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ARTICLE INFO ABSTRACT

Keywords: Bark beetle outbreaks result in massive amounts of deadwood which are a significant carbon reservoir that can
Isoptera impact forest ecosystems. Additionally, bark beetle-introduced symbiotic fungi in beetle-generated deadwood
Formicidae can increase termite presence and feeding. This could alter decomposition rates and saproxylic communities of
g;’;z?f:;iy bark beetle-generated deadwood. However, the fate of bark beetle-generated deadwood after tree mortality has
Macroecology received little attention despite the possibility bark beetles could alter decomposition processes and deadwood

residence times at landscape scales following outbreaks. We tested the hypothesis that beetle-attacked trees
decompose faster than unattacked trees. In Honduras, and Mississippi and Arizona, USA, we felled one recently
bark beetle-attacked and one apparently healthy conspecific tree at each site that was cut into 120 experimental
logs. Logs of each tree (attacked or unattacked) were assigned one of three metal mesh covering treatments: 1)
fully covered to exclude all macroinvertebrates, 2) covered from above to exclude secondary bark beetle colo-
nization, 3) no cover to allow all detrital food web organisms. Half of all logs at each site was collected after 1
and 2 years and the density loss, insect visual damage rating, and abundance of termites, ants, and beetles was
measured. Bark beetle attack had the largest impacts at higher latitude and western forests: density loss between
attacked and unattacked logs was consistently higher in Arizona (Flagstaff), initially slower (year 1) in Mis-
sissippi, but faster between years 1 and 2 resulting in similar density loss after 2 years, and did not differ in
Honduras. Saproxylic insect wood damage rating accounted for 30% of the variation in decomposition across
sites. Thus, decomposition rates of deadwood following bark beetle attack are highly variable across their ge-
ography and likely reflect important interactions among saproxylic organisms. This has implications for forest
ecology and management including forest modeling with regard to carbon cycling and maintaining biodiversity
of saproxylic organisms.

Terrestrial Carbon Cycle
Coarse Woody Debris

1. Introduction vegetation and soils pools (Pan et al., 2011). The vital role of forests in

global C cycles necessitates better quantification of forest C dynamics.

Understanding drivers of ecosystem function is increasingly impor-
tant as global change alters abiotic factors and the distribution, in-
tensity, and direction of many ecological interactions (Parmesan, 2006;
Kurz et al,, 2008). Forest ecosystems constitute ~31% of Earth’s
terrestrial surface, ~50% of annual net carbon (C) sequestered by the
terrestrial biosphere, and ~35% of terrestrial C stocks stored in

Carbon fluxes in forests are particularly sensitive to landscape-scale
disturbances such as bark beetle (Coleoptera: Curculionidae: Scolyti-
nae) epidemics that cause large-scale tree mortality and deadwood
generation and can shift entire forests from C sinks to sources (Gan,
2004; Kurz et al., 2008; Edburg et al., 2011). Bark beetles are primary
herbivores of conifers worldwide, and their epidemics can generate up
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to 103 Mg ha’! yr'1 of deadwood (Harmon et al., 1986; Kurz et al., 2008).
Despite bark beetle ubiquity, how saproxylic communities interact with
bark beetle-generated deadwood and impact decomposition remains
poorly quantified.

Deadwood accounts for ~8% of C stored in forest ecosystems glob-
ally (Pan et al., 2011). Recent evidence suggests that saproxylic com-
munities may better explain patterns of wood decomposition at
ecosystem scales than climatic factors (Heneghan et al., 1999; Bradford
et al., 2014; Ulyshen et al., 2014; Hu et al., 2018). When bark beetles
attack trees, they vector a suite of symbiotic fungi to tree hosts (Klepzig
and Six, 2004). One such group of fungi is the ophiostomatoid fungi
(Ascomycota: Ophiostomataceae) (hereafter bluestain fungi), which do
not decompose the structural components of wood, but instead metab-
olize resin sugars and lipids, clog water transport vessels, and cause the
characteristic darkening of sapwood from which their common name
“bluestain fungi” is derived (Progar et al., 2000; Wingfield et al., 1993).
Some bluestain fungi in deadwood attacked by bark beetles has been
linked to subterranean termite presence and often increased feeding in
both laboratory and field studies (Little et al., 2012a, 2012b, 2013a;
Riggins et al., 2014; Clay et al., 2017, 2021; Siegert et al., 2018).

Termites are among the most important biological drivers of woody
decomposition in forest ecosystems (Cornwell et al., 2009; Jouquet
et al., 2011; Bradford et al., 2014; Griffiths et al., 2021). Additionally,
termites can indirectly influence the abundance and activities of other
decomposers in and around deadwood via tunneling, N-fixation, and
N-deposition (Jouquet et al., 2011). If bark beetle-attacked trees are
transitively associated with increased termite activity, then bark
beetle-generated deadwood is likely to have enhanced decomposition
rates and greater biodiversity than unattacked deadwood in areas where
this interaction occurs.

