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1. Introduction and main results

1.1. Motivation and main results. Chromatic homotopy theory studies large-scale phenomena
in the stable homotopy category using the algebraic geometry of smooth 1-parameter formal
groups [Qui69, Mor85]. The moduli stack of formal groups has a stratification by heights, which in
the stable homotopy category corresponds to localizations with respect to the Morava E-theories
En of height n ≥ 0.

We fix a prime p. Let Γn be the p-typical height-n Honda formal group law over Fp and let
Sn be the automorphism group of Γn (extended to Fpn). Let Gn = Sn ⋊ Gal(Fpn/Fp) be the
(extended) Morava stabilizer group. Goerss–Hopkins–Miller showed that the continuous action of
Gn on π∗En can be refined to a unique E∞-action of Gn on En [Rez98, GH04, Lur18].
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At a prime p, one can assemble the information of En with the Gn-action of height n for all
n ⩾ 0 to recover the p-local sphere. More precisely, the chromatic convergence theorem due to
Hopkins and Ravenel [Rav92] exhibits the p-local sphere spectrum S0

(p) as the homotopy inverse

limit of the En-local spheres (in the sense of Bousfield [Bou79])

· · · −→ LEnS
0 −→ · · · −→ LE1S

0 −→ LE0S
0.

Furthermore, these localizations can be built inductively via the following homotopy pullback
square (the chromatic fracture square)

LEn
S0 LK(n)S

0

LEn−1
S0 LEn−1

LK(n)S
0,

where LK(n) denotes the localization functor with respect to K(n), the nth Morava K-theory.

From this perspective, the K(n)-local spheres LK(n)S
0 are the building blocks of the p-local stable

homotopy category. Devinatz and Hopkins showed that LK(n)S
0 is equivalent to the homotopy

fixed point spectrum EhGn
n [DH04].

A framework for building the K(n)-local sphere from more computable spectra is developed in
[GHMR05, Hen07]. The more computable spectra are of the form EhG

n for various finite subgroups
G of the Morava stabilizer group Gn. This generalizes the height 1 resolution

LK(1)S
0 ≃ EhG1

1 → EhG
1 → EhG

1

where G is a certain finite subgroup of G1 (see [HMS94, GHMR05]). Explicit resolutions of the
K(2)-local sphere from assembling various EhG

2 at the prime 2 [Bea15, BG18, Hen19] and the
prime 3 [GHMR05] have led to important progress in the study of K(2)-local category including
the chromatic splitting of the K(2)-local sphere [Bea17a, GHM14, BGH22]. From this finite
resolution perspective, the spectra EhG

n are the building blocks of the K(n)-local stable homotopy
category. In particular, the homotopy groups π∗E

hG
n detect important families of classes in

the stable homotopy groups of spheres [HHR16, LSWX19, BMQ20]. Therefore, computations
with EhG

n constitute a central topic in chromatic homotopy theory and in general are extremely
challenging.

Hewett classified all the finite subgroups of Sn [Hew95] (see also [Buj12]). From now on, we
focus on the prime p = 2, which is the only prime p that there are non-cyclic finite p-subgroups in
the Morava stabilizer group. If n = 2m−1ℓ where ℓ is odd, then when m ̸= 2, the maximal finite
2-subgroups of Gn are isomorphic to C2m , the cyclic group of order 2m; when m = 2, n is of the
form 4k + 2, and the maximal finite 2-subgroups are isomorphic to Q8, the quaternion group.

There are breakthroughs of computations of EhG
n when G is cyclic due to the recent development

of equivariant methods [HHR17, HSWX23, BBHS20, HS20]. These computations are done by a
new tool called the slice spectral sequence. The slice spectral sequence computations of the norm
of real cobordism theories induce computations of EhG

n at the prime 2 for the case G = C2m . As
far as the authors are aware, there are no such computations for the case G = Q8 due to the lack
of the slice information.

At height 2, the group Q8 first appears as a subgroup of the (small) Morava stabilizer group
S2. Maximal finite subgroups of S2 are isomorphic to G24 = Q8 ⋊C3. Similarly, in the (extended)
Morava stabilizer group G2, there are subgroups isomorphic to SD16 and G48. Homotopy fixed
points of E2 with respect to the above subgroups appear in the finite resolution of EhG2

2 , the
K(2)-local sphere at the prime 2, as building blocks [Bea15, BG18]. Moreover, they also appear
in the interplay between chromatic layer 2 and the theory of elliptic curves (see for example
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[Hop02, HM14, BO16, HL16]). Important examples such as tmf are related to computations of

EhG48
2 .
In this paper, we use equivariant methods and a new method, which we called “the vanishing

line method”, to compute the G-homotopy fixed point spectral sequence (G-HFPSS) of the height
2 Morava E-theory E2 at the prime 2 for G = Q8, SD16, G24 and G48.

Let σi (resp. σj , σk) be the one-dimensional non-trivial representation of Q8 that i ∈ Q8 (resp.
j, k ∈ Q8) acts trivially. We compute the integer-graded as well as (∗ − σi)-graded G-HFPSS for
E2. By symmetry, the (∗−σi)-graded G-HFPSS gives the (∗−σj)-graded and the (∗−σk)-graded
G-HFPSS for E2.

Theorem A. (1) The integer-graded Q8-HFPSS for E2 has differentials as listed in Table 8
(also see Figs. 5 to 8). The E∞-page with all 2 extensions is presented in Fig. 9.

Furthermore, we have

SD16-HFPSS(E2)⊗Z2
W(F4) = Q8-HFPSS(E2),

where the tensor products happen on Er and dr for every 2 ≤ r ≤ ∞.
(2) The (∗−σi)-graded Q8-HFPSS for E2 has differentials in Table 9 (also see Figs. 13 to 16)

and the E∞-page is presented as Fig. 17.
Furthermore, we have

SD16-HFPSS(E2)⊗Z2
W(F4) = Q8-HFPSS(E2),

where the tensor products happen on Er and dr for every 2 ≤ r ≤ ∞.

Theorem B. The integer-graded G24-HFPSS for E2 is a subobject of the integer-graded Q8-
HFPSS for E2 which consists of classes with Dm where 3 | m, and the differentials are the same.
The E∞-page with all 2 extensions is presented as in Fig. 10. Furthermore, we have

G48-HFPSS(E2)⊗Z2
W(F4) = G24-HFPSS(E2),

where the tensor products happen on Er and dr for every 2 ≤ r ≤ ∞.

Theorem A gives the complete computation of the Q8-HFPSS of E2 for the integer-graded
part1, and the (∗ − σi)-graded part2.

Our methods for Q8-HFPSS computations are independent of previous computations and
can potentially work for higher heights. The first method is the recently developed equivariant
method which uses the restriction, transfer, and norm structures of the spectral sequence to deduce
differentials and hidden extensions. More precisely, we deduce differentials and hidden extensions in
the Q8-HFPSS for E2 from differentials in the C4-HFPSS for E2 (computed in [HHR17, BBHS20])
via restrictions, transfers, and norms. For example, the restriction functor from Q8 to C4 implies
a hidden 2-extension from a class at (54, 2) to a class at (54, 10) in the Q8-HFPSS for E2 (See
Lemma 4.23) which is crucial to deduce the d13-differential proved in Proposition 4.25. This
exempts us from using the Toda-bracket-shuffling method as in [Bau08, Proposition 8.5(3)].
Moreover, RO(G)-gradings have been proven to be helpful in computations [HHR17, BBHS20].
For example, for groups H ⊂ G, the norm map from the H-HFPSS to the G-HFPSS on the
E2-page is only defined after extending to RO(G)-gradings [Ull13, HHR17, MSZ20]. Norm maps
allow us to pull back and push forward known differentials for new differential information. For
example, our computation of the (∗ − σi)-graded G-HFPSS for E2 gives an alternative proof of
the existence of a d9-differential in the integer-graded Q8-HFPSS for E2 using the norm method
(See Proposition 4.43).

1While the integer-graded result can be deduced from the tmf computation [Bau08] and should be known to
experts, it was not written down in the literature as far as the authors are aware.
2The Q8-representation σi is not a restriction of any G24-representation.



RO(G)-GRADED HFPSS FOR HEIGHT 2 MORAVA E-THEORY 4

We also introduce a new method: “the vanishing line method”. The vanishing line result
[DLS22, Theorem 6.1] states that at the prime 2, the G-HFPSS for En admits a strong vanishing
line of filtration N , an explicit number depending on height n and G. Recall that having a
strong horizontal vanishing line of filtration f means that the spectral sequence collapses after
the Ef -page, and any element of filtration greater than or equal to f supports a differential or is
hit. In the case for n = 2 and G = Q8, the number N is 25 and therefore all permanent cycles
in filtration ≥ 25 must be hit, which forces differentials to happen in many cases. For example,
in Proposition 4.14 the vanishing line method forces three differentials, including the longest
d23-differentials, just from the E2-page information.

Along the way, we proved the following theorem for general heights.

Theorem C (Theorem 4.8). The Q8-HFPSS for E4k+2 admits a strong vanishing line of filtration
24k+5 − 9.

The above theorem improves the number N of the vanishing result in [DLS22, Theorem 6.1]
for the Q8 case at all possible heights. This improvement makes the vanishing line sharp for all
known cases.

We conclude this introduction with two questions related to the computation of Q8-HFPSS
for E4k+2 at higher heights. The equivariant methods and “the vanishing line method” work for
higher heights. Nevertheless, a computable description of the Q8-action on π∗E4k+2 like (2.3) for
k = 0 is not known for k ≥ 1.

Question 1.1. How to give a computable description of the Q8-action on Morava E-theory E4k+2

for k ≥ 1?

Question 1.2. Is the vanishing line result Theorem C of Q8-HFPSS for Morava E-theory E4k+2

sharp for k ≥ 1?

1.2. Summary of the contents. This paper is organized as follows. Section 2 provides a
necessary background for the computational tools for the RO(G)-graded homotopy fixed point
spectral sequence, and the input for the computation of the Q8-HFPSS for E2. In particular, we
review the norm structure in RO(G)-graded homotopy fixed point spectral sequences (Theorem 2.8)
and the interplay between the homotopy fixed point spectral sequences and the Tate spectral
sequences in general (Lemma 2.1). We briefly review the Q8-action on π∗E2 (2.3) and the
computation of RO(C4)-graded Mackey-functor-valued C4-HFPSS for E2 (Section 2.4). We
take these as the input for the Q8-HFPSS for E2. In Section 3 we compute the E2-page of the
integer-graded and (∗ − σi)-graded Q8-HFPSS(E2) by Bockstein spectral sequences.

In Section 4, we derive all differentials in the integer-graded Q8-HFPSS for E2 via equivariant
methods and the method of Theorem 4.8. In Section 4.1, we prove the properties of the Q8-HFPSS
for E2 that we need for our computation. The vanishing line (Theorem 4.8) works for general
heights and is of its own interest. In Section 4.2, we give a complete computation of all differentials
in the logical order. The vanishing line method gives some difficult differentials (for example
Proposition 4.14). In Section 4.3, we solve all 2 extensions. In Section 4.4, we present alternative
ways to compute some differentials.

In Section 5, we also apply equivariant methods and the vanishing line method to compute
the (∗ − σi)-graded Q8-HFPSS for E2. In particular, this computation gives an alternative proof
of a d9-differential in the integer-graded part. In Section 6, we list figures that present our
computation. In Appendix A, we explain algebraic computations of the Q8 group cohomology. In
addition, we explain how the Hurewicz image of EhC4

2 helps to compute the restriction map from
Q8-HFPSS to C4-HFPSS.
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2. Preliminaries

2.1. RO(G)-graded homotopy fixed point spectral sequences and Tate spectral sequences.

Let X be a (genuine) G-spectrum. Denote the ring of real orthogonal virtual representations
of the group G by RO(G). The equivariant homotopy groups of X can be organized into an
RO(G)-graded Mackey functor π⋆X as follows

πV (X)(G/H) = πH
V (X) = [SV , X]H

where V is a virtual G-representation and [SV , X]H denotes the genuine H-equivariant homotopy
classes of maps (see [BBHS20, Section 2.1]).

We briefly review the Tate diagram of a G-spectrum X from [GM95]. Recall the cofree

replacement map X → F (EG+, X) and the isotropy separation sequence EG+ → S0 → ẼG.
Smashing them together gives the following diagram:

EG+ ∧X //

≃
��

X //

��

ẼG ∧X

��
EG+ ∧ F (EG+, X) // F (EG+, X) // ẼG ∧ F (EG+, X)

where the left vertical map is an underlying weak equivalence. Taking G-fixed points gives us the
following Tate diagram:

XhG
//

≃
��

XG //

��

ΦGX

��
XhG

// XhG // XtG.

The Adams isomorphism [Ada84, Theorem 5.4] shows that the fixed point (EG+ ∧X)G is weak
equivalent to the homotopy orbit XhG = (EG+ ∧X)/G. The left bottom map is the norm map
and its cofiber XtG is the Tate construction. Moreover, the right square is a homotopy pullback
square which relates the information of the homotopy fixed point XhG , the geometric fixed point
ΦGX and the Tate construction XtG with the actual fixed point XG. This diagram is useful in
both theoretical and computational applications (see for examples [GM95, Gre18]).

We shall consider an analog of the Tate diagram for the slice tower of X as in [DLS22, Section 2].
Let P •X = {PnX}n∈Z be the slice tower of X. The diagram of the towers

EG+ ∧ P •X //

≃
��

P •X //

��

ẼG ∧ P •X

��
EG+ ∧ F (EG+, P

•X) // F (EG+, P
•X) // ẼG ∧ F (EG+, P

•X).
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induces a Tate diagram of spectral sequences for computing each entry in the Tate diagram

(2.1)

HOSS(X) //

=

��

SliceSS(X)

��

// LSliceSS(X)

��
HOSS(X) // HFPSS(X) // TateSS(X).

We now explain the above notations. We use ∗ to denote an integer and ⋆ to denote an
RO(G)-grading. We denote the underling homotopy group πe

0(X ∧ S−⋆) as a G-module by
π⋆(X).

• The spectral sequence associated to the tower EG+∧P •X is the RO(G)-graded homotopy
orbit point spectral sequence (HOSS) of X with the E2-page as

H∗(G, π⋆(X))

which converges to π⋆−∗EG+ ∧X. In particular, in integer-graded part and G/G-level,

this spectral sequence converges to πG
∗ EG+ ∧X = π∗XhG.

• The spectral sequence associated to the tower P •X is the slice spectral sequence (SliceSS)
of X with the E2-page as

π⋆−∗P
|⋆|
|⋆|X

which converges to π⋆−∗X. Here P
|⋆|
|⋆|X is the fiber of P |⋆|X → P |⋆|−1X and |⋆| is

the underlying dimension of ⋆. In particular, in integer-graded part and G/G-level, this
spectral sequence converges to πG

∗ X = π∗X
G.

• The spectral sequence associated to the tower F (EG+, P
•X) is the RO(G)-graded

homotopy fixed point spectral sequence (HFPSS) of X [BM94, Section 2] with the
E2-page as

H∗(G, π⋆(X))

which converges to π⋆−∗F (EG+, X). In particular, in integer-graded part and G/G-level,

this spectral sequence converges to πG
∗ F (EG+, X) = π∗X

hG

• The spectral sequence associated to the tower ẼG ∧ P •X is the RO(G)-graded localized
slice spectral sequence (LSliceSS) of X introduced in [MSZ23]. In many cases, including

G = Q8, smashing with ẼG is equivalent to inverting a certain Euler class aV (see
Definition 2.2 for the definition of Euler classes) for a specific G-representation V .
Therefore, the E2-page of this spectral sequence is

π⋆−∗a
−1
V P

|⋆|
|⋆|X

which converges to π⋆−∗a
−1
V X. In particular, in integer-graded part and G/G-level, this

spectral sequence converges to πG
∗ a

−1
V X = π∗Φ

GX.

• The spectral sequence associated to the tower ẼG ∧ F (EG+, P
•X) is the RO(G)-graded

Tate spectral sequence (TateSS) of X with the E2-page as

Ĥ
∗
(G, π⋆(X))

which converges to π⋆−∗ẼG ∧ F (EG+, X). In particular, in integer-graded part and

G/G-level, this spectral sequence converges to πG
∗ ẼG ∧ F (EG+, X) = π∗X

tG

The natural map P •X → F (EG+, P
•X) induces a comparison map between spectral sequences

SliceSS(X) and HFPSS(X). The following lemma states that this comparison map is an
isomorphism in a certain range ([Ull13, Theorem 9.4] for the integer-graded part and [DLS22,
Theorem 3.3]] for RO(G)-gradings).
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Lemma 2.1 ([Ull13],[DLS22]). The map from the RO(G)-graded slice spectral sequence to the
RO(G)-graded homotopy fixed point spectral sequence

πG
V−sP

|V |
|V |X πG

V−sF (EG+, P
|V |
|V |X)

πG
V−sX πG

V−sF (EG+, X)

induces an isomorphism on the E2-page in the region defined by the inequality

τ(V − s− 1) > |V |, τ(V ) := min
{e}⊊H⊂G

|H| · dimV H .

