N)
)
Check for
updates

Rigorous Evaluation of Computer Processors
with Statistical Model Checking

Filip Mazurek Arya Tschand Yu Wang
filip.mazurek@duke.edu arya.tschand@duke.edu yuwangl@ufl.edu
Duke University Duke University University of Florida

Department of Electrical and
Computer Engineering
Durham, NC, USA

Miroslav Pajic
miroslav.pajic@duke.edu
Duke University
Department of Electrical and
Computer Engineering
Durham, NC, USA

ABSTRACT

Experiments with computer processors must account for the in-
herent variability in executions. Prior work has shown that real
systems exhibit variability, and random effects must be injected into
simulators to account for it. Thus, we can run multiple executions of
a given benchmark and generate a distribution of results. Prior work
uses standard statistical techniques that are not suitable. While the
result distributions may take any forms that are unknown a priori,
many works naively assume they are Gaussian, which can be far
from the truth. To allow rigorous evaluation for arbitrary result
distributions, we introduce statistical model checking (SMC) to the
world of computer architecture. SMC is a statistical technique that
is used in research communities that depend heavily on statistical
guarantees. SMC provides a rigorous mathematical methodology
that employs experimental sampling for probabilistic evaluation of
properties of interest, such that one can determine with a desired
confidence whether a property (e.g., System X is 1.1x faster than
System Y) is true or not. SMC alone is not enough for computer
architects to draw conclusions based on their data. We create an
end-to-end framework called SMC for Processor Analysis (SPA)
which utilizes SMC techniques to provide insightful conclusions
given experimental data.

CCS CONCEPTS

« Computing methodologies — Simulation evaluation.

KEYWORDS

evaluation, statistical model checking, confidence intervals

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MICRO °23, October 28—November 01, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10.

https://doi.org/10.1145/3613424.3623785

1242

Department of Electrical and
Computer Engineering
Durham, NC, USA

Department of Mechanical and
Aerospace Engineering
Gainesville, FL, USA

Daniel J. Sorin
sorin@ee.duke.edu
Duke University
Department of Electrical and
Computer Engineering
Durham, NC, USA

ACM Reference Format:

Filip Mazurek, Arya Tschand, Yu Wang, Miroslav Pajic, and Daniel J. Sorin.
2023. Rigorous Evaluation of Computer Processors with Statistical Model
Checking. In 56th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO °23), October 28—November 01, 2023, Toronto, ON, Canada.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3613424.3623785

1 INTRODUCTION

Computer architects, in academia and industry, develop new de-
signs and features and seek to compare them to existing processors.
The vast majority of evaluations are experimental, rather than
purely analytical, and they involve running benchmarks on simula-
tors and/or real hardware. Architects use the experimental results
to determine which ideas and products are better than others.

Unfortunately, the standard practice for evaluating experimental
data has shortcomings, and architects are liable to make incorrect
conclusions regarding the relative merits of different processors.
The underlying issue is experimental variability. When a real com-
puter runs the same program multiple times, the runtimes (and
other metrics) will all differ. Some of this variability depends on the
hardware state, such as the contents of the branch predictor when
the program begins (or resumes after being context switched back
in). Other variability depends on other software currently running
on the system, including full-fledged applications and kernel pro-
cesses. Previous work has identified variability due to seemingly
innocuous reasons, such as program linking order [31] or even bugs
in the Linux kernel [29]. Regardless of its source, variability can
have a significant impact on results.

Alameldeen and Wood [3] identified the importance of variabil-
ity. They demonstrated that adding tiny latencies to DRAM access
times can cause significant differences in runtime for multithreaded
workloads, and further showed that ignoring this variability could
lead to incorrect conclusions. Consider running N simulations each
of System X and System Y, where System X is almost always faster
than System Y. If we were to take only one simulation datapoint
from each set of N and compare those two, there is some possi-
bility of choosing one of the slowest System X simulations and

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-1121-8622
https://orcid.org/0000-0003-2558-8835
https://orcid.org/0000-0002-0431-1039
https://orcid.org/0000-0002-5357-0117
https://orcid.org/0000-0001-7013-8986
https://doi.org/10.1145/3613424.3623785
https://doi.org/10.1145/3613424.3623785
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613424.3623785&domain=pdf&date_stamp=2023-12-08

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

one of the fastest System Y simulations. The probability of reach-
ing the wrong conclusion can be reduced with more simulations;
intuitively, the probability of continuing to choose only outlier
datapoints decreases.

To overcome the issue of variability, Alameldeen and Wood
proposed performing multiple simulations for each experiment (i.e.,
for each target system and benchmark tuple) and processing the
results with typical statistical methods, like confidence intervals
and hypothesis testing [2]. While straightforward, the proposed
solution has significant shortcomings and has largely not been
adopted.

One major problem with the proposed solution is that it requires
the a priori assumption of a Gaussian distribution of the results,
which is not always true. In Figure 1, we show the runtime result
distribution for a real (non-simulated) processor running the PAR-
SEC benchmark ferret [5]. The data is clearly not Gaussian and thus
any statistical analysis based on that assumption is suspect. The
failure of the Gaussian assumption is also observed in recent works
on performance evaluation of computer systems [10, 30, 32]. While
results could have a Gaussian distribution, one cannot know that
without running many trials. Many prior works assumed Gaussian
distributions without sufficient validation (e.g., [44, 56]).

To remove the possibly flawed Gaussian assumption, the main
challenge is how to make statistical inferences from experimental
results sampled from distributions that can take any form and are
completely unknown. While there exist statistical techniques that
do not make a priori assumptions about data distributions, they
have fundamental drawbacks that we discuss in Section 2.4.

To overcome the drawbacks of prior solutions, we introduce
the technique of statistical model checking (SMC), which allows
rigorous evaluation for arbitrary result distributions, to the world
of computer architecture. SMC is a statistical approach for system
evaluation that is used in communities that depend heavily on
statistical guarantees. Specifically, in the world of cyber-physical
systems (CPS), system designers often must provide statistically
rigorous guarantees for systems like robotics, avionics, and closed-
loop medical devices [4, 40, 53]. For example, one might want to
show with 99% confidence that a system will never be in an error
state for more than two cycles.

We created SMC for Processor Analysis (SPA) to provide an
end-to-end framework for computer architecture research evalua-
tion, providing intuitive results with push-button ease of use. SPA
leverages the powerful hypothesis testing methodology of SMC
to create confidence intervals for properties of interest (e.g., cache
miss rate, speedup). SPA takes as input the experiment data of
interest along with the researcher’s hypothesis, and it outputs a
confidence interval for the result.

We make the following contributions in this work:

e We demonstrate that prior evaluation methodologies are
insufficient and can lead to incorrect conclusions.

o We develop a mathematical basis that extends SMC to pro-
vide confidence intervals for metrics of choice (e.g., L2 miss

rate).
o We develop the SMC for Processor Analysis (SPA) framework

to enable push-button analysis of results.

1243

Filip Mazurek, Arya Tschand, Yu Wang, Miroslav Pajic, and Daniel J. Sorin

Ferret Runtime on Real Machine

160 ; H
--- F=05
140 - --- F=08
--- F=009
120 4

100+

Frequency
@
o

60 1

40

20+

0 T T T T T T T T
0.7 0.8 0.9 1.0 11 12 13 14

Runtime (s)
Figure 1: 1000 runtimes of ferret benchmark on real machine.
Dashed lines are proportion values (discussed in Section 4).

e We show how to use SPA to achieve statistically rigorous
results with a desired level of confidence on replicable simu-
lation experiments with gem5.

e We publicly distribute SPA for use by academia and indus-

1

try.
2 BACKGROUND

Variability exists universally in computer systems and poses a major
challenge to accurate evaluation of their performance [3]. In this
section, we discuss the origins of variability, how to incorporate it
into simulation experiments, the distinction between sample and
population statistics, and prior approaches for evaluating the results
of experiments that incorporate variability.

2.1 Origins of Variability

A process exhibits runtime variability due to three primary reasons:
thread interleaving, scheduling decisions, and colocated processes.
Other sources of variability exist—such as dynamic voltage and
frequency scaling and address space layout randomization—but
they tend to be less impactful.

Thread interleaving. Even a process with a deterministic func-
tional outcome may have timing that varies from execution to
execution. This phenomenon is most prevalent for multithreaded
processes because of the different possible interleavings of thread
executions. Consider a multithreaded application that synchronizes
access to a shared data structure using a lock. The functional out-
come of the application is independent of the order in which the
threads obtain the lock, but runtime may differ.

