the bias, observe that since
the Hadamard code is perfectly balanced, every non-zero symbol of a word w € Ex (C) contributes 0 to the
bias so in the worst case we have

bias(C) < t(c)-0+ (1 —wt 1} <1—-d(Ex(C)) <e,
jos(€) < max (wh(e) -0+ (1-wr(e)) 1} < 1 - d(Ex(C)) <=

where wt(c) denotes the normalized hamming weight (fraction of non-zero elements in c).

log(c—ll/e) and recall
Ex(C) has a uniform (g, s)-local tester (which we’ll refer to as the “base tester”) which requests only a
single bit of each queried symbol. We’'ll denote these requests as pairs (z,7) € X(k— 1) x [k]. Our testing

procedure follows a similar form as in Theorem 10.25. Namely given a potential word y:

We now argue that this concatenation has a uniform local tester. Write ¢ = c and s =

1. Draw a uniformly random z € X, and run the Hadamard test on y(x).
2. For each (z,17) requested by the base tester, run the Hadamard decoder on y(z) at coordinate i.
3. Run the base tester on the output

The test is complete by construction, and makes at most 2¢q 4+ 3 queries (two for each run of the local decoder,
and three for the initial Hadamard test). Soundness follows along the same lines as Theorem 10.25. We first
argue that the word y must be close to a cartesian product of Hadamard codewords (else Step 1 rejects).
We then argue that the decoding succeeds with high probability, and the decoded word must be far from
the base code (else y itself would be close to C), so the base tester rejects with good probability.

Formally, let y € (]F%k)X satisfy dist(y,C) = 7. We argue that the above procedure rejects with proba-

bility at least %. To see this, first observe we can assume the word y is 1 — % close from being a product

of Hadamard codewords. Otherwise Step 1 rejects with probability at least % since

P[Step 1 Rejects] > E;[dist(y(z), Chaq)] = dist <y, H OHad) )
X

Fix some ypad € [[x CHad which minimizes the distance from y and denote the set of ‘corrupted’ coordinates
of y to be

B = {x € X :dist (y(z),CHad) > i} )

Note that the measure of B is at most %, since the closeness of y to [ Caq is violated otherwise.

Define set of ‘valid’ decodings of y to be strings in (]Fé)X whose encodings match yp,q on all uncorrupted
coordinates:

Ygec = {ydec € (11:;]2@))( :Vr e BaHad/(ydec(x)) = yhad}-

Note that when we re-encode any ygec € Ydec, it will be at distance at most % from y since:

dist(Had(ydec),y) < dist(Had(Ydee)s Ynad) + dist(Had(ynaq), y)

<(]P[B}-%+]P[B}~O)+Z—;

ST
<.
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We now argue that Step 2 correctly decodes to some yge. € Ygee with high probability. Since decoding
always ‘succeeds’ on coordinates in B (since any decoded value is accepted), the worst case is when B = ()
and Ygec is the pre-image of the unique closest word in every coordinate. In this case, local decodability of
the Hadamard code (10.4) promises the probability any fixed query (z,:) fails to decode t0 ygec(x); is at
most

X

Union bounding over all g queries, we decode to ygec except with probability %5

Finally, we argue any ygec € Ygec must be %T—far from Ex(C), in which case the base tester rejects with

probability at least %ST — % = [ by a union bound. This simply follows from the fact that if yge. were

37-close to Ex (C), then there exists w € Ex (C) such that

dist(Had(w),y) < dist(Had(w), Had(yqec)) + dist(Had(yqec), y)
< dist(w,y) + %

N

T

where the second inequality comes from observing that the encodings of w and y4e. are the same on any
symbol on which they agree, and can only improve in distance when they differ.26

It is left to show our concatenated family has an efficient unique decoder. It is a classical fact that
concatenating codes with efficient unique decoding at radii tipner and touter gives a code with an efficient
unique decoder at radius tippertouter Simply by running the inner decoder on every inner symbol, then running
the outer decoder on the result [For65]. In particular decoding at this distance is successful since if a true
word m is corrupted in at most a tinnerfouter fraction of its coordinates, no more than a touter fraction of
inner codewords can have a tinner fraction of corruptions. Thus running the inner decoder results in the
correct word except in at most a touter fraction of outer coordinates, which is then successfully decoded by
the outer decoder.

We can decode over each Hadamard symbol up to radius ¢ < } by brute force in exp(poly(c~!)) time
(and otherwise output some fixed word, say 0, beyond this radius). Ex (C') can be efficiently decoded up to
some constant radius ¢ by taking the majority vote over each coordinate, then running the base decoder on C'
(see e.g. [Din+18a]). This process takes time nexp(poly(e~1)) + O(n), for a total time of n exp(poly(¢~1))
as desired. O

Finally, we argue these base codes can be amplified to large alphabet LTCs with near optimal distance.

Corollary 10.30 (Large Distance ¢3-LTCs). For all large enough k € IN and all € > 0, there exists an
infinite family of Fa-linear (r,d) g -codes that are (g,s)-locally testable for:

=0k g—q1_97F_ 1z =2k =0(1) =0 <71
r £ s g, y g y 8 1
klog(g)

Proof. We start with the explicit family of base codes given in Proposition 10.29 with ¢ = O(1) queries,

distance % — £, and rate poly (). For a given code C' in the family of blocklength n, let X be the collection

of length-k walks on any explicit degree §-expander of degree O(£72) on n vertices (such graphs exist for
any large enough n [Alo21]). The size of X (k — 1) is O(r ), and the expander hitting-set lemma (Equation

(10.5)) ensures the distance of Ex (C) is at least

1 9 K k
I—(z+=) 21-27"-¢
(375) 212"

Finally, since the base code’s tester is uniform, local testability follows from Theorem 10.25. m|

26Technically we’ve also used that ¢ > 4 and s < 1 here, which follow from the parameters of [Din+22a].
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It is worth comparing Theorem 10.25 to the distance amplification for LTCs of Kopparty, Meir, Ron-
Zewi, and Saraf [Kop+17], who also analyzes local testability of distance-amplified codes via a related
construction of Alon and Luby [AL96]. Their work largely focuses on achieving near-optimal rate-distance
trade-off: they achieve the singleton bound over large alphabet codes and the GV-bound over Fa. In
comparison Theorem 10.25 has worse rate than their construction, but makes up for this with exponentially
better alphabet size and local testability. Quantitatively, to achieve distance 1 — 3, [Kop+17]’s codes require
alphabet size 2poly(1/8) and lose poly(1/8) factors in the testing parameters, while ours have the optimal
B~ 1-dependence in the former and lose only logarithmically in the latter.

10.6 List-Decoding ABNNR

In this section, we show that the codes in Corollary 10.30 are efficiently list-decodable, completing the proof
of Theorem 10.21. Efficient list-decoding of the ABNNR construction was first considered by Dinur, Harsha,
Kaufman, Livni-Navon, and TaShma [Din+18a], who gave an algorithm for the construction instantiated
on HDX. After [Din+18a)’s work, Alev, Jeronimo, Quintana, Srivastava, and Tulsiani [Ale+20] showed it
possible to efficiently list decode a closely related construction called a direct sum code over some relaxed
families of splitting trees (including HDX and expander walks). Using a reduction to direct sum, they also
recover the parameters of [Din+18a]’s ABBNR~codes on HDX as well.

In this section, we give an efficient list-decoding algorithm for the ABNNR-construction on complexes
satisfying a slightly strengthened variant of splittability that ensures the complex can be “split” at any
coordinate. We refer to this notion as complete splittability.

Definition 10.31 (Complete Splittability). A d-uniform partite complex X is called completely A-splittable
if for all i € [d]:
A2(S[1i) i41,a) <A

where we recall S|y ;) ;41,4 1 the ‘swap walk’ adjacency operator between X[[1,4]] and X[[i + 1, d]].

Complete splittability sits in-between tuple-splitting trees and partite HDX, and is closely related to
notions of splittability defined in more recent works on direct-sum decoding [JST21; BD22] (in particular it
is equivalent to the definition introduced in the former, see Appendix F for details). We can now state the
main result of the subsection:

Theorem 10.32 (List Decoding on Completely Splittable Complexes). For any t < 1/2, let Cy be a binary
code with blocklength n, bias(Co) < 1—2t, and which is unique-decodable to radius t in time To. Let X C [n]k
be a homogenous, completely A-splittable complez, and C = Ex(Cy) its ABNNR encoding. Let d(C) =1—¢
and T > 0 be any value satisfying

T 2 max { VE, 4/ (1—2t)0 + 2, V22103, 8 (1- t)i/Q}

fori= % - klog(%). There exists a randomized algorithm, which given §j € (F5)X recovers the list

Lr(7) ={yeC:d(g,y) <1-7}

with probability 1 — E(—:%Q—ﬁfn(”/ﬂ) in time O({:ﬁz exp(log(1/t) exp(k®/72))(|X |+ To)). Moreover, the
number of such codewords is at most:

T—¢€
X 77’2 — 52 .

The proof of Theorem 10.32 goes via reduction to direct sum decoding. The direct sum encoding of
a code C on a complex X simply concatenates the ABNNR-encoding with XOR : ]FIQ€ — TFa, that is
dsumx (C) := XOR(Ex(C)) (where XOR applied pointwise, similar to in the Hadamard concatenation in
the prior section). Most of the work in proving Theorem 10.32 is already done via [JST21; BD22)’s direct
sum decoder for completely splittable complexes:
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Theorem 10.33 (List Decoding Direct Sum [JST21; BD22]). For any t < 1/2, let Cy be a binary code
with blocklength n, bias(Co) < 1 — 2t, and which is unique-decodable to radius t in time To. Let X C [n]*

be a homogenous, completely \-splittable complez, and C = dsumx(Co) be its direct sum encoding. Let
e = bias(C) and B > 0 be such that

B> max{ VE, V220032 (1 — t)m} .

There exists a randomized algorithm which given § € IFg( recovers the list

N | =

5 () = {x € Co : d(f, dsumx (x)) <

_ 3}
with probability 1 — %2_0(”/t2) in time O(exp(log(t) eXp(%;))|X| + To). Moreover, the list has at most

5 ()] <

™ | =

codewords.

