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We study the problem of data-driven background estimation, arising in
the search of physics signals predicted by the Standard Model at the Large
Hadron Collider. Our work is motivated by the search for the production of
pairs of Higgs bosons decaying into four bottom quarks. A number of other
physical processes, known as background, also share the same final state.
The data arising in this problem is, therefore, a mixture of unlabeled back-
ground and signal events, and the primary aim of the analysis is to determine
whether the proportion of unlabeled signal events is nonzero. A challenging
but necessary first step is to estimate the distribution of background events.
Past work in this area has determined regions of the space of collider events,
where signal is unlikely to appear and where the background distribution is,
therefore, identifiable. The background distribution can be estimated in these
regions and extrapolated into the region of primary interest using transfer
learning with a multivariate classifier. We build upon this existing approach
in two ways. First, we revisit this method by developing a customized residual
neural network which is tailored to the structure and symmetries of collider
data. Second, we develop a new method for background estimation, based
on the optimal transport problem, which relies on modeling assumptions dis-
tinct from earlier work. These two methods can serve as cross-checks for
each other in particle physics analyses, due to the complementarity of their
underlying assumptions. We compare their performance on simulated double
Higgs boson data.

1. Introduction. The Standard Model (SM) of particle physics is a theory describing the
interactions between elementary particles—the building blocks of matter. One key compo-
nent of the SM is the presumed existence of a quantum field responsible for generating mass
in certain elementary particles. This field is known as the Higgs field, originally theorized
by Higgs (1964), Englert and Brout (1964). Excitations of the Higgs field produce particles,
known as Higgs bosons, which were the subject of an intensive search by experimental par-
ticle physicists ever since the mid 1970s. In July 2012, two independent experiments at the
Large Hadron Collider (LHC) at CERN (the European Organization for Nuclear Research)
announced the observation of a new particle consistent with the SM Higgs boson (ATLAS
(2012), CMS (2012)). Having discovered this Higgs-like particle, current work is concerned
with detailed studies of its properties in order to confirm or refute those predicted by the SM.
One such property is the so-called Higgs boson self-coupling, whereby a single excitation of
the Higgs field can split into two Higgs bosons without intermediate interactions with other
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particles. Observing this phenomenon would provide compelling new information regard-
ing the mechanism of particle mass generation. This paper is concerned with some of the
statistical challenges posed by its search.

The LHC is housed in a massive underground tunnel in which two counter-rotating beams
of protons are accelerated to nearly the speed of light. When these protons collide, new par-
ticles are formed, and their paths within particle detectors are recorded. Individual collisions
are referred to as events. An event in which two Higgs bosons are generated is called a dou-
ble Higgs (or di-Higgs) event. The Higgs boson is a highly unstable particle; whenever it
is produced, it decays into other particles almost immediately, making di-Higgs production
impossible to observe directly.

The Higgs boson most commonly decays into a pair of so-called bottom quarks (b-quarks).
An event in which four b-quarks are observed is thus a candidate di-Higgs event but could
also have arisen from various other physical processes that produce four b-quarks. We say that
a di-Higgs event in which the Higgs bosons decay into four b-quarks is a signal event, while
any other event tagged as having four b-quarks is called a background event. The problem
of searching for double Higgs boson production reduces to testing whether the proportion
of signal events is nonzero among the observed data. As we describe in Section 3, carrying
out this test is a well-understood statistical task when the distributions of both background
and signal events are known. While the di-Higgs signal distribution can be approximated to
sufficient accuracy with first-principles simulation, simulating the background distribution
suffers from large high-order corrections which are computationally intractable (Di Micco et
al. (2020)). Instead, the background distribution must be estimated using observed data. This
is known as the problem of data-driven background modeling, which is the main subject of
this paper.

As stated, the background distribution is not a statistically identifiable quantity without
further assumptions, due to the potential presence of an unknown proportion of signal in the
data. Any analysis strategy must, therefore, make some modeling assumptions to make the
background estimation problem tractable. As we discuss below, it is standard to assume that
the background distribution is related in some way to the distribution of certain auxiliary
events, which in turn is identifiable. An example of useful auxiliary events is those consist-
ing of less than four observed b-quarks, since they are unlikely to be signal events but are
kinematically similar to the background events of interest (Bryant (2018)). Stated differently,
the distribution of auxiliary events is an identifiable estimand which has undergone a distri-
butional shift relative to the nonidentifiable background distribution of interest. If the analyst
has access to a sample of auxiliary events, its empirical distribution provides a first naive
approximation of the desired background distribution. To obtain a more precise estimate, one
must correct for the distributional shift.

As we discuss in Section 1.2, the most widely-used method for correcting this distribu-
tional shift is based on an estimate of the density ratio between the background and auxiliary
events. This method typically first estimates the density ratio in a signal-free region of the
phase space, known as the Control Region, and then extrapolates it to the region of primary
interest, known as the Signal Region. Any deviation of this extrapolated density ratio from
unity is used to correct the distributional shift undergone by the auxiliary sample. This ex-
trapolation can be viewed as an instance of transfer learning (Weiss, Khoshgoftaar and Wang
(2016)). While a careful choice of the density ratio estimator can greatly improve the accu-
racy of this extrapolation, it clearly cannot lead to a consistent estimator if the distribution in
the Signal Region is unconstrained relative to its counterpart in the Control Region. This pro-
cedure thus places an implicit modeling assumption on the underlying distributions, which is
challenging to quantify and verify in practice. Nevertheless, variants of this procedure have
been used in each of the most recent di-Higgs searches in the four b-quark final state (e.g.,
ATLAS (2018a), ATLAS (2019), ATLAS (2021), CMS (2022), ATLAS (2022)). This raises
the important need for cross-checking the modeling assumption made by such an approach.
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1.1. Our contributions. This paper develops a new methodology for data-driven back-
ground modeling in di-Higgs boson searches. Our approach is fully nonparametric and does
not involve the extrapolation of density ratios. It hinges upon a characteristic modeling as-
sumption, which is complementary to that of the density ratio method. These two distinct
methods can thus serve as cross-checks for each other in di-Higgs searches, an important
benefit that will increase the analyst’s trust in the obtained background estimates.

Our approach is based on the optimal transport problem (Villani (2003)) between mul-
tidimensional distributions of collider events. Optimal transport has already proven to be a
powerful tool for transfer learning in classification problems (Courty et al. (2016)), and here
we propose to use it rather differently to correct distributional shifts between estimates of
the auxiliary and background distributions. Our method involves out-of-sample estimation
of optimal transport maps for which we consider two different estimators. While the first is
based on smoothing of an in-sample optimal coupling and has previously been proposed in
the literature (cf. Section 1.2), our second estimator appears to be new and leverages some
strengths of the density ratio approach.

The optimal transport problem requires a cost function on the space of collider events for
which we use a variant of the metric proposed by Komiske, Metodiev and Thaler (2019).
This metric is itself obtained through the optimal transport problem of matching clusters of
energy deposits in collision events. Our approach, therefore, involves a nested use of optimal
transport.

As a secondary contribution, we revisit the density ratio approach to background esti-
mation. In particular, we recall how this approach can be reduced to fitting a probabilistic
classifier for discriminating auxiliary events from background events, and we develop a pow-
erful new classifier tailored to this application. Our classifier is a customized convolutional
neural network with residual layers (He et al. (2016)), whose architecture accounts for the
structure and symmetries of collider events with multiple identical final state objects.

We illustrate the empirical performance of these two methodologies on realistic simulated
collider data. We observe that both approaches lead to quantitatively similar background esti-
mates, despite the complementarity of their underlying modeling assumptions. In particular,
this study illustrates how our methods can be used to cross-check each other in practice.

1.2. Related work. Di-Higgs boson production has been the subject of numerous recent
searches by the ATLAS and CMS collaborations at the LHC—we refer to the recent survey
paper of Di Micco et al. (2020) for an overview. The four b-quark final state is the most
common decay channel for di-Higgs events but suffers from a large multijet background.
As described previously, each of the most recent searches in this final state performed data-
driven background estimation by first estimating a density ratio in a Control Region and
extrapolating it to the Signal Region. Certain searches, such as ATLAS (2019), estimate the
density ratio using heuristic one-dimensional reweighting schemes, while others, such as
CMS (2022), use off-the-shelf multivariate classifiers for this purpose. Part of our work builds
upon the latter by designing a new classifier tailored to collider data.

The idea of estimating density ratios using classifiers has a long history in statistics—see,
for instance, Fix and Hodges (1951), Silverman and Jones (1989), Qin (1998), Cheng and
Chu (2004), Kpotufe (2017)—and appears in a variety of applications in experimental parti-
cle physics (e.g., Cranmer, Pavez and Louppe (2015), Brehmer et al. (2020), CMS (2022)).
Classification-based estimators have the practical advantage of circumventing the need for
high-dimensional density estimation, which can be particularly challenging to perform over
the space of collider events. It has been empirically observed that modern classification al-
gorithms, such as deep neural networks, have the ability to transfer well to new distributions
(Yosinski et al. (2014)), which further motivates their use for density ratio estimation in our
context.
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Rather than density ratios, the key object of interest in our new methodology is the notion
of optimal transport map. Optimal transport theory has received a surge of recent interest in
the statistics and machine learning literature—we refer to Kolouri et al. (2017), Panaretos
and Zemel (2019), Panaretos and Zemel (2019b), Peyré and Cuturi (2019) for recent reviews.
Closest to our setting are applications of optimal transport to domain adaptation for classifi-
cation problems; see, for instance, Courty et al. (2016), Redko, Habrard and Sebban (2017),
Rakotomamonjy et al. (2022), and references therein. Nested optimal transport formulations,
as in our work, have recently been used for other tasks such as multilevel clustering (Ho et
al. (2017), Ho et al. (2019), Huynh et al. (2021)) and multimodal distribution alignment (Lee
et al. (2019)). Very recently, optimal transport has also been used in high energy physics
for calibrating stochastic simulators (Pollard and Windischhofer (2022)), for purposes of ex-
ploratory data analysis (Cai et al. (2020), Komiske et al. (2020), Komiske, Metodiev and
Thaler (2019)), and for the purpose of defining a geometry on the space of collider events
(Komiske, Metodiev and Thaler (2020)). We also note that optimal transport has implicitly
been used for one-dimensional template morphing in the early work of Read (1999).