Surprisingly, few studies have tested how bark beetle attacks affect
saproxylic organisms despite the impact of bark beetles on both the
generation and initial conditions of deadwood (e.g., presence of fungi,
increased wood access via holes from beetle boring, etc.; Weslien et al.,
2011; Jacobsen et al., 2015) (but see Strid et al., 2014; Zuo et al., 2016).
In addition to termites, ants and beetles are common ecosystem engi-
neers that influence decomposition and succession processes in dead-
wood (Swift and Boddy, 1984; Ulyshen et al., 2014, 2016; King et al.,
2018; Zuo et al., 2021). Ants are ubiquitous inhabitants of deadwood
and impact deadwood through changes in structure from nest building,
deposition of nutrients in refuse piles, movement of plant and animal
tissue, and predation on saproxylic communities (Lindgren and Macl-
saac, 2002; King et al., 2018). Saproxylic beetles impact deadwood
decomposition through their associations with fungi (e.g., some am-
brosia beetles), by increasing the surface area for microbes via tunnel-
ling and wood fragmentation, and through their diverse species
interactions including predation (Nadeau et al., 2015; Ulyshen, 2016;
Kahl et al., 2017). Bark beetle-induced changes in attacked trees (e.g.,
physical, chemical, and biotic characteristics such as increased nutri-
tional resources and increased access points through boring; Little et al.,
2013b; Hysek et al., 2021) could thus facilitate and support increased
termites, ants, and beetles in bark beetle-generated deadwood.

We tested the hypothesis that deadwood from bark beetle-attacked
trees (hereafter attacked) would differ in decomposition rate and in-
sect communities than deadwood from trees not attacked by bark beetles
(hereafter unattacked) and that patterns would be dependent on time
and location. Specifically, we predicted that deadwood from 1) attacked
trees would support higher insect abundances and decomposition rates
than unattacked trees, 2) these effects would be greatest in later stages of
decomposition after wood had been primed by saproxylic beetle and
termite activity that facilitates ant and other insect colonization (e.g.,
prey resources), and 3) insect access to deadwood would increase
decomposition rates, particularly in bark beetle-attacked trees. To test
these predictions, we felled one bark beetle-attacked tree and one
similar sized unattacked conspecific tree in Arizona, USA, Mississippi
USA, and Siguatepeque, Honduras (hereafter Arizona, Mississippi, and
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Honduras). These sites represented a diversity of tree species, termite
densities, and climatic conditions. At each site, trees were cut into sixty
10 cm long logs and randomly assigned to one of three covering treat-
ments: 1) fully covered to prevent access of all large invertebrates to
wood, 2) half covered to allow access from belowground but not
aboveground invertebrates, and 3) no cover to allow all access to detrital
food web organisms. Termites, beetles, and ants were extracted from
logs and decomposition rates were quantified over two years.

2. Methods
2.1. Study sites

This study took place from June 2017 to August 2019 in Siguate-
peque, Honduras (14°33°46.8” N, 87°48°54.0” W; 1118 m a.s.l.), Flag-
staff, Arizona, USA (35°09°39.6” N, 111°45°36.0” W; 2105 m a.s.l.), and
McNeill, Mississippi, USA (30°38°45.6” N, 89°38°27.6” W; 74 m a.s.l.).
These sites were chosen to span a gradient of temperature, precipitation,
elevation, dominant pine species, and termite biomass (Table 1).

2.2. Experimental design

One recently bark beetle-attacked tree and one apparently healthy,
unattacked conspecific tree of similar size were selected at each site in
2017 to examine effects of bark beetle attack on deadwood decompo-
sition. Recently attacked trees still had needles and tightly attached bark
but showed obvious signs of attack including needle chlorosis and resin
flowing from boring holes (Billings and Pase, 1979). Upon felling,
attacked trees exhibited substantial “blue-staining” from ophiostoma-
toid fungal presence. Unattacked trees showed no signs or symptoms of
bark beetle attack, nor signs of other insects and diseases, and were
visually healthy. Trees were felled and cut into sixty 10 cm sections
(hereafter referred to as logs). Logs from both attacked and unattacked
trees were randomly assigned to one of three covering treatments (n =
20 per treatment/ tree type) to determine the relative contributions of
microbes and invertebrates to decomposition rates: 1) fully covered
(hereafter: FC), 2) covered from above (hereafter: HC (i.e., Half
Covered), and 3) no covering (hereafter: NC). FC and HC logs were
outfitted with stainless steel fine-mesh metal cloth (mesh size 0.26
%0.47 mm). FC logs were fully wrapped in the mesh, which was secured
with zip ties to exclude macroinvertebrates and limit decomposition to
primarily microbes (e.g., Jacobsen et al., 2018; Seibold et al., 2021). For
HC logs, fine metal mesh cloth was draped over the top of the log and
secured to ground with metal garden stakes with edges of metal cloth
covered in litter to exclude aboveground saproxylic invertebrates,
including secondary bark beetle species while permitting access to logs
by belowground decomposers (both invertebrates and microbes)
(Weslien et al., 2011). Lastly, NC logs were placed directly on top of the
forest floor to permit natural succession and decomposition. All logs
were placed with one of the cut surfaces facing the ground, and all but
FC logs were in direct contact with the forest floor (Supplementary
Fig. 1).