We remark that the requirement on the unique decoder radius in [JST21; BD22] is slightly more strict
as stated, but one can easily modify parameters in their proof to achieve the above. We now prove
Theorem 10.32 by reduction to Theorem 10.33.

Proof of Theorem 10.32. We appeal to a simple variant of the reduction of [Ale420]. Given a potential word
i € (F5)X at distance d(§, C) = 1 — 7, we claim the following process is an efficient list-decoder.

1. For every F C [d], apply Theorem 10.33 to XOR(§j|r) on dsumxr(C) with 8 = 7/4 to get:

F sum ~
o= U oy )
FCld+1]

2. Prune any decodings that are far from §:
£:(9) = {Bx(2) s v € £5(p), d(Ex(2),5) <1-7}.

To prove this procedure indeed gives a valid list-decoding we will use the fact that any projection of a
splittable complex, in particular each X* above, is also splittable.
Claim 10.34. Let X C [n]¢ be a homogeneous, completely A-splittable complex. Then for any F C [d], X T
is homogeneous and completely A-splittable.
The proof follows from the inheritance of expansion under projection, and is defered to Appendix F.
We now prove the output list £, is exactly the set of codewords at distance at most 1 — 7 from C.
Recall that our base code is assumed to be at most (1 — 2t)-biased. By bias amplification lemma for
splitting trees (Proposition 10.13) and Claim 10.34, we have that for any X', the bias of dsum yr(C) is at
most (1 — 2¢)/F1 42X\, As such, our choice of 3 = 7/4 satisfies the conditions of Theorem 10.33 whenever

i < |F| <k (for 7 as in the Theorem statement). Let y € Ex(C) be a codeword at distance at most 1 — 7
from ¢, then we have

P{js = ys] = Es [E ey [xr (s +0s)]| > 7.

where xp(y) = (—1)F¥) are the standard characters. By averaging and Chernoff, there must exist |F| >

% — v/klog(2/7)) such that

Es [xr(Fs)xr(ys)] > 7/2,

which is equivalent to the statement that the distance of §|g from y|p is at most % -I1= % — [ in the direct
sum encoding on X% Since X¥' is homogeneous and completely A-splittable, by Theorem 10.33 we have

that the decoding of y appears in L,0(§) except with probability % exp(n/t?). By the Johnson bound (see
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e.g. [Din+18a][Theorem 2.15]), there can be at most —== such codewords y close to §, so union bounding
over these gives that all valid codewords are in the list with the desired probability. Finally, all extraneous
decodings are removed in the second step, which completes correctness of the procedure.

Running time follows immediately from the fact that we have run the direct sum decoder at most 2*
times, and the resulting potential list has at most exp(k) potential codewords by the Johnson bound and

our choice of 8 = 7/4, each of which can be pruned in O(k|X]) time. i
Finally, we instantiate this result on expander walks to complete the proof of Theorem 10.21.

Corollary 10.35. The family of codes in Corollary 10.30 is (1 — 9~ (k), ﬁ) efficiently list-decodable with
confidence 2= Q(n—k)

Proof. Since [JST21] prove that walks on an A-expander are homogeneous and completely A-splittable, it
is enough to ensure the parameter 7 in Theorem 10.32 can be set to 2 (k) Recalling that the base code
of this construction is e-biased and uniquely decodable in linear time up to constant radius, and that the
encoding has distance at least 1 — 27 — ¢, as long as ¢ < exp(—Q(k)) one can easily check it is possible to
take 7 = exp(—Q(k)) and =5 = 2-9(%) satisfies all conditions of Theorem 10.32. i

10.7 Toward Lossless Amplification from HDX?

Our expander-based construction experiences polylogarithmic decay in soundness with the alphabet size.
This is exponentially better than prior methods, but it is plausible the decay could be avoided entirely. In
this section, we propose an approach toward such ‘lossless’ amplification via the ABNNR-Encoding on an
HDX.

Instantiating Theorem 10.25 directly on an HDX does actually slightly improve soundness over
Theorem 10.21, but the loss of % in the dimension of the complex is inherent to our approach, no mat-
ter the instantiation. The reason is that our method only simulates the base tester a single time. As a
result, the rejection probability will only scale with the distance of the decoded word from the base code.
On the other hand, because X amplifies this distance by a factor of k, this results in an unavoidable loss in
soundness.

There is a natural approach to fixing this issue: simulate the base tester “k times in parallel,” analogous to
Raz’s parallel repetition theorem [Raz95] and its de-randomized variants in agreement testing [[KW12; DM11;
DD23b; BM23b]. Indeed on the complete complex, this approach can actually be carried out successfully:

Theorem 10.36 (Parallel LTC Amplification). Let C be a uniformly (g, s)-locally testable (r, %)Qﬂzode of
blocklength n and X = ([Z]). Then Ex(C) is a uniformly (¢',s")-locally testable (1',d') s -code for:
, r

1
"= D d/:1—2—k(1+5)k—0n(1), = =2% ¢ =q+2, s =cs

where ¢ > 1 is some universal constant (independent of k).

Proof. Rate and alphabet are immediate from construction, and distance follows from (near)-independence
of ([Z]). For local testability, we rely on the following agreement theorem of Dinur and Steurer:

Claim 10.37 ([DS14]). There exists a two query agreement test on ([Z]) and a constant ¢ > 1 such that?7
Agreeg(F)21—e == dist(F, gmaj) < ce

With this in hand the proof is similar to Theorem 10.25. For k independent runs of the base tester 7,
denote the requested symbols by {wg'l)}je[q],ie[k] and write s; = {:vg.l), .. ,x§k)} € ([Z]). Given a word f, our
tester performs the following two-step procedure:

1. Run the Dinur-Steurer test on f

2"We remark that formally Dinur and Steurer consider [n}k, but their techniques transfer to this setting (formally, see e.g.
[DD19] for the quoted result).
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2. For every i € [q]:

— For each j € [k], denote the ‘decoded’ plurality function at xy) as gdec(l“;i)) = fs (xgl))

— Run 7¢ on gdec(‘rgi))a e 7gdec<xt(1i))

The tester is complete and makes g 4+ 2 queries by construction. The proof of soundness is very similar to
Theorem 10.25, so we give a shortened explanation here. Assuming dist(f, Ex(C)) = 6, we need to show
our test rejects with probability ((§). Assume Step (1) passes with probability at least 1 — és_céq (else we
are done). Since the base tester is marginally uniform and the k runs are independent, each face s; € X
is marginally uniform, and therefore by Claim 10.37 exactly matches plurality except with probability g—‘;.
Union bounding over the g faces gives that gqec matches gmaj on all queried points except with probability
§0. By the same argument as in Theorem 10.25, gmaj must be at least %—far from C', so conditioned on
receiving the correct values, at least one of the base testers rejects with probability 1 — (1 — %)k > 54—6 for a
s0
8

total rejection probability of 54—‘5 — % = % as desired. m|

The issue with Theorem 10.36 is that the resulting code has very poor rate. It is natural to conjecture
that, as in the single query variant, this can be resolved by replacing ([Z]) with a high dimensional expander.
Indeed it is known that the agreement testing step (the analog of Claim 10.37) works in this setting [DK17;
DD19; KM20]. Note that this is not the case for other splitting trees such as expander walks, which would
lose a factor of k. The challenge then mainly lies in extending the parallel simulation. Below, we discuss the
current challenges toward porting this second half of the proof to HDX.

The first difficulty in parallel simulation is that the HDX and base code must ‘match’ in the sense that
there is a natural distribution over g-tuples of faces that corresponds to k valid g-query tests for the base
code. Recently, Golowich [Gol23] showed how to construct HDX from certain (modified) locally testable
codes, and Dinur, Liu, and Zhang [D1.Z23] built LTCs (of sub-constant rate) that sit on the triangles of an
HDX. It is not clear a priori how to fit either of these constructions into our framework, but it is plausible
they or modifications thereof do.

The second difficulty in simulating the parallel tester is that the k runs of the base test will be inherently
correlated. There is a long history in the HDX literature of handling this type of behavior (e.g. [DK17; DD19;
KM20; GK23b; DD23b; BM23b]), including the agreement tests we discuss in Section 8. Very recently,
building upon tools in this work, [DD23b; BM23b] prove that certain strong families of high dimensional
expanders admit 1%-regime agreement tests, which are closely related to parallel repetition [IKW12; DM11].
As a start, it would be interesting to extend Theorem 10.36 even to dense complexes known to admit such
tests, such as the Grassmann [IKW12] or spherical buildings [DD23b]. To summarize, we give the following
informal conjecture:

Conjecture 10.38 (Parallel LTC Amplification). There exists a family of high dimensional expanders and
locally testable codes which admit a “parallel” variant of Theorem 10.25, that is:

1. There is a q-step random walk or distribution on X generating k valid ‘parallel’ tests

2. The resulting parallel tester has no (asymptotic) decay in soundness.

11 Concentration Lower Bounds

In this section we prove our results are essentially optimal with respect to their dependence on the sampling
parameters and quantitative expansion of the complex. We further show one cannot hope to achieve our more
involved applications such as reverse hypercontractivity using classical samplers such as expander walks.

11.1 Optimality for Inclusion Samplers

In Section 5.2, we proved that the if X is a high dimensional expander, then the inclusion graphs (X (k), X (7))
are roughly (e, exp(—aQ%))—additive samplers. Inspecting the proof of Theorem 5.1, it is easy to show that
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for any set A of density p and strong enough local-spectral expansion A < u, one can give the following
improved bound:2®

3

2k
P r [A Cs|=2P[A < - =—=-— .
seX(k) rEX(i)[ | el 4] +E} P ( (]P [A] Z>)

In this section we prove that for most ¢ < k, this is essentlally optimal. Recall that a complex X is called
(7, 4)-hitting if for any A C X(1), Pyex(i) [0 € A] <P [A]" +~. We say that X is (v,4)-hitting for sets of

size p1 if Poex (i) [0 € Al <P [A]" + ~ holds for any A C X(1) of size IP [A] = p.