Furthermore, the map induces a one-to-one correspondence between the differentials in this
isomorphism region.

We recall two kinds of distinguished classes in the RO(G)-graded homotopy groups that are
useful for naming the relevant classes on the E2-page of the slice spectral sequence (see [HHR16,
Section 3.4] and [HSWX23, Section 2.2]) and the homotopy fixed point spectral sequence.

Definition 2.2. Let V be a G-representation. We denote the inclusion of the fixed points
S0 → SV by aV . This is a class in πG

−V S
0. For a ring spectrum X with G-action, we abuse

notation to denote the image of aV by aV under the map S0 → X. We will also denote the class
on the E2-page of the G-HFPSS(S0) or the G-HFPSS(X) that detects the image of aV by aV .

By construction, we have the following property.

Proposition 2.3. With the above notation, the class aV on the E2-page of the G-HFPSS(X) is
a permanent cycle.

If the representation V has non-trivial fixed points (i.e. V G ̸= {0}), then aV = 0. Moreover, for
any two G-representations V and W , we have the relation aV⊕W = aV aW in πG

−V−W (S0). When

X = HZ, the aV -class in πG
−V (HZ) is always a torsion class, according to [HHR17, Lemma 3.6]

|G/GV |aV = 0

where GV is the isotropy subgroup of V .
For an orientable G-representation V , a choice of orientation for V gives an isomorphism

HG
|V |(S

V ;Z) ∼= Z. In particular, the restriction map

(2.2) HG
|V |(S

V ,Z) −→ H|V |(S
|V |,Z)

is an isomorphism.

Definition 2.4. Let V be an orientable G-representation. We define the orientation class of V
uV ∈ HG

|V |(S
V ;Z) to be the generator that maps to 1 under the above restriction isomorphism

2.2.

The orientation class uV is stable in V in the sense that if 1 is the trivial representation, then
uV⊕1 = uV . If V and W are two orientable G-representations, then V ⊕W is also orientable
with the direct sum orientation, and uV⊕W = uV uW .

Norms of aV classes and uV classes are given as follows.

Proposition 2.5. ([HHR16, Lemma 3.13]) Let H ⊂ G be a subgroup and V is a G-representation

NG
H (aV ) = aIndV ;

uInd |V |N
G
H (uV ) = uIndV

where Ind means IndGH .
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Given a G-oriented representation V and a G-equivariant commutative ring spectrum X, by
[HHR16, Corollary 4.54] and the unit map S0 → X, Hill–Hopkins–Ravenel defines the uV classes
on the E2-page of the slice spectral sequence for X via the following map on 0th slices

HZ = P 0
0 S

0 → P 0
0X.

With Lemma 2.1, we can define uV classes in the RO(G)-graded HFPSS for X.
The computation of the TateSS and the HFPSS are closely related. In any RO(G)-graded

page the natural map from HFPSS(X) to TateSS(X) is an isomorphism in positive filtration
([DLS22, Theorem 3.6]. See also [BM94, Lemma 2.12]).

Lemma 2.6. The map from the RO(G)-graded homotopy fixed point spectral sequence to the
RO(G)-graded Tate spectral sequence induces an isomorphism on the E2-page for classes in
filtration s > 0, and a surjection for classes in filtration s = 0. Furthermore, there is a one-to-one
correspondence between differentials whose source is in non-negative filtrations.

One advantage of considering Tate spectral sequences is that they are whole-plane spectral
sequences with more invertible classes. This feature makes the calculations more accessible.

If V is a G-representation such that its fixed point set V H is trivial for any non-trivial subgroup
H of G, then S∞V is a geometric model for ẼG. If X is a G-spectrum, we have

ẼG ∧X ≃ S∞V ∧X = a−1
V X

This implies that for such representation V , the class aV is invertible in the Tate spectral sequence.

Method 2.7. When X is a commutative ring spectrum, its G-TateSS is multiplicative, which is
extremely useful for proving permanent cycles and determining differentials in its G-HFPSS.

Assume that we find a non-trivial differential dr(a) = b in the G-HFPSS. Then there is a
corresponding differential dr(a

′) = b′ in the G-TateSS by Lemma 2.6. We can move this differential
by some r-cycle c′ in the G-TateSS such that dr(c

′a′) = c′b′ is a differential with the source c′a′ in

a negative filtration and the target c′b′ in a non-negative filtration. (One can choose c′ = a−k
V for

proper integer k where aV is an invertible class as above.) Then c′b′ is a permanent cycle in the
G-TateSS and hence the corresponding class of c′b′ in the G-HFPSS is also a permanent cycle by
Lemma 2.6. This method allows us to identify permanent cycles at Er-page for r <∞. Moreover,
if c′ is an invertible permanent cycle in the G-TateSS for X, then the class c′b′ will survive to the
Er-page and the differential dr(c

′a′) = c′b′ happens on the Er-page in the G-TateSS. If it is not,
then there is a shorter differential, say dr′(d) = c′b′, which kills the class c′b′ on the E′

r-page for
r′ < r. Then the Leibniz rule forces dr′((c

′)−1d) = b′, which is a contradiction. Furthermore, if
this differential dr(c

′a′) = c′b′ completely locates in filtration greater than 0, then Lemma 2.6
shows that there is a corresponding differential dr(ca) = cb in G-HFPSS.

Now we focus on G = Q8 and its subgroups. We will use the following notations for
representations of C2, C4 and Q8.

• When G = C2, RO(C2) = Z{1, σ2} where σ2 is the sign representation.
• When G = C4, RO(C4) = Z{1, σ, λ}. The representation σ is the sign representation and
λ is the 2-dimensional representation by rotating the plane R2 by π

2 .
• When G = Q8, RO(Q8) = Z{1, σi, σj , σk,H}. The representations σi, σj , and σk are

one-dimensional representations whose kernels are C4⟨i⟩, C4⟨j⟩, and C4⟨k⟩, i.e, the three
C4 subgroups generated by i, j and k, respectively. The representation H is a four-
dimensional irreducible representation, obtained by the action of Q8 on the quaternion
algebra H = R⊕ Ri⊕ Rj ⊕ Rk by left multiplication.

By the above discussion, S∞H is a model of ẼQ8. Therefore, the class aH is invertible in any
Q8-Tate spectral sequence.



RO(G)-GRADED HFPSS FOR HEIGHT 2 MORAVA E-THEORY 9

2.2. Norm differentials and strong vanishing lines in spectral sequences. The Hill–
Hopkins–Ravenel norm structure holds in nice equivariant spectral sequences. Let H ⊂ G be a
subgroup. Consider the following diagram of G-spectra

· · · → Pn+1 → Pn → Pn−1 → · · ·

Recall that Pm
n denotes the fiber of Pm → Pn−1 and Pn = P∞

n .
We denote the spectral sequence associated to this tower by {En,⋆

r , dr}, where n denotes the
filtration and the second grading denotes the RO(G)-graded stem. We say the spectral sequence

has a norm structure if there are two types of maps NG
HPn → P|G/H|n and NG

HPn
n → P

|G/H|n
|G/H|n

such that the following two diagrams commute up to homotopy.

NG
HPn

//

��

P|G/H|n

��
NG

HPn−1
// P|G/H|(n−1)

NG
HPn

//

��

P|G/H|n

��
NG

HPn
n

// P |G/H|n
|G/H|n

The norm structure induces a map between the towers

· · · NG
HPn NG

HPn−1 · · ·

· · · P|G/H|n P|G/H|n−1 · · · P|G/H|(n−1)+1 P|G/H|(n−1) · · ·

which induces a map from the E2-page of the H-level spectral sequence H-E∗,⋆
2 to the E2-page

of the G-level spectral sequence G-E∗,⋆
2 as follows

NG
H : H-En,V+n

2 −→ G-E
|G/H|n,IndG

H V+|G/H|n
2 .

It is proved in [MSZ20] that if X is a commutative G-ring spectrum then its slice spectral sequence,
homotopy fixed point spectral sequence, and Tate spectral sequence (at least for H ̸= e) have a
norm structure.

One consequence of having a norm structure is that we can predict differentials in the G-level
from differentials in the H-level.

Theorem 2.8. ([Ull13, Proposition I.5.17][HHR17, Theorem 4.7]) In a spectral sequence with
norm structures, if we have a differential dr(x) = y in the spectral sequence of a H-spectrum X.
Then in the spectral sequence for Y = NG

H (X) there is a predicted differential

d|G/H|(r−1)+1(aρ̄N
G
H (x)) = NG

H (y)

where ρ = IndGH(1) and ρ̄ is the reduced representation of ρ.

In [DLS22] the authors use the norm structures to show that every class in G-TateSS(En) is
hit before a specific page depending on n and G.

Theorem 2.9. ([DLS22, Theorem 5.1]) At the prime 2, for any height n and any G ⊂ Gn a finite
subgroup, let H be a Sylow 2-subgroup of G. All the classes in the RO(G)-graded Tate spectral
sequence of En vanish after the ENn,H

-page. Here Nn,H is a positive integer defined as follows:

• when (n,H) = (2m−1ℓ, C2m), Nn,H = 2n+m − 2m + 1;
• when (n,H) = (4k + 2, Q8), Nn,H = 2n+3 − 7.

The isomorphism range of the natural map G-HFPSS(En)→ G-TateSS(En) implies there is a
strong horizontal vanishing line in E∞-page of G-HFPSS(En).
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Theorem 2.10. ([DLS22, Theorem 6.1]) At the prime 2, for any height n and any G ⊂ Gn a
finite subgroup, let H be a Sylow 2-subgroup of G. There is a strong horizontal vanishing line of
filtration Nn,H in the RO(G)-graded homotopy fixed point spectral sequence of En.

It turns out that the existence of such horizontal vanishing lines is extremely helpful for
determining higher differentials in homotopy fixed point spectral sequences. In particular, for
our computation in Q8-HFPSS(E2), the vanishing line gives an independent proof of several
higher differentials in the integer gradings. Moreover, this vanishing line plays a crucial role in
the computation of (∗ − σi)-graded Q8-HFPSS for E2.

2.3. Morava E-theory E2 with G24-action. We fix a pair (Fpn ,Γn) where Γn is the height-n
Honda formal group law over Fp extended to Fpn . Then Lubin and Tate [LT65] show that there
is a universal deformation Fn defined over a complete local ring

W(Fpn)[[u1, . . . , un−1]]

where W(Fpn) is the p-typical ring of Witt vectors of Fpn . The Landweber exactness theorem
shows that this ring can be realized by a complex-oriented ring spectrum En.

Let Sn be the automorphism group of Γn, namely the small nth Morava stabilizer group. Let
Gn = Sn ⋊ Gal(Fpn/Fp) be the automorphism group of (Fpn ,Γn), namely the (extended) nth

Morava stabilizer group. By universality, π∗En admits a Gn-action. The Goerss–Hopkins–Miller
theorem [Rez98, GH04, Lur18] lifts this action uniquely to an E∞-action on En.

We are interested in computing π∗E
hG
n for G a finite subgroup of Gn via G-homotopy fixed

point spectral sequences. For these computations, the action of the Galois group Gal(Fpn/Fp)
will not change the differential pattern. More precisely, we review the following result.

Lemma 2.11. ([BG18, Lemma 1.32][BGH22, Lemma 2.2.6, Lemma 2.2.7]) Let F ⊂ Gn be a
closed subgroup and let F0 = F ∩ Sn. Suppose the following canonical map is an isomorphism

F/F0 → Gn/Sn ∼= Gal(Fpn/Fp).

Then there is a commutative diagram of homotopy fixed point spectral sequences

W(Fpn)⊗Zp H∗(F, π∗En) W(Fpn)⊗Zp π∗E
hF
n

H∗(F0, π∗En) π∗E
hF0
n .

∼= ∼=

In this paper, we will focus on the case p = 2 and n = 2. The Galois group Gal(F4/F2)
is isomorphic to C2 and we write W for the Witt vectors W(F4). There are finite subgroups
Q8 and G24

∼= Q8 ⋊ C3 in the small Morava stabilizer group S2 and SD8 = Q8 ⋊ Gal and
G48
∼= G24 ⋊Gal in the extended Morava stabilizer group G2. The subgroups Q8, G24 are unique

up to conjugacy in S2 [Buj12] (see also [BGH22, Remark 2.4.5]). Therefore, there is no ambiguity

of the notation π∗E
hQ8

2 or π∗E
hG24
2 . The subgroup Q8 and complex orientation coordinates can

be chosen specifically from the theory of elliptic curves at the prime 2 so that the action has
explicit formulas as follows (see [Bea17b, Section 2] for more details).

We recall the action of G24 on π∗E2 [Bea17b, Lemma A.1]. The coefficient ring is a complete
local ring π∗E2 = W[[u1]][u

±1] with |u| = 2, |ui| = 0 and a maximal ideal I = (2, u1). Denote
u1u

−1 by v1, the generator of the quaternion group Q8 by i, j, k and the generator of C3 by ω.
We regard the third root of unity ζ as a class in the Witt vectors W. The G24-actions on u−1
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and v1 are

(2.3)

ω∗(u
−1) = ζ2u−1, ω∗(v1) = v1,

i∗(u
−1) =

v1 − u−1

ζ2 − ζ
, i∗(v1) =

v1 + 2u−1

ζ2 − ζ
,

j∗(u
−1) =

ζv1 − u−1

ζ2 − ζ
, j∗(v1) =

v1 + 2ζ2u−1

ζ2 − ζ
,

k∗(u
−1) =

ζ2v1 − u−1

ζ2 − ζ
, k∗(v1) =

v1 + 2ζu−1

ζ2 − ζ
.

We define D to be
∏

g∈Q8/C2

g∗(u
−1) which is Q8-invariant. Then (E2)∗ could be expressed as

π∗E2
∼= (W[v1, u

−1][D−1])∧I ,

which is more convenient for the Q8-cohomology computation.

Lemma 2.12. There is an isomorphism

H∗(Q8, π∗E2) ∼= (H∗(Q8,W[v1, u
−1])[D−1])∧J

where J = (2, v41).

Proof. We observe that two ideals I and J share the same radical ideal, i.e.,
√
I =
√
J . Therefore,

we have the isomorphism

H∗(Q8, (W[v1, u
−1][D−1]∧I )

∼= H∗(Q8,W[v1, u
−1][D−1]∧J ).

Because D is Q8-invariant, we have

H∗(Q8,W[v1, u
−1][D−1]) ∼= H∗(Q8,W[v1, u

−1])[D−1].

Moreover, the ideal J is actually Q8-invariant, since

v41 ≡ NQ8

C2
(v1) mod 2

according to (2.3). It implies H∗(Q8,W[v1, u
−1])[D−1] is a J-module. Note that W[v1, u

−1][D−1]
is finitely generated as a W-algebra. Therefore, the completion is an exact functor [AM16,
Theorem 10.12] [HS99, Theorem A.1] and we have

H∗(Q8, π∗E2) ∼= (H∗(Q8,W[v1, u
−1])[D−1])∧J .

□

2.4. Mackey functor C4-homotopy fixed point spectral sequence for E2. In this subsection,
we recall some results on the Mackey-functor-valued C4-HFPSS for E2 in [BBHS20]. See also the
slice spectral sequence computation of the truncated C4-normed Real Brown–Petersen spectrum
BP ((C4))⟨1⟩ [HHR17][HSWX23].

Proposition 2.13. ([BBHS20, Proposition 5.6]) There is an isomorphism

H∗(C2, π⋆E2) ∼= W[[µ0]][r̄
±1
1 , aσ2

, u±1
2σ2

]/(2aσ2
),

where the (⋆− ∗, ∗)-degree of the classes is given by |µ0| = (0, 0), |r̄1| = (ρ2, 0), |aσ2 | = (−σ2, 1),
and |u2σ2 | = (2− 2σ2, 0).

We partially rewrite the names of classes on the E2-page of C4-HFPSS(E2) in [BBHS20,
Proposition 5.10] with slice names. For slice names, see [HHR17, HSWX23] for details. One
advantage of using slice names is that it is better to organize differentials by the slice differential
theorem [HHR16, Theorem 9.9].
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Proposition 2.14. ([BBHS20, Proposition 5.10]) There is an isomorphism

H∗(C4, π⋆E2) ∼= W[[µ]][T2, η, η
′, aλ, aσ][d̄

±1
1 , u±1

λ , u±1
2σ ]/ ∼

where µ = trC4

C2
(µ0), T2 = s̄21u2σ2

= trC4

C2
(r̄21u2σ2

), η = s̄1aσ2
= trC4

C2
(r̄1aσ2

) and η′ = s̄1uσaσ2
=

trC4

C2
(r̄1aσ2uσ). Although σ is not an oriented C4-representation, we apply uσ here indicating that

η′ is transfered from r̄1aσ2
from integer-graded part in C2-level to (1− σ)-page in C4-level. The

relation ∼ is the ideal generated by the following relations

2η = 2η′ = 2aσ = 4aλ = 0, T 2
2 = ∆1((µ− 2)2 + 4),

η2u2σ = η′2 = T2u
−1
λ u2σaλ, T2η

′ = d̄1µηuλu2σ,

T2η = d̄1µη
′uλ, ηη′ = µu2σaλ,

uλa2σ = 2aλu2σ, µaσ = ηaσ = η′aσ = T2aσ = 0.

