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Abstract—Beyond the high-profile artificial intelligence and
machine learning (AI/ML) workloads, the demand for high-
performance matrix operations on standard and complex
floating-point numbers remains strong but underserved. How-
ever, the widely adopted low-precision matrix processing units
(MXUs) can only fulfill the need for AI/ML workloads, which
are underutilized or idle when running applications outside their
target domains.

This paper presents M>XU, multi-mode matrix processing
units that support IEEE 754 single-precision and complex 32-
bit floating-point numbers. M>XU does not rely on more precise
but costly multipliers. Instead, M®XU proposes a multi-step
approach that extends existing MXUs for AI/ML workloads. The
resulting M*XU can seamlessly upgrade existing systems without
programmers’ efforts and maintain the bandwidth demand of
existing memory subsystems. This paper evaluates M*XU with
full-system emulation and hardware synthesis. M®*XU can achieve
a 3.64x speedup for 32-bit matrix multiplications and 3.51x
speedup for complex number operations on average compared
with conventional vector processing units.

I. INTRODUCTION

Matrix multiplication units (MXUs) or matrix processing
units have become ubiquitous in all computing scenarios due
to the criticality of matrix operations in artificial intelligence
and machine learning (AI/ML) workloads. MXUs can serve
as the core in standalone AI/ML accelerators [25], [36]-[38],
present as another compute engine in modern GPU architec-
tures [1], [58], [59], or integrate into CPUs as extensions to
existing instruction set architectures (e.g., Intel AMX [35],
ARM’s SME [5], and Apple’s Matrix Extensions [3]). The
evolution of MXUs has continuously lifted the roofline of core
neural networks (NNs) operations to the memory bandwidth
and provided a more scalable processing model through the
embarrassingly parallel matrix operations for huge problem
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sizes [38]. However, as modern adoption of MXUs targets
AI/ML applications, most existing MXUs only support low-
precision matrix operations (e.g., 16-bit half-precision, INTS)
or introduce formats (e.g., BF16, TF16, TF32) for better
performance, energy, and area efficiency.

Beyond accelerating workloads dominated by low-precision

matrix operations, MXUs can help a broader set of compute-
intensive workloads to scale with the advances of modern
AI/ML hardware and parallelize through matrix processing
models if they support the following two formats.
Single-precision floating point numbers (FP32) Scientific
applications [6], [7], [7], [16], [29], [55], data analytics/mining
applications [20], [23], statistical learning [44], and graph ana-
Iytics [15], [72] are sensitive to numerical errors and most ex-
isting implementations must rely on IEEE 754 standard single-
precision floating-point-numbers (FP32) to function correctly.
Many Domain-Specific Accelerators require FP32 inputs [26],
[28], [87], and using other formats can lead to unwanted
results. Despite the error tolerance in inferencing, training
NN models still rely on intensive FP32 operations [58], or
require significant re-engineering to accommodate other data
types [54].
Single-precision complex floating point numbers (FP32C)
Fast Fourier Transforms (FFTs) that rely on matrix mul-
tiplications with complex numbers are the core of signal
processing [9], [10], [17], [47], [73] and security applica-
tions [49], [66]. Also, simulating quantum computing needs
complex matrix multiplications to represent qubits and their
operations [8], [48], [70], [78], [89], [91]. As multimedia
signals become complex numbers after transformations, recent
studies also show neural networks using complex number
matrix multiplications are advantageous [4], [14], [31], [42],
[43], [56], [76], [77], [83].

However, extending MXUs to support higher precision
floating point or complex numbers is expensive. The cost of
FMA logic is roughly quadratic in the input bitwidth. For
example, going from 16-bit to 32-bit floating-point inputs



and maintaining the number of operations per cycle roughly
quadruples the hardware area. Furthermore, even if we are
willing to pay the quadratic hardware cost in MXUs, the dou-
bled data width also requires doubling the memory subsystem
bandwidth to match the consumption rate.

By revisiting the mathematical operations of matrix multi-
plications with higher-precision and complex numbers, we can
decompose each computation step as a series of low-precision
matrix multiplications between different components of the
input matrices. Also, considering the limitations on feeding
the MXU with data from memory, we can hit the roofline
of the existing memory hierarchy if we use multiple low-
precision steps to perform both high-precision and complex
matrix multiplications. In other words, the matrix hardware
can reuse existing components to perform wider and/or com-
plex multiplications at reasonable performance if we enable
operations on different matrix components on the MXU.

Inspired by the insights from mathematical observations,
this paper presents M3XU, a multi-mode MXU that extends
half-precision MXUs to support matrix operations using FP32
and FP32C inputs, in addition to low-precision floating point
numbers at low hardware costs. M3XU simply requires (1)
additions of logic to feed different parts of matrix inputs in
each step of operations, (2) minor extensions to the arith-
metic units to support exact FP32 precisions, and (3) slight
extensions to accumulators to accumulate numbers in correct
double-precision formats. Moreover, M?3XU does not double
the bitwidth of arithmetic units, avoiding the considerable
area overhead or the increase in memory bandwidth. M3XU
still delivers FP32 and FP32C matrix multiplications at the
theoretical throughput that the current memory bandwidth can
support. The same M?XU remains the support of the original
functions. As M3XU supports standard FP32 and FP32C,
M?3XU does not require any modification to existing programs.

Compared to software alternatives that perform FP32 and
FP32C operations with multiple low precision ones, M3XU
reduces dynamic instructions, allowing M3XU to execute
equivalent computation more efficiently and maximize reuse
of register contents. More importantly, as M3XU faithfully
supports FP32 operations, M?>XU requires zero changes in
software to accommodate the loss of precision in existing
software solutions [18], [50], [53], [62], [63]. As M3XU
enables native FP32C computations, M?3XU delivers better
performance and more accurate results than software approx-
imations [17], [47], [73].

Our experimental results show an average 3.89x speedup
compared to conventional implementations on FP32 preci-
sion optimized for CUDA/SIMT(Single instruction, multiple
threads) cores. As M>XU brings hardware support for com-
plex numbers, M3XU can directly perform FFT calculations
without approximations and achieves up to 1.99x speedup
compared with state-of-the-art cuFFT libraries. The synthe-
sized M®>XU hardware incurs 47% area-overhead, significantly
smaller than the 3.55x overhead from extending arithmetic
logic. If we make M3XU an extension to NVIDIA’s Ampere
architecture, the resulting overhead is 4% of the streaming
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Fig. 1: The baseline Tensor Core architecture

multiprocessors (SMs).

