
Lightweight Verification of Hyperproperties?

Oyendrila Dobe1 , Stefan Schupp2 , Ezio Bartocci2 , Borzoo Bonakdarpour1 ,
Axel Legay3 , Miroslav Pajic4 , and Yu Wang5

1 Michigan State University, USA,
2 Technische Universität Wien, Austria.

3 UCLouvain, Belgium.
4 Duke University, USA.

5 University of Florida, USA.

Abstract. Hyperproperties have been widely used to express system
properties like noninterference, observational determinism, conformance,
robustness, etc. However, the model checking problem for hyperproper-
ties is challenging due to its inherent complexity of verifying properties
across sets of traces and suffers from scalability issues. Previously, sta-
tistical approaches have proven effective in tackling the scalability of
model checking for temporal logic. In this work, we have attempted to
combine these two concepts to propose a tractable solution to model
checking of hyperproperties expressed as HyperLTL on models involving
nondeterminism. We have implemented our approach in PLASMA and
experimented with a range of case studies to showcase its effectiveness.

Keywords: Hyperproperties, Statistical Model Checking, Nondeterminism

1 Introduction

Model checking [7] is a well-established method to verify the correctness of a
system. Typically, it exhaustively checks if all possible individual execution traces
of the system satisfy a property of interest. However, several security and privacy
policies such as noninterference [36,42,49], differential privacy [25], observational
determinism [57] are system-wide properties that require to reason across multiple
independent system’s executions simultaneously. These properties are referred to
as hyperproperties [18].

In the last decade, researchers have proposed several adaptations of classical
temporal logics to specify hyperproperties in a formal and systematic way. Ex-
amples in the non-probabilistic setting are HyperLTL [17] and its asynchronous
variant A-HLTL [8]. HyperLTL extends LTL [50] with explicit quantification over
paths that allows to express relations among execution traces from independent
system’s runs. Recent works in [33,39,41] provide exhaustive and bounded model-
checking algorithms for HyperLTL. For probabilistic hyperproperties, there are

? This project was partially funded by the United States NSF Award CCF-2133160,
and SaTC Awards 2245114 and 2100989, FWF-project ZK-35, FNRS PDR - T013721,
and by the Vienna Science and Technology Fund (WWTF) [10.47379/ICT19018].

two main specification languages: HyperPCTL [2,23], which quantifies over sched-
ulers and argues over computation trees, and Probabilistic HyperLogic (PHL) [21]
which adds quantifiers for schedulers and reasons about traces. In both contexts,
these approaches face two main challenges: scalability and the need for an explicit
model. Scalability is, in particular, critical: (1) HyperLTL model checking is
EXSPACE-complete [11], (2) HyperPCTL and A-HLTL model checking are in
general undecidable with decidable fragments in EXSPACE [8, 23], (3) PHL
model checking is in general undecidable with decidable fragments (reduce to
HyperCTL∗) in NSPACE [21, 33]. This complexity obstacle has been a major
motivation for the development of alternative approaches to handle the problem.
One possible approach is to provide an approximate result with certain statistical
guarantees, termed statistical model checking (SMC). SMC is an approximate
model checking method that is subject to a small probability of drawing a wrong
conclusion [45–47]. The main idea is to simulate finitely many traces of a model
and conduct hypothesis testing to conclude if there is enough evidence that the
model satisfies or violates the property, subjecting to a small probability of
drawing a wrong conclusion. Such simulation-based approaches have two main
advantages: first, we can use them to approximate the probability of satisfying
the desired property in a model of considerable size, which we would be otherwise
unable to verify exhaustively; second, we can apply them to black-box systems
for which we are unable to access the inner model. This approach is also intuitive
as it can terminate early for cases where it has already found enough evidence
for violation. Consider, a case where a property is required to hold for all traces.
In this case, we should not be able to see a violation even if we simulate just
one trace. Given these advantages, we want to study its application to verify
hyperproperties. Another challenge, in terms of verification, is the handling of
nondeterminism. When modeling systems, we have to take into consideration the
uncertainty that can arise due to incomplete details, involvement of unknown
agents, or noise, in general. From a verification perspective, we need to be able
to argue that a property holds under any such possibility of nondeterministic
uncertainty. Both HyperPCTL and A-HLTL model checking has the capability
of reasoning over nondeterminism, however, the high complexity in their model
checking solutions basically stems from the need for “scheduler” synthesis.

Our contribution In this work, we chose to model systems as Markov decision pro-
cesses (MDPs) to effectively express nondeterminism in terms of possible actions
available in a state, as well as randomization is represented as probabilistic distri-
butions of how the system can evolve once an action is executed. PLASMA [48]
is a model checker that uses a memory-efficient sampling of schedulers [26] to
conduct simulation-based statistical analysis. In this work, we extend PLASMA’s
capability to include the verification of linear, bounded hyperproperties over
systems modeled as MDPs. Our method orchestrates well-established methods
from the SMC community for the analysis of an expressive model class in light of
bounded HyperLTL properties. The result is a scalable, lightweight verification
approach which is the first of its kind to handle this combination of model class
and property. We have added and experimented with an extension that supports

2

using recorded traces or requesting simulation of black-box components on-the-fly
for hyperproperty verification. This opens the door to utilizing our approach for
applications in cases where explicit modeling is not possible or error-prone. For
evaluation, we present a diverse set of scaling benchmarks that raises the demand
for this expressive model class and property type. We have selected systems
that allow for verification of properties such as noninterference, side-channel
information leak, opacity, and anonymity. The systems under inspection range
from classical examples including dining cryptographers, to examples taken from
robotics path planning and real code snippets. The state space of the resulting
models varies in the order of magnitude from tens to hundreds of billions involv-
ing tens to thousands of nondeterministic actions. Our experimental evaluation
indicates good performance on systems, unperturbed by the size of the state
space. To summarize, our main contributions are:

1. To the best of our knowledge, we provide the first statistical model check-
ing approach for the verification of unquantified and bounded HyperLTL
properties involving nondeterminism.

2. We extend the model checker PLASMA by this class of properties. Further-
more, we add capabilities to execute black-box verification.

3. We showcase the general applicability with an extensive evaluation of our
method on various scalable case studies taken from different domains.

Paper Organization: In the rest of the paper, we elaborate on the related works
in Section 2, describe the model and specification language in Section 3, with the
problem formulation in Section 4, the algorithm and implementation details in
Section 5, and a range of case studies in Section 6. In Section 7 we describe our
experimental and convergence results and in Section 8 we provide conclusions
and future work suggestions.

2 Related work

HyperLTL [17] was introduced to express system properties that require simulta-
neous quantification over multiple paths. The authors provided a model checking
algorithm for a fragment of the logic based on self-composition. In [33], the au-
thors presented the first direct automata-theoretic model checking algorithm that
converts the model checking problem for HyperLTL to automaton-based problems
like checking for emptiness. In recent years, there has been considerable research
on HyperLTL verification [19,31,32], and monitoring [5, 10, 11,29,37,51]. From
a tools perspective, MCHyper [19, 33] has been developed for model checking,
EAHyper [28] and MGHyper [27] for satisfiability checking, and RVHyper [30]
for run time monitoring. A tractable bounded sublogic of HyperLTL has been
proposed in [41] where the authors have suggested a QBF-based algorithm to
model-check the logic. HyperQB is a model checker specifically for bounded
HyperLTL [40]. However, all of the above approaches suffer from the challenges
of scalability, inability to handle probabilistic systems, or lack of support for
nondeterminism.