Our methodology relies on estimating optimal transport maps or couplings between dis-
tributions of collider events. The question of out-of-sample estimation of optimal transport
maps over Euclidean spaces has been the subject of intensive recent study (Hütter and Rigol-
let (2021), Perrot et al. (2016), Pooladian and Niles-Weed (2021), Forrow et al. (2019),
Makkuva et al. (2020), Nath and Jawanpuria (2020), de Lara, González-Sanz and Loubes
(2021), Deb, Ghosal and Sen (2021), Manole et al. (2024), Ghosal and Sen (2022), Gunsilius
(2022)). While many of these works are tailored to the quadratic cost function, the widely-
used nearest-neighbor estimator (Flamary et al. (2021), Manole et al. (2024)) can naturally be
defined over general metric spaces and is used in one of our background estimators defined
in Section 5.2.2.

Beyond the search of di-Higgs boson production, we emphasize that the question of data-
driven background estimation arises in a variety of problems in experimental high-energy
physics, where our methodologies could also potentially be applied. We refer to the book
Behnke et al. (2013) for a pedagogical introduction to statistical aspects of the subject; see
also Appendix 1 of Lyons (1986). Finally, we mention some recent advances on the widely-
used sPlot (Barlow (1987), Borisyak and Kazeev (2019), Dembinski et al. (2022), Pivk and Le
Diberder (2005)) and ABCD (Alison (2015), ATLAS (2015), Choi and Oh (2021), Kasieczka
et al. (2021)) techniques for background estimation, the latter of which can be viewed as a
precursor to the methods developed in this paper.

1.3. Paper outline. The rest of this paper is organized as follows. Section 2 contains
background about the LHC and di-Higgs boson production. Section 3 outlines the statistical
procedure used for signal searches in collider experiments at the LHC and mathematically
formulates the data-driven background modeling problem. In Section 4 we revisit the density
ratio approach to background estimation, based on classifiers for discriminating auxiliary
events from background events, and we briefly describe our new classifier architecture for
this purpose. In Section 5 we describe our new methodology based on the optimal transport
problem. We then compare these methods in a simulated di-Higgs search in Section 6. We
close with a discussion in Section 7. In the Supplementary Material (Manole et al. (2024)),
Appendix A contains a section-by-section summary of this manuscript in nontechnical lan-
guage, Appendices B–D contain numerical details deferred from the main text, and Appendix
E contains further numerical results.

1.4. Introduction for the high energy physicist. This paper is written primarily with the
statistics community in mind. This brief section aims to bridge the gap between the language
and formalism used by statisticians and that common in high energy physics.
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We have a four-tag (4b) dataset consisting of background and some a priori unknown
amount of signal, parameterized by signal strength μ. The search is done in bins of a dis-
criminating variable, the output of a multivariate classifier trained to separate signal and back-
ground. The challenge is to predict the amount of background in each of the classifier output
bins. Section 3 introduces the three-tag (3b) dataset and defines the Control Region (CR)
used to derive the background prediction. The 3b dataset, when normalized to the number
of 4b events, provides a zeroth order estimate of the 4b background. The main contribution
of our work is in deriving corrections to the 3b data to better approximate the true 4b back-
ground. Section 4 describes a data-driven background estimation method used frequently in
HEP (ATLAS (2018a), CMS (2022)), which is a variant of the “ABCD” method. We train a
classifier, referred to as the “Four-vs.-Three classifier,” to obtain event weights that correct
for differences between the 3b and 4b data in the CR. The predicted background in the Signal
Region (SR) is obtained by weighting 3b SR events by weights derived in the CR. Section 5
presents a novel method for data-driven background estimation. Instead of extrapolating be-
tween the 3b and 4b samples—assuming the extrapolation is the same in the CR and SR—we
propose extrapolating between the CR and SR—assuming the extrapolation is the same in the
3b and 4b samples. We cannot use a classifier to correct kinematic differences between the
samples; a classifier trained on kinematically disjoint samples would achieve perfect separa-
tion, and the corresponding weights would be undefined. Instead, we assume that the optimal
transport map, which maps events in the CR to the SR, is the same for the 3b and 4b events,
and we describe approaches for estimating such optimal transport maps with collider data.

Readers less interested in the formalism may choose to skip ahead to Section 6, which
applies the methods introduced in this work in a simulated di-Higgs search. A more complete
description of our work aimed at the high energy physicist can be found in the Supplementary
Material, Appendix A.

2. Background.

2.1. LHC experiments and di-Higgs boson production. The LHC is the largest particle
collider in the world, consisting of a 27 kilometer-long tunnel in which two counter-rotating
beams of protons are accelerated to nearly the speed of light. These particles are primarily
collided in one of four underground detectors, named ALICE, ATLAS, CMS, and LHCb.
ATLAS and CMS are general-purpose detectors used for a wide range of physics analyses,
including Higgs boson-related searches, while ALICE and LHCb focus on specific physics
phenomena. We focus on the CMS detector in what follows, but similar descriptions can be
made for the ATLAS detector.

When two protons collide, their energy is converted into matter in the form of new parti-
cles. The goal of the CMS (Compact Muon Solenoid) detector is to measure the momenta,
energies and types of such particles. To measure their momenta, CMS is built around a gi-
ant superconducting solenoid magnet, depicted in Figure 1, which deforms the trajectories of
particles as they move from the center of the detector outward through a silicon tracker. The
extent to which the trajectory of a charged particle is bent depends on its momentum and can
hence be used to measure the momentum. After the silicon tracker, CMS consists of several
layers of calorimeters which measure the energies of the particles. We refer to CMS (2008)
for a complete description of the CMS detector.

Proton-proton collisions give rise to highly unstable particles which decay almost instantly
into more stable particles. The detector is only able to observe these longer-lived particles.
By measuring their energies and momenta, insight can be gained into the physical properties
of the unstable particles from which they originate.
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FIG. 1. Illustration of the CMS detector (Sakuma and McCauley (2014)). Counter-rotating beams of protons
are made to collide in the center of the detector. The trajectory and mass of each particle emanating from the
collision is then recorded.

The Higgs boson is an example of an unstable particle, which decays within approximately
10−22 seconds. The SM predicts that a Higgs boson decays into a pair of bottom quarks (b-
quarks) 60% of the time, and this decay channel has indeed been observed experimentally
(ATLAS (2018b), CMS (2018a)). Other channels which have been observed experimentally
include the decay of a Higgs boson into pairs of photons (ATLAS (2018c), CMS (2018b)), W
bosons (ATLAS (2018e), CMS (2019)), Z bosons (ATLAS (2018d), CMS (2018c)), and tau
leptons (ATLAS (2019b), CMS (2018d)). The SM further predicts the rare possibility that two
Higgs bosons can be produced simultaneously, and this paper is concerned with the statistical
challenges arising in the search for this process, which has yet to be observed experimentally.
If this process were to occur, the two resulting Higgs bosons would each, in turn, be most
likely to decay into two b-quarks, thus making four b-quarks the most common final state of
di-Higgs boson events. We focus on this decay channel (abbreviated HH→ 4b) throughout
this paper. We note that b-quarks form into bound states with other quarks called b-hadrons,
which are themselves unstable and rapidly decay into collimated sprays of stable particles
called b-jets, which can be efficiently identified by the CMS detector (CMS (2018e)).

2.2. Collider events and the CMS coordinate system. Particles measured by the CMS
detector are typically represented in spherical coordinates. Given a particle with momentum
vector p = (x, y, z) ∈ R

3, its azimuthal angle φ ∈ [0,2π) is defined as the angle increasing
from the positive x-axis to the positive y-axis, while the polar angle θ ∈ [0, π) is increasing
from the positive z-axis to the positive y-axis. The length of its projection onto the (x, y)

plane is called the transverse momentum pT . It is common to replace the polar angle θ by the
pseudorapidity of the particle, given by η = − log(tan(θ/2)).
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In addition to the variables pT , η and φ, the rest mass m of each particle can be ob-
tained from the energy measurements made by the calorimeters in the CMS detector. Alto-
gether, a particle jet is analyzed as a single point in this coordinate system and encoded as
a four-dimensional vector (pT , η,φ,m). In our search channel, collisions lead to multiple,
say K ≥ 1, jets measured by the detector, which may be encoded as the 4K-dimensional
vector (pT i, ηi, φi,mi : 1 ≤ i ≤ K). We opt for an alternative notation, which will be par-
ticularly fruitful for the purpose of defining a metric between collider events in Section 5.3.
Specifically, an event will henceforth be represented by the discrete measure

(2.1) g =
K∑

i=1

pTi
δ(ηi ,φi ,mi),

where δx denotes the Dirac measure placing unit mass at a point x ∈ R
3. In particular, the

representation (2.1) emphasizes the invariance of an event with respect to the ordering of its
jets. The transverse momenta pTi

may be viewed as a proxy for the energy of each jet; thus,
the total measure of g denotes its total energy, denoted sT = ∑K

i=1 pTi
. The set of events with

K jets of interest is denoted by

G(K) =
{

K∑
j=1

pTj
δ(ηj ,φj ,mj ) : pTj

,mj > 0, φj , ηj ∈R,1 ≤ j ≤ K

}
,

where the definition of φj is extended from [0,2π) to the entire real line by 2π -periodicity.
In the context of double Higgs boson production in the four b-jet final state, the choice K = 4
will be most frequently used, and in this case we simply write G = G(4).