Scheduling decisions. Because runtime scheduling decisions can
vary, scheduling introduces variability. One extreme example is
when a thread that is currently the bottleneck gets swapped out.
Another example is scheduling a thread on a different core than
it previously ran on [51]; the thread arrives to a “cold” core and
cannot benefit from locality, as in a serverless system [55].
Impact of colocated processes. Any process will be impacted
by the behavior of other processes currently running on the same
machine. The processes might share the same multithreaded core

!https://github.com/filipmazurek/spa

https://github.com/filipmazurek/spa

Rigorous Evaluation of Computer Processors with Statistical Model Checking

Ferret Runtime on Simulated Machine

-—— F=05 i i

ggl ——- F=09 i i
1 1

1 1

1 1

i i

60 : 1
oy i i
c 1 1
@ 1 1
3 1 1
o 1 1
@ 404 : !
= 1 1
1 1

1 1

1 1

1 1

201 ! :
1 1

1 1

1 1

1 1

1 1

1 1

0.375 0.380 0.385 0.390 0.395 0.400 0.405
Runtime (s)

Figure 2: 500 simulated runtimes of the ferret benchmark
on gem5 simulator with variability, using simsmall input.

or different cores of the same multicore processor. Regardless of
how they share the machine, there will be shared resources (e.g.,
caches, ALUs, TLBs, etc.) for which they will contend. If a process
with a large memory footprint is colocated with another process
that also has a large footprint, its performance will be lower than if
it were colocated with a process with a small footprint.

2.2 Incorporating Variability in Experiments

Variability exists in real-world experiments and thus should be in-
corporated into the experiments performed by computer architects.
For simulation experiments, which are the focus of this paper, in-
corporating variability entails injecting it into executions. We next
explain how we perform variability injection in our experiments,
but a comprehensive exploration of how to perform variability
injection is beyond the scope of this paper. Moreover, it is impor-
tant to note that SMC’s ability to analyze experimental results is
independent of how variability is injected.

The primary challenges in variability injection are (1) injecting
variability in a way that is controllable and compatible with repeat-
able, scientific experimentation; and (2) injecting variability that is
representative of the expected variability.? We focus here on the
first challenge; we leave the second challenge to future work.

If we inject variability into a simulation experiment, we must
overcome the fact that the simulator is itself a deterministic pro-
gram, so its execution is identical each time it is run from the same
starting point. One of many possible solutions—and the one we use
here—is Alameldeen and Wood’s technique of adding small random
latencies to DRAM accesses (a uniform distribution of 0 — 4ns) [3].
These latencies are enough to perturb the execution and cause dif-
ferent thread interleavings. While this method is not necessarily
capable of modeling all underlying sources of variability, it allowed
us to observe considerable variability across various metrics using
the gem5 simulator. As an example, the distribution of runtimes for
the ferret benchmark is illustrated in Fig. 2.

2This problem is analogous to choosing benchmarks that are representative of the
expected software workload.

1244

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

2.3 Sample versus Population Statistics

Statistical evaluation of system performance with variability typi-
cally requires drawing samples from a population. While the vari-
ability in the samples can be captured by box plots (as in [18, 25]),
box plots cannot accurately capture the uncertainties in the popula-
tion due to random sampling error [9, 27]. Thus, rigorous statistical
approaches are needed to draw correct conclusions about the pop-
ulation in terms of confidence intervals based on those samples.
Admittedly, if there are many samples, then the sample distribution
can well approximate the population distribution, and the boxes and
confidence intervals may be almost the same. However, when there
are few samples, the sample distribution may diverge significantly
from the population distribution, and thus the sample variability
indicated by the box plots can differ significantly from the popu-
lation variability indicated by the confidence interval, leading to
incorrect conclusions. In addition, when samples are scarce (e.g.,
fewer than 10), unlike confidence intervals, extrapolating for high
quantiles (e.g., 95%) becomes challenging in box plots.

2.4 Prior Approaches for Non-Gaussian Data

There are two prior statistical approaches for addressing the issue
of non-Gaussian distributions. One technique is based on non-
parametric rank tests [10], in which every value in a distribution
is ranked (i.e., placed in sorted order). Although computing the
rank statistics does not need any assumptions, comparing the rank
statistics requires the Gaussian assumption. Rank testing may be
used to estimate the median and its confidence interval [26], but it
faces problems with accuracy in cases where the sample population
is small or contains many duplicates.

The other technique is statistical bootstrapping [30, 32], which
resamples from a finite number of samples to extract statistical in-
formation of the unknown population distribution. Such a method is
only asymptotically accurate when the sample size is large enough
to cover the unknown distribution. It is likely to give incorrect
answers when the sample size is small. The bias-corrected and
accelerated (BCa) method of calculating the bootstrap confidence
interval [21] is widely used due to its robustness, but may fail to
produce a result if the sample contains duplicate data points.

While technically only used for Gaussian distributed data, we
also consider the Z-score confidence interval [9] for comparison
due to its frequent appearance in literature. A lot of data may be
considered to be approximately Gaussian to make calculation easier,
and these methods may be surprisingly effective in practice. We
include this method in our comparison to check the importance of
the underlying data distribution in computer architecture studies.

3 SMC TUTORIAL

The universal existence of variability and lack of rigorous evalu-
ation of arbitrary result distributions motivates us to introduce
Statistical Model Checking to the world of computer architecture.
SMC provides a rigorous mathematical methodology to evaluate
computer system performance from arbitrary result distributions
with probabilistic guarantees. It can be applied to results from ei-
ther hardware or simulator experiments without suffering from the
weaknesses of prior approaches discussed in Section 2.4. We start
with a description of SMC’s capabilities and usage, before delving

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

into its theoretical underpinnings. For more details on SMC, please
refer to [1, 41]. Because existing SMC algorithms may not directly
provide computer architects with their desired conclusions, we
create an end-to-end framework called SMC for Processor Analysis
(SPA) to fill the gap in Section 4.

3.1 Big Picture

From a statistical point of view, a system’s evaluation metric X ()
(e.g., runtime) is a random variable whose value varies across re-
peated experiments w due to system variability. Due to variability,
the probability distribution Px of X can differ significantly across
computer systems and software workloads. Ideally, to fully capture
X, we need to present the full probability distribution Px with all
possible values of X in different cases. However, this process re-
quires a huge number of experiments, which is infeasible in most
cases. Thus, in practice, we seek to answer questions about certain
statistical characteristics of the probability distribution.

Previous work has typically focused on using the expected value
EX of an evaluation metric to characterize the metric’s randomness
(e.g., [54]). Experimentally, the expected value is estimated by taking
N sample system executions and computing the sample average
X = Zfi 1 Xi/N. This approach seems natural as X converges to EX
as N increases to infinity by the Law of Large Numbers. However,
deriving the estimation error (i.e., the difference between EX and
X) in a statistically rigorous way for small N remains a challenging
statistical problem when the probability distribution Py is unknown.
For simulation studies, the largest value of N we have found in
the literature is only 10 [51, 58], with typical values 3-5 [8]. In
some previous work [3], this issue is heuristically addressed by
introducing the convenient, but possibly flawed, assumption that
X obeys a Gaussian distribution.

Unlike prior work which estimates EX, SMC statistically asserts
properties of a computer system, which are binary functions that
involve one or more evaluation metrics. A property is either true
or false for a given system execution, and it may vary among exe-
cutions due to variability in the system. A property can be simple,
such as testing whether a metric (e.g., runtime, power) is greater
than a threshold. Properties can also describe more sophisticated
situations, such as whether the occurrence of an event will, with a
probability greater than a threshold, keep the computer in a given
state until the occurrence of another event. (For example, if we
enter a sprinting state [52], with probability greater than X, we will
stay in the sprinting state until a thermal alert.) A non-exhaustive
list of property templates and concrete examples is in Table 1.

SMC can answer questions about the probability of a computer
satisfying the above properties, i.e., whether a property ¢ (which
is related to the performance of a computer system) will be true
for at least F € [0, 1] fraction of executions. SMC is preferable to
estimating the expected value for two reasons.

First, SMC allows rigorous statistical inference even if the ran-
domness is unknown. Since the truth value of properties is binary,
statistical inference techniques for binomial distributions can be
applied without any assumptions. Given N sample executions that
are derived from independent experiments, we can not only answer
whether the probability of satisfying a property ¢ is greater than
the threshold F, but also compute the confidence level C € (0,1) of

1245

Filip Mazurek, Arya Tschand, Yu Wang, Miroslav Pajic, and Daniel J. Sorin

the answer. The confidence level guarantees that out of all possible
sets of N random executions, our answer agrees with the ground truth
on at least a fraction C of them.

Second, SMC provides greater insight than just an expected value.
Consider the ferret benchmark run on a computer system that has
the bi-modal distribution shown in Fig. 1. Due to variability, about
80% of executions have a runtime of less than 1.1 seconds, and about
20% executions have a runtime slower than 1.1 seconds. Using the
expected value to characterize runtime cannot capture that in the
majority of executions, runtime is faster than 1.1 s. SMC, however,
can check if runtime is consistently faster than 1.1 s in at least 80%
of cases and with a specified confidence of, say, 90%.