Theorem 11.1. Let e € (0,0.1). Let i < k be two integers satisfying % > 3c72 and let n > keF. Let X be a
k-uniform simplicial complex such that every vertex in X has the same probability + oo If X s (i, 3) -hitting,
then (X (k), X (2)) is not an (e, 8)-additive sampler for f < exp(—O(e QE))

In particular, for any p € (0,0.2), if X is (4, w) hitting for sets of size & there exists E C X (i)

with §pu <P [E] < p such that Pye x (x) [PreX [E| r Cs]>TPI[E] +€} > exp(—O(i ).

While the assumption that X is (7, §)-hitting is not completely general, it follows from (X (k), X (i))
being a modest sampler. We prove this at the end of the subsection.
Claim 11.2. Let (X(k), X (i)) be an (g, & )-additive sampler. Then X is a (4, £ )-hitting for all sets of size
at least 01—2

This results in the variant of the bound stated in the introduction.

Corollary 11.3. Let £ € (0,0.1). Let k and n be large enough (as a function of €). Let X be a k-uniform
simplicial complex such that every vertex in X has the same probability l. If (X(k),X (7)) is a (ﬁ, &)-

)
additive sampler, then (X(k), X (i)) is not a (g, B)-additive sampler for any f < exp(—O(e 2%))
The assumption that the vertices all have the same probability is also not general, see the discussion in
the end of this subsection.
11.1.1 Proof of Theorem 11.1

For the rest of the section we restrict our attention to “one-sided” additive sampling, that is:

[P [A] 8] >P[4]+¢].
S vn~vSs
This is no larger than the probability that [P,~s [A| s] — P [A]] < e and is more convenient to handle.
Let us introduce some notation, similar to the notation in Section 7.2 (but for one-sided sampling in
different levels of the complex). For a k-uniform simplicial complex, ¢ < k and constants p,e > 0 let

(X, ki, pu,e) = max {se;I(J(k) Leg(i) [A| 7 Cs]>TP[A] —l—s] ’ ACX(4),P[A] = u} .

That is the best one-sided sampling bound for when restricting to sets of relative size p.2?
For general sampler graphs G = (L, R, E) we use similar notation:

(G, ¢, 1) = max {JER LJEL [A] v~u] >P[A]+ 5]

AgL,]P[A}:;L}.

We also denote by A, the complete complex on n vertices.

28Though formally when i = Q(
exponent.

29Here let us assume for simplicity that there exists sets of this probability. We note that this assumption is justified because
as n grows larger the possible sizes of sets, {%}Z=07 becomes dense in [0,1]. The use of this claim later on is to find a set of
size &~ p anyway, so we neglect dealing with this minor point.

logk:) one needs to assume ¢ is a large enough to subsume the % factor in front of the
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Proof of Theorem 11.1. We start by stating a general bound on all samplers (not just inclusion samplers),
via reduction to the sampling properties of the complete complex.

Claim 11.4. Let k,n > 0. Let G be a bipartite graph such that |L| = n and such that it is k-right regular.
Then
(G e, u) =2 7(An, k, 1,6, ).

We defer the proof, and first argue this implies Theorem 11.1.
Fix 4 as in the theorem statement. By Claim 11.4 there exists A C X (1) of measure IP [A] = £ such
that 10 0
seX (k) i i

Let E = N;(A) be the set of all i-faces that hit A and let 4/ = P [E]. We claim that
p=iP[A] > P[E] >
The lower bound follows from the hitting property, namely:

PE]>1-(1-E)y L5 2 lpy
i 3°2 2
since p < 0.2.
The upper bound follows because the only way to sample a vertex in A is to sample an i-face in E, then

subsample a vertex in A in that i-face. The probability of doing so (conditioned on landing in E) is at least
1

' The proof will follow if we can show that

10
P | P [E|rCs>PE+e|>n(Ank 1,2 25
seX (k) |reX(i) ?

) (11.1)

7

since Chernoft’s bound is tight on the complete complex.

Lemma 11.5 (Reverse Chernoff, e.g. [KY99, Lemma 5.2]). Let ¢, and k be such that %zk > 3, and let
n > kek, then w(An, k, 1,4/, ¢") > exp(—l()i—?k).go

Applying this lemma with 4/ := £ and &’ := 1% and using the fact that %k > 3 by assumption, implies
2k

1
P P [E| rCs]>P[E]+¢ >W(An,k,1,%,%)>€XP(—O(;Z.))-

seX (k) [reX (i)

Toward proving (11.1) observe that for a fixed s € X(k), the probability of F inside s depends only on
the probability of A inside s. Assume that P[A|s] —P[A] > 1% Then

P [E|rCs]>1-(1-P[A] s])

reX (i)
>1—(1-P[A] - %)
>1—(1-P[A])" +2¢
> P[E] +¢

where the first inequality is by observing the choice of 7 C s subsamples ¢ random vertices (without replace-
ment). The probability of hitting A in the latter is then at least 1 — (1 —IP [A] s])*, the hitting probability
with replacement. The third inequality is true when ¢ > 1 and € < 0.1.

30Technically the lemma in [KY99] is for sampling with replacement, instead of sampling without replacement (which is the
complete complex case), but for n > ke the two are close enough in T'V-distance so we get essentially the same theorem.
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Combining this with our original guarantee on sampling A itself we have

X, ki, e)> P P [E|rCs|>P[E }
W< Lh E) seX (k) [reX(i)[ |T_S} []+E

> P [PM|U€$>P@Q+EE}

seX (k) i
>ﬂ%%Li23
1 1

as desired. m]

It remains to prove Claim 11.4. The proof is basically repeating the lower bound in [CEG95]. The latter
show any degree-k (&, d)-additive sampler satisfies § > exp(—Q(s2k)). Similar to our strategy above, their
proof can be interpreted as showing (A (k),An(1)) containment graph is the optimal sampler in terms of
right-degree, then reducing the general case to A,,. We give a refinement of their argument for sets of specific
size, though our definition of samplers is less general than theirs.

Proof of Claim 11.4. Let D,, be the uniform distribution over all sets A C L of probability y. Then

(G, e, p) > P [A] v~r]>u—|—5}

P
reR,A~D,, |vEL

Observe that since we randomize over A and G is right regular, the choice of r € R doesn’t affect the inner
probability. As such, we may fix any ro € R and instead consider

P P [A ~
A~Dy, [UGL[ v TO}>M+E]’

that is the probability (over A) that A N7y contains > (u + )k elements.

We claim this is equal to m(Ap,k, 1,6, ). To see this, assume without loss of generality that L =
{1,2,...,n} and ro = {1,2,...,k}. Since we have assumed the vertex weights are uniform, A is a uniform
sample of un points out of L. It is convenient to think of A as being sampled via the following procedure:

1. Draw a random permutation o € Sy,
2. Set A =0(Ap), where A9 ={1,2,...,un}
Observe |rg N A| > (u+ ¢)k if and only if |o0=1(r9) N Ag| > (1 + ¢)k. But note that the random variable

o~ 1(ro) is exactly a random choice of a set A, (k). Therefore, this is equal to

P P [A Es|>putel.
s€An (k) 'uE[n][ ol v S] K

Since every set of vertices of equal measure has the same sampling in A, by symmetry, this is exactly
m(An, k, 1,6, 1) as desired. O
11.1.2 Sampling implies hitting

We briefly prove Claim 11.2.

Proof of Claim 11.2. Let A C X(1) be a set of size £ and E C X (i) its set of neighbors. We need to show

]P[E]>1—(1—]P[A])i—§.

Let f: X (i) — [0,1] be f(s) = @ and observe that E e x(;) [f(s)] = §. Let B be the set of bad k-faces
that over-samples f:

B_&EXW

E 1) > 5 + 5}

sCt 102
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then by our sampling guarantee IP [B] < &.
Fix t ¢ B. Then it holds that IP,,c x(1) [A] v € t] < 1l < L hecause Pex(y [A] vet] = Esc [f(s)}
K2

i
Moreover, by the hitting properties of the complete complex, we have that P [E| ¢] > 1— (1P [A]| t])
(using the fact that inside the complete complex, the sampling is negatively correlated). Thus

szgwwuﬂ

>HﬂﬁBhgghﬂE|tﬂ

>(1- )= E [1-P[A] 1))
> (1) (1= E [1-P[A] - &)])
>(1-2)(1-(1-PA) - 2)

11.1.3 Discussion

We conclude the section with a few remarks.
Remark 11.6.

XK repcos
Sy [CEGO5]. The

degree of a k-face in (X (k), X (i)) is (¥), and the degree of a set in X (i) can be arbitrarily large, as in

i

1. Theorem 11.1 doesn’t follow from the tight bounds depending on degree or on

the complete complex case. The lower bounds in [CEG95], imply a lower of exp(—O((’?))) instead of

(3

exp(—O(%)). In addition, the ratio X(B)| *which is another source for lower bounds in [CEGI5], can
g X @]

be arbitrarily large. That being said, we will reduce to the bound in [CEG95] (only for small sets).

2. While most high dimensional expanders can be symmetrized to satisfy the assumed vertex uniformity
[F120], it is worth noting the condition can likely be relaxed to a bound on maxge x (k) Poex(1) [v € 3]
with some additional effort. Further, some assumption of this sort is necessary. To see this,
take the complete k-partite complex X where X[i] = {z;} are singletons for all i < k, and
X[k] = {y1,y2,.. -, yn}. That is X(k) = {{zo,21,..., 251} U{y;}| j=1,2,...,n} are all possi-

k-1
ble faces between the different parts. For any f : X (1) — [0,1] we note that E[f] = M +
2 Eyex (e [f(yi)]. Thus for every s, [Eyc, [f(v)] —E[f]| < £. In particular, for every ¢ > £, the
inclusion graph is an (g, 0)-sampler.

3. We note that a similar bound can be achieved by essentially the same proof assuming only %-hitting,
albeit at the cost of worse dependence on e. In particular, assuming only that X is ©(1)-hitting, one

can still prove a lower bound against (e, exp(—O(s%)))—sampling.

11.2 High Dimensional Expansion

Having shown that the concentration bounds of Theorem 5.1 cannot be quantitatively improved, we turn to
understanding the extent to which our requirements on the expansion of the underlying complex are necessary
for strong concentration. We give two lower bounds to this effect. First, we argue that concentration is not
implied by local-spectral expansion at or below the TD-barrier.