This paper makes the following contributions.
(1) It presents M3XU, the first MXU supporting complex
number operations, to the best of our knowledge.
(2) Unlike traditional multi-precision MXUs use higher-
precision ALUs to downward support lower-precisions, M3 XU
is the first study that uses a multi-cycle design to extend the
architectural supports in lower-precision MXUs for higher-
precisions, to the best of our knowledge.
(3) It justifies and quantifies that M3>XU is the most efficient,
least expensive MXU design to support higher precision for
memory-bandwidth limited systems.
(4) It evaluates the performance benefit and area-overhead of
the proposed M2XU on critical matrix kernels/algorithms that
a wide range of applications uses.

II. BACKGROUND AND MOTIVATION

This section describes the exemplary MXU architecture that
M?3XU extends, as well as the challenges of supporting higher
precision or complex numbers in MXUs.

A. Tensor Core Architecture

Among commercial matrix accelerators, this paper selected
NVIDIA’s Tensor Cores as the baseline accelerator as (1) the
hardware of Tensor Cores is commercially available to the
public, and (2) the low-level programming interface is avail-
able for this paper to assess the performance of our proposed
extensions. However, the extension that M3XU proposes can
apply to any MXU architecture, regardless of whether the
underlying implementation is dot-product-unit-based, outer-
product-unit-based, or a systolic array.

In NVIDIA’s GPU architectures, Tensor Cores are part of
the streaming multiprocessors (SMs). They share the register
file, schedulers, and caches with other SM components. The
only type of operation that a Tensor Core supports is ma-
trix multiplications. Though NVIDIA does not reveal Tensor
Cores’ microarchitecture, the model that GPGPU-sim uses
seamlessly resembles the measured performance characteris-
tics [41], [67], [82]; Figure 1 depicts this. Each Tensor Core
consists of multiple four-element dot-product units that can
perform all necessary multiplications and accumulations for
MMA operations per cycle. According to NVIDIA’s datasheet,
each Tensor Core unit supports 16-bit floating-point MMA



Data Type Bit Format* | Peak Throughput
FP32 (1,823) 19.5 TFLOPS
FP16 (1,5,10) 78 TFLOPS

BF16 (1,8,7) 39 TFLOPS

TF32 Tensor Core (1,8,10) 156 TFLOPS
FP16 Tensor Core (1,5,10) 312 TFLOPS
BF16 Tensor Core (1,8,7) 312 TFLOPS

* Each bit format of floating-point data type means
(the number of sign bits, exponenet bits, mantissa bits)

TABLE I: A100 HMMA peak throughput

operations in 8x4x8 (i.e., multiplying an 8x8 matrix by a
8x4 matrix, resulting in an 8x4 matrix) by default.

Table I excerpts the peak throughput of NVIDIA A100’s
Tensor Cores on various data types from the datasheet [58].
Based on the datasheet, NVIDIA’s programming interface, and
reverse engineering from prior work [74], [88], the hardware
architecture of Tensor Cores can provide native support of
MMA operations using FP16, BF16, and TF32 inputs. By
observing the union of these three formats, a reasonable design
of a dot-product unit uses a one-bit sign, eight-bit exponent,
and 11-bit mantissa (including an implicit bit). Current Tensor
Cores provide no hardware support for true FP32 arithmetic
or complex numbers. NVIDIA’s Tensor Cores support TF32,
seamlessly allowing the software to provide FP32 inputs and
deliver results at half the BF16/FP16 FLOPS. However, TF32
has 13-bit fewer mantissa bits than FP32; programmers must
handle the information loss for usages needing more precision.
To get “real” FP32 operations (or FP32C), we must rely on (1)
the SIMD hardware, which has 8x less throughput than TF32
Tensor Cores, or (2) software modifications using multiple
MMA operations at a lower precision.

B. Challenges of Extending MXUs

Despite the demand for FP32 and FP32C and the shortfalls
in using alternative data types, extending MXUs to support
either FP32 or FP32C has yet to be done because it is
expensive and challenging.

Area overhead FP32 and FP32C use a 23-bit mantissa, so
we must double the bitwidth of multipliers and accumulators.
Expanding multipliers is especially costly as the area is
quadratic to the input bandwidth. We synthesized the area
overhead of an FP32-MXU (with no FP32C support) with as
many FP32 FLOPS as FP16/BF16 FLOPS using the same
process technology and tool that Section V-A will describe
later. The FP32-MXU is 3.55x larger than a baseline MXU
without FP32, increasing the SM area by 11%.

Memory pressure Suppose an MXU, with p-bit inputs, can
multiply an M x K matrix with an K x N (we abbreviate these
dimensions as M x N x K in the rest of the paper) each cycle.
Such an MXU will consume M x K+ K x N p-bit elements, or
(M x K+K xN)x. bytes per cycle and generate M x N p-bit
elements, at full utilization. If the SM runs at frequency F' and
contains X MXUs, the total memory bandwidth B to keep the
MXUs fed is: B= (M xK+KxN+MxN)xExFxX.

In an A100 GPU with 432 Tensor Cores running at
1.41 GHz, at 16-bit precision, B is 156 TB/sec. A100 already
uses a 128B-blocked cache and 1024-bit wide interface to
feed the Tensor Cores. If we double the bitwidth of MXUs
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and maintain the same clock rate, the required bandwidth will
become 312 TB/sec. However, building a memory hierarchy
supporting the required bandwidth is very expensive: we will
need to double the bitwidth of the front-end bus between the
cache and Tensor Cores, as well as the bandwidth of the caches
and DRAM. As the white paper of H100 documents, the latest
high bandwidth memory (HBM) technologies can only deliver
3.35 TB/sec. Modern Tensor Core library implementations
have already applied intensive optimizations to extract the
reuse of matrix tiles to mitigate the memory gap. Recent
studies have shown that even the most optimized cuBLAS
still cannot reach the peak throughput with the default 16-bit
number format [64], [68].

Trade-offs between memory-MXUs As doubling the bitwidth
of MXUs and the memory interface is expensive, we could
maintain the same memory bandwidth. However, in this case,
the extended MXUs can only deliver 50% of their peak
performance. An alternative is to halve the number of MXUs.
However, as each FP32-MXU is 3.55x larger, halving the
number of MXUs still incurs 1.78 X area overhead, increasing
the SM area by 6%. This also would halve the low-precision
compute throughput and still not provide hardware support for
complex numbers in the MXUs.