3

To verify hyperproperties in probabilistic systems there are two main fam-
ilies of approaches proposed in the literature: exact methods [2, 3, 22, 23] and
approximated ones [20, 53]. Note that the specification language used in these
works differs from our specification language. Exact methods exploit the un-
derlying Markov chain structure of the probabilistic system to be verified for
computing precisely (numerically) and for comparing the probabilities of sat-
isfying temporal logic formulas of multiple and independent sequences of sets
of states. HyperPCTL [2] was the first logic proposed to reason exhaustively
about hyperproperties in probabilistic systems. This logic was later extended to
allow reasoning over systems involving nondeterminism [3,23] and rewards [24].
A verification algorithm was implemented in the model checker HyperProb [22].
The main shortcoming of this approach is scalability. Among the approximated
approaches, in [21] the authors propose an over-approximate and another under-
approximate automata-based model checking algorithms for the alternation-free
n-safety fragment of their logic PHL on n self-composed systems. The scheduler
synthesis step is the main challenge in this work.

SMC has been explored to solve problems across different domains for ana-
lyzing dynamic software architectures [14], performing security risk assessments
using attack-defense trees [34], verifying cyber-physical systems [16], validation
of biochemical reaction models [58], etc. Verification of bounded LTL for MDPs
has been proposed using SMC [38] and has shown promising results. Extensive
tool support exists for SMC on trace properties with respect to discrete-event
modeling [12], priced timed automata [13], probabilistic model checking [43,44,56],
black-box systems [35]. Statistical verification of probabilistic hyperlogics has
been proposed for HyperPCTL∗ [20, 53], for continuous Markov chains [55], and
for real-valued signals [6]. However, none of these works reason about models
involving nondeterminism.

3 Preliminaries

We denote the set of natural and real numbers by N and R, respectively. For
n ∈ N, let [n] = {1, . . . , n}. The cardinality of a set is denoted by | · |. We denote
the set of all finite, non-empty finite, and infinite sequences, taken from S by S∗,
S+, and Sω, respectively.

3.1 Model Structures

Markov Decision Process A labeled Markov decision process (MDP) [7] is a
tuple M = (S, A, s0,AP, L, P), where (1) S is a finite set of states, (2) A is the
finite set of actions, and A(s) is the set of enabled actions that can be taken at
state s ∈ S, (3) s0 is the initial state, (4) AP is the finite set of atomic propositions,
(5) L : S → 2AP is the state labeling function, and (6) P : S ×A× S → [0, 1] is
the transition probability function such that,

∑

s′∈S

P (s, a, s′) =

{

1, if a ∈ A(s)

0, if a /∈ A(s)
(1)

4

A path of the MDP is an infinite sequence of states π = s0s1s2 . . . with si ∈ S
such that ∀i ≥ 0, there exists ai ∈ A with P (si, ai, si+1) > 0. A trace trace{π} =
L(s0)L(s1)L(s2) . . . is the sequence of sets of atomic propositions corresponding
to a path. We use π[i] = si to denote the ith state and π[: i] and π[i + 1 :] to
denote the prefix s0s1 . . . si, and the suffix si+1si+2 . . ., respectively.

Discrete-Time Markov Chain A labeled discrete-time Markov chain (DTMC)
[7] is a tuple D = (S, s0,AP, L, P), where (1) S is the finite set of states, (2) s0 is
the initial state, (3) AP is the finite set of atomic propositions, (4) L : S → 2AP

is the state labeling function, (5) P : S × S → [0, 1] is the transition probability
function such that, for all s ∈ S, ∑s′∈S P (s, s′) = 1. A DTMC is an MDP with
each state being associated with a single action.

Scheduler A scheduler σ is a function σ : S+ → A that resolves the nonde-
terminism at each state of an MDP. It reduces an MDP to a DTMC. Different
scheduler types are distinguished depending on what information is used to
resolve the nondeterminism in the current state: a history-dependent scheduler
σ(s[: n]) ∈ A(s[n]) would utilize the history of action and state choices to resolve
which action is executed at the current state whereas a memoryless scheduler
σ(s[n]) ∈ A(s[n]), bases its decision only on the current state. In this work, we
consider history-dependent schedulers (which include the class of memoryless
schedulers) whose memory size is bounded by the length of the paths we generate
from the model. We use πMσ to denote a random path drawn from the DTMC
that is induced by the scheduler σ on the MDP M.

3.2 HyperLTL

HyperLTL [17] is the extension of linear-time temporal logic (LTL) [50] that allows
the expression of temporal specifications involving relations between multiple
paths. Each state in the path is observed as a set of atomic propositions that
hold true in that state. HyperLTL involves the evaluation of specifications over
these propositions. An arbitrary path variable π is used to refer to individual
paths that can be generated by the model. Contrary to LTL, each proposition
a
π is associated with a path variable π denoting the path on which it should be
evaluated.

Syntax We focus on unquantified and bounded HyperLTL defined by the
grammar below.

ϕ ::= a
π | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U≤k ϕ (2)

– a ∈ AP is an atomic proposition that evaluates to true or false in a state;
– π is a random path variable from an infinite supply of such variables Π;
– , ≤k, ≤k, and U≤k are the ‘next’, ‘finally’, ‘global’, and ‘until’ temporal

operators, respectively,
– k ∈ N is the path length within which the operator has to be evaluated.

5

Following are the connectives defined as syntactic sugar:
true ≡ a

π ∨¬aπ, ϕ∨ ϕ′ ≡ ¬(¬ϕ∧¬ϕ′), ϕ ⇒ ϕ′ ≡ ¬ϕ∨ ϕ′, ≤k ϕ ≡ true U≤k
ϕ, ≤k ϕ ≡ ¬ ≤k ¬ϕ. We denote U≤∞, ≤∞, and ≤∞ or the unbounded
temporal operators by U , , and , respectively. In our work, we consider only
the bounded fragment of HyperLTL such that for all temporal operators (except
), we evaluate the result on finite fragments of the simulated traces.

Semantics The path evaluation function V : Π → Sω assigns each path variable
π, a concrete path of the labeled DTMC. Below we consider the semantics of
HyperLTL,

V |= a
π iff a ∈ L

(
V (π)[0]

)

V |= ¬ϕ iff V 6|= ϕ

V |= ϕ1 ∧ ϕ2 iff V |= ϕ1 and V |= ϕ2

V |= ϕ iff V (1) |= ϕ

V |= ϕ1 U
≤k ϕ2 iff there exists i ∈ [0, k], V (i) |= ϕ2

and for all j ∈ [0, i), V (j) |= ϕ1

where V (i) is the i-shift of path assignment V defined by V (i)(π) = (V (π))(i).
For example, the formula V |= a

π1

1 Uk
a
π2

2 means that a1 holds on the path V (π1)
until a2 holds on the path V (π2) in k steps.

3.3 Sequential Probability Ratio Test

We use Wald’s sequential probability ratio test (SPRT) [52]. The idea is to
continue sampling until we are either able to reach a conclusion or we have
exhausted a user-provided sampling budget. Assuming we want to verify if a
property ϕ holds on our model D with probability greater than and equal to
θ, i.e., PrD(ϕ) ≥ θ. To use SPRT in this case, we add an indifference region
around our bound to create two distinct and flexible hypothesis tests [4]. For a
given indifference region ε, we define p0 = θ + ε and p1 = θ − ε. Our resultant
hypotheses are,

H0 : PrD(ϕ) ≥ p0 H1 : PrD(ϕ) ≤ p1 (3)

Using these newly created bounds, we define the following probability ratios,

ratiot =
p1
p0

ratiof =
1− p1
1− p0

(4)

We define an indicator function 1(T |= ϕ) ∈ {0, 1} that returns 1 if the trace T
satisfies the property ϕ, and returns 0 otherwise. When evaluating ϕ on a set of
sampled traces {T1, . . . , Tn}, we accumulate ratiot if 1(T |= ϕ) = 1 and ratiof

otherwise. Assuming, we have sampled N traces, the final product of the truth
value corresponds to

pratio =

N∏

i=1

(p1)
1(Ti|=ϕ)(1− p1)

1(Ti|=¬ϕ)

(p0)1(Ti|=φ)(1− p0)1(Ti|=¬φ)
(5)

6

We iteratively calculate this ratio until the exit condition is met. To restrict the
error in the estimation of the probability θ, we specify error probabilities α as
the maximum acceptable probability of incorrectly rejecting a true H0, and β
as the maximum acceptable probability of accepting a false H0. The boundary
error ratios can be defined as A = β/(1 − α) and B = (1 − β)/α. To reach a
conclusion, we accept H0 if pratio ≤ A, and accept H1 if pratio ≥ B. The case for
specifications with PrD(ϕ) ≤ θ is similar except we use the reciprocals of ratiot

and ratiof .