Here ∆1 = d̄21u2λu2σ at (8, 0) is an invertible class in π∗E
hC4
2 .

Remark 2.15. Proposition 2.13 and Proposition 2.14 give a full description of the Mackey
functor H∗(C4, π⋆E2) by the Frobenius relation [BBHS20, Remark 5.17] and the multiplicative
property of restriction.

Remark 2.16. A warning is that one needs to be careful about the isomorphism range (see
Lemma 2.1) to translate between the slice spectral sequence and the homotopy spectral sequence.
For example, in the C4-SliceSS(BP ((C4))⟨1⟩), the class u2σ supports a non-trivial d5-differential
[HSWX23, Theorem 3.4], while in the corresponding C4-HFPSS(E2), the class u2σ actually
supports a non-trivial d7-differential [BBHS20, Remark 5.23].

The computation of the Mackey-functor-valued C4-homotopy fixed point spectral sequence
for E2 is explained in detail in [BBHS20, Section 5] and presented by [BBHS20, Figure 5.8] and
[BBHS20, Figure 5.14].

The RO(G)-graded Mackey functor computation is useful even if one only cares about the
computation of the integer-graded part π∗E

hG
n . The following discussion of hidden extensions is

a good example. We can use exotic operations (exotic transfers, exotic restrictions, and so on) in
Mackey-functor-valued spectral sequences to deduce differentials and hidden extensions inside the
spectral sequences. For more detailed definitions and properties of such phenomena, one could
refer to [MSZ20, Section 3.3].

In [HHR17, Lemma 4.2], the authors introduce a useful trick to determine exotic restrictions
and transfers on the E∞-page of Mackey-functor-valued G-HFPSS.

Lemma 2.17. ([HHR17, Lemma 4.2]) Let G be a cyclic 2-group and G′ be its index 2 subgroup
then in π⋆(F (EG+, X)) we have

• ker(resGG′) = im(aσ)
• im(trGG′) = ker(aσ)

where σ is the sign representation of G.

The following hidden 2 extension in stem 22 is a good example showing that equivariant
structures provide extra integer-graded information (see a similar 2 extension in stem 2 in [MSZ20,
Remark 5.15]). In [HHR17, Figure 15] and [BBHS20, Figure 5.6], they drew all exotic restrictions
and transfers in the E∞-page of the Mackey functor valued C4-HFPSS(E2). The 2 extension
follows from an exotic transfer and an exotic restriction in the 22 stem. We spell out the details
in Lemma 2.18.

Lemma 2.18. In the Mackey-functor-valued C4-HFPSS for E2, there is an exotic restriction
in stem 22 from d̄61u6λu4σa2σ to d̄41r̄

6
1u8σ2

a6σ2
and there is an exotic transfer in stem 22 from
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d̄41r̄
6
1u8σ2a6σ2 to d̄81u4λu6σa4λa2σ. As a consequence, there is a hidden 2 extension from d̄61u6λu4σa2σ

to d̄81u4λu6σa4λa2σ.

Proof. According to the computations in [HHR17][BBHS20], in stem 22 there are only three
classes who survive: d̄61u6λu4σa2σ and d̄81u4λu6σa4λa2σ in C4-level and d̄41r̄

6
1u8σ2a6σ2 in C2-level.

We first claim the class d̄61u6λu4σa2σ is not in the image of multiplication by aσ. If there is
some x such that aσx is d̄61u6λu4σa2σ, then x is detected by classes at (22 + σ, 1) or (22 + σ, 0).
There is only one class at (22 + σ, 1) which is d̄41u4λu4σaσ on E2-page. According to [HSWX23,
Theorem 3.11], this class supports a d13-differential

d13(d̄
4
1u4λu4σaσ) = d̄41u4σd13(u4λaσ) = d̄71u8σa7λ.

There is no non-trivial class at (22+ σ, 0). Therefore, in homotopy the class d̄61u6λu4σa2σ is not in
the image of multiplication by aσ. By Lemma 2.17, this class must have a non-trivial restriction
in C4-Mackey functor π∗(E2), and the desired exotic restriction follows from degree reasons.

On the other hand by the gold relation uλa2σ = 2u2σaσ and 2aσ = 0 we know on E2-page

d̄81u4λu6σa4λa2σ · aσ = 0.

Moreover, according to the computation on (∗− σ)-page of C4-HFPSS(E2) [BBHS20], there is no
hidden aσ-extension from d̄81u4λu6σa4λa2σ by degree reasons. Since we have im(trGG′) = ker(aσ),
the class d̄81u4λu6σa4λa2σ must be a transfer of a class from C2-level. Then the desired exotic
transfer follows from degree reasons.

According to [BBHS20], E2, as a C4-spectrum, its Mackey functor valued homotopy groups
π∗E2 satisfy

tr ◦ res(1) = 2.

Then the exotic transfer and restriction that we proved shows the existence of the hidden 2
extension from d̄61u6λu4σa2σ to d̄81u4λu6σa4λa2σ. □

Remark 2.19. For degree reasons, the class d̄61u6λu4σa2σ cannot be in the image of the transfer
from C2. However, by the gold relation, the product of this class and aσ is zero on the E2-page.
Therefore, this class must have a hidden aσ extension.

Remark 2.20. The hidden 2 extension in Lemma 2.18 will play a crucial role in deducing
several higher differentials in Q8-HFPSS(E2) (see Lemma 4.23, Proposition 4.25). A similar 2
extension can also be seen in the homotopy groups of tmf in stem 54. The proof of this hidden 2
extension in [Bau08, Proposition 8.5 (3)] uses shuffling arguments of 4-fold Toda brackets. In
our Q8-HFPSS(E2) computation, the corresponding hidden 2 extension follows directly from the
C4-computation by restriction (see Lemma 4.23).

2.5. RO(G)-graded periodicity. When computing HFPSS, another advantage of expanding
to RO(G)-gradings is having more periodicities. These periodicities have their own theoretical
importance. They can also move integer-graded calculations to certain RO(G)-gradings where the
calculations might be simpler. In either the slice spectral sequence for BP ((C4))⟨1⟩ [HSWX23] or
the C4-homotopy fixed point spectral sequence for E2 [HHR17, BBHS20], we have the following
periodicities in the RO(G)-gradings.

Lemma 2.21. The following permanent cycles in C4-HFPSS(E2) [HHR17, BBHS20] are periodic
classes.

• The class d̄1 gives (1 + σ + λ)-periodicity.
• The class u8λ gives (16− 8λ)-periodicity.
• The class u4σ gives (4− 4σ)-periodicity.
• The class u4λu2σ gives (10− 4λ− 2σ)-periodicity.
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Since the norm functor is symmetric monoidal, we can apply it to the above three invertible
permanent cycles, which gives some RO(Q8)-periodicities in Q8-HFPSS(E2). The quaternion
group Q8 has three C4 subgroups C4⟨i⟩, C4⟨j⟩ and C4⟨k⟩ generated by i, j and k respectively. For
each C4 copy we have the associated C4-periodicities and their norms give RO(Q8)-periodicities
as follows.

Corollary 2.22. We have the following RO(Q8)-periodicities in Q8-HFPSS(E2).

• NQ8

C4
(d̄1) :

1 + σi + σj + σk +H

• NQ8

C4
(u4σ) :

4 + 4σi − 4σj − 4σk

4 + 4σj − 4σi − 4σk

4 + 4σk − 4σi − 4σj

• NQ8

C4
(u4λu2σ) :

10 + 10σi − 2σj − 2σk − 4H
10 + 10σj − 2σi − 2σk − 4H
10 + 10σk − 2σj − 2σi − 4H

• NQ8

C4
(u8λ) :

16 + 16σi − 8H
16 + 16σj − 8H
16 + 16σk − 8H

Corollary 2.23. There are periodicities of 4− 4σi, 4− 4σj and 4− 4σk in Q8-HFPSS(E2).

Proof. It suffices to show that 4− 4σi is a periodicity. This periodicity is given by the following
product:

NQ8

C4⟨j⟩(u4λu2σ)N
Q8

C4⟨k⟩(u4λu2σ)N
Q8

C4⟨i⟩(u8λ)
−1NQ8

C4⟨i⟩(u4σ)
2NQ8

C4⟨j⟩(u4σ)
−1NQ8

C4⟨k⟩(u4σ)
−1.

□

Remark 2.24. The above multiplication equals to u4σi by [HHR16, Lemma 3.13], in other words,
the classes u4σi , u4σj and uσk

are permanent cycles in the RO(Q8)-graded HFPSS for E2.

3. E2-page of the Q8-HFPSS(E2)

In this section, we recollect the computation of the E2-page of the integer-graded Q8-HFPSS
for E2 by the 2-Bockstein spectral sequence (2-BSS) from [Bea17b, Bau08]. Then we compute
the E2-page of the (∗ − σi)-graded part by the same method. By Lemma 2.12 we can compute
H∗(Q8, π∗E2), the E2-page of the Q8-HFPSS for E2, by first computing H∗(Q8,W[v1, u

−1])[D−1].

3.1. 2-BSS, integer-graded. The integer-graded 2-Bockstein spectral sequence for computing
H∗(Q8,W[v1, u

−1])[D−1] is

H∗(Q8,F4[v1, u
−1])[D−1][h0] =⇒ H∗(Q8,W[v1, u

−1])[D−1],

where h0 detects 2. The computation of the E1-page, H
∗(Q8,F4[v1, u

−1])[D−1], is from [Bea17b,
Appendix A]. We follow the notation in [Bea17b], except that we use h1 for η and h2 for ν. The
differentials of this 2-BSS are essentially from [Bau08, Section 7] and we list them in Table 1.
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More precisely, H∗(G48,F4[v1, u
−1]) is computed in explicit generators and relations in

[Bea17b, Theorem A.20] (the coefficient in [Bea17b] is denoted by S∗(ρ)). Further, we have
H∗(G24,F4[v1, u

−1]) ∼= F4 ⊗F2
H∗(G48,F4[v1, u

−1]).
We will show that H∗(Q8,F4[v1, u

−1])[D−1] is 3 copies of the H∗(G24,F4[v1, u
−1])[∆−1] as

follows, where ∆ = D3.

Lemma 3.1. H∗(Q8,F4[v1, u
−1])[D−1] is a free H∗(G24,F4[v1, u

−1])[∆−1]-module of rank 3 with
generators 1, D and D2.

Proof. We denote the coefficient F4[v1, u
−1] in the group cohomology by A for simplicity. Because

the coefficient A is 2-local, the Lyndon–Hochschild–Serre spectral sequence for the group extension

1→ Q8 → G24 → C3 → 1

collapses at the E2-page. Therefore, we have

H∗(G24, A) = H∗(Q8, A)C3 .

Note that D is Q8-invariant and hence in H0(Q8, A). This gives an H∗(G24, A)-module map

H∗(G24, A)⊕H∗(G24, A){D} ⊕H∗(G24, A){D2} → H∗(Q8, A).

We first prove the injectivity. Note that the C3-action on D is given by

ω∗(D) = ζ2D.

Hence the three copies above have different eigenvalues so the images of these three copies must
intersect trivially. We then prove the surjectivity after inverting ∆. In H∗(Q8, A), we have
∆ = D3, so D is also inverted after inverting ∆. We first show that H∗(Q8, A) is a direct sum
of the above eigenspaces with respect to the C3-action. Note that F4[Q8] as a C3-module is a
direct sum of eigenspaces with eigenvalues 1, ζ, ζ2, so are the entries of the bar resolution of F4

as F4[Q8]-modules. Moreover, the coefficient F4[v1, u
−1] is also a direct sum of eigenspaces with

eigenvalues 1, ζ2 by (2.3). Therefore, every entry in the cochain complex for computing group
cohomology H∗(Q8, A) is a direct sum of eigenspaces with eigenvalues 1, ζ, ζ2. So is H∗(Q8, A).
After inverting D and ∆, H∗(G24, A), H∗(G24, A){D}, and H∗(G24, A){D2} give the eigenspaces
of eigenvalues 1, ζ2, ζ respectively. Therefore, the map is also surjective. □

The lemma above and the computation of H∗(G24,F4[v1, u
−1]) in [Bea17b, Theorem A.20]

give the Q8 case as follows.

Proposition 3.2. The bigradings of generators of H∗(Q8,F4[v1, u
−1])[D−1] are:

|v1| = (2, 0), |D| = (8, 0), |k| = (−4, 4), |h1| = (1, 1),
|h2| = (3, 1), |x| = (−1, 1), |y| = (−1, 1).

The relations (∼) are generated by

(1) in filtration 1:

v1h2, v21x, v1y;

(2) in filtration 2:

h1h2, h2x− v1h1x, h1y − v1x
2, xy, Dy2 − h2

2;

(3) in filtration 3:

h2
1Dx− h3

2, Dx3 − h2
2y;

(4) in filtration 4:

h4
1 − v41k.



RO(G)-GRADED HFPSS FOR HEIGHT 2 MORAVA E-THEORY 16

The differentials in the integer-graded 2-BSS for the cohomology H∗(Q8,W[v1, u
−1])[D−1]

are essentially from [Bau08, Section 7] which are determined by the ones in Table 1 and the
multiplicative structure.

The 2-Bockstein computation gives the following result (see also [Bau08, Section 7]).

Theorem 3.3. Table 2 and Table 3 present the E∞-page of the integer-graded 2-Bockstein spectral
sequence (also see Fig. 2 and Fig. 3), which is the associated graded algebra of H∗(Q8,W[v1, u

−1])[D−1].

Remark 3.4. According to the properties of Tate cohomology, we know the class k is invertible
in the associated Tate cohomology for Q8 with the same coefficient.

Remark 3.5. We note that in H∗(Q8,W[v1, u
−1])[D−1], there is a hidden h2 extension

h2 · x2h2 = 4kD

by [Bau08, Equation (7.13)] which is useful in later computations. See Fig. 2 and Fig. 3 for the
information of h2 extensions.

Table 1. 2-BSS differentials, integer-graded

(s, f) x r dr(x)

(4k + 2, 0) v2k+1
1 1 2v2k1 h1

(7, 1) Dx 1 2h2
2

(−1, 1) x 1 2y2

(−1, 1) y 1 2x2

(4, 0) v21 2 4h2

(5, 3) yh2
2 3 8kD

Table 2. E∞-page, multiplicative generators, integer-graded

(s, f) x 2-torsion

(−4, 4) k Z/8
(−2, 2) x2 Z/2
(−2, 2) y2 Z/2
(0, 2) xh1 Z/2
(1, 1) h1 Z/2
(3, 1) h2 Z/4
(5, 1) v21h1 Z/2
(8, 0) D Z
(8, 0) v41 Z

Table 3. E∞-page, relations, integer-graded

f relations

1 v41h2

2 h1h2, v
2
1h1 · h2, Dy2 − h2

2, xh1 · v41 , x2 · v41 , y2 · v41
3 xh1 · h2, xh1 · v21h1, x

2 · v21h1, y
2h1, y

2 · v21h1, D · xh1 · h1 − h3
2

4 h4
1 − v41k, (xh1)

2, (x2)2,(y2)2, h4
2, x

2 · xh1, y
2 · xh1, x

2 · y2,
xh1 · h2

1, x2 · h2
1, y

2 · h2
1,h

2
2 · x2 − 4kD, y2 · h2

2, xh1 · h2
2
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We refer readers to §6 for charts of the E1-page and the E∞-page.

3.2. 2-BSS, (∗ − σi)-graded.
We discuss the RO(G)-graded case and restrict it to the (∗ − σi)-graded case. A variation of

Lemma 2.12 still holds in this case. Thus we can compute H∗(Q8, π∗−σi
E2) by first computing the

(∗− σi)-graded 2-BSS and taking the completion. Note that after modulo 2, the representation σi

is oriented and the orientation class uσi gives an isomorphism between π∗E2/2 and π∗+1−σiE2/2
as Q8-modules. Therefore, the E1-page of the (∗ − σi)-graded 2-BSS is abstractly isomorphic to
that of the integer-graded part. We denote the E1-page by

H∗(Q8,F4[v1, u
−1])[D−1]{uσi

}[h0]

where uσi denote a generator of the class at (1 − σi, 0).

Proposition 3.6. In the 2-BSS, there is a differential

d1(uσi
) = 2xuσi

+ 2yuσi
.

Proof. The group cohomology computation shows that H1(Q8, π1−σi
E2) is 2-torsion according

to Proposition A.7. Hence in the 2-BSS, there must be a d1-differential hitting the bigrading
(−σi, 1). Then uσi in the 2-BSS must support a non-trivial d1-differential by degree reasons.
Assume that d1(uσi) = 2axuσi + 2byuσi where a, b are either 0 or 1. By the Leibniz rule, we
have d1(v1uσi

) = 2h1uσi
+ 2axv1uσi

. Since h1 is a permanent cycle, the Leibniz rule implies
that h1uσi

also supports a non-trivial d1-differential. Therefore, the d1-target of v1uσi
cannot be

2h1uσi
. We deduce that a = 1.