Finally, we note that events are deemed invariant under the orientation of the x- and z-
axes. This fact, together with the periodicity of the angle φ, implies that two events g =∑K

j=1 pTj
δ(ηj ,φj ,mj ) ∈ G(K) and g′ = ∑K

j=1 p′
Tj

δ(η′
j ,φ′

j ,m′
j ) ∈ G(K) may be deemed equivalent

if they are mirror-symmetric in η, φ as well as rotationally symmetric in φ, that is, if there
exist � ∈ 2πZ and ι1, ι2 ∈ {−1,1} such that

(2.2)
K∑

j=1

pTj
δ(ι1ηj ,�+ι2φj ,mj ) =

K∑
j=1

p′
Tj

δ(η′
j ,φ′

j ,m′
j ).

Formally, we define an equivalence relation � between events in G(K) such that g � g′ if and
only if there exist �, ι1, ι2 for which (2.2) holds.

3. Problem formulation.

3.1. Overview of signal searches at the LHC. In order to make inferences about the pres-
ence or absence of a signal process in collider data, event counts are commonly analyzed as
binned Poisson point processes. While we focus on the setting of double Higgs boson pro-
duction in the four b-quark final state, the description that follows is representative of a wide
range of signal searches for high-energy physics experiments.

Let ν0 denote a σ -finite Borel measure over the state space G of collider events, with
respect to a fixed choice of Borel σ -algebra on G denoted B(G). Let F denote an inhomoge-
neous Poisson point process (Reiss (2012)) with a nonnegative intensity function f ∈ L2(G)

on G, that is, F is a random point measure on G such that:

1. F(A) ∼ Poisson(λ(A)), where λ is the intensity measure induced by f , defined by
λ(A) = ∫

A f dν0 for all A ∈ B(G);
2. F(A1), . . . ,F (A�) are independent for all pairwise disjoint sets A1, . . . ,A� ∈ B(G),

for all integers � ≥ 1.
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Every four b-jet collision event is either a signal event, namely, an event arising from two
Higgs bosons, or a background event, arising from some other physical process. Letting μ ≥ 0
denote the rate of signal events, we write the intensity measure λ as

λ(·) = β4(·) + μσ(·),
where β4 and σ , respectively, denote nonnegative background and signal intensity measures.
σ is typically normalized such that the value μ = 1 corresponds to the theoretical prediction
of the signal rate. The measures β4 and σ typically depend on nuisance parameters related
to the calibration of the detector, the uncertain parameters of certain physical processes, such
as the parton distribution functions of the proton (Placakyte (2011)), and so on. We suppress
the dependence on such nuisance parameters for ease of exposition. The parameter μ is of
primary interest, since nonzero values of μ indicate the existence of signal events. A search
for the signal process, therefore, reduces to testing the following hypotheses on the basis of
observations from the Poisson point process F :

(3.1) H0 : μ = 0 vs. H1 : μ > 0.

Given a sequence G1,G2, . . . of observed events, we may write F = ∑M
i=1 δGi

, where
M ∼ Poisson(λ(G)) is independent of the observations, which satisfy

(3.2) G1,G2, . . .
iid∼ λ/λ(G) = εS + (1 − ε)P4.

Here S = σ/σ(G) and P4 = β4/β4(G) denote the respective signal and background distribu-
tions and ε = μσ(G)/λ(G) the proportion of signal events.

The Poisson point process F is often binned in practice. Let ξ : G → A ⊆ R denote a
dimensionality reduction map, to be discussed below, which will be used to bin the point
process using univariate bins. Let {Ij }Jj=1 denote a collection of bins forming a partition of
A, and define the event counts

(3.3) Dj = F
(
ξ−1(Ij )

) = ∣∣{1 ≤ i ≤ M : ξ(Gi) ∈ Ij

}∣∣, j = 1, . . . , J.

The definition of F implies that the random variables Dj are independent and satisfy

(3.4) Dj ∼ Poisson(Bj + μSj ), j = 1, . . . , J,

where Bj = β4(ξ
−1(Ij )) and Sj = σ(ξ−1(Ij )).

The likelihood ratio test with respect to the joint distribution of D1, . . . ,DJ is typically
used to test the hypotheses (3.1) (ATLAS, CMS and Higgs Combination Group (2011)). The
binned likelihood function for the parameter μ is given by

(3.5) L(μ) =
J∏

j=1

(Bj + μSj )
Dj

Dj ! e−(Bj+μSj ).

Di-Higgs events are rare in comparison to background events; thus, the signal-to-background
ratio is low. At the time of writing, values of M , which are typically observed at the LHC,
may be too small for any test to have power in rejecting the null hypothesis in (3.1) at desired
significance levels (Di Micco et al. (2020)). Analyses which fail to reject H0 instead culmi-
nate in an upper confidence bound on μ, also known as an upper limit (ATLAS, CMS and
Higgs Combination Group (2011)).

The power of the likelihood ratio test for (3.1) may be increased by choosing a function
ξ which maximizes the separation between background and signal event counts across the J

bins. Informally, the optimal such choice of ξ is given by

(3.6) ξ(g) = P(G is a Signal Event|G = g),
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which may be estimated using a multivariate classifier, such as a neural network or boosted
decision trees, for discriminating background events from signal events.

The signal intensity measure σ is theoretically predicted by the SM and can be approx-
imated well using Monte Carlo event generators (Di Micco et al. (2020)). The background
intensity β4 is, however, intractable due to the strongly interacting nature of quantum chro-
modynamics (QCD) in which events with the four b-quark final state can be produced via an
enormous number of relevant and complex pathways. The intensity measure β4, or its binned
analogue (Bj )

J
j=1, must, therefore, be estimated from the collider data itself, which we refer

to as data-driven background modeling. This problem is the primary focus of this paper.

3.2. Setup for data-driven background modeling. The aim of this paper is to develop
data-driven estimators of the background intensity measure β4. The primary challenge is the
fact that the sample G1, . . . ,GM is contaminated with an unknown proportion ε of signal
events. The background estimation problem is thus statistically unidentifiable as stated, and
it will be necessary to impose further modeling assumptions.

In order to formulate these assumptions and our resulting background modeling methods,
we assume that the analyst has access to a second Poisson Point Process T = ∑N

i=1 δHi
con-

sisting of auxiliary events, which were tagged by the CMS detector as having four jets, of
which exactly three are b-jets. We refer to such events as “3b events,” as opposed to “4b

events,” which were identified as having four b-jets.1 We stress that the terms 3b and 4b do
not refer to the true number of b-quarks arising from the collision, rather the number of b-
jets identified by the detector. As we discuss in Section 6, the majority of 3b events in fact
arise from the hadronization of two b-quarks and two charm or light quarks, while a small
proportion arise from four b-quarks.2 For the purpose of a discovery analysis, the 3b sam-
ple H1, . . . ,HN can, therefore, be treated as having a negligible proportion of signal events
(Bryant (2018), CMS (2022)). We treat this proportion as zero for sake of exposition. We
henceforth denote the intensity measure of the point process T by β3, and we denote by
P3 = β3/β3(G) the corresponding probability distribution of the observations H1,H2, . . . .

The kinematics of 3b events are similar, but not equal, to those of 4b background events
(CMS (2022)). Unlike β4, however, the intensity measure β3 is an identifiable estimand due
to the lack of signal events in the point process T . Any consistent estimator β̂3 of β3 can be
used to provide a zeroth-order approximation of β4 (up to a correction for normalization).
This approximation is, however, insufficiently accurate to be used as a final estimate of β4,
and our goal is to develop statistical methods for correcting this naive background estimate.

Recall that the four b-jets of any signal event g ∈ G are naturally paired, with each pair
arising from a Higgs boson. The true pairing of the jets is unknown to the detector; however, it
may be approximated, for instance, using an algorithm due to Bryant (2018). We use the same
pairing algorithm in our work. Given as input an event g, this deterministic algorithm outputs
one among the three distinct unordered pairs of measures {g1, g2} ⊆ G(2) which satisfy g =
g1 + g2. We refer to g1 and g2 as dijets. When g is a signal event, we expect that each dijet
arose from a decay of a Higgs boson, whereas when g is a background event, we expect that
at least one of the two dijets arose from the decay of a different particle.

The Higgs boson is known to have mass mH approximately equal to 125 GeV (ATLAS
(2012), CMS (2012)). It follows that the two dijets should approximately satisfy m(g1) ≈

13b events were used for background estimation in the HH→ 4b channel in the recent analysis of CMS (2022).
“2b events” consisting of two, rather then three, b-tagged jets have been used in other recent analyses (e.g.,
ATLAS (2019), ATLAS (2021)), and our description also applies to such events with only formal changes.

2As a result, the expected rate of production of 3b events E[N ] is typically higher than that of 4b events E[M]
by an order of magnitude; cf. Section 6.
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FIG. 2. Illustration of the Control and Signal Regions. The two-dimensional histogram represents simulated 4b
collider events described in Section 6, plotted in terms of their dijet invariant masses. We emphasize that this is
a low-dimensional representation; the events considered in this work are 16-dimensional. The red line indicates
the boundary of the Signal Region, while the annulus bounded by the yellow and red lines represents the Control
Region. The constants σc , rc , and κs used in this figure are stated in Section 6.

m(g2) ≈ mH , where m(a) denotes the invariant mass3 of any a ∈ G(K), K ≥ 1. Large de-
viations of the dijet invariant masses from 125 GeV indicate that g is not a signal event.
This provides a heuristic for determining events among G1, . . . ,GM which are unlikely to
be signal events. To elaborate, we form subsets Gc,Gs ⊆ G such that Gc ∩ Gs = ∅, where Gs

is called the Signal Region, containing events with dijet masses near mH , and Gc is called
the Control Region, containing all other events which will be used in the analysis. We follow
Bryant (2018) and employ the following specific definitions of Gc and Gs :

Gs =
{
g ∈ G :

√(
1 − mH

m(g1)

)2
+

(
1 − mH

m(g2)

)2
≤ κs

}
,(3.7)

Gc = {
g ∈ G :

√(
m

(
g1

) − σcmH

)2 + (
m

(
g2

) − σCmH

)2 ≤ rc
} \ Gs,(3.8)

for some constants σc, rc, κs > 0. These regions are illustrated in Figure 2. We similarly
partition the Poisson intensity measures β3, β4 by defining, for all A ∈ B(G),

βc
j (A) = βj (A ∩ Gc), βs

j (A) = βj (A ∩ Gs), j = 3,4.