Proposition 11.7 (Lower Bounds at the TD-Barrier). For every 8 < 1 and d € IN, there exists a family of
1-TD complezes {Xn} such that (Xn(d), Xn(1)) is not a (%,ﬂ)—additive sampler.
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Thus in this sense our results giving concentration bounds for A-TD complexes for any A < 1 are tight.
Note that by Lemma 4.15, the above also implies failure of sampling for these complexes for any (large
enough) k < d (this can also be shown directly by the same method).

The proof of Proposition 11.7 is based on the ‘product’ complexes of Golowich [Gol21], whose construction
we quickly describe. Given a weighted graph G defines the product-complex X as

Xa(d) = {{o151) s (oassa)) (et € B loidican € () }-

The measure of each face o = {(v1,51),...,(vq,84)} corresponding to an edge {s,¢} is proportional to
w(s,t) - f(4), where f is some weighting function dependent only on the number v; = s.

Proof of Proposition 11.7. Let G = K7(11/)2 o K7(11/)2 IT{e}, that is two disjoint copies of K, /o with an additional
edge e passing between them, and take the weights of every edge to be uniform. [Gol21] shows that there
exists a weighting function f such that X is connected and has expansion é in every (d — 2)-link. By
construction, the 1-skeleton of X is a (d+ 1)-cover of G with edges ({vo, so}, {v1, s1}) whenever {vg,v1} is
an edge in F, and sg # s1. With this in mind, define the set A to be the indicator of the first clique in each
part:

A={(v,s):v € K1(11/)2}

A clearly has measure % by construction, while on the other hand any o € X(d) corresponding to an

edge ¢/ # {e} is either entirely contained in or entirely misses A. Since all edges are evenly weighted, the
probability that a d-face corresponds to {e} is at most O(n~2), which gives the desired bound for large
enough n. O

The above proof extends immediately to a lower bound on sampling of X under any weight function
and any graph G simply by taking A to be any (nearly) balanced subset in G with expansion (near) % It
is an easy exercise to show that choosing A randomly suffices (and namely that such a set always exists).

Our second lower bound studies a slightly different regime. 1-TD complexes typically have only constant
local-spectral expansion at low level links, so Proposition 11.7 does not, for instance, rule out showing o4(1)-
local-spectral HDX satisfy strong concentration. Using similar ideas to our degree lower bounds, we show at
least some inverse polynomial local-spectral expansion is required to have strong concentration.

Proposition 11.8. For any ¢ < % and large enough d € IN, there exists a family {X,} of d~¢-two-sided
local spectral expanders such that for any 8 < 1, (Xp(d), Xn(1)) is not a (d~¢, B)-additive sampler.

The proof of Proposition 11.8 relies on another construction of Golowich [Gol23] building inverse poly-
nomial HDX from Cayley complexes.

Theorem 11.9 ([Gol23]). For every ¢ < % and large enough d € IN, there exists a family of d-uniform,

202( lOg("))-degree, %—two-sided local spectral expanders { Xy} whose 1-skeletons are Cayley graphs over IF3

with two-sided expansion \ = @(%)
We can now use Lemma 9.10 and the Cayley structure of X’s 1-skeleton to prove Proposition 11.8.

Proof of Proposition 11.8. Since the 1-skeleton of X is a Cayley graph over IFy, there is an eigenvector
go : Fy — {£1} whose eigenvalue is A. Let us consider the indicator g of the set A = {v € Fy| go(v) =1}
whose measure is P [A] = % This indicator is equal to g = % + %go. We note that for every v,
1 1
P [A]= E [o(w)] = 5+ 5 E [ao(u)].

u~v u~v

The function go is an eigenvalue so 5 Euy [g0(u)] = 3g0(v) = £3. Thus, Py, [A] — P [4] = £3 so for
every € < % and any 3 < 1, the underlying graph is not a (e, 3)-sampler. By Lemma 9.10, this implies that
either the containment graph is not a (2e, 3)-sampler, or the containment graph of some link of a vertex
is not a (2e, %)—sampler. Since the vertex links of {X,} also give an infinite family of %—two—sided local
spectral expanders this implies the result. |

This counterexample poses the following question: For € € [d™¢, d—¢/ 2} what is the worst A\ which still
promises that the containment graph is a (e, exp(—d°))-sampler for some ¢ > 07
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11.3 Expander-Walks

Finally we take a step back from concentration itself and look at necessity of local concentration for our
applications (that is concentration of the links of X and in particular the locally nice property). We argue
this is at least in some sense necessary: classical samplers such as expander walks which behave poorly under
restriction fail reverse hypercontractivity. Recall the expander walk complexes W defined in Section 10.1.

Proposition 11.10. For any 0 < v < 1 and A > 0, there are infinitely many pairs k,n € IN with a
corresponding A-expanders G = ([n], E) and balanced subset A C Wg (k) satisfying:

P [t eX(1)\Aandt e A] <270 ")
t,t!~UDj i,

Proof. Take k odd and n even. It suffices to take any regular graph G with girth(G) > k. Define A to be
the set of walks whose center vertex is in {1,2,...,5}. Notice that A is indeed a balanced function, as every
element is the center of the same number of random walks in a regular graph (see e.g. [Ale+20] for details).

On the other hand, it is easy to see A has very poor expansion due to the girth of G. In particular, the
only way to leave A (resp. X(1)\ A) is if the walk re-samples all of [k/2+ 1], or all of [k] \ [k/2]. If neither
event occurs, there exist indices ¢ < (%] < j which were not re-sampled, and the girth of the graph ensures

there is only one option for the [é]th element (namely its starting position). One can compute directly the
probability either event occurs is at most 2~y (k)
To complete the proof, we need an infinite family of regular A-expanders for any A > 0 with super-

constant girth. Many such constructions exist in the literature, including the classical Ramanujan graphs of
[LPS8S]. O

Note that for any fixed v,C, ¢ > 0, taking k in Proposition 11.10 sufficiently large means we can always
find subsets A, B C X (k) such that

P [te AAt' € B] < CP[A]*P[B],
t,t'~UDj,

violating reverse hypercontractivity for all parameter settings. We remark that the failure of expander walks
in agreement testing is well known, and can be derived e.g. from [GC19].
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A Concentration for the Complete Complex

In this section we show near-optimal concentration bounds for the complete complex.

Claim A.1. Let X be the complete complex on n vertices, that is X (k) = ([Z]). Let o,0 > 0. Then for any

¢ < k, the containment graph G = (X (k), X (¢)) is an (o, =5 exp(—%oz[%), d)-multiplicative sampler and
2 2k s

(e, 2 exp(—5|7]))-additive sampler for any ¢ > 0.

Proof. Fix and A C X (¢) such that IP [A] > a. We apply Lemma 5.10 in the following distribution. The

distribution we use samples (s1,52,...,8m,t) ~ D such that (s1,s2,...,8m) are independent and ¢ € X (k)

is a uniform face conditioned on containing all s;. Obviously, (s;,¢) is a uniform pair of £ and k faces where

s; € t. Moreover, by Chernoff’s bound for independent sampling

62

P [A]‘ > gl[’ [A]} < 2exp(—ﬁam).

|S1' €A| _
m

P
(51,52,--,8m ,t)~D

The claim follows from Lemma 5.10. The additive bound follows by the same argument applying Hoeffding’s
inequality. O
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Note that we do not restrict the number of vertices n in this claim. Since the k-skeleton of the complete
complex is only an ﬁ—two sided spectral expander, this claim does not follow from Theorem 5.1.

B Concentration for the Swap Complex

In this appendix we prove Theorem 7.14, which we restate here for convenience.

1153klog(2)
£5

Theorem (Restatement of Theorem 7.14). Lete >0, i<k € N, and C = C;,, for n > . For

any f:C(1) —[0,1]:
1. Upper tail: ]P[ULE_JF —E[f] >¢] < exp(—Q(EQ%))

2. Lower tail: ]P[ULE.f —E[f] < —¢] < exp(—Q(EQ%)

The main technical claim we prove is the following. We reparametrize k = im.

1153imlog(2)
5

Claim B.1. Let e > 0,i,m € Zy, n > , and denote C' = Cj jm . Then for any A C C(1):

1
P P[A]| t| > P[4 < ——®m ).
t:{sl,sz,...,sm}ecm)[ Al HH} exp< 9° m)

The same lower bound applies when replacing > IP[A] 4+ ¢ with < IP[A] —e.

Theorem 7.14 directly follows from Claim B.1 together with Claim 4.11.
We will prove this claim by reducing to the following result of Panconesi and Srinivasan.

Theorem B.2 ([PS97, Theorem 3.2]). Let fi, fa,..., fm be functions on a probability space with p =

Y1 E[fi], and such that ay < fy < bg. Assume that for every ni,na,...,n, € N
m m
E Hfé”] <n[TEL;")-
/=1 /=1
Then
- —2t2
P >t < exp<—).
; fezn TP\ S = a2

Proof of Claim B.1. We prove the bound for > IP [A] + ¢; the < P [A] — £ follows from the original inequality
applied on the complement 1(0) \ A. We also assume without loss of generality that IP [A] > §, and prove
that

PSe €A

P

{s1,52,..,sm }€C(m)

2
— >u+a]<exp( e*m). (B.1)

This suffices since, by our assumption that n > %g?’, for any IP [A] < § we may always find B O A with

P [B] € (5,%) and deduce

|s¢ € B
m

|Sg€A|
e YR

:|< >]P[B]—|—E:|<e ( EQm)
= 3 —| S ex _—
m {s1,82,....,6m}€C(m) 3 p 9

{s1,52,.,sm}eC(m)

where we’ve applied (B.1) to the appropriately sized set B.

