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1. INTRODUCTION AND MAIN RESULTS

1.1. Motivation and main results. Chromatic homotopy theory studies large-scale phenomena
in the stable homotopy category using the algebraic geometry of smooth 1-parameter formal
groups [Qui69, Mor85]. The moduli stack of formal groups has a stratification by heights, which in
the stable homotopy category corresponds to localizations with respect to the Morava E-theories
E,, of height n > 0.

We fix a prime p. Let I',, be the p-typical height-n Honda formal group law over [, and let
S, be the automorphism group of I',, (extended to F,n). Let G,, = S,, X Gal(F,» /F,) be the
(extended) Morava stabilizer group. Goerss—Hopkins—Miller showed that the continuous action of
G,, on m.E,, can be refined to a unique E-action of G,, on E,, [Rez98, GH04, Lurlg|.
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At a prime p, one can assemble the information of E, with the G,-action of height n for all
n 2 0 to recover the p-local sphere. More precisely, the chromatic convergence theorem due to
Hopkins and Ravenel [Rav92] exhibits the p-local sphere spectrum S?p) as the homotopy inverse
limit of the E,,-local spheres (in the sense of Bousfield [Bou79])

i Lg, S — - — Lg, S° — Ly, S".

Furthermore, these localizations can be built inductively via the following homotopy pullback
square (the chromatic fracture square)

LE,,L SO —_— LK(n)SO

l I

LEnflSO E— LEn,lLK(n)SOa

where L () denotes the localization functor with respect to K(n), the nt" Morava K-theory.
From this perspective, the K (n)-local spheres LK(,L)SO are the building blocks of the p-local stable
homotopy category. Devinatz and Hopkins showed that L K(n)S’O is equivalent to the homotopy
fixed point spectrum E!C» [DHO4].

A framework for building the K (n)-local sphere from more computable spectra is developed in
[GHMRO5, Hen07]. The more computable spectra are of the form E*¢ for various finite subgroups
G of the Morava stabilizer group G,,. This generalizes the height 1 resolution

Lg1)S° ~ Ef®" — E}Y - B¢

where G is a certain finite subgroup of Gy (see [HMS94, GHMRO5]). Explicit resolutions of the
K (2)-local sphere from assembling various E4® at the prime 2 [Beal5, BG18, Hen19] and the
prime 3 [GHMRO5] have led to important progress in the study of K(2)-local category including
the chromatic splitting of the K(2)-local sphere [Beal7a, GHM14, BGH22|. From this finite
resolution perspective, the spectra E"¢ are the building blocks of the K (n)-local stable homotopy
category. In particular, the homotopy groups m.E" detect important families of classes in
the stable homotopy groups of spheres [HHR16, LSWX19, BMQ20]. Therefore, computations
with EPC constitute a central topic in chromatic homotopy theory and in general are extremely
challenging.

Hewett classified all the finite subgroups of S,, [Hew95] (see also [Buj12]). From now on, we
focus on the prime p = 2, which is the only prime p that there are non-cyclic finite p-subgroups in
the Morava stabilizer group. If n = 2™~/ where £ is odd, then when m # 2, the maximal finite
2-subgroups of G,, are isomorphic to Com, the cyclic group of order 2; when m = 2, n is of the
form 4k + 2, and the maximal finite 2-subgroups are isomorphic to Qg, the quaternion group.

There are breakthroughs of computations of E“ when G is cyclic due to the recent development
of equivariant methods [HHR17, HSWX23, BBHS20, HS20]. These computations are done by a
new tool called the slice spectral sequence. The slice spectral sequence computations of the norm
of real cobordism theories induce computations of EP“ at the prime 2 for the case G = Com. As
far as the authors are aware, there are no such computations for the case G = Qg due to the lack
of the slice information.

At height 2, the group Qs first appears as a subgroup of the (small) Morava stabilizer group
So. Maximal finite subgroups of Sy are isomorphic to Ga4 = Qg x C3. Similarly, in the (extended)
Morava stabilizer group Gs, there are subgroups isomorphic to SDys and G4g. Homotopy fixed
points of Eo with respect to the above subgroups appear in the finite resolution of ESGQ, the
K (2)-local sphere at the prime 2, as building blocks [Beal5, BG18]. Moreover, they also appear
in the interplay between chromatic layer 2 and the theory of elliptic curves (see for example
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[Hop02, HM14, BO16, HL16]). Important examples such as tmf are related to computations of
EliCis.

In this paper, we use equivariant methods and a new method, which we called “the vanishing
line method”, to compute the G-homotopy fixed point spectral sequence (G-HFPSS) of the height
2 Morava E-theory Es at the prime 2 for G = Qg, SD1g, G24 and Gys.

Let o; (resp. o, o)) be the one-dimensional non-trivial representation of Qg that ¢ € Qg (resp.
j,k € Qs) acts trivially. We compute the integer-graded as well as (¥ — o;)-graded G-HFPSS for
E,. By symmetry, the (x —o;)-graded G-HFPSS gives the («x —o;)-graded and the (x — oy,)-graded
G-HFPSS for Es.

Theorem A. (1) The integer-graded Qs-HFPSS for Eo has differentials as listed in Table 8
(also see Figs. 5 to 8). The En-page with all 2 extensions is presented in Fig. 9.
Furthermore, we have

SD1-HFPSS(E,) ®7, W(F,) = Qs-HFPSS(E,),

where the tensor products happen on E, and d, for every 2 < r < oco.
(2) The (x —0;)-graded Qs-HFPSS for Eq has differentials in Table 9 (also see Figs. 13 to 16)
and the Fo-page is presented as Fig. 17.
Furthermore, we have

SD16-HFPSS(Es) ®z, W(F4) = Qs-HFPSS(E,),
where the tensor products happen on E,. and d, for every 2 < r < oco.

Theorem B. The integer-graded Go4-HFPSS for Es is a subobject of the integer-graded Qg-
HFPSS for Eq which consists of classes with D™ where 3 | m, and the differentials are the same.
The Eo-page with all 2 extensions is presented as in Fig. 10. Furthermore, we have

G43-HFPSS(Es) ®z, W(Fy) = Go4-HFPSS(E,),
where the tensor products happen on E, and d, for every 2 < r < oo.

Theorem A gives the complete computation of the Qs-HFPSS of E, for the integer-graded
part!, and the (* — o;)-graded part?.

Our methods for Qs-HFPSS computations are independent of previous computations and
can potentially work for higher heights. The first method is the recently developed equivariant
method which uses the restriction, transfer, and norm structures of the spectral sequence to deduce
differentials and hidden extensions. More precisely, we deduce differentials and hidden extensions in
the Qs-HFPSS for E; from differentials in the Cy-HFPSS for Es (computed in [HHR17, BBHS20])
via restrictions, transfers, and norms. For example, the restriction functor from Qg to Cj implies
a hidden 2-extension from a class at (54,2) to a class at (54,10) in the Qg-HFPSS for E; (See
Lemma 4.23) which is crucial to deduce the dys-differential proved in Proposition 4.25. This
exempts us from using the Toda-bracket-shuffling method as in [Bau08, Proposition 8.5(3)].
Moreover, RO(G)-gradings have been proven to be helpful in computations [HHR17, BBHS20].
For example, for groups H C G, the norm map from the H-HFPSS to the G-HFPSS on the
Es-page is only defined after extending to RO(G)-gradings [Ull13, HHR17, MSZ20]. Norm maps
allow us to pull back and push forward known differentials for new differential information. For
example, our computation of the (x — 0;)-graded G-HFPSS for E5 gives an alternative proof of
the existence of a dg-differential in the integer-graded Qg-HFPSS for Es using the norm method
(See Proposition 4.43).

While the integer-graded result can be deduced from the tmf computation [Bau08] and should be known to
experts, it was not written down in the literature as far as the authors are aware.
2The Qs-representation o; is not a restriction of any Ga4-representation.
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We also introduce a new method: “the vanishing line method”. The vanishing line result
[DLS22, Theorem 6.1] states that at the prime 2, the G-HFPSS for E,, admits a strong vanishing
line of filtration N, an explicit number depending on height n and G. Recall that having a
strong horizontal vanishing line of filtration f means that the spectral sequence collapses after
the Ey-page, and any element of filtration greater than or equal to f supports a differential or is
hit. In the case for n = 2 and G = Qg, the number N is 25 and therefore all permanent cycles
in filtration > 25 must be hit, which forces differentials to happen in many cases. For example,
in Proposition 4.14 the vanishing line method forces three differentials, including the longest
dos-differentials, just from the Fs-page information.

Along the way, we proved the following theorem for general heights.

Theorem C (Theorem 4.8). The Qg-HFPSS for Ey1o admits a strong vanishing line of filtration
24k+5 _9,

The above theorem improves the number N of the vanishing result in [DLS22, Theorem 6.1]
for the Qg case at all possible heights. This improvement makes the vanishing line sharp for all
known cases.

We conclude this introduction with two questions related to the computation of Qs-HFPSS
for Ey4+2 at higher heights. The equivariant methods and “the vanishing line method” work for
higher heights. Nevertheless, a computable description of the Qg-action on 7. Eg,o like (2.3) for
k = 0 is not known for k > 1.

Question 1.1. How to give a computable description of the Qg-action on Morava E-theory Eyp o
fork>17?

Question 1.2. Is the vanishing line result Theorem C of Qs-HFPSS for Morava E-theory Eyyyo
sharp for k> 17

1.2. Summary of the contents. This paper is organized as follows. Section 2 provides a
necessary background for the computational tools for the RO(G)-graded homotopy fixed point
spectral sequence, and the input for the computation of the Qg-HFPSS for Es. In particular, we
review the norm structure in RO(G)-graded homotopy fixed point spectral sequences (Theorem 2.8)
and the interplay between the homotopy fixed point spectral sequences and the Tate spectral
sequences in general (Lemma 2.1). We briefly review the @Qs-action on 7,.Es (2.3) and the
computation of RO(Cy)-graded Mackey-functor-valued Cy-HFPSS for E; (Section 2.4). We
take these as the input for the Qg-HFPSS for E,. In Section 3 we compute the Es-page of the
integer-graded and (x — 0;)-graded Qs-HFPSS(E5) by Bockstein spectral sequences.

In Section 4, we derive all differentials in the integer-graded Qs-HFPSS for Es via equivariant
methods and the method of Theorem 4.8. In Section 4.1, we prove the properties of the Qs-HFPSS
for Eo that we need for our computation. The vanishing line (Theorem 4.8) works for general
heights and is of its own interest. In Section 4.2, we give a complete computation of all differentials
in the logical order. The vanishing line method gives some difficult differentials (for example
Proposition 4.14). In Section 4.3, we solve all 2 extensions. In Section 4.4, we present alternative
ways to compute some differentials.

In Section 5, we also apply equivariant methods and the vanishing line method to compute
the (x — 0;)-graded Qs-HFPSS for E,. In particular, this computation gives an alternative proof
of a dg-differential in the integer-graded part. In Section 6, we list figures that present our
computation. In Appendix A, we explain algebraic computations of the Qg group cohomology. In
addition, we explain how the Hurewicz image of E’Q’C4 helps to compute the restriction map from
Qs-HFPSS to Cy-HFPSS.
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2. PRELIMINARIES

2.1. RO(QG)-graded homotopy fixed point spectral sequences and Tate spectral sequences.

Let X be a (genuine) G-spectrum. Denote the ring of real orthogonal virtual representations
of the group G by RO(G). The equivariant homotopy groups of X can be organized into an
RO(G)-graded Mackey functor m, X as follows

my (X)(G/H) = oy (X) = [$V, X]"

where V is a virtual G-representation and [SV, X]# denotes the genuine H-equivariant homotopy
classes of maps (see [BBHS20, Section 2.1]).

We briefly review the Tate diagram of a G-spectrum X from [GM95]. Recall the cofree
replacement map X — F(EG,,X) and the isotropy separation sequence EG, — S° — EG.
Smashing them together gives the following diagram:

EG, ANX X EGAX

- | |

EG, NF(EG.,X)—— F(EG,,X) ——> EGAF(EG,,X)

where the left vertical map is an underlying weak equivalence. Taking G-fixed points gives us the
following Tate diagram:

Xha X< PEX
Xne X hG XtG

The Adams isomorphism [Ada84, Theorem 5.4] shows that the fixed point (EG, A X)€ is weak
equivalent to the homotopy orbit X, = (EG4+ A X)/G. The left bottom map is the norm map
and its cofiber X*@ is the Tate construction. Moreover, the right square is a homotopy pullback
square which relates the information of the homotopy fixed point X"¢ | the geometric fixed point
®E X and the Tate construction X*“ with the actual fixed point X¢. This diagram is useful in
both theoretical and computational applications (see for examples [GM95, Grel8]).

We shall consider an analog of the Tate diagram for the slice tower of X as in [DLS22, Section 2].
Let P*X = {P"X },ez be the slice tower of X. The diagram of the towers

EGAP*X

EG,AP*X — s p*X

lg

EG, AF(EG4,P*X) —= F(EG,,P*X) —> EG N F(EG,P*X).
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induces a Tate diagram of spectral sequences for computing each entry in the Tate diagram

HOSS(X) — SliceSS(X) — LSliceSS(X)

T

HOSS(X) —= HFPSS(X) —> TateSS(X).

We now explain the above notations. We use % to denote an integer and s to denote an
RO(G)-grading. We denote the underling homotopy group 7§(X A S™*) as a G-module by
T (X)
e The spectral sequence associated to the tower EG A P*X is the RO(G)-graded homotopy
orbit point spectral sequence (HOSS) of X with the Es-page as

H, (G, m% (X))

which converges to my _,FG, A X. In particular, in integer-graded part and G//G-level,
this spectral sequence converges to ¢ EG. A X = 71, Xpq.

e The spectral sequence associated to the tower P*X is the slice spectral sequence (SliceSS)
of X with the F>-page as

%
T Pl X

which converges to m, _,X. Here Pll:“X is the fiber of PI*IX — P*I=1X and || is
the underlying dimension of Y. In particular, in integer-graded part and G/G-level, this
spectral sequence converges to 7¢X = 7, X%,

e The spectral sequence associated to the tower F(EG,,P*X) is the RO(G)-graded
homotopy fixed point spectral sequence (HFPSS) of X [BM94, Section 2] with the
FEs-page as

H (G, mx (X))
which converges to g, F(EG, X). In particular, in integer-graded part and G /G-level,
this spectral sequence converges to 7¢ F(EG, X) = m, X"¢

e The spectral sequence associated to the tower EG A P*X is the RO(G)-graded localized
slice spectral sequence (LSliceSS) of X introduced in [MSZ23]. In many cases, including
G = Qs, smashing with EG is equivalent to inverting a certain Euler class ay (see
Definition 2.2 for the definition of Euler classes) for a specific G-representation V.
Therefore, the Fs-page of this spectral sequence is

—1 plk]|
Ta—ntly Py X

which converges to g*_*a(/lX . In particular, in integer-graded part and G/G-level, this
spectral sequence converges to ﬂfa‘le =1, 00X.

e The spectral sequence associated to the tower EG A F(EG,, P*X) is the RO(G)-graded
Tate spectral sequence (TateSS) of X with the Ey-page as

H (G, 1% (X))

which converges to ﬂ*f*EG A F(EG4, X). In particular, in integer-graded part and

G /G-level, this spectral sequence converges to 7 EG A F(EG ., X) = m, X'¢
The natural map P*X — F(EG,, P*X) induces a comparison map between spectral sequences
SliceSS(X) and HFPSS(X). The following lemma states that this comparison map is an

isomorphism in a certain range ([Ull13, Theorem 9.4] for the integer-graded part and [DLS22,
Theorem 3.3]] for RO(G)-gradings).
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Lemma 2.1 ([Ull13],[DLS22]). The map from the RO(G)-graded slice spectral sequence to the
RO(G)-graded homotopy fized point spectral sequence

w0 Py X —— nG_ F(EG,, P X)

ﬂ M V]

ﬂg_sX _— Wg_sF(EG+,X)

induces an isomorphism on the Es-page in the region defined by the inequality

(V—-s—1)>|V|], 7(V):= min |H| dimV*¥.
{e}CHCG

Furthermore, the map induces a one-to-one correspondence between the differentials in this
isomorphism region.