2.3. Saproxylic Insect collection

After approximately one (12 months; 2018) and two years (23
months; 2019) (year 1 and 2, respectively), half of all logs (n = 60) and
treatments (n = 10 per cage treatment per tree attacked status) were
collected at each site. Logs were randomly selected and transferred from
the field in individual plastic bags to the laboratory where they were
placed into cloth hanging Berlese funnels with a 40 W halogen light
source and insects were collected over 5 days, and preserved in 70%
ethanol. Ant, beetle, and termite abundances were measured from col-
lections and identified to the order level.
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Table 1
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Site climatic and termite characteristics. Average annual temperature and precipitation data were collected at each site using continuously monitoring sensors (HOBO
RX3004-SyS-KIT-813 Remote Weather station, Onset, Bourne, MA) and tipping bucket style rain gauges (HOBO RG3-M, Onset, Bourne, MA). Conifer species is the tree
type used in the study which also represented the dominant conifer species at each site. Termite densities are characterized from previous studies (Tuma et al., 2020).

Site Temperature (C) Precipitation (mm) Elevation Conifer Diameter Bark beetle species Termite
(m) species (cm) densities
2017-2018  2018-2019  2017-2018  2018-2019

Flagstaff, AZ, 10.4 16.8 402 585 2105 Pinus 19.8 Dendroctonus brevicomis/ Low
USA ponderosa adjunctus

Siguatepeque, 21.1 21.9 879 830 1118 Pinus oocarpa  23.4 Dendroctonus frontalis Medium
HN

McNeill, MS, 18.5 21.6 1085 1403* 74 Pinus taeda 20.1 Dendroctonus frontalis High
USA

" Due to malfunction of both rain gauges in MS during 2018-2019, data were obtained from nearby station in Slidell, Louisiana #USW00053865

2.4. Decomposition

Wood decomposition was determined by the change in density prior
to deployment and after 1 and 2 years in the field. Briefly, (detailed
methods are in Supplementary material), after insect extraction, two ~8
cm® cube subsamples of the logs (~2 cm x 2 cm x 2 cm) were cut from
the log sapwood and dried at 105 °C for 48 h before weighing (Larson
et al., 2001). Volume was determined from exact dimensions of sub-
samples, and wood density was calculated by dividing the oven dry mass
by the calculated volume. Lower wood density indicates increased
decomposition. Differences between the initial wood densities and year
1 and year 2 collection times were used to estimate proportion density
loss as a measure of decomposition. The decomposition rate constant (k)
was calculated as k = -In(Mt/MO0)/t, where Mt = final wood density, MO
= initial wood density, and t = time in years (Olson, 1963). Visual insect
damage rating (hereafter VIDR) was also assessed from wood cube
subsamples based on an adapted AWPA E1 scale (AWPA, 2018): Briefly,
6 indicated wood was very severely attacked and easily broken and
0 indicated no damage (detailed methods are in Supplementary
material).

Proportion change of wood density due to invertebrates was assessed
by calculating the median proportion loss of wood density for FC logs
(FCm), both attacked and unattacked, which should only have insects
that had colonized wood prior to felling and access to microbes. Then
proportion mass loss due to insects (PMI) was calculated as PMI=HC-
FCy or PMI=NC-FCy; for HC and NC logs respectively within both
attacked and unattacked treatments.