C. Alternatives

Prior software-based alternatives have tried supporting the
demand for matrix multiplications on FP32 [18], [50], [53],
[62], [63] and FP32C [17] numbers, but all have limita-
tions. Some MXU architectures also try to accommodate
lower-precision matrix multiplications with more-precise hard-
ware [1], [57], [58]. However, no project like M3XU can
perform complex number matrix multiplications in hardware
or even try to combine complex number and conventional
floating point matrix multiplications in a single hardware unit,
to the best of our knowledge.

1) Software-based Alternatives: Despite the advantage of
zero additional hardware costs, existing software alterna-
tives [18], [50], [53], [53], [62], [63] have limitations on
performance in two major aspects. First, software alternatives
must explicitly control the data accesses, incurring additional



matrix loads, register accesses, and dynamic instructions on
tile matrix operations. Second, software alternatives unavoid-
ably have to decouple values and compensate for potential
precision losses.

Figure 2 compares existing software-based FP32 GEMM
solutions on FP16 MXUs and on FP32 MXUs. The same
philosophy applies to software-based FP32C implementations.
Without hardware support, the software solution needs addi-
tional instructions to compute, shift, and split the exponent,
mantissa parts, and flipping sign bits before feeding data
into MXUs. In contrast, appropriate hardware support can
implicitly handle the bit assignments, shifts, and splits without
incurring instructions.

After decoupling data, software solutions must explicitly
control the loads and stores for each tiled matrix operation as
separate instruction streams with no guarantees in scheduling
but increasing the total number of dynamic instructions. In
contrast, hardware solutions can perform the same computa-
tion within a single stream, with fewer loads/stores and fewer
instructions.

2) Hardware Solutions: Existing multi-precision hardware
MXUs support FP32 MMA operations by providing logic that
natively supports the highest precisions in the design [1]. Such
design philosophy allows the hardware to offer downward-
support of lower-precision arithmetics without suffering pre-
cision loss. However, the area cost and energy consumption
are higher than native supports of lower precision arithmetics.

Similar to the philosophy of M3XU, recent MXUs that
originally targeted AI/ML applications have supported data
types with higher precisions [57], [58]. However, all existing
MXUs slightly extend the exponent or the mantissa fields but
implicitly discard bits incompatible with internal low-precision
MXUs to create an illusion of higher-precision supports.
Despite the performance, area, and energy advantages, this
line of MXUs will lead to unprecedented numerical errors
and floating-point exceptions that are unacceptable to existing
FP32 applications and require significant software rewriting
and debugging efforts.

ITII. OPPORTUNITIES FOR M3XU

Through mathematical analysis of general matrix multipli-
cations (GEMMs), we can identify the minimum requirement
to extend a lower-precision MXU to support higher-precision
operations at the peak throughput without increasing the
memory bandwidth. This section describes the insights that
inspired the design of M3XU.

A. Higher precision GEMM with lower precision MXUs

Assume that we have three input matrices, A4, B, and C,
where A is an M x K matrix, B is an K x N matrix, and
C is an M x N matrix. Equation 1 shows the calculation
of the most frequently used matrix function — general matrix
multiplication (GEMM), D = A- B+ C, with a scaling factor
as 1.

Vai’j S A7bi’j S B,Ci’j S C, di’j eD,
K—-1
di; = Z @i kbr,j + cij (D
k=0

If we expand Equation 1 by separating the summation
between the cases where k is odd or even, we get Equation 2.

K K
=1 =1
2 2
di; = E ai2xkbaxk,; + E i 2xk+102xk+1,j T Ci j
k=0 k=0

2

Now, consider the case where we have three input matrices,
A’, B', and C’, where A’ is an M x % matrix and B’ is a
£ % N matrix and C’ is an M x N matrix. In other words,
we halve the K of A and B. In addition, each number in
A’, B’, and C’ is at 2p-bit precision, where p is an arbitrary
constant value. Then, we split A’ into two matrices, A’H and
A’ , where they store the upper and lower p bits, respectively,
of each number in A’. Therefore, A’ = A’;-2P+ A’ . Similarly,
we split B’ as B’ = B}, - 2P + B}. Equation 3 summarizes
the GEMM calculation of D' = A’ - B’ + C".

D/:A/'B/+C/
=(Ay - 22+ A}) - (Bl - 2P+ By) + ¢’

= Ay By -2 + (A - By + A, -By)-2° + A} - B} +C’

3)

Again, let us create a M x K matrix A” and K x N matrix
B” using the following equation.

" /
a.; . = Qa ..
" "o / / / 1,2X7J Hi,j
Vaj; € A% ay,; ; € Ay, ap,; ; € AL, § o,
Ai2xj+1 = AL
“4)
7 -V
17 "3 / / / 2X1,j — YHiy
Vb;; € BY, by, ; € By, b1, ; € Br, g, .
2xi+1,j — YLij
&)

If we perform matrix multiplication as D% = A” - B” and
apply a similar decomposition as in Equation 2, we can derive
Equation 6 as below.

Va;; € A"V, € B",dy, ; € Dy,

7,
K1
/ _ "o
Hij = Z a’i,kbk,j
k=0
K1 K1
_ 1 /! 12 //
= E Ay 25k 02xk,; T E @ o5 k102 k41,5
k=0 k=0
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Equation 6 shows that A” - B” covers the multiplication
results for A’ - By and A} - B}. If we flip the order of
assignment in matrix B” and create another K x N matrix
B”” using the following equation,
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and perform D} = A” - B, we can derive Equation 8 as:
Vai; € A"b"; € B, ’L” e D,
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Equation 8 shows that A” - B” covers the multiplication
results for A% - B} and A} - Bj. We can conclude the
first observation by summarizing the result in Equation 6 and
Equation 8:

Observation 1: An MXU that can perform a M x N x K
matrix multiplications (or in general, any Matrix Semiring
operation) at p-bit precision can perform all multiplications
that are necessary in a M x N X % matrix multiplication
at 2p-bit precision in two steps if the hardware can reassign
inputs in these two different steps.