On the other hand, if b = 0, then the Leibniz rule implies

d1(yuσi) = d1(y)uσi + yd1(uσi) = 2x2uσi ,

which means the class x2uσi
is a 1-cycle. However, x2 is a 1-cycle in the integral 2-BSS. Then

the Leibniz rule also implies that

d1(x
2uσi

) = x2d1(uσi
) = x2(2xuσi

) = 2x3uσi
.

This is a contradiction. Therefore b must be 1, and the claimed d1-differential follows.
□

Remark 3.7. The careful reader may observe that there are some Koszul sign rule-related
concerns here; however, we opt to overlook them as they will have no bearing on our subsequent
calculations.

The remaining (∗ − σi)-graded 2-BSS d1-differentials can be determined by the Leibniz rule
and the differential on uσi in Proposition 3.6.

Proposition 3.8. There is a 2-BSS differential

d2(xh
2
1uσi

) = 4kv21uσi
.

Proof. By Example A.5, the class at (1 − σi, 4) is 4-torsion in the E∞-page. This forces the
desired d2-differential.

□

Lemma 3.9. There is a hidden h1 extension from kmx2h1D
nuσi

to 2km+1v21D
nuσi

, and a hidden
h2 extension from kmx3Dnuσi to 2km+1v21D

nuσi for any m ∈ N, n ∈ Z.

Proof. It suffices to prove the case for m = n = 0. We have the following differentials by
Proposition 3.6, Proposition 3.8 and the Leibniz rule

d1(xh1uσi
) = 2x2h1uσi

,
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d2(xh
2
1uσi) = 4kv21uσi .

This implies that in the associated 2-inverted 2-BSS, there are

d1(2
−1xh1uσi

) = 2x2h1uσi
,

d2(2
−1xh2

1uσi
) = 4kv21uσi

.

Denote W[v1, u
−1][D−1]{uσi} by A. Consider the long exact sequence on Q8 group cohomology

induced by the short exact sequence on the coefficients

A→ A[1/2]→ A/2∞.

In H∗(Q8, A/2
∞) we have h1 multiplication from 2−1xh1uσi to 2−1xh2

1uσi . Then the differentials

d1(2
−1xh1uσi) = x2h1uσi ,

d2(2
−1xh2

1uσi) = 2kv21uσi

imply that the boundary map in the long exact sequence sends the two classes 2−1xh1uσi
and

2−1xh2
1uσi

in H∗(Q8, A/2
∞) to the two classes x2h1uσi

and 2kv21uσi
in H∗(Q8, A) respectively.

And there is an h1 extension from x2h1uσi
to 2kv21uσi

.
As for the h2 extension, we apply the similar argument to the differentials

d1(y
2uσi

) = x3uσi
,

d2(xh
2
1uσi) = 4kv21uσi

.

□

We list non-trivial differentials on classes of the form {multiplicative generators}uσi
in the

table below.

Table 4. 2-BSS differentials, (∗ − σi)-graded

(s, f) x r dr(x)

(1− σi, 0) uσi
1 2xuσi

+ 2yuσi

(−σi, 1) xuσi
1 2x2uσi

+ 2y2uσi

(3− σi, 0) v1uσi
1 2h1uσi

+ 2xv1uσi

(4− σi, 1) h2uσi
1 2xh2uσi

+ 2yh2uσi

(2− σi, 3) xh2
1uσi 2 4kv21uσi

Theorem 3.10. Table 5 and Table 6 present the E∞-page the (∗−σi)-graded 2-Bockstein spectral
sequence (also see Fig. 4 and Fig. 13 with hidden h1 and h2 extensions), which is the associated
graded algebra of H∗(Q8,W[v1, u

−1]⊗ σi)[D
−1].

Proof. The result follows from the 2-BSS computation. □

Table 5. E∞-page, module generators, (∗ − σi)-graded

(s, f) x 2-torsion

(−2, 2) {x2 + y2}uσi
Z/2

(−1, 1) {x+ y}uσi
Z/2

(1, 1) {h1 + xv1}uσi Z/2
(0, 2) v21uσi Z
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Table 6. E∞-page, relations, (∗ − σi)-graded

f relation generators

1 {h1 + xv1}uσi
· v41 − v21uσi

· v21h1, v
2
1uσi

· h2, {x+ y}uσi
· v41

2 {h1 + xv1}uσi
· h2, {h1 + xv1}uσi

· v21h1 − v21uσi
· h2

1,
v21uσi · x2, v21uσi · y2, v21uσi · xh1, v

2
1uσi · h2

2, {x+ y}uσi · v21h1, {x2 + y2}uσi · v41
3 {h1 + xv1}uσi · x2 − {x2 + y2}uσi · h1, {h1 + xv1}uσi · y2, {x2 + y2}uσi · v21h1

{x+ y}uσi
· h2

1 − {h1 + xv1}uσi
· xh1, {x+ y}uσi

· x2 − {x+ y}uσi
· y2

4 {x2 + y2}uσi
· h2

1, {x2 + y2}uσi
· h2

2, {x2 + y2}uσi
· x2, {x2 + y2}uσi

· y2, {x2 + y2}uσi
· xh1

{h1 + xv1}uσi
· h3

1 − v21uσi
, 4v21uσi

· k

We refer the readers to §6 for charts of the E1-page and the E∞-page.
By Lemma 2.12, in both the integer-graded and the (∗ − σi)-graded case, the E2-page of

Q8-HFPSS(E2) follows from Theorem 3.3 and Theorem 3.10.

Remark 3.11. The E2-page of TateSS(E2) follows by further inverting the class k from that of
Q8-HFPSS(E2), and replacing the 0-line with the cokernel of the norm map.

4. Computation of the integer-graded Q8-HFPSS(E2)

In this section, we derive all differentials in the integer-graded Q8-HFPSS for E2 via the
following two methods.

(1) Equivariant methods: apply the restrictions, transfers, and norms to deduce differentials
in the Q8-HFPSS for E2 from the C4-HFPSS for E2;

(2) The vanishing line method: use the fact that the Q8-HFPSS for E2 admits a strong
vanishing line of filtration 23 (Theorem 4.8, for general cases, see [DLS22, Theorem 6.1])
to force differentials.

We also solve all hidden 2 extensions via equivariant methods and investigation of the Tate
spectral sequence.

We will rename several classes on the E2-page of the Q8-HFPSS for E2 as follows. The
advantage is that these names are compatible with the tmf computation and the Hurewicz images

in EhQ8

2 (see [Bau08], also compare to [Isa18]). For example, we rename the class kD3 by g, which
is compatible with [Bau08] and suggests that this class detects the Hurewicz image of κ̄ (see 4.9).

Table 7. Distinguished classes

Classes Bauer’s notation Bigrading

Dxh1 c (8, 2)
D2x2 d (14, 2)
kD3 g (20, 4)

When we talk about the restriction map from Q8 to C4, the subgroup C4 usually indicates the
subgroup C4⟨i⟩ generated by i if there is no further specification. Some of the arguments in the
proofs of this section are easier to see when accompanied by charts in §6.

4.1. General properties of the Q8-HFPSS for E4k+2. It is a result of Shi–Wang–Xu, using
the Slice Differential Theorem and the norm functor of Hill–Hopkins–Ravenel [HHR16], that the

homotopy fixed point spectrum EhQ8

4k+2 is 24k+6-periodic.

The periodicity of EhQ8

2 is known by computation to be 64 classically. Here we give a proof

that EhQ8

2 is 64-periodic before computing it using Q8-HFPSS.
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Proposition 4.1. The homotopy groups of the spectrum EhQ8

2 is 64-periodic and the periodicity
class can be given by the class D8.

Proof. The product

NQ8

C4
(d̄1)

8NQ8

C4⟨i⟩(u4σ)
2NQ8

C4⟨i⟩(u8λ)N
Q8

C4⟨j⟩(u4σ)
4NQ8

C4⟨k⟩(u4σ)
4

gives the 64 periodicity of EhQ8

2 . This product is in bigrading (64, 0) and is invertible. On the
other hand, the generator D8 of π64E2 is Q8-invariant and invertible. Therefore, this periodicity
class is D8 up to a unit. □

From now on we can simply view D8 as a periodicity class of EhQ8

2 . In the following property,
we show that the Q8-HFPSS for E2 splits into three parts such that there are no differentials
across different parts.

Note that the universal space EG24 can be viewed as a model for EQ8. The transfer and the

restriction of the spectrum F (EG24,E2) give a sequence EhG24
2

res−−→ EhQ8

2
tr−→ EhG24

2 , which is
compatible with the filtration of the HFPSS.

Proposition 4.2. The composition

EhG24
2

res−−→ EhQ8

2
tr−→ EhG24

2

is an equivalence. In particular, the G24-HFPSS for E2 splits as a summand of the Q8-HFPSS
for E2.

Proof. The composition tr ◦ res is multiplication by |G24|/|Q8| = 3. All spectra are 2-local and 3
is coprime to 2 so this composition is an equivalence. □

We identify the E2-page of Q8-HFPSS(E2) as a free module over the E2-page of G24-HFPSS(E2)
generated by {1, D,D2}.

Corollary 4.3. Let a, b be two classes on the E2-page of G24-HFPSS(E2). View a, b as classes
in Q8-HFPSS(E2) and consider classes aDka , bDkb where ka, kb ∈ {0, 1, 2}. Then there is a
differential dr(aD

ka) = bDkb in the Q8-HFPSS(E2) iff there is a differential dr(a) = b in the
G24-HFPSS(E2) and ka = kb.

Proof. When ka = 0, this follows from Proposition 4.2. For ka = 1, note that the Q8-HFPSS for
E2 is D8-periodic by Proposition 4.1. The two differentials

(1) dr(aD) = bDkb and (2) dr(aD
9) = bDkb+8

imply each other. We observe that the class aD9 is a class in G24-HFPSS(E2). Then by the case
ka = 0, the differential (2) happens in G24-HFPSS(E2). This implies the desired result. The case
ka = 2 is similar. □

As a consequence, the computation of the Q8-HFPSS for E2 splits into three copies with the
same differential patterns and there are no differentials across different copies. In particular, the
G24-HFPSS for E2 is 192-periodic.

Remark 4.4. A similar statement holds for general height 4k + 2. A maximal finite subgroup in
S4k+2 is Q8 ⋊ C3(22k+1−1)

∼= G24 × C(22k+1−1) [Hew95][Buj12, Section 4.3]. The computation of
the Q8-HFPSS for E4k+2 also splits into copies of the computation of the Q8⋊C3(22k+1−1)-HFPSS
for E4k+2.

Remark 4.5. The G24-HFPSS for E2 computation is essentially the same as the 2-local tmf
computation [Bau08]. However, our computation only relies on the C4 computation of E2 and
hence is an independent computation of the classical tmf computations.
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In Theorem 4.8, we will improve the horizontal vanishing line result of the Q8-HFPSS for
E4k+2 in Theorem 2.10. In the case of the Q8-HFPSS for E2, the improved vanishing line of
filtration 23 turns out to be sharp by computation. We start with the following fact.

Proposition 4.6. Let HZ be the Eilenberg-Mac Lane spectrum with trivial Q8-action. Then on
the E2-page of Q8-HFPSS(HZ), the product aσiaσjaσk

is trivial.

Proof. We prove a stronger statement that the whole group H3(Q8, π3−σi−σj−σk
(HZ)), where

the class aσi
aσj

aσk
lies in, is trivial. According to Proposition A.7, the group H3(Q8,Z) is trivial.

We observe that the homotopy group π3−σi−σj−σk
(HZ) as a Q8-module is a copy of Z with trivial

Q8-action (σi ⊗ σj ⊗ σk is a trivial Q8-representation). Then we have

H0(Q8, π3−σi−σj−σk
(HZ)) = (π3−σi−σj−σk

(HZ)))Q8 ∼= Z.

Similarly we also have

H0(Q8, π−3+σi+σi+σk
(HZ)) = (π−3+σi+σi+σk

(HZ))Q8 ∼= Z.

Let u be a generator of H0(Q8, π3−σi−σj−σk
(HZ)). Then the class u is invertible on the E2-page

of HFPSS for HZ by the following paring

π3−σi−σj−σk
(HZ)⊗ π−3+σi+σi+σk

(HZ) ∼= Z.

Therefore, the class u induces an isomorphism H3(Q8, π3−σi−σj−σk
(HZ)) ≃ H3(Q8,Z), the latter

of which is trivial.
□

Remark 4.7. We thank Guillou for confirming and explaining Proposition 4.6. This proposition
also follows from Guillou and Slone’s computation of quaternionic Eilenberg–Mac Lane spectra
[GS22].

Theorem 4.8. Let k denote a non-negative integer.

(1) The RO(Q8)-graded Q8-TateSS for E4k+2 vanishes after E24k+5−9-page.
(2) The RO(Q8)-graded Q8-HFPSS for E4k+2 admits a strong vanishing line of filtration

24k+5 − 9.

Proof.
(1) Denote the height 4k+2 by h. We briefly review the proof of the vanishing line of filtration

2h+3 − 7 in [DLS22, Theorem 6.1] and explain the filtration improvement by 2. By Theorem 2.8,
in the Q8-TateSS(Eh), there is a predicted differential

(4.1) d2h+3−7(N
Q8

C2
(v̄−1

h u2h−1
2σ2

a1−2h+1

σ2
)aρ̄) = 1.

By naturality, the unit 1 has to be hit by a differential dr with r ≤ 2h+3 − 7. Note that since 1 is
hit, the spectral sequence vanishes at Er-page.

The ring map Z → π∗Eh induces a map between E2-pages of the Q8-HFPSS for HZ and
Eh. Then the naturality forces the source of (4.1) to be trivial since aρ̄ = aσiaσjaσk

= 0 by

Proposition 4.6. For degree reasons, we conclude r ≤ 2h+3−9. So every class in the Q8-TateSS(Eh)
will disappear on or before the E2h+3−9-page.

(2) It follows from Lemma 2.6. □

Lemma 4.9. In the Q8-HFPSS for E2, the class h1, h2, g are permanent cycles.

Proof. Consider the following maps

S0 unit−−→ EhQ8

2
res−−→ EhC2

2 .
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By [LSWX19, Theorem 1.8], the class κ̄ ∈ π20S
0 maps to a non-trivial class in EhC2

2 in filtration

4 in the C2-HFPSS for E2. Thus the image of κ̄ in π∗E
hQ8

2 is non-trivial. For degree reasons, it
is detected by the class g in Q8-HFPSS(E2). The proofs for h1 and h2 are similar. □

We only use the Hurewicz image of EhC2
2 as the input. This has been systematically studied

in [LSWX19]. Our method does not assume the knowledge of the Hurewicz image of EhC4
2 .

4.2. Differentials in the integer-graded pages. We suggest readers refer to the charts while
reading the proofs in this section.

All statements about differentials in this subsection are differentials in integer-graded Q8-
HFPSS(E2) if there is no specification.

Proposition 4.10. The class v61 in (12, 0) supports a d3-differential

d3(v
6
1) = v41h

3
1.

Proof. By construction, we have resQ8

C4
(v61) = T 3

2 , res
Q8

C4
(h1) = η. In C4-HFPSS(E2), [BBHS20,

Proposition 5.21] implies that we have

d3(T
3
2 ) = T 2

2 η
3.

The result now follows by naturality.
□

Corollary 4.11. The class v21h1 at (5, 1) supports a d3-differential

d3(v
2
1h1) = h4

1.

Proof. By Proposition 4.10, we have d3(v
6
1h1) = v41h

4
1. Note that v41 is a 3-cycle. This forces the

desired d3-differential. □

Proposition 4.10 produces a family of d3-differentials by the Leibniz rule:

d3(D
mgsv4l+2

1 hn
1 ) = Dmgsv4l1 hn+3

1 , and d3(D
mgsv21h

n
1 ) = Dmgshn+3

1

for any (m, s, l, n) ∈ Z× Z≥0 × Z≥1 × Z≥1.
For degree reasons (and the following proposition), these are all the non-trivial d3-differentials.

Proposition 4.12. The following classes survive to the E∞-page.

2Dmv4l+2
1 , Dmv4l1 , Dmv4l1 h1, D

mv4l1 h2
1 , (m, l) ∈ Z× Z≥1.