2.5. Statistical analysis-Insects

To determine how the attacked trees affect decomposition processes
across a gradient of climatic and termite densities we used permuta-
tional analysis of variance (Permanova). Specifically for each site, we
tested the null hypothesis that bark beetle attack (Attack: attacked,
unattacked) and covering (Covering: NC, HC, FC) and their interaction
had no effect on communities of ants, termites, and beetles. Abundances
of ants, termites and beetles were square root transformed and Bray-
Curtis dissimilarity measure was used with 9999 permutations in
adonis function of the vegan package in R (Oksanen et al., 2015; R
Development Core Team, 2019). Significant effects of variables with
three or more levels (e.g., Covering) were followed by post-hoc analyses
with adjusted p-values using pairwise.adonis wrapper function (Marti-
nez Arbizu, 2020). To determine which insects (e.g., ants, termites, or
beetles) were affected following a significant treatment (e.g., Attack or
Covering) effect, we used glm with a poisson distribution on each in-
sect’s abundance. Post-hoc glms of Attack on insect abundance were
restricted to NC and HC logs as FC logs were designed to exclude ter-
mites and other macroinvertebrates. We further tested the null hy-
pothesis that there was no relationship between attack status and
termite presence at each site using logistic regression in SPSS v. 23 (IBM,
2015). This analysis was also restricted to NC and HC logs. In the text,

results are reported as mean + standard deviation unless otherwise
noted.

2.6. Decomposition

We tested the null hypothesis that there were no differences in initial
densities between attacked and unattacked trees at each site using t-tests
in SPSS. We tested the null hypothesis that change in densities (pro-
portion density loss), absolute densities (actual densities of logs
collected, not standardized by initial densities), k, VIDR, and PMI did not
differ by Attack, Covering, Year, or their interactions at each site using
Permanova. For all five analyses (proportion density loss, absolute
densities, k, VIDR, and PMI), we used 9999 permutations and Euclidean
distances in the adonis function of the vegan package in R. Significant
effects of variables were followed by post hoc analyses as described
above. We tested whether VIDR was a good predictor of proportion
density loss and whether termite abundance was a good predictor of
VIDR using linear regression in SPSS. VIDR and termite abundance were
Logio(x + 1) transformed, and proportion density loss was arcsine
transformed to meet assumptions of normality. In text results are re-
ported as mean =+ standard deviation unless otherwise noted.

3. Results
3.1. Insects

A total of 127,391 termites, ants, and beetles (hereafter ‘insects’)
were extracted from logs with Mississippi>Honduras>Arizona for both
year 1 (43,946, 3852, and 932, respectively) and year 2 (74,886, 3768,
and 7, respectively) (Fig. 1). After one year, attacked logs had distinct
insect communities. After two years, the effects of the covering treat-
ment became more important in structuring insect communities, while
the effects of initial bark beetle attack on insect communities dis-
appeared (Supplementary Table 1).

After one year, attacked logs had 1.7-fold more total insects than
unattacked logs in Mississippi (Supplementary Table 1) for HC and NC
logs (Supplementary Table 1; Fig. 1), whereas the reverse was true in
Honduras: unattacked logs had 2.9-fold more total insects than attacked
logs. After two years, effects of bark beetle attack were lost and only
covering treatment was significant for Mississippi and Honduras. In both
years, Arizona logs had few insects and did not have enough insects to
run analyses in year 2, with only 18 and 4 logs with insects in years 1 and
2, respectively. In year 1, there was no difference in the number of in-
sects recovered among treatments (Fig. 2). No termites were collected
from Arizona in either year.

3.2. Mississippi
Termite recruitment was highly variable across years and logs

(Fig. 1). Termites were 4-times more likely to be found in attacked than
unattacked logs (presence/absence: y? =4.510, df=1, p = 0.034), and
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Mississippi, USA
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Attack x Cover: p=0.037
Bark Beetle Attacked
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Year 1

Unattacked
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Honduras Arizona, USA
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Fig. 1. Boxplots of abundance of termites, ants, and beetles (icons on x-axis represented in that order) for bark beetle-attacked (left side of middle divider: blue
boxes) and unattacked (right side of middle divider: green boxes) for fully covered logs (FC: lightest color), half-covered logs (HC: medium saturation) and logs with
no covering (NC: darkest color) for all three sites (Mississippi, Honduras, and Arizona) in years 1 and 2. Boxes represent the first (bottom of box) and third (top of
box) quartiles, bars represent the minimum and maximum values of the data set not considered outliers. Median is represented by the horizontal line in boxes and
mean by the ‘x’. Circle points represent outliers (greater or less than 1.5x the interquartile range than the third and first quartiles, respectively). Note that Mississippi
Years 1 and 2 and Honduras Year 1 y-axes have breaks to better visualize results.

although termites had ~1.4-fold higher mean abundance on attacked
(1322 + 2024) than unattacked logs (915 + 1299) across years, the
difference was not significant (p = 0.70). After one year, attacked logs
(1266 + 2112) had nearly double the mean abundance of termites than
unattacked logs (670 +1114; p < 0.001; Fig. 1; Supplementary
Table 1). Conversely, ants were on average 4.9-times (105 + 153;
p < 0.001) and beetles were 1.6-times (5 + 5; p < 0.001) more abun-
dant in unattacked logs than attacked logs (21 + 65 and 3 + 7 for ants
and beetles, respectively). Insects differed in their individual responses:
termites were > 3-times more abundant in attacked HC logs than in all
other attack and covering combinations (p < 0.001), whereas ants were
most abundant in NC logs and unattacked logs in particular (>4-times;
p <0.001), and beetles were most abundant in unattacked FC logs
(>1.7-times; p < 0.001). After 2 years, ants (p < 0.001) and termites
(p < 0.001) were most abundant in NC logs, whereas beetles were most
abundant in FC logs (p < 0.001; Supplementary Tables 1 & 2; Fig. 1).