Intuitively, we wish to prove (B.1) by applying the theorem of [PS97] where each f; : C(m) — {0,1} is
the indicator that s, € A (ignoring the rest of the coordinates), t = em, and n = exp(st). Then since
ap = 0 and by = 1, we’d have

P |Se€A|>

— pA4e| <nexp(—2e2m) = exp(—e*m)
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as desired.
Unfortunately, since C'(m) is unordered, this is not quite well-defined. Instead, we will apply Theorem B.2
as above to the partification of C(m), denoted C'(m), the distribution over ordered m-tuples (s1,...,5m)

m
such that each sy € ([7;]) and all sy are pairwise disjoint. Since the > fy = |sp € A] is independent of the
/=1

ordering of the face, proving (B.1) for the partification clearly implies_ the desired unordered bound as well.
Moving back now to the statement of Theorem B.2, for any I C [m], let s; € A be shorthand for
the event that V¢ € I,s; € A. The expectations E [[TjL; f,“] in our setting are then of the form
(51,52,s5m) €5 (m) [s1 € A], so we need to show VI C [m]:
P [s; € Al <exp(e?m) P[4
(81,52,-..,8m )EC(m)

We will prove the slightly stronger bound by induction on |]:

P [speAl<(1+eH)plall
(51,82,--,8m ) €C(m)

The base case |I| = 1 clearly holds since the marginals s, ~ ([?]) are uniformly random. Assume then the
result holds for all sets of size r. Let I be a set of size r + 1 and write I = J U {¢}.

The idea is to split the analysis based on whether or not the marginal s; samples A well. Toward this
end, define the set of s that over-sample A as

Ty = {SJZE[Si € Alsy] > (1—|—%£2)]P[A]}.

We can bound the probability that s; € A by

P [s;eA<P[Ty]+ P [T;ands; € 4]
(81,52,-..,8m )EC(m) (81,52,...,8m)€C(m)
SP[T]+ (1452 P[4] P[5, € A (Def of T)
<P[Ty]+(1+ %az)(l +e2)Ip a1+ (Ind. Hypothesis)

Thus it remains to argue that P [T;] < %(1 + )P [A}‘JHI. In particular, by our assumption that
P[A] > §, it suffices to show

Em+2

P[Ty] < CUESE

We prove this by reducing analysis of IP [T;] to the probability of mis-sampling A on a higher level of the
complete complex, an event we’ve already shown has a subgaussian tail in Appendix A.
Toward this end, let ¢t = Uje 7 8j denote the disjoint union of the f-sets in s, viewed as an element in

(i[lilf]l)’ and write £ = [n] \ t. Observe that the conditional distribution of sy given s; is simply uniform over

) — in other words, it depends only on the union ¢. As such, the event {s;};c; € T also depends only on
) Y JJ3€ Yy
the union, namely {s;};cs € Ty if and only if

P [seed| s ST > 1+ ) PLA].

spUs g

Since the distribution over 7 generated as above is uniform over (n_[g‘] J‘), we may rewrite the condition as:

t |S¢

PTy] =P |P[A| 5,C7 > (1+352)]P[A}

107



The righthand side is now exactly the probability of (multiplicatively) mis-sampling A in the inclusion graph
of the complete complex over n vertices (Ap(n —ilJ]),An(¢)). In Claim A.1, we proved this graph is a

(5, L§ exp ( UtlJ) , ) multiplicative sampler. Since IP[A] > § by assumption, we therefore have
P[Ty] = [A| se CT) > (1+l52)]1’[A] <Eexp a i
n=r ¢ 2 = 1927 )"

1152imlog(2)

The size of ¥ is at least n —im > =

, 80

16 € gmt2
P [TJ] < 8_3 exp (Gmlog (5)) < W

for all m > 1 as desired. O

C Outstanding Proofs on Samplers and Concentration

C.1 Sampling

Claim C.1 (Claim 4.8 Restated). Let 3,5 > 0, let & > 6 and o < %@

G = (L, R, E), it holds that Gop := (R,L,E) is a (1(()‘71”[3 2a, §’)-sampler.

Then for every (a, 3, §)-sampler

Proof of Claim 4.8. Let A C L be such that P [A] > %ﬂ. Let

a(e

Bs—{’UER IPL[uEA|u~U]<(1—£’)IP[A}}
ue
and let
BB—{’UER IPL[ueA|u~v}>(1—|—6/)IP[A]}.
ue

Showing that IP [Bp|,IP [Bg] < a will prove the claim. Let us begin with Bg. Assume toward contradiction
that IP [Bg] > . We denote by 14 : L — {0,1} and 1p, : R — {0, 1} the indicators of A, Bg respectively.
On the one hand

E [1a(u)lpg(v)] <P [Bs](1-¢)P[A], (C.1)

uwwel

since the product of indicators is one iff v € Bg, in which case, there are at most a (1 —¢’) P [A] fraction
of u € A adjacent to v by the definition of Bg. On the other hand, by the sampling properties of (L, R, F)
there is at most a S-fraction of u € L such that Pycr[v € Bs| v ~u] < (1 —¢)P[Bg]. Hence

B [La()1p,(0)] > P [Bs] (1 <) (P [4] - 5)* (©2)

Combining (C.1) with (C.2) yields
P [Bs]IP[A] (¢'—¢) < BP[Bs] (1-¢)

or

1—55( <1_) 1—a(l+e)

P[4] < o@ =2

B,

e —e¢

a contradiction to the lower bound on the size of A.
Let us bound Bp. Let 1p, : R — {0,1} be the indicator of Bg. Similar to (C.1) we have that

CE_[La(w)1ps(0)] > P[Bp) (1+) P [4]. (C3)

31P [A] > B by assumption.
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By the sampling properties of (L,R,FE) there is at most a p-fraction of w € L such that
Pyer[v € Bp| v~u]> (14+¢)P[Bg]. So similar to (C.2) we have that

JE [La(u)pg(v)] < 5+ P [Bp](1+¢)(P[A] - 5). (C4)

Combining (C.3) with (C.4) yields
P [Bp|P[A] (e —€') < B(1-P[Bp](1+¢))

o 1-P[Bpl(1+e) ,_1-a(l+e)

P[A] < 5

A< TE =g "< aw=9 "’
where the last inequality is because the function = — %B is monotone increasing when z € [0, 10—4_55}
and « is in this interval. This is a contradiction to the lower bound on the size of A. |

Claim C.2 (Claim 4.9 Restated). Let G = (L, R, E) be a bipartite graph.

1. If G is a (B, §)-additive sampler then G is a (C9, 3, %)—multiplicative sampler for any C > 1.

2. If G is a («,,6)-multiplicative sampler for a < % Then G is a (8, d)-additive sampler, where

d =max{d, (1+9)(a+p)} and p = max,cg P [v].

Proof of Claim 4.9. The first item follows immediately from the definition of multiplicative samplers. If
IP [A] > Ce then &P [A] > € so by the promise of additive sampling it holds that

PP [ueA| umv}_mA]‘>lmA@ <P

veL

uER C veL | |ueR

P [ue Al uwv]—]P[A}’>s] <B.

We turn to the second item. Let A C R. For every u € L it holds that

Plveal unol =Pl =|1- P e Al urol-(1-Pla)| -

P [ueR\A| u~v]-P[R\A]

so we assume that without loss of generality P [A4] < % We need to show that

P
veEL

uER

P [u€A|u~U]—]P[A}’>5]<ﬂ. (C.5)

If P [A] > « then this holds from the multiplicative sampling guarantee. Hence it suffices to show that
this inequality always holds for sets of relative size smaller that ¢.

First we note that if w € L is such that Pyegpu€ A] u~v] < P[A] then
Pucr[u€ Al u~v]—P[A]| <P[A] <4 so

P
veL

P [uecAl uwv}—l[’[A]‘>6} =P
ueR veL

P [ue Al u~v}>(5—|—l[’[A}]
u€ER

In this case we find a subset B D A such that P [B] < o+ p (we can do so by adding vertices to A one-by-one
which is where p comes into play). Then

P {]P [ue Al u~v]>5+]P[A}] < P []P [u € B| u~v}>5+]l’[A}]
veLl |ueR veL |ueR

<UIEL L]ER[UEB| u ~ ] >(1—|—a)]P[B}}

<B.

The claim follows. O
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One can also remove the dependence on ¢ in the second item.
Claim C.3 (Claim 4.10 Restated). Let 8,0 > 0. If for every o > ap it holds that G is an (a, 3, O‘—\/Oa)—
multiplicative sampler, then G is a(8, 2(a + p))-additive sampler where p = max,cg P [v].

Proof of Claim 4.10. The proof is the same as the proof of the second item in Claim 4.9. the only difference
is that for large sets, we still have that

P | P A ~v|-TP|[A 2 < C.6
r ueR[ue | u~ ] [ ]’ > ao+p] B (C.6)
because if IP [A] = « then a—\/%a < . o

Claim (Restatement of Claim 4.11). Let G = (L, R, F) be an (e, 8)-additive sampler such that every r € R
has degree at least k and every v € L has probability at most % Assume that exp(—0.0lan)) < %. Then
G is also a (43, 2¢)-function additive sampler.

Proof of Claim 4.11. Fix f : L — [0,1]. We prove a (23, 2¢) upper tail bound. The lower bound is similar.
Let A ~ P(L) be a random subset where every vertex is inserted into A independently with probability
po = f(v). Since G is a sampler, for every possible outcome A we have P,cp [Py~r [v € A] =P [4] > €] < B.
Let 1(A,r) be the indicator for this event. In particular, we have that E4 g [1(A4,7)] < 5. By Markov,
the fraction of 79 € R such that E4 [1(4,ro)] > % is at most 283. On the other hand, we will show that if
E > E 2
JE [1(0)]> E [f(0)] + 2

then IE4 [1(4,70)] > 3. Indeed, fix such an ro. Observe that if Pyey, [A] < Eyer, [f] + 3¢ and Pyp, [4] >
Eymr [f(v)] — 3¢, then

1 3
—Ze> Sex .
P> E [f(0)]- e3> E W)+ Se> P+
It is direct to check that E4 [P [A]] = E[f] and that E 4 [Py~r, [A]] = Ey~r, [f(v)]. Hoeflding’s inequality
therefore bounds the probability that either Pyer, [A] < Eyer, [f] + &€ or Pymrg [A] > Eonrg [f(v)] — € by
2exp(—0.01e%k) < & and E4 [1(4,70)] > & follows as desired. i

Finally we prove the basic Chebyshev-type sampling bound from expansion.