SMC offers two additional advantages that we note but leave
for future work. First, SMC can handle a richer set of properties
compared to existing methods. Until now, the computer architecture
community has performed experiments that map only to the simple
properties listed in Table 1. For example, we examined every paper
published in ISCA 2022, and we found that every experiment could
be mapped to rows 1-4 if using SMC. Second, SMC offers the ability
to evaluate hyperproperties [12]. Whereas a property enables us
to evaluate a collection of individual experimental executions, a
hyperproperty enables us to evaluate multiple executions taken
together. For example, SMC with hyperproperties enables us to
study whether the performance of multiple executions will differ
by less than a given threshold.

3.2 Theoretical Background

There is a long history of checking general properties on complex
systems with model checking. Traditional model checkers, such as
Murphi [19], PRISM [38], UPPAAL [16], and NuSMV [11], exhaus-
tively explore the reachable state space of a system (i.e., finite state
machine) and check whether specified invariants hold related to
the properties of interest. Model checkers are widely used in many
applications, such as verifying randomized algorithms [34, 39],
wireless networks [20, 22], software/hardware security [17, 24, 48],
performance/reliability [36, 46], robotic planning [23, 62], power
management [35, 47], and biological processes [15, 37].

Model checking can handle general classes of time-related prop-
erties by expressing them in temporal logic, a formal symbolic
language that can be parsed and understood by computer algo-
rithms. Common logics include linear temporal logic (LTL) [50]
and probabilistic computation tree logic (PCTL) [28]. Based on
temporal logic, model checkers can exploit the relations between
various specifications and systematically verify them.

Because traditional model checking suffers from the state space
explosion problem, it is not tractable for many systems, including
most systems of interest to computer architects. To overcome this
limitation, SMC was developed to provide probabilistic guarantees—
unlike the strict guarantees provided by model checking—based on
sampling from the system. Given a property specified in a logic, a
statistical model checker can automatically parse it into several sub-
specifications based on the logic’s syntax and semantics. Then, the
model checker can verify whether these sub-specifications hold for
a given system model by formulating them into a set of hypothesis
testing problems, each of which is evaluated with sufficiently high
probabilistic guarantees by cleverly deciding the number of samples

Rigorous Evaluation of Computer Processors with Statistical Model Checking

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Property Template Examples
performance > A;

metric = threshold power < B;
MTTF > C;

threshold1 > metric > threshold2

A > performance > B;
C > power > D;
E > MTTF > F;

%time in state = threshold

%time handling mispredictions < A

avg #cycles/event 2 threshold

avg #cycles between TLB misses > A

metricl = threshold — metric2 = threshold

power > A — performance > B

eventl occurs — Prob [event2 occurs within C cycles] = threshold

if error occurs, probability of second error occurring within C cycles < Pg;
if we power down component, probability of using it within C cycles < Pg;

eventl’s latency = threshold1 — event2’s latency = threshold2

service time for request R > A — service time for request S > B

2
eventl occurs — Prob [stay in state until event2] = threshold

if we enter sprinting state, probability of staying there until thermal alert < Py

Prob [event when Prob[state] = threshold1] = threshold2

Prob [new TLB miss when Prob[handling old TLB miss] > Po] < Pg

Table 1: Non-exhaustive list of properties that one can evaluate with SMC

needed on-the-fly. Finally, these results are combined to yield an as-
sertion for the full specification with probabilistic guarantees. Such
a statistical approach reduces the computational cost compared to
exhausting all possible system executions—the approach used for
symbolic model checking.

3.3 Technical Description

We now explain the mathematical underpinning of SMC. Mathe-
matically, our goal is to use SMC to check if a property ¢ holds on
a computer system S with probability greater than F:

Py =Pss(p holds on o) > F, 1

where o is a random execution from the computer system with
variability, o ~ S indicates that o is “drawn” from the system S, and
¢ is the given property of interest. Effectively, we want to know
if the probability p, that an execution o of the system S satisfies
the property ¢ is greater than F. Although SMC can handle more
complex statements, we focus on (1) because it can cover most
performance evaluation problems for computer systems.

For computer systems, common properties (e.g., the ones in Ta-
ble 1) are expressible in signal temporal logic (STL) [45]. All STL
formulas have well-defined semantics — they can always be parsed
and yield a meaning without ambiguity [45]. This feature guar-
antees that SMC will never “misunderstand” a property specified
in STL. For simplicity, we can view properties as binary random
variables taking values true or false for each sample execution.

Checking (1) requires two steps. The first step is to parse the STL
property ¢ and derive its true value for a sample execution o. This
process is standard, so we refer the readers to literature (e.g., [45]
and subsequent work). The second step is to calculate the probability
Py from (1). In model checking, the probability is computed from
model knowledge; in SMC, the probability is estimated from sample
executions. Here, we introduce the SMC method developed from
[60, 63] based on the Clopper-Pearson Exact Method. Compared
to alternative methods based on Sequential Probability Ratio Tests
[1, 41], this method only requires a minimal assumption on the
probability p, # F in (1), which is rarely violated.

Our method works as follows. Consider a set of N sample ex-
ecutions oy, ..., on that are taken independently from repeated
experiments on the system S. For i = 1,..., N, with a slight abuse

1246

Algorithm 1 SMC for P,.s(0 |F ¢) > F.

1: Input: Desired confidence level C € (0, 1).

2: Initialization: N «— 1, M < 0, Ccp <« 0.

3. while Ccp < C do

4 Draw sample execution o) and compute ¢(on) by (2).
5. M—M+¢(on),N— N+1.

6: Update A by (3) and Ccp by (4) and (5).

7: return A.

of notation, let

if ¢ is true on oj, @

1,
¢(oi) = {0, otherwise.
Then, the total number of executions satisfying ¢, which can be
captured by M = ¥ ;[N ¢(03), should obey the binomial distribu-
tion Binom(n, p,), and the average statistics M/N is an unbiased
estimator for Po- Intuitively, when M/N < F, we should assert
negative to the condition (1); otherwise, we assert positive. There-
fore, we define the statistical assertion for (1) based on the N sample
executions as

if M/N < F
if M/N > F

negative,

ﬂ(dl,...,O'N)={ 3)

positive,

Due to the randomness of the sample executions, the statistical
assertion A from (3) does not always agree with the ground truth.
The statistical accuracy of A is captured by its confidence level C,
which requires that

Pg,....on~s (A is negative | condition (1) is true) < 1-C,

Py,...on~s (A is positive | condition (1) is false) < 1—C.

Intuitively, this means that out of all the possible sets of sample
executions, the value of A agrees with the ground truth on at least
a C fraction of them. If C = 0.99, we roughly expect at most 1
disagreement after using the statistical assertion 100 times (i.e., on
the results of 100 executions). We also call 1 — C the significance
level; this can be viewed as the maximum of Type I/Il Errors or
False Positive/Negative Rates from other statistics literature.

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Specifically, we compute the confidence level of A with the
widely used Clopper-Pearson Exact Method, i.e.:

Ccp(a,b|M,N) = 4
(1-a)N -(1-pV, ifM=0
N —aN, ifM=N

BbO|IM+1,N-M)-B(a|M,N-M+1), else;

here, B(- | x1, x2) is the cumulative probability function of the beta
distribution with the shape parameters (x1, x2), and the values of a
and b are given by

a=0,b=F, ifM/N<F,)
a=F b=1 ifM/N>F.

This method is statistically accurate for any sample sizes, while pre-
vious works on statistical evaluation of computer systems [10, 30,
32]) using Gaussian assumption or bootstrapping are only asymp-
totically accurate for large samples sizes. Moreover, this method is
customized for the binomial random variable M and has the best
sample efficiency among all statistically accurate methods [13].
SMC is designed to achieve any desired confidence level C €
(0,1) by running in a loop. It draws new sample executions and
updates the confidence level Ccp using (4) and (5) until Ccp > C.
We can prove the following facts to justify this process (see [63]).
First, with probability 1, the confidence level converges to 1 in this
process; thus, this process always terminates. Second, whenever
this process stops, the statistical assertion has a confidence level of
at least C. Our SMC approach for checking (1) is in Algorithm 1.

4 SPA FRAMEWORK

SMC is a methodology for determining, with some specified con-
fidence C and a proportion F, the truth value of a given binary
(true/false) property. Because F refers to the probability a sample
will satisfy the property, it can also be referred to as the proportion
of the population that satisfies the property. For example, using
SMC, an architect could specify a hypothesis using the property
“the cache miss rate is less than 10%” with a proportion of “at least
80% of all possible executions”, at a confidence of 90%.

This process is unlike what architects are accustomed to, though.
Typically, an architect would run a (single) execution and observe
that the cache miss rate is some specific number (say 8%), rather
than presupposing the possible cache miss rate of 10%. Furthermore,
unlike what architects do today, SMC logically operates in a loop,
in which each iteration the SMC engine processes a new execution
(i.e., simulation). Given the latency to perform simulation, such a
loop would be prohibitively slow.

Consequently, to create a methodology that is compatible with
how architects approach evaluations, we have developed a frame-
work called SMC for Processor Analysis (SPA).