Proof. The classesDmv4l1 , Dmv4l1 h1, D
mv4l1 h2

1 cannot be hit by degree reasons. They are permanent
cycles by Lemma 2.6 and the Q8-TateSS(E2) d3-differentials

d3(D
m+3g−1v4l−2

1 hn+4
1 ) = Dmv4l1 hn+3

1 , m, l ∈ Z, l ̸= 0, n ≥ −3.
As for the classes 2Dmv4l+2

1 , we consider the additive norm map

H0(Q8, (E2)∗)
N−→ H0(Q8, (E2)∗)

where N(x) =
∑

g∈Q8

g(x). By the Q8-action formulas (2.3), we have

N(v2l+1
1 (u−1)2l+1) =

∑
g∈Q8

g(v2l+1
1 (u−1)2l+1)

= 2v2l+1
1 (u−1)2l+1 + 2

(
v1 + 2u−1

ζ2 − ζ

)2l+1 (
v1 − u−1

ζ2 − ζ

)2l+1

+ 2

(
v1 + 2ζ2u−1

ζ2 − ζ

)2l+1 (
ζv1 − u−1

ζ2 − ζ

)2l+1

+ 2

(
v1 + 2ζu−1

ζ2 − ζ

)2l+1 (
ζ2v1 − u−1

ζ2 − ζ

)2l+1

.
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The leading term of the above formula on the E∞-page of the 2-BSS for H∗(Q8,W[v1, u
−1]) is

2v4l+2
1 for l ≥ 1. Then we have

N(Dmv2l+1
1 (u−1)2l+1) = Dm

∑
g∈Q8

g(v2l+1
1 (u−1)2l+1) = 2Dmv4l+2

1

since D is Q8-invariant. As the additive norm map is the d1-differential on E1-page of the Q8-
TateSS for E2, we have the classes 2Dmv4l+2

1 are permanent cycles who survive to the E∞-page
by Lemma 2.6. □

Remark 4.13. All the classes supporting or receiving non-trivial d3-differentials and all classes
in Proposition 4.12 are sometimes referred to as the bo-pattern. They match the pattern of (many
copies of) π∗KO, the homotopy groups of the real K-theory. See [BG18, Definition 2.1] for more
details.

The following result is the first example of the strong vanishing line method (Theorem 4.8).
The method gives differentials of three lengths (including the longest d23-differential) all at once
(see Fig. 1).

Proposition 4.14. There are differentials

(1) d5(D
−13g5dh2) = 4D−16g7;

(2) d13(D
−7g3ch1) = 2D−16g7;

(3) d23(D
−1gh1) = D−16g7.

Proof. We suggest readers compare the arguments with Fig. 1. The class D−16g7 is a permanent
cycle in filtration 28, which is above the vanishing line (Theorem 4.8). Therefore, the classes
D−16g7, 2D−16g7 and 4D−16g7 must receive differentials. According to Corollary 4.3, Q8-
HFPSS(E2) splits into three parts. On the E2-page, these three parts are modules over the
E2-page of G24-HFPSS(E2), and all differentials do not cross different copies. In Fig. 1, we
highlight the relevant copy. By inspection, we obtain the desired d5, d13 and d23-differentials. □

Corollary 4.15. The class D at (8, 0) supports a d5-differential

d5(D) = D−2gh2.

Proof. Note that D8 is an invertible permanent cycle (Proposition 4.1), and g5 is a permanent
cycle (Lemma 4.9). By Proposition 4.14(1) and the Leibniz rule, there is a d5-differential

(4.2) d5(D
3dh2) = 4g2.

The relation dh2
2 = 4g (see Remark 3.5 under 2BSS names) forces the following d5-differential

(4.3) d5(D
3d) = gdh2.

With (4.3), it suffices to show that D2d is a 5-cycle. In fact, the only possible d5 target of D2d
supports a differential

d5(D
−1gdh2) = 4D−4g3.

by multiplying D−4gh2 with (4.3). Note that D−4 is a 5-cycle since D is a 3-cycle.
□

All the remaining d5-differentials follow from the Leibniz rule. There are no more d5-differentials
by degree reasons and Corollary 4.3.

We also get a d9-differential from the d13-differential in Proposition 4.14(2).

Corollary 4.16. The class Dc at (16, 2) supports a d9-differential

d9(Dc) = D−5g2dh1.
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Figure 1. d5, d13, d23-differentials

Proof. We observe that in Q8-HFPSS(E2) there is an h1 extension from Dc to Dch1. We prove
this by contradiction. Suppose that Dc does not support the claimed d9-differential. Then for
degree reasons, Dc becomes a 13-cycle. However, this contradicts Proposition 4.14 since Dch1

supports a non-trivial d13-differential. □

Proposition 4.17. The classes 4D and 2D2 at (16, 0) support the following d7-differentials

(1) d7(4D) = D−2gh3
1;

(2) d7(2D
2) = D−1gh3

1.

Proof. By Corollary 4.15 and the hidden 2 extension from 2h2 to h3
1 (see [Tod62]), D−2gh3

1 has
to be hit by a differential. For degree reasons and Corollary 4.3, the only possible source is 4D.
The second d7-differential follows similarly from d5(D

2) = 2D−1gh2. □
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The d7-differential on D4 (which we prove in Proposition 4.28) turns out to be a hard one, as
it does not follow from primary relations like the Leibniz rule or (hidden) extensions. We will first
prove several d9, d13-differentials, and the d7-differential follows from the vanishing line method.

Proposition 4.18. The class D5ch1 at (49, 3) and the class D5c at (48, 2) support the following
differentials.

(1) d13(D
5ch1) = 2D−4g4;

(2) d9(D
5c) = D−1g2dh1.

Proof. By a similar argument as in Corollary 4.16, it is enough to show (1). We first observe that
the class 2D−4g4 is in the image of the transfer map from C4-HFPSS(E2) since

tr ◦ res(D−4g4) = [Q8 : C4]D
−4g4 = 2D−4g4.

Since the class D−4g4 is order 8, its restriction to C4-HFPSS for E2 is non-trivial and of order
4. Then according to the computations in [BBHS20] (See [BBHS20, Figure 5.3.]), on bigrading
(48, 16), the class res(D−4g4) receives a d13-differential in C4-HFPSS(E2). The naturality forces
that 2D−4g4 dies on or before the the E13-page in Q8-HFPSS(E2). The only possibility is the
desired d13-differential by Corollary 4.3 and degree reasons. □

Remark 4.19. Since C4-HFPSS(E2) is 32-periodic with the periodicity class ∆4
1 = d̄81u8λu8σ

[HHR17][BBHS20], the same argument in the proof of Proposition 4.18 gives an alternative proof
of Proposition 4.14(2) and Corollary 4.16.

Lemma 4.20. The class D3h1 is a permanent cycle.

Proof. By Corollary 4.3, it suffices to show that D3h1 is a permanent cycle in G24-HFPSS(E2).
For degree reasons, D3h1 can only possibly hit D−3gc or 2D−12g6 in G24-HFPSS(E2). Because
D−8, g are permanent cycles, Proposition 4.18 implies

d13(D
−3g2ch1) = 2D−12g6 and d9(D

−3gc) = D−9g3dh1.

Therefore, the class D3h1 has to be a permanent cycle. □

Remark 4.21. It turns out that D3h1 is hit by a d23-differential in the Tate spectral sequence
by Corollary 4.22.

Corollary 4.22. There are non-trivial d23-differentials

(1) d23(D
2h2

1) = D−13g6h1;
(2) d23(D

5h3
1) = D−10g6h2

1.

Proof. The claimed d23-differentials follow from Proposition 4.14(3) and Lemma 4.20 □

Lemma 4.23. There is a hidden 2 extension from D6h2
2 to g2d.

Proof. According to Lemma 2.18, there is a hidden 2 extension in stem 54 from ∆4
1d̄

6
1u6λu4σa2σ

to ∆4
1d̄

8
1u4λu6σa4λa2σ in the C4-HFPSS(E2) since it is ∆4

1-periodic. Note that the restriction of
D to the E2-page of the C4-HFPSS(E2) is invertible then it equals ∆1 up to a unit in W(F4), in

other words up to a unit we have resQ8

C4
(D) = ∆1. In Appendix A we show that the restriction of

the classes h2, d and g are non-trivial. Then in stem 54 of Q8-HFPSS(E2), we have the following
two restrictions up to units

resQ8

C4
(D6h2

2) = ∆4
1d̄

6
1u6λu4σa2σ

resQ8

C4
(g2d) = ∆4

1d̄
8
1u4λu6σa4λa2σ.

Note that in G24-HFPSS(E2), there are no other classes between these two filtrations. Then
the naturality forces a hidden 2 extension from D6h2

2 to g2d in G24-HFPSS(E2). This hidden 2
extension also happens in Q8-HFPSS(E2) by Corollary 4.3. □
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As the C4-HFPSS for E2 is 32-periodic, a similar proof gives the following hidden 2 extension
in stem 22 in the Q8-HFPSS for E2. In the rest of this paper, when we refer to restricting a class,
we always mean the restriction up to a unit in W(F4).

Corollary 4.24. There is a hidden 2 extension from D2h2
2 to D−4g2d.

Proposition 4.25. The classes 2Dh2 at (11, 1) and 2D5h2 at (43, 1) support d13-differentials

(1) d13(2Dh2) = D−8g3d;
(2) d13(2D

5h2) = D−4g3d.

Proof. (1) By Lemma 4.23 and the E∞-page class g, there is a hidden 2 extension from D−2gh2
2

to D−8g3d in stem 10 of the Q8-HFPSS for E2. By Corollary 4.15, we have

d5(Dh2) = D−2gh2
2.

Then the hidden 2 extension forces D−8g3d to be hit by a differential of length at most 13. Note
that there is a 2 extension 2(2Dh2) = Dh3

1. Then Dh3
1 cannot support a shorter differential

than 2Dh2. In particular, Dh3
1 cannot support a d11-differential to D−8g3d. This rules out the

only possibility that the target D−8g3d is hit by a shorter differential. Therefore, we proved the
desired non-trivial differential.
(2) It follows similarly from the hidden 2 extension from D2g2h2

2 to D−4g3d by Corollary 4.24. □

Remark 4.26. In Bauer’s computation for tmf [Bau08], the hidden 2 extension in Lemma 4.23
is proved using four-fold Toda brackets. In our approach, the hidden 2 extension follows from the
restriction and the C4-HFPSS hidden 2 extension, which again is forced by the exotic restrictions
and transfers in Lemma 2.18.

Lemma 4.27. The class Dh3
1 is a permanent cycle.

Proof. The class Dh3
1 is a 5-cycle. By Corollary 4.3 and degree reasons, Dh3

1 can only possibly
hit D−8g3d and D−14g6h2

1. According to Proposition 4.25 the former class is hit by a non-trivial
d13-differential. Moreover, according to Corollary 4.22 and Method 2.7, the class D−14g6h2

1

supports a non-trivial d23-differential (D
−14g6h2

1 = D−16g6D2h2
1). Therefore, these two potential

targets cannot receive differentials from Dh3
1. The result thereby follows. □

Proposition 4.28. The class D4 at (32, 0) supports a d7-differential

d7(D
4) = Dgh3

1.

Proof. Note that g and D−8 are permanent cycles. Then by Lemma 4.27 the class D−15h3
1g

6 at
(3, 27) is also a permanent cycle. This class has to be hit by a differential via the vanishing line
method (Theorem 4.8). By Corollary 4.3, the potential source is either D−3gc or D−12g5. The
former supports a d9 by Proposition 4.18. Therefore, the only possibility is the d7-differential

d7(D
−12g5) = D−15h3

1g
6.

Since D−8g5 is a permanent cycle, the result follows.
□

All d7-differentials follow from Proposition 4.17, Proposition 4.28 and the Leibniz rule.
Before proving the next two d9-differentials in Corollary 4.32, we need to first prove a permanent

cycle in Lemma 4.29 and two d11-differentials in Proposition 4.30.

Lemma 4.29. The class D3dh1 is a permanent cycle.
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Proof. By Corollary 4.16 in the Q8-TateSS for E2, we have a d9-differential

d9(D
9g−2c) = D3dh1.

Then D3dh1 is a permanent cycle in the Q8-TateSS. By Lemma 2.6 it is also a permanent cycle
in Q8-HFPSS(E2). □

Proposition 4.30. The classes D2d at (30, 2) and D6d at (62, 2) support d11-differentials

(1) d11(D
2d) = D−4g3h1;

(2) d11(D
6d) = g3h1.

Proof. According to Proposition A.7, the restriction of the class d from Q8-HFPSS(E2) to C4-
HFPSS(E2) is non-trivial, Since the class d is order 2, the class res(D2d) must be order 2. Then
according to the computations in [BBHS20] (See [BBHS20, Figure 5.3]), on bigrading (30, 2),
the class res(D2d) supports a non-trivial d13-differential. This implies the class D2d supports a
non-trivial differential with a length at most 13. The desired differential in (1) follows by degree
reasons. The proof for (2) is similar since C4-HFPSS(E2) is 32-periodic.

□

Corollary 4.31. The classes D2dh1 at (31, 3) and D6dh1 at (63, 3) support d11-differentials

(1) d11(D
2dh1) = D−4g3h2

1;
(2) d11(D

6dh1) = g3h2
1.

Corollary 4.32. The classes Dh1 at (9, 1) and D5h1 at (41, 1) support d9-differentials

(1) d9(Dh1) = D−5g2c;
(2) d9(D

5h1) = D−1g2c.

Proof. By Corollary 4.3 and degree reasons, the class Dh1 either supports a non-trivial d9-
differential or is an 11-cycle. We show that it is the first case.

If Dh1 were a 11-cycle then by Proposition 4.30 and the Leibniz rule, there would be a
d11-differential

d11(D
3dh1) = D−3g3h2

1.

This contradicts Lemma 4.29. Therefore, we have the desired d9-differential in (1). The proof for
(2) is similar.

□

Proposition 4.33. The class D−1h1 is a 13-cycle.

Proof. Since D8 is the periodic class, it suffices to prove that D7h1 is a 13-cycle. The D7h1 is a
7-cycle from our computation of E9-page. According to Corollary 4.16, the class Dc supports a
d9-differential. Then the class g2Dc supports a non-trivial d9-differential by Method 2.7 since the
class g = kD3 is invertible.

Therefore, the class D7h1 does not support a d9-differential since the possible target g2Dc
already supports a d9-differential. Then for degree reasons, D7h1 is a 13-cycle. So is the class
D−1h1. □

Corollary 4.34. The classes D2c at (24, 2) and D6c at (56, 2) support d9-differentials

(1) d9(D
2c) = D−4g2dh1;

(2) d9(D
6c) = g2dh1.

Proof. Suppose D2c does not support a non-trivial d9-differential. Then for degree reasons, it is
a 13-cycle. However, since D−1h1 is also a 13-cycle, the Leibniz rule show that Dh1c is also a
13-cycle. This contradicts Proposition 4.14 and proves the d9-differential in (1). The d9-differential
in (2) follows similarly by Proposition 4.18. □
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Corollary 4.35. The classes Ddh1 at (23, 3) and D5dh1 at (55, 3) support d11-differentials

(1) d11(Ddh1) = D−5g3h2
1;

(2) d11(D
5dh1) = D−1g3h2

1.

Proof. According to Proposition 4.33, the class D−1h1 is a 13-cycle. Then these two d11-
differentials follow by Proposition 4.30 and the Leibniz rule. □

Lemma 4.36. The class d is a permanent cycle.

Proof. Proposition 4.25 shows that d is hit by a d13-differential from 2D9g−3h2 in Q8-TateSS(E2).
By Lemma 2.6 d is a permanent cycle. □

Remark 4.37. The class d is in the image of the Hurewicz map S0 → EhQ8

2 . This follows from

the Hurewicz image of EhC4
2 [HSWX23, Figure 12] (see Proposition A.8).

Proposition 4.38. The classes D2h1 at (17, 1) and D6h1 at (49, 1) support d9-differentials

(1) d9(D
2h1) = D−4g2c;

(2) d9(D
6h1) = g2c.

Proof. We prove this by contradiction. Assume D2h1 does not support the desired differential.
Then it is a 11-cycle by degree reasons. The Leibniz rule forces the class Dh1 to support a
non-trivial d11-differential but this contradicts Lemma 4.36. The proof of (2) is similar. □

Table 8 lists the differentials we have computed so far. They generate differentials via the
Leibniz rule. By inspection, these are all non-trivial differentials since the remaining classes are
permanent cycles by Method 2.7.

4.3. Extension problem. Now we solve all the 2-extensions on the E∞-page.

Theorem 4.39. All the hidden 2 extensions in the integer-graded G24-HFPSS(E2) are displayed
in Fig. 10 by grey vertical lines.

Proof. Since the G24-HFPSS for E2 is 192-periodic, it suffices to consider the stem range from 0
to 192. We divide these 2 extensions into three types by their proofs. The first type follows from
the fact that in homotopy groups of spheres, 4ν = η3 and h1 detects η, h2 detects ν (Lemma 4.9).
This type of hidden 2 extensions happens in stem 3, 27, 51, 99, 123 and 147 in the period from 0
to 192.

The second type consists of the 2 extensions in stem 54 and 150. The proof of the first is in
Lemma 4.23, and the proof of the second is similar using the 32-periodicity of C4-HFPSS(E2)
and Lemma 2.18.

The third type consists of three hidden 2 extensions in the first period. The first one is in
stem 110 from D12d to D6g3h2

1. The other two in stem 130 and 150 (from filtration 10 to 22)
follow from the first one by multiplying g and g2 respectively. So it suffices to show that there
is a 2 extension from D12g2d to D6g5h2

1. To derive this 2 extension, we claim there are two
hidden h1 extensions from D18h2 to D15gc and from D15gch1 to D6g5h2

1. As for the first hidden
h1 extension, In G24-TateSS(E2), we have the following two differentials by Corollary 4.15 and
Corollary 4.32:

d5(g
−1D21) = D18h2,

d9(g
−1D21h1) = D15gc.