3.3. Honduras

Attacked trees did not differ in their likelihood of termite recruit-
ment (presence/absence) from unattacked logs (3> =0.228, df=1,
p = 0.633), but after one year, termites were 1.6-times more abundant
in unattacked logs (20 + 38) than attacked logs (13 + 30; p < 0.001)
and ants were 2.4-times more abundant (unattacked logs: 68 + 106;
attacked logs: 28 + 42; p < 0.001). Mean beetle abundance was similar
in unattacked logs (5 + 4) and attacked logs (4 &+ 3; p = 0.08). After two

years, only the covering treatment resulted in differences in insect
communities, with NC differing from HC and FC (p < 0.04; Supple-
mentary Tables 1 & 2; Fig. 1). Termites were > 59-times more abundant
in NC logs (p < 0.001), and ants were > 1.14-times more abundant in
HC than in other covering treatments (p < 0.04), whereas beetles were
similar among covering treatments (p = 0.06).

3.4. Decomposition

In general, wood decomposition was fastest in Mississippi after two
years (k =0.34 + 0.24 (year'l); density loss = 47.5% + 15.2%), then
Honduras (k = 0.29 + 0.12; density loss = 42.0% =+ 13.5%), and slow-
est in Arizona (k = 0.10 + 0.04; density loss = 18.1% + 6.4%; Fig. 2).
Attacked and unattacked wood had different initial densities: attacked
wood had 10.2% lower density at time of felling in Mississippi but 13.9%
greater density in Honduras (Supplementary Table 3; Supplementary
Fig. 1). Overall, decomposition of attacked logs was similar (density loss
= 26.4% + 19.7%; k = 0.22 + 0.19; VIDR = 4.6 + 2.2) to unattacked
logs (density loss = 25.7% + 16.3%; k = 0.21 + 0.13; VIDR = 4.9
+ 2.0), but patterns of decomposition differed by site and changed over
time (Supplementary Table 4). Initially, attacked logs decomposed
slower (Year 1: density loss = 15.7% + 10.7%; k = 0.18 & 0.14) than
unattacked logs (density loss = 17.3% + 11.1%; k = 0.20 + 0.14), but
decomposed faster than unattacked logs between years 1 and 2 resulting
in a slightly higher density loss in year 2 averaged across all sites
(density loss in year 2: 37.0% =+ 19.0% vs. 34.4% + 16.4%; k: 0.27
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Mississippi, USA
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Arizona, USA
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+ 0.23 vs. 0.23 £ 0.14; for attacked and unattacked respectively; Sup-
plementary Tables 4 & 5; Fig. 2). VIDR accounted for 30% of the vari-
ation in density loss (p < 0.001; Fig. 3) and termite abundance
accounted for 51% of the variation in VIDR (p < 0.001; Fig. 3).

3.5. Mississippi

Wood density loss, k, and VIDR increased over time and had a
marginal-to-significant interaction between attack and time where
attacked log decomposition rate increased by 1.8-fold between years 1
and 2, whereas unattacked log decomposition rate was similar between
years (1.1-fold increase; Supplementary Tables 5 & 6; Fig. 2). After one
year, the density loss of attacked wood was 6% lower than unattacked
wood, regardless of covering treatment (Fig. 2; Supplementary Table 5).
Similarly, when absolute densities of wood at year 1 were examined,
there was no difference between attacked and unattacked wood after
one year despite initial differences (Supplementary Table 7; Fig. 4). k
had a marginal interaction between attack and cover treatment: k was
similar over time for unattacked logs, but k increased in attacked NC and
HC logs in year 2 (Supplementary Table 6; Fig. 2). After two years,
decomposition of attacked logs was 1.2-fold faster (k = 0.39 + 0.31)
than unattacked logs (k = 0.33 + 0.13; Supplementary Tables 5 & 6;
Fig. 2), and density loss of attacked (48.4% + 17.2%) and unattacked
logs (46.5% =+ 13.0%) did not differ. Absolute wood density was
marginally (13.4%) lower in attacked wood than unattacked wood
(Supplementary Table 7; Fig. 4). Density loss differed marginally by
covering treatment and was consistent between attacked and unattacked
logs (Supplementary Table 5; Fig. 2). Specifically, FC logs had 19.9%
less density loss than HC logs and 18.0% less density loss than NC logs,
however, there was no difference between NC and HC logs (Supple-
mentary Table 8). Insects in both years significantly increased decom-
position (Fig. 5) with the largest PMI (11.1% =+ 17.2%) in attacked HC
logs (Supplementary Table 9).