These four measures are illustrated in Figure 3. Furthermore, we assume for ease of expo-
sition that these measures are absolutely continuous with respect to the dominating measure
ν0, and we let ba

j = dβa
j /dν0 for all j = 3,4 and a = c, s.

Recall that the collider events associated with the intensity measures βc
3 and βs

3 are signal-
free by construction, and those from βc

4 are also signal-free under the assumption that negli-
gibly few signal events will fall outside of Gs . These three intensity measures can, therefore,
be estimated directly by means of their empirical intensity functions. We have thus reduced
the background modeling problem to that of estimating βs

4, given estimates of βc
3 , βs

3, and βc
4 .

To this end, we will partition the samples into the sets{
Gs

1, . . . ,G
s
ms

} := {G1, . . . ,GM} ∩ Gs,
{
Hs

1 , . . . ,H s
ns

} := {H1, . . . ,HN } ∩ Gs,{
Gc

1, . . . ,G
c
mc

} := {G1, . . . ,GM} ∩ Gc,
{
Hc

1 , . . . ,Hc
nc

} := {H1, . . . ,HN } ∩ Gc,

3If E denotes the sum of the energies of the constituent jets of a and p denotes the magnitude of the sum of

their momentum vectors, then the invariant mass of e is defined by m(a) =
√

E2 − p2 (Hagedorn (1963)).
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FIG. 3. (Color online.) Illustration of the four Poisson intensity measures βc
3 , βs

3, βc
4 , βs

4, among which only the
latter is nontrivial to estimate, and summary of the three methods developed in this paper for estimating βs

4. The
method FvT (Four vs. Three) estimates the ratio of the two densities in the Control Region using a classifier and
then extrapolates it into the Signal Region using out-of-sample evaluations of the classifier. The OT-kNN (Optimal
Transport–k Nearest Neighbors) method produces an estimator T̂ of the optimal transport map T between the
3b Control and Signal Region distributions, and evaluates this estimator out-of-sample on an estimator of the 4b
Control Region distribution. The out-of-sample evaluation of T̂ is performed using nearest-neighbor extrapola-
tion. The OT-FvT (Optimal Transport–Four vs. Three) method combines these ideas: first, it uses the classifier to
produce an estimator of βc

4 with the same support as βc
3,nc

, and second, it pushes forward this estimator through

T̂ , thereby avoiding out-of-sample evaluations of both the classifier and optimal transport map. The background
of the figure consists of bivariate histograms of simulated 3b and 4b samples in the Control and Signal Regions,
plotted in terms of their dijet invariant masses, as in Figure 2.

where M = mc + ms and N = nc + ns . Furthermore, let

βc
3,nc

= T |Gc =
nc∑

i=1

δHc
i
, βs

3,ns
= T |Gs =

ns∑
i=1

δHs
i
, βc

4,mc
= F |Gc =

mc∑
i=1

δGc
i

denote the empirical estimators of the measures βc
3 , βs

3, βc
4 , illustrated in the background of

Figure 3. As previously noted, the measure βs
3 provides a zeroth-order approximation of βs

4
(after a normalization correction); thus, a naive first estimate of βs

4 is given by βs
3,ns

. As we
shall see in the simulation study of Section 6, this approximation is insufficiently accurate to
be used as a final estimator. Our methodologies improve upon it by modeling the discrepancy
between the 3b and 4b distributions in the Control Region via βc

4,mc
, βc

3,nc
and then using that

information in the Signal Region to improve the accuracy of βs
3,ns

as an estimator of βs
4.

Once we are able to derive an estimator β̂s
4 of βs

4, based on the signal-free observa-
tions Gc

1, . . . ,G
c
mc

, Hs
1 , . . . ,Hns , Hc

1 , . . . ,Hc
nc

, we may define the fitted histogram B̂j =
β̂s

4(ξ
−1(Ij )), j = 1, . . . , J . One may then test the hypotheses (3.1) using the likelihood ratio

test, based on the following modification of the likelihood function in equation (3.5):

(3.9) L̃(μ) =
J∏

J=1

(B̂j + μSj )
Ds

j

Ds
j !

e−(B̂j+μSj ), where Ds
j = ∣∣{1 ≤ i ≤ ms : ξ (

Gs
i

) ∈ Ij

}∣∣.
Here L̃ can be viewed as a restriction of the likelihood L to the Signal Region. Notice that
B̂j is independent of Ds

k , for any j , k. In practice, it is also necessary to incorporate statis-
tical and systematic uncertainties pertaining to the estimator B̂j into the hypothesis testing
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procedure (ATLAS, CMS and Higgs Combination Group (2011)). Since formal uncertainty
quantification for background modeling is beyond the scope of this work, we omit further
details and provide further discussion of this point in Section 7.

The primary difficulty remaining in the testing problem (3.1) is that of deriving estimators
of the background intensity measure βs

4. In what follows, we describe two classes of esti-
mators for βs

4: one based on density ratio estimation (Section 4), and the second based on
optimal transport (Section 5). The former is the most common approach to di-Higgs back-
ground modeling and will later be referred to as the FvT method. The latter is new, and we
will discuss two different instances of this approach, which will later be referred to as the
OT-kNN and OT-FvT methods. These three distinct estimators are summarized in Figure 3.

4. Background modeling via density ratio extrapolation. The discrepancy between
3b and 4b background distributions may be directly quantified in the Control Region, where
no signal events are present. Under a suitable modeling assumption, this discrepancy may be
extrapolated into the Signal Region to produce a correction of the 3b signal region intensity
measure βs

3, leading to an estimate of βs
4. This general strategy forms the basis of most back-

ground modeling methodologies used in recent di-Higgs searches, as discussed in Section 1.
The aim of this section is to recall how this approach may be carried out using a classifier for
discriminating 3b and 4b events. We then propose a classifier specifically tailored to this type
of collider data, which will be used in our numerical studies.

Let E denote a random collider event, arising from either the 3b or 4b distributions,
and define the latent binary random variable Z indicating the component membership of
E. More specifically, let Z be a Bernoulli random variable with success probability P(Z =
1) = β4(G)/(β4(G) + β3(G)), and let E be generated according to the mixture model

E|Z = 0 ∼ P3, E|Z = 1 ∼ P4.

Setting ψ(g) = P(Z = 1|E = g) for all g ∈ G, it follows from Bayes’ Rule that

(4.1)
bc

4(g)

bc
3(g)

= ψ(g)

1 − ψ(g)
, g ∈ Gc,

where we recall that bc
j denotes the intensity function associated to βc

j , j = 3,4. Therefore,

(4.2) βc
4(A) =

∫
A

ψ(g)

1 − ψ(g)
dβc

3(g), A ∈ B(Gc).

Equations (4.1)–(4.2) are a reformulation for our context of the well-known fact that, up to
normalization, a likelihood ratio may be expressed as an odds ratio (Silverman and Jones
(1989)). Estimating the ratio of 3b to 4b intensity functions in the Control Region thus re-
duces to the classification problem of estimating ψ , say by a classifier ψ̂ . This observation
has the practical advantage of circumventing the need of performing high-dimensional den-
sity estimation. Assuming that the estimator ψ̂ can be evaluated in the Signal Region Gs ,
disjoint from its training region Gc, we may postulate that the measure

(4.3) A ∈ B(Gs) �−→
∫
A

ψ̂(g)

1 − ψ̂(g)
dβs

3(g)

provides a reasonable approximation of βs
4. The quality of such an approximation is driven by

the ability of the classifier ψ̂ to generalize between regions of the phase space. To formalize
this, we will assume for simplicity that ψ̂ is an empirical risk minimizer taking values in a
class {ψα : G → [0,1] : α ∈ �}, for some parameter space � ⊆ R

d , d ≥ 1. That is, we assume

ψ̂ = ψα̂, where α̂ = argmin
α∈�

{
1

nc

nc∑
i=1

L
(
ψα

(
Hc

i

)
,0

) + 1

mc

mc∑
j=1

L
(
ψα

(
Gc

j

)
,1

)}
,

for some loss function L : [0,1] × [0,1] → R. We then make the following assumption.
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ASSUMPTION 1. The conditional probability ψ satisfies the following conditions:

(i) (Correct Specification) There exists α∗ ∈ � such that ψ = ψα∗ .
(ii) (Generalization) We have

α∗ = argmin
α∈�

E
[
L

(
ψα(G),Z

)|G ∈ Gc

]
.

Assumption 1 implies that a classifier trained solely in the Control Region can consistently
estimate the full conditional probability ψ(g), for events g ∈ G lying in both the Control and
Signal Regions. Such an assumption guarantees the ability of the classifier ψ̂ to generalize
from the Control Region, making the ansatz (4.3) justified. A natural estimator for βs

4 is then
obtained by replacing βs

3 in equation (4.3) by its empirical counterpart βs
3,ns

. Doing so leads
to the estimator

(4.4) β̂s
4 =

ns∑
i=1

ψ̂(Hs
i )

1 − ψ̂(Hs
i )

δHs
i
.

β̂s
4 is called the FvT estimator, and we refer to ψ̂ as the FvT (Four vs. Three) classifier.

The validity of Assumption 1 relies crucially upon the choice of the function class {ψα}
or, equivalently, the choice of the classifier ψ̂ . Indeed, off-the-shelf classifiers may lack the
generalization ability to satisfy Assumption 1(ii). A secondary contribution of our work is to
propose a classifier specifically tailored to four-jet collider events, which we now introduce.