We illustrate SPA in Figure 3. The user provides to SPA a metric
of interest, a desired confidence level C, and a desired proportion F.
The user may also optionally provide a batch size, b, which will be
used to control the number of simultaneous simulator executions to
improve total SPA execution time. The SPA wrapper then controls
the SMC engine and the simulator, so the user does not have to.

SPA’s three primary benefits over textbook SMC use, discussed
in the next subsections, are (1) providing confidence intervals for

1247

Filip Mazurek, Arya Tschand, Yu Wang, Miroslav Pajic, and Daniel J. Sorin

Input \ Input Input Mctrlc Input
Confidence (Proportion F e.g., runtime) batch_size
-~ 71 N
I
SMC < Simulator
™| Controller f——>| (c.g., gem5)

|

\
\
|
\
SMC for [
Processor | SMC Engine
Analysis (SPA) |
Framework | f
: Search
| Algorithm

Figure 3: SPA Structural Diagram. The yellow ovals are in-
puts/output to SPA. The bold boxes are our contribution to
facilitate use of SMC.

metrics, (2) performing the logic to control the SMC engine, and (3)
improving performance with parallelism.

4.1 Confidence Intervals Using SMC

Existing SMC tests binary properties, but it does not provide confi-
dence intervals. Confidence intervals are a range of values within
which a population parameter, such as cache miss rate, is likely to
fall with a specified level of confidence. We have extended SMC to
do so, incorporating the process into SPA. This is a contribution of
our work and, secondarily, enables apples-to-apples comparisons
with prior statistical techniques such as bootstrapping.

First, we modify SMC to use a constant number of data points
when performing hypothesis tests. That is, SMC will terminate only
after testing every data point using (2), which removes the previous
condition of Ccp > C. After testing every data point, if Ccp > C,
SMC returns A, but if the Ccp fails to reach a statistically significant
level, the algorithm will return “None" instead. The changes to SMC
are summarized in Algorithm 2.

This modification ensures that the same set of samples is used
when testing different property thresholds, e.g., for the two proper-
ties “cache miss rate < 8%" and “cache miss rate < 10%". As a result,
it is possible to directly compare the outputs at different property
threshold values when using the same F and C.

By repeating SMC for different property threshold values on the
same samples, we can construct a confidence interval for the true
satisfaction probability in (1). Specifically, we can use SMC to find
the property threshold values for which SMC returns A = positive
and A = negative. Then, we can compose a confidence interval
with confidence C between any two hypothesis tests yielding op-
posing results with confidence greater than C [9]. We choose the
narrowest possible construct to ensure the confidence interval is
narrow enough to be informative.

Figure 4 illustrates this process. Each point in the plot is the
resulting Ccp in the positive result, meaning that when Ccp < 1-C,
the test is statistically significant for the negative result. We plot
dashed lines on the plot at C and 1 — C where points above and
below are statistically significant for the specified confidence C.
Points between the dashed lines are where the SMC hypothesis test

Rigorous Evaluation of Computer Processors with Statistical Model Checking

did not converge to a statistically significant result for the specified
C (a result of “None"). In this case, the SPA hypothesis was F = 0.9
and C = 0.9, with different threshold values tested for Property
1 from Table 1. All hypothesis tests to the left of threshold 1.41
converge to a positive result, and converge to negative to the right
of threshold 1.48. As a result, we find that the confidence interval
is between 1.41 and 1.48 with confidence C = 0.9 for the speedup.

Algorithm 2 SMC for P,.s(o E ¢) > F.
Modified for a constant sample size.

: Input: Desired confidence level C € (0, 1).

: Initialization: N <— 1, M < 0, Ccp « 0.

: while samples remain in S do

Draw sample execution oy and compute ¢(on) by (2).
M— M+¢(on), N —N+1.

Update A by (3) and Ccp by (4) and (5).

. if Ccp > C then

return A

. else

return None

T B R LI N S R R

-
<

4.2 SMC Engine Management

With SPA, the architect provides a metric and the SMC parame-
ters C and F. SPA automatically generates the required property
thresholds and controls the SMC process.

If the architect wants to directly provide a property, such as
whether a metric is greater than a given threshold (e.g., “the cache
miss rate is less than 10%”), she may specify that to SPA as well.
In this case, SPA’s task is trivial. It simply passes the property and
the SMC parameters to the SMC engine and it runs a single SMC
hypothesis test based on the unmodified SMC algorithm.

Most of the time, however, the architect’s goal is not a sim-
ple property. Instead of wanting to know whether a metric is
greater/less than a threshold, she wants to know the metric’s confi-
dence interval (e.g., the interval for the cache miss rate).

To determine a confidence interval for a metric, we use SPA
to control the SMC engine. SPA makes an initial estimate of the
metric, Vp, and creates the property “metric is at least Vp”. It runs
the SMC engine with this property and the desired confidence C
and proportion F, and either validates or invalidates the property
(i.e., asserts it is true or false, respectively), or does not have enough
samples to converge. If the property was not invalidated, SPA re-
runs the SMC engine as before but with a metric estimate V; that
is greater than V) by a user-defined granularity. SPA continues this
search process until it identifies the smallest value of V for which
the property is invalidated, Vy;pper. SPA similarly searches for the
largest value of V for which the property is validated Vj,,,e,. In
cases where the property used is differently stated, e.g., “metric is no
more than Vy", we can still follow this procedure. However, Vypper
will be the smallest value for which the property is validated and
Viower Will be the largest value for which the property is invalidated.
The terms “largest” and “smallest” in this context are not precise,
but are rather a function of the granularity at which SPA searches.

Figure 4 illustrates the above process, where the user wants
to evaluate how doubling the L2 cache size from 512kB to 1IMB

1248

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

SPA Confidence Results for Ferret Speedup
512kB vs 1MB L2 Cache
N = 22 | Proportion = 0.5 | Confidence = 0.9

1.0
___._"_- _______________________________________
- v".‘"
S 0.8 1 T
§ "-l. statistically significant
] -
S 061
i 8.
=] 0
Q
£
v 0.4 L
j= ‘.
@
8
€ .
o 0.2
v W n
0.01—
141 142 143 144 145 146 147 148
Speedup

Figure 4: Each point represents the resulting confidence of an
SMC hypothesis test for a positive result at the corresponding
speedup. The points in the unshaded region did not converge
and are thus included in the confidence interval. This proce-
dure generates the SPA confidence interval in Fig. 5.

affects ferret benchmark runtime (i.e., speedup) with F = 0.9 and
C = 0.9. Assume that [y = 1.46, and SPA has executed the simulator
22 times (calculated by equation 8, discussed later). SPA will first
test Vp = 1.46 to find that it does not converge with the data it
was given. It will then test the next point, V] = 1.47 to reach the
same conclusion. Upon testing V3 = 1.48, SMC will converge to
a A = negative result, setting Vpper = 1.48. SPA repeats the
same process in the opposite direction to find that Vj,,e, = 1.41.
Therefore, SPA determines the confidence interval to be between
1.41 and 1.48 for F = 0.9 and C = 0.9. This final confidence interval
is the SPA interval shown later in Fig. 5.

It is important to note that each iteration of the search does
not require new simulations; rather, SPA will re-use the same set
of simulation results as input to the SMC engine, as discussed in
Section 4.1. Furthermore, if the architect decides that the interval
Viower and Vypper is wider than desired, she can decide to run more
simulator executions, which may result in a narrower interval.

4.3 Improving Performance with Parallelism

Logically, SMC operates in a loop in which it (1) runs the simulator
for one execution, (2) uses SMC to statistically analyze the results,
and (3) uses SMC’s confidence result to decide whether another
execution is needed.

With SPA, we improve performance by running batches of simu-
lations in parallel until at least the minimum number of samples are
collected for SPA to calculate the confidence interval. The minimum
number of executions for convergence is based only on the desired
confidence C and proportion F of the property. As discussed in Sec-
tion 3, the SMC engine’s confidence level changes after each input
according to (4). The fastest path to convergence for a A = positive
output requires that each trial result is true and therefore follows
the case that M = N. We denote N as N+ in this case, i.e.,

C < 1N+ — N+, (6)

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Table 2: Simulated system parameters

(6N Ubuntu 18.04
cores 4 out-of-order x86 cores
L1I/D 1:32KB/2-way, D:32KB/8-way, 2-cycle
shared L2 inclusive 3MB/16-way, 16-cycle
cache block size 64B
Memory 3GB, 90-cycle
coherence protocol MESI directory
on-chip network | crossbar with 16B links (same as flit size)

Similarly, the fastest path to convergence for a A = negative
output requires all comparison results to be false, i.e., the M = 0
case in (4). Similarly, we denote N as N— in this case. For the same
confidence C and proportion F, the number of executions required
to reach the false conclusion satisfies

c<a-0N-—a1-pN-, (7)

Therefore, the minimum number of samples required by SPA is
summarized by the following equation:

max{N+, N-}, (8)

where N+ and N— satisfy (6), (7).

Thus, if given C = 90% and F = 90% as inputs, SPA finds that
it requires 22 samples to converge to a A = positive result and 1
samples to converge to a A = negative result. Therefore to find the
confidence interval, it requires at least 22 samples.