We recall two kinds of distinguished classes in the RO(G)-graded homotopy groups that are
useful for naming the relevant classes on the Es-page of the slice spectral sequence (see [HHR16,
Section 3.4] and [HSWX23, Section 2.2]) and the homotopy fixed point spectral sequence.

Definition 2.2. Let V be a G-representation. We denote the inclusion of the fixed points
S0 — SV by ay. This is a class in WS;VSO. For a ring spectrum X with G-action, we abuse

notation to denote the image of ay by ay under the map S° — X. We will also denote the class
on the Ep-page of the G-HFPSS(SY) or the G-HFPSS(X) that detects the image of ay by ay .

By construction, we have the following property.

Proposition 2.3. With the above notation, the class ay on the Es-page of the G-HFPSS(X) is
a permanent cycle.

If the representation V has non-trivial fixed points (i.e. V& # {0}), then ay = 0. Moreover, for
G

any two G-representations V' and W, we have the relation aygw = ayaw in W_V_W(SO). When
X = HZ, the ay-class in 7T€V (HZ) is always a torsion class, according to [HHR17, Lemma 3.6)
|G/Gvlay =0

where Gy is the isotropy subgroup of V.
For an orientable G-representation V', a choice of orientation for V gives an isomorphism
H ﬁ,l(SV; Z) = 7. In particular, the restriction map

(2.2) HE(8Y,Z) — Hy(SV), z)
is an isomorphism.

Definition 2.4. Let V be an orientable G-representation. We define the orientation class of V'
uy € ch‘:/‘ (SV;Z) to be the generator that maps to 1 under the above restriction isomorphism

The orientation class uy is stable in V' in the sense that if 1 is the trivial representation, then
uyge1 = uy. If V and W are two orientable G-representations, then V @ W is also orientable
with the direct sum orientation, and uygw = uyuw.

Norms of ay classes and uy classes are given as follows.

Proposition 2.5. ([HHR16, Lemma 3.13]) Let H C G be a subgroup and V is a G-representation
N§(ay) = amav;
Unna [V N§ (Wy) = Umma v

where Ind means Ind$.
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Given a G-oriented representation V' and a G-equivariant commutative ring spectrum X, by
[HHR16, Corollary 4.54] and the unit map S° — X, Hill-Hopkins—Ravenel defines the uy classes
on the Fs-page of the slice spectral sequence for X via the following map on 0" slices

HZ = P)S° — PYX.

With Lemma 2.1, we can define uy classes in the RO(G)-graded HFPSS for X.

The computation of the TateSS and the HFPSS are closely related. In any RO(G)-graded
page the natural map from HFPSS(X) to TateSS(X) is an isomorphism in positive filtration
([DLS22, Theorem 3.6]. See also [BM94, Lemma 2.12]).

Lemma 2.6. The map from the RO(G)-graded homotopy fized point spectral sequence to the
RO(G)-graded Tate spectral sequence induces an isomorphism on the Es-page for classes in
filtration s > 0, and a surjection for classes in filtration s = 0. Furthermore, there is a one-to-one
correspondence between differentials whose source is in non-negative filtrations.

One advantage of considering Tate spectral sequences is that they are whole-plane spectral
sequences with more invertible classes. This feature makes the calculations more accessible.

If V is a G-representation such that its fixed point set V' is trivial for any non-trivial subgroup
H of G, then SV is a geometric model for EG. If X is a G-spectrum, we have

EGAX ~ SV ANX =ay'X
This implies that for such representation V', the class ay is invertible in the Tate spectral sequence.

Method 2.7. When X is a commutative ring spectrum, its G-TateSS is multiplicative, which is
extremely useful for proving permanent cycles and determining differentials in its G-HFPSS.

Assume that we find a non-trivial differential d,.(a) = b in the G-HFPSS. Then there is a
corresponding differential d,.(a’) = b’ in the G-TateSS by Lemma 2.6. We can move this differential
by some r-cycle ¢’ in the G-TateSS such that d,.(c'a’) = 'V is a differential with the source ¢’a’ in
a negative filtration and the target ¢’b’ in a non-negative filtration. (One can choose ¢’ = a;k for
proper integer k where ay is an invertible class as above.) Then ¢'b is a permanent cycle in the
G-TateSS and hence the corresponding class of ¢'b’ in the G-HFPSS is also a permanent cycle by
Lemma 2.6. This method allows us to identify permanent cycles at F,.-page for r < co. Moreover,
if ¢ is an invertible permanent cycle in the G-TateSS for X, then the class ¢'b' will survive to the
E,-page and the differential d,.(c'a’) = ¢’b' happens on the F,-page in the G-TateSS. If it is not,
then there is a shorter differential, say d,(d) = ¢’b’, which kills the class ¢’b’ on the E!-page for
7" < r. Then the Leibniz rule forces d,-((¢')~'d) = V', which is a contradiction. Furthermore, if
this differential d,.(c'a’) = ¢'b’ completely locates in filtration greater than 0, then Lemma 2.6
shows that there is a corresponding differential d,(ca) = ¢b in G-HFPSS.

Now we focus on G = Qg and its subgroups. We will use the following notations for
representations of Cy, Cy and Qg.

e When G = Cy, RO(C2) = Z{1, 02} where o3 is the sign representation.

e When G = Cy, RO(Cy4) = Z{1,0, A}. The representation o is the sign representation and
A is the 2-dimensional representation by rotating the plane R? by 5

e When G = Qs, RO(Qs) = Z{1,0;,0;, 0k, H}. The representations o;, o;, and oy, are
one-dimensional representations whose kernels are Cy (i), Cy4(j), and Cy(k), i.e, the three
Cy subgroups generated by i,j and k, respectively. The representation H is a four-
dimensional irreducible representation, obtained by the action of Qg on the quaternion
algebra H =R & Ri & Rj ® Rk by left multiplication.

By the above discussion, S°¥ is a model of EQg. Therefore, the class ay is invertible in any
Qs-Tate spectral sequence.
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2.2. Norm differentials and strong vanishing lines in spectral sequences. The Hill-
Hopkins—Ravenel norm structure holds in nice equivariant spectral sequences. Let H C G be a
subgroup. Consider the following diagram of G-spectra

e Pl pno prtl

Recall that P denotes the fiber of P™ — P"~! and P, = P°.
We denote the spectral sequence associated to this tower by {E™* d,.}, where n denotes the
filtration and the second grading denotes the RO(G)-graded stem. We say the spectral sequence

has a norm structure if there are two types of maps Nan — Pg/Hm and Nng — Pl‘g//lljllr?
such that the following two diagrams commute up to homotopy.

N{ P, —— Paynn Nii P ——= Pc/un
o . G/H|n
N Poy — Plg/m|(n-1) NPy —= B,

The norm structure induces a map between the towers
. — N§P, NGP, 4 — -

J s

- = Pe/am = Pajain-1 = - = Po/ajn-1+1 = Pa/ajn-1) =

which induces a map from the Fs-page of the H-level spectral sequence H-E, * to the FE>-page
of the G-level spectral sequence G-E, * as follows

G . n,V+n |G/H|n,Ind§, V+|G/H|n
Ny : H-E, — G-E, .

It is proved in [MSZ20] that if X is a commutative G-ring spectrum then its slice spectral sequence,
homotopy fixed point spectral sequence, and Tate spectral sequence (at least for H # e) have a
norm structure.

One consequence of having a norm structure is that we can predict differentials in the G-level
from differentials in the H-level.

Theorem 2.8. ([Ull13, Proposition 1.5.17][HHR17, Theorem 4.7]) In a spectral sequence with
norm structures, if we have a differential d.(x) =y in the spectral sequence of a H-spectrum X.
Then in the spectral sequence for Y = Ng(X) there is a predicted differential

diGm|(r—1)+1(apNF () = NE ()
where p = Indfl(l) and p is the reduced representation of p.

In [DLS22] the authors use the norm structures to show that every class in G-TateSS(E,,) is
hit before a specific page depending on n and G.

Theorem 2.9. ([DLS22, Theorem 5.1]) At the prime 2, for any height n and any G C G,, a finite
subgroup, let H be a Sylow 2-subgroup of G. All the classes in the RO(G)-graded Tate spectral
sequence of E, vanish after the Ey, ,,-page. Here Ny i is a positive integer defined as follows:
o when (n,H) = (2™ Y, Com), N, g = 2™ —2m 4+ 1;
e when (n,H) = (4k +2,Qs), Npm = 2mts 7.

The isomorphism range of the natural map G-HFPSS(E,,) — G-TateSS(E,,) implies there is a
strong horizontal vanishing line in E-page of G-HFPSS(E,,).
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Theorem 2.10. ([DLS22, Theorem 6.1]) At the prime 2, for any height n and any G C G, a
finite subgroup, let H be a Sylow 2-subgroup of G. There is a strong horizontal vanishing line of
filtration N, g in the RO(G)-graded homotopy fized point spectral sequence of E,,.

It turns out that the existence of such horizontal vanishing lines is extremely helpful for
determining higher differentials in homotopy fixed point spectral sequences. In particular, for
our computation in Qg-HFPSS(Ey), the vanishing line gives an independent proof of several
higher differentials in the integer gradings. Moreover, this vanishing line plays a crucial role in
the computation of (x — 0;)-graded Qs-HFPSS for E,.

2.3. Morava E-theory E; with Gos-action. We fix a pair (Fp»,I',,) where T',, is the height-n
Honda formal group law over F, extended to Fy». Then Lubin and Tate [LT65] show that there
is a universal deformation F;, defined over a complete local ring

W(Fpn)[[ul, ey un_l]]

where W(F,») is the p-typical ring of Witt vectors of F,n. The Landweber exactness theorem
shows that this ring can be realized by a complex-oriented ring spectrum E,,.

Let S,, be the automorphism group of I',,, namely the small n*" Morava stabilizer group. Let
Gy, = Sp x Gal(Fpn /F,,) be the automorphism group of (F,»,I',), namely the (extended) n'"
Morava stabilizer group. By universality, 7. E,, admits a G,-action. The Goerss—Hopkins—Miller
theorem [Rez98, GHO04, Lurl8] lifts this action uniquely to an E.-action on E,,.

We are interested in computing 7, E"Y for G a finite subgroup of G,, via G-homotopy fixed
point spectral sequences. For these computations, the action of the Galois group Gal(F,- /F))
will not change the differential pattern. More precisely, we review the following result.

Lemma 2.11. ([BG18, Lemma 1.32][BGH22, Lemma 2.2.6, Lemma 2.2.7]) Let F C G,, be a
closed subgroup and let Fy = F'NS,. Suppose the following canonical map is an isomorphism

F/Fy — G, /S, = Gal(F,» /F,).
Then there is a commutative diagram of homotopy fixed point spectral sequences

W(F,n) ©z, H*(F,1.En) == W(Fpn) @z, mELF

Jg |

H*(Fy, . Ey) 7o DI

In this paper, we will focus on the case p = 2 and n = 2. The Galois group Gal(F4/Fs)
is isomorphic to Cy and we write W for the Witt vectors W(F4). There are finite subgroups
Qs and Gy = Qg x C3 in the small Morava stabilizer group So and SDg = Qg x Gal and
G4s = G2 X Gal in the extended Morava stabilizer group Gs. The subgroups Qg, G24 are unique
up to conjugacy in Sy [Bujl2] (see also [BGH22, Remark 2.4.5]). Therefore, there is no ambiguity
of the notation W*Eg 8 or W*ESG“. The subgroup Qs and complex orientation coordinates can
be chosen specifically from the theory of elliptic curves at the prime 2 so that the action has
explicit formulas as follows (see [Beal7b, Section 2| for more details).

We recall the action of Gag on m,Es [Beal7b, Lemma A.1]. The coefficient ring is a complete
local ring m.Ey = W[u;][u™!] with |u| = 2, |u;| = 0 and a maximal ideal I = (2,u;). Denote
wiu~! by vy, the generator of the quaternion group Qg by 4, j, k and the generator of C5 by w.
We regard the third root of unity ¢ as a class in the Witt vectors W. The Ga4-actions on u ™!
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and vy are
wi(u™ ) =¢Cut w(v1) = v1,
—1 —1
.1 U] — U . v + 2u
() = ———, is(v1) = ———,
W) ="m—¢ W) ="@—7
(2.3) o 71) Cvg —ut (1) vy + 2¢%u!
Jx(U = T 5 = Jx\V1) = —=
2 ¢ RERS
_ vy —ut vy + 2¢ut
ke(u™) = >F—— ki(v1) = —5——
W) ="a—¢ ()= ~m—¢
We define D tobe  []  g«(u~!) which is Qg-invariant. Then (Ez), could be expressed as
9EQs/Co

™ By 2 (Wlvy, u™'][D7))7,
which is more convenient for the Qg-cohomology computation.
Lemma 2.12. There is an isomorphism
H*(Qs, m.E2) = (H*(Qs, Wlv, u™'])[D™))
where J = (2,v}).

Proof. We observe that two ideals I and J share the same radical ideal, i.e., v/T = v/J. Therefore,
we have the isomorphism
H*(Qs, (Wlvy,u™'][D71]7) = H*(Qs, Wlvr, u™'][D71])).
Because D is QQg-invariant, we have
H*(Qs, Wlvy, u™'][D™1)) = H*(Qs, Wlvy, u™ ')[D71].
Moreover, the ideal J is actually Qg-invariant, since
vl = Ng; (v1) mod 2
according to (2.3). It implies H*(Qg, W[v1,u~1])[D~] is a J-module. Note that W(vy,u=1][D~!]

is finitely generated as a W-algebra. Therefore, the completion is an exact functor [AM16,
Theorem 10.12] [HS99, Theorem A.1] and we have

H*(Qs,mEs) = (H*(Qs, W[or,u ' )[D'])].
O
2.4. Mackey functor C;-homotopy fixed point spectral sequence for E5. In this subsection,
we recall some results on the Mackey-functor-valued Cy-HFPSS for E; in [BBHS20]. See also the

slice spectral sequence computation of the truncated Cy-normed Real Brown—Petersen spectrum
BP(C)(1) [HHR17][HSWX23].

Proposition 2.13. ([BBHS20, Proposition 5.6]) There is an isomorphism

H*(Ca, e Ba) = Wil [Fi, 4, uag, ]/ (200,),
where the (J — *,*)-degree of the classes is given by |uo| = (0,0), |71| = (p2,0), |as,| = (—o2,1),
and |uzq,| = (2 — 202, 0).