The FvT classifier. Our aim is to design a classifier ψ̂ over G, which:

(a) is invariant to the ordering of the constituent jets in an input event g;
(b) is invariant with respect to the equivalence relation � defined in (2.2);
(c) incorporates the dijet substructure of an event g = g1 + g2.

In Appendix B we describe how these properties can be satisfied using a customized convo-
lutional neural network architecture with residual layers, or ResNet (He et al. (2016)). We
refer to the resulting classifier as the FvT classifier and implement the FvT method with this
choice throughout our numerical studies in Section 6. Beyond its use for background model-
ing, we also employ this classifier for the final dimensionality reduction map ξ in equation
(3.6). Choosing these two classifiers to have the same architecture is important in practice,
since a classifier capable of learning the relevant features for signal extraction should also be
capable of learning and then correcting those same features in the background model.

5. Background modeling via optimal transport. The methodology described in the
previous section hinged upon the ability of the classifier ψ̂ to accurately extrapolate from
the Control Region to the Signal Region, implying that the 3b and 4b intensity functions in
the latter region are constrained by their values in the former region. The validity of this as-
sumption is difficult to verify in practice, due to the blinding of the 4b signal region which
motivates us to develop a distinct approach with a complementary modeling assumption. In
this section, rather than extrapolating the discrepancy between the 3b and 4b intensity func-
tions, we will extrapolate the discrepancy between the Control and Signal Region intensity
functions, as illustrated in Figure 3.

We cannot use a density ratio to quantify the discrepancy between the intensity functions
in the Control and Signal Regions, because these regions are disjoint. We will instead use the
notion of a transport map, which will be defined below. In order to employ transport maps, it
will be convenient to normalize all intensity functions throughout this section. That is, we will
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define an estimator for βs
4 by separately estimating the probability measure P s

4 = βs
4/β

s
4(Gs)

and the normalization βs
4(Gs). More generally, we denote by

P c
j = βc

j /β
c
j (Gc), P s

j = βs
j /β

s
j (Gs), j = 3,4,

the four population-level probability measures, with corresponding empirical measures

P a
3,na

= 1

na

na∑
i=1

δHa
i
, P a

4,ma
= 1

ma

ma∑
i=1

δGa
i
, a ∈ {c, s}.

A transport map (Villani (2003)) between P c
3 and P s

3 is any Borel-measurable function
T : Gc → Gs such that, whenever H ∼ P c

3 , we have T (H) ∼ P s
3 . When this condition holds,

we write P s
3 = T#P

c
3 , and we say T pushes P c

3 forward onto P s
3 or that P s

3 is the pushforward
of P c

3 under T . Equivalently, this condition holds if and only if

P s
3 (A) = T#P

c
3 (A) = P c

3
(
T −1(A)

)
, for all A ∈ B(Gs).

We propose to perform background estimation under the following informal modeling as-
sumption, which will be stated more formally in the sequel.

ASSUMPTION 2’. There exists a map T0 : Gc → Gs such that

(5.1) T0#P
c
3 = P s

3 , and T0#P
c
4 = P s

4 .

Assumption 2’ requires the 3b and 4b distributions to be sufficiently similar for there to
exist a shared map T0 which pushes forward their restrictions to the Control Region into
their counterparts in the Signal Region. If such a map T0 were available, it would suggest the
following procedure for estimating P s

4 :

(a) Fit an estimator T̂ of T0 based only on the 3b observations;
(b) Given any estimator P̂ c

4,mc
of P c

4 , use the pushforward T̂#P̂
c
4,mc

as an estimator of P s
4 .

For this approach to be practical, we must specify an explicit candidate T0 satisfying Assump-
tion 2’. We propose to choose T0 such that its movement of the probability mass from P c

3 into
that of P s

3 is minimal. This leads us to consider the classical optimal transport problem, which
we now describe.

5.1. The optimal transport problem. Assume a metric W on the space G is given; we
provide a candidate for such a metric in Section 5.3. For any transport map T pushing P c

3
forward onto P s

3 , we refer to W(h,T (h)) as the cost of moving an event h ∈ Gc to an event
T (h) ∈ Gs . The optimal transport problem seeks to find the choice of T which minimizes the
expected cost of transporting P c

3 onto P s
3 , which amounts to solving the following optimiza-

tion problem:

(5.2) argmin
T :Gc→Gs

∫
Gc

W
(
h,T (h)

)
dP c

3 (h), s.t. T#P
c
3 = P s

3 .

Equation (5.2) is known as the Monge problem (Monge (1781)). When a solution T0 to the
Monge problem exists, it is said to be an optimal transport map. We postulate that, when
it exists, the optimal transport map from P c

3 to P s
3 is a sensible candidate for the map T0

appearing in the statement of Assumption 2’.
A shortcoming of this choice is the requirement that there exist a solution to the optimiza-

tion problem (5.2). It is well-known that the Monge problem over Euclidean space admits a
unique solution for absolutely continuous distributions, when the cost function is the squared
Euclidean norm (Brenier (1991), Knott and Smith (1984)). While sufficient conditions for
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the solvability of the Monge problem in more general spaces are given by Villani (2009,
Chapter 9), we do not know whether they are satisfied by the metric space (G,W) under con-
sideration. Furthermore, the Monge problem may not even be feasible between distributions
which are not absolutely continuous, which precludes the possibility of estimating T0 using
the optimal transport map between the empirical measures of P c

3 and P s
3 .

Motivated by these considerations, we introduce a classical relaxation of the Monge prob-
lem, known as the Kantorovich optimal transport problem (Kantorovich (1942), Kantorovich
(1948)). Let �(P c

3 ,P s
3 ) denote the set of all joint Borel distributions π over Gc × Gs

whose marginals are, respectively, P 3
c and P 3

s , in the sense that P c
3 (·) = π(· × Gs) and

P s
3 (·) = π(Gc × ·). We refer to such joint distributions as couplings. Consider the minimiza-

tion problem

(5.3) W
(
P c

3 ,P s
3
) = inf

π∈�(P c
3 ,P s

3 )

∫
Gc×Gs

W(g,h)dπ(g,h).

When the infimum in (5.3) is achieved by a coupling π0, this last is known as an optimal
coupling. When an optimal coupling is supported on a set of the form {(h,T (h)) : h ∈ Gc},
for some map T : Gc → Gs , it can be seen that T is, in fact, an optimal transport map be-
tween P c

3 and P s
3 . The Kantorovich problem (5.3) is, therefore, a relaxation of the Monge

problem (5.2). Unlike the latter, however, the minimization problem (5.3) is always feasible
since �(P c

3 ,P s
3 ) is nonempty; indeed, �(P c

3 ,P s
3 ) always contains the independence cou-

pling P c
3 ⊗P s

3 . Moreover, the infimum in the Kantorovich problem is achieved as long as the
cost function W is lower semicontinuous, and the measures P c

3 and P s
3 satisfy a mild mo-

ment condition (Villani (2009), Theorem 4.1). We also note that the optimal objective value
W(P c

3 ,P s
3 ) defines a metric between probability measures called the (first-order) Wasserstein

distance (Villani (2003)), or Earth Mover’s distance (Rubner, Tomasi and Guibas (2000)).
Using the Kantorovich relaxation, we now formalize Assumption 2’ into the following

condition, which we shall require throughout the remainder of this section.

ASSUMPTION 2. Assume there exists an optimal coupling π0 ∈ �(P c
3 ,P s

3 ) between P c
3

and P s
3 . Given a pair of random variables (Hc,Hs) ∼ π0, let π0(·|h) denote the conditional

distribution of Hs , given Hc = h, for any h ∈ Gc. Then, the following implication holds:

(5.4)
Gc ∼ P c

4

Gs |Gc ∼ π0
(·|Gc) =⇒ Gs ∼ P s

4 .

Assumption 2 requires the 3b and 4b distributions to be sufficiently similar for their restric-
tions to the Signal and Control Regions to be related by a common conditional distribution.
It further postulates that this conditional distribution is induced by the optimal coupling π0.
Heuristically, π0(·|H) plays the role of a multivalued optimal transport map for pushing an
event H from the distribution P c

3 onto P s
3 . Assumption 2 requires this map to additionally

push the distribution P c
4 onto its counterpart P s

4 in the Signal Region. In the special case
where there exists an optimal transport map T0 from P c

3 to P s
3 , we note that π0 = (Id, T0)#P

c
3

is an optimal coupling of P c
3 with P s

3 , where Id denotes the identity map. In this case, equa-
tion (5.4) is tantamount to equation (5.1).

5.2. Background estimation. We next derive estimators for the background distribution
P s

4 under Assumption 2. It follows from equation (5.4) and the law of total probability that

P s
4 (·) =

∫
Gc

π0(·|g)dP c
4 (g).
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Since π0(·|g) is the distribution of Hs , given Hc = g, induced by the optimal coupling π0, it
is an identified parameter which can be estimated using only the 3b data. Given an estimator
π̂(·|g) of this quantity and an estimator P̂ c

4,mc
of P c

4 , it is natural to consider the plugin
estimator of the background distribution P s

4 , given by

(5.5) P̂ s
4 (·) :=

∫
Gc

π̂ (·|g)dP̂ c
4,mc

(g).

In what follows, we begin by defining an estimator π̂(·|g) in Section 5.2.1, followed by two
candidates for the estimator P̂ c

4,mc
, leading to two distinct background estimation methods

described in Sections 5.2.2 and 5.2.3. In Section 5.2.4 we briefly discuss how these con-
structions also lead to estimators of the unnormalized intensity measure βs

4. We then provide
discussion and comparison of these methodologies in Section 5.2.5.

5.2.1. The empirical optimal transport coupling. A natural plugin estimator for the cou-
pling π0 is the optimal coupling π̂ between the empirical measures P c

3,nc
and P s

3,ns
. In detail,

denoting by q̂ ∈ R
nc×ns the joint probability mass function of π̂ , the empirical Kantorovich

problem takes the following form:

q̂ = (q̂ij ) ∈ argmin
(qij )∈Rnc×ns

nc∑
i=1

ns∑
j=1

qijW
(
Hc

i ,Hs
j

)
,

s.t. qij ≥ 0,

nc∑
i=1

qij = 1

ns

,

ns∑
j=1

qij = 1

nc

.