4.4 Choosing Fand C

F is the likelihood (equivalent to the population proportion) that a
property is true, and C is the confidence in the boolean SMC hy-
pothesis result. Users should make a choice of F that is meaningful
to their analysis. e.g., F = 0.5 considers the median performance
value, while F = 1.0 provides a likelihood bottom bound.

5 EXPERIMENTAL METHODOLOGY

We choose to experiment with SPA on simulation data (instead of
hardware data) to ensure replicability.

5.1 Simulator and Benchmarks

While SPA can analyze results regardless of their origin, we use
gemb5 v22.1, with the Ruby memory system simulator, due to its
wide use in the computer architecture community [42]. We simulate
the x86/Ubuntu multicore processor described in Table 2.

We run the PARSEC benchmarks with simsmall inputs [5], ex-
cluding raytrace due to its long simulation time and vips and x264
because of compilation issues. We consider only the regions of
interest, i.e., results exclude initialization and wrap-up code. We
focus now primarily on ferret. This benchmark exhibits some of
the greatest variability, due to frequent synchronization and data
sharing.

5.2 Variability Injection and SPA Usage

As discussed in Section 2, there are several ways to inject variability.
In the simulator, we add a uniform (pseudo-)random 0-4 cycles of
latency to each L2 cache miss, similar to [3]. Each execution itself
is deterministic, with the sequence of random numbers determined

1249

Filip Mazurek, Arya Tschand, Yu Wang, Miroslav Pajic, and Daniel J. Sorin

by a seed that we input. When evaluating speedups, we randomly
take one execution from both the base and improved population
runtimes and divide them to give a single speedup input to the SMC
engine. For other metrics, we directly use the results from gem5.

5.3 Comparing to Ground Truth

For each benchmark, we run 500 simulations to determine the
ground truth, where ground truth is defined as F of the entire
population - i.e., the proportion of executions for which a property
is true. For example, in Figure 1, the F = 0.9 value of 1.33 seconds
is treated as the “correct” population value.

5.4 Comparing to Prior Statistical Approaches

We compare our novel SPA confidence interval (CI) construction
against bootstrapping, rank testing, and Z-score CI construction.
Bootstrapping is the most relevant and popular statistical technique
used in previous computer architecture studies [30, 32]. Rank test-
ing has been used in previous studies and can be used to create
confidence intervals [10, 26]. We include the Z-score method of
creating the confidence interval [9] even though it requires the
Gaussian assumption. In practice, these methods can still perform
effectively if the population distribution is approximately Gaussian.
Additionally, it is a demonstrative example of what may happen
when the Gaussian assumption is incorrectly used.

To provide a fair comparison among the four techniques, we
initially evaluate them for F = 0.5 (i.e., median) with a confidence
level of C = 0.9. This is because rank testing and Z-score methods
are best suited for estimating the median CI. For SPA, we specifically
use property 1 in Table 1 because we are finding the threshold value
for which the metric is true. For all other proportions F # 0.5, Z-
score and rank testing methods are not suitable, so we later compare
SPA against bootstrapping for F = 0.9.

Our objective is to evaluate the error probability of the con-
structed CI across 1000 trials, ensuring its compliance with the
desired confidence. To achieve this, we check if the CI covers the
ground truth value in every trial. Furthermore, we analyze the
average CI width for all methods, as reduced error probability ac-
companied by a much broader CI may not be a worthwhile tradeoff.

In each trial, 22 samples are randomly drawn from the benchmark
population, and the metric of interest is extracted. Using F = 0.5
and C = 0.9, each method constructs a CI which is compared against
the calculated ground truth. If the CI covers the ground truth, that
technique is counted to be accurate for that trial. This process al-
lows us to determine the error probability and mean CI width for
each technique. First, we calculate the mean width for each method
by averaging the widths of the 1000 CIs it generated. Then, to allow
comparison between different CI widths across metrics, we normal-
ize these values by dividing the mean width by its corresponding
ground truth value.

A sample of a single trial can be seen in Figure 5. In this case, the
CIs constructed by SPA and the Z-score method cover the ground
truth value, while the bootstrapping and rank testing CIs do not.

3We do not compare against error bars, which are based on the uncertainty of statistics
within a sample. They are less statistically rigorous and no easier to use than the
chosen CI methods.

Rigorous Evaluation of Computer Processors with Statistical Model Checking

SPA vs Bootstrap vs Rank vs Z-Score Cl for Ferret Speedup
512kB vs 1MB L2 Cache
N = 22 | Proportion = 0.5 | Confidence = 0.9

1
! === True value
SPA p— -+ SPA
! -+ Bootstrap
! —++ Rank
! —++ Z-score
Bootstrap A
1
1
1
i
Rank 4 | —]
1
1
1
i
1
Z-score - I :]
1
1.35 1.40 1.45 1.50 1.55 1.60
Speedup

Figure 5: Comparison of CIs constructed by different tech-
niques. Only SPA and Z-score CI cover population ground
truth value. SPA gives tightest CI that covers true value.

Note that this is a case study and no conclusions are drawn from it.
An accuracy evaluation is performed in the following section.

Regardless of the statistical technique used, the cost of running
experiments dominates the cost of statistical analysis. Because the
analysis runtimes are negligible compared to the overhead of run-
ning experiments, we do not compare their runtimes here.

6 EXPERIMENTAL EVALUATION

We show how to use SPA for statistically rigorous evaluations and
compare its performance against other CI construction methods.
We emphasize the importance of creating Cls that are not only
narrow enough to be informative but also achieve the requested
confidence level C. Using SPA for CI construction performs well by
maintaining an error below the requested threshold and having a
width comparable to the other investigated techniques.

SPA analyzes data regardless of its variability. In what follows,
the coefficient of variation (standard deviation divided by the mean)
ranges from 0.022 to 0.117 across metrics in the ferret benchmark
and from 0.0002 to 0.127 across benchmarks for the metric L1 Cache
Misses per 1k Instructions.

6.1 Evaluation at the Median

For a fair comparison among bootstrapping, rank-based, and Z-
score CI construction methods, we test their error probability in
estimating the median value (F = 0.5) with desired confidence
C = 0.9 for selected metrics. Figure 6 presents the error probabilities,
where probabilities exceeding the dashed line do not comply with
the confidence threshold. In this case, only SPA and Z-score Cls
are within the requested confidence C. In fact, the Z-score method
is never incorrect, which is why it does not have any visible error
bars in the figure. Bootstrapping sometimes fails to generate a CI,
represented by the “Bootstrapping Null" stacked bar, discussed in
Section 6.4.

The geomean error probabilities for each method are as follows:
SPA has an error probability of 0.065, Z-score 0.000, bootstrapping
0.127, and rank testing 0.119. Despite the differences in error proba-
bilities, because the CIs were constructed with a confidence level of
C = 0.9, we cannot claim that Z-score is more accurate than SPA. As

1250

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

SPA vs Bootstrapping vs Rank vs Analytical Error
PARSEC Ferret Benchmark Metrics
N=22 | Proportion=0.5 | Confidence=0.9

---- Error Limit

SPA

Bootstrapping
Bootstrapping NULL
Rank

Z-score

0.25

0.20

Error Probability

Ru“ﬂme st es1¥ “\S‘S\p ad _ate“‘:\l
N .

3 1S
'S x\nS
1 N\'\gsesn (2 Wiss Wax w\'\ss"—S]1

Metric
Figure 6: CI error probability for ferret over different metrics
at F = 0.5. Average of 1000 trials. There is no Z-score error
bar because it is accurate on every trial.

SPA vs Bootstrapping vs Rank vs Analytical Interval Width
PARSEC Ferret Benchmark Metrics
N=22 | Proportion=0.5 | Confidence=0.9

0.45
& == SPA
5 0.40| mmm Bootstrapping
= = Rank
g 0357 mm Z.score
2030
qg 0.25
3
i« 0.20
c
8
st 0.15
o]
N
= 0.10
£
o 0.05
z

0.00

u “{\me % ms\S % “\5{5 a{e“c‘\l e “\5&5
® u N\\ssesﬂ “ N“S,sesll) oed L . isseslt
Metric

Figure 7: CI width for ferret over different metrics at F = 0.5.
Average of 1000 trials.

both methods comply with the requested confidence threshold, they
are considered equally correct in this case. Bootstrapping fails to
comply with the confidence in every tested case, while rank testing
is accurate for some metrics but highly inaccurate for others.

Despite Z-score CI construction seemingly performing as well
as SPA in terms of error probability relative to the requested con-
fidence, we check the CI widths in Figure 7. The Z-score CIs are
2.3-4.3 times broader than those of SPA, reducing their practical
effectiveness. SPA’s CI width is comparable to the other techniques
while maintaining a much lower error probability.