Claim (Restatement of Claim 7.10). Let G = (L, R, E) be a A-bipartite expander and let A be its bipartite
adjacency operator. Let f: L — [0,1] be a function with E[f] > 1 and let 0 < € < p. Then

A2
ngR[Af(u) <p—eg|< poR

Proof of Claim 7.10. Dinur and Kaufman observe the following bound

NVar(f)

P [|A — —_—
P (Af) ] > o] < 2V
Let f+ = f—p. Then Af(v) —pu = Aft. By Chebyshev’s inequality, IP [T] < w and by A-expansion
E[(Af5)2] < N E[(f1)2] = AVar(f). The claim follows. Now by the above we can write

NVar(f)
(e + (E[f] — p)?*

PAf(u) <p—c] <P[Af(u) - E[f]] > E[f] - p+e] <

Noting that Var(f) < E[f] = u+ (E[f] — 1) and denoting x = E[f] — p, this is at most Mlpta)  Xp 4

(e+x)? €2

110



C.2 Concentration

Lemma C.4 (Lemma 4.15 Restated). Let X be a d-uniform simplicial complez, k < d, and f : X (k) — [0,1]
a function satisfying

1. Upper Tail: X]I(’k)[f —E[f] > t] < fup(t)

2. Lower Tail: X]l(’k)[f —E[f] < —t] < fiow(t).

for some functions fup, fiow : R+ — [0,1]. Then the d-lift Uy q4f : X(d) — R satisfies:

1. Upper Tail: X]I(’d)[Uhdf —E[f] > 1] < fup(L) (1 = b T (1))
2. Lower Tail: X]I()d)[Uk7df —E[f] < —t] < flow(%)(l —nghf(%))_l.

Proof. We give the argument for the upper tail. The argument for the lower tail is analogous. Assume for
the sake of contradiction that

fkd () 7L
L Ukt = > 2] > fup (1 (1-rlbtm)

Since a k-face can be drawn by first drawing a d-face, then a uniformly random k-subface, we can use
concentration of the complete complex to derive a contradiction. In particular, let F; denote the event that
Uk,af —p > 2t. Then:

U — t| =2PE| P — t E
{voka}eX(k)[ kdf — 1>t [ 1]TCS[f(7°) p>t|se k]

>PlE](1= P [f(r) —E[f] <t]s e E])
>PlE](1— P [f(r) = Uka < —t|s€En)
> fup(t)
O

Lemma C.5 (Lemma 4.16 Restated). Let X be a d-uniform simplicial complex and k < d. Assume there
exist functions fup(t,v) and fip,(t,v) such that any v-Lipschitz f : X(d) — R satisfies:

1. Upper Tail: P[f —E[f] > t] < fup(t,v)
2. Lower Tail: P[f —E[f] < —t] < fiow(t,v).
Then any function f': X(k) — R with v-bounded difference satisfies:

2

1. Upper Tail: P[f' —E[f'] > t| < fup(L, Ev) te W

2

2. Lower Tail: P[f' —E[f'] < —t] < fiow(%, Ev) + e 5.

Proof. Let f : X(k) — R be a function with v-bounded difference and g its d-lift g = Uy, 4f. Since a face
r € X (k) can equivalently be sampled by first drawing a face s € X(d), then subsampling r uniformly from
s, we can bound the concentration of f as:

PLf(r) ~E[f] > 1] < P [g(s) ~ E[f] > 1/2V f(r) — g(s) > 1/2

< P g(s) —Elg] > t/2] + P | f(r) = E [f(r)] >1/2
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where we have used the fact that E[g] = E[f]. Informally, the idea is then to argue the first term is small
due to exponential concentration of X (d) and the fact that the lift g is itself more concentrated than f, and
the second term is small by subgaussian concentration of the complete complex.

We first argue that if f has v-bounded difference, g is £v-Lipschitz. Given s € X(d) and i € [d], let s(*)
denote a copy of s with the ith coordinate re-sampled. Expanding v, we have:

=1 S +
- 2
- ; 57]5i) <t]g:s ['ﬂ o tC]E:(i) [f]) +]
1 < 2
d— Z S flsr) = f(s)
(k =1 55 Tg[d] )

where we recall st is the k-face consisting of the elements of s indexed by T'. Observe that the inner term

is non-zero only when ¢ € T', since otherwise s = sgf). Thus by Cauchy-Schwarz, we have:

d—1 d 9
LS E Y (P - 1)
K =15 | 7c
(1) & v
(k) = Li€TCld]
ok
T4

where we have used the fact that s(T") and s’(i)(T) are neighboring k-faces in the down-up walk on level k.
We can now bound the first term of our upper tail by assumption as

P lo(s) —Elg] > /2] < fup (g Su) |

For the second term, observe that since f has v-bounded difference as a function of X (k), the restriction of
f to (§) € X(k) also has v-bounded difference (since any edge (r,r’) in the down-up walk restricted to s
is also an edge in the walk on X (k)). Thus using subgaussian concentration for Lipschitz functions on the
complete complex (see e.g. [CGM19, Corollary 2]) we also have

2
P [70) - El10))> /2] <,
rCs

rCs

Combining the two gives the result. O

D High Dimensional Expander-Mixing Lemma

In this section, we give the proof of our variant of the high-dimensional expander mixing lemma and its
various corollaries.

Theorem D.1 (high dimensional expander Mixing Lemma (Theorem 10.14 Restated)). Let (X,T,p) be a
depth D A-tuple splitting tree with k leaves. Denote by d; the depth of the leaf labeled i. Then for any family
of functions {f; : X[i] = R}

k
H E fl al <3D/\H|‘fi”2di-

k ] k
i:1 i1 4 €X1 i=1




If (X,T,p) is instead a depth D standard \-splitting tree, we take {f; : X(1) — R};cp and have:

k

k k
E i(an(; (@] < 3PATTI filloas
aeX (ki) [Ulf <“w<z>>] [, B, e TT14llse,

=1

Proof. We prove the partite case directly, then argue (10.3) follows from partitification. It is convenient to
introduce the following notation. Let f = (fi, f2,..., fx) such that f; : X[i] = R. Let S C [k]. Let (T, p)
be an ordered tree. Without loss of generality we identify every leaf u € £ with its label p(u).

— Denote by fg the sub-tuple containing only functions whose index is in S.
~ Let mp, : X[S] = R be the product of functions in fg, that is 77, (s) = [[;cg fi(a:) (where s = {a;}ics)-
We note that when S1, S2 are disjoint then iy " Tig =
1 S2
— Let Efs = HieS ]E[fl}

— Let T}, and Tk be the sub-trees rooted by the left and right children of the root of T', respectively. Let
L, R be the leaves of T, TR respectively.

T s usy”

— For T, Ty, Tr and tuple of functions f we denote by

k]v HHlede’ fLaTL H”fngdrla vaTR H”szgd -1.

€L i€ER

In this notation we need to show:

D _
’]E[wf-[k]} ~ B, | <322, 7).

The proof is by induction on the depth D. The base case (depth 1) is trivial. Assume that the theorem
holds for any set of functions on any tree of depth < D — 1. By adding and subtracting Er, | - E[ry,],
observe that

< ’]E[wf[k]] —E[ry,] .E[wfR}] + ’JE[Wf-L] Elrg,] - B, (D.1)

I II

’]E[”f[k]} —Epy

by the triangle inequality. We bound I and II separately, starting with I. Since the swap walk Sp, g is a
A-bipartite expander, applying (4.2) to Tf, T, We get that the first term in the right-hand side of (D.1) is

[Elry, ]|~ Elng, | Elng,)| = [Elr, - 7,) ~ Elrg, JElrg, ]| < Almy, lallmg,ll2 < AT T il

where we have used the fact that

7z, ll2 <TI0 illgars and lmz,ll2 < TTIfill e, (D.2)

€L i€ER

by repeatedly applying Cauchy-Schwarz along the splitting trees of L and R respectively.
It remains to bound II. By the triangle inequality, we can factor this term into components dependent
on the left and right subtrees:

Elrs,] Elry,] - Ep, | <|Elry, ) Blrg,] - Elrg, ] Bp, | + [Blrg, ] Ep, - Bp,

(D.3)

= ’]E[w-

+ ’EfR’ ‘]E[ﬂ-f_[,] —Ep -

)| [Blnz,] - B,
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Since (XL, Ty, pl, ), (XE, Tk, plTy) are both A-tuple splitting trees of depth < D — 1,2 the inductive hy-
pothesis implies

JE[wf—R]—EfR’<3D*1A5(fR,TR), and ’]E[wf-L]—EfL <3P=INE(fL, Tt

so we can upper bound (D.3) by

3770 (|Elry, )

E(fr,Tr) + ‘Ef_R‘ g(fLaTL)) :

Finally, observe that

1Er| = TTIELA <TI0l <TI0
1ER i€ER i€ER
by monotonicity of expectation norms and similarly

‘lE[wf-L] <|lmg, ll2 < HHfi”Zdi
€L

by (D.2). Altogether, this gives an upper bound of
T+ < AE(fap, T) + 2237 INE(Fiy, T) < A3PE(Fyy, T)

as desired.

For the unordered case, take an arbitrary partitification (X', T, p’) as in Definition 10.8. (X', T, /) is a
A-tuple splitting tree by Claim 10.9. Define f; : X[p'(u;)] = R by fi((v,5)) = fi(v). Viewed as random
variables, f; and f; are equidistributed, so E[f;] = E[f;] and | fi|lga; = || fillya;- Moreover, by construction

k
aeX (k— 1 ),mES} Ll:[ fila ] - (a,w)e])]?'(k—n L_l_[1 fi(%(i)m(z))] ,

SO can write

(a,m) EX’

<3D/\H||fil\2di

i=1

k
= 3D/\H||fi|‘2di

i=1

[Hfl a, ™) ] ﬁ [fi(as,i)]

z:1

as desired. ]

We now record a few useful corollaries from which hitting set and bias amplification are essentially
immediate.