We partially rewrite the names of classes on the Es-page of Cy-HFPSS(E2) in [BBHS20,
Proposition 5.10] with slice names. For slice names, see [HHR17, HSWX23] for details. One
advantage of using slice names is that it is better to organize differentials by the slice differential
theorem [HHR16, Theorem 9.9].
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Proposition 2.14. ([BBHS20, Proposition 5.10]) There is an isomorphism
H*(C47 ﬂ-*EQ) = WHMH [TQa m, 77,7 ay, CLg-] [6i|:1? ui\tlv uétal]/ ~

where p = trg‘z‘ (o), To = 33ugy, = trg;‘ (P2 U20,), N = 8100, = trg; (Fraq,) and 0’ = S1Upa, =
trgi (F105,Uy ). Although o is not an oriented Cy-representation, we apply u, here indicating that
1 is transfered from T1a,, from integer-graded part in Cy-level to (1 — o)-page in Cy-level. The
relation ~ is the ideal generated by the following relations

2n =21 = 2a, = 4ay =0, T3 = A ((p—2)* +4),
n*ug, =n'? = T2u;1u20a>\, Ton' = 01 punuruss,
Tom = 01pm un, m' = pugeay,
UrA2e = 20)Use, Uiy = Nty =N as = Thay = 0.

Here Ay = 03ugaugy at (8,0) is an invertible class in w, ENCs,

Remark 2.15. Proposition 2.13 and Proposition 2.14 give a full description of the Mackey
functor H*(Cy, mxE2) by the Frobenius relation [BBHS20, Remark 5.17] and the multiplicative
property of restriction.

Remark 2.16. A warning is that one needs to be careful about the isomorphism range (see
Lemma 2.1) to translate between the slice spectral sequence and the homotopy spectral sequence.
For example, in the Cy-SliceSS(BP(C4)(1)), the class us, supports a non-trivial ds-differential
[HSWX23, Theorem 3.4], while in the corresponding C4,-HFPSS(E,), the class ug, actually
supports a non-trivial dr-differential [BBHS20, Remark 5.23].

The computation of the Mackey-functor-valued Cy-homotopy fixed point spectral sequence
for E5 is explained in detail in [BBHS20, Section 5] and presented by [BBHS20, Figure 5.8] and
[BBHS20, Figure 5.14].

The RO(G)-graded Mackey functor computation is useful even if one only cares about the
computation of the integer-graded part m,E". The following discussion of hidden extensions is
a good example. We can use exotic operations (exotic transfers, exotic restrictions, and so on) in
Mackey-functor-valued spectral sequences to deduce differentials and hidden extensions inside the
spectral sequences. For more detailed definitions and properties of such phenomena, one could
refer to [MSZ20, Section 3.3].

In [HHR17, Lemma 4.2], the authors introduce a useful trick to determine exotic restrictions
and transfers on the E.-page of Mackey-functor-valued G-HFPSS.

Lemma 2.17. ([HHR17, Lemma 4.2]) Let G be a cyclic 2-group and G' be its index 2 subgroup
then in w4 (F(EG4, X)) we have

e ker(resS,) = im(a,)

o im(tr&,) = ker(a,)

where o is the sign representation of G.

The following hidden 2 extension in stem 22 is a good example showing that equivariant
structures provide extra integer-graded information (see a similar 2 extension in stem 2 in [MSZ20,
Remark 5.15]). In [HHR17, Figure 15] and [BBHS20, Figure 5.6], they drew all exotic restrictions
and transfers in the Fo.-page of the Mackey functor valued Cy-HFPSS(E3). The 2 extension
follows from an exotic transfer and an exotic restriction in the 22 stem. We spell out the details
in Lemma 2.18.

Lemma 2.18. In the Mackey-functor-valued Cy-HFPSS for Eo, there is an exotic restriction
in stem 22 from 5?u6,\U40a20 to 6‘1177?11802 a6, and there is an exotic transfer in stem 22 from
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5‘1177‘fu802a602 to 5§u4>\u6[,a4>\a2[,. As a consequence, there is a hidden 2 extension from 5?u6,\U40a20
58
10 0T UL\ UGG AaN A2 -

Proof. According to the computations in [HHR17][BBHS20], in stem 22 there are only three
classes who survive: 0$ugyu4pa2, and 0§usrug,asraz, in Cy-level and 078ug,, a6, in Co-level.
We first claim the class 6?’&6)\1},40&20 is not in the image of multiplication by a,. If there is
some x such that a,z is 08ugxuss a2, then = is detected by classes at (22 + o, 1) or (22 + 0,0).
There is only one class at (22 4+ o, 1) which is 5‘11u4,\u40a[, on Es-page. According to [HSWX23,
Theorem 3.11], this class supports a d;3-differential

=4 =4 =7
d13(0]Uar UL A ) = O Uaed13(UaNAr) = D] U A7 .

There is no non-trivial class at (22 + o,0). Therefore, in homotopy the class 5(15u6 AU4s 025 1S NOL in

the image of multiplication by a,. By Lemma 2.17, this class must have a non-trivial restriction

in C4-Mackey functor 7, (Ez), and the desired exotic restriction follows from degree reasons.
On the other hand by the gold relation uyas, = 2us,a, and 2a, = 0 we know on Es-page

=8
0] UL UG A4NC25 * Qg = 0.

Moreover, according to the computation on (x — o)-page of Cy-HFPSS(E3) [BBHS20], there is no
hidden a,-extension from d§uy)\ugsasraz, by degree reasons. Since we have im(trg,) = ker(a,),
the class 0§usxUg,a4ra2, must be a transfer of a class from Cy-level. Then the desired exotic
transfer follows from degree reasons.
According to [BBHS20], Es, as a Cy-spectrum, its Mackey functor valued homotopy groups
., Eo satisfy
trores(1) = 2.

Then the exotic transfer and restriction that we proved shows the existence of the hidden 2
extension from 0$ug\tie a2y, t0 0§ULNUGHAsN A2, - O

Remark 2.19. For degree reasons, the class 5?u6>\u4ga20 cannot be in the image of the transfer
from Cs. However, by the gold relation, the product of this class and a, is zero on the Fs-page.
Therefore, this class must have a hidden a, extension.

Remark 2.20. The hidden 2 extension in Lemma 2.18 will play a crucial role in deducing
several higher differentials in Qs-HFPSS(E;) (see Lemma 4.23, Proposition 4.25). A similar 2
extension can also be seen in the homotopy groups of tmf in stem 54. The proof of this hidden 2
extension in [Bau08, Proposition 8.5 (3)] uses shuffling arguments of 4-fold Toda brackets. In
our Qg-HFPSS(E,) computation, the corresponding hidden 2 extension follows directly from the
Cy-computation by restriction (see Lemma 4.23).

2.5. RO(G)-graded periodicity. When computing HFPSS, another advantage of expanding
to RO(G)-gradings is having more periodicities. These periodicities have their own theoretical
importance. They can also move integer-graded calculations to certain RO(G)-gradings where the
calculations might be simpler. In either the slice spectral sequence for BP(C4)(1) [HSWX23] or
the Cy4-homotopy fixed point spectral sequence for Eo [HHR17, BBHS20], we have the following
periodicities in the RO(G)-gradings.

Lemma 2.21. The following permanent cycles in Cy-HFPSS(Eq) [HHR17, BBHS20] are periodic
classes.

The class 01 gives (1 + o + \)-periodicity.

The class ugy gives (16 — 8)\)-periodicity.

The class ugy gives (4 — 4o)-periodicity.

The class ugzuzs gives (10 — 4\ — 20)-periodicity.
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Since the norm functor is symmetric monoidal, we can apply it to the above three invertible
permanent cycles, which gives some RO(Qsg)-periodicities in Qg-HFPSS(E3). The quaternion
group Qg has three Cy subgroups Cy (i), C4(j) and Cy(k) generated by 7, j and k respectively. For
each C4 copy we have the associated Cy-periodicities and their norms give RO(Qs)-periodicities
as follows.

Corollary 2.22. We have the following RO(Qs)-periodicities in Qg-HFPSS(Ey).
o NZ*(01):
1+o0;+0;+o0p+H
. Ngf (Ugo) :
4+40; — 4oj — 4oy,
4+40; —4o; — 4oy,
4+ 4oy, —4o; — 4o
® Ngf (U4)\u20) :
10 + 100; — 20’j — 20 — 4H
10 4+ 100 — 20, — 203, — 4H
10 + 1003, — 20 — 20; — 4H

° Ngf (ugy) :

16 + 160; — 8H
16 + 160, — 8H
16 + 160, — 8H

Corollary 2.23. There are periodicities of 4 — 40;,4 — 40 and 4 — 4oy, in Qs-HFPSS(E,).
Proof. Tt suffices to show that 4 — 40; is a periodicity. This periodicity is given by the following
product:
NES gy (axtag) NGy (wantiag ) NGy (usn) ~ NS (ao) NG (ao) " Ny (wag) ™
O

Remark 2.24. The above multiplication equals to u4,, by [HHR16, Lemma 3.13], in other words,
the classes u4,,, U4, and u,, are permanent cycles in the RO(Qs)-graded HFPSS for Es.

3. E»-PAGE OF THE Qs-HFPSS(E,)

In this section, we recollect the computation of the Es-page of the integer-graded Qs-HFPSS
for E5 by the 2-Bockstein spectral sequence (2-BSS) from [Beal7b, Bau08]. Then we compute
the Es-page of the (x — 0;)-graded part by the same method. By Lemma 2.12 we can compute
H*(Qs, 7.E3), the Fy-page of the Qg-HFPSS for E, by first computing H*(Qg, W[vy, u™!])[D~1].

3.1. 2-BSS, integer-graded. The integer-graded 2-Bockstein spectral sequence for computing
H*(Qs, Wlv, u™'])[D™"] is
H*(Qs, Fa[vr,u™ DD Y[ho] = H*(Qs, W[vr,u™')[D71],

where hg detects 2. The computation of the E1-page, H*(Qg, Fy[v1,ut])[D1], is from [Beal7b,
Appendix A]. We follow the notation in [Beal7b], except that we use hy for n and hy for v. The
differentials of this 2-BSS are essentially from [Bau08, Section 7] and we list them in Table 1.
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More precisely, H*(Gus,F4[v1,u~1]) is computed in explicit generators and relations in
[Beal7b, Theorem A.20] (the coefficient in [Beal7b] is denoted by S.(p)). Further, we have
H* (G24, F4[’Ul, ’U,_l]) =y R, H* (G48, F4[’U1, u_l}).

We will show that H*(Qs,Fa[vi,u 1])[D~] is 3 copies of the H*(Ga4, Fy[v1,u=1])[A71] as
follows, where A = D3.

Lemma 3.1. H*(Qs,F4[v1,u™])[D7Y] is a free H* (Gag, Fylv1, u™1]))[A-module of rank 3 with
generators 1, D and D?.

Proof. We denote the coefficient Fy[vy,u~!] in the group cohomology by A for simplicity. Because
the coefficient A is 2-local, the Lyndon—Hochschild—Serre spectral sequence for the group extension

1= Qs = Gay —C3 =1
collapses at the Fs-page. Therefore, we have
H*(Gay, A) = H*(Qs, A)>.
Note that D is Qg-invariant and hence in H%(Qg, A). This gives an H*(Ga4, A)-module map
H*(Goa, A) ® H*(Gog, A){D} @ H*(G24, A{D*} — H*(Qs, A).
We first prove the injectivity. Note that the Cs-action on D is given by
w«(D) = ¢*D.

Hence the three copies above have different eigenvalues so the images of these three copies must
intersect trivially. We then prove the surjectivity after inverting A. In H*(Qs, A), we have
A = D3, so D is also inverted after inverting A. We first show that H*(Qg, A) is a direct sum
of the above eigenspaces with respect to the Cs-action. Note that Fy[Qs] as a C3-module is a
direct sum of eigenspaces with eigenvalues 1, ¢, (?, so are the entries of the bar resolution of F,
as F4[Qg]-modules. Moreover, the coefficient F4[v1,u 1] is also a direct sum of eigenspaces with
eigenvalues 1,(? by (2.3). Therefore, every entry in the cochain complex for computing group
cohomology H*(Qg, A) is a direct sum of eigenspaces with eigenvalues 1, ¢, (2. So is H*(Qg, A).
After inverting D and A, H*(Ga4, A), H*(Ga4, A){D}, and H*(Ga4, A){D?} give the eigenspaces
of eigenvalues 1, (?, ¢ respectively. Therefore, the map is also surjective. (I

The lemma above and the computation of H*(Gas,Fy[v1,u~]) in [Beal7b, Theorem A.20]
give the Qg case as follows.

Proposition 3.2. The bigradings of generators of H*(Qg, F[vy,u™1])[D™1] are:
o] = (2,0), DI =(3,0), |6 =(=44), |h|=(1,1),
ho| = (3,1), [a] = (=1,1), [yl =(-1,1).
The relations (~) are generated by
(1) in filtration 1:
vihe, vim, v1y;
(2) in filtration 2:

hihe, hox —vihiz, hiy —viz?, zy, Dy? —h3;

(8) in filtration 3:
h2Dx — h3, Dx® — h3y;
(4) in filtration 4:
hi —vik.
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The differentials in the integer-graded 2-BSS for the cohomology H*(Qg, W[vy,u1])[D™1]
are essentially from [Bau08, Section 7] which are determined by the ones in Table 1 and the
multiplicative structure.

The 2-Bockstein computation gives the following result (see also [Bau08, Section 7).

Theorem 3.3. Table 2 and Table 3 present the Eo.-page of the integer-graded 2-Bockstein spectral
sequence (also see Fig. 2 and Fig. 3), which is the associated graded algebra of H*(Qg, W[v1,u™])[D~1].

Remark 3.4. According to the properties of Tate cohomology, we know the class k is invertible
in the associated Tate cohomology for Qg with the same coefficient.

Remark 3.5. We note that in H*(Qs, W[vy,u™!])[D~!], there is a hidden hy extension
hg . Z‘th =4kD
by [Bau08, Equation (7.13)] which is useful in later computations. See Fig. 2 and Fig. 3 for the

information of hy extensions.

TABLE 1. 2-BSS differentials, integer-graded

(s, f) z r o dr(x)

(4k +2,0) o311 20kn,
(7,1) Dz 1 2h3
(-1,1) z 1 2y°
(-1,1) Y 1 222
(,0) U% 2 4h2
(5,3) yh2 3 8kD

TABLE 2. E..-page, multiplicative generators, integer-graded

(s,f) =z 2-torsion
(—4,4) k&  7/8
(-2,2) a? 7)2
(-2,2) 22
0,2) zhy 7/2
1,1) h 72
(3,1) hy 74
(5,1)  vihy Z/)2
(8,00 D Z
(8,0) ot Z

TABLE 3. E.o-page, relations, integer-graded

relations

Uith
hiho, v%hl - ha, Dy? — h§7 zhy -v‘lﬂ x? -v‘lﬂ y? -v‘f
$h1 . h27 .’Ehl -’U%hl, .%'2 . ’U%hl, y2h1, y2 . U%hl, D - .Thl . hl — hg
ht — ik, (zh1)?, (22)2,(y%)?, ha, 22 - xhy, y* - xhy, 22 - Y2,
xhl . h%a Z2 - hi y2 : h%vh% : 12 - 4kDa y2 : h%7 1’h1 : h%

B W N |~
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We refer readers to §6 for charts of the F;-page and the E..-page.

3.2. 2-BSS, (x — 0;)-graded.

We discuss the RO(G)-graded case and restrict it to the (x — 0;)-graded case. A variation of
Lemma 2.12 still holds in this case. Thus we can compute H*(Qs, m«—o,E2) by first computing the
(* — 0;)-graded 2-BSS and taking the completion. Note that after modulo 2, the representation o;
is oriented and the orientation class u,, gives an isomorphism between m.E3/2 and muq1—o,E2/2
as Qs-modules. Therefore, the E;-page of the (x — 0;)-graded 2-BSS is abstractly isomorphic to
that of the integer-graded part. We denote the E;-page by

H*(Qs, Favr, u™ ") [D™ {ue, }[ho]

where u,, denote a generator of the class at (1 — 0, 0).