However, directly summing up the result A’ - B}, and A’ - B},
is not useful to the final result as we need A, - By x 22F +
A’ - BY. Therefore, our second observation is:

Observation 2: We need to extend the p-bit MXU to shift the
accumulation result of A’ - B, by 2p bits and shift D} by p
bits and accumulate these multiplication results to support 2p-
bit matrix multiplications. These two observations also lead to
the following corollaries:

Corollary 1: By reusing existing multipliers, extending ac-
cumulators, and adding shifters, an MXU capable of a p-bit
M x N x K matrix multiplication every c cycles can support
a 2p-bit M x N x % matrix multiplication every 2c cycles.
Corollary 2: The extended MXU of Corollary 1 can support
2p-bit M x N x K matrix multiplications at % of the peak
TOPS (tensor operations per second) of p-bit M x N x K
matrix multiplications.

B. Complex number GEMM with existing MXUs

We can also perform a similar analysis on complex number
matrix multiplications (CGEMM). Assume that we have a set
of three input matrices in complex numbers, Ay, B, and C(,
where A’ is an m x £ matrix and By, is an & x n matrix and
C¢ is an m x n matrix. Then, we split each number in A,
to create two matrices, Ay, and Ay, where Af, , contains
the real part of each number in Ay, and Af, contains the
imaginary part of each number. That is, Ay, = Af , + Af i
Similarly, we also split B¢, as By, = B, + Bg i

D¢ = Ay - B + Ch
= ( ICR + AIC]i) ’ (B/CR + B/C’Ii) + C/C
= (Acp Bop — Acr - Bep)+
(At g Bey+ A - Beg)i+ Co )

Equation 9 expands D, = Af. - By, + C¢ with the split
Ac’ and B¢'. This is almost identical to Equation 3, except
for the subtraction. If we repeat the processing as Equation 4 —
Equation 8, and treat A, , and By, , as A% and By and Ay,
and B(,; as A, and B, then we again see that the existing
MXU can perform all necessary multiplications, but needs to
additionally support the subtraction of the product of A, and
B’C ;- With Equation 9, we can conclude the third observation:
Observation 3: A p-bit MXU can support p-bit CGEMM in
two steps if it has hardware support to subtract the products of
imaginary parts. If we want to support CGEMM with 2p bits
in each number’s real and imaginary parts, we can combine
the insights from Observation 1 (2p-bit M x N x K matrix
multiplications takes 4c cycles) and Observation 3 (M X N x K
CGEMM takes 4c cycles) and derive the following.
Corollary 3: By reusing existing multipliers and adding
shifting and subtraction logic, an MXU capable of a p-bit
M x N x K matrix multiplication every c cycles can support
a 2p-bit M x N x K CGEMM every 16¢ cycles.

C. Performance Expectation on Modern Hardware

This section estimates the performance gain on modern
hardware using the observations and corollaries from Sec-
tions III-A and III-B to derive this work’s advantage. Refer-
encing the white papers from NVIDIA’s Tensor Core Architec-
tures (our baseline hardware architecture) [58], [59], the peak
FP16 FLOPS on Tensor Cores on existing GPUs are 15x-16x
higher than that of the FP32 CUDA/SIMT cores. Therefore,
the theoretical throughput of our proposed work, M3XU, still
has a 4x performance advantage over FP32 CUDA cores,
equivalent to 78 TFLOPS on the Ampere architecture or 248
TFLOPS on the Hopper architecture. For FP32C CGEMM,
M?3XU maintains a 4x peak performance advantage over using
conventional CUDA cores. If we extend AMD’s Matrix Cores
as the baseline, M®XU still has a performance advantage. The
total TOPS of Matrix Cores on AMD’s MI100 and MI250
are 8x of the SIMT cores, meaning M?3XU would have a 2x
advantage over SIMT cores on those GPUs.

IV. M3XU MICROARCHITECTURE

This paper leverages the insights from Section III to build
M?3XU via a small extension to an MXU that originally targets
low-precision operations, and which is enhanced to support
true FP32 and FP32C computations. This section describes
the hardware architecture in detail.

A. Extending MXUs for FP32

Summarizing Observations 1 and 2 in Section III, sup-
porting FP32 in a 16-bit MXU using two steps requires the
following extensions. (1) The hardware needs the ability to
change the dataflow of the inputs in each step. (2) The bit
width of each input to the multiplier must be at least half of
the width of the mantissa. In the case of FP32, the bit width
must be at least 12 (i.e., p >= 12). (3) The exponent adder
must be as wide as that of the high-precision type (8 bits for
FP32). (4) Some accumulators can selectively shift numbers



by 2p and p bits. M3XU fulfills these requirements by adding a
data-assignment stage and extending the arithmetic logic units.
The data-assignment stage M3XU controls the dataflow of
each step of an operation via multiplexers and buffers that store
the inputs of each step. Figure 3 depicts the high-level design
of this data-assignment stage. Since the arithmetic logic must
support half of the width of the mantissa in FP32 and the full
exponent bits of FP32, each buffer entry contains space for the
1-bit sign, 8-bit exponent, and 12 bits of mantissa. For each
dot-product unit that performs s steps of operations for two
m-element input vectors, we need 2 X m x s buffer entries.
In the default FP16 mode, the data-assignment stage directly
feeds each input value into the pairs of input buffers. As FP16
contains a hidden, leading 1 in the mantissa field, the circuit
will fill the hidden 1 in the input buffer and unused bits in the
buffer entry with Os.

M3XU has native FP32 support without introducing a new

data layout. Therefore, as inputs come from registers, the data-
assignment stage splits each 32-bit chunk of data (i.e., a single
FP32 number containing one sign bit, eight exponent bits, and
23 mantissa bits) into two low-precision numbers and assigns
them to the corresponding input buffers for the multipliers in
each step. In other words, the data-assignment stage divides
each FP32 number (e.g., a} ;) into ap;; and azj;. As in
Figure 3(a), the data-assignment stage wires the 1-bit sign
and the 8-bit exponent to both the buffer entries representing
aHg’j and aL;J-. The exponent is thus artificially small for
a L; e which is why the hardware must later correct for this,
post-multiplication. The data-assignment stage attaches the
hidden 1 to the buffer representing a H; ; and wires the most
significant 4 bits from the second half of the original FP32
number. The 12-bit mantissa field in the aLQJ completely
comes from the least significant 12 bits of the second half of
the original FP32 number. The same process applies to both
FP32 input vectors. In the first step, each pair of buffer entries
to the same multiplier will either work on the most or least
significant parts of both input numbers. Then, in the second
step, the data-assignment stage signals the multiplexers to flip
the assignment of one of the input vectors (e.g., bH;_j and
b L/i, ; in Figure 3(a)). This allows the multipliers to coinpute
the products of the most significant parts of one vector and
the least significant parts of another vector.
The extension to arithmetic logics As Equation 3 points out,
the M3XU’s arithmetic logic must (1) accommodate 12 bits of
mantissa computation and (2) accumulate the partial sum-of-
products correctly for the case of supporting FP32. Figure 3(b)
depicts the extensions M3XU makes to the baseline MXU, the
Tensor Core architecture of Ampere, for this.