6.2 Comparison at Other Proportions

For estimating proportions other than the median (any F # 0.5),
only SPA and bootstrapping are suitable methods. We compare
the two methods across various metrics and benchmarks while
examining CI widths to ensure error probability differences are not

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

SPA vs Bootstrapping Error
PARSEC Ferret Benchmark Metrics
N=22 | Proportion=0.9 | Confidence=0.9

0.25
---- Error Limit
mmm SPA
0.20 = Bootstrapping
B Bootstrapping NULL
>
3015
©
Qa
<
a
5010
f
0.05
0.00
Rungime K0S Latenc (s ¥\
sV sf 0ad esl
s MSS Max (\te
Metric

Figure 8: CI error probability for ferret over different metrics
at F = 0.9. Average of 1000 trials.

a result of overly wide CIs. The following evaluation is conducted
at proportion F = 0.9 and by constructing 90% confidence Cls.

6.2.1 Across Metrics. We evaluate the error probabilities of Cls
constructed for several selected metrics from ferret simulation
runs, with the results illustrated in Figure 8. For each metric, the
SPA CI achieves the desired error probability, while bootstrapping
frequently yields error probabilities that exceed specification. The
geomean error for the SPA CI is 0.081, while the bootstrapping CI
has geomean error 0.135. Figure 9 shows that SPA achieves this
error probability improvement with CIs that are only slightly wider
than the bootstrapping Cls.

Even when duplicate data points cause bootstrapping to fail
in generating a CI, the error probability—excluding these “Null"
results—is above the confidence threshold. Note that the runs result-
ing in “Null" were neither re-run nor extended to find whether the
resulting bootstrap CI would be correct or incorrect. It is likely that
a portion of the “Null" results would be correct and a portion would
be incorrect, implying that the error probability in the graph would
likely be slightly higher. This suggests that SPA is more suitable for
estimating values at percentiles other than the median.

6.2.2 Across Benchmarks. We observe the same trend when eval-
uating the metric L1 Cache Misses / 1k Instructions across eight
PARSEC benchmarks. Figure 10 displays the error probabilities,
with SPA’s geomean error at 0.081 and bootstrap’s at 0.135. With
the exception of the ferret benchmark, the bootstrap CI error proba-
bility exceeds the specified error limit for all other benchmarks, with
the error probability approaching 18% in the case of the canneal
benchmark. In contrast, the SPA CI error probability has a more
stringent limit, as it remains within the specified error bounds for
all benchmarks.

The CI width comparison presented in Figure 11 tells the same
story. SPA achieves compliance with the requested confidence with
only a marginal increase in CI width over bootstrapping.

We also evaluate the error rate for a different metric, L2 Cache
Misses / 1k Instructions, across eight PARSEC benchmarks. Figure 12
shows that the error probability again remains below the threshold

1251

Filip Mazurek, Arya Tschand, Yu Wang, Miroslav Pajic, and Daniel J. Sorin

SPA vs Bootstrapping Interval Width
PARSEC Ferret Benchmark Metrics
N=22 | Proportion=0.9 | Confidence=0.9

EmN SPA

0.20

p =
5 mmm Bootstrapping
=
So1s
i
=
@
1)
| o
v 0.10
e
=
=
o
)
3
N 0.05
©
IS
£
S
= oo

0.00

auntine 1 \ns \atenc 1 nstS
s/ sl oad esl
L3 s N‘ 1S5k r'\(e
Metric

Figure 9: CI width for ferret over different metrics at F = 0.9.
Average of 1000 trials.
SPA vs Bootstrapping Error

PARSEC Benchmarks L1 Misses/1k Instructions
N=22 | Proportion=0.9 | Confidence=0.9

0.25
----- Error Limit
m SPA
0.20 I Bootstrapping
>
£
5 0.15
®
o
<
-9
5 0.101
=
w

0.05

0.00-

& 2\ ! et
B\ac\«sﬂ“’\eodi“a o 9t e A

2 N el
da“\«\i)q eQ‘{\\“ (eaﬁ\ C\\)’;‘,
o

Benchmark
Figure 10: CI error probability over many benchmarks at
F =0.9. Average of 1000 trials.

only for SPA. The trend for CI widths is the same as before, with
bootstrapping constructing a slightly narrower CI than SPA, as
shown in Figure 13. This suggests that SPA may construct a better
CI than bootstrapping in these cases, providing a preferable option
for computer architects for statistical analysis. The robustness of
SPA across various benchmarks and metrics further supports its
potential as an effective method in computer architecture research.

6.3 CI Width Sensitivity to Confidence

To study the sensitivity of the CI width to the desired confidence
level, we fix the proportion at F = 0.5 and vary the confidence
from 90% to 99.9%, covering confidence values commonly used in
research. For consistency, we use the four CI construction methods
to estimate the F = 0.5 proportion of the L1 Cache Misses / 1k
Instructions metric for the ferret benchmark. For each confidence
value, we conduct 100 trials; in each trial we randomly draw 22
samples to form a sample population and then construct a CI using
each method. Afterwards, we take the mean of the 100 CIs for each

Rigorous Evaluation of Computer Processors with Statistical Model Checking

SPA vs Bootstrapping Interval Width
PARSEC Benchmarks L1 Misses / 1k Instructions
N=22 | Proportion=0.9 | Confidence=0.9
mm SPA
I Bootstrapping

0.10

0.05

Normalized Confidence Interval Width

\eS X qed W\ (et e xel
SN0 Nt can® 0ed ger A I “?A«\\ et

¥
Benchmark
Figure 11: CI width over many benchmarks at F = 0.9. Average
of 1000 trials.

SPA vs Bootstrapping Error
PARSEC Benchmarks L2 Misses / 1k Instructions
N=22 | Proportion=0.9 | Confidence=0.9

0.25
---- Error Limit
I SPA
0.20 mmm Bootstrapping
>
B2
T 0.15
2
o
o
5 0.10
=
w
0.05
0.00 v
Q& ed _auP et 0% e st
O P ot e e e cear™ AW
Qo ‘abd‘J g™ et oo

Benchmark
Figure 12: CI error probability across benchmarks at F = 0.9

for L2 cache miss probability. Average of 1000 trials. SPA has
no error for canneal.

method, and then normalize by dividing the mean width by the
ground truth value. We plot the results in Figure 14.

The CI widths of SPA, bootstrapping, and rank testing remain
approximately the same size, though the bootstrapping CI remains
the narrowest in all cases. The SPA CI remains wider than the one
constructed by bootstrapping, though this is a worthwhile tradeoff
for the lower error probability it offers. The Z-score CI remains
considerably wider compared to the other methods.

6.4 Bootstrapping Failures

We create bootstrapping Cls using the “bias-corrected and accel-
erated” (BCa) [21] method, which offers better accuracy for non-
Gaussian data. However, BCa struggles when there is an excessive
amount of duplicate data in the sample population—leading to fail-
ure to generate any CI. This issue was observed when evaluating

1252

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

SPA vs Bootstrapping Interval Width
PARSEC Benchmarks L2 Misses / 1k Instructions
N=22 | Proportion=0.9 | Confidence=0.9
I SPA
I Bootstrapping

0.10

0.05

Normalized Confidence Interval Width

0.00-

\eS & ed N\ el ne el
B\ﬁ(’.\(ﬁc\(\o o o pedt® cer o da“““ “eo““‘ P

Benchmark
Figure 13: CI width across benchmarks at F = 0.9 for L2 cache
miss probability. Average of 1000 trials.

Effects of Confidence on Interval Width
PARSEC Ferret Benchmark TLB Write Misses/1K Instructions
Averaged over 100 random seeds | N=22 | Proportion=0.5

0401 ___ opp

—— Bootstrapping
0351 ___ Rank

—— Z-score

0.151

0.10 /

—-— //—//

0.900 0.920 0.940 0.960 0.980 0.999
Confidence

Figure 14: Mean normalized CI width for different methods
over varying confidence values. Tested at the median (F = 0.5).
From 90% to 99.9% confidence.

Normalized Confidence Interval Width

the CI for Max Load Latency at every proportion F at 90% confi-
dence. At F = 0.5, bootstrapping failed to produce a CI in 5% of
cases, while at F = 0.9, it failed in 3% of cases (indicated by red bars
in Figures 8 and 10).

We further explore the issue of bootstrapping failing to produce
a CI in cases of duplicate data points in the sample population.
Because simulators produce results with very high precision, we
only ran into the problem of the BCa method failing in one case—
where the results were reported as integers. However, if we first
round the simulator metrics to 3 digits past the decimal to eliminate

“unreasonable” precision, we find that the large amounts of duplicate

data in the population lead to frequent duplicates in the sample
population, and therefore to bootstrapping’s frequent failure to
create a CI in most cases. We show these results in Fig. 15.