Proposition 3.6. In the 2-BSS, there is a differential
d1(uy;) = 22Uy, + 2y, -

Proof. The group cohomology computation shows that H'(Qg, 7 _4,E2) is 2-torsion according
to Proposition A.7. Hence in the 2-BSS, there must be a d;-differential hitting the bigrading
(=04,1). Then u,, in the 2-BSS must support a non-trivial d;-differential by degree reasons.
Assume that dj(uy;) = 2azu,, + 2byu,, where a,b are either 0 or 1. By the Leibniz rule, we
have di(viug,) = 2hius, + 2axv1u,,. Since hy is a permanent cycle, the Leibniz rule implies
that hiu,, also supports a non-trivial d;-differential. Therefore, the di-target of viu,, cannot be
2h1uy;. We deduce that a = 1.
On the other hand, if b = 0, then the Leibniz rule implies

dl(yuai) =d; (y)udi +yd1 (uUi) = 2502“0717

which means the class x2u,, is a 1-cycle. However, 22 is a 1-cycle in the integral 2-BSS. Then
the Leibniz rule also implies that

dy (xzugi) = 2%d, (uy,) = 22 (2zu,,) = 2:c3ugi.

This is a contradiction. Therefore b must be 1, and the claimed d;-differential follows.

2

O

Remark 3.7. The careful reader may observe that there are some Koszul sign rule-related
concerns here; however, we opt to overlook them as they will have no bearing on our subsequent
calculations.

The remaining (* — 0;)-graded 2-BSS d;-differentials can be determined by the Leibniz rule
and the differential on u,, in Proposition 3.6.

Proposition 3.8. There is a 2-BSS differential
do(zh3ugy,) = 4kviu,,.
Proof. By Example A.5, the class at (1 — 0;,4) is 4-torsion in the FE..-page. This forces the

desired ds-differential.
O

Lemma 3.9. There is a hidden hy extension from k™x%hy D™u,, to 2k™ 10?2 D"u,,, and a hidden
hy extension from k™x3D"u,, to 2k™ T wiD"u,, for any m € N,n € Z.

Proof. 1t suffices to prove the case for m = n = 0. We have the following differentials by
Proposition 3.6, Proposition 3.8 and the Leibniz rule

di(zhiug,) = 22°hiu,,,
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do(zh3ugy,) = 4kviu,,.
This implies that in the associated 2-inverted 2-BSS, there are
di(27 ' zhiuy,) = 222 hyu,,,
do(27 ' zhiu,,) = 4kviu,,.
Denote Wvy,u=1][D~!{u,,} by A. Consider the long exact sequence on Qg group cohomology
induced by the short exact sequence on the coefficients

A— A[1/2] — A/2*.
In H*(Qs, A/2°°) we have h; multiplication from 2~ zhju,, to 27 zh3u,,. Then the differentials
dy (2*1xh1um) = x2h1ugi,
do(27 2h3u,,) = 2kv?u,,
imply that the boundary map in the long exact sequence sends the two classes 27 1zhju,, and
27 eh3u,, in H*(Qs, A/2%) to the two classes 22hju,, and 2kv?u,, in H*(Qs, A) respectively.
And there is an h; extension from z2hju,, to 2kvu,, .
As for the ho extension, we apply the similar argument to the differentials

di(yPus,) = 23U,
do(zhiu,,) = 4kviu,,.
O
We list non-trivial differentials on classes of the form {multiplicative generators}u,, in the
table below.
TABLE 4. 2-BSS differentials, (* — o;)-graded

s, f) T r o d(x)

(

(1-04,0) ug, 2zuy, + 2yu,,
(=04, 1) TUg, 22%u,, + 2y°u,,
(

(

(

1
1
—04,0) viug, 1 2hjuy, + 2zv1U,,
1
2

3
4—0;,1) haug, 2xhouy, + 2yhat,,

2—0;,3) zhiu,, 4kviu,,

Theorem 3.10. Table 5 and Table 6 present the E-page the (x — 0;)-graded 2-Bockstein spectral
sequence (also see Fig. / and Fig. 18 with hidden hy and hy extensions), which is the associated
graded algebra of H*(Qg, W[vi,u '] ® o;)[D~1].

Proof. The result follows from the 2-BSS computation. O

TABLE 5. Eo-page, module generators, (x — o;)-graded

s, f) = 2-torsion

-2,2) {2®> +y*ju,, Z/2

D Az+ylus,  Z/2
1,1)  {h+zvitu,, Z/2
0,2)  viu,, Z
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TABLE 6. Eoo-page, relations, (x — o;)-graded

f relation generators
1 {h1 + 201 Mg, - v — V3Ug, - VIR, VUG, - b, {2+ Y ug, - V]
2 {h1 + zv1 }ug, - ha, {h1 + 201 by, - V3R — ViU, - b3,

2 2 2 2 2 2 2 2 2 2 4
VilUg; * T, ViUg; " Y~ ViUg, * I'hl; ViUo, 'h27 {:E +y}ucn, : Ulhlv {‘T +y }uUi " U1

3 {h1 + zv1 by, - 22 — {2 + y*Ju,, - ha, {h1 + 21}, - 2, {22 + ¥ g, - v3hy
{4+ y}ug, - h3 — {h1 + zv1}u,, - the, {T + y}us, - 2% — {z + y}u,, - y?
4 {2 + 9o, - b {2 + v Yo, - B3, {a? + Y Yo, - 2?, {2® +yPue, - yP, {2? + Y, - ahy
{h1 + zv1 tug, - b3 — v2u,,, iu,, -k

We refer the readers to §6 for charts of the Fq-page and the E-page.
By Lemma 2.12, in both the integer-graded and the (x — o;)-graded case, the Es-page of
Qs-HFPSS(Es) follows from Theorem 3.3 and Theorem 3.10.

Remark 3.11. The Es-page of TateSS(Es) follows by further inverting the class k from that of
Qs-HFPSS(E,), and replacing the 0-line with the cokernel of the norm map.

4. COMPUTATION OF THE INTEGER-GRADED Qgs-HFPSS(E;)

In this section, we derive all differentials in the integer-graded Qg-HFPSS for Ey via the
following two methods.

(1) Equivariant methods: apply the restrictions, transfers, and norms to deduce differentials
in the Qg-HFPSS for Ey from the C4-HFPSS for Eo;

(2) The vanishing line method: use the fact that the Qs-HFPSS for E; admits a strong
vanishing line of filtration 23 (Theorem 4.8, for general cases, see [DLS22, Theorem 6.1])
to force differentials.

We also solve all hidden 2 extensions via equivariant methods and investigation of the Tate
spectral sequence.

We will rename several classes on the Fs-page of the Qg-HFPSS for E5 as follows. The
advantage is that these names are compatible with the tm f computation and the Hurewicz images
in E59% (see [Bau08], also compare to [Isal8]). For example, we rename the class kD3 by g, which
is compatible with [Bau08] and suggests that this class detects the Hurewicz image of % (see 4.9).

TABLE 7. Distinguished classes

Classes Bauer’s notation Bigrading

Dzxhq c (8,2)
D22 d (14, 2)
kD? g (20,4)

When we talk about the restriction map from Qg to Cy, the subgroup Cy usually indicates the
subgroup Cy (i) generated by ¢ if there is no further specification. Some of the arguments in the
proofs of this section are easier to see when accompanied by charts in §6.

4.1. General properties of the Qs-HFPSS for Eg;12. It is a result of Shi-Wang—Xu, using
the Slice Differential Theorem and the norm functor of Hill-Hopkins—Ravenel [HHR16], that the

homotopy fixed point spectrum EZ,?_;?Q is 24%+6_periodic.

The periodicity of EQQS is known by computation to be 64 classically. Here we give a proof
that EQQB is 64-periodic before computing it using Qg-HFPSS.
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Proposition 4.1. The homotopy groups of the spectrum ESQB s 64-periodic and the periodicity
class can be given by the class D8.

Proof. The product
NE¥(01)° NG 5y (a0) 2GS 3y (usn )N (1) NS 4 (o)

gives the 64 periodicity of E’QIQS. This product is in bigrading (64, 0) and is invertible. On the
other hand, the generator D® of mg4Eq is Qg-invariant and invertible. Therefore, this periodicity
class is D® up to a unit. ([

From now on we can simply view D® as a periodicity class of ESQS. In the following property,
we show that the Qs-HFPSS for E, splits into three parts such that there are no differentials
across different parts.

Note that the universal space EGo4 can be viewed as a model for EQg. The transfer and the
restriction of the spectrum F(EGa4, Eq) give a sequence ESG“ = ESQS L E’Q’G“, which is
compatible with the filtration of the HFPSS.

Proposition 4.2. The composition
EgGm xes, EZQS t_r) ESG24

s an equivalence. In particular, the Go4-HFPSS for Eq splits as a summand of the Qg-HFPSS
for Eg.

Proof. The composition trores is multiplication by |Ga4|/|Qs| = 3. All spectra are 2-local and 3
is coprime to 2 so this composition is an equivalence. O

We identify the Fs-page of Qs-HFPSS(E,) as a free module over the Fs-page of Go4-HFPSS(Es)
generated by {1, D, D?}.

Corollary 4.3. Let a,b be two classes on the Esy-page of Ga4-HFPSS(Es). View a,b as classes
in Qs-HFPSS(Ey) and consider classes aD*s bD* where kq,k, € {0,1,2}. Then there is a
differential d,.(aD%*«) = bD* in the Qs-HFPSS(Ez) iff there is a differential d,(a) = b in the
Go4-HFPSS(Es) and ko = ks.

Proof. When k, = 0, this follows from Proposition 4.2. For k, = 1, note that the Qs-HFPSS for
E, is D8-periodic by Proposition 4.1. The two differentials

(1) d,(aD) = bD* and (2) d,(aD°) = bD*>*8
imply each other. We observe that the class aD? is a class in G24-HFPSS(E2). Then by the case

ko = 0, the differential (2) happens in Go4-HFPSS(Es). This implies the desired result. The case
k, = 2 is similar. [l

As a consequence, the computation of the Qs-HFPSS for E, splits into three copies with the
same differential patterns and there are no differentials across different copies. In particular, the
G24-HFPSS for Es is 192-periodic.

Remark 4.4. A similar statement holds for general height 4k + 2. A maximal finite subgroup in
Sap+2 is Qg X Cy(g2ri1_1) = Gag X C(g2rt1_1) [Hew95][Bujl2, Section 4.3]. The computation of
the Qs-HFPSS for Eyy.2 also splits into copies of the computation of the Qg X C3(p2r-+1_1)-HFPSS
for E4k+2.

Remark 4.5. The Go4-HFPSS for E5; computation is essentially the same as the 2-local tm f
computation [Bau08]. However, our computation only relies on the Cy computation of Eo and
hence is an independent computation of the classical tmf computations.
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In Theorem 4.8, we will improve the horizontal vanishing line result of the Qs-HFPSS for
E4j42 in Theorem 2.10. In the case of the Qs-HFPSS for Eq, the improved vanishing line of
filtration 23 turns out to be sharp by computation. We start with the following fact.

Proposition 4.6. Let HZ be the FEilenberg-Mac Lane spectrum with trivial Qg-action. Then on
the Ea-page of Qs-HFPSS(HZ), the product a,,a4;a4, is trivial.

Proof. We prove a stronger statement that the whole group H?(Qs, T3—o,—0;—on (HZ)), where
the class aq, a4, 00, lies in, is trivial. According to Proposition A.7, the group H 3(Qg, Z) is trivial.
We observe that the homotopy group 73 o, o, o, (HZ) as a Qg-module is a copy of Z with trivial
Qs-action (0; ® 0j ® oy, is a trivial Qg-representation). Then we have

HO(Q877T3—GV5—U,'—U;€ (HZ)) = (773—%—0]-—% (HZ)))QS =7.
Similarly we also have

HO(QS’W73+Ui+Ui+Uk (HZ)) = (7r73+0'i+0'i+0'k (HZ))QS =Z.

Let u be a generator of H°(Qs, M3—0,—0;—ox (HZ)). Then the class u is invertible on the E»-page
of HFPSS for HZ by the following paring

M3—0;—0j—0k (HZ) QT340 +oi+on (HZ) =7.

Therefore, the class u induces an isomorphism H?(Qs, 3_o,—o,—o, (HZ)) ~ H*(Qs, Z), the latter
of which is trivial.
O

Remark 4.7. We thank Guillou for confirming and explaining Proposition 4.6. This proposition
also follows from Guillou and Slone’s computation of quaternionic Eilenberg—Mac Lane spectra
[GS22].

Theorem 4.8. Let k denote a non-negative integer.

(1) The RO(Qs)-graded Qs-TateSS for Eyp1o vanishes after Egants _g-page.

(
(2) The RO(Qs)-graded Qs-HEPSS for Egxyo admits a strong vanishing line of filtration
24k+5 _ 9

Proof.

(1) Denote the height 4k +2 by h. We briefly review the proof of the vanishing line of filtration
2/+3 7 in [DLS22, Theorem 6.1] and explain the filtration improvement by 2. By Theorem 2.8,
in the Qg-TateSS(Ep,), there is a predicted differential
(41) d2h+3_7(Ng28 (1_1]:1U2h_10¢172h+1 )aﬁ) =1.

209 [op)
By naturality, the unit 1 has to be hit by a differential d, with » < 2"*3 — 7. Note that since 1 is
hit, the spectral sequence vanishes at E,.-page.

The ring map Z — 7w.Ej; induces a map between Fs-pages of the Qs-HFPSS for HZ and
E;. Then the naturality forces the source of (4.1) to be trivial since a; = ao, ag,;0g, = 0 by
Proposition 4.6. For degree reasons, we conclude r < 273 9. So every class in the Qg-TateSS(F},)
will disappear on or before the Fgyn+s_g-page.

(2) It follows from Lemma 2.6. O

Lemma 4.9. In the Qg-HFPSS for Eo, the class h1, ha, g are permanent cycles.

Proof. Consider the following maps

unit res

S0 By I8 phoe,
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By [LSWX19, Theorem 1.8], the class & € 720S° maps to a non-trivial class in E2°> in filtration

4 in the Co-HFPSS for F5. Thus the image of & in ’/T*EQLQB is non-trivial. For degree reasons, it
is detected by the class g in Qs-HFPSS(E>). The proofs for h; and hsy are similar. (]

We only use the Hurewicz image of ESCQ as the input. This has been systematically studied
in [LSWX19]. Our method does not assume the knowledge of the Hurewicz image of E54.

4.2. Differentials in the integer-graded pages. We suggest readers refer to the charts while
reading the proofs in this section.

All statements about differentials in this subsection are differentials in integer-graded Qg-
HFPSS(E;) if there is no specification.

Proposition 4.10. The class v$ in (12,0) supports a dz-differential

d3(vy) = vihi.
Proof. By construction, we have resg®(vf) = T237resgf (h1) = n. In C4-HFPSS(E2), [BBHS20,
Proposition 5.21] implies that we have

ds(T3) = T’

The result now follows by naturality.

Corollary 4.11. The class v?hy at (5,1) supports a ds-differential
ds(vihy) = hi.