Since existing Tensor Cores only support an 11-bit mantissa,
we need to expand the arithmetic logic to support 12 bits. This
1-bit extension is much cheaper than a brute force extension
to 24 bits for FP32. Modern Tensor Cores already provide
native support for 8-bit exponents, so M>XU does not need to
extend the exponent-related logic. In addition, we need to add
multiplexers next to the outputs of the multipliers that calculate
A’y x By and shift the result by 24 bits, or else separately
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Fig. 3: The high-level design of the data-assignment stage. (a)
Data-assignment stage for FP32 (b) Dot-product unit hardware
modifications for FP32 (c) Data-assignment stage for FP32C

accumulate the outputs of A’ x By, and A, x B} and shift the
“high” result once by 24 bits. We also need 48-bit registers for
the accumulation results. In Figure 3(b), we draw the former
for clarity, but we implement the latter for efficiency. For the
second step of the computation, all circuits remain, except that
we do not shift the results of any multipliers but instead extend
the multiplexers to shift the accumulation result by 16 bits, and
also accumulate the result in this stage with the previous stage.
Based on an 8 x 4 x 8 MXU of a Tensor Core, the resulting
M?3XU can perform 8 x 4 x 4 in FP32 in each 2-step operation.



B. Extending MXUs for FP32C

Using Observation 3 in Section III and combining the
earlier-described FP32 extensions for M3XU, M3XU can
additionally support complex number arithmetic and act as
an accelerator for FP32C. In addition to the modifications in
Section IV-A, supporting FP32C requires (1) subtractions in
parts of the sum-of-products and (2) 4-step operations where
two of the steps will generate the real part and the rest generate
the imaginary part. Figure 3(c) depicts the extension to FP32-
M3XU for FP32C.

Equation 9 indicates that M®XU can perform complex
number arithmetic in two steps. However, as each part of a
complex number in FP32C is a FP32 number, M3XU has
to consider the real part, Ay, - By, — A, - By, and the
imaginary part, Ay, - By + A - Beyy, as two separate
FP32 matrix multiplications. Since each FP32 multiplication
takes two steps, the data-assignment stage needs to prepare
four levels of inputs and store them in buffers twice the size
of the ones in FP32-M3XU.

Figure 3(c) illustrates the data-assignment stage in FP32C
mode. M3XU assumes the conventional interleaved representa-
tion of complex numbers where a pair of consecutive elements
store a complex number’s real and imaginary parts. Therefore,
an 8 x 4 FP32 matrix will contain 4 x 4 FP32C numbers. The
resulting M3XU can perform an FP32C matrix multiplication
of size 8 X 4 X 2 in a single 4-step operation.

M3XU first computes the real parts of the output, then the
imaginary parts. Like in FP32 mode, M3XU splits each FP32
element into two numbers, high-order and low-order parts. For
the inputs in the first step, the data-assignment logic assigns
either a pair of high-order parts or low-order parts together and
also assigns a pair of real parts or imaginary parts together. In
the case that the multiplication corresponds to two imaginary
parts of numbers, the data-assignment logic flips the sign-bit
for the first input such that the result will be “subtracted” when
accumulated. In the case that the multiplication corresponds
to two high-order parts, the output will be shifted 24 bits. For
the second step, M3XU swaps the high-order and low-order
parts of the b input from two adjacent multipliers to complete
all necessary multiplications for the real part of FP32C. The
computation in this stage will again reuse the FP32 logic to
shift the results by 16 bits and accumulate with the first step.
For the third and fourth steps, M3XU computes the imaginary
parts by interleaving the real part of one number and the
imaginary part from the other. However, for this set of inputs,
M?3XU reverses the flip signed bit back as M3XU does not
need to perform subtraction in the corresponding stage. The
data assignment logic swaps the imaginary and real parts of the
b input across four adjacent multipliers (as shown), and shifts
the outputs by 16 bits during accumulation. The last step swaps
high-order and low-order parts of the b input from two adjacent
multipliers. The 3rd and 4th steps are interchangeable. Our
implementation eliminates the overhead of reassigning inputs.

C. Extending MXUs for higher bitwidth floating point number

The M3XU approach, which leverages existing low-bit-
width arithmetic units for seamless computation of higher-
precision datatypes, extends effectively to even higher bit-
width floating-point formats. FP64 computations, for instance,
can mirror the FP32C process. Dot-product units receive two
FP64 values, decoupling them into four components (high-
high, high-low, low-high, low-low). Subsequently, they per-
form four dot-product operations using the same swapping
policy as FP32C, but without sign bit flipping. Finally, these
units accumulate the multiplier results into FP64 registers. This
analogous approach easily extends to even higher bit-width
floating-point formats, such as FP128, and their complex coun-
terparts. Furthermore, the original arithmetic unit requirements
remain flexible, accommodating options like 8-bit or 32-bit
multipliers for composing higher bit-width datatypes, thereby
broadening the design exploration space. To demonstrate the
capabilities of M?XU within the constraints of conventional
hardware, this paper focuses on extending single-precision
datatypes using 16-bit multipliers.

V. EXPERIMENTAL METHODOLOGY

This section describes the hardware synthesis results and
the evaluation framework that we use to evaluate M3XU.

A. Hardware validation

We implemented the baseline MXU and M3XU using the
system Verilog and synthesized them using Synopsys Design
Compiler with the 45nm FreePDK45 library. We also used
ModelSim to validate the correctness of our designs. The
baseline MXU resembles the capability of a Tensor Core in
Ampere [58] and Accel-Sim [39] as it can perform 8 x 8 x 4
matrix multiplications on FP16/BF16 input elements and ac-
cumulates results in FP32.