3.6. Honduras

Wood density loss, k, and VIDR increased over time and density loss
and VIDR had a significant interaction between covering treatment and
time. k increased 1.7- and 1.2-fold between years 1 and 2 for NC and HC
logs, respectively, whereas k did not change over time for FC logs and
VIDR only increased for NC logs between years 1 and 2 (Supplementary

y=0.3571x+0.4264
R?=0.2969

P,
Boo@ © o

8(02))

Arcsine(PDL)

99) e
00 coaX

00 00 0 @
o

(@ @]@oLolo S ((*9)

g

0 0.25 0.5 0.75 1
Logyo(Insect visual damage rating)

Forest Ecology and Management 553 (2024) 121636

Tables 5-8; Fig. 2). After one year, attacked and unattacked wood did
not differ in density loss regardless of covering treatment or time (Fig. 2;
Supplementary Table 5). Similarly, when absolute densities of wood
were examined, unattacked wood remained less dense than attacked
wood, similar to initial differences (Supplementary Table 5; Fig. 4).
After two years, there was no difference in density loss of attacked
(46.3% + 11.7%) and unattacked logs (42.7% =+ 11.7%) or by covering
treatment; however absolute wood density no longer differed between
attacked and unattacked wood (Supplementary Tables 5 & 7; Fig. 4).
Insects contributed little to density loss after one year for unattacked
logs (1.5% + 6.8%), but significantly decreased density loss in attacked
logs (—9.6% =+ 12.9%). Similarly, PMI increased over time across attack
and covering treatments (Supplementary Table 9; Fig. 5).

3.7. Arizona

Wood density loss and k increased over time and was greater in
attacked wood (density loss = 14.3% + 7.6%; k = 0.10 £ 0.04) than
unattacked wood (density loss = 11.8% =+ 7.1%; k = 0.08 + 0.04) and
had a significant interaction between attack and covering treatments
(Supplementary Tables 5 & 6; Fig. 2). VIDR did not change across time
or treatments (Supplementary Tables 5 & 6; Fig. 2). After one year,
attacked wood had 1.3-fold higher density loss and k than unattacked
wood regardless of covering treatment (Fig. 2). Similarly, absolute
densities of attacked logs remained lower than unattacked logs, but
differences were dependent on covering treatment (Supplementary
Table 7; Fig. 4). Specifically, attacked FC logs tended to have greater
absolute densities than HC and NC logs, whereas unattacked NC had
greater densities than other covering treatments (Fig. 4). After two
years, density loss of attacked logs was still slightly greater (1.1-fold)
than unattacked logs. Attacked NC logs had marginally lower density
loss than attacked HC and NC logs (1.2- and 1.3-fold, respectively), and
unattacked NC logs had 1.3- and 1.1-fold higher density loss than
unattacked HC and NC logs, respectively (Fig. 2). Moreover, absolute
wood density did not differ between attacked and unattacked wood,
except for some covering treatments (Fig. 4). Specifically, attacked FC
logs had lower densities than attacked NC logs and unattacked HC logs
had higher densities than either FC or NC logs. Similarly, k was higher in
year 2 than year 1 for all treatments (Fig. 2). Insects contributed little to
density loss and had a negative effect after one year (—5.8% =+ 6.7%),
that increased substantially after two years (—20.2% =+ 9.5%), particu-
larly for unattacked logs (—26.6% +6.7% and —13.8 +7.4% for
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Fig. 5. Mean proportion density loss due to invertebrates of bark beetle-attacked trees (BB (Bark Beetle attack): blue symbols and lines) and unattacked trees (NB (No
Bark beetle attack): green symbols and lines) for each of the cover treatments: full cover (FC), half cover (HC) and no cover (NC) across years and sites. Positive values
indicated that invertebrates increased density loss (i.e., the proportion of density loss due to invertebrates increased relative to when only microbes were able to
colonize). Negative values indicate that invertebrates reduced the proportion density loss relative to when only microbes were able to colonize.

unattacked and attacked respectively) and for HC logs (Supplementary

Table 9; Fig. 5).