4 Problem Formulation

HyperLTL allows explicit quantification over traces, allowing the user to express
whether they want their specification to hold across all paths associated with
a path variable or in at least one of those paths. Along with the added expres-
siveness, this formulation distends existing challenges - (1) While checking a
specification across all possible sets of paths provides a robust verification result,
it is considerably expensive, making it impractical as we scale to models with
larger state spaces. (2) Most real-life systems involve uncertainties in the form
of randomization, nondeterminism, or partial observability. Consequently, this
raises a need to express that, for instance, a fraction of the paths of the system
satisfy the specification.

To handle the above challenges, we propose a practical formulation for express-
ing unquantified and bounded HyperLTL formulas for models that involve both
probabilistic choices and nondeterminism. We quantify over the path variables
by associating a probabilistic bound denoting the proportion of the set of traces
that should satisfy a given specification. We can express that a specification is
almost always likely or highly unlikely by adjusting the bound of the probability p
to p ≥ 1 or p ≤ 0, respectively. Intuitively, almost always likely can be considered
as a weaker counterpart of ∀ (forall) quantification, and highly unlikely can be
considered as a weaker counterpart of ¬∃ (existential) quantification over path
variables. Note that these limits our expression of HyperLTL formulas with
quantifier alternation in any capacity, and we leave that as an aspect worth
exploring in future works.

Consider an MDP M and an unquantified, bounded HyperLTL formula ϕ
that contains path variables (π1, . . . , πm). We consider tuples of m schedulers
to simulate m traces assigned to these path variables, i.e., we have a one-to-
one correspondence between schedulers and path variables. We are interested in
checking if there exists a combination of schedulers that can satisfy the HyperLTL
specification ϕ on our model within a given probability bound. Formally, this
can be expressed as,

∃σ1∃σ2 . . . ∃σm PrM(V |= ϕ) ∼ θ (6)

where θ ∈ [ε, 1 − ε] to allow an indifference region for hypothesis testing (see
Section 3.3), σi are schedulers of M, V (πi) is the path drawn from the DTMC Mσi

for i ∈ [n] which is induced by σi on MDP M, and ∼ ∈ {≥,≤}. Note that we can
involve multiple models to yield paths for each scheduler σi. For properties where

7

we want to check if a given specification holds across all scheduler combinations,
we negate our specification to re-formulate the problem as in Eq. 6. Since we
adopt a statistical model checking algorithm, it is worth noting that we cannot
directly observe if a specification holds for all cases, thus, we utilize this approach
to check if we can satisfy its negation. We elaborate on this in Section 5.

5 Approach

We want to utilize the advantages of SMC to verify hyperproperties by answering
our model checking problem using hypothesis testing, specifically SPRT, as
described in Sec. 3.3. The overall approach involves the sampling of schedulers
and traces from one (or more) given MDPs, monitoring the satisfaction of the
property on these traces, and determining if we have gathered enough evidence to
reach a concrete verdict for the property. In this section, we explain the concepts
and parameters involved in finding the result of this test such that we can directly
use it to answer our model checking question.

5.1 Scheduler sampling

One of the main challenges when verifying MDPs is the generation of schedulers
for verification. It stems from the complexity involved in the storage of history to
resolve nondeterminism in the current state. We utilize the lightweight scheduler
sampling feature of PLASMA [26]. This approach avoids the explicit storage
of schedulers by using uniform pseudo-random number generators (PRNGs) to
resolve non-determinism and hashes as seeds for the PRNGs. In the following,
we will give an intuition of the approach inbuilt in PLASMA and how we have
extended it to argue about hyperproperties.

PRNGs form the core of the smart sampling algorithm of PLASMA. Given
a set of possible action choices and sufficient runs of the number generator, they
allow the generation of statistically independent numbers that are uniformly
distributed across a specified range. They are uniquely mapped to their seed
values intsch, ensuring the reproduction of the same value when the generator is
provided with the same seed. Note that we can use PRNGs to identify individual
schedulers but cannot identify specific schedulers. Furthermore, since the seeds
only initialize the PRNGs, using problem-specific information (e.g., about the
property) during the generation of the seed does not allow to relate schedulers.

Each state of the MDP is internally represented as a concatenation of the
bits representing the values of the atomic propositions that are true at that state.
A sequence of states can be represented by concatenating their individual bit
sequences. The sum of the bits of such a sequence of numbers intt, which is an
integer, represents a trace. Concatenation of intsch and intt can be then used
to uniquely identify both a scheduler and a trace. PLASMA generates a hash
with this concatenated value which represents the history of both the scheduler
and the trace and is used as a seed to resolve the next nondeterministic choice.
PLASMA uses an efficient iterative hash using modular arithmetic that ensures

8

efficient storage of the possible schedulers mapping the comparatively large set of
schedulers to a smaller set of integers with a low probability of collision. For more
details on this, we refer the reader to [26]. Once the nondeterministic choice is
resolved at a state, PLASMA uses an independent PRNG to uniformly choose a
successor state from the ones available under the chosen action. This is concate-
nated with the trace before generating the next hash for the nondeterministic
resolution.

When working with hyperproperties, we would need to consider a tuple of
schedulers and traces. In this aspect, we can either simulate traces from the
same MDP using different schedulers, use different schedulers for each MDP,
or a combination of both. We define a scheduler tuple σ ⊆ Σm as a tuple of
schedulers sampled from the set of possible schedulers allowed by our MDPs
and m is the number of scheduler quantifiers in our specification as shown in
Eq. 6. We define a trace tuple as a tuple of traces sampled from our model
based on the tuple of schedulers. Thus, ωσ represents the trace tuple ω, sampled
from the DTMCs induced by the scheduler tuple σ. For simplicity, we consider
a one-to-one correspondence between our schedulers and MDPs. We define an
indicator function 1(ωσ |= ϕ) ∈ {0, 1} that returns 1 if the trace tuple ωσ satisfies
the hyperproperty ϕ, and returns 0 otherwise.

The aim is to verify the satisfaction of the given specification under all or
some combination of nondeterministic choices in our system. Since a scheduler
represents a concrete resolution of nondeterminism across the system, our problem
is transformed to that of finding a scheduler tuple that satisfies our specification
in the form of the described hypothesis in Eq. 6. Intuitively, SMC considers the
proportion of the sampled trace tuples that individually satisfy the property to
estimate the true satisfaction probability in the overall model. To bind the errors
in the estimation, the algorithm uses precision and user-provided error margins.

For the case where we want to conclude all scheduler tuples satisfy the
property, we negate the property and try to find a scheduler tuple that satisfies
this negated property. The falsity of this property makes our original property
true. For the case where we want to search if there exists a scheduler tuple,
we pose the hypothesis directly. However, in this case, a false result does not
necessarily guarantee the absence of a witness to the specification; it suggests that
our algorithm was unable to find such a scheduler tuple within the given budget,
error, and precision bound. Note that we cannot derive the exact scheduler tuple
(we get the traces generated but not the reduced DTMC) due to the black-box
nature of our sampling. We can only reason about its existence or absence within
the given budget.