Proof. By Proposition 4.10, we have d3(v$hy) = vihi. Note that v$ is a 3-cycle. This forces the
desired ds-differential. [l

Proposition 4.10 produces a family of ds-differentials by the Leibniz rule:
d3(D™ g v 2Ty = D™ oA H3 ) and ds(D™g*viht) = D™ g*h 3
for any (m,s,l,n) € Z X Z>o X Z>1 X L>1.
For degree reasons (and the following proposition), these are all the non-trivial ds-differentials.

Proposition 4.12. The following classes survive to the E-page.
2D™ 2 DMyl D™uithy, D™ (m,l) € Z X Zs.

Proof. The classes D™v{!, D™vihy, D™v#h? cannot be hit by degree reasons. They are permanent
cycles by Lemma 2.6 and the Qg-TateSS(E2) ds-differentials

ds(D™H3gtyfi=2pnty = pmylpn 3 e Z, 1 #0,n > —3.
As for the classes 2Dmv‘1”+2, we consider the additive norm map

Ho(Qs, (E2).) = HY(Qs, (En).)
where N(xz) = > ¢g(x). By the Qg-action formulas (2.3), we have

9€Qs
N (02 ()2 = Z g2+ ()2
9€Qs
— 2041 _ 2041
1 SR CT

MW)”“ <<vlu1>2l“ <vl+2<u1)”“ <M)”“
+2( ¢2—¢ 2-¢ +2 2—¢ 2_¢ .
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The leading term of the above formula on the E..-page of the 2-BSS for H*(Qg, W[vy,u™1]) is
20172 for [ > 1. Then we have

N(Dmv%l—&-l( —1)2L+1y — pm Z 21+1 w2ty = 2Dmv‘1”+2
9gEQs
since D is Qg-invariant. As the additive norm map is the d;-differential on Fj-page of the Qg-
TateSS for Es, we have the classes 2Dmvi”+2 are permanent cycles who survive to the F.,-page
by Lemma 2.6. O

Remark 4.13. All the classes supporting or receiving non-trivial ds-differentials and all classes
in Proposition 4.12 are sometimes referred to as the bo-pattern. They match the pattern of (many
copies of) m, KO, the homotopy groups of the real K-theory. See [BG18, Definition 2.1] for more
details.

The following result is the first example of the strong vanishing line method (Theorem 4.8).
The method gives differentials of three lengths (including the longest dos-differential) all at once
(see Fig. 1).

Proposition 4.14. There are differentials
(1) d5( —13 5dh2) = 4D~ 16 7
(2) dlg(D 7936}11) =2D~ 16 7
(3) doz(D~'gh1) = D047

Proof. We suggest readers compare the arguments with Fig. 1. The class D647 is a permanent
cycle in filtration 28, which is above the vanishing line (Theorem 4.8). Therefore, the classes
D~ 1647 2D1647 and 4D~ 16¢7 must receive differentials. According to Corollary 4.3, Qg-
HFPSS(EQ) sphts into three parts. On the Es-page, these three parts are modules over the
Es-page of Go4-HFPSS(E,), and all differentials do not cross different copies. In Fig. 1, we
highlight the relevant copy. By inspection, we obtain the desired ds, dy13 and dss-differentials. [

Corollary 4.15. The class D at (8,0) supports a ds-differential
ds(D) = D™ 2ghy.

Proof. Note that D® is an invertible permanent cycle (Proposition 4.1), and ¢° is a permanent
cycle (Lemma 4.9). By Proposition 4.14(1) and the Leibniz rule, there is a ds-differential

(4.2) ds(D3dhs) = 4g°.
The relation dh3 = 4g (see Remark 3.5 under 2BSS names) forces the following ds-differential
(43) d5(D3d) = gdhg.

With (4.3), it suffices to show that D?d is a 5-cycle. In fact, the only possible d5 target of D?d
supports a differential
ds(D™gdhy) = 4D~ g3,
by multiplying D~*gh, with (4.3). Note that D~* is a 5-cycle since D is a 3-cycle.
O

All the remaining ds-differentials follow from the Leibniz rule. There are no more ds-differentials
by degree reasons and Corollary 4.3.

We also get a dg-differential from the dqs-differential in Proposition 4.14(2).
Corollary 4.16. The class Dc at (16,2) supports a dg-differential
do(Dc) = D™°g*dh;.
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FIGURE 1. ds, di3, d23-differentials

Proof. We observe that in Qs-HFPSS(E5) there is an h; extension from De to Dchy. We prove
this by contradiction. Suppose that Dc does not support the claimed dg-differential. Then for

degree reasons, Dc becomes a 13-cycle. However, this contradicts Proposition 4.14 since Dch,
supports a non-trivial d;3-differential.

O

Proposition 4.17. The classes 4D and 2D? at (16,0) support the following dr-differentials
(1) d7(4D) = D~?ghs;
(2) dz(2D%) = D~1gh.

Proof. By Corollary 4.15 and the hidden 2 extension from 2hs to h3 (see [Tod62]), D~2gh? has

to be hit by a differential. For degree reasons and Corollary 4.3, the only possible source is 4D
The second dr-differential follows similarly from ds(D?) = 2D~ 1gh,.

O

24
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The dy-differential on D* (which we prove in Proposition 4.28) turns out to be a hard one, as
it does not follow from primary relations like the Leibniz rule or (hidden) extensions. We will first
prove several dy, dy3-differentials, and the dr-differential follows from the vanishing line method.

Proposition 4.18. The class D>chy at (49,3) and the class D°c at (48,2) support the following
differentials.
(1) dy3(D5chy) = 2D~ g%
(2) do(D%c) = D~ tg%dh,.
Proof. By a similar argument as in Corollary 4.16, it is enough to show (1). We first observe that
the class 2D~%g* is in the image of the transfer map from C;-HFPSS(E;) since
trores(D*g?) = [Qs : C4]D*g* = 2D g%

Since the class D~%g* is order 8, its restriction to C;-HFPSS for E, is non-trivial and of order
4. Then according to the computations in [BBHS20] (See [BBHS20, Figure 5.3.]), on bigrading
(48, 16), the class res(D~%g?) receives a dy3-differential in Cy-HFPSS(Ez). The naturality forces
that 2D~4g* dies on or before the the E;3-page in Qg-HFPSS(E,). The only possibility is the
desired d;3-differential by Corollary 4.3 and degree reasons. O

Remark 4.19. Since C;-HFPSS(E,) is 32-periodic with the periodicity class AT = djug\usg,
[HHR17][BBHS20], the same argument in the proof of Proposition 4.18 gives an alternative proof
of Proposition 4.14(2) and Corollary 4.16.

Lemma 4.20. The class D3hy is a permanent cycle.

Proof. By Corollary 4.3, it suffices to show that D3hy is a permanent cycle in Goy-HFPSS(Ey).
For degree reasons, D3h; can only possibly hit D=3gc or 2D~ 12¢5 in Go4-HFPSS(E;). Because
D8, g are permanent cycles, Proposition 4.18 implies

di3(D73g%chy) = 2D '2¢5 and do(D3gc) = D~ %¢%dh;.
Therefore, the class D3k, has to be a permanent cycle. O

Remark 4.21. It turns out that D3h; is hit by a da3-differential in the Tate spectral sequence
by Corollary 4.22.

Corollary 4.22. There are non-trivial dqs-differentials
(1) doz(D?*h2) = D~ 13¢5hy;
(2) doz(D?h3) = D~10g5h2.
Proof. The claimed da3-differentials follow from Proposition 4.14(3) and Lemma 4.20 O

Lemma 4.23. There is a hidden 2 extension from DSh2 to g*d.

Proof. According to Lemma 2.18, there is a hidden 2 extension in stem 54 from A%ﬁ?uﬁ)\u&,aga
to A‘fﬁ?u@\u&a@\agg in the C4-HFPSS(E-) since it is A‘ll—periodic. Note that the restriction of
D to the Es-page of the Cy-HFPSS(E,) is invertible then it equals A; up to a unit in W(Fy), in
other words up to a unit we have res’(D) = A;. In Appendix A we show that the restriction of
the classes ha, d and g are non-trivial. Then in stem 54 of Qs-HFPSS(E2), we have the following
two restrictions up to units

Q 672\ _ A4%6
resi (D7hy) = A0 usA U4, G20

res@s (9°d) = AT} uartgraarazs.
Note that in Go4-HFPSS(E,), there are no other classes between these two filtrations. Then

the naturality forces a hidden 2 extension from D®h3 to g?d in G4-HFPSS(E;3). This hidden 2
extension also happens in Qs-HFPSS(E3) by Corollary 4.3. O
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As the Cy-HFPSS for Es is 32-periodic, a similar proof gives the following hidden 2 extension
in stem 22 in the Qg-HFPSS for Es. In the rest of this paper, when we refer to restricting a class,
we always mean the restriction up to a unit in W(F,).

Corollary 4.24. There is a hidden 2 extension from D?h% to D~*gd.

Proposition 4.25. The classes 2Dhy at (11,1) and 2D%hy at (43,1) support di3-differentials

(1) d13(2Dh2) = ngggd;
(2) d13(2D5h2) = D74ggd.

Proof. (1) By Lemma 4.23 and the E..-page class g, there is a hidden 2 extension from D~2gh3
to D78¢3d in stem 10 of the Qg-HFPSS for Eo. By Corollary 4.15, we have

ds(Dhy) = D™2gh3.

Then the hidden 2 extension forces D~8g3d to be hit by a differential of length at most 13. Note
that there is a 2 extension 2(2Dhy) = Dh3. Then Dh$ cannot support a shorter differential
than 2Dhsy. In particular, Dh$ cannot support a dq;-differential to D=8¢3d. This rules out the
only possibility that the target D~8¢3d is hit by a shorter differential. Therefore, we proved the
desired non-trivial differential.

(2) It follows similarly from the hidden 2 extension from D?g?h3 to D~%g3d by Corollary 4.24. [

Remark 4.26. In Bauer’s computation for ¢tmf [Bau08], the hidden 2 extension in Lemma 4.23
is proved using four-fold Toda brackets. In our approach, the hidden 2 extension follows from the
restriction and the C4-HFPSS hidden 2 extension, which again is forced by the exotic restrictions
and transfers in Lemma 2.18.

Lemma 4.27. The class Dh} is a permanent cycle.

Proof. The class Dh3} is a 5-cycle. By Corollary 4.3 and degree reasons, Dh?$ can only possibly
hit D=8¢3d and D~'*g%h2. According to Proposition 4.25 the former class is hit by a non-trivial
dy3-differential. Moreover, according to Corollary 4.22 and Method 2.7, the class D~14gSh?
supports a non-trivial dos-differential (D~14g%h3 = D=16¢6D2h2). Therefore, these two potential
targets cannot receive differentials from Dh3. The result thereby follows. O

Proposition 4.28. The class D* at (32,0) supports a d7-differential
d7(D*) = Dgh3.

Proof. Note that g and D8 are permanent cycles. Then by Lemma 4.27 the class D~°h3 g% at
(3,27) is also a permanent cycle. This class has to be hit by a differential via the vanishing line
method (Theorem 4.8). By Corollary 4.3, the potential source is either D=3gc or D~2¢%. The
former supports a dg by Proposition 4.18. Therefore, the only possibility is the dr-differential

dr(D7%¢%) = D~ hig".

Since D8¢® is a permanent cycle, the result follows.

All dr-differentials follow from Proposition 4.17, Proposition 4.28 and the Leibniz rule.
Before proving the next two dg-differentials in Corollary 4.32, we need to first prove a permanent
cycle in Lemma 4.29 and two dp;-differentials in Proposition 4.30.

Lemma 4.29. The class D3dh; is a permanent cycle.
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Proof. By Corollary 4.16 in the Qg-TateSS for Eo, we have a dg-differential
do(D%g~2c) = D*dh,.

Then D3dh; is a permanent cycle in the Qg-TateSS. By Lemma 2.6 it is also a permanent cycle
in Qg—HFPSS(Eg) ([l

Proposition 4.30. The classes D?d at (30,2) and D°d at (62,2) support di:-differentials
(1) dll(Dzd) = D_4ggh1;
(2) dll(D6d) = gghl.

Proof. According to Proposition A.7, the restriction of the class d from Qg-HFPSS(E2) to Cy-
HFPSS(E,) is non-trivial, Since the class d is order 2, the class res(D?d) must be order 2. Then
according to the computations in [BBHS20] (See [BBHS20, Figure 5.3]), on bigrading (30, 2),
the class res(D?d) supports a non-trivial dz-differential. This implies the class D?d supports a
non-trivial differential with a length at most 13. The desired differential in (1) follows by degree
reasons. The proof for (2) is similar since C4y-HFPSS(E3) is 32-periodic.

[l

Corollary 4.31. The classes D*dhy at (31,3) and D®dhy at (63,3) support di:-differentials
(1) dll(Dzdhl) = D_493h%;
(2) dll(D6dh1) = g3h%

Corollary 4.32. The classes Dhy at (9,1) and D°hy at (41,1) support dg-differentials
(]) dg(Dhl) = D75g2c;
(2) dg(D5h1) = D_ngC.

Proof. By Corollary 4.3 and degree reasons, the class Dh; either supports a non-trivial dgy-
differential or is an 11-cycle. We show that it is the first case.

If Dhy were a 11-cycle then by Proposition 4.30 and the Leibniz rule, there would be a
dy1-differential

di1(D3*dhy) = D3R},
This contradicts Lemma 4.29. Therefore, we have the desired dg-differential in (1). The proof for
(2) is similar.
O

Proposition 4.33. The class D™ hy is a 13-cycle.

Proof. Since D? is the periodic class, it suffices to prove that D7h; is a 13-cycle. The D7hy is a
7-cycle from our computation of Fg-page. According to Corollary 4.16, the class Dc supports a
dy-differential. Then the class g? Dc supports a non-trivial dg-differential by Method 2.7 since the
class g = kD?3 is invertible.

Therefore, the class D"h; does not support a dg-differential since the possible target g2Dc
already supports a dg-differential. Then for degree reasons, D"h; is a 13-cycle. So is the class
Dilhl. O

Corollary 4.34. The classes D*c at (24,2) and D¢ at (56,2) support dg-differentials
(1) dg(ch) = D74g2dh1;
(2) do(DCc) = g3dhy.

Proof. Suppose D%c does not support a non-trivial dg-differential. Then for degree reasons, it is
a 13-cycle. However, since D~1'hy is also a 13-cycle, the Leibniz rule show that Dhc is also a
13-cycle. This contradicts Proposition 4.14 and proves the dg-differential in (1). The dgy-differential
in (2) follows similarly by Proposition 4.18. O
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Corollary 4.35. The classes Ddhy at (23,3) and D5dhy at (55,3) support dy1-differentials
(1) dll(Ddhl) = Disg‘s[h%;
(2) dll(DSdhl) = Dilg‘sh%.

Proof. According to Proposition 4.33, the class D~'h; is a 13-cycle. Then these two dii-
differentials follow by Proposition 4.30 and the Leibniz rule. O

Lemma 4.36. The class d is a permanent cycle.

Proof. Proposition 4.25 shows that d is hit by a d;3-differential from 2D%g~3hs in Qg-TateSS(E>).
By Lemma 2.6 d is a permanent cycle. (]

Remark 4.37. The class d is in the image of the Hurewicz map S° — EQQS. This follows from
the Hurewicz image of E5* [HSWX23, Figure 12] (see Proposition A.8).

Proposition 4.38. The classes D*hy at (17,1) and D°hy at (49,1) support dy-differentials
(]) dg(D2h1) = D74g2C;
(2) dg(DGhl) = gQC.