B. Performance emulation framework

M3XU’s extension of the tensor instruction set does not
change how the software uses the MXU. The programming
model, interaction with the register file, and use of low-
level instructions remain the same as the existing Tensor
Cores. Therefore, we leverage existing Tensor Core MMA
instructions and extend high-level CUDA GEMM libraries
for performance evaluation, similar to prior works [18], [90].
Unlike previous works, our performance emulation framework
does not include correctness validation and error rate checking
phases for two main reasons. First, a GEMM implementation
using M®XU MMA instructions applies identical algorithms
and optimizations compared with ones using existing Tensor
Core architectures, and the computation result of M3XU is
exactly the same as FP32. Second, unlike software emulation
approaches proposed in prior works [18], [50], [62], which
remain to have between one and several bits of precision loss,
M3XU can retrieve standard IEEE 754 floating-point formats.
Accordingly, computation results using M>XU instructions
introduce no additional error compared to conventional FP32
ALUs (e.g., CUDA cores). Therefore, our framework focuses
on studying the performance of M3XU.



Name Description

FP32 GEMM Kernel by invoking 1 more
MMA instruction, and 2 problem shape
FP32 GEMM Kernel with controlled clock
frequency

FP32 Complex GEMM Kernel by invoking
3 more MMA instructions, and 4 X problem
shape

FP32 Complex GEMM Kernel with con-
trolled clock frequency

TABLE II: M3XU GEMM Kernels provided by performance
emulation framework

M3XU_Sgemm_pipelined

M?’XU_sgemm

M3XU7cgemm7pipelined

MSXUicgemm

1) Emulating performance using existing Tensor Core MMA
instructions: The evaluation methodology in this paper con-
servatively but correctly emulates M3XU performance using
existing Tensor Core MMA in the following three aspects.

(a) MMA instruction latency: Since each M3XU FP32 MMA
instruction requires two steps of computation within the dot
product unit, each M®XU FP32 MMA instruction takes 2x
the cycles of an FP16 Tensor Core MMA. Therefore, the
emulation framework implicitly instruments 2 FP16 Tensor
Core MMA instructions to emulate the latency of an M3XU
FP32 MMA instruction. Similarly, an M3XU FP32C MMA
instruction requires 4 FP16 Tensor Core MMA instructions.

(b) Instruction count: Each M?XU FP32 MMA instruction
computes one 16x8x 8 matrix multiplication, which computes
half of existing Tensor Core MMA instruction , the total
instruction count of computing the same shape of FP32 matrix
multiplication using M®XU MMA instruction is 2x FP16
matrix multiplication using existing FP16 Tensor Core MMA
instruction. Similarly, M3XU FP32C matrix multiplication
requires 4 X total instruction count.

(c) Memory access behavior: M3XU leverages the existing
Tensor Core memory hierarchy. A single M3XU MMA in-
struction incurs the same memory access latency as an FP16
Tensor Core MMA instruction, generating the same number of
fragments and fetching the same amount of data from shared
memory to the register file. The total memory traffic of M3XU
FP32 and FP32C matrix multiplication is 2x and 4x that of
FP16 matrix multiplication, respectively.

2) Constructing performance emulation kernels: Our
framework utilizes CUTLASS [62] to efficiently implement
hierarchical blocked GEMM kernels. To assure section V-B1
(a), our framework takes advantage of PTX injection and
cooperates with CUTLASS’s code generator, which assures
all CUTLASS kernels generate 2x or 4x more MMA in-
structions. To assure section V-B1 (b) and (c), for any GEMM
kernel launched with a problem shape of MxKxN, our
framework launches MxKxNx2 or MxKxNx4 kernels for
FP32 and FP32C, respectively. Since M3XU may need to
operate at a lowert frequency due to extentsion of Tensor
Core, our framework uses nvidia-smi to control GPU SM clock
frequency. Table II lists all four GEMM kerenls used in our
evaluation.

Baseline MXUs M3XU
FP16 FP32 M3XU M3XU [ M*XU
w/o FP32C | w/o FP32C pipelined
Area 1 355 1.37 1.41 1.47
Cycle Time 1 1.00 1.21 1.21 1.00
Power 1 7.97 0.66 0.69 1.07

TABLE III: The relative overhead of various M3XU imple-
mentations, compared with the three reference designs, the
baseline FP16 MXU and two naively extended FP32-MXU
with half/same amount of inputs

C. Environment configuration

We deployed our performance emulation framework on an
Nvidia DGX Station. Our experiments use an installed Nvidia
A100 GPU based on the Ampere architecture with 40 GB
HBM. The machine hosts a DGX-specialized Ubuntu (Linux
kernel version 5.4.0-81-generic) with NVIDIA’s CUDA 11.4
using driver version 470.57.02. Our performance emulation
framework controls the Tensor Core frequency of our testbed
GPU to run at 1170 MHz. It can optionally reduce the
Tensor Core frequency to 960 MHz when launching selected
performance emulation kernels.

VI. EXPERIMENTAL RESULTS

This section presents the performance of M3XU against
various approaches for FP32 and FP32C in critical kernels,
including GEMM, 2D-convolution, and FFT. We also se-
lected four representative applications as case studies. In
summary, M3>XU delivers up to 3.89x speedup on FP32
GEMM compared to conventional vector processing units and
1.63x speedup compared to prior approaches in support of
single precision GEMM. M3XU can directly perform FFT
calculations without approximations and achieves up to 1.99
x compared with state-of-the-art cuFFT libraries.

A. Hardware synthesis result

We presented three-versions M?XU implementations that
incorporate our proposed extensions: (A) An M3XU that only
supports FP32 MMA in addition to FP16 MMA. (B) An
M3XU that does not change the existing pipeline of the
baseline MXU to minimize the area overhead, (C) An M3XU
that separates an additional pipeline stage in assigning the
inputs for different phases to maintain the same clock rate
as the baseline.

Table III summarizes the synthesis results. Adding the
proposed FP32 MMA support in M3XU incurs 37% area
overhead. However, 56% of that overhead comes from the
arithmetic to support the additional 1 bit of mantissa. If we
extend an MXU that already supports 12-bit mantissas, the
area-overhead of supporting FP32 in M3XU is only 16%.