5.2 Implementation

In this section, we discuss the handling of the hypothesis testing of H0 as shown
in Eq. 3 in detail. The case for H1 is similar except we use the reciprocals of
ratiot and ratiof . As shown in Algorithm 1, we begin by initializing the necessary
parameters (line 1). For conducting sequential hypothesis testing on large systems,
we need an additional bound to represent the maximum limit of resources we

9

want to spend on this verification. To this end, PLASMA utilizes the concept
of a user-provided budget. Following the idea described in [26], the algorithm
automatically distributes the budget to determine the number of scheduler and
trace tuples the verification should consider as described in the previous section.
We generate a set of scheduler tuples Σ and create a mapping to store which
scheduler should be used to produce which trace (deriving this information from
the input specification). In lines 2-3, for each scheduler tuple, we use the internal
simulator to simulate the traces as specified by the mapping. In the case of
multiple initial states, we allow the choice of traces with the same or different
initial states. This reduces extra subformulas on the property to decide on initial
states and allows us to verify the property only on relevant trace samples. In
line 4, we use a custom model checker that we have implemented in PLASMA

to verify linear, bounded HyperLTL properties on sets of traces sent as input.
We further allow n-ary boolean operations by extending the general idea of AND,
OR, XOR, etc, to reduce the length of input property the user has to provide.

Algorithm 1 Hypothesis testing on Hyperproperties

Input: MDP model: M, spec: ϕ, Hypothesis H0 : PrM(V |= ϕ) ≥ θ
α, β: desired type I, type II errors,
Nmax : simulation budget, ε: indifference region.

Output: Success, No success, Inconclusive.
1: initialize()// Initializes N ,M, p0, p1, A,B, k, ratiot, ratiof
2: Σ ← {M tuples of k randomly chosen seeds}
3: ∀σ ∈ Σ, ∀i ∈ {1, ...,N} : ω

σ

i
← simulate(M, ϕ, σ)

4: R← {(σ, n)|σ ∈ Σ ∧ N 3 n =
∑

N
i=1

1(ω
σ

i
|= ϕ)}

5: if canEarlyAccept(R) then
6: Accept H0 and exit
7: Σ ← {σ ∈ Σ|R(σ) > 0},M← |Σ|+ 1 // Remove null schedulers
8: if |Σ| = 0 then
9: Quit: No suitable scheduler-tuple found
10: while |Σ| > 1 do
11: initializeSchedulerBasedBounds() // Initializes αM , βM , AM , BM

12: for σ ∈ Σ, i ∈ {1, . . . , |Σ|} do
13: ratioi ← 1
14: for j ∈ {1, . . . ,N} do
15: if simulate(M, ϕ, σ) |= ϕ then
16: ratio← ratio · ratioT ; ratioi ← ratio · ratioT
17: else
18: ratio← ratio · ratioF ; ratioi ← ratio · ratioF
19: if ratioi ≤ AM or ratio ≤ A then
20: Accept H0 and quit: scheduler found
21: else if ratioi ≥ BM then
22: Quit iteration for σ: Scheduler tuple rejected
23: if All schedulers were rejected then
24: Quit: No scheduler found in given budget
25: Σ ← filter(Σ)// Keep only the best-performing scheduler tuples
26: Inconclusive: There exists a scheduler that was neither accepted nor rejected.

In line 5 of the algorithm, we compare the ratio generated using Eq. 5 against
error boundary A to check if we have already found enough witnesses to accept
our null hypothesis H0. We do not check against boundary B because the absence
of a satisfying scheduler in this initial phase does not ensure that the possibility
of finding such a scheduler is zero. It hints at the need for further sampling. In

10

line 7, we filter out the null schedulers, i.e., for which none of the trace tuples
satisfied the property. Since we are looking for a scheduler tuple to satisfy the
property with positive probability, null schedulers cannot definitely be our best
search options. For each scheduler tuple in this filtered set, we again sample
N trace tuples. We essentially conduct multiple independent hypothesis tests,
one for each scheduler tuple. Hence, similar to [26], we modify the error for
each scheduler to αM = 1 − M

√
1− α, βM = 1 − M

√
1− β to account for the

error correction needed. In the initial phase (lines 2-9), the idea was to check
if we can satisfy the boundaries A,B using the truth value of all trace tuples
sampled, irrespective of its scheduler. In the rest if the algorithm, we check if we
can individually accept or reject any scheduler tuple, alongside the global check
for satisfaction across all sampled trace tuples. Since our trace tuples return an
overall true/false for the whole tuple, the error bound for each scheduler tuple
would not change when we are working with alternation-free hyperproperties
instead of trace properties.

In lines 16 and 18, we re-calculate pratio (as in Eq. 5), both for each scheduler
tuple and for all the sampled trace tuples. As we encounter a satisfying tuple
of traces, our overall pratio decreases as ratiot is a value less than one in this
case and with each non-satisfying trace tuple, it increases. If the ratio obtained
over all sampled traces across all schedulers is reduced below A or its scheduler
counterpart is below AM , we either have found a scheduler tuple that satisfies
the property or over all the sampled trace tuples, we have found enough evidence
to reach a conclusion that our hypothesis H0 is satisfied.

At the end of the iteration over the scheduler tuples, we can quit the test if all
our scheduler tuples are rejected, or proceed to the next iteration with only the
best scheduler tuples. We rearrange our scheduler tuples in an ascending order
based on the number of trace tuples that satisfied ϕ. Since we are aiming to
find a scheduler tuple that satisfies ϕ with a probability greater than θ, we only
keep the first half of rearranged scheduler tuples, ensuring that we are looking
only at the schedulers that have a higher chance of exceeding the bound. If our
evaluation reaches line 26, the set Σ would contain one scheduler which we were
neither able to accept nor reject, reaching an inconclusive decision about H0

within the given budget and precision margins. This inconclusive result would
indicate we have to retry the experiment with a higher simulation budget and/or
different precision and error margins for further scrutiny.

Convergence The algorithm will always terminate in a finite number of iter-
ations as we eliminate half of our candidate scheduler tuples at each iteration.
However, it may not have found a satisfying scheduler tuple within that boundary.
For an MDP M and property ϕ, we want to find a good scheduler tuple, i.e.,
one that satisfies ϕ with probability p ≥ θ − ε. Assuming we have |§| possible
scheduler tuples, and |§g| good schedulers, we use P : § → [0, 1] to denote the
probability with which a scheduler tuple satisfies ϕ. If we sample M scheduler
tuples and N trace tuples per scheduler tuple, the probability of sampling a trace
tuple from a good scheduler tuple that satisfies ϕ is,

11

(

1−

(

1−
|§g|

|§|

)M
)

︸ ︷︷ ︸
good scheduler tuple

(

1−

(

1−

∑

σ∈§g
Pσ

|§g|

)N
)

︸ ︷︷ ︸
trace satisfies ϕ

Our aim is to maximize the value of this probability by optimizing the values
of M and N , across which the budget Nmax is the total number of sampling
we want to permit. Since we need to find schedulers that satisfy the property
with probability at least θ, we set N = d 1

θ
e. This ensures that we spend our

sampling budget verifying scheduler tuples that have a higher probability of
satisfying our property. For example, if our θ is 0.25, N = 4. If we want to check
for our specification to be ≥ θ, any scheduler that satisfies at least 1 of the 4
sampled traces should be a good candidate for a good scheduler. In case we want
to check for our specification to be ≤ θ, finding such good schedulers would help
us reject the hypothesis easily. We allocate the rest of the budget (such that
N ·M ∼ Nmax) to sample scheduler tuples, thus, we set M = dθNmax e. We
have experimented with various values of budget, adjusting them based on the
expected accuracy of our results.

6 Case Studies

In this section, we discuss case studies to show the applicability and scalability
of our approach. One of the main advantages of statistical model checking lies in
the fact that we do not necessarily need access to the underlying model to verify
a system. This allowed us to utilize our approach on sets of traces generated
from black-box sources. We have separated our case studies into two sections
elaborating on the models of the grey-box (where we have access to the underlying
model) and black-box (where we just have access to a set of traces generated by
different schedulers) examples.

6.1 Grey-box verification

Group Anonymity in Dining Cryptographers (DC) We explored the
dining cryptographers problem [15] from the perspective of how it is designed to
maintain anonymity. In this model, three cryptographers go out for dinner and
at the end, want to figure out who paid the bill (their manager or one of them)
while respecting each other’s privacy. The protocol proceeds in two stages:(1)
each cryptographer flips a coin and only informs the cryptographer on their right
of the outcome (head or tail), (2) the cryptographers consider both the coin
tosses that they know of, to declare agree in case the tosses were the same, or
disagree otherwise. However, in the case of the cryptographer that actually paid,
they would declare the opposite conclusion.