This limitation may pose a problem for researchers who seek
to estimate values from metrics that may have repetitive data. In

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

SPA vs Bootstrapping Error
Rounded PARSEC Ferret Benchmark Metrics
N=22 | Proportion=0.9 | Confidence=0.9

0.30 ---= Error Limit
mmm SPA
Bootstrapping
I Bootstrapping NULL

©
=
5

Error Probability
o
N
o

Ru{\t'\\'“e

Sts st (o] StS
1 wisses! ™ “Cz wisses! ¥ “;J\ax 10ad B sest¥

\Write
Metric
Figure 15: The same experiment as in Fig. 8, redone and re-
sampled. All data was rounded to 3 places past the decimal.
Duplicate data leads to bootstrapping failures.

contrast, SPA does not suffer from such limitations, as SMC treats
each sample independently.

6.5 Number of Samples Used

Bootstrapping and rank testing rely on asymptotic statistics, thus
risking significant inaccuracy if given few samples. We demon-
strated in Figure 6 that they can be inaccurate even with over 20
samples. For SPA, the confidence C is guaranteed as long as the min-
imum number of samples is provided, as discussed in Section 4.3.

7 RELATED WORK

There is a long history of using model checking (but not SMC) to
verify computer systems, or at least portions of them. Architects
have used model checkers—including Murphi [19], PRISM [38],
UPPAAL [16], and NuSMV [11]—often to verify cache coherence
protocols (e.g., [49, 57], but also other subsystems that are amenable
to model checking. Less often, architects have also used probabilistic
model checking to overcome the state space explosion problem [43].

SMC is already used in cyber-physical systems (CPS) [53, 60,
63]. Due to the criticality of many CPS, that community has been
quicker to embrace SMC and its ability to facilitate more rigorous
evaluations. We are unaware, though, of any prior use in computer
architecture, and we seek to ease its adoption by wrapping it with
our SPA framework.

Researchers have identified many challenges in experimentally
evaluating systems like computer processors [59]. While statistical
techniques have previously been used for data clustering [61] and
risk analysis [14], our work focuses on the performance evaluation
of computer systems based on rigorous statistical inference. Statis-
tical inference can draw conclusions about a population based on
samples, regardless of the population distribution.

Our work is related to but different from other works that use
statistical regression [7, 33], such as ANOVA [25] and quantile re-
gression [18], to study how the population (for example, its mean
and quantiles) changes with external factors. Therefore, these are

1253

Filip Mazurek, Arya Tschand, Yu Wang, Miroslav Pajic, and Daniel J. Sorin

two complementary statistical techniques that are for different anal-
yses. We note that these regression analysis techniques may not
be applicable to general cases due to their underlying assumptions.
ANOVA requires the Gaussian assumption, which, as noted in Sec-
tion 1 is not always valid. Additionally, both ANOVA and quantile
regression require an assumption about the relationship between
the independent and dependent variables. Prior work assumes it to
be linear without sufficient justification [18].

The broad idea of improving the automated management of a
simulator and its results has been explored before, although not in
the context of SMC. The gemb5art framework [6] provides a nice
infrastructure for this purpose, and we could imagine incorporating
it into SPA in the future.

8 CONCLUSIONS

Variability is an important, real-world phenomenon that must be
accounted for when evaluating computer systems. Doing so re-
quires multiple executions with variability injection and a rigorous
approach for analyzing results. We have shown that SMC offers
great advantages for result analysis, particularly when compared
to prior work that requires untenable assumptions. We have devel-
oped the SPA framework to facilitate the adoption of SMC among
computer architects. The SPA tool integrated with gem5 is available
on GitHub, and standalone SPA for result analysis is available on
PyPI. Avenues for future work include the exploration of richer
properties and the use of hyperproperties.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation
under grant CCF-213-3160.

REFERENCES

[1] Gul Agha and Karl Palmskog. 2018. A survey of statistical model checking. ACM
Transactions on Modeling and Computer Simulation 28, 1 (2018), 6:1-6:39.

[2] A.R.Alameldeen, C.]J. Mauer, M. Xu, P. J. Harper, M. M. K. Martin, and D. J. Sorin.
2002. Evaluating Non-deterministic Multi-threaded Commercial Workloads. In
Proc. of Computer Architecture Evaluation Using Commercial Workloads.

[3] Alaa R. Alameldeen and David A. Wood. 2003. Variability in Architectural
Simulations of Multi-Threaded Workloads. In Proceedings of the 9th International
Symposium on High-Performance Computer Architecture.

[4] David Arney, Miroslav Pajic, Julian M. Goldman, Insup Lee, Rahul Mangharam,
and Oleg Sokolsky. 2010. Toward Patient Safety in Closed-Loop Medical Device
Systems. In ACM/IEEE International Conference on Cyber-Physical Systems.

[5] C. Bienia and K. Li. 2009. PARSEC 2.0: A New Benchmark Suite for Chip-
Multiprocessors. In Proc. of the 5th Annual Workshop on Modeling, Benchmarking
and Simulation.

[6] B.R.Bruce, A. Akram, H. Nguyen, K. Roarty, M. Samani, M. Friborz, T. Reddy,
M. D. Sinclair, and J. Lowe-Power. 2021. Enabling Reproducible and Agile Full-
System Simulation. In IEEE Int’l Symp. on Performance Analysis of Systems and
Software.

[7] B.S. Cade and B. R. Noon. 2003. A gentle introduction to quantile regression for
ecologists. Frontiers in Ecology and the Environment 1, 8 (2003), 412-420.

[8] T.E. Carlson, W. Heirman, and L. Eeckhout. 2011. Sniper: Exploring the Level of
Abstraction for Scalable and Accurate Parallel Multi-Core Simulation. In SC.

[9] G. Casella and R. L Berger. 2021. Statistical inference. Cengage Learning.

[10] Tianshi Chen, Yunji Chen, Qi Guo, Olivier Temam, Yue Wu, and Weiwu Hu.
2012. Statistical performance comparisons of computers. In IEEE International
Symposium on High-Performance Comp Architecture.

[11] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. 2000. NUSMV: A New
Symbolic Model Checker. International Journal of Software Tools for Technology
Transfer (2000).

[12] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, and C.
Sanchez. 2014. Temporal Logics for Hyperproperties. In International Conference
on Principles of Security and Trust.

Rigorous Evaluation of Computer Processors with Statistical Model Checking

[13]
[14]

[15]

[19]
[20

[21]

[22]

[23]

[24]
[25]

[26]

[27

[28]
[29]

[30]

[31]

[32

[33]

[34

[35]

[36

[37]

[42]

Charles] Clopper and Egon S Pearson. 1934. The use of confidence or fiducial
limits illustrated in the case of the binomial. Biometrika 26, 4 (1934), 404-413.
Weilong Cui and Timothy Sherwood. 2017. Estimating and Understanding
Architectural Risk. In International Symposium on Microarchitecture.

F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. Turberfield. 2013. DNA
Walker Circuits: Computational Potential, Design, and Verification. In Proc. 19th
International Conference on DNA Computing and Molecular Programming.

A. David, K. G. Larsen, A. Legay, M. Mikuiionis, and D. B. Poulsen. 2015. Uppaal
SMC Tutorial. Int’l Journal of Software Tools for Technology Transfer (2015).

C. Daws, M. Kwiatkowska, and G. Norman. 2004. Automatic Verification of the
IEEE 1394 Root Contention Protocol with KRONOS and PRISM. International
Journal of Network Security and Its Applications 5 (2004).

Augusto Born De Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias
Hauswirth, and Peter F Sweeney. 2013. Why you should care about quantile re-
gression. In Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’13. 207-218. http://dl.acm.org/citation.cfm?doid=2451116.2451140
David L Dill. 1996. The Murphi Verification System. In CAV, Vol. 1102.

M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker. 2006. A Formal Analysis of
Bluetooth Device Discovery. International Journal of Software Tools for Technology
Transfer (2006).

B. Efron and Tibshirani R.J. 1993. An introduction to the bootstrap. Chapman
and Hall, New York, NY. Farrell, J., Johnston, M. and Twynam, D.(1998),“Volunteer
motivation, satisfaction, and management at an elite sporting competition”, Journal
of Sport Management 12 (1993), 288-300.

M. Elboukhari, A. Azizi, and M. Azizi. 2010. Analysis of the Security of BB84 by
Model Checking. Int’l Journal of Network Security and Its Applications 2 (2010).
L. Feng, C. Wiltsche, L. Humphrey, and U. Topcu. 2015. Controller Synthesis for
Autonomous Systems Interacting with Human Operators. In Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems.

M. Fruth. 2011. Formal Methods for the Analysis of Wireless Network Protocols.
Ph. D. Dissertation. University of Oxford.

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous
java performance evaluation. ACM SIGPLAN Notices 42, 10 (2007), 57-76.

Jean Dickinson Gibbons and Subhabrata Chakraborti. 2011. Nonparametric
Statistical Inference. Springer Berlin Heidelberg, Berlin, Heidelberg, 157-166.
https://doi.org/10.1007/978-3-642-04898-2_420

Louis Guttman. 1977. What is not what in statistics. Journal of the Royal Statistical
Society. Series D (The Statistician) 26, 2 (1977), 81-107.