Corollary D.2. Let X be as in Theorem 10.14 and A; C X[i]. Then

k
/\alGA —H]P[Al]
=1

Corollary D.3. Let (X, T, p) be a A-tuple splitting tree. Let ui,usg,...,us €T be nodes such that for every
i # j, u; is not an ancestor of u;, and let d; be the depth of u; in T'. Let f1, fo,..., fo be functions such that
fi: X(p(uw;)) = R. Then

k
<3PAT[PlA® " <3PA (D.4)

aEX

L l l
H fz(ap(ul))‘| - H]E[fl<ap(u )} < 3D)‘H||fi”2dz‘a (D'5)
j i=1

=1

where D = max{d;}.
32Recall that X T, X are the simplicial sub-complexes induced by the faces in X[L] and X [R] respectively.
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Proof. We sequentially prune the tuple-splitting tree using nodes w1, u2, . . ., uy as in Definition 10.10. If there
are nodes of depth greater than D we also prune their depth D ancestor. By Claim 10.11, this results in a
pruned A-tuple splitting tree (X', T’, p') where by construction w1, us,...,us are leaves in T’ corresponding
to X'[i] = X[p(ui)] (we note X’ may have other parts not associated with these leaves as well). Setting
f; = 1 for the latter, applying Theorem 10.14 to (X', T”, p') gives the desired bound.

O

Proposition D.4 (Hitting Set (Proposition 10.12 Restated)). Any depth D \-(tuple) splitting tree with k
leaves is (3PN, k)-hitting.

Proof. Any subset A C X (1) can be divided into partite components A = A; IT...IT Ay where 4; C X[i].
Corollary D.2 then implies

k
P [oC A< Ai) + 3PN < p(A)F + 3P
LBl cA gu( i) p(A)
where the righthand inequality follows from the fact that 1 SE L u(A) = pu(A). o

Proposition D.5 (Bias-Amplification (Proposition 10.13 Restated)). Let (X,T,p) be a A-tuple splitting
tree for X < 5. For any 0 < ¢ < § and family of mean ¢ functions {f; : X[i] — {£1} e, [1fi is a

{£1}-valued function with bias at most:

k
aEX]}(%cfl) |J1:[1 fl(al)‘|

Proof. The proof is similar to Theorem 10.14, and we adopt the same notational conventions. The base case
k =1 is trivial. For the inductive step, we have

<k 422 (D.6)

[Elry,, )| < [Elry, ] ~ Elry, ] Elng,]| + Elrg, ] Elrg,]
A+ (P4 2X) (el B 4 2))

by our assumptions on A and e. m|

Finally we list for completeness the unordered analogs of these results, which follow immediately from
partitification as in Theorem 10.14.

Corollary D.6 (Expander-Mixing (Corollary D.2)). Let X be a depth D A-splitting tree. Then for any
Ay,.. . AL C X(l)

k
- 1Ira)

i=1

k
/\aiEAi

k
<3PAT[PA> " <3°A o (D.7)
i=1 =1

P
a€X(k),m€Sy

Corollary D.7 (Extended HD-EML (Corollary D.3)). Let (X, T, p) be a A-splitting tree, uy,ug,...,ug € T
nodes such that for every i # j, u; is not an ancestor of uj, and let d; be the depth of u; inT. Let f1, fa,..., fe
be functions such that f; : X (p(u;)) — R. Then

14

¢
aEX(kE)m€Sk L_l_[1 fi(ap(“i))] B H]E[fi(“p(ui))}

i=1

?
<3PAT I illgas (D.8)
=1

where D = max{d;}.

Corollary D.8 (Hitting Set (Proposition 10.12)). Any depth D X splitting tree with k leaves is (3P, k)-
hitting.
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Corollary D.9 (Bias-Amplification (Proposition 10.13)). Let (X, T, p) be a X splitting tree for A < 11—6. For
any 0 < e < § and family of mean ¢ functions {f; : X(1) — {£1} Yicw, L1 fi is a {£1}-valued function with
bias at most:

<el+2x (D.9)

k
E i\ (4
aeX (k—1),meSy Ll:[l f (a ( ))

E Reverse Hypercontractivity: From Boolean to All Functions

We now give a generic reduction from reverse hypercontractivity for general functions to the Boolean case.

Theorem (Restatement of Theorem 6.12). For every ¢ > 1 and & > 0 there exists £ >
2(¢4-1)

(%)22(1“) ﬁg such that the following holds. LetV be a finite probability space and D a monotone

linear operator such that for every A,B CV,
(14,D1p) > kP[A]* P [B]". (E.1)

Then for every two arbitrary functions f1, fa : V.— Ryo it holds that

(fi. Dfe) = wi | fill_o_llfall_o_. (E.2)
£(1+e) £(1+e)
That s, D 1is (m, m, k') -reverse hypercontractive.

Before moving directly to the proof, we give a brief overview of the main idea. Starting with arbitrary
f1, fo, our goal is to build discrete approximations of the f; that remain close to the original functions in
expectation and don’t take too many unique values. Once this is the case, we can write the functions as a
weighted sum over indicators for each value, and apply the boolean result without too much loss.

The key to the proof really lies in these approximations, which we build by discretizing the functions
to powers of 2 and applying a careful iterative zero-ing procedure to components that fall too far from the
mean. Naively this approach seems problematic, as f; is arbitrary and may not have a well-behaved tail
to truncate. We handle this by exploiting the fact that no function can have more than a small constant
fraction of its mass beyond its expectation times (an appropriate power of) its (1—(1 + €))-norm.

More formally, the proof of Theorem 6.12 is split into two intermediate reductions, corresponding to the
‘approximation step’ and the ‘indicator step’ above. The first of these is a reduction from general reverse
hypercontractivity to a slightly richer set of functions that are balanced and discrete.

Definition E.1 (Nice Functions). For any a € [0,1], and 8 € [1,00), we say the function f : V — Ry is
(o, B)-nice if it is:

1. Balanced: all non-zero outputs of f satisfy

aE[f] < f(z) < BE[f].

2. Discrete: the range of f is entirely contained in {0} U {27 : j € Z}.

To state the reduction, we require a setting of parameters o and 8 based on the (1—(1+ €))-norm of
the functions in question due to the tail truncation strategy described above. In particular, for a fixed
non-negative function f;, define

1
_ ]E[fz +E} _ Hf,”1+5
i = E[f;]Tre im0t

With this in mind, we state our two intermediate reductions and prove Theorem 6.12.

Proposition E.2 (From General to Nice). Let ¢,e,k,V, and D be as in Theorem 6.12. Suppose that for

2(1+¢)
any two functions f1, fa: V — Ryq that are (%m, (25m;) "= )-nice

<f1€(1+e),Df§(l+e)> > k E[f1]00+6) B[ 5]+, (E.3)
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Then for every two functions f1, fo : V. — Rsq it holds that

. e 1 20(1+¢)
(0 Dy <5> RE[A1) ) E[f) ). (B4)

The ‘indicator step’ then reduces reverse hypercontractivity for nice functions to the Boolean case.
Proposition E.3 (From Nice to Boolean). Let ¢,e,V, and D be as in Theorem 6.12. If for every A,B CV,
(14,D1g) > kP [A]' P [B], (E.5)

2(1+¢)

then every two (1617;1-7 (25m;) "= )-nice functions f1, fo 1 V — Ryg satisfy

2(£-1)
€ € 1 3 €
(D) > (18' e Q) RE[f1] T B[] 1), (E.6)

The proof of Theorem 6.12 is now essentially immediate.

Proof of Theorem 6.12. We have by assumption that all A, B C V satisfy (14, D1p) > kP [A]KIP [B}Z, S0 we

(

may apply Proposition E.3 to get that every two (%m" (25m;) ~ = )-nice functions f1, f2 : V — Ry satisfy

2(6-1)
€ € 1 € €
<f1£(1+ ),ng(H— )> > <m> IilE[fl}e(lJr )E[f2]€(1+ )

Applying Proposition E.2 then implies arbitrary non-negative g1, go satisfy

o(1+¢) (1+e) 1 20(1+¢) 1 2(0-1)
(g "\ Dgy ) > <5) <m> K E[g1]10+) E[gy) 01+,

1

Finally, for fi, fa arbitrary non-negative functions applying the above to g; = ff(HE) gives the result. O
We now move to the formal proofs.

Proof of Proposition E.2. Given arbitrary fi, f2 : V — Ry we will construct corresponding f7, f4 satisfying
1. OS fI< fi
2. E[f]] > E[/]

2(1+¢)

3. f] s (3g7+ (25m) = )-nice

Combining the above with monotonicity of D and reverse hypercontractive inequality for nice functions gives

(f1.Df2) > (f1,Df5) (Ttem (1) and Monotonicity)
> kE[f]]/ R f5) () (Item (3) and Equation (E.3))
1 20(1+¢)
> (g) H]E[fﬂe(lﬁ*e)]E[fﬂe(lﬁ*E) (Item (2))
as desired.

We construct f/ in two separate steps: a simple discretization procedure, and a more involved balancing
procedure that iteratively zeroes out unbalanced parts of the function. Starting with the former, given a
non-negative f define its rounding down f by setting for j € Z:

2o 27 for f(x) € [27,2711)
Ja) = {o it f(x) = 0.
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Note that, by construction, 71 fi < fi
We now define an iterative balancing procedure outputting a sequence of functions f; = fi(o) > fi(l) >

> fi(k' f! for ki € N some finite stopping time. For these (soon-to-be-defined) functions, define

and denote the set of ‘balanced’ inputs of fi(j ) as

Bi(j) = {3:

2(1+e ~
If fi(o) is already (1617 (257;) = ))—nice, set k; = 0 and output f/ = f;. Otherwise for j = 1,2,... define

1 G 0) O\ T2 ()
W]E[fz < ($)<(477¢ ) E[f; }}

fl.(j ) by zeroing out all non-balanced inputs:

9= g,

7

and define the stopping time k; to be the first index j such that n( 7 177(] 1) This procedure terminates

() S ()

(i.e. k; is finite) since each 7,7’ > 1 by convexity. Every step the process doesn’t stop decreases 7,

factor of 4, so there can be a total of O(log(ni(o))) steps.

It is immediate from definition that 0 < f/ < f;, so we just need to show Item 2 and Item 3. The key is
to observe that our balancing process cannot remove too much mass in each step:

by a

E[f7 V> Bl > (1 - ﬁ) E[f ). (E7)

i

We defer the proof, and first show Item 2 and Item 3 given this assumption.