Given an odd number of cryptographers, we should have an odd number of
agrees if the manager pays the bill, an even number of agrees if one of the cryptog-
raphers paid, and vice versa for an even number of cryptographers. We want to
verify if there is any information leakage depending on which cryptographer pays.

12

In the model, we nondeterministically choose who pays the bill and the order
in which the cryptographers toss their coin. In case one of the cryptographers
pay in both traces, we expect the parity of coins at the end to be the same. As
described in [9], the order of coin toss should not affect the anonymity in the
protocol. This good behavior can be expressed as a hyperproperty,

ϕDC =
(∨

i∈(1,2,3)

Cpay iπ1
∧

∨

i∈(1,2,3)

Cpay iπ2

)

=⇒

(done ∧ (c1⊕ c2⊕ c3))π1

∧

(done ∧ (c1⊕ c2⊕ c3))π2

For the correctness of the model, we should not be able to find a scheduler that
satisfies the bad behavior ¬ϕDC with positive probability, thus, we design the
hypothesis as,

∃σ1.∃σ2. PrM(V 2 ϕDC) > 0

We expect this property to be false for an odd number of cryptographers and
true for even, as our model should ensure anonymity. We experimented with
both unbiased and biased coins in the model to check if that affects the parity of
agreement. The main challenge for this study was the size of the models as shown
in Table 1. Existing exhaustive approaches would take considerable memory and
execution time to verify this model. Hence, an approximate approach like SMC
has its utility here.

Noninterference in path planning (RNI) Consider the grid in Fig. 1.
We have two robots moving across a two-dimensional plane subdivided (dis-
cretized) into n× n cells. The robots can nondeterministically choose to move
to their neighboring cells unrestricted (up, down, left, or right) unless it is
blocked by the grid boundaries. However, with a certain error probability, the
chosen target cell is not reached and instead, the robot stays in its current cell.

Fig. 1: Two robots at-
tempting to reach the
same goal.

The grid can hence, be modeled as an MDP where each
state models a grid cell. Note that we do not restrict
or force any specific strategy for the movement of these
robots. Thus, each scheduler corresponds to a specific
strategy that defines how the robot moves across the
grid. We consider the case where two robots (R1 and
R2) are placed in opposite corners of the grid and aim to
reach the goal state at the center of the grid. Assume R1
is our robot of interest and R2 is an intruder. Motivated
by the idea in [21], a specification of interest would be
to check if the plan of R1 to reach the goal is affected
by the plans of R2. We design the hypothesis as the negation of the required
property. Hence, we want to determine if there exists any such scheduler tuple
where the movement of R1 would be similar but R1 fails to reach the goal in one
of them. The unquantified HyperLTL formula is as follows,

ϕRNI =
(
actR1π1 = actR1π2

)∧

(¬goalR1π1 U goalR2π1)⊕ (¬goalR1π2 U goalR2π2)

13

For any arbitrary probability p, we design our specification as,

∃σ1.∃σ2. PrM(V � ϕRNI) > p

Fig. 2: Grid divided into re-
gions to ensure opacity.

Current state opacity (CSO) Consider the
grid in Fig. 2 where we use only one robot on the
grid, which starts from any of the starting states
labeled S and aims to reach the opposite corner
labeled G. The gray boxes represent obstacles. In-
stead of analyzing reachability, we are interested
in analyzing opacity similar to [54]. Opacity re-
quires that an unauthorized user should not be
able to realize the current state of the system. In
the context of a robot, opacity ensures privacy is
preserved as the robot moves across the grid. An
observer gets an observation corresponding to each
movement of the robot. Note that we have divided the grid into three regions
(blue: near initial, red: between obstacles, green: near goal) which would generate
the same observation even when the robot is in a different position. Current state
opacity specifically states that while starting from the same initial state (here:
either of the lower left corners marked in blue), it is still feasible to move across
the grid using different paths that can produce the same observation. By different
paths, we refer to cases where the actual positions of the robot are different due
to the execution of different actions (up, down, left, right). This would mean that
an intruder should not be able to guess the exact location by merely gathering
observations about the movement of the robot. We can express this formally as,

ϕCSO =
(
startπ1

∧ startπ2
)
∧

¬ ≤k(actπ1
= actπ2

)
∧

≤k(regionπ1
= regionπ2

)

where act encodes the action taken by the robot on the grid and region denotes
the corresponding region observed. We want to check if any such combination of
schedulers exists that satisfies the current state opacity with respect to a given
threshold. This is expressed as,

∃σ1.∃σ2. PrM(V |= ϕCSO) > p

6.2 Black-box verification

We use the example of a side-channel timing attack on a password checker as
a black-box case study. We consider several password checkers that vary in the
expected amount of information leaked by observing the execution time, resulting
from different input guesses. We ran our password checkers on a microcontroller
and considered numerical passwords of length 10 as input.

Following the approach described in Section 5.1, a scheduler is represented
as a seed for a pseudo-random number generator. For a black-box model, the
model checker calls a python script with one parameter (the scheduler seed) as
an input. This seed is used by the model to resolve nondeterminism internally via

14

a pseudo-random number generator. Internally, the script uses the scheduler seed
to create a random password guess. Here, we assume the password guess and the
actual password is of the same length to simplify code run on the microcontroller.
The number of correct digits of the generated password guess is saved and the
password is forwarded to the microcontroller via the serial interface over USB.
The execution time of the microcontroller together with the number of correct bits
are returned by the Python script and the out-stream is parsed and interpreted
by the model checker.

We convert numerical return values (rounded to a predefined level of precision),
e.g., the number of correct digits (cd) or the execution time (et) to traces
whose length of consecutive symbols of a type reflects those values. For instance,
the returned pair of values execution time=4, correct digits=1 would be
converted into the trace

{et , cd} → {et} → {et} → {et} → {} → . . .

Leakage of information from an unsafe password checker can be obtained by
observing the execution times for several inputs. Intuitively, if the checking of a
password with more consecutive correct digits (in the front) takes longer than
a password with fewer correct digits, observing the execution time for multiple
guesses should allow guessing the correct password. To formalize this, we use the
specification of unwanted behavior

ϕTAM =((cdπ1
∧ ¬cdπ2

) ∧ (etπ1
∧ ¬etπ2

))⊕ ((cdπ2
∧ ¬cdπ1

) ∧ (etπ2
∧ ¬etπ1

))

Consider the example of a password checker that leaks information (BB-L)
in Listing 1.1. In contrast, a simple, safe approach (BB-S) checks the whole

1 bool checkPassword (St r ing g){
2 int i ;
3 for (i =0; i < g . l ength () ; ++i)
4 {
5 i f (g [i] != s e c r e t [i])
6 return fa l se ;
7 }
8 return true ;
9 }

Listing 1.1: Possible leaky password
checker (BB-L).

password without the option of an early re-
turn as in Line 6 and thus always produces
the same execution time regardless of the
correctness of the guess g. Additionally, we
can also add padding to obfuscate actual
execution timing. In our experiments, we
consider a random delay (BB-*R) between
0 and 10 microseconds or a fixed delay (BB-
*F) of 2 microseconds. We want to check,
for an arbitrary probability p, whether a
combination of schedulers exists, such that bad behavior, i.e., information leakage
can be derived. This is expressed as,

∃σ1.∃σ2. PrM(V |= ϕTAM) > p

7 Experimentation/Evaluation

The model details of our grey-box case studies have been reported in Table 1.
Experimental results for our case studies have been summarized in Table 2. The
parameters in Table 2 refer to the number of schedulers (#sch) and traces (#tr)

15

that were sampled as determined by our algorithm, and the length of the trace (k)
as determined by the user based on knowledge about the model. We separately
report the time required for the sampling of the scheduler (Sim) and trace tuples
and the time required to verify (Ver) the hyperproperty on them. Reported
timing data is the average over 10 runs. Note that in our evaluation we do not
compare our results to the existing model checkers for linear hyperproperties as
they cannot handle probabilistic models with non-determinism.