Now consider the cofibration
E2hG24

→ EhG24
2 → EtG24

2 .

In the negative filtrations in G24-TateSS(E2), there is an h1 extension from g−1D21 to g−1D21h1,

then this h1 extension under the additive norm map gives an h1 extension relation in π∗E
hG24
2
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from an element detected by D18h2 to some element detected by D15gc. This forces a hidden
h1 extension from D18h2 to D15gc in G24-HFPSS(E2). The similar hidden h1 extension from
D15gch1 to D6g5h2

1 follow from the following two differentials in G24-TateSS(E2) by Corollary 4.32
and Corollary 4.22.

d9(g
−1D21h2

1) = D15gch1,

d23(g
−1D21h3

1) = D6g5h2
1

Therefore, in π∗E
hG24
2 there is an h3

1-extension from D18h2 to D6g5h2
1. On the other hand we

know h3
1 = 4h2, which implies D6g5h2

1 must be 4a for some class a ∈ π150E
hG24
2 . Then the degree

reasons forces the 2 extension D12g2d to D6g5h2
1.

We claim there are no further 2 extensions in G24-HFPSS(E2). By degree reasons, the other
possible hidden 2 extensions either have sources that are h1 divisible or have targets that support
h1 extensions. Therefore, the hidden 2 extensions cannot happen in these cases. □

Corollary 4.40. All the hidden 2 extensions in the integer-graded Q8-HFPSS(E2) are displayed
in Fig. 9 by gray vertical lines.

Proof. This follows from Theorem 4.39 and Proposition 4.2. □

Our result of 2 extensions via the equivariant and the Tate methods matches the tmf
computation in [Bau08]. In [Bau08], because the arguments for proving differentials rely on
(hidden) η and ν extensions, almost all these hidden extension are also computed (there is
another ν extension from D15h2

1 at (122, 2) and its κ̄ multiples [Isa09, Lemma 5.3]). Here our new
methods only use hidden 2 extensions and the h1, h2 multiplications on the E2-page. Therefore,
we do not need to work out hidden η and ν extensions and in our figures, we only draw h1, h2

multiplications.

4.4. Differentials: alternative methods. In this subsection, we revisit several differentials in
the integer-graded part via different approaches.

Proposition 4.41. The class D at (8, 0) supports a d5-differential

d5(D) = D−2gh2.

Proof. The restriction of D to the C4-HFPSS for E2 is ∆1, which supports a non-trivial d5-
differential according to [BBHS20, Proposition 5.24]. By naturality, D must support a non-
trivial differential with length ≤ 5. Then by Corollary 4.3 and degree reasons, it has to be
d5(D) = D−2gh2. □

Moreover, given all d5, d7-differentials, then the vanishing line forces the d11-differential in
Proposition 4.30.

Proposition 4.42. The class D6d at (62, 2) supports a d11-differential

d11(D
6d) = g3h1.

Proof. It is enough to prove the d11-differential

d11(D
6g5dh1) = g8h2

1

since g is invertible in the Q8-TateSS for E2. The target g8h2
1 is a permanent cycle in filtration

34 ⩾ 23. By Theorem 4.8 and Theorem 2.9 it has to be hit by a differential. Since D6g5dh1 is a
7-cycle, the only possibility is the desired d11-differential. □

We here present another proof of the d9-differential in Proposition 4.38 which combines the
partial calculations in (∗ − σi)-gradings by the norm method (see Proposition 5.16).
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Proposition 4.43. The class D2h1 at (17, 1) supports a d9-differential

d9(D
2h1) = D−4g2c.

Proof. Suppose the claimed d9-differential does not happen, then D2h1 is a 9-cycle. According to
Lemma 5.6, the class {x+y}D4uσi

is a 9-cycle. Then the Leibniz rule implies that {x+y}D6h1uσi

is also a 9-cycle. This contradicts the fact that {x+y}D6h1uσi
supports a non-trivial d9-differential

in Proposition 5.16. □

4.5. Summary of differentials. We summarize differentials in Table 8. All differentials follow
from this list by the Leibniz rule.

Table 8. HPFSS differentials, integer page

(s, f) x r dr(x) Proof

(12, 0) v61 3 v41h
3
1 Proposition 4.10 (restriction)

(8, 0) D 5 D−2gh2 Corollary 4.15 (vanishing line)
or Proposition 4.41 (restriction)

(8, 0) 4D 7 D−2gh3
1 Proposition 4.17 (8ν = η3)

(16, 0) 2D2 7 D−1gh3
1 Proposition 4.17

(32, 0) D4 7 Dgh3
1 Proposition 4.28 (vanishing line)

(9, 1) Dh1 9 D−5g2c Corollary 4.32
(41, 1) D5h1 9 D−1g2c Corollary 4.32
(16, 2) Dc 9 D−5g2dh1 Corollary 4.16
(48, 2) D5c 9 D−1g2dh1 Proposition 4.18
(17, 1) D2h1 9 D−4g2c Proposition 4.38
(49, 1) D6h1 9 g2c Proposition 4.38
(24, 2) D2c 9 D−4g2dh1 Corollary 4.34
(56, 2) D6c 9 g2dh1 Corollary 4.34

(30, 2) D2d 11 D−4g3h1 Proposition 4.30 (restriction)
(62, 2) D6d 11 g3h1 Proposition 4.30 (restriction)

or Proposition 4.42 (vanishing line)
(23, 3) Ddh1 11 D−5g3h2

1 Corollary 4.35
(55, 3) D5dh1 11 D−1g3h2

1 Corollary 4.35

(17, 3) Dch1 13 2D−8g4 Proposition 4.14 (vanishing line)
(49, 3) D5ch1 13 2D−4g4 Proposition 4.18 (transfer)
(11, 1) 2Dh2 13 D−8g3d Proposition 4.25 (hidden 2 extension)
(43, 1) 2D5h2 13 D−4g3d Proposition 4.25

(−7, 1) D−1h1 23 D−16g6 Proposition 4.14 (vanishing line)
(18, 2) D2h2

1 23 D−13g6h1 Corollary 4.22
(43, 3) D5h3

1 23 D−10g6h2
1 Corollary 4.22

5. The (∗ − σi)-graded computation

In this section, we compute the (∗ − σi)-graded Q8-HFPSS for E2. We use the following
convention: a class at (n − σi,m) will be denoted as in degree (n − 1,m). Since the Q8-
representation σi cannot be lifted to G24, in this section, we only consider the groups Q8 and
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SD16. We name classes by their names in the 2-BSS in Table 5, and also use 2-BSS names for
the integer-graded classes as it makes the multiplication relation clearer.

Proposition 5.1. The class v21uσi at (4, 0) supports a d3-differential

d3(v
2
1uσi

) = h3
1uσi

.

Proof. We consider the restriction map from (∗−σi)-graded Q8-HFPSS(E2) to the integer-graded
C4-HFPSS(E2). Note that the C4-invariant element T2 ∈ H0(C4, π4E2) equals v

2
1 modulo 2. This

implies resQ8

C4
(v21uσi) = T2 modulo 2. Recall that in the C4-HFPSS for E2, the class T2 supports

a non-trivial d3-differential ([BBHS20, Proposition 5.21]). Then the class v21uσi must support a
non-trivial differential of length ≤ 3. For degree reasons, we have

d3(v
2
1uσi) = h3

1uσi .

□

Since the (∗ − σi)-graded part is a module over the integer-graded part, this d3-differential
implies a family of d3-differentials as follows:

d3(k
sDmv4l+2

1 hn
1uσi

) = ksDmv4l1 hn+3
1 uσi

where k,m, l, n ∈ Z and l, n ≥ 0. By taking out these d3-differentials, an argument similar to the
proof in Proposition 4.12 shows that the following classes are permanent cycles

2Dmv4l−2
1 , Dmv4l1 , Dmv4l1 h1, D

mv4l1 h2
1

where l ≥ 1 and m ≥ 0. All the classes above either support non-trivial d3-differentials or are
permanent cycles. Similar to the bo-pattern in the integer graded part, we do not need to consider
this part in later computations of higher differentials.

However, this is not the only kind of d3-differentials in (∗ − σi)-graded part. To derive the
second kind of d3-differentials, we first need to show the d5-differential pattern and several other
facts.

Lemma 5.2. The class {x+ y}uσi is a permanent cycle.

Proof. For degree reasons, this class is aσi
on the E2-page defined in Definition 2.2. By

Proposition 2.3, this class is a permanent cycle. □

Corollary 5.3. The class {x+ y}Duσi
at (7, 1) supports a d5-differential

d5({x+ y}Duσi
) = k{yh2 + xh1v1}Duσi

.

Proof. Since the (∗ − σi)-graded part is a module over the integer-graded part, the claimed
differential follows from Lemma 5.2, Corollary 4.15 and the Leibniz rule. □

Corollary 5.3 generates the first kind of d5-differentials via the Leibniz rule.

Lemma 5.4. The class {x2 + y2}Duσi
is a permanent cycle.

Proof. According to Proposition 4.38, there is a d9-differential d9(D
6h1) = k2D7xh1. Then the

Leibniz rule implies that the class k2x2h1D
7uσi

= k2D7xh1 · {x+ y}uσi
is hit by a differential of

length ≤ 9. For degree reasons, it is hit by either a d9-differential or a d7-differential. In either
case, the h1 extensions force k2{x2 + y2}D7uσi

to be hit on or before the E9-page. Then the
class {x2 + y2}Duσi

must be a permanent cycle; otherwise the class k2{x2 + y2}D7uσi
would

support a non-trivial differential since

k2{x2 + y2}D7uσi
= {x2 + y2}Duσi

· k2D6

where k2D6 = g2 is a permanent cycle that survives to E∞-page in the integer-graded part. □
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Corollary 5.5. The class {x2 + y2}uσi at (−2, 2) supports a d5-differential

d5({x2 + y2}uσi) = k{x+ y}h2
1uσi .

By inspection, all d5-differentials in (∗ − σi)-graded part follows from Corollary 5.3 and
Corollary 5.5 by the Leibniz rule.

Lemma 5.6. The class {x+ y}D4uσi
is a 11-cycle.

Proof. According to [BBHS20, Remark 5.23], the class u2σ is a 5-cycle in the C4-HFPSS for E2.

Therefore, Theorem 2.8 implies that NQ8

C4
(u2σ)aσi is a 9-cycle. According to Proposition 2.5

NQ8

C4
(u2σ)aσi

=
u2σju2σk

u2σi

aσi
.

If we restrict this class to the subgroup C4⟨j⟩, then we get the class aσ which is non-trivial.

Hence NQ8

C4
(u2σ)aσi

is non-trivial on the E2-page. By multiplying NQ8

C4
(u2σ)aσi

with the following
periodicity classes

NQ8

C4⟨i⟩(u4σ)N
Q8

C4⟨i⟩(d̄1)
4NQ8

C4⟨i⟩(u4λu2σ)u
5
4σi

u−1
4σj

u−1
4σk

where u4σi , u4σj , u4σk
are permanent cycles by Remark 2.24, we get a non-trivial class at (31, 1).

For degree reasons, this class must be {x+y}D4uσi (up to a unit). This implies that {x+y}D4uσi

is also a 9-cycle. For degree reasons, {x+ y}D4uσi is a 11-cycle . □

Remark 5.7. We will show in Proposition 5.20 that the above class supports a non-trivial
d13-differential.

Proposition 5.8. The class {h1 + xv1}uσi
at (1, 1) supports a d3-differential

d3({h1 + xv1}uσi
) = 2kv21uσi

.

Proof. We argue by contradiction. Suppose this differential does not happen. Then the class
2kv21uσi

will survive to the E5-page and the Leibniz rule implies that there is a d5-differential

d5(x
3D4uσi

) = 2k2v21D
4uσi

,

since there is an h2 extension from kx3D4uσi to 2k2v21D
4uσi by Lemma 3.9.

On the other hand, according to Lemma 5.2, Proposition 4.28 and the Leibniz rule we know
the class {x+ y}D4 is a 5-cycle. Moreover, the class x2 is a also 5-cycle by Proposition 4.30. so
the product x3D4 = {x+ y}D4uσi

· x2 is a 5-cycle. This is a contradiction. And the claimed d3
follows immediately.

□

Remark 5.9. Proposition 5.8 shows that 2kv21uσi
is hit by a d3-differential. Recall that the class

kv21uσi itself supports a non-trivial d3-differential by Proposition 5.1.

By the above discussion and by inspection, all d3-differentials in the (∗ − σi)-graded part
follows from Proposition 5.1, Proposition 5.8 and the Leibniz rule.

Corollary 5.10. The classes x3uσi
at (−3, 3) and x3D4uσi

at (29, 3) support d11-differentials

(1) d11(x
3uσi) = k3{x+ y}Dh1uσi ;

(2) d11(x
3D4uσi) = k3{x+ y}D5h1uσi .

Proof. According to Proposition 4.30, there is a d11-differential in the integer-gradings

d11(x
2) = k3Dh1.

Note that {x+ y}uσi
and {x+ y}D4uσi

are both 11-cycles. By the Leibniz rule, we have

d11(x
3uσi

) = {x+ y}uσi
d11(x

2) = k3{x+ y}Dh1uσi
.

The proof of the second d11-differential is similar. □
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Proposition 5.11. The classes {h2
1 + xh1v1}Duσi at (10, 2) and {h2

1 + xh1v1}D5uσi at (42, 2)
support d9-differentials

(1) d9({h2
1 + xh1v1}Duσi

) = k2{x+ y}h2
1D

2uσi
;

(2) d9({h2
1 + xh1v1}D5uσi

) = k2{x+ y}h2
1D

6uσi
.

Proof. Because kD3 = g is an invertible permanent cycle in Q8-TateSS(E2), the d11-differential
in Corollary 5.10

d11(x
3D4uσi

) = k3{x+ y}h1D
5uσi

implies that in the (∗ − σi)-graded Q8-TateSS(E2) we have

d11(k
−1x3Duσi

) = (kD3)−1d11(x
3D4uσi

) = k2{x+ y}h1D
2uσi

.

Since k2{x+ y}h1D
2uσi is hit by a d11-differential in Q8-TateSS(E2), its h1 extension, k2{x+

y}h2
1D

2uσi , has to be hit on or before the E11-page. For degree reasons, this class k
2{x+y}D2h2

1uσi

must be hit by the claimed d9-differential in Q8-TateSS(E2). By Lemma 2.6, the first claimed
d9-differential also happens in Q8-HFPSS(E2). The second d9-differential follows similarly. □

We have the following d9-differentials by the Leibniz rule and integer-graded d9-differentials.

Proposition 5.12. We have the following d9-differentials

(1) d9({x+ y}h1Duσi) = k2x2h1D
2uσi ;

(2) d9({x+ y}h1D
2uσi

) = k2x2h1D
3uσi

;
(3) d9({x+ y}h1D

5uσi
) = k2x2h1D

6uσi
;

(4) d9({x+ y}h1D
6uσi

) = k2x2h1D
7uσi

.

Proof. We prove the first differential, and the proofs of the rest three differentials are similar.
According to Corollary 4.32, in the integer-graded Q8-HFPSS(E2) we have

d9(Dh1) = k2xh1D
2.

Note that the class {x+ y}uσi
is a permanent cycle by Lemma 5.2. Then the Leibniz rule implies

d9({x+ y}h1Duσi
) = {x+ y}uσi

d9(Dh1) = k2x2h1D
2uσi

.

□

Corollary 5.13. The classes {x + y}D2uσi
at (15, 1) and {x + y}D6uσi

at (47, 1) support
d9-differentials

(1) d9({x+ y}D2uσi
) = k2{x2 + y2}D3uσi

;
(2) d9({x+ y}D6uσi

) = k2{x2 + y2}D7uσi
.

Proof. By Proposition 4.33, the class D−1h1 is a 9-cycle. These two d9-differentials hold since
otherwise the classes {x+ y}Dh1uσi and {x+ y}D5h1uσi would be 9-cycles by the Leibniz rule,
which contradicts Proposition 5.12. □

To derive the last type of d9-differential, we first need to show the following d17-differential in
the (∗ − σi)-graded part.

Proposition 5.14. The class {h2
1 + xh1v1}uσi

at (2, 2) supports a d17-differential

d17({h2
1 + xh1v1}uσi

) = k4{x+ y}h2
1D

2uσi
.

Proof. Consider the class k6{h2
1+xh1v1}D10uσi in filtration 26. By Theorem 4.8 this class cannot

survive to the E∞-page.
After the E5-page, all the potential sources that could support a differential hitting the class

k6{h2
1 + xh1v1}D10uσi

are k3x2h1D
9uσi

, k3{x + y}D9uσi
and kx2h1D

8uσi
. We rule out all
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three possibilities one by one. The class k3x2h1D
9uσi is hit by the following d9-differential in

Proposition 5.12

d9(kxh1D
9uσi

) = kD3d9({x+ y}h1D
6uσi

) = k3x2h1D
9uσi

.