(5.6)

Equation (5.6) is a finite-dimensional linear program for which exact solutions may be com-
puted using network simplex algorithms such as the Hungarian algorithm (Kuhn (1955)).
We refer to Peyré and Cuturi (2019) for a survey. We then define the estimator π̂ (·|Hc

i ), for
i ∈ [nc], as the discrete distribution over {Hs

1 , . . . ,H s
ns

} with probability mass function

q̂j |i = q̂ij∑ns

k=1 q̂ik

= nc · q̂ij , j = 1, . . . , ns.

We are now in a position to define estimators of the background distribution P s
4 .

5.2.2. The OT-kNN estimator. We first consider the general estimator in equation (5.5)
when P̂ c

4,mc
is the empirical measure P c

4,mc
. This choice is perhaps most natural, but it requires

us to perform out-of-sample evaluations of the estimator π̂(·|g). Indeed, recall that the latter
is defined over {Hc

1 , . . . ,Hc
nc

}, whereas P c
4,mc

is supported on {Gc
1, . . . ,G

c
mc

}.
We extend the support of π̂(·|g) to all g ∈ Gc using a variant of the nearest neighbors

method for nonparametric regression (Biau and Devroye (2015)). A similar procedure has
also been used, for instance, by Flamary et al. (2021), Manole et al. (2024). Let k ≥ 1 be
an integer. For all g ∈ Gc, let Ik(g) denote the indices of the k-nearest neighbors of g with
respect to W , among Hc

1 , . . . ,Hc
nc

. Specifically, we set I (g) = {j1, . . . , jk} ⊆ [nc], where

W
(
g,Hc

j1

) ≤ · · · ≤ W
(
g,Hc

jk

) ≤ W
(
g,Hc

j

)
, for all j ∈ [nc] \ {j1, . . . , jk}.

Furthermore, define the inverse distance weights

(5.7) ωi(g) = 1/W(g,Hc
i )∑

l∈Ik(g) 1/W(g,Hc
l )

, i ∈ Ik(g)

with the convention ∞/∞ = 1. We then define, for all g ∈ Gc,

(5.8) π̂kNN(·|g) = ∑
i∈Ik(g)

ωi(g)π̂
(·|Hc

i

)
.
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The estimator π̂kNN(·|g) couples g with all of the events to which its k-nearest neighbors are
coupled under π̂ . The coupling values which correspond to the closest nearest neighbors are
assigned higher weights ωi(g). Furthermore, we note that, when g ∈ {Hc

1 , . . . ,Hc
nc

}, it holds
that π̂kNN(·|g) = π̂ (·|g). With these defintions the generic estimator (5.5) takes the form

P̂ s
4,kNN(·) :=

∫
Gc

π̂kNN(·|g)dP c
4,mc

(g) = 1

mc

mc∑
�=1

∑
i∈Ik(G

c
�)

ωi

(
Gc

�

)
π̂

(·|Hc
i

)
,

or equivalently,

P̂ s
4,kNN = nc

mc

ns∑
j=1

(
mc∑
�=1

∑
i∈Ik(G

c
�)

ωi

(
Gc

�

)
q̂ij

)
δHs

j
.

We refer to P̂ s
4,kNN as the OT-kNN (Optimal Transport–k Nearest Neighbor) estimator of P s

4 .

5.2.3. The OT-FvT estimator. The rate of production of 3b events typically exceeds that
of 4b events by one order of magnitude (cf. Section 6). As a result, in the general formulation
(5.5) of our optimal transport map estimators, we expect to have access to a smaller sample
size mc for estimating the distribution P c

4 than the sample sizes nc and ns for estimating the
optimal transport coupling π0. Motivated by this observation, we next define an estimator
P̂ c

4,mc
which can leverage the larger 3b sample size nc.

Let pc
j = dP c

j /dν0 denote the density of P c
j for j = 3,4. Recall from Section 4 that,

for any event g, ψ(g) denotes the probability that a random event G arose from the 4b

distribution as opposed to the 3b distribution, given that G = g. Furthermore, ψ̂(g) denotes
the [0,1]-valued output of the FvT classifier for discriminating 4b events from 3b events.
Recall further that, for any g ∈ Gc, it holds that pc

4(g)/pc
3(g) = (βc

3(Gc)/β
c
4(Gc)) · (ψ(g)/(1−

ψ(g)), or equivalently,

P c
4 (A) = βc

3(Gc)

βc
4(Gc)

∫
A

ψ(h)

1 − ψ(h)
dP c

3 (h), A ∈ B(Gc).

We define a plugin estimator of the above quantity via

(5.9) P̂ c
4,mc

(A) = nc

mc

∫
A

ψ̂(h)

1 − ψ̂(h)
dP c

3,nc
(h), A ∈ B(Gc).

P̂ c
4,mc

can be viewed as a reweighted version of the empirical measure P c
3,nc

. The weights
are chosen to make the 3b sample resemble a 4b sample by using the FvT classifier to es-
timate the density ratio pc

4/p
c
3. Since the 3b sample is one order of magnitude larger than

the 4b sample, we heuristically expect this estimator to have smaller theoretical risk than the
empirical measure P c

4,mc
whenever the density ratio pc

4/p
c
3 is smooth.

A second motivation for using the estimator P̂ c
4,mc

is the fact that it is supported on the
domain of definition of the in-sample empirical optimal transport coupling π̂(·|g). We, there-
fore, do not need to extend the domain of this estimator, unlike the previous section. With
these choices, the generic estimator in equation (5.5) takes the following form:

(5.10) P̂ s
4,OF :=

∫
Gc

π̂ (·|g)dP̂ c
4,mc

(g) = nc

mc

ns∑
j=1

(
nc∑

i=1

ψ̂(Hc
i )

1 − ψ̂(Hc
i )

q̂ij

)
δHs

j
.

We refer to P̂ s
4,OF as the OT-FvT (Optimal Transport–Four vs. Three) estimator of P s

4 .
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5.2.4. Estimation of the background normalization. We briefly show how the OT-kNN
and OT-FvT estimators can also be used to estimate the unnormalized background in-
tensity function βs

4. We employ the widely-used ABCD method (Alison (2015), ATLAS
(2015), Choi and Oh (2021), Kasieczka et al. (2021)), which requires the following assump-
tion.

ASSUMPTION 3. It holds that βs
4(Gs) = βs

3(Gs)β
c
4(Gc)/β

c
3(Gc).

Assumption 3 implies that the ratio of the number of 4b to 3b events in the Control Region
should be the same as that in the Signal Region. Under this assumption a natural estimator
for βs

4(Gs) is simply given by mcns/nc. Therefore, under Assumptions 2–3, the probabil-
ity measures P̂ s

4,kNN and P̂ s
4,OF can be used to define the following two estimators of the

unnormalized background intensity measure βs
4,

β̂s
4,kNN = mcns

nc

P̂ s
4,kNN, β̂s

4,OF = mcns

nc

P̂ s
4,OF.(5.11)

We, respectively, refer to the above measures as the OT-kNN and OT-FvT estimators of βs
4,

or simply as the OT-kNN and OT-FvT methods.

5.2.5. Remarks. We summarize the three background estimation methods, FvT, OT-
kNN, and OT-FvT, in Table 1, and make the following remarks:

• Assumption 2 is the primary modeling assumption required by OT-kNN and OT-FvT. We
view this condition as being complementary to Assumption 1(ii), required by the FvT
method. Indeed, it involves an extrapolation (of an optimal coupling) from the 3b to 4b

distribution rather than an extrapolation (of a density ratio) from the Control Region to the
Signal Region.

• The OT-FvT estimator (5.10) can, alternatively, be interpreted through the lens of domain
adaptation for the FvT classifier. To make this connection clear, suppose for simplicity that
nc = mc. In this case it can be shown that π̂ is, in fact, induced by an optimal transport
map, in the sense that there exists a permutation τ̂ : [nc] → [nc] such that

q̂ij = I
(
i = τ̂ (j )

)
/nc, i, j = 1, . . . , nc.

The FvT and OT-FvT estimators then take the following form:

β̂s
4,FvT ∝

ns∑
j=1

ψ̂(Hs
j )

1 − ψ̂(Hs
j )

δHs
j
, β̂s

4,OF ∝
ns∑

j=1

ψ̂(Hc
τ̂ (j))

1 − ψ̂(Hc
τ̂ (j))

δHs
j
.

While the FvT method evaluates the density ratio estimator ψ̂/(1 − ψ̂) at events Hs
j in the

Signal Region, the OT-FvT method evaluates it at the events Hc
τ̂(j) in the Control Region,

to which the events Hs
j are mapped under the empirical optimal coupling π̂ . The OT-

FvT method thus circumvents the evaluation of ψ̂ outside the region where it was trained.

TABLE 1
Summary of the three background estimation methods: FvT, OT-kNN, and OT-FvT. The final estimator for each

method takes the form β̂s
4 ∝ ∑ns

j=1 vj δHs
j

, for the values of vj listed in the table

Estimator (of the form ∝ ∑ns

j=1 vj δHs
j

) FvT OT-FvT OT-kNN

vj
ψ̂(Hs

j )

1−ψ̂(Hs
j )

∑nc

i=1
ψ̂(Hc

i )

1−ψ̂(Hc
i )

q̂ij
∑mc

�=1
∑

i∈Ik(G
c
�)

ωi(G
c
�)q̂ij
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Optimal transport has similarly been used in past literature as a tool for domain adaptation
between train and test data in classification problems (cf. Section 1.2).