7.1 Black-box verification

Experiments were run on an Intel® Core™ i7 (6x3.30 GHz) with 32Gb RAM, the
password checkers ran on an esp32 micro-controller to alleviate variance in timing
due to process scheduling. To obtain results with higher precision, we execute
using multiple parameter configurations - size of the indifference region (ε), the
satisfying probability (θ), and sampling budget (Nmax). The error probabilities
α, β were kept at 0.01 for the whole experiment. Results and running times for
the most accurate runs are shown in Table 2, where different variants of password
checkers (see also Section 6) are referenced by their labels.

In total, we have run over 480 combinations of parameters to synthesize accu-
rate results. Table 2 lists results of parameter configurations that are maximizing
the probability of satisfying the property without being inconclusive to give an
estimate on a worst-case scenario. In case the property could be satisfied in the
majority of the 10 runs, we show results for two configurations: one leading to
a large observed probability and a second one that used a higher budget and
smaller indifference region which, thus, can be expected to be more precise.

From the results, we can observe that for safe password checking the tested
variants with no padding (S), fixed padding (SF), and random padding (SR) do
not allow information leakage about the correctness of the password guess via
correlation of the observed execution time. In contrast to this, the experiments
with a leaky password generator with a fixed or no padding scheme (LF, L) allow
correlating execution time and correctness of passwords. Note that in most cases
the created guesses had only zero to one correct digit, as we did not implement
adversarial strategies to guess larger parts of the password.

7.2 Grey-box verification

Experiments were run on an Intel® Core™ i7 (4x2.3 GHz) with 32Gb RAM. We
ran experiments on each of the described case studies by scaling them across the
different parameters involved. However, due to space constraints, we report cases
that are sufficient to show the scalability and robustness of our approach.

The DC component in the table corresponds to the verification of the dining
cryptographers protocol described in Section 6.1. Our specification ϕDC should
not hold for an odd number of cryptographers and should hold for even ones.
We have scaled the model over #c = {4, 7, 8, 15} and witnessed the expected
results. We used a constant budget of 5000 for all the cases reported. We used
models directly from PRISM [1] and were able to verify them without alterations.

16

We experimented with both biased and unbiased coins. The result produced
was the same proving that the biases of the coins do not affect the outcome of
the protocol. The experiment for the biased coin scenario used the exact same
parameters as reported and yielded similar execution times for both scenarios.

Table 1: Model details of grey-box case stud-
ies

CS Param. #States #Transitions #Actions

DC

c = 4 2598 6864 5448

c = 7 328760 1499472 1186040

c = 8 1687113 8790480 6952248

c = 15 1011 1012 9× 1011

RB n = 3 1034 4888 2444

Grid n = 5 12346 77152 38576

Fig.1 n = 10 256926 1852972 926486

RB n = 10 200 1440 720

Grid n = 20 800 6080 3040

Fig.2 n = 30 1800 13920 6960

The RNI section in the table
corresponds to noninterference case
study. We have scaled our grid for
N = {3, 5, 10}. We verify the exis-
tence of scheduler tuples that fails
to satisfy noninterference with prob-
ability bounds of {0.1, 0.2, 0.5} with
a budget of 2000. The trace lengths
have been increased in proportion
to the grid sizes. We have experi-
mented on arbitrary trace lengths
which have been adjusted as we in-
crease the grid size. As we do not
specify any smart movement strat-
egy for the robots, these results are
based on possible random walks the
robots can make on the grid. The interesting observation here is the difference in
execution time based on the parameters. The cases for θ ≤ 0.1 seem to be chal-
lenging, given the current grid and budget, resulting in an inconclusive result; for
n = 10 our experiment ran for more than 2 days hinting at an inconclusive result
within the given budget. This is expected as we are challenging the algorithm to
find a scheduler with a very low probability (between 0 and 0.1) given the large
search space. For θ ≥ 0.2, we are often able to find our target scheduler tuples
in the initial sampling phase, leading to short execution time due to early exit.
This is mainly because we are looking for a scheduler across a wider range of
probability (between 0.2 and 1). Using θ ≥ 0.5 becomes challenging when scaling
the model (with the same budget for comparison) due to the growing number of
possible scheduler tuples, and the lack of any specific strategy that finds traces
where both the robots are aiming to reach the goal. Thus, finding a scheduler
with probability on the higher end (between 0.5 - 1) is not always possible in the
given budget and indifference regions.

0 500 1000 1500 2000
Number of Samples

10 147

10 126

10 105

10 84

10 63

10 42

10 21

100

Ra
tio

 (i
n

lo
g

sc
al

e)

Experiment 1
Experiment 2
Experiment 3
Acceptance ratio

Fig. 3: DC with n = 4 (Pr ≥ 0.1± 0.01)

During our experiments on the
opacity case study (CSO), we added
a subformula to ϕCSO to check if
the robot reaches the goal in both
traces. Given that we do not enforce
any smart movement strategy on the
movement of the robot, it usually
makes a random walk in the grid of-
ten looping in a few states for a long
time. Consequently, the probability

17

Table 2: Data from experimentation. #sch: number of scheduler-tuples sampled,
#tr: number of trace tuples sampled per scheduler tuple,

k: length of traces sampled. α = β = 0.01.

Case
Specification Result

Parameters Time [sec]

Study #sch #tr k Sim. Ver.