The class k3{x+y}D9uσi
is a permanent cycle since {x+y}uσi

is a permanent cycle by Lemma 5.2.
The class kx2h1D

8 is also a permanent cycle since it is hit by a known d9-differential in the
Q8-TateSS for E2 according to Proposition 5.12

d9(k
−1{x+ y}D7h1uσi) = kx2h1D

8uσi .

Therefore, the class k6{h2
1 + xh1v1}D10uσi

must support a non-trivial differential. Since kD3 = g
is an invertible permanent cycle in TateSS, the class {h2

1 + xh1v1}uσi
= D8(kD3)−6k6{h2

1 +
xh1v1}D10uσi

also has to support a non-trivial differential.
Therefore, the class k6{h2

1 + xh1v1}D10uσi
has to support a non-trivial differential, so is the

class {h2
1 + xh1v1}uσi . For degree reasons, there are three possible targets which are kx3D,

k4xh2
1D

2uσi and k5x3D3uσi . The class {h2
1 + xh1v1}D−1uσi is a 5-cycle for degree reasons, and

the Leibniz rule implies

d5({h2
1 + xh1v1}uσi

) = {h2
1 + xh1v1}D−1uσi

d5(D)

= {h2
1 + xh1v1}D−1uσi · kDh2 = 0

So the class {h2
1 + xh1v1}uσi

is also a 5-cycle, in other words, the class kx3D cannot receive a
differential from the class kx3D. On the other hand, the class k5x3D3uσi

supports the following
d11-differential by Corollary 5.10

d11(k
5x3D3uσi) = (kD3)5D−16d11(x

3D4uσi) = k8D4{x+ y}h1uσi .

Therefore, the class {h2
1 + xh1v1}uσi

supports the desired d17-differentials

d17({h2
1 + xh1v1}uσi) = k4{x+ y}h2

1D
2uσi .

□

It turns out that this is the only d17-differential in one period of the (∗ − σi)-graded part of
Q8-HFPSS(E2).

Proposition 5.15. The classes {x2 + y2}D3uσi
at (22, 2) and {x2 + y2}D7uσi

at (54, 2) support
d9-differentials

(1) d9({x2 + y2}D3uσi
) = k2x3D4uσi

;
(2) d9({x2 + y2}D7uσi

) = k2x3D8uσi
.

Proof. According to Proposition A.7, the restriction of {x2 + y2}uσi
to the integer-graded C4-

HFPSS for E2 is non-trivial. It implies the following restriction by degree reasons

resQ8

C4
({x2 + y2}D3uσi) = d̄61u6λu4σa2σ.

We now prove that the class {x2 + y2}D3uσi
supports a non-trivial differential by contradiction.

Suppose that the class {x2 + y2}D3uσi is a permanent cycle that survives to the E∞-page. Note

that its C4-restriction d̄61u6λu4σa2σ has a hidden 2 extension in π∗E
hC4
2 by Lemma 2.18. Then

{x2 + y2}D3uσi
also has a hidden 2 extension in the E∞-page. However, since hidden extensions

and natural maps between spectral sequences will not decrease filtration, the potential target of
the hidden 2 extension from the class {x2 + y2}D3uσi can only be k2{x2 + y2}D4uσi , k{yh2 +
xh1v1}D3uσi

and k{h2
1 +xh1v1}D3 by degree reasons. However, the first class k2{x2 + y2}D4uσi

supports a non-trivial d5-differential by Corollary 5.5

d5(k
2{x2 + y2}D4uσi

) = k3xh2
1D

4uσi
.
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The second class k{yh2 + xh1v1}D3uσi is hit by a d5-differential by Corollary 5.3

d5({x+ y}D3uσi
) = k{yh2 + xh1v1}D3uσi

.

The third class k{h2
1 + xh1v1}D3uσi supports a d17-differential by Proposition 5.14

d17(k{h2
1 + xh1v1}D3uσi

) = k5xh2
1D

5uσi
.

Therefore, all the potential targets of the hidden 2 extension from the class {x2 + y2}D3uσi

will not survive to the E∞-page. This is a contradiction. Hence the class {x2 + y2}D3uσi must
support a non-trivial differential.

After the E5-page, the only two potential targets are k2x3D4uσi
and k5{x+ y}h2

1D
5uσi

by
degree reasons. However, the class k5{x+ y}h2

1D
5uσi

is hit by the following d17-differential by
Proposition 5.14 and the Leibniz rule

d17(k{h2
1 + xh1v1}D3uσi

) = kD3d17({h2
1 + xh1v1}uσi

) = k5{x+ y}h2
1D

5uσi
.

Then the first desired d9-differential follows. The proof of the second d9-differential in the
statement is similar since the C4-HFPSS for E2 is 32-periodic. □

We can apply the norm method to get a d9-differential directly (after the calculation of E3-page)
which is independent of the d9 information in the integer-graded part.

Proposition 5.16. There is a normed d9-differential in (∗ − σi)-page

d9({x+ y}D6uσi) = k2{x2 + y2}D7uσi .

Proof. According to [HHR17, Theorem 11.13], the class u2λ supports a non-trivial d5-differential
in C4-HFPSS(E2)

d5(u2λ) = d̄1uλa2λaσ.

Then Theorem 2.8 implies there is a predicted d9-differential in Q8-HFPSS(E2)

d9(N
Q8

C4
(u2λ)aσi

) = NQ8

C4
(d̄1)N

Q8

C4
(uλ)a2Haσj

aσk
.

We claim the target of this predicted d9-differential is non-trivial on the E2-page. It suffices

to show that the class aσjaσk
is non-trivial since NQ8

C4
(uλ)a2H is invertible in TateSS(E2). We

observe that

resQ8

C4
(aσj

aσk
) = a2σ

where a2σ is non-trivial in C4-HFPSS(E2). This implies that aσj
aσk

is also non-trivial. Therefore,

the non-trivial class on the E2-page NQ8

C4
(d̄1)N

Q8

C4
(uλ)a2Haσjaσj must be hit on or before the

E9-page. By multiplying this class with the following periodicity classes

NQ8

C4⟨i⟩(u4λu2σ)N
Q8

C4⟨i⟩(d̄1)
6u5

4σi
u4σj

u4σk

we get a non-trivial class at (46, 10), which has to be the class k2{x2 + y2}D7uσi
(up to a unit)

by degree reasons. Therefore, the class k2{x2 + y2}D7uσi has to be hit on or before the E9-page
too. If this class is hit by a d7-differential from the class x2h1D

6uσi , then the class k2x2h1D
7uσi

has to be killed on or before the E7-page. However, this is a contradiction by degree reasons.
Therefore, the claimed d9-differential follows. □

All d9-differentials follow from Proposition 5.11, Proposition 5.12, Corollary 5.13, Proposition 5.15
and the Leibniz rule.

Proposition 5.17. The classes {x+ y}h2
1D

2uσi
at (17, 3), {x+ y}h1D

7uσi
at (56, 2) support

d23-differentials

(1) d23({x+ y}h2
1D

2uσi
) = k6{x+ y}h1D

5uσi
;

(2) d23({x+ y}h1D
7uσi

) = k6{x+ y}D10uσi
.
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Proof. By Corollary 4.22 we have the following two d23-differentials in the integer-graded part

d23(D
2h2

1) = k6h1D
5, and d23(D

7h1) = k6D10.

Note that the class {x + y}uσi
is a permanent cycle by Lemma 5.2. Then the desired two

differentials follow from these d23-differentials and the Leibniz rule. □

All d23-differentials follow from Proposition 5.17 and the Leibniz rule.

Lemma 5.18. The four classes {h2
1 +xh1v1}D2uσi , {h2

1 +xh1v1}D3uσi , {h2
1 +xh1v1}D6uσi and

{h2
1 + xh1v1}D7uσi are all permanent cycles.

Proof. After the E5-page, the potential targets of {h2
1 + xh1v1}D7uσi

are the classes k2{x +
y}h2

1D
8uσi

and k3x3D9uσi
, since lengths of differentials in the RO(Q8)-graded Q8-HFPSS(E2)

are less than or equal to 23 by Theorem 4.8. However, the class k2{x+ y}h2
1D

8uσi
supports a

non-trivial d23-differential by Proposition 5.17 and the class k3x3D9uσi supports a non-trivial
d11-differential by Corollary 5.10. For similar reasons, the rest three classes are permanent
cycles. □

Proposition 5.19. There are four non-trivial d11-differentials

(1) d11(x
2h1D

2uσi
) = k3{h2

1 + xh1v1}D3uσi
;

(2) d11(x
2h1D

3uσi) = k3{h2
1 + xh1v1}D4uσi ;

(3) d11(x
2h1D

6uσi) = k3{h2
1 + xh1v1}D7uσi ;

(4) d11(x
2h1D

7uσi
) = k3{h2

1 + xh1v1}D8uσi
.

Proof. We first prove (2). Consider the class k6{h2
1 + xh1v1}D5uσi

which is a permanent cycle
by Lemma 5.18. Since its filtration is greater than 23, the horizontal vanishing line forces it
to be killed. For degree reasons, after E5-page, there are two potential sources: k3x2h1D

4uσi

and kx2h1D
3uσi . However, the class kx2h1D

3uσi is a permanent cycle since it is killed by a
d9-differential in the associated TateSS according to Proposition 5.12. Therefore, we have

d11(k
3x2h1D

4uσi) = k6{h2
1 + xh1v1}D5uσi .

Next, consider the class k6{h2
1 + xh1v1}D8uσi which is also a permanent cycle by Lemma 5.18.

Similarly, the horizontal vanishing line forces it to be killed eventually. After E5-page, for degree
reasons, there are three potential sources: k3x2h1D

7uσi
, k3{x+ y}D7uσi

and kx2h1D
6uσi

. The
second class k3{x + y}D7uσi

supports a d9-differential by Proposition 5.16. The third class
kx2h1D

6uσi
supports a d11-differential we just proved

d11(kx
2h1D

6uσi) = kD3d11(x
2h1D

3uσi) = k4{h2
1 + xh1v1}D7uσi

Therefore, we have

d11(k
3x2h1D

7uσi
) = k3{h2

1 + xh1v1}D8uσi
.

The rest two claimed d11-differentials follow by similar arguments.
□

All d11-differentials follow from Corollary 5.10, Proposition 5.19 and the Leibniz rule.

Proposition 5.20. The class {x+ y}D4uσi
at (31, 1) supports a d13-differential

d13({x+ y}D4uσi
) = k3{h2

1 + xh1v1}D5uσi
.

Proof. We first claim the class k3{h2
1 + xh1v1}D5uσi is a permanent cycle. In the Q8-TateSS for

E2, by multiplying it with k−3D−9 ·D8, we obtain {h2
1 + xh1v1}D4uσi

, which is a permanent
cycle by Lemma 5.18. So k3{h2

1 + xh1v1}D5uσi
is also a permanent cycle in the Q8-HFPSS for

E2.
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Next we consider the class k6{h2
1 + xh1v1}D6uσi = k3{h2

1 + xh1v1}D5uσi · k3D9 ·D−8 above
the vanishing line. By Theorem 4.8 it must be hit by a differential since it is a permanent cycle.
Then for degree reasons, the only two possible sources are {x+ y}D4uσi

and x2h1D
4uσi

. Note
that the class x2h1D

4 is a permanent cycle since it is hit by a d9-differential in Q8-TateSS(E2)

d9(k
−2xh1D

3uσi
) = x2h1D

4uσi
.

Therefore, the claimed d13-differential must happen. □

This d13-differential can also be deduced via the norm method.

Second proof of Proposition 5.20. According to [HHR17, Theorem 11.13][HSWX23, Corollary 3.14],
there is a d7-differential in the C4-HFPSS for E2

d7(u4λ) = d̄1η
′u2λa3λ.

Then Theorem 2.8 shows that there is a predicted d13-differential

d13(N
Q8

C4
(u4λ)aσi

) = NQ8

C4
(d̄1)N

Q8

C4
(η′)NQ8

C4
(u2λ)a3H.

According to [Sch11, Proposition 10.4 (viii)], resQ8

C4
NQ8

C4
(η′) = η′2 is non-trivial. Then NQ8

C4
(η′) is

non-trivial on the E2-page and so is the class NQ8

C4
(d̄1)N

Q8

C4
(η′)NQ8

C4
(u2λ)a3H. By multiplying the

non-trivial class NQ8

C4
(d̄1)N

Q8

C4
(η′)NQ8

C4
(u2λ)a3H with the periodicity classes in Corollary 2.22, we

get a non-trivial class at (30, 14) on the E2-page, which has to be the class k3{h2
1 + xh1v1}D5uσi

by degree reasons. Therefore, the class k3{h2
1 + xh1v1}D5uσi must be hit on or before the

E13-page. For degree reasons, the desired d13-differential follows. □

All d13-differentials follow from Proposition 5.20 and the Leibniz rule.
Table 9 lists the differentials we have computed so far. They generate differentials via the

Leibniz rule. By inspection, these are all non-trivial differentials since the remaining classes are
permanent cycles by Method 2.7.

The result is presented in Fig. 17.

5.1. Summary of differentials. Differentials in (∗ − σ)-graded part are given by Table 9. All
differentials follow from this list by multiplying permanent cycles and the Leibniz rule.

Table 9. HPFSS differentials, (∗ − σi)-page

(s, f) x r dr(x) Proof

(1, 1) {h1 + xv1}uσi
3 2kv21uσi

Proposition 5.8
(4, 0) v21uσi

3 h3
1uσi

Proposition 5.1 (restriction)

(7, 1) {x+ y}Duσi
5 k{yh2 + xh1v1}Duσi

Corollary 5.3 (module structure)
(14, 2) {x2 + y2}D2uσi 5 kxh2

1D
2uσi Corollary 5.5 (module structure)

(10, 2) {h2
1 + xh1v1}Duσi 9 k2{x+ y}h2

1D
2uσi Proposition 5.11

(42, 2) {h2
1 + xh1v1}D5uσi

9 k2{x+ y}h2
1D

6uσi
Proposition 5.11

(8, 2) {x+ y}h1Duσi
9 k2x2h1D

2uσi
Proposition 5.12 (module structure)

(40, 2) {x+ y}h1D
5uσi

9 k2x2h1D
6uσi

Proposition 5.12
(15, 1) {x+ y}D2uσi 9 k2{x2 + y2}D3uσi Corollary 5.13
(47, 1) {x+ y}D6uσi 9 k2{x2 + y2}D7uσi Corollary 5.13
(22, 2) {x2 + y2}D3uσi

9 k2x3D4uσi
Proposition 5.15 (hidden 2 extension)

(54, 2) {x2 + y2}D7uσi
9 k2x3D8uσi

Proposition 5.15

(15, 3) x2h1D
2uσi

11 k3{h2
1 + xh1v1}D3uσi

Proposition 5.19 (vanishing line)
Continued on next page
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Table 9. – HPFSS differentials, (∗ − σi)-page (continued)

(s, f) x r dr(x) Proof

(47, 3) x2h1D
6uσi

11 k3{h2
1 + xh1v1}D7uσi

Proposition 5.19
(23, 3) x2h1D

3uσi
11 k3{h2

1 + xh1v1}D4uσi
Proposition 5.19

(55, 3) x2h1D
7uσi

11 k3{h2
1 + xh1v1}D8uσi

Proposition 5.19
(29, 3) x3D4uσi 11 k3xh1D

5uσi Corollary 5.10 (module structure)
(61, 3) x3D8uσi 11 k3xh1D

9uσi Corollary 5.10

(31, 1) {x+ y}D4uσi
13 k3{h2

1 + xh1v1}D5uσi
Proposition 5.20 (vanishing line
or norm differential)

(2, 2) {h2
1 + xh1v1}uσi

17 k4{x+ y}h2
1D

2uσi
Proposition 5.14 (vanishing line)

(17, 3) {x+ y}h2
1D

2uσi 23 k6{x+ y}h1D
5 Proposition 5.17 (module structure)

(56, 2) {x+ y}h1D
7uσi 23 k6{x+ y}D10uσi Proposition 5.17
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6. Charts and Tables

6.1. Keys for the charts. In all charts, a gray line denotes a multiplication. See the following
table for the keys.

Table 10. keys for multiplications

line meanings

vertical 2 multiplication
slope 1 h1 multiplication
slope 1/3 h2 multiplication
dashed (only in 2BSS) hidden extension

The colored lines denote the differentials. We use different colors to distinguish different
lengths.

Table 11. keys for classes

class meaning

dot k
blue dot k[[j]]
red dot k[[j]]{j}
square W(k)

Here k is F2 for G = SD16 or G48, and is F4 for G = Q8 or G24; j is v121 D−3 for G24 or G48,
and v41D

−1 otherwise.

Remark 6.1. We elaborate more on boxes and dots connected by vertical lines in the same
bidegree. Such a pattern denotes a 2-adic presentation of a class. Namely, the bottom dot is
generated by the generator and represents a 2-torsion copy, the dot or box just above is generated
by twice the generator, and so on.