• In defining the estimator OT-kNN, we proposed to extend the domain of definition of the
empirical optimal transport coupling π̂(·|g) to the entire space Gc via nearest neighbor ex-
trapolation; cf. equation (5.8). It was shown by Manole et al. (2024) that, for the quadratic
optimal transport problem over Euclidean space, such a procedure has statistically mini-
max optimal risk for estimating the underlying optimal transport map T0, assuming that it
exists and is Lipschitz continuous. Nevertheless, the risk of this estimator suffers severely
from the curse of dimensionality and does not generally improve when T0 enjoys higher
regularity. Manole et al. (2024) and Deb, Ghosal and Sen (2021) have instead shown that
plugin estimators of T0, based on density estimates of P c

3 and P s
3 , may achieve improved

convergence rates in such settings. In our context it is challenging to perform density es-
timation over the space of measures G—and particularly over the nonconvex set Gc—thus
we did not follow this approach. Our aim was instead to alleviate the curse of dimension-
ality inherent to the OT-kNN method by introducing the OT-FvT method. Indeed, we view
the task of estimating P c

4 as a larger statistical bottleneck than that of estimating π0, and
the estimator P̂ c

4,mc
(used by the OT-FvT method) may potentially achieve smaller risk than

the empirical measure P c
4,mc

(used by the OT-kNN method).
• Manole et al. (2024) additionally show that the value k = 1 suffices for the estimator π̂kNN

to enjoy optimal theoretical risk. In our work we nevertheless allow for k to be greater
than 1 in order to leverage the larger size of the 3b sample. For example, when k = 1,
the estimator β̂s

4,kNN is supported on at most mc events, whereas it can be supported on
as many as ns � mc events if k is chosen sufficiently large. In practice, we recommend
choosing k to be as small as possible while ensuring that β̂s

4,kNN has support size on the
same order as ns—this typically amounts to choosing k to be on the order of ns/mc. In our
simulation study (cf. Section 6), we, therefore, choose the value k = 10 but also illustrate
the performance of the OT-kNN method for other values of k.

• We have chosen to separately estimate the probability measure P s
4 and the normalization

βs
4(Gs), because the classical optimal transport problem is only well-defined between mea-

sures with the same total mass. A possible alternative is to consider the partial (Figalli
(2010)) or unbalanced (Liero, Mielke and Savaré (2018)) optimal transport problems be-
tween the unnormalized intensity measures βc

3 and βs
3. These variants of optimal transport

are well-defined between measures that have possibly different mass but have the downside
of introducing tuning parameters. As we explain in Section 6, the normalizations βc

3(Gc)

and βs
3(Gs) are of the same order of magnitude and can, in fact, be made to coincide by

tuning the definition of the Control and Signal regions; thus, we have simply focused our
attention on the classical (balanced) optimal transport problem in this work. Nevertheless,
in the following subsection, we will employ a variant of the partial optimal transport prob-
lem to define the metric W .

5.3. A metric between collider events. We now describe a candidate for the metric W on
G. Recall that the Kantorovich problem in (5.3) gave rise to the Wasserstein distance W be-
tween probability distributions over G. By a recursion of ideas, we will also define W to be a
Wasserstein-type metric, arising from the optimal transport problem between constituent jets
of events. This approach was introduced by Komiske, Metodiev and Thaler (2019). They pro-
pose to metrize G using a variant of the Wasserstein distance, which is well-defined between
measures with nonequal mass (Pele and Werman (2008), Peleg, Werman and Rom (1989)).
Given any two collider events g = ∑4

j=1 pTj
δ(ηj ,φj ,mj ) ∈ G, h = ∑4

j=1 p′
Tj

δ(η′
j ,φ′

j ,m′
j ) ∈ G,
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FIG. 4. Left: (η,φ)-plot of two events g,h ∈ G. Each point represents a constituent jet, with size proportional to
its pT value. A line connecting the ith jet of event g to the j th jet of event h indicates a nonzero value of the optimal
coupling fij , with line darkness increasing as a function of the magnitude of fij . Right: (η,φ)-plot of events
g′, h ∈ G, where g′ � g is an approximate minimizer in equation (5.13). One has W(g,h) = W(g′, h) < W̃(g,h).

the metric is defined by

W̃ (g,h) = min
(fij )∈R4×4

1

R

4∑
i=1

4∑
j=1

fij

√(
ηi − η′

j

)2 + (
φi − φ′

j

)2 +
∣∣∣∣∣

4∑
i=1

(
pTi

− p′
Ti

)∣∣∣∣∣
s.t. fij ≥ 0,

∑
j

fij ≤ pTi
,
∑
i

fij ≤ p′
Tj

,
∑
i,j

fij = min
(∑

i

pTi
,
∑
j

p′
Tj

)
,

(5.12)

for a tuning parameter R > 0. We make several remarks about this definition:

• In the context of particle physics, the coupling fij is naturally interpreted as a flow of
energy (measured in terms of the transverse momentum pT ) from jet i of g to jet j of h,
as depicted in Figure 4. W̃ (g,h) thus measures the smallest possible transport of energy
required to rearrange the jets of the event g into those of h.

• We have followed Komiske, Metodiev and Thaler (2019) by omitting the mass variables
mj and m′

j from the definition of W̃ . This choice is further discussed in the context of our
simulation study in Section 6.

• The tuning parameter R trades off the influence of the angular variables φi , ηi and that of
the energy variables pTi

. Our choice of R is further discussed in Section 6.

The metric W̃ does not, however, take into account the equivalence relation � over G
defined in equation (2.2). For example, W̃ (g,h) could be nonzero, even when g and h are
deemed equivalent for our purposes. We, therefore, define our final metric W by

W(g,h) = inf
{
W̃

(
g′, h

) : g′ � g,g′ ∈ G
}
, g, h ∈ G.(5.13)

Strictly speaking, W now becomes a metric over the set of equivalence classes of events in-
duced by �. We refer to Figure 4 for an illustration. In practice, we numerically approximate
W using a procedure described in Appendix C.

6. Simulation study.

6.1. Simulation description. In this section we compare the performance of the three
background modeling methods OT-FvT, OT-kNN, and FvT on realistic simulated collider
data, generated using the MadGraph particle physics software (Alwall et al. (2011)). Code
for reproducing this simulation study is publicly available.4

4https://github.com/tmanole/HH4bsim.

https://github.com/tmanole/HH4bsim
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Since b-tagging is imperfect, in practice, we expect the 3b and 4b samples to be composed
of a mixture of different multijet scattering processes which do necessarily arise from b-
quarks. We perform a study in MadGraph to estimate the relative scale of such processes.
Assuming a b-jet tagging efficiency of 75%, a charm jet tagging efficiency of 15% and a light
jet tagging efficiency of 1%, we find that the 4b (resp., 3b) sample consists of 90% (10%)
events in a final state with four b quarks, 7% (9%) events in a final state with two b quarks
and two charm quarks, and 4% (80%) in a final state with two b quarks and two light quarks.
In particular, we stress that a fraction of the 3b sample consists of mislabelled 4b events,
which could be signal events. This signal contamination is expected to be sufficiently small
to be considered negligible for purposes of a signal discovery analysis, as in this paper.

We generate four-quark events in MadGraph according to the percentages listed above.
The calorimeters in the CMS detector are not perfect, and the measured jet energies have a
finite resolution. The distribution of the observed smeared energy is well-approximated by
the normal distribution N(E,σ 2(E)), where E denotes the true energy of a jet, and σ(E)

satisfies (
σ(E)

E

)2
=

(
S√
E

)2
+

(
N

E

)2
+ C2

for some constants S,N,C ≥ 0. We apply this smearing to the quark four-vectors, setting
S = 0.98, N = 0, C = 0.054. For simplicity we set the quark masses to zero and omit them
from the the metric W . When applying these methods to real data, it may, however, be useful
to incorporate the jet masses into the definition of W . We also apply jet-level scale factors to
account for the pT dependence of CMS b-tagging for light, charm, and bottom quark jets,

Scale Factor =

⎧⎪⎪⎨⎪⎪⎩
(
2.5pT e−7pT + 0.6

)
/0.75 b-quark(

pT e−10pT + 0.2
)
/0.15 c-quark

(0.03pT + 0.01)/0.01 u, d, s-quark or gluon,

where pT is measured in TeV. Events are weighted by the product of the scale factors for the
b-tagged jets.

Following this preprocessing of the data, the pairing algorithm described in Section 3.2
is applied to all events, and those falling within the Control and Signal Regions are kept.
We define these regions according to equations (3.7)–(3.8), with the parameters σc = 1.03,
κs = 1.6, and rc = 30 GeV. The final sample consists of ns = 201,568 events in the 3b Signal
Region, nc = 159,427 events in the 3b Control Region, ms = 28,980 events in the 4b Signal
Region, and mc = 22,053 events in the 4b Control Region. The order of magnitude of these
sample sizes as well as the proportion of 3b to 4b events is similar to those used in recent
di-Higgs analyses at the LHC (ATLAS (2019)). We also simulate a separate 4b sample of size
approximately 10(ns + ms), which we choose not to contain any signal events, and whose
distribution we treat as the ground truth for the purpose of validating our background models.

We additionally generate a Monte Carlo sample from the SM di-Higgs signal distribution
with which the signal intensity rates (Sj )

J
j=1, used to form the likelihood function (3.5),

can be specified. For the purpose of validating our background models, we train a [0,1]-
valued classifier ξ̂ (abbr. Signal vs. Background, or SvB, classifier) to discriminate the 4b

data from the Monte Carlo di-Higgs sample. Given that our simulated 4b sample contains no
signal events, ξ̂ forms a reasonable proxy for the theoretical binning function ξ in equation
(3.6). The SvB classifier has the same architecture as that of the FvT classifier described in
Appendix B. In the sequel we refer to ξ̂ (g) as the SvB value corresponding to an event g.