4. Discussion

Studies experimentally testing factors affecting deadwood decom-
position and biodiversity are limited in quantity and geographical extent
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with most in temperate and boreal zones, and even fewer testing explicit
ecological hypotheses (Seibold et al., 2015; but see Seibold et al., 2023).
Our study spanned 20.6° latitude and 24.0° longitude and tested the
effects of bark beetle tree attack on the subsequent decomposition and
saproxylic communities of deadwood from temperate to tropical forests
and predicted that the indirect interaction between bark beetle attack
and termites mediated through bluestain fungi would drive decompo-
sition patterns. We found evidence that biotic factors, likely driven by
termites, generated site-specific spatiotemporal decomposition patterns.
Our results suggest that climate alone is not sufficient to predict C flux in
earth system models (Bradford et al., 2014), particularly if the cause of
deadwood input is bark beetle attack. In Arizona, attacked logs consis-
tently decomposed faster than unattacked logs. In Mississippi, attacked
logs initially decomposed slower than unattacked logs followed by a
faster decomposition rate of attacked logs than unatacked logs that led
to similar density loss after two years. In Honduras, attacked log
decomposition did not differ from unattacked logs. Effects of bark
beetle-attack on saproxylic insects were site-specific: attacked logs
harbored more insects in Mississippi and fewer in Honduras, and this
was largely driven by termites. In Mississippi, where the greatest wood
decomposition occurred, termites were 4-times more likely to be found
on attacked logs than unattacked logs. Saproxylic insect-driven wood
damage accounted for 30% of the variation in log density loss across
sites and termite abundance accounted for 52% of the variation in VIDR.
This supports growing evidence that decomposers like termites strongly
impact the decomposition trajectory of deadwood, even outside of the
tropics (Bradford et al., 2014, 2021; Ulyshen et al., 2014). Our results
demonstrate that quantification and incorporation of biotic effects on
deadwood decomposition is necessary to understand how disturbances
like bark beetles impact C cycling and ecosystem productivity
(Schuurman, 2005; Oleson et al., 2013).

Bark beetle attack altered deadwood successional patterns likely
through their initial impacts on wood properties and mediated by
associated fungal symbionts. For example, following bark beetle attack
wood has reduced modulus of rupture and elasticity, increased hyphal
colonization through and between wood cell lumina, and increased
water uptake (Little et al., 2013b; Hysek et al., 2021). These initial
conditions such as wood density and presence of fungal symbionts may
have led to strong deterministic and priority effects (Fukami et al., 2010;
Weslien et al., 2011; Strid et al., 2014). Specifically, saproxylic insects
can better colonize wood with tunneling (e.g, from beetle activity), bark
sloughing, and lower density (Shea et al., 2002; Zuo et al., 2016). The
initial attacked wood density was lower than unattacked wood in Mis-
sissippi and may partly explain its greater insect abundance after one
year, and the reverse was true for Honduras, where attacked logs had
higher initial wood densities (Supplementary Fig. 1). Additionally, ter-
mites were both more abundant and occurred more frequently on
attacked than unattacked logs in Mississippi, which may be driven by
increased wood moisture content (e.g., Bradford et al., 2021). However,
termites often competitively reduce the presence and activity of decay
fungi which can initially slow decomposition (Jayasimha and Hender-
son, 2007a; b; Bradford et al., 2021; Dossa et al., 2021). Subsequent
insect and microbe interactions and colonization likely resulted in the
steep increase in decomposition rates of attacked, but not unattacked
logs between years 1 and 2 in Mississippi (Fukami et al., 2010; Weslien
et al., 2011; Hysek et al., 2021). The initial lag in wood density loss in
Mississippi may mitigate forest C release due to tree death following
bark beetle attacks and facilitate increased saproxylic biodiversity via
easier wood colonization (Edburg et al., 2011; Lassauce et al., 2011).
However, if decomposition rates continue to be faster for attacked wood
in Mississippi and Arizona, this could further accelerate C cycling in bark
beetle-attacked forests (Edburg et al., 2011).

Priority effects likely impacted insect abundances and proportion
density loss. Specifically, the exclusion of initial saproxylic beetle col-
onizers in HC logs could have facilitated subsequent invertebrate and
microbial colonizers that would have otherwise been excluded due to
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competition with secondary bark beetle symbiotic fungi (Weslien et al.,
2011). Interestingly, insect communities became more similar over
time, in alignment with recent saproxylic invertebrate succession ex-
periments (Zuo et al., 2021; but see Seibold et al., 2023). However, our
results are limited to just two years of decomposition and further
changes may emerge over longer time scales. Our results demonstrate
that bark beetle impact on successional patterns is site-specific and thus
additional research is needed to generate a predictive framework for
understanding the impact of these globally distributed biotic distur-
bance agents.