Proof. We prove this by contradiction. Assume D?h; does not support the desired differential.
Then it is a 11-cycle by degree reasons. The Leibniz rule forces the class Dh; to support a
non-trivial dq;-differential but this contradicts Lemma 4.36. The proof of (2) is similar. g

Table 8 lists the differentials we have computed so far. They generate differentials via the
Leibniz rule. By inspection, these are all non-trivial differentials since the remaining classes are
permanent cycles by Method 2.7.

4.3. Extension problem. Now we solve all the 2-extensions on the E,-page.

Theorem 4.39. All the hidden 2 extensions in the integer-graded Go4-HFPSS(Es) are displayed
in Fig. 10 by grey vertical lines.

Proof. Since the G24-HFPSS for E; is 192-periodic, it suffices to consider the stem range from 0
to 192. We divide these 2 extensions into three types by their proofs. The first type follows from
the fact that in homotopy groups of spheres, 4v = n® and h; detects 7, hy detects v (Lemma 4.9).
This type of hidden 2 extensions happens in stem 3,27,51,99, 123 and 147 in the period from 0
to 192.

The second type consists of the 2 extensions in stem 54 and 150. The proof of the first is in
Lemma 4.23, and the proof of the second is similar using the 32-periodicity of C4-HFPSS(E,)
and Lemma 2.18.

The third type consists of three hidden 2 extensions in the first period. The first one is in
stem 110 from D'2d to D®g3h2. The other two in stem 130 and 150 (from filtration 10 to 22)
follow from the first one by multiplying g and g? respectively. So it suffices to show that there
is a 2 extension from D'2¢%d to D%g°h?. To derive this 2 extension, we claim there are two
hidden h; extensions from D8hy to D®ge and from D gchy to D®g®h2. As for the first hidden
hy extension, In Ga4-TateSS(Es2), we have the following two differentials by Corollary 4.15 and
Corollary 4.32:

ds(g~LD?) = D8h,,
do(g~' D*'hy) = D*Pge.
Now consider the cofibration
Eona,, — E5C2 — B,
In the negative filtrations in Goy-TateSS(Es), there is an h; extension from g~ D?! to g~ D?'h,
then this h; extension under the additive norm map gives an h; extension relation in W*ESG“
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from an element detected by D'®hs to some element detected by D'®gc. This forces a hidden
h1 extension from D'®hy to D'%gc in G24-HFPSS(E5). The similar hidden h; extension from
DY gch; to D®g°h? follow from the following two differentials in Ga4-TateSS(Es) by Corollary 4.32
and Corollary 4.22.

do(g~ ' D**h3) = DY gch,,
dos(9~ ' D*'hY) = D°¢°h?
Therefore, in m, E192 there is an h-extension from D'8hy to D8¢g®h2. On the other hand we
know h3 = 4hy, which implies Dg%h? must be 4a for some class a € ’/T150E£LG24. Then the degree
reasons forces the 2 extension D'2g%d to D®g°h3.
We claim there are no further 2 extensions in Go4-HFPSS(E5). By degree reasons, the other

possible hidden 2 extensions either have sources that are hy divisible or have targets that support
hy extensions. Therefore, the hidden 2 extensions cannot happen in these cases. O

Corollary 4.40. All the hidden 2 extensions in the integer-graded Qs-HFPSS(Es) are displayed
in Fig. 9 by gray vertical lines.

Proof. This follows from Theorem 4.39 and Proposition 4.2. O

Our result of 2 extensions via the equivariant and the Tate methods matches the tmf
computation in [Bau08]. In [Bau08], because the arguments for proving differentials rely on
(hidden) n and v extensions, almost all these hidden extension are also computed (there is
another v extension from D'h? at (122,2) and its & multiples [Isa09, Lemma 5.3]). Here our new
methods only use hidden 2 extensions and the hi, ho multiplications on the Es-page. Therefore,
we do not need to work out hidden 7 and v extensions and in our figures, we only draw hy, hs
multiplications.

4.4. Differentials: alternative methods. In this subsection, we revisit several differentials in
the integer-graded part via different approaches.

Proposition 4.41. The class D at (8,0) supports a ds-differential

ds(D) = D™ 2ghy.
Proof. The restriction of D to the Cy-HFPSS for Es is Ay, which supports a non-trivial ds-
differential according to [BBHS20, Proposition 5.24]. By naturality, D must support a non-

trivial differential with length < 5. Then by Corollary 4.3 and degree reasons, it has to be
d5(D) = Dizghz. O

Moreover, given all ds, d7-differentials, then the vanishing line forces the d;i-differential in
Proposition 4.30.

Proposition 4.42. The class D®d at (62,2) supports a dy,-differential

dy1(D%d) = g3h;.
Proof. Tt is enough to prove the d;;-differential
di1(D%gPdhy) = g°h3
since g is invertible in the Qg-TateSS for Eo. The target g8h? is a permanent cycle in filtration

34 > 23. By Theorem 4.8 and Theorem 2.9 it has to be hit by a differential. Since D°g5dh; is a
7-cycle, the only possibility is the desired d;;-differential. ([

We here present another proof of the dg-differential in Proposition 4.38 which combines the
partial calculations in (x — o;)-gradings by the norm method (see Proposition 5.16).
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Proposition 4.43. The class D?*hy at (17,1) supports a dg-differential
do(D*hy) = D™ *g%c.

Proof. Suppose the claimed dy-differential does not happen, then D?h; is a 9-cycle. According to
Lemma 5.6, the class {z+y}D*u,, is a 9-cycle. Then the Leibniz rule implies that {x+y}DSh;u,,
is also a 9-cycle. This contradicts the fact that {z+y}D%hiu,, supports a non-trivial do-differential
in Proposition 5.16. (]

4.5. Summary of differentials. We summarize differentials in Table 8. All differentials follow
from this list by the Leibniz rule.

TAaBLE 8. HPFSS differentials, integer page

(s,f) = r dy(x) Proof
(12,0) o9 3 vind Proposition 4.10 (restriction)
8,0) D 5 D7 2ghy Corollary 4.15 (vanishing line)

or Proposition 4.41 (restriction)

(8,0) 4D 7 D72gh}  Proposition 4.17 (8v = n?)
(16,0) 2D? 7 D 'gh}  Proposition 4.17
(32,0) D* 7 Dgh3 Proposition 4.28 (vanishing line)
(9,1) Dhy 9 D %% Corollary 4.32
(41,1) D°hy 9 D lg% Corollary 4.32
(16,2) Dc 9 D7 g%’dh; Corollary 4.16
(48,2) D°c 9 D7 '¢2dh; Proposition 4.18
(17,1) D?*h; 9 D g% Proposition 4.38
(49,1) DSh; 9 g% Proposition 4.38
(24,2) D?%c 9 D *¢%dh; Corollary 4.34
(56,2) DSc 9  g%dh Corollary 4.34
(30,2) D3 11 D= *g3h;  Proposition 4.30 (restriction)
(62,2) DS 11 ¢3h Proposition 4.30 (restriction)

or Proposition 4.42 (vanishing line)
(23,3) Ddhi 11 D=5gh?  Corollary 4.35
(55,3) D°dh; 11 D7 1'g3h?  Corollary 4.35
(17,3) Dchy 13 2D 84% Proposition 4.14 (vanishing line)
(49,3) DSch; 13 2D g% Proposition 4.18 (transfer)
(11,1) 2Dhy, 13 D7 8g3d  Proposition 4.25 (hidden 2 extension)
(43,1) 2D%h, 13 D~*¢?d  Proposition 4.25
(=7,1) D 'hy 23 D7164° Proposition 4.14 (vanishing line)
(18,2) D?h? 23 D 3¢°h; Corollary 4.22
(43,3) D°h3 23 D7 %g°n?  Corollary 4.22

5. THE (* — 0;)-GRADED COMPUTATION

In this section, we compute the (x — 0;)-graded Qs-HFPSS for Es. We use the following
convention: a class at (n — 0y, m) will be denoted as in degree (n — 1,m). Since the Qs-
representation o; cannot be lifted to Ga4, in this section, we only consider the groups Qg and
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SD1s. We name classes by their names in the 2-BSS in Table 5, and also use 2-BSS names for
the integer-graded classes as it makes the multiplication relation clearer.

Proposition 5.1. The class v3u,, at (4,0) supports a dz-differential
d3(vius,) = hiu,,.

Proof. We consider the restriction map from (x —o;)-graded Qs-HFPSS(Es) to the integer-graded
C,-HFPSS(E;). Note that the Cy-invariant element T, € H?(Cy, m4E2) equals v modulo 2. This
implies res’ (viu,,) = T modulo 2. Recall that in the C;-HFPSS for Eo, the class T supports
a non-trivial dz-differential ([BBHS20, Proposition 5.21]). Then the class v?u,, must support a

non-trivial differential of length < 3. For degree reasons, we have
ds(vius,) = hiug,.
O

Since the (x — o;)-graded part is a module over the integer-graded part, this ds-differential
implies a family of ds-differentials as follows:

d3(k* D™u{" 2 ug,,) = kS D™ BT B,

where k,m,l,n € Z and [,n > 0. By taking out these ds-differentials, an argument similar to the
proof in Proposition 4.12 shows that the following classes are permanent cycles
2D, D™, D™ hy, D™ hY

where [ > 1 and m > 0. All the classes above either support non-trivial ds-differentials or are
permanent cycles. Similar to the bo-pattern in the integer graded part, we do not need to consider
this part in later computations of higher differentials.

However, this is not the only kind of ds-differentials in (x — 0;)-graded part. To derive the
second kind of ds-differentials, we first need to show the ds-differential pattern and several other
facts.

Lemma 5.2. The class {z + y}u,, is a permanent cycle.

Proof. For degree reasons, this class is a,, on the FEs-page defined in Definition 2.2. By
Proposition 2.3, this class is a permanent cycle. ([l
Corollary 5.3. The class {x + y}Du,, at (7,1) supports a ds-differential

ds({z + y}Duy,) = k{yhs + zhivy } Du,, .

Proof. Since the (% — 0;)-graded part is a module over the integer-graded part, the claimed
differential follows from Lemma 5.2, Corollary 4.15 and the Leibniz rule. (]

Corollary 5.3 generates the first kind of ds-differentials via the Leibniz rule.
Lemma 5.4. The class {x? + y*}Du,, is a permanent cycle.

Proof. According to Proposition 4.38, there is a dg-differential dg(DSh;) = k>D7xh;. Then the
Leibniz rule implies that the class k?x2h; D™u,, = k*D"2hy - {x + y}u,, is hit by a differential of
length < 9. For degree reasons, it is hit by either a dg-differential or a dr-differential. In either
case, the h; extensions force k2{z% + 42} D"u,, to be hit on or before the Eg-page. Then the
class {#? + y?}Du,, must be a permanent cycle; otherwise the class k2{z? + y?} D"u,, would
support a non-trivial differential since

E*{2? + y*} D uy, = {2® + y*}Du,, - K*D°

where kD% = ¢? is a permanent cycle that survives to E..-page in the integer-graded part. O
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Corollary 5.5. The class {x? + y*}u,, at (—2,2) supports a ds-differential
ds({2® +y}uo,) = k{z + y}hiug,.

By inspection, all ds-differentials in (¥ — 0;)-graded part follows from Corollary 5.3 and
Corollary 5.5 by the Leibniz rule.

Lemma 5.6. The class {x + y}D*u,, is a 11-cycle.

Proof. According to [BBHS20, Remark 5.23], the class us, is a 5-cycle in the C4-HFPSS for Es.

Therefore, Theorem 2.8 implies that Ngf (u2s)ag,; is a 9-cycle. According to Proposition 2.5
U20; U220
Ngf (u20)ay, = UJTikaai-
If we restrict this class to the subgroup Cy(j), then we get the class a, which is non-trivial.
Hence Ngf (u2s)as, is non-trivial on the Es-page. By multiplying Ngf (u2¢)a,, with the following
periodicity classes
S N4 5 -1, -1

Ngf(i) (u4U)Ng48<i> (01) Ngf(z) (U4/\U2U)U4U’i U4o.j u40’k
where U4, Uso;, Uso, are permanent cycles by Remark 2.24, we get a non-trivial class at (31, 1).
For degree reasons, this class must be {x+y}D*u,, (up to a unit). This implies that {z+y}D*u,,
is also a 9-cycle. For degree reasons, {z + y}D*u,, is a 11-cycle . ([

Remark 5.7. We will show in Proposition 5.20 that the above class supports a non-trivial
dq3-differential.

Proposition 5.8. The class {h; + zv1 }u,, at (1,1) supports a ds-differential
ds({h1 + zv1}u,,) = 2kviu,,.
Proof. We argue by contradiction. Suppose this differential does not happen. Then the class
2kv?u,, will survive to the Es-page and the Leibniz rule implies that there is a ds-differential
ds (23 D*u,,) = 2k*0? Du,,,,
since there is an hy extension from k2®D%u,, to 2k*v D*u,, by Lemma 3.9.
On the other hand, according to Lemma 5.2, Proposition 4.28 and the Leibniz rule we know
the class {z + y}D* is a 5-cycle. Moreover, the class z? is a also 5-cycle by Proposition 4.30. so

the product 2°D* = {z + y}D*u,, - 2% is a 5-cycle. This is a contradiction. And the claimed d3

follows immediately.
O

Remark 5.9. Proposition 5.8 shows that 2kv?u,, is hit by a ds-differential. Recall that the class
kviu,, itself supports a non-trivial ds-differential by Proposition 5.1.

By the above discussion and by inspection, all ds-differentials in the (x — 0;)-graded part
follows from Proposition 5.1, Proposition 5.8 and the Leibniz rule.

Corollary 5.10. The classes x3u,, at (—=3,3) and x3D%u,, at (29,3) support dy1-differentials
(1) di1(z3u,,) = K*{x + y} Dhiu,,;
(2) di1(z3D*u,,) = k3{x + y} D°hyu,,.

Proof. According to Proposition 4.30, there is a dq;-differential in the integer-gradings
di1(x?) = k3>Dh;.
Note that {z + y}u,, and {z + y}D%u,, are both 11-cycles. By the Leibniz rule, we have
di1(z3uy,) = {x + yYus,di (2?) = E*{x + y} Dhiu,,.

The proof of the second dy;-differential is similar. O
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Proposition 5.11. The classes {h? 4+ xhivi }Du,, at (10,2) and {h? + xhiv1} D%u,, at (42,2)
support dg-differentials

(1) do({h? + zhyv1}Du,,) = k*{z + y}h3 D%u,,;

(2) do({h? + zhyv1}D%u,,) = k*{z + y}h3DOu,,.
Proof. Because kD? = g is an invertible permanent cycle in Qg-TateSS(Ez), the d;;-differential
in Corollary 5.10

di1(2*DY,,) = K3 {2 + y}h1 Dou,,
implies that in the (x — 0;)-graded Qs-TateSS(E3) we have
di1 (k723 Du,,) = (ED*)"Ydyy (23 D*uy,) = k*{x + y}h1 D*u,,.

Since k?{x + y}h1D?u,, is hit by a d;;-differential in Qg-TateSS(Es), its hy extension, k*{z +
y}h? D?u,,, has to be hit on or before the E1;-page. For degree reasons, this class k?{z+y} D?h%u,,
must be hit by the claimed do-differential in Qs-TateSS(Es3). By Lemma 2.6, the first claimed
dy-differential also happens in Qs-HFPSS(E5). The second dg-differential follows similarly. O

We have the following dg-differentials by the Leibniz rule and integer-graded do-differentials.