BB

Pr(V � ϕTAM) ≥ 0.1± 0.01 # S False 400 10 80 108 0.09

Pr(V � ϕTAM) ≥ 0.1± 0.01 # SF False 400 10 80 93.1 0.09

Pr(V � ϕTAM) ≥ 0.1± 0.01 # SR False 400 10 80 92.8 0.07

Pr(V � ϕTAM) ≥ 0.3± 0.1 # L True 1201 4 80 102 0.1

Pr(V � ϕTAM) ≥ 0.25± 0.01 # L True 1001 4 80 85.5 0.01

Pr(V � ϕTAM) ≥ 0.15± 0.1 # LF True 601 7 80 92 0.09

Pr(V � ϕTAM) ≥ 0.1± 0.01 # LF Undec 400 10 80 90 0.08

Pr(V � ϕTAM) ≥ 0.1± 0.01 # LR False 400 10 80 88.7 0.08

DC

Pr(V 2 ϕDC) ≥ 0.1± 0.01 (#c = 4) True 500 10 20 1.6 0.5

Pr(V 2 ϕDC) ≥ 0.01± 0.001 (#c = 4) True 50 100 20 1.4 0.4

Pr(V 2 ϕDC) ≥ 0.1± 0.01 (#c = 7) False 500 10 25 2.7 0.3

Pr(V 2 ϕDC) ≥ 0.01± 0.001 (#c = 7) False 50 100 25 2.6 0.6

Pr(V 2 ϕDC) ≥ 0.1± 0.01 (#c = 8) True 500 10 30 2.6 0.8

Pr(V 2 ϕDC) ≥ 0.01± 0.001 (#c = 8) True 50 100 30 2.7 0.7

Pr(V 2 ϕDC) ≥ 0.1± 0.01 (#c = 15) False 500 10 65 4.5 1.8

Pr(V 2 ϕDC) ≥ 0.01± 0.001 (#c = 15) False 50 100 65 5.1 1.9

RNI

Pr(V � ϕRNI) ≤ 0.1± 0.01 (n = 3) Undec 200 10 10 385 0.3

Pr(V � ϕRNI) ≥ 0.2± 0.01 (n = 3) True 400 5 10 3.8 0.2

Pr(V � ϕRNI) ≥ 0.5± 0.01 (n = 3) True 1000 2 10 210 0.15

Pr(V � ϕRNI) ≤ 0.1± 0.01 (n = 5) Undec 200 10 26 2999 0.194

Pr(V � ϕRNI) ≥ 0.2± 0.01 (n = 5) True 400 5 26 38.17 0.33

Pr(V � ϕRNI) ≥ 0.5± 0.01 (n = 5) Undec 1000 2 26 1243 0.67

Pr(V � ϕRNI) ≥ 0.2± 0.01 (n = 10) True 400 5 80 173.65 0.87

Pr(V � ϕRNI) ≥ 0.5± 0.01 (n = 10) Undec 1000 2 80 10.4k 1.38

CSO

Pr(V � ϕCSO) ≤ 0.05± 0.001 (n = 10) Undec 150 20 30 84 0.82

Pr(V � ϕCSO) ≥ 0.3± 0.01 (n = 10) True 900 4 30 0.7 0.17

Pr(V � ϕCSO) ≤ 0.7± 0.01 (n = 10) True 2100 2 30 0.93 0.25

Pr(V � ϕCSO) ≤ 0.05± 0.001 (n = 20) Undec 150 20 45 376 0.41

Pr(V � ϕCSO) ≥ 0.3± 0.01 (n = 20) True 900 4 45 2.41 0.34

Pr(V � ϕCSO) ≤ 0.7± 0.01 (n = 20) True 2100 2 45 1.74 0.41

Pr(V � ϕCSO) ≤ 0.05± 0.001 (n = 30) True 150 20 55 511 0.35

Pr(V � ϕCSO) ≥ 0.3± 0.01 (n = 30) True 900 4 55 7.97 0.29

Pr(V � ϕCSO) ≤ 0.7± 0.01 (n = 30) True 2100 2 55 2.45 0.32

of the robot actually reaching the goal is highly unlikely. We checked the prob-
ability of satisfying our specification against {0.05, 0.3, 0.7}. We used a budget
of 3000 for all versions of this experiment and increased the trace length in
proportion to the increase in the grid size.

The plots in Fig. 3,4 depict convergence results, where each line in a graph
shows how the value of ratio changes across a single algorithm run. In each of the
plots, the red line represents the ratio A in Algorithm.1 which serves as our exit
condition. In Fig. 3, we use the sampling budget of 2000 to calculate the ratio.

18

At the end of this phase, if the ratio is below A, we can declare that we have
found enough evidence for a concrete result of the specification being satisfied as
shown in lines labeled experiment 2 and 3. For the case of experiment 1, we could
not reach a concrete conclusion in the initial round, as the line can be seen to be
well above A. We were required to enter the main algorithm loop and required a
few more samples (∼ 75) to reach the same concrete conclusion.

The robotics case plotted in Fig. 4a shows that we were able to get a concrete
result in the initial sampling for all three cases. We plotted an undecidable case
in Fig. 4b. Note that in experiment 2 we were able to get a concrete result in
the initial sampling round; in experiment 1, we were able to reach a concrete
result in the main algorithm loop after intensive sampling within the chosen
schedulers; and in experiment 3, we could neither find an accepting scheduler
nor reject all schedulers, leading to an inconclusive result. This supports the
results of undecidability that the algorithm returned. The main reason can be
traced back to the fact that we did not specify any strategy for the robots, thus,
sampling across random walks of the robot.

0 250 500 750 1000 1250 1500 1750 2000
Number of Samples

10 35

10 30

10 25

10 20

10 15

10 10

10 5

100

Ra
tio

 (i
n

lo
g

sc
al

e)

Experiment 1
Experiment 2
Experiment 3
Acceptance ratio

(a) RNI with n = 4(Pr ≥ 0.2± 0.01)

0 500 1000 1500 2000 2500 3000 3500
Number of Samples

10 3

100

103

106

109

1012

1015

1018

Ra
tio

 (i
n

lo
g

sc
al

e)
Experiment 1
Experiment 2
Experiment 3
Acceptance ratio

(b) RNI with n = 4 (Pr ≥ 0.5± 0.01)

Fig. 4: Plots showing the change in ratio based on sampling across schedulers.

8 Conclusion

We presented a probabilistic formulation of bounded, unquantified HyperLTL and
provided a SMC approach to verify them over MDPs. To handle nondeterminism,
our approach leverages the smart sampling algorithm presented in [26], extending
it to reason about hyperproperties. We have implemented our approach as
an extension of PLASMA [48] adding new capabilities to perform black-box
verification and demonstrating the scalability of our approach in several case
studies with large state spaces. This work aimed to showcase that SMC is a
feasible solution for cases where exhaustive or bounded model checking is unable
to provide us with any insight. In future directions, we would like to extend
support for quantifier alternations for paths (as in HyperLTL) and scheduler
tuples, as the current approach can only handle existential scheduler tuples and
limits our applicability to a wider variety of security properties.

19

References

1. PRISM: Dining cryptographers’ problem. https://www.prismmodelchecker.org/
casestudies/dining_crypt.php

2. Ábrahám, E., Bonakdarpour, B.: HyperPCTL: A temporal logic for probabilistic hy-
perproperties. In: Proceedings of the 15th International Conference on Quantitative
Evaluation of Systems (QEST). pp. 20–35 (2018)

3. Ábrahám, E., Bartocci, E., Bonakdarpour, B., Dobe, O.: Probabilistic hyper-
properties with nondeterminism. In: Hung, D.V., Sokolsky, O. (eds.) Automated
Technology for Verification and Analysis. pp. 518–534. Lecture Notes in Computer
Science, Springer International Publishing, Cham (2020). https://doi.org/10.
1007/978-3-030-59152-6_29

4. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans.
Model. Comput. Simul. 28(1) (jan 2018). https://doi.org/10.1145/3158668,
https://doi.org/10.1145/3158668

5. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties in
HyperLTL. In: 2016 IEEE 29th Computer Security Foundations Symposium (CSF).
pp. 239–252. IEEE, Lisbon (Jun 2016). https://doi.org/10.1109/CSF.2016.24

6. Arora, S., Hansen, R.R., Larsen, K.G., Legay, A., Poulsen, D.B.: Statistical model
checking for probabilistic hyperproperties of real-valued signals. In: Legunsen,
O., Rosu, G. (eds.) Model Checking Software. p. 61–78. Springer International
Publishing, Cham (2022)

7. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)

8. Baumeister, J., Coenen, N., Bonakdarpour, B., Sánchez, B.F.C.: A temporal logic for
asynchronous hyperproperties. In: Proceedings of the 33rd International Conference
on Computer-Aided Verification (CAV). pp. 694–717 (2021)

9. Beauxis, R., Palamidessi, C.: Probabilistic and nondeterministic aspects of
anonymity. Theoretical Computer Science 410(41), 4006–4025 (2009). https:

//doi.org/https://doi.org/10.1016/j.tcs.2009.06.008

10. Bonakdarpour, B., Sánchez, C., Schneider, G.: Monitoring hyperproperties by
combining static analysis and runtime verification. In: Proc. of ISoLA’18. pp. 8–27
(2018)

11. Bonakdarpour, B., Finkbeiner, B.: The complexity of monitoring hyperproperties.
In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF). pp. 162–174
(2018). https://doi.org/10.1109/CSF.2018.00019

12. Boyer, B., Corre, K., Legay, A., Sedwards, S.: Plasma-lab: A flexible, distributable
statistical model checking library. In: Quantitative Evaluation of Systems: 10th
International Conference, QEST 2013, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings 10. pp. 160–164. Springer (2013)

13. Bulychev, P., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: Uppaal-smc: Statistical model checking for priced timed automata. arXiv
preprint arXiv:1207.1272 (2012)

14. Cavalcante, E., Quilbeuf, J., Traonouez, L.M., Oquendo, F., Batista, T., Legay,
A.: Statistical model checking of dynamic software architectures. In: Software
Architecture: 10th European Conference, ECSA 2016, Copenhagen, Denmark,
November 28–December 2, 2016, Proceedings 10. pp. 185–200. Springer (2016)

15. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology 1(1), 65–75 (Jan 1988). https://doi.org/
10.1007/BF00206326

20

16. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems.
In: Bultan, T., Hsiung, P.A. (eds.) Automated Technology for Verification and
Analysis. p. 1–12. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

17. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Hutchison, D., Kanade, T., Kittler, J.,
Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan,
C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G.,
Abadi, M., Kremer, S. (eds.) Principles of Security and Trust, vol. 8414, pp. 265–284.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54792-8_15

18. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: 2008 21st IEEE Computer
Security Foundations Symposium. pp. 51–65. IEEE, Pittsburgh, PA, USA (2008).
https://doi.org/10.1109/CSF.2008.7

19. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Proc. of CAV’19. pp. 121–139 (2019)

20. Das, S., Prabhakar, P.: Bayesian statistical model checking for multi-agent systems
using hyperpctl* (2022)

21. Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of markov
decision processes. In: Proc. of ATVA 2020: the 18th International Symposium
on Automated Technology for Verification and Analysis. LNCS, vol. 12302, pp.
484–500. Springer (2020). https://doi.org/10.1007/978-3-030-59152-6_27

22. Dobe, O., Abraham, E., Bartocci, E., Bonakdarpour, B.: Hyperprob: a model
checker for probabilistic hyperproperties. In: Formal Methods: 24th International
Symposium, FM 2021, Virtual Event, November 20–26, 2021, Proceedings 24. pp.
657–666. Springer (2021)

23. Dobe, O., Ábrahám, E., Bartocci, E., Bonakdarpour, B.: Model checking hyperprop-
erties for markov decision processes. Information and Computation 289, 104978
(2022)

24. Dobe, O., Wilke, L., Ábrahám, E., Bartocci, E., Bonakdarpour, B.: Probabilistic
hyperproperties with rewards. In: NASA Formal Methods: 14th International
Symposium, NFM 2022, Pasadena, CA, USA, May 24–27, 2022, Proceedings. pp.
656–673. Springer (2022)

25. Dwork, C.: Differential privacy. In: ICALP (2). Lecture Notes in Computer Science,
vol. 4052, pp. 1–12. Springer (2006)

26. D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for
lightweight verification of markov decision processes. International Journal on
Software Tools for Technology Transfer 17(4), 469–484 (2015)

27. Finkbeiner, B., Hahn, C., Hans, T.: MGHyper: Checking satisfiability of HyperLTL
formulas beyond the ∃∗∀∗ fragment. In: Proc. of ATVA’18. pp. 521–527 (2018)

28. Finkbeiner, B., Hahn, C., Stenger, M.: Eahyper: Satisfiability, implication, and
equivalence checking of hyperproperties. In: Proc. of CAV’17. pp. 564–570 (2017)

29. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties. In:
Proc. of the 17th Int. Conf. on Runtime Verification. pp. 190–207 (2017)

30. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: A runtime verification
tool for temporal hyperproperties. In: Proc. of TACAS’18. pp. 194–200 (2018)

31. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Proc. of CAV’18. pp. 144–163 (2018)

32. Finkbeiner, B., Müller, C., Seidl, H., Zalinescu, E.: Verifying Security Policies in
Multi-agent Workflows with Loops. In: Proc. of CCS’17 (2017)

21

33. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL*. In: Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided
Verification. pp. 30–48. Lecture Notes in Computer Science, Springer International
Publishing (2015)

34. Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen,
D.B.: Modelling attack-defense trees using timed automata. In: Formal Modeling
and Analysis of Timed Systems: 14th International Conference, FORMATS 2016,
Quebec, QC, Canada, August 24-26, 2016, Proceedings 14. pp. 35–50. Springer
(2016)

35. Gilbert, D.R., Donaldson, R.: A monte carlo model checker for probabilistic ltl with
numerical constraints (2008)

36. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Symp.
on Security and Privacy. pp. 11–20 (1982)

37. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperproperties.
In: Vojnar, T., Zhang, L. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. p. 115–131. Springer International Publishing, Cham (2019)

38. Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical model
checking for markov decision processes. In: 2012 Ninth International Conference on
Quantitative Evaluation of Systems. pp. 84–93 (2012). https://doi.org/10.1109/
QEST.2012.19

39. Hsu, T., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: Bounded model checking for
asynchronous hyperproperties. CoRR abs/2301.07208 (2023). https://doi.org/
10.48550/arXiv.2301.07208, https://doi.org/10.48550/arXiv.2301.07208

40. Hsu, T., Bonakdarpour, B., Sánchez, C.: Hyperqube: A qbf-based bounded model
checker for hyperproperties. CoRR abs/2109.12989 (2021), https://arxiv.org/
abs/2109.12989

41. Hsu, T.H., Sánchez, C., Bonakdarpour, B.: Bounded model checking for hyper-
properties. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. p. 94–112. Springer International Publishing,
Cham (2021)

42. III, J.W.G., Syverson, P.F.: A logical approach to multilevel security of probabilistic
systems. Distributed Comput. 11(2), 73–90 (1998)

43. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker mrmc. Performance evaluation 68(2),
90–104 (2011)

44. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: Computer Aided Verification: 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings 23. pp. 585–591.
Springer (2011)

45. Larsen, K.G., Legay, A.: 30 years of statistical model checking. In: Margaria, T.,
Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and
Validation: Verification Principles - 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30,
2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12476, pp. 325–
330. Springer (2020). https://doi.org/10.1007/978-3-030-61362-4_18, https:
//doi.org/10.1007/978-3-030-61362-4_18

46. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) Runtime Verification. p. 122–135. Springer
Berlin Heidelberg, Berlin, Heidelberg (2010)

22

47. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Sta-
tistical model checking. In: Computing and software science: state of the art and
perspectives, pp. 478–504. Springer (2019)

48. Legay, A., Sedwards, S.: On statistical model checking with plasma. In: The 8th
International Symposium on Theoretical Aspects of Software Engineering (2014)

49. O’Neill, K.R., Clarkson, M.R., Chong, S.: Information-flow security for interactive
programs. In: CSFW. pp. 190–201. IEEE Computer Society (2006)

50. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977). pp. 46–57. ieee (1977)

51. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring
of hyperproperties. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) Formal
Methods – The Next 30 Years. p. 406–424. Springer International Publishing, Cham
(2019)

52. Wald, A.: Sequential Tests of Statistical Hypotheses. The Annals of Mathematical
Statistics 16(2), 117 – 186 (1945). https://doi.org/10.1214/aoms/1177731118,
https://doi.org/10.1214/aoms/1177731118

53. Wang, Y., Nalluri, S., Bonakdarpour, B., Pajic, M.: Statistical model checking for
hyperproperties. In: IEEE Computer Security Foundations Symposium. pp. 1–16.
Dubrovnik, Croatia (2021)

54. Wang, Y., Nalluri, S., Pajic, M.: Hyperproperties for robotics: Planning via hyperltl.
In: 2020 IEEE International Conference on Robotics and Automation (ICRA). pp.
8462–8468 (2020). https://doi.org/10.1109/ICRA40945.2020.9196874

55. Wang, Y., Zarei, M., Bonakdarpour, B., Pajic, M.: Statistical verification of hyper-
properties for cyber-physical systems. ACM Transactions in Embedded Computing
Systems 18(5), 92– (2019). https://doi.org/10.1145/3358232

56. Younes, H.L.: Ymer: A statistical model checker. In: Computer Aided Verification:
17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10,
2005. Proceedings 17. pp. 429–433. Springer (2005)

57. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: 16th IEEE Computer Security Foundations Workshop (CSFW-16 2003),
30 June - 2 July 2003, Pacific Grove, CA, USA. p. 29. IEEE Computer Society
(2003). https://doi.org/10.1109/CSFW.2003.1212703

58. Zuliani, P.: Statistical model checking for biological applications. International
Journal on Software Tools for Technology Transfer 17, 527–536 (2015)

23

	Lightweight Verification of Hyperproperties