Our results suggest a suite of complex biotic and abiotic interactions
mediate invertebrate contributions to wood decomposition. Differences
in insect activity accounted for 30% of the variation in wood decom-
position (VIDR; Fig. 3) but their effects varied across sites and often
differed between attacked and unattacked logs (Fig. 5). Insect activity
consistently increased wood decomposition in Mississippi with
marginally more insect-driven density loss in attacked HC wood, likely
due to lower initial wood density and the exclusion of saproxylic beetles
and their fungal symbionts (Weslien et al., 2011). Of note, unattacked
FC logs in Mississippi had significant numbers of beetles. Likely larvae
were present in trees prior to felling or beetles may have found a way
through the mesh covering or been able to oviposit through mesh as
coverings were tight around wood. Regardless, beetles had little impact
on decomposition (VIDR: 0+ 2.3 and 2.2+ 2.0 for yrs 1 and 2,
respectively). In Honduras, invertebrates consistently had a greater
impact on unattacked than attacked wood decomposition, which was
initially less dense than attacked wood (Supplementary Fig. 1), and
attacked wood exposed to invertebrates (NC) decomposed slower than
FC logs in Honduras after one year (Fig. 5). In Arizona, all wood exposed
to insects decomposed slower, particularly unattacked wood. This sug-
gests negative species interactions occurred among invertebrates and
fungi, which likely inhibited fungal growth and activity. Alternatively, it
is possible that microclimate differences could have favored fungi in FC
treatments. However, if the covering itself was driving effects, we would
have expected to see similar results at all sites and for HC treatments,
neither of which occurred. Our results indicate that microbial-insect
interactions may significantly impact decomposition patterns and vary
considerably across sites and from bark beetle attack.

This study suggests that complex interactions govern deadwood
decomposition following bark beetle attack but has several potential
caveats. First, we only felled a single bark beetle-attacked tree and
unattacked tree at each location. This enabled us to reduce variation that
may exist due to chemical, physical, and biotic changes to trees that
occur following bark beetle attack and time since attack (Hysek et al.,
2021). However, future studies should systematically test the impacts of
these potential sources of variation on deadwood decomposition. Sec-
ond, we felled still standing trees prior to ‘natural mortality’ and placed
logs with cut side facing soil. Both may vary in their ability to reflect
natural processes but were essential to experimentally test impacts of
bark beetle attack on deadwood decomposition under logistical con-
straints. Additionally, this process also mimics ‘cut-and-leave’ manage-
ment strategies employed to mechanically control bark beetle
populations (Billings, 2011). Lastly, longer experiments on larger
deadwood across more sites are needed to determine the geography of
bark beetle-mediated deadwood decomposition.

This study has implications for forest management. The frequency
and intensity of natural disturbances that ultimately create deadwood
through increased tree mortality are predicted to increase with global
change (Gan, 2004; Kurz et al., 2008; Edburg et al., 2011). As part of the
Forest Inventory and Analysis program of the Unites States Forest Ser-
vice, deadwood inventories are regularly collected and data are used to
inform National Greenhouse Gas Inventories and data are essential for
understanding the condition and status of forest resources (Woodall
et al., 2019). Our data suggest that mortality following bark
beetle-attack may alter deadwood residency times and impact forest C
cycling. Moreover, cut-and-leave management, where infested trees plus
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a buffer of green uninfested trees around the area of infestation currently
under attack within a bark beetle spot (>30 beetle-infested trees) are
felled toward the center of the infestation and trees are left on the
ground has been increasing since the 2000 s in the USA and is the most
widely used control tactic in Central Ameria (Gomez et al., 2020; Clarke
et al., 2021). Our study mimicked this management strategy and sug-
gests that deadwood residency rates vary by site and attack versus
cut-and-remove, where the felled trees are removed typically for salvage
logging, this deadwood resource would not be available and may change
forest nutrient and regeneration patterns. Deadwood produced from
bark beetle-attacked trees may also harbor distinct saproxylic commu-
nities and thus contribute to the maintenance and stability of forest
biodiversity (Lassauce et al., 2011; Seibold et al., 2015).

5. Conclusions

Disturbances like bark beetle epidemics are important mediators of
the terrestrial C cycle. Surprisingly, relatively few studies have exam-
ined the impact of insect disturbance on deadwood succession decom-
position dynamics (Clay, 2023). Here we found site-specific impacts.
Arizona (northernmost, westernmost, and highest altitude site) had
consistently higher decomposition of attacked than unattacked wood. In
Mississippi (mid-latitude and longitude but lowest altitude site),
attacked wood had initially slower but then faster rates of decomposi-
tion. In Honduras (southernmost, easternmost, and mid-elevation site),
bark beetle attack had no effect. This may suggest a geography of bark
beetle-mediated impacts on deadwood decomposition where outbreaks
in western and higher latitude forests result in accelerated carbon
cycling. More studies that span ecological, longitudinal, and latitudinal
gradients are needed to test this potential pattern.
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