The complete M>XU supports both FP32 and FP32C and
incurs 4% more area overhead than just supporting FP32.
However, M3XU will result in a 21% increase in cycle time
if we do not pipeline the data assignment stage. Despite
the slowdown in supporting the baseline MXU operations,
the lowered frequencies of these implementations allow the
resulting M3XUs to operate at 31% or 34% lower power with
or without FP32C support, respectively. To maintain the same
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Fig. 4: Performance comparison of GEMM using different
Tensor Core approaches: (a) SGEMM, (b) CGEMM.

cycle time, an alternative design that pipelines the data multi-
plexing with the two-phase computation would incur 47% area
overhead to the baseline and result in a 7% increase in power.
The speedup of applications can still make the pipelined design
more energy-efficient than other alternatives and pay off the
slight increase in power consumption. However, even with
47% area overhead, the area increase is only 4% to the SM’s
die size. In contrast to the area-efficiency of M3XU, if we
were to double the front-end memory bandwidth of Tensor
Cores, completely double the bit-width of input and output
data, and use FP32 multipliers, we could achieve the same
throughput as FP16 MXUs. However, the design will lead to
3.55x area overhead and almost 8 x power consumption but
does not provide any support for FP32C as M3XU does.

B. Microbenchmark

Table IV shows the five GEMM implementations we se-
lected to represent the performance of existing approaches
in single-precision GEMM. Four baseline kernels use FP32
arithmetic.

(1) cutlass_simt_sgemm computes using standard IEEE-
754 FP32 and CUDA cores;

(2) cutlass _tensorop_sgemm is a vendor-provided,
software emulated FP32 kernel using TF32 and Tensor Cores.
It computes FP32 GEMM using 3 TF32 Tensor Core GEMMs;
it’s worth mentioning that perfectly emulating FP32 GEMM
using TF32 Tensor Core will require 4 TF32 GEMM opera-
tions. CUTLASS omitted the 4th GEMM on two low-order
portions of the FP32 inputs to reach better performance.

(3) EEHC_sgemm_fp32B is another software solution [50]
that decouples each FP32 GEMM into 3 BF16 Tensor Core
GEMM. For FP32C, we select three kernels with similar
configurations as their counterparts in FP32.

GEMM performance compared with CUDA cores: Fig-
ure 4 (a) shows the performance gain of M®XU and prior
approaches on single precision GEMM kernels (SGEMM)
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Fig. 5: Relative analysis of M3XU: (a) relative energy of
SGEMM, (b) relative energy of CGEMM, (c) relative per-
formance of SGEMM, (d) relative performance of CGEMM.

over GPU SIMT GEMM kernels with problem sizes ranging
from 1K x 1K x 1K to 16K x 16K x 16K. M3XU SGEMM
achieves up to 3.89x and an average of 3.64x speedup
across all SGEMM problem sizes compared with the baseline
CUDA/SIMT cores. Other alternatives only achieve up to
2.67x speedup and spend 14% execution time in decoupling
inputs on average. Excluding the data decoupling time, other
alternatives still fall behind M3XU with a maximum speedup
at 3.10x due to the increased number of dynamic instructions.
The performance gain of M3XU saturates at about 3.89 x when
the SGEMM problem size is larger than 8K x 8K x 8K.
Figure 4 (b) shows the evaluation result of FP32C GEMM.
M3XU FP32C SGEMM achieves 3.51 x speedup on average,
compared with baseline SIMT FP32C SGEMM. With various
problem sizes, M3XU achieved up to 3.82x speedup across all
problem sizes. Software alternatives using three TF32 Tensor
Core operations can only outperform baseline for up to 2.1x,
1.7x slower than M3XU. With reduced clock frequency, non-
pipelined M®XU still reveals 3.35x, and 3.51x speedup over
baseline kernels for FP32 and FP32C, respectively.
Energy consumption: Figure 5 (a) and (b) shows the rela-
tive energy consumption of M?XU compared with baseline
FP32-MXUs that implemented with full bit-width multipliers
(i.e., baseline_ MXU_sgemm and baseline_ MXU_cgemm in



Name [ Compute Type [ Precision [ Description

FP32 Kernels
cutlass_simt_sgemm SIMT fp32 cutlass fp32 gemm kernel using CUDA cores
cutlass_tensorop_sgemm | TensorOp p32 cutlass software emulation fp32 gemm kernel using 3 tf32 gemm
EEHC_sgemm_fp32B TensorOp fp32-B Prior software emulation [50] using three bf16s warp level gemm

FP32-Complex Kernels

cutlass_simt_cgemm [ SIMT [ fp32 complex | cutlass fp32 complex gemm kernel using CUDA cores
cutlass_tensorop_cgemm [ TensorOp [ fp32 complex [ cutlass software emulation fp32 complex gemm kernel using 3 tf32 complex gemm

TABLE IV: Baseline and prior GEMM Kernels
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Fig. 6: Speedup of FFT over cuFFT

Figure 5) and alternatives on FP16-MXUs. Despite 7% higher
power consumption than FP16-MXUs, M3XU’s energy con-
sumption is 61% lower than FP32-MXU and 27% lower than
the most energy-efficient software solution when performing
FP32 operations. The non-pipelined version of M3XU enjoys
lower power consumption as it operates at a lower frequency
while delivering decent performance gain over other alterna-
tives. Therefore, the non-pipelined version of M3XU saves the
most energy, 71% lower compared against FP32-MXUs and
45% lower than the most energy-efficient software-emulated
solutions. When computing FP32 complex numbers, M3XU’s
energy consumption is 57% lower than FP32-MXU and 36%
lower than software solutions. The non-pipelined version of
M?3XU saves the most energy, 68% lower compared to FP32-
MXUs and 52% lower than software solutions.

GEMM performance compared with theoretical peak
performance: As mentioned in Section III, the performance
target of FP32 GEMM and CGEMM is 25% and 6.25%
of FP16 Tensor Core TOPS. To demonstrate that M3XU
meets theoretical performance without loss of precisions, we
compared the relative peak performance of M?XU and other
software solutions with the performance targets. Figure 5 (c)
and (d) shows both M3XU SGEMM and CGEMM kernels
reach more than 94% of the theoretical performance, while all
prior software solutions only reach up to 63% of the target.

C. Case studies

We demonstrate the impact of M3XU in four real-world
applications.