Proposition 5.12. We have the following dg-differentials

(1) do({z + y}h1Duy,) = k*2%hy D*u,,;

(2) do({z + y}h1D*u,,) = k*>x*h1 D3u,,;

(3) do({z + y}h1D%u,,) = k?x*hy DSu,.;

(4) do({z + y}h1D%u,,) = k?2%h1 D" u,,.
Proof. We prove the first differential, and the proofs of the rest three differentials are similar.
According to Corollary 4.32, in the integer-graded Qs-HFPSS(E5) we have

do(Dhy) = k*xhy D%
Note that the class { + y}u,, is a permanent cycle by Lemma 5.2. Then the Leibniz rule implies
do({z + y}h1Du,,) = {x + y}uy,do(Dhy) = k*2°hy D*u,,.
]
Corollary 5.13. The classes {z + y}D?u,, at (15,1) and {x + y}D%u,, at (47,1) support
dg-differentials
(1) do({x + y} D?ug,) = k*{2? + y°} D’u, ;
(2) do({z +y}D%uq,) = k*{2* + y*} D7u,,.

Proof. By Proposition 4.33, the class D~1'h; is a 9-cycle. These two dg-differentials hold since
otherwise the classes {x + y}Dhiu,, and {z + y}D°hqu,, would be 9-cycles by the Leibniz rule,
which contradicts Proposition 5.12. O

To derive the last type of dg-differential, we first need to show the following d;7-differential in
the (¥ — 0;)-graded part.

Proposition 5.14. The class {h? + xhyv; }u,, at (2,2) supports a dyr-differential
diz({h? + xhivi }uy,) = k*{x + y}hiD%u,,.

Proof. Consider the class k®{h? +zhiv; } D*%u,, in filtration 26. By Theorem 4.8 this class cannot
survive to the F..-page.

After the E5-page, all the potential sources that could support a differential hitting the class
kS{h? + zhyv1} D%, are k3x2h;D%,,, k*{z + y}D%u,, and kx?h;D%u,,. We rule out all
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three possibilities one by one. The class k3x%h; D%u,, is hit by the following do-differential in
Proposition 5.12

do(kxhiD%u,,) = kD3dg({x 4 y}h1 D%u,,) = k*2*hy D%u,,.

The class k*{x+y}D%,, is a permanent cycle since {x+y}u,, is a permanent cycle by Lemma 5.2.
The class kx2h,;D? is also a permanent cycle since it is hit by a known dg-differential in the
Qs-TateSS for Ey according to Proposition 5.12

do(k~{z + y} D" hiu,,) = kx?hy DBu,,.

Therefore, the class k°{h} + zhiv1 } D*%u,, must support a non-trivial differential. Since kD3 = g
is an invertible permanent cycle in TateSS, the class {h? + xhivi }u,, = D8(kD?)~SkS{h3 +
xhlvl}Dmugi also has to support a non-trivial differential.

Therefore, the class k5{h? + xhiv; }Du,, has to support a non-trivial differential, so is the
class {h? + zhivi}u,,. For degree reasons, there are three possible targets which are kx®D,
k*rh?D%u,, and k®z3D3u,,. The class {h? + xhyv, } D~ u,, is a 5-cycle for degree reasons, and
the Leibniz rule implies

d5({h% + xhlvl}ugi) = {h% + l‘hl’l)l}D_lugid5(D)
= {h? 4+ 2zh1v1} D u,, - kDhy =0
So the class {h? + xhiv1 }u,, is also a 5-cycle, in other words, the class k23D cannot receive a
differential from the class kz>D. On the other hand, the class k°z3D3u,, supports the following
dy1-differential by Corollary 5.10
di1 (K23 D3u,,) = (D3)° D194y, (23 D*u,,) = KDz + yYhiu,,.
Therefore, the class {h% + xhyv1 }u,, supports the desired dy;-differentials
di7({h3 4 zhiv }u,,) = k*{x + y}hiD%u,,.
O

It turns out that this is the only d;7-differential in one period of the (x — 0;)-graded part of
Qs-HFPSS(Es).

Proposition 5.15. The classes {x? +y?}D3u,, at (22,2) and {z? + 32} D", at (54,2) support
dg-differentials

(1) do({2* + y?} D3u,,) = k?2®D*u,.;

(2) do({z? + y?}D"u,,) = k*x>D3u,,.

Proof. According to Proposition A.7, the restriction of {z? + y?}u,, to the integer-graded Cy-
HFPSS for Eq is non-trivial. It implies the following restriction by degree reasons

resgj ({332 N yQ}Dguai) = 66lsuﬁx\u40a2¢7-

We now prove that the class {z? 4+ y*}D3u,, supports a non-trivial differential by contradiction.
Suppose that the class {z% + y?} D3u,, is a permanent cycle that survives to the E..-page. Note
that its Cy-restriction 5?u6>\U4ga20 has a hidden 2 extension in w*Egc“ by Lemma 2.18. Then
{2% + y?} D3u,, also has a hidden 2 extension in the E.,-page. However, since hidden extensions
and natural maps between spectral sequences will not decrease filtration, the potential target of
the hidden 2 extension from the class {z? + y?} D3u,, can only be k2{2? + y*>}D*u,,, k{yhs +
xhyv1 }D3u,, and k{h? + xhiv; } D3 by degree reasons. However, the first class k?{x? +y*} D*u,,
supports a non-trivial ds-differential by Corollary 5.5

ds(k*{z* + y*YD*u,,) = k*zhiD%u,,.
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The second class k{yhs + xhlvl}D?’ugi is hit by a ds-differential by Corollary 5.3
ds({z + y} D3u,,) = k{yhy + xhivi} D3u,,.
The third class k:{h% + xhlvl}D?’ugi supports a d;7-differential by Proposition 5.14
di7(E{h3 4+ zhivi} D3u,,) = kPzhiDu,,.

Therefore, all the potential targets of the hidden 2 extension from the class {2 + y?}D3u,,
will not survive to the E-page. This is a contradiction. Hence the class {2 + y?} D3u,, must
support a non-trivial differential.

After the Es-page, the only two potential targets are k?z3D*u,, and k°{x + y}h?D%u,, by
degree reasons. However, the class k°{z + y}h3D%u,, is hit by the following d;7-differential by
Proposition 5.14 and the Leibniz rule

di7(k{h} + zhiv1} D?u,,) = kD3dy7({h] + vhivi }u,,) = k>{x + y}hi D’u,,.

Then the first desired dg-differential follows. The proof of the second dg-differential in the
statement is similar since the C4-HFPSS for Es is 32-periodic. O

We can apply the norm method to get a dy-differential directly (after the calculation of E3-page)
which is independent of the dg information in the integer-graded part.

Proposition 5.16. There is a normed dg-differential in (x — 0;)-page
do({z +y}D%us,) = k*{2® + y*} D ug,.
Proof. According to [HHR17, Theorem 11.13], the class uay supports a non-trivial ds-differential
in C4-HFPSS(E,)
ds(uzx) = 01ura2: 00 -
Then Theorem 2.8 implies there is a predicted do-differential in Qs-HFPSS(E>)

do(NZ* (uzn)ao,) = NG (01)NZ* (un)azsao, ao,

We claim the target of this predicted dg-differential is non-trivial on the Fs-page. It suffices
to show that the class a,;a, is non-trivial since Ngf (uy)azy is invertible in TateSS(E3). We
observe that

resgf (ao,00,) = G20
where as, is non-trivial in Cy-HFPSS(E2). This implies that a,;a,, is also non-trivial. Therefore,
the non-trivial class on the FEs-page Ngf (51)Ng48 (ux)asmas; ay,; must be hit on or before the
Ey-page. By multiplying this class with the following periodicity classes

Ng48<1> (u4)‘u20>NCQf<i> (61 )Guiai u40j Udoy,

we get a non-trivial class at (46, 10), which has to be the class k?{z? + y?}D"u,, (up to a unit)
by degree reasons. Therefore, the class k?{x? + y?} D"u,, has to be hit on or before the Eq-page
too. If this class is hit by a dr-differential from the class 22h; D%u,,, then the class k?z2hy D"u,,
has to be killed on or before the E;-page. However, this is a contradiction by degree reasons.
Therefore, the claimed dg-differential follows. (|

All do-differentials follow from Proposition 5.11, Proposition 5.12, Corollary 5.13, Proposition 5.15
and the Leibniz rule.

Proposition 5.17. The classes {z + y}h?D?u,, at (17,3), {z + y}h1D"u,, at (56,2) support
das-differentials

(1) dos({x + y}hiD%u,,) = k°{x + y}h1 Doug,;

(2) dos({x + y}h1D"u,,) = k*{x + y} D u,,.
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Proof. By Corollary 4.22 we have the following two ds3-differentials in the integer-graded part
do3(D?*h?) = k®hyD®, and das(D"hy) = k5D,

Note that the class {x + y}u,, is a permanent cycle by Lemma 5.2. Then the desired two
differentials follow from these dos3-differentials and the Leibniz rule. O

All dos-differentials follow from Proposition 5.17 and the Leibniz rule.

Lemma 5.18. The four classes {h3 + xhyvy } D?u,,, {h? + xhyv1 } D3u,,, {h3 + xhiv1 } D%u,, and
{h? + zh1v1} D"y, are all permanent cycles.

Proof. After the Es-page, the potential targets of {h? + zhiv;}Du,, are the classes k?{x +
y}h3iD8u,, and k322 D%,,, since lengths of differentials in the RO(Qs)-graded Qs-HFPSS(E>)
are less than or equal to 23 by Theorem 4.8. However, the class k*{x + y}h? D%u,, supports a
non-trivial daz-differential by Proposition 5.17 and the class k323 D%u,, supports a non-trivial
dy1-differential by Corollary 5.10. For similar reasons, the rest three classes are permanent
cycles. O

Proposition 5.19. There are four non-trivial dy1-differentials
(1) dy1(x%h1D%uy,,) = k*{h? + xhiv1 } D3u,,;
(2) di1(x%h1D3u,,) = k3{h? + zhiv1 } D u,,;
(8) di1(x2hyD%u,,) = k*{h3 + xhyv1} D u,,;
(4) d11($2h1D7uai) = kS{h% + xhlvl}Dguai.

Proof. We first prove (2). Consider the class k5{h? + xhiv; }D%u,, which is a permanent cycle
by Lemma 5.18. Since its filtration is greater than 23, the horizontal vanishing line forces it
to be killed. For degree reasons, after Es-page, there are two potential sources: k3x2h; D*u,,
and kx?hy D3u,,. However, the class kz%h; D3u,, is a permanent cycle since it is killed by a
dg-differential in the associated TateSS according to Proposition 5.12. Therefore, we have

di1(E*2?hy Duy,) = k%{h? + zhiv, } DPu,,.

Next, consider the class k%{h? + xhiv; } D8u,, which is also a permanent cycle by Lemma 5.18.
Similarly, the horizontal vanishing line forces it to be killed eventually. After Es-page, for degree
reasons, there are three potential sources: k*z2hyD7u,,, k*{z + y}D"u,, and kz2hy D%u,,. The
second class k3{z + y}D"u,, supports a do-differential by Proposition 5.16. The third class
kx?hy D%u,, supports a di;-differential we just proved

di1(kx?*hy D%u,,) = kD3dyy (22hy D3uy,) = K*{h3 4 xhiv, } D u,,

Therefore, we have
di1 (k22?hy Duy,) = K3{h? + xhyv, Y D8u,,.

The rest two claimed dy;-differentials follow by similar arguments.

All dy;-differentials follow from Corollary 5.10, Proposition 5.19 and the Leibniz rule.
Proposition 5.20. The class {x + y}D*u,, at (31,1) supports a di3-differential
dis({z + y}D*ugy,) = K3{h? + xhyv, } Dou,,.

Proof. We first claim the class k3{h? + xhiv; }D%u,, is a permanent cycle. In the Qg-TateSS for
E», by multiplying it with k73D~% . D8, we obtain {h? + xhyv; }D*u,,, which is a permanent
cycle by Lemma 5.18. So k*{h? + zhiv; } D%u,, is also a permanent cycle in the Qg-HFPSS for
Es.



RO(G)-GRADED HFPSS FOR HEIGHT 2 MORAVA E-THEORY 37

Next we consider the class k{h? + 2hiv1 } DSu,, = k3{h? + xhiv1} D%u,, - k3D - D=8 above
the vanishing line. By Theorem 4.8 it must be hit by a differential since it is a permanent cycle.
Then for degree reasons, the only two possible sources are {x + y} D*u,, and x2h; D*u,,. Note
that the class z2hy D* is a permanent cycle since it is hit by a dg-differential in Qg-TateSS(Ez)

do(k™2xhy D3u,,) = 22h1 D*u,, .
Therefore, the claimed d;3-differential must happen. (I

This d;3-differential can also be deduced via the norm method.

Second proof of Proposition 5.20. According to [HHR17, Theorem 11.13][HSWX23, Corollary 3.14],
there is a dr-differential in the C4-HFPSS for Eq

d7(usn) = 17 ugrazy.
Then Theorem 2.8 shows that there is a predicted d;3-differential

dis(NE® (uan)ag,) = NZ*(@1)NE* (') NE* (uzn)as.
According to [Sch11, Proposition 10.4 (viii)], res@® N&® (1) = 1/? is non-trivial. Then NZ* (1) is

4
non-trivial on the Es-page and so is the class Ngf (51)Ng48 (n )Ngf (ugx)agm. By multiplying the
non-trivial class Ngf (0)Ng: (0 )Ngf (u2x)asm with the periodicity classes in Corollary 2.22, we
get a non-trivial class at (30,14) on the Es-page, which has to be the class k3{h? + xhyv; } D%u,,
by degree reasons. Therefore, the class k3{h? + xhjv;}D%u,, must be hit on or before the
E13-page. For degree reasons, the desired d;3-differential follows. O

All dys-differentials follow from Proposition 5.20 and the Leibniz rule.

Table 9 lists the differentials we have computed so far. They generate differentials via the
Leibniz rule. By inspection, these are all non-trivial differentials since the remaining classes are
permanent cycles by Method 2.7.

The result is presented in Fig. 17.

5.1. Summary of differentials. Differentials in (x — o)-graded part are given by Table 9. All
differentials follow from this list by multiplying permanent cycles and the Leibniz rule.