H. Hansson and B. Jonsson. 1994. A Logic for Reasoning About Time and
Reliability. Formal Aspects of Computing 6, 5 (1994).

A. S. Harji, P. A. Buhr, and T. Brecht. 2011. Our troubles with Linux and why
you should care. In Proc. of the Second Asia-Pacific Workshop on Systems. 1-5.
Samuel Irving, Bin Li, Shaoming Chen, Lu Peng, Weihua Zhang, and Lide Duan.
2020. Computer Comparisons in the Presence of Performance Variation. Frontiers
of Computer Science 14, 1 (2020).

Tomas Kalibera, Lubomir Bulej, and Petr Tuma. 2005. Benchmark precision
and random initial state. In Proc. of the 2005 Int’l Symposium on Performance
Evaluation of Computer and Telecommunication Systems.

Tomas Kalibera and Richard Jones. 2020. Quantifying Performance Changes with
Effect Size Confidence Intervals. arXiv:2007.10899 [stat. ME]

Roger Koenker and Kevin F Hallock. 2001. Quantile regression. Journal of
economic perspectives 15, 4 (2001), 143-156.

M. Kwiatkowska and G. Norman. 2002. Verifying Randomized Byzantine Agree-
ment. In Formal Techniques for Networked and Distributed Systems.

M. Kwiatkowska, G. Norman, and D. Parker. 2005. Probabilistic Model Checking
and Power-Aware Computing. In 7th International Workshop on Performability
Modeling of Computer and Communication Systems.

M. Kwiatkowska, G. Norman, and D. Parker. 2006. Controller Dependability
Analysis by Probabilistic Model Checking. Control Engineering Practice 15 (2006).
M. Kwiatkowska, G. Norman, and D. Parker. 2008. Using Probabilistic Model
Checking in Systems Biology. ACM SIGMETRICS Performance Evaluation Review
35 (2008).

M. Kwiatkowska, G. Norman, and D. Parker. 2011. Computer Aided Verification.
Springer Berlin Heidelberg, Chapter PRISM 4.0: Verification of Probabilistic
Real-time Systems.

M. Kwiatkowska, G. Norman, and D. Parker. 2012. Probabilistic Verification of
Herman’s Self-Stabilisation Algorithm. Formal Aspects of Computing 24 (2012).
Marta Kwiatkowska, Gethin Norman, and David Parker. 2018. Probabilistic Model
Checking: Advances and Applications. In Formal System Verification: State-of
the-Art and Future Trends. 73-121.

A. Legay, B. Delahaye, and S. Bensalem. 2010. Statistical model checking: An
overview. In Runtime Verification, Howard Barringer, Ylies Falcone, Bernd
Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace, Grigore Rosu, Oleg Sokol-
sky, and Nikolai Tillmann (Eds.). Vol. 6418. Springer Berlin Heidelberg.

J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. Andreozzi,
A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj, G. Black, G. Bloom, B. R.
Bruce, D. Rodrigues Carvalho, J. Castrillon, L. Chen, N. Derumigny, S. Diestelhorst,
W. Elsasser, C. Escuin, M. Fariborz, A. Farmahini-Farahani, P. Fotouhi, R. Gambord,

1254

[43

(44

[45]

[47]

(48]

[49

[50]

[51

[52]

(53]

[54

[55]

[56]

[57]

(58]

[59]

[60]

[61]

(62]

[63]

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

J. Gandhi, D. Gope, T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria,
A. Harris, T. Hayes, A. Herrera, M. Horsnell, S. Ali Raza Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Kodama, T.
Krishna, T. Marinelli, C. Menard, A. Mondelli, M. Moreto, T. Miick, O. Naji, K.
Nathella, H. Nguyen, N. Nikoleris, L. E. Olson, M. Orr, B. Pham, P. Prieto, T.
Reddy, A. Roelke, M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair,
T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas, W. Wang, Z.
Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and E. F. Zulian. 2020. The gem5
Simulator: Version 20.0+. arXiv:2007.03152 [cs.AR]

A. Lungu, P. Bose, D. Sorin, S. German, and G. Janssen. 2009. Multicore Power
Management: Ensuring Robustness via Early-Stage Formal Verification. In Seventh
ACM-IEEE Int’l Conference on Formal Methods and Models for Codesign.

Yue Luo and Lizy K. John. 2008. Using Statistical Theory to Study Issues in
Microprocessor Simulation. Technical Report TR-040225-01. University of Texas,
Department of ECE.

Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of con-
tinuous signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. Springer, 152-166.

G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla. 2005. Evaluating the
Reliability of NAND Multiplexing with PRISM. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 24 (2005).

G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. 2003. Using
Probabilistic Model Checking for Dynamic Power Management. In 3rd Workshop
on Automated Verification of Critical Systems.

G. Norman and V. Shmatikov. 2006. Analysis of Probabilistic Contract Signing.
Journal of Computer Security 14 (2006).

N. Oswald, V. Nagarajan, D. J. Sorin, V. Gavrielatos, T. Olausson, and R. Carr. 2022.
HeteroGen: Automatic Synthesis of Heterogeneous Cache Coherence Protocols.
In IEEE Int’l Symposium on High-Performance Computer Architecture.

A. Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium on
Foundations of Computer Science.

Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. 2012. Thread
Tranquilizer: Dynamically Reducing Performance Variation. ACM Transactions
on Architecture and Code Optimization 8, 4 (2012).

A.Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F. Wenisch,
and M. M. K. Martin. 2012. Computational Sprinting. In Proc. of the 18th Symp.
on High Performance Computer Architecture.

N. Roohi, Y. Wang, M. West, G. E. Dullerud, and M. Viswanathan. 2017. Statistical
Verification of the Toyota Powertrain Control Verification Benchmark. In ACM
Int’l Conference on Hybrid Systems: Computation and Control.

Somayeh Sardashti, Andre Seznec, and David A. Wood. 2016. Yet Another
Compressed Cache: A Low-Cost Yet Effective Compressed Cache. 13, 3 (2016).
M. Shahrad, J. Balkind, and D. Wentzlaff. 2019. Architectural Implications of
Function-as-a-Service Computing. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Computer Architecture.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. 2002. Automatically
Characterizing Large Scale Program Behavior. In Proc. of the Tenth Int’l Conference
on Architectural Support for Programming Languages and Operating Systems.

S. Srinivasan, P.S. Chhabra, P.K. Jaini, A. Aziz, and L. John. 1999. Formal verifica-
tion of a snoop-based cache coherence protocol using symbolic model checking.
In Proceedings of the Twelfth International Conference on VLSI Design.

T. Tajimi, M. Hayashi, Y. Futamase, R. Shioya, M. Goshima, and T. Tsumura. 2018.
Isolation-Safe Speculative Access Control for Hardware Transactional Memory.
In 25th IEEE Int’l Conference on Electronics, Circuits and Systems.

J. Vitek and T. Kalibera. 2011. Repeatability, Reproducibility, and Rigor in Systems
Research. In Proc. of the Ninth ACM Int’l Conf. on Embedded Software.

Y. Wang, M. Zarei, B. Bonakdarpour, and M. Pajic. 2019. Statistical Verification
of Hyperproperties for Cyber-Physical Systems. ACM Transactions on Embedded
Computing Systems 18 (2019).

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. 2003. SMARTS: Accel-
erating Microarchitecture Simulation via Rigorous Statistical Sampling. In Proc.
of the 30th Annual Int’l Symp. on Computer Architecture.

H. Younes, G. Norman M. Kwiatkowska, and D. Parker. 2006. Numerical vs.
Statistical Probabilistic Model Checking. International Journal on Software Tools
for Technology Transfer 8 (2006).

M. Zarei, Y. Wang, and M. Pajic. 2020. Statistical Verification of Learning-Based
Cyber-Physical Systems. In ACM International Conference on Hybrid Systems:
Computation and Control.

http://dl.acm.org/citation.cfm?doid=2451116.2451140
https://doi.org/10.1007/978-3-642-04898-2_420
https://arxiv.org/abs/2007.10899
https://arxiv.org/abs/2007.03152

	Abstract
	1 Introduction
	2 Background
	2.1 Origins of Variability
	2.2 Incorporating Variability in Experiments
	2.3 Sample versus Population Statistics
	2.4 Prior Approaches for Non-Gaussian Data

	3 SMC Tutorial
	3.1 Big Picture
	3.2 Theoretical Background
	3.3 Technical Description

	4 SPA Framework
	4.1 Confidence Intervals Using SMC
	4.2 SMC Engine Management
	4.3 Improving Performance with Parallelism
	4.4 Choosing F and C

	5 Experimental Methodology
	5.1 Simulator and Benchmarks
	5.2 Variability Injection and SPA Usage
	5.3 Comparing to Ground Truth
	5.4 Comparing to Prior Statistical Approaches

	6 Experimental Evaluation
	6.1 Evaluation at the Median
	6.2 Comparison at Other Proportions
	6.3 CI Width Sensitivity to Confidence
	6.4 Bootstrapping Failures
	6.5 Number of Samples Used

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