For example, on the E∞-page of the integral degrees (Fig. 9), in bigrading (32, 0) the bottom red
dot represents the class W/2[[v41D

−1]]{v41D3} and the blue box above represents W[[v41D
−1]]{2D4};

Note that there is a 2 extension. Thus the class at (32, 0) is W[[v41D
−1]]{v41D3} ⊕W{2D4}.

Such presentations help to demonstrate where the differentials or extensions come from. For
example, in Fig. 5 in bigrading (12, 0), only the generator v61 supports a non-trivial d3-differential
and 2v61 survives. This convention is due to Dan Isaksen.

Remark 6.2. We comment on the extensions between dots of different colors. For example, in
the bidegree (24, 0) and (25, 1) in Fig. 9, there is an h1 multiplication connecting a red and a blue
dot. The red dot represents the class W/2[[v41D

−1]]{v41D2} and the blue dot represents the class
W/2[[v41D

−1]]{h1D
3}. The h1 multiplication happens whenever it is indicated by the class names.

Note that the class W/2{h1D
3} is not h1-divisible in this case since the source is missing.

6.1.1. 2-BSS.
Fig. 2 – Fig. 4 are charts for the 2-Bockstein spectral sequences. All three charts have (8, 0)

periodicity by multiplying D and (−4, 4) periodicity by multiplying k (except the v1 local classes
in low filtration). We only depict part of the spectral sequence here, which contains a full periodic
range.

In Fig. 2, a blue line indicates the multiplication by x, while an orange line indicates the
multiplication by y.
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Recall the (∗ − σi)-graded part and the integer-graded part have isomorphic E1-pages. When
interpret the chart as the (∗ − σi)-graded part, the name of a class at (s, f) is its label multiplied
by uσi

, and its degree is (s+ 1− σi, f). For example, the class 1 at (0, 0), when interpreted as an
(∗ − σi)-graded part class, denotes uσi

at (1− σi, 0) in the 2BSS.
Fig. 3 and Fig. 4 show the E∞-page of 2BSS, for the integer-graded part and (∗ − σi)-graded

part respectively.

6.1.2. HFPSS.
Fig. 5–Fig. 9 depict the integer degree calculation of the integer-graded G-HFPSS(E2) for

G = Q8 or SD16, and Fig. 13–Fig. 17 depict the (∗ − σi)-graded calculation. Both E2-pages are
(8, 0) periodic by multiplying D, and other pages are (64, 0) periodic by multiplying D8. All
charts are (20, 4) periodic by multiplying kD3 (except the v1 local classes in low filtration). The
differentials are denoted by the colored lines with their length classified by the color. When the
target or the source of the differential is out of range, we replace the line with an arrow. There
are horizontal vanishing lines in filtration 23 on E∞-pages.
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2BSS, E1 page
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Figure 2. The E1-page of the integer/(∗ − σi)-graded 2BSS.

integer degrees, 2BSS, E∞ page
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Figure 3. The E∞-page of the integer-graded 2BSS.The dotted lines are hidden h2 extensions.
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sigma degrees, 2BSS, E∞ page

0 2 4 6 8 10 12 14 16

0

2

4

6

8

{h1 + xv1}

{yh2 + xh1v1}
{h21 + xh1v1}

v21

kv21

v41

k{x2 + y2}D

{x+ y}D

{yh2 + xh1v1}D
{h21 + xh1v1}D

{x+ y}D2

k{x+ y}D

k{x2 + y2}D2

x2h1D
2

kx2h1D kx2h1D
2

h31

{h1 + xv1}D

{x2 + y2}D {x2 + y2}D2

x2h1D

v21D

kv21D

v41D

k{yh2 + xh1v1}D

k{x+ y}D2

k{yh2 + xh1v1}D2

k{h21 + xh1v1}D

x3D x3D2

k{h21 + xh1v1}D2

h31D

k{h1 + xv1}D

k2v21D

kv21D
2

kx3D kx3D2kh31D

k{h1 + xv1}D2

k2v21D
2

kh31D
2

v41D
−1

Figure 4. The E∞-page of the (∗ − σi)-graded 2BSS. The dotted lines are hidden h1 and h2

extensions.

integer degrees, HFPSS, E2 page
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Figure 5. The E3-page of the integer-graded Q8-HFPSS(E2). The red lines are d3-differentials.
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Figure 6. The E5-page of the integer-graded Q8-HFPSS(E2). The green lines are d5-differentials.
The blue lines are d7-differentials.
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Figure 7. The E9-page of the integer-graded Q8-HFPSS(E2). The purple lines are d9-differentials.
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Figure 8. The E11-page of the integer-graded Q8-HFPSS(E2). The brown lines are d11-differentials.
The magenta lines are d13-differentials. The green lines are d13-differentials.
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Figure 9. The E∞-page of the integer-graded Q8/SD16-HFPSS(E2).
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Figure 10. The E∞-page of the integer-graded G24/G48-HFPSS(E2) (stem 0 – 68).
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Figure 11. The E∞-page of the integer-graded G24/G48-HFPSS(E2) (stem 64 – 134).
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Figure 12. The E∞-page of the integer-graded G24/G48-HFPSS(E2) (stem 128 – 198).
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Figure 13. The E2-page of the (∗ − σi)-graded Q8-HFPSS(E2). The red lines are d3-differentials.
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Figure 14. The E5-page of the (∗ − σi)-graded Q8-HFPSS(E2). The green lines are d5-differentials.
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Figure 15. The E9-page of the (∗− σi)-graded Q8-HFPSS(E2). The purple lines are d9-differentials.
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Figure 16. The E11-page of the (∗−σi)-graded Q8-HFPSS(E2). The brown lines are d11-differentials.
The magenta lines are d13-differentials. The blue lines are d17-differentials. The green lines are
d13-differentials.
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Figure 17. The E∞-page of the (∗ − σi)-graded Q8/SD16-HFPSS(E2).
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Appendix A. Group Cohomology

In this appendix, we collect and present examples of computations of group cohomology. There
are two main applications: one is to calculate it as the input for the E2-page of the integer- and
(∗−σi)-graded homotopy fixed points spectral sequences for E2, the other is to utilize restrictions,
transfers, and norm maps for proofs of differentials. All the rests needed for our computation of
the Q8-HFPSS for E2 are listed in Proposition A.7.

Let Q8 be presented as

Q8 = ⟨i, j | i4, i2 = j2, ijij−1⟩

with its real representation ring RO(Q8) = Z{1, σi, σj , σk,H}. To calculate H∗(Q8, A) we will
use the following 4-periodic free Z[Q8]-resolution:

0← Z ∇←− X0
d0←− X1

d1←− X2
d2←− ...,

where X0 = Z[Q8]{a0}, ∇(a0) = 1, and for k ≥ 0,

X4k+1 = Z[Q8]{bk,1, bk,2}, d(bk,1) = (i− 1)ak,

d(bk,2) = (j − 1)ak,

X4k+2 = Z[Q8]{ck,1, ck,2}, d(ck,1) = (1 + i)bk,1 − (1 + j)bk,2,

d(ck,2) = (1 + ij)bk,1 + (i− 1)bk,2,

X4k+3 = Z[Q8]{ek}, d(ek) = (i− 1)ck,1 − (ij − 1)ck,2,

X4k+4 = Z[Q8]{ak+1}, d(ak+1) =
∑

g∈Q8
g · ek

Suppose that A is a Q8-module, then H∗(Q8;A) is the cohomology of the cochain complex

A
d0−→ A⊕A

d1−→ A⊕A
d2−→ A

d3−→ A→ ...

where the differentials (by abuse of notation) are given by the following matrices

d4k =

(
i− 1
j − 1

)
, d4k+1 =

(
1 + i −1− j
1 + ij −1 + i

)
, d4k+2 =

(
−1 + i 1− ij

)
,

and d4k+3 =
∑

g∈Q8
g.

We record here the group cohomology of Q8 with trivial Z coefficients

H4k+2(Q8,Z) = Z/2⊕ Z/2,

H4k+4(Q8,Z) = Z/8,
H2q+1(Q8,Z) = 0,

where k ≥ 0, q ≥ 0, and the generator of H4(Q8,Z) gives the 4-periodicity.
In addition to the integer-graded Q8-HFPSS for E2, we also compute the (∗ − σi)-graded part.

For this purpose, we study the structure of π∗E2 ⊗ σi as a Q8-module, which is given by the
following analog of [HM17, Lemma 4.6] :

Lemma A.1. Let E be a Q8-spectrum. Then

πe
∗(E ∧ S1−σi) ∼= πe

∗E ⊗ σi

as Q8-modules.

Recall that we defined v1 = u1u
−1 and its Q8-action was given in (2.3). By Lemma 2.12, we

may first compute H∗(Q8,W[u−1, v1]), then invert D and complete at I = (2, u1).
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Remark A.2. If we define s = i∗(u
−1) and denote u−1 by t, then the actions of Q8 on s, t are

given by
i∗(s) = −t, i∗(t) = s

j∗(s) = −ζ2s+ ζt, j∗(t) = ζs+ ζ2t

k∗(s) = ζs+ ζ2t, k∗(t) = ζ2s− ζt

For computational purposes, it is equivalent to replacing generators u−1, v1 by s, t, and the form
of the action turns out to be more compact.

We first calculate the 0thcohomology ring. Behrens and Ormsby [BO16] have determined the
C4⟨i⟩-invariants:

Proposition A.3. Let b2 = s2 + t2, b4 = s3t− st3 and δ = s2t2, then

H0(C4,W[u−1, v1]) = W[b2, b4, δ]/(b
2
4 − b22δ + 4δ2).

The j-actions on b2, b4, δ are the following:

j∗(b2) = −b2,
j∗(b4) = −(2ζ + 1)b22 + 7b4 + 8(2ζ + 1)δ,

j∗(δ) = b22 + 2(2ζ + 1)b4 − 7δ.

Proposition A.4. We have the 0th cohomology ring

H0(Q8,W[u−1, v1]) = W[s1, s2, s3]/(s
3
1 = 4(2ζ + 1)s21s2 + 16s1s

2
2)

where s1 = b22, s2 = b4 + (2ζ + 1)δ, and s3 = b32 + 2(2ζ + 1)b4b2 − 8b2δ.

Proof. Since π∗E2 is 16-periodic as a Q8-module, it suffices to compute the j-invariants of
H0(C4,W[u−1, v1]) in low degrees. The result follows by direct computation. □

In the main computations, we sometimes need to rely on explicit group cohomology results.
The following is an example.

Example A.5. The calculation of H4(Q8, π4E2 ⊗ σi) ∼= W/4.
The cochain complex at degree 4 looks like

W{s2, st, t2} d3−→W{s2, st, t2} d4−→W{s2, st, t2}2

By Lemma A.1, the actions are

i∗(s
2) = t2, i∗(st) = −st, i∗(t

2) = s2

j∗(s
2) = −ζs2 + 2st− ζ2t2, j∗(st) = s2 + (2ζ + 1)st− t2, j∗(t

2) = −ζ2s2 − 2st− ζt2.

Therefore, ker d4 = ker (i− 1) ∩ ker (j − 1) = ker (i− 1) = W{s2 + t2}.
Meanwhile, since we have

d3(s
2) = 4(s2 + t2),

d3(st) = 0,

d3(t
2) = 4(s2 + t2),

we conclude that H4(Q8, π4E2 ⊗ σi) ∼= W/4.

We also calculate a couple of restriction maps in group cohomology. In the case of the integer-
graded part, most calculations are easy. By Proposition A.8 we deduce that the generators
η, ν, c, d, g have to restrict non-trivially to their C4-counterparts, which lie in the Hurewicz image.
For the (∗ − σi)-graded part, some chain-level calculations seem to be inevitable.
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Example A.6. In the integer-graded part, calculate resQ8

C4⟨i⟩ D
−2d ̸= 0. This is used in the proof

of Proposition 4.30.
The class D−2d lies in bigrading (−2, 2). We are looking at the degree 0 part of W[u−1, v1].

The generator of H2(Q8,W{1}) is given by the cochain

α : Z[Q8]{c0,1, c0,2} →W{1},
c0,1 7→ 1, c0,2 7→ 0.

Restricting to C4⟨i⟩, we rewrite X2 = Z[Q8]{c0,1, c0,2} as Z[C4⟨i⟩]{c0,1, jc0,1, c0,2, jc0,2}, and
similarly for X1. Then α restricts to the cochain

α : Z[Q8]{c0,1, jc0,1, c0,2, jc0,2} →W{1},
c0,1, jc0,1 7→ 1, c0,2, jc0,2 7→ 0.

Now we check the image of d1. Let β1, β2, β3, β4 be the dual basis of b0,1, jb0,1, b0,2, jb0,2 in
HomC4⟨i⟩(X1,W{1}). The image of β1 is calculated by evaluating β1 ◦ d1 at the C4⟨i⟩-basis of
X2. As an example, we have

(β1 ◦ d1)(c1,0) = β1((1 + i)b0,1 − b0,2 − jb0,2) = 2.

Similarly, we verify that the restriction of α does not lie in the coboundary; hence the restriction
is non-trivial.

Sometimes the restriction to C4⟨i⟩ is trivial, but it becomes non-trivial when restricted to

C4⟨j⟩ or C4⟨k⟩. By similar calculations we have resQ8

⟨j⟩(x+ y)uσj
= 0, while resQ8

⟨j⟩(x+ y)uσj
≠ 0.

Finally, we present the collection of calculated results.

Proposition A.7. Summary of calculated group cohomology

• H3(Q8,Z) = 0.
• H4(Q8, π4E2 ⊗ σi) = W/4.
• H3(Q8, π4E2 ⊗ σi) = W/2.
• H2(Q8, π4E2 ⊗ σi) = W/2⊕W/2.
• H1(Q8, π0E2 ⊗ σi) = W/2.

Summary of calculated restrictions

• resQ8

⟨i⟩ h1 ̸= 0.

• resQ8

⟨i⟩ h2 ̸= 0.

• resQ8

⟨i⟩ d ̸= 0.

• resQ8

⟨i⟩ g ̸= 0.

• resQ8

⟨i⟩{x
2 + y2}uσi

̸= 0.

In fact, the restriction map from H∗(Q8, π∗E2) to H∗(C4, π∗E2) is determined by the Hurewicz

image of EhC4
2 . The direct algebraic computation we give above could potentially adapt to

computations of higher heights.
We recall the known result of the Hurewicz image result of EhC4

2 . We follow names introduced
in Proposition 2.14.

Proposition A.8. (see [HSWX23, Figure 12]) The following classes on the E∞-page of the

C4-HFPSS for E2 detects images of the Hurewicz map: S0 → EhC4
2 :

• s̄1aσ2 at (1, 1) detects the image of η ∈ π1S
0,

• d̄1uλaσ at (3, 1) detects the image of ν ∈ π3S
0,

• d̄41u4σa4λ at (8, 8) detects the image of ϵ ∈ π8S
0,

• d̄41u4λu2σa2σ at (14, 2) detects the image of κ ∈ π14S
0,
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• d̄61u4λu6σa2λ at (20, 4) detects the image of κ̄ ∈ π20S
0.

The unit map S0 → EhC4
2 factors as

S0 unit−−→ EhQ8

2
res−−→ EhC4

2 .

There is a map of spectral sequences from the Adams–Novikov spectral sequence of the sphere
to the C4-HFPSS for E2, and it factors through the Q8-HFPSS for E2. By comparing the
Adams–Novikov spectral sequence of the sphere (e.g., see [Rav78, Table 2]) and the C4-HFPSS
for E2, we see that the classes detecting η, ν, g, d with no filtration jump under this map. Hence
in the Q8-HFPSS for E2, these classes are detected by classes h1, h2, d, g, and the C4-restriction
of these classes are non-trivial as follows.

Proposition A.9. The restriction map from the E2-page of the Q8-HFPSS for E2 to the E2-page
of the C4-HPFSS for E2 is determined by the following and the multiplicative structure.

resQ8

C4
(h1) = s̄1aσ2 , resQ8

C4
(h2) = d̄1uλaσ,

resQ8

C4
(c) = 0, resQ8

C4
(d) = d̄41u4λu2σa2σ,

resQ8

C4
(g) = d̄61u4λu6σa2λ.

The element ϵ ∈ π8S
0 is detected by a class at filtration 2 in the Adams–Novikov spectral

sequence of the sphere. However, the image of ϵ in π8E
hC4
2 is detected by d̄41u4σa4λ at filtration 8

in the C4-HFPSS for E2. There is a filtration jump by 6. For degree reasons, in Q8-HFPSS(E2),
the image of ϵ could be potentially detected by a class of filtration 2 ≤ f ≤ 8. By the fact that

the unit map S0 → EhQ8

2 further factors through S0 unit−−→ EhG24
2 , the image of ϵ is detected by

the class c at (8, 2) (up to a unit) in Q8-HFPSS(E2). Therefore, there is an exotic restriction in
HFPSS from Q8 to C4 that maps the class c to the class d̄41u4σa4λ.
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