Proof of Item 2. The proof is essentially immediate by the exponential decay of 77( 7

application of (E.7) we have
- 00
1 2
U( ku)>>H(1_2-4J’>>3

j=0

Namely by iterated

since by construction ni(j) > 4k_1_jni(k71) > 4*=1=7 Combining with the fact f; = f( ) fl gives the result.

Proof of Item 3. Recall that for any j we have by construction the following ‘pseudo’-balance condition:

2(1+¢)

L < 1P @) < (a7 7) 7 BT

1
477(]71)

1

Vfi(j)(:v) #0:

When j = k; is the stopping time, observe that by (E.7) and construction respectively we have
k; k;i—1 ki
1. E[f") < B8 Y] < 285
ki ki—1
2. aqff) 5 b,

Substituting into the above gives

as desired.
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Proof of (E.7). The lefthand inequality is by construction. Toward the righthand, fix f = f; U1 and
(-1

n=7; for notational simplicity and define the set of ‘terrible’ inputs zeroed in the jth step as:

T = {x

Since Ty UTy =V '\ Bi(jfl) and fi(j) = lB(j,l)f, it is enough to show that

7

F(2) > (4n) 22 Em}

) < 4L} 2= {

4n

<L E[. (E.8)

]E[f'lTl]v]E[f'sz] 4n

It is obvious that E[f - 17, ] < ﬁ E[f] since f is upper bounded by this value within 7}. To bound the upper
tail we use Holder and Markov:

2(1+4¢) = B ) )
ELf - 1r,] <[ flliscP [f > ()= B[ (Holder's inequality)
< | flhterms 16 5 (Markov’s inequality)
< (50 %) E[f (1 le= = 07 EL])
= 477 477 14e =7
1 e
<—E “TEg1
as desired. a

Finally we prove reverse hypercontractivity for ‘nice’ functions (Proposition E.3).

2(1+e)
Proof of Proposition E.3. Since f; is (14 > (25m;) "= )-nice, it can attain at most

2 10
= <3+—> logn; + — + 15
9 9

non-zero values. With this in mind, decompose f; = 3. 271 Fila) =29 into level sets and observe that, by
JjeZ
linearity of D, we can decompose the inner product itself into boolean sub-components and apply our

assumed reverse hypercontractive inequality (Equation (E.6)):
1+e)l 1+e)t j ;
(T DA = 3 ot s 0i, D1 ()00
1,jEZ
i1l i1t
>r Y 20D [ £ (2) = 271" P [fo(w) = 2]

i,JEZ

=5 [ YR [fi(x) = 2] |- | D RUFVP [fo(a) = 27])

JEZ JEZ

Now since the sums have only n1, no non-zero terms respectively, applying (£, %)-Hélder’s inequality lower
bounds this quantity by

klmme)'™ | 3220V [fa(a) = 2] | - | 3020 [fi(e) = 2]

JEZ JjEZ
—knl B[] 0y B[

> (ny~n0) - (ny~'n) - BLAJ T Ef2] ().
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It can be checked directly that

. 1
minngn; 2 —
n;>1 18+ L2

which gives the desired result. O

F Splittability

In this section we discuss the relations between our notion of complete splittability, the splittability notion
of [JST21], and the "r-sampling" gaurantee of [DW22], and the inheritance of splittability under projection.
We start by defining the latter two notions.

Definition F.1 (JST-Splittability [JST21]). X C [n]? is said to be A-JST-splittable if for all 1 < a < t <
b<d:

A2 (Slaf41,8) <A
In their later work, [DW22] introduced the weaker notion of 7-sampling which suffices for list-decoding.
Definition F.2. X C [n]? is said to be 7-sampling if for ¢ € [d], S C [n] and W C [n]*:
Cov (1[wt+1 € 8], 1wy € W}) <7
wr~X
Before arguing relations between these notions, we give the key lemma that underlies all proofs in this
section: the expansion of swap walks is inherited under projection.

Lemma F.3 (Swap Walk Inheritence). Let X be a partite d-uniform complez, and A and B disjoint subsets
of [d], and F any subset of [d]. Then:

A2(Sanr,Brr) < A2(Sa,B)

Proof. By the variational characterization it is enough to show

|Sanr BrrfE ||

m < A2 (S
S T TP

Given any such function f¥ : X[ANF] — R define its extension to X[A] by f(z) = f'(zp). Here
rp = {v € x:col(v) € F} is the projection into X¥'. and observe that this extension satisfies:

1. Exalf] = Bxpanm [fF1=0

2. (1 £ll2,xra) = 1 2, x[anm)-
The result then follows from convexity, in particular:

2
1SanpBarf e = E ( E [fF(IBmFﬂxAmF:y])]

1
2

y~X[ANF) z€X(d)

_ 1
27 2
- yNX]EmF] (xeg(d) [f(xBMxAﬂF - y]) 1

[N

2
" yextann _(wa]yE[A\F} Le%)[‘f (alans =y Tawr = qu 1
2]2
< E (me%)[ f(eplea = y}> ] (Tensen’s Tnequality)
= [9a,Bfll2
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< A2(Sap)lIf 2 (E[f] = E[f"] = 0)
="z

With this in mind, we prove the following relations between complete splittability, JST-splittability, and
T-sampling.

Proposition F.4. X C [n]' is A\-JST-splittable if and only if it is completely \-splittable. Moreover any
completely A-splittable complex is \-sampling.

Proof. If X is A-JST-splittable it is clearly completely A-splittable setting a = 1,b = d. If X is completely
A-splittable, then for any 1 < a < i < b < d we have:

Sla),[i+1,8] S S[L [i41,d] S A

as desired. Finally, if X is completely A-splittable, then for any S C [n] and X C [n]! write 15 := 1[wsyq € 5]
and 1x = 1[w[t] S X}

Covun (5.1x) = B, [15(0)S,01191x(0)] ~ Bl1s][FI[1x]
< A2 (S ) 1LslLx |
<A

where we have used that by Holder duality and Lemma F.3 X2 (Sy1q (1)) = A2(S[y 41) < A2(Spg441) <A O

Finally, we show that both complete splittability and standard tuple splittability are inherited under
projections. Recall that given a d-partite complex X and F' C [d], X Fis the projection of X given by
drawing a d-face from X, and projecting the resulting face onto the parts in F.

Proposition F.5 (Claim 10.34 Restated). Let X C [n}d be a homogeneous, completely \-splittable complez.
Then for any F C [d] XF is homogeneous and completely \-splittable.

Proof. The proof is essentially immediate from definition and Lemma F.3. Recall X is homogeneous if the
projection onto each part is uniform on [n]. Since projecting onto X F and then a coordinate i € F is the
same as just projecting onto 7, homogeneity is inherited. Toward splittability, write F' = {i1, ... 24| F|} where
ij < ij+1. Then for any i;, applying Lemma F.3 gives

xF X
)\2(S{il7<-<7ij}7{ij+17-~7i\F\}) < )\2(S{il7<-<7ij}7{ij+174~7i\F\})
< 250, i +1.a) <A
F .
where we have used the fact that AQ<S€§17-~-7ij}7{ij+1,-..,i‘F‘}) = )\2(Sf’l{l,n.,’l’j},{’l'j+17~~~7i‘F‘}) (indeed they are the
same operator). ]

Finally, while not strictly necessary for the results in this work, we show for completeness that inheritance
of splittability also holds in the setting of general tuple-splitting trees as well.

Proposition F.6 (Projected Splitting Trees). Let X be any d-uniform partite complex with a A-tuple splitting
tree of depth D. For every F C [d], XF also has a A-tuple splitting tree of depth at most D.

The proof of Proposition F.6 relies on a simple inductive algorithm for projecting partite or-
derered binary trees (7,p) onto a subset of their coordinates. In particular, given such
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a tree and a subset F C [d], we define the projection operation via the following in-
ductive algorithm that modifies the tree T in place starting from a specific node v € T.

Algorithm 1: Project(T, p, F,v)

Result: Projected partite ordered binary tree (T.F', pf") rooted at v
if v is a leaf then
| return
else if p(¢,) N F = () then
Delete(T'(£y));
Merge(v, )%
Project(T, p, F,ry)
Ise if p(r,) N F = () then
Delete(T(rv));
Merge(v, £y);

© 0 N O oA WN =
o

10 Project(T, p, F', £y)
11 else

12 Project(T, p, F,ry);
13 Project(T, p, F', £y)

“Merge(v,rv) deletes the node v and replaces r, as the respective child of v’s parent.

In other words, Algorithm 1 is the result of intersecting p with F' and deleting the resulting nodes with
empty or repeated labelings. We define the F-projection of a tree by applying this process at the root.

Definition F.7 (Projected Trees). Let (T, p) be a d-uniform partite ordered binary tree and F' C [d + 1]
any coordinate subset. The F-projection of (T, p), denoted (T*, p%") is given by

T = Project(T, p, F,root(T)), ot = (pNF)|pr.
We are now ready to prove Proposition F.6.

Proof of Proposition F.6. We will show that (X T pf) is a A-tuple splitting tree of depth at most D. We
first argue that (X L AL ) is a partite ordered binary tree of depth at most D. First, observe that every
operation in Algorithm 1 maps binary trees to binary trees, and cannot increase depth. In particular, the
only modification of the tree structure occurs when a branch is deleted and the relevant root is contracted
with its other child, maintaining the invariant that every internal node has one parent and two children, and
that the depth is at most D. To see that the leaves are in bijection with F', observe that all leaves labeled
by F survive the projection, all leaves labeled by [d] \ F' are deleted, and no new leaves are introduced by
construction. The first two claims hold since a node v is deleted if and only if either p(v) N F = 0, or the
labeling is repeated later down the tree. Finally, to see that the children of any internal node in 77" partition
its labeling in p’", observe that this property holds trivially for 7 under the intersected labeling p N F (albeit
the partition may be trivial), and that this invariant is preserved by every operation in Algorithm 1.

Finally we argue the projected tree inherits the splittability of X¥'. By Lemma F.3, we have that for any
internal node u:

22087 (0,),07 (ru)) = A2(Sp(0)nF p(r)F) S A2(Sp(e,) p(ra)) S A

as desired. O
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