TABLE 9. HPFSS differentials, (x — o;)-page

(s,f) = r  de(z) Proof

1,1 h1 + zv1 Yug, 3 2kvPu,. Proposition 5.8

K3 1 K

(4,0)  viu,, 3 hiu,, Proposition 5.1 (restriction)
(7,1)  {z+y}Du,, 5  k{yhe + zhiv1}Du,, Corollary 5.3 (module structure)
(14,2)  {2? + y*} D?u,, 5  kxh3D%u,, Corollary 5.5 (module structure)
(10,2) {h? +xhiv1}Du,, 9 k*{x +y}h?D?u,, Proposition 5.11
(42,2) {h? +xhiv1}D%u,, 9 kz{azv + yéh%DGfum Proposition 5.11
(8,2) {z+y}thiDu,, 9  k*z*hiD%u,, Proposition 5.12 (module structure)
(40,2) {z + y}th1D%u,, 9 k?2%hy DSu,, Proposition 5.12
(15,1) {x +y}D?%u,, 9 ka2 +y*}D3u,, Corollary 5.13
(47,1) {x+y}D%u,, 9 k2% +y*}D"u,, Corollary 5.13
(22,2) {2? + y*} D3u,, 9  k22°D*u,, Proposition 5.15 (hidden 2 extension)
(54,2) {2® +y*}Du,, 9  k?2°D8u,, Proposition 5.15
(15,3)  2%hyD?u,, 11 k*{h? + 2hyv1}D3u,, Proposition 5.19 (vanishing line)

Continued on next page
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Table 9. — HPFSS differentials, (x — 0;)-page (continued)

x r  dy(x) Proof

22hy DSu,, 11 k*{h? + zhyv,}D"u,, Proposition 5.19

22hy D3u,, 11 k3{h? + zhyv,} D*u,, Proposition 5.19

22h1 D" u,, 11 k3{h? + zhyv,}D%u,, Proposition 5.19

23 D4, 11 k3xhyDu,, Corollary 5.10 (module structure)
23 D3u,, 11 k3zhy D%u,, Corollary 5.10

{z + y} D' u,, 13 k3{h? + zhyv1}D%u,, Proposition 5.20 (vanishing line

or norm differential)

{h2 + zhyvi }u,, 17 kY{z +y}h?D?u,, Proposition 5.14 (vanishing line)

{x + y}h3D?u,, 23 kS{x +y}h D® Proposition 5.17 (module structure)
{z +y}h1D7u,, 23 kS{x +y}D1%u,, Proposition 5.17
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6. CHARTS AND TABLES

6.1. Keys for the charts. In all charts, a gray line denotes a multiplication. See the following
table for the keys.

TABLE 10. keys for multiplications

line meanings
vertical 2 multiplication
slope 1 h1 multiplication
slope 1/3 hs multiplication

dashed (only in 2BSS) hidden extension

The colored lines denote the differentials. We use different colors to distinguish different
lengths.

TABLE 11. keys for classes

class meaning

dot k

blue dot  k[j]
red dot  k[j]{j}
square  W(k)

Here k is ]FQ for G = SD16 or G48, and is F4 for G = Qs or GQ4; ] is U%2D73 for G24 or G487
and viD~! otherwise.

Remark 6.1. We elaborate more on boxes and dots connected by vertical lines in the same
bidegree. Such a pattern denotes a 2-adic presentation of a class. Namely, the bottom dot is
generated by the generator and represents a 2-torsion copy, the dot or box just above is generated
by twice the generator, and so on.

For example, on the E-page of the integral degrees (Fig. 9), in bigrading (32, 0) the bottom red
dot represents the class W/2[v D~1]{v{ D3} and the blue box above represents W[vi D~1]{2D*};
Note that there is a 2 extension. Thus the class at (32,0) is W[viD~1[{viD3} ® W{2D*}.

Such presentations help to demonstrate where the differentials or extensions come from. For
example, in Fig. 5 in bigrading (12, 0), only the generator v{ supports a non-trivial dz-differential
and 2v$ survives. This convention is due to Dan Isaksen.

Remark 6.2. We comment on the extensions between dots of different colors. For example, in
the bidegree (24,0) and (25,1) in Fig. 9, there is an h; multiplication connecting a red and a blue
dot. The red dot represents the class W/2[v$ D~ 1]{v{D?} and the blue dot represents the class
W /2[viD~1]{h1D?}. The h; multiplication happens whenever it is indicated by the class names.
Note that the class W/2{h; D3} is not hi-divisible in this case since the source is missing.

6.1.1. 2-BSS.

Fig. 2 — Fig. 4 are charts for the 2-Bockstein spectral sequences. All three charts have (8,0)
periodicity by multiplying D and (—4,4) periodicity by multiplying & (except the v; local classes
in low filtration). We only depict part of the spectral sequence here, which contains a full periodic
range.

In Fig. 2, a blue line indicates the multiplication by x, while an orange line indicates the
multiplication by y.
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Recall the (x — 0;)-graded part and the integer-graded part have isomorphic E;-pages. When
interpret the chart as the (¥ — 0;)-graded part, the name of a class at (s, f) is its label multiplied
by u,,, and its degree is (s + 1 — oy, f). For example, the class 1 at (0,0), when interpreted as an
(% — 0;)-graded part class, denotes u,, at (1 —o;,0) in the 2BSS.

Fig. 3 and Fig. 4 show the E.-page of 2BSS, for the integer-graded part and (* — o;)-graded
part respectively.

6.1.2. HFPSS.

Fig. 5-Fig. 9 depict the integer degree calculation of the integer-graded G-HFPSS(Es) for
G = Qs or SDsg, and Fig. 13-Fig. 17 depict the (x — 0;)-graded calculation. Both Fs-pages are
(8,0) periodic by multiplying D, and other pages are (64,0) periodic by multiplying D%. All
charts are (20, 4) periodic by multiplying kD? (except the v; local classes in low filtration). The
differentials are denoted by the colored lines with their length classified by the color. When the
target or the source of the differential is out of range, we replace the line with an arrow. There
are horizontal vanishing lines in filtration 23 on E.-pages.
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FIGURE 2. The E;-page of the integer/(x — 0;)-graded 2BSS.

INTEGER DEGREES, 2BSS, E, PAGE

8 — —
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FIGURE 3. The E-page of the integer-graded 2BSS.The dotted lines are hidden ho extensions.
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FIGURE 4. The Eo.-page of the (x — o;)-graded 2BSS. The dotted lines are hidden h; and ho
extensions.

FIGURE 5. The Ejs-page of the integer-graded Qs-HFPSS(E2). The red lines are ds-differentials.
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FIGURE 6. The Es-page of the integer-graded Qg-HFPSS(E3). The green lines are ds-differentials.
The blue lines are d7-differentials.
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The Eg-page of the integer-graded Qs-HFPSS(E2). The purple lines are dg-differentials.
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SIGMA DEGREES, HFPSS, \F> PAGE
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FIGURE 13. The Es-page of the (x — 0;)-graded Qg-HFPSS(E2). The red lines are ds-differentials.
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P

FIGURE 14. The Es-page of the (x — 0;)-graded Qg-HFPSS(E2). The green lines are ds-differentials.
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FIGURE 15. The Ey-page of the (x — 0;)-graded Qg-HFPSS(E3). The purple lines are do-differentials.
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APPENDIX A. GROUP COHOMOLOGY

In this appendix, we collect and present examples of computations of group cohomology. There
are two main applications: one is to calculate it as the input for the Fs-page of the integer- and
(* — 0;)-graded homotopy fixed points spectral sequences for Eo, the other is to utilize restrictions,
transfers, and norm maps for proofs of differentials. All the rests needed for our computation of
the Qs-HFPSS for E5 are listed in Proposition A.7.

Let Qs be presented as

Qs = (i,j | = 5%, ijij ")
with its real representation ring RO(Qs) = Z{1,0;,0;, 05, H}. To calculate H*(Qg, A) we will
use the following 4-periodic free Z[Qs]-resolution:

07 Xo o x, & x, 2
where Xy = Z[Qs]{ao}, V(ap) = 1, and for k > 0,
Xag+1 = Z[Qs{bk,1, b2},  d(bk) = (i — L)ag,

Xapt2 = Z[Qs){cr1,cr2}s d

Xarts = Z[Qsl{er}, d
Xapra = Z[Qsl{ar 11}, d(ar+1) = Dgeqq 9 - €k

Suppose that A is a Qg-module, then H*(Qs; A) is the cohomology of the cochain complex
Al A0A S Ao A8 A
where the differentials (by abuse of notation) are given by the following matrices
i—1 147 —-1-3j . .
dy = (j—l) ;o dagtr = (1+ij _1_”) , dapyo = (1410 1-4j),
and d4k+3 = ZQEQS qg.
We record here the group cohomology of Qg with trivial Z coefficients
HY™2(Qs,Z) = Z/2 8 Z/2,
H*(Qs,7) = Z/8,
H2q+1(Q87 Z) = Oa

where k > 0,¢q > 0, and the generator of H*(Qg,Z) gives the 4-periodicity.

In addition to the integer-graded Qs-HFPSS for Eg, we also compute the (¥ — 0;)-graded part.
For this purpose, we study the structure of 7, E; ® 0; as a @g-module, which is given by the
following analog of [HM17, Lemma 4.6] :

Lemma A.1. Let E be a Qg-spectrum. Then
TE(EAST) 2 rtE®o;
as Qs-modules.

Recall that we defined v; = uju~! and its Qg-action was given in (2.3). By Lemma 2.12, we
may first compute H*(Qs, W[u~!,v1]), then invert D and complete at I = (2,u1).
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Remark A.2. If we define s = i, (u~') and denote u~! by ¢, then the actions of Qg on s,t are
given by

ix(s) = —t, ix(t) =s

Ju(s) = =Cs + Gty Gul(t) = Cs + Pt

ko(s) =Cs+C%t,  ki(t) =C%s —Ct

For computational purposes, it is equivalent to replacing generators u~',v; by s,t, and the form
of the action turns out to be more compact.

We first calculate the 0*cohomology ring. Behrens and Ormsby [BO16] have determined the
Cy(i)-invariants:

Proposition A.3. Let by = 52 + 12, by = 53t — st3 and 6 = s*t2, then
H°(Cy, Wu™", v1]) = W[bg, by, 8]/ (b5 — b36 + 46°).
The j-actions on by, by, d are the following:

Jx(b2) = —ba,

Gu(ba) = —=(2C + 1)b3 + 7ba + 8(2C + 1)3,

G4 (8) = b3 +2(2¢ + 1)by — 76.
Proposition A.4. We have the 0" cohomology ring

H(Qs, Wlu™",01]) = W[s1, 52, 53] /(57 = 4(2C + 1)s7 52 + 165153)

where s = b3, s3 = by + (2 + 1), and s3 = by + 2(2¢ + 1)bsby — 8b24.

Proof. Since m,E5 is 16-periodic as a QQg-module, it suffices to compute the j-invariants of
H°(Cy,W[u=1 v1]) in low degrees. The result follows by direct computation. (]

In the main computations, we sometimes need to rely on explicit group cohomology results.
The following is an example.

Example A.5. The calculation of H*(Qg, m4E2 ® 0;) = W/4.
The cochain complex at degree 4 looks like
W{s?, st,t?} LN W{s?, st,t?} LN W{s?, st, t*}?
By Lemma A.1, the actions are
in(s%) =13 ix(st) = —st, iy (t?) = s°
Gu(82) = —=Cs% 4 25t — %, Gu(st) = 82+ (2C + 1)st — 2, . (t?) = —(?s% — 2st — (t2.
Therefore, kerdy = ker (i — 1) Nker (j — 1) = ker (i — 1) = W{s? + ¢2}.
Meanwhile, since we have
ds(s?) = 4(s* +t%),
dg(St) = O7
ds(t?) = 4(s* + 12),
we conclude that H*(Qg, myEs ® 0;) = W/4.

We also calculate a couple of restriction maps in group cohomology. In the case of the integer-
graded part, most calculations are easy. By Proposition A.8 we deduce that the generators
1, v, ¢, d, g have to restrict non-trivially to their C4-counterparts, which lie in the Hurewicz image.
For the (x — 0;)-graded part, some chain-level calculations seem to be inevitable.
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Example A.6. In the integer-graded part, calculate rescj () D~2d # 0. This is used in the proof
of Proposition 4.30.

The class D~2d lies in bigrading (—2,2). We are looking at the degree 0 part of W[u =1, vy].
The generator of H?(Qg, W{1}) is given by the cochain

a: Z[Qsl{co,1,co2} — W{1},
Co,1 > 1, Co,2 — 0.
Restricting to O4<i>, we rewrite X2 = Z[Qg]{CQJ,CQQ} as Z[C4<i>}{00,1,j00,1,6072,.]'6072}, and
similarly for X;. Then « restricts to the cochain
a : Z[Qs]{co,1,j¢c0,1, 0,2, jeo2} — W{l},
0,1, Jco,1 — 1, co,2, Jjeo,2 — 0.
Now we check the image of dy. Let 1, 52, 33, 84 be the dual basis of by 1,jbo1,0b0,2,5bo,2 in
Homge, ;) (X1, W{1}). The image of 3, is calculated by evaluating 3; o d; at the Cy(i)-basis of
X5. As an example, we have
(Brodi)(c10) = B1((L+14)bo,1 — bo,2 — jbo2) = 2.

Similarly, we verify that the restriction of « does not lie in the coboundary; hence the restriction

is non-trivial.

Sometimes the restriction to C4 (i) is trivial, but it becomes non-trivial when restricted to
C4(j) or Cy(k). By similar calculations we have resg,’i (z + y)us, = 0, while resg.f; (z +y)uo, #0.

Finally, we present the collection of calculated results.

Proposition A.7. Summary of calculated group cohomology
H3(Qs,Z) = 0.
H%(Qg,ﬂgEQ & Ui) = W/4
Hd(Qg, 7T4E2 X O'i) = W/2
HQ(Qg, 7T4E2 ® 0'7;) = W/2 P W/2
Hl(Qg,TrQEQ X O'i) = W/2
Summary of calculated restrictions
. resgf hy # 0.
. 1resg§5 ho # 0.
. res%‘ d#0.
° res%g g # 0.
. resgf{xQ + y*}u,y, # 0.

In fact, the restriction map from H*(Qs, 7. E2) to H*(C4, 7. E2) is determined by the Hurewicz
image of Egc‘*. The direct algebraic computation we give above could potentially adapt to
computations of higher heights.

We recall the known result of the Hurewicz image result of E4. We follow names introduced
in Proposition 2.14.

Proposition A.8. (see [HSWX23, Figure 12]) The following classes on the Eo-page of the
C4-HFPSS for Ey detects images of the Hurewicz map: S° — EZC“ :

5104, at (1,1) detects the image of n € m.S°,

d1ura, at (3,1) detects the image of v € m3S5°,

dlugsaqn at (8,8) detects the image of € € mS°,

djugauzsaz, at (14,2) detects the image of k € m145°,
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o ugrugoagy at (20,4) detects the image of i € maS°.
The unit map S° — ELY factors as
GO nity phQs xes, ghCa
There is a map of spectral sequences from the Adams—Novikov spectral sequence of the sphere
to the C4-HFPSS for Eg, and it factors through the Qs-HFPSS for E;. By comparing the
Adams—Novikov spectral sequence of the sphere (e.g., see [Rav78, Table 2]) and the Cy-HFPSS
for E5, we see that the classes detecting 1, v, g, d with no filtration jump under this map. Hence

in the Qg-HFPSS for E,, these classes are detected by classes hq, ho, d, g, and the Cy-restriction
of these classes are non-trivial as follows.

Proposition A.9. The restriction map from the Eo-page of the Qg-HFPSS for Eo to the Fo-page
of the C4-HPFSS for Ey is determined by the following and the multiplicative structure.

resgi(hl) = $104,, resgf (h2) = d1uraq,
resgf(C) =0, resgj (d) = 6‘11’1144)\“42004207
Qs

=6
resg, (9) = D] UsA U A2

The element € € mzS° is detected by a class at filtration 2 in the Adams-Novikov spectral
sequence of the sphere. However, the image of € in 7T8E'2’C4 is detected by 0jussaqy at filtration 8
in the C4-HFPSS for Ey. There is a filtration jump by 6. For degree reasons, in Qs-HFPSS(E-),
the image of € could be potentially detected by a class of filtration 2 < f < 8. By the fact that

the unit map S° — EZQS further factors through S° ity ESG“, the image of € is detected by
the class ¢ at (8,2) (up to a unit) in Qg-HFPSS(E2). Therefore, there is an exotic restriction in
HFPSS from Qg to Cy that maps the class ¢ to the class 0}ty aqy.
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