1) FFT: M3XU can directly compute FFT using its FP32C
mode to improve runtime performance. We specifically evalu-
ated the performance of FFT implemented using M>XU com-
pared with prior GPU implementations [47], [60]. tcFFT [47]
is the state-of-the-art Tensor Core FFT implementation, which

Fig. 7: End-to-end Latency of single it-
eration training of CNN models

Fig. 8: Speedup of MRF dictionary gen-
eration over CUDA cores

uses 4x more operations on Tensor Core to compute each
complex GEMM. Since tcFFT only supports FP16 complex
numbers, for fair comparisons, we extended rcFFT to sup-
port single precision GEMM using TF32 Tensor Cores and
compared the end-to-end speedup with cuFFT [60], a vendor-
optimized GPU FFT library, as the baseline. Figure 6 reveals
that M®>XU can achieve up to 1.99x and an average of 1.52x
speedup over cuFTT across all FFT sizes. Conversely, tcFFT
does not improve performance over cuFTT.

2) DNN training: This case study evaluates the perfor-
mance improvements of M>XU on machine learning work-
loads using Nebula benchmark [40]. We extended ResNet,
VGG, and AlexNet. Figure 7 shows that M?3XU is 1.65x faster
than conventional mixed-precision training.

Our proposed M3XU acceleration utilizes the existing Ten-
sor Core GEMM during the forward pass to attain the same
advantages as mixed-precision training, resembling the process
in Pytorch. For the backward pass, the existing implemen-
tation only applies SIMT-based kernels to mixed precision
training due to the absence of FP32 Tensor Core instructions.
With M3XU’s capability in achieving the same numerical
results as standard FP32, M?XU can accelerate the backward
pass that accounts for 39.6%, 39.1%, and 46.5% runtime in
VGG, ResNet, and AlexNet, respectively. M3XU reveals 3.6x
speedup for a backward pass that the existing mixed-precision
method cannot improve.

3) MRF: The primary challenge in MRF is the compu-
tationally demanding reconstruction process, which relies on
the accuracy of the signal model used. MRF often requires
the use of high-precision complex floating point formats.
Our baseline, SnapMRF [80], is a state-of-the-art GPU-based
MRF approach that uses complex matrix multiplication for
dictionary generation and pattern matching phase of MRF, and
the dictionary generation phase takes 98.2% of total run time.
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Fig. 9: KNN speedup over CUDA cores

CGEMM accounts for 22% of the runtime in the dictionary
generation phase. As shown in Figure 8, M3XU achieves up to
1.26 x speedup in end-to-end latency of dictionary generation
phase over the cublas_cgemm-based baseline.

4) Statistical learning: Conventional statistical learning
methods, like K-Nearest Neighbor(KNN) and K-Means, are
also SGEMM intensive but precision-sensitive. We evaluated
KNN-CUDA [79] that intensively uses the cuBlas_sgemm
function. Although conventional FP16 Tensor Cores can accel-
erate the GEMM function, the reduced precision will produce
meaningless computation results for input data with extremely
small values. On the other hand, M®XU can accelerate FP32
matrix operations without precision loss.

Figure 9 shows the heatmaps the performance gain of
KNN using M3XU over the cuBlas_sgemm-based imple-
mentation. We evaluated KNN workloads with total reference
and query points ranging from 2048 to 65536 with four
dimensions ranging from 512 to 4096. We chose a fixed K of
16 as configuration as the portion of runtime contributed by
GEMM increases along with input sizes, M3XU reveals more
performance gain and tops at 1.8x for large input sizes.

VII. RELATED WORK

In addition to the related work described in Section I and
Section II-C, several other lines of research deserve mention.
Mixed-precision Mixed-Precision Fused Multiply-Add Vec-
tor Units M3XU distinguishes itself from existing multi-
precision Fused Multiply-Add (FMA) floating-point units [11],
[24], [33], [34], [51], [52], [75], [88] as M3XU is the
only design that exploits the potential of reusing multiple
low-precision floating-point multipliers within MXUs. Prior
work on FMA units focuses on vector processing or uses
a downward-support approach that enables lower-precision
arithmetic using higher-precision hardware.

Mixed-precision application-specific accelerators: Prior
work has intensively investigated low-precision (under INTS)
neural networks [13], [21], [27], [45], [46], [65], [81], [86],
[92] and corresponding accelerator designs [12], [19], [22],

[30], [37], [69], [71], [84], [85], [93] to exploit the error-
tolerance aspect of neural networks and the high arithmetic
density of low-bitwidth-based MXUs. Although low-precision
models and corresponding accelerator designs can improve
inferencing latency, training throughput, and memory effi-
ciency, ensuring convergence and acceptable accuracy drop
are still challenging. Thus, several techniques and accelerators
support multiple precisions, allowing users to choose appro-
priate precision [12], [22], [69], [71]. Furthermore, several
prior projects propose arbitrary precision support to enable
various sizes of data programmer-transparently [19]. However,
as previous works focus on low-bitwidth computations, naively
implementing multi-precision or arbitrary-precision techniques
in high-bitwidth computation might incur high computational
overhead. To our knowledge, this is the first study to tailor
MXUs to compute high-bitwidth computations.

Complex matrix multiplication: Without M3XU’s hardware
support, existing projects must perform four matrix multiplica-
tions (real-real, real-imaginary, imaginary-real, and imaginary-
imaginary parts) for complex numbers [17], [17], [47], [73]
or they have to avoid complex number arithmetic but use
software-based approximation techniques [32], [61], [62] or
implement a separate accelerator or FPGA acceleration [42].
Synthesis of wider hardware using narrower function
units: M3XU is different from hardware synthesis that uses
narrower function units to achieve functions with wider
bitwidth [2]. Existing work focuses on using the exact block
to create new functions, but M?XU observes the similarity
of desired functions and suggests extensions in existing func-
tional units for more purpose. Therefore, existing automatic
synthesization/optimization techniques cannot achieve these
non-trivial extensions that M>XU presents.

VIII. CONCLUSION

As matrix multiplications are at the core of many problems,
the MXUs in AI/ML accelerators can have a broader impact
than their current focuses. However, the cost of extending
these low-precision MXUs prevents AI/ML accelerators from
embracing more applications.

M3XU provides a timely solution that allows MXUs to
support standard FP32 floating point numbers and FP32C
complex numbers at their theoretical throughput under current
memory technologies, with relatively minor area overhead.
M3XU brings an average 3.64x on SGEMM, and faithful
computation on CGEMM with close to 3.51 x speedup.
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