Finally, we discuss our choice of the parameter R arising in the definition of the metric
W . In order for the two terms in the definition of W̃ to be of comparable order, we make the
requirement that R lie within the range of the first summand in equation (5.12). We identify
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this range as follows. Since b-tagging is only performed for values of η lying in the interval
[−2.5,2.5], we impose R ≤ √

π2 + 52 ≈ 5.9. Furthermore, jet clustering algorithms used
by CMS merge particles whose (η,φ)-Euclidean distance is within 0.4 (Cacciari, Salam and
Soyez (2008), CMS (2017)), thus we impose R ≥ 0.4. Now, since we expect that the largest
discrepancies between the Control and Signal Region distributions arise in the kinematic
variables (η,φ), we choose the smallest possible value R = 0.4 when fitting the empirical
optimal transport coupling π̂ . On the other hand, for the nearest-neighbor lookup of the OT-
kNN method, we set R = 2.75, which is the midpoint of the interval [0.4,5.9]. We make
no attempt to tune these values of R, and we leave open the question of choosing them
in a data-driven fashion. We compute the metric W in part using the EnergyFlow Python
library (Komiske, Metodiev and Thaler (2022)), and we compute optimal couplings between
distributions of collider events using the Python Optimal Transport library (Flamary et al.
(2021)); see Appendix D for further details.

6.2. Simulation results. The fitted intensity measures β̂s
4 produced by the three back-

ground methods (FvT, OT-kNN, and OT-FvT) are binned and plotted in Figure 5. Logarith-
mic scales are used to better visualize signal-rich regions. Plots with additional kinematic
variables are given in Appendix E. It can be seen that the three methods yield qualitatively
similar estimates of the SvB intensity function. We recall that the SvB variable is of primary
interest to model, as it is used as the final discriminant when testing the signal hypothesis
(3.1). The mHH variable has also been used as the final discriminant in recent di-Higgs stud-
ies (Bryant (2018)). Given an event g ∈ G with dijet pairing {g1, g2}, its mHH value is defined
as follows,5 using the notation of Section 3.2,

(6.1) mHH(g) = m

(
mH

m(g1)
g1 + mH

m(g2)
g2

)
.

Once again, we observe that this variable is well-modelled by all three methods. Among the
various kinematic variables which we analyzed, the “�Rjj –Other” variable, appearing in

FIG. 5. Histograms of the the SvB classifier output variable (left) and the mHH variable (right) for the three
background models as well as the upsampled 4b data (treated as the ground truth), the 3b data (normalized by
the factor nsmc/nc), and the di-Higgs signal sample (SM HH). Error bars in the kth bin of any histogram denote
±√

Nk , where Nk is the number of events per bin. Error bars in the ratio plot denote ±√
Nk/N0k , where N0k is

the number of observed 4b events per bin. The dashed lines in the ratio plot denote ±√
1/N0k .

5Equation (6.1) can be interpreted as the four-body invariant mass after the dijet four-vectors have been cor-
rected to have the Higgs boson mass.
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Figure 5 of Appendix E, presents one of the largest qualitative discrepancies between the
three methods and appears to be best-modelled by the FvT method. In all cases the three
methods provide a significant improvement compared to the uncorrected 3b sample.

In order to provide a quantitative comparison of these methods, we develop a heuristic
two-sample test for testing equality between the distribution of the fitted background models
and of the true upsampled 4b data. Specifically, we form a proxy for a two-sample test by
training classifiers to discriminate each of the background estimates from the upsampled 4b

data (similar approaches have previously been used in the high energy physics literature by
Krause and Shih (2023a), Krause and Shih (2023b)). For each classifier we record the area
under the receiver operating characteristic curve (AUC; Hanley and McNeil (1982)), and
any deviation of this quantity from 0.5 is an indication of mismodeling. We again choose
our classifiers to be residual neural networks with the architecture described in Appendix
B. Although this choice is inherently favourable to the FvT method, and to some extent the
OT-FvT method, we use it because it coincides with the SvB classifier architecture and will
thus be most powerful at detecting mismodeling in the features which are relevant for the
final signal analysis. Another caveat with the use of the AUC as a performance metric is the
fact that it quantifies the overall quality of the background estimates over the whole Signal
Region and might hence not be sensitive to local deviations in the most signal-rich part of the
Signal Region. For this reason it is necessary to also look at the quality of the estimates in
terms of metrics that are localized to the most signal-rich part of the phase space, as is done
in Figure 5 (left) for the di-Higgs signal. If the background estimates are to be used with any
other alternative signal model, similar checks would need to be done with metrics localized
for those signals.

The fitted AUC value for each method is reported in Figure 6. Though all AUCs are signif-
icantly greater than 0.5, they are substantially lower for our background models than for the
benchmark method consisting of the uncorrected 3b sample. The FvT method has the low-
est AUC, followed closely by the OT-FvT method and OT-kNN method. While the OT-1NN
method has comparable AUC point estimate as the OT-FvT method, we emphasize that its
variability interval is wider, which could have been anticipated from the discussion in Sec-
tion 5.2.5 where we emphasized that the support size of βs

4,1NN can be an order of magnitude
smaller than ns . In contrast, the OT-10NN and OT-20NN estimators have narrower variabil-
ity intervals than OT-1NN but have markedly larger AUC point estimates than the remaining
methods. The performance of the OT-kNN method for varying values of k is also illustrated
in Figure 7 as a function of the SvB and mHH variables.

FIG. 6. Fitted AUC values obtained by discriminating each background model from the upsampled 4b data using
the FvT classifier, in the Signal Region, together with 95% percentile bootstrap variability intervals, obtained by
bootstrapping the predicted classifier probabilities. 1000 bootstrap replications are used. Note that this bootstrap
procedure does not take into account the variability of the background estimators themselves. For the 3b-tagged
data, we obtain the AUC 0.5843, with variability interval [0.5812,0.5874].
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FIG. 7. Histograms of the SvB classifier output variable (left) and the mHH variable (right) for the OT-kNN
estimator, with k ∈ {1,10,20}.

We next provide a qualitative comparison of the fitted weights produced by the three back-
ground modeling methods. Recall that these methods all take the form

β̂s
4 =

ns∑
i=1

viδHs
i

for some nonnegative weights vi , which are summarized up to normalization in Table 1. In
Figure 8, we plot the weights of the two optimal transport methods against those of the FvT
method. We observe that the FvT and OT-FvT methods produce weights which are concen-
trated and symmetric around the identity. This implies that the odds ratio of the FvT classifier
at a point Hs

j in the Signal Region behaves similarly to the odds ratio at any point Hc
i in the

Control Region to which Hs
j is optimally coupled. This suggests that the transfer learning

of the FvT classifier from the Control Region to the Signal Region is, to some extent, well-
modelled by the optimal transport coupling π̂ . This observation heuristically suggests that
Assumptions 1–2 both hold in this simulation. In contrast to the method OT-FvT, we observe
that the method OT-10NN produces markedly different weights than the FvT method, which
can partly be anticipated from the discrete nature of the nearest neighbor extrapolation. We

FIG. 8. Bivariate histogram of the 3b data Hs
1 , . . . ,Hs

ns
in the Signal Region, plotted in terms of the weights of

the OT-FvT method against those of the FvT method (left) and of the OT-10NN method against those of the FvT
method (right). The purple lines denote the identity function.
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conjecture that the nearest-neighbor estimator of the optimal transport coupling has poorer
theoretical risk than its counterpart in the OT-FvT method.

7. Conclusion and discussion. Our aim has been to study the problem of data-driven
background estimation, motivated by the ongoing search for double Higgs boson produc-
tion in the 4b final state. After recalling a widely-used approach to this problem based on
transfer learning of a multivariate classifier, our first contribution was to develop the FvT
classifier architecture, which is tailored to collider data and which can serve as a powerful
tool for implementing this methodology. Our primary contribution was then to propose a
distinct background estimation method based on the optimal transport problem. A recurring
theme throughout our work has been the complementarity of the modeling assumptions made
by these two distinct approaches, which allows them to be used as cross-checks for one an-
other in practice. We substantiate this point with a realistic simulation study, in which these
methodologies appear to give consistent results despite their inherently distinct derivations.

Quantifying the uncertainty of our background estimates is a challenging problem left
open by our work, which is nonetheless crucial for applying our methods in practice. In
the experimental particle physics community, it is commonplace to measure both statistical
uncertainties—those arising from fluctuations of the data generating process—and system-
atic uncertainties—those arising from potential mismodeling (Heinrich and Lyons (2007)).
Both of these forms of uncertainty are challenging to quantify in our context. For instance, a
prerequisite for quantifying the statistical uncertainty of the methods OT-kNN or OT-FvT is
to perform statistical inference for optimal transport maps. This is a difficult open problem in
the statistical optimal transport literature that has only been addressed for some special cases
(Ramdas, García Trillos and Cuturi (2017), Rippl, Munk and Sturm (2016)) and for regular-
ized variants of optimal transport maps, which differ from those used in our work (Goldfeld
et al. (2024), Gunsilius and Xu (2021), Klatt, Tameling and Munk (2020), González-Sanz,
Loubes and Niles-Weed (2022)). The question of quantifying systematic uncertainties is more
open-ended and typically involves heuristics for assessing the extent of potential mismodeling
by the background estimation methods. Due to the complementarity of assumptions placed
by our methods, any lack of closure between them could potentially play a role in quantifying
their systematic uncertainties. While further investigation is required to make such a proposal
formal, it is our hope that the optimal transport methodology presented in our work can help
contribute to the challenging question of systematic uncertainty quantification in the search
for di-Higgs boson production or in other searches at the Large Hadron Collider.
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in nontechnical language, Appendices B–D, containing numerical details deferred from the
main text, and Appendix E, containing additional numerical results.
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