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Abstract

Clustering is a critical step in VLSI design. Good clusters
can aid in partitioning, floorplanning, and netlist reduction.
In this work, we adopt a data mining technique to extract
modular clusters and networks between clusters from place-
ment evolution. We observe that state-of-the-art analytical
placers propagate standard cells as Modular Clusters during
placement evolution. And other noisy cells, which cannot
be assigned to a specific cluster, form a network structure
called Inter-Cluster Networks (ICNs). We propose Cascade
HDBSCAN to extract Modular Clusters at different granular-
ity as well as Inter-Cluster Networks in placement evolution.
And we reveal Modular Clusters and Inter-Cluster Networks
adhere to different Rent’s rules. Furthermore, we provide a
detailed analysis on the clustering structure and demonstrate
VLSI netlists are small-world networks. Modular Clusters are
localized groupings connected by Inter-Cluster Networks
that function as shortcuts in the networks.

CCS Concepts: - Hardware — Partitioning and floor-
planning,.

Keywords: Clustering, Data Mining, Placement, Rent’s Rule,
Small-World Networks, Floorplanning, Partitioning

1 Introduction

Clustering, a classic unsupervised machine learning method,
has been widely applied to various tasks in VLSI physical
design, including sampling layout pattern [14], automating
standard cell design [7], and partitioning netlists [8]. Cutting-
edge circuit designs can particularly benefit from clustering
due to their increasing complexity. Clusters can be used for
floorplanning, placement, and complexity reduction, and
numerous approaches have been explored in recent years.
Lu et al. [13] demonstrates a novel framework using Graph
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Neural Networks (GNN) to iteratively generate clusters that
leads to better power, performance, and area (PPA) results
when used to guide placement. Kahng et al. [10] proposed
a clustering method to perform macro placement with the
clustered netlist. However, these methods enforce that each
cell must belong to one of the clusters, overlooking the fact
that some cells may not logically fit within any cluster, such
as those in clock trees, scan chains, and buses.

In this work, we propose a data mining technique for VLSI
designs, Cascade HDBSCAN, which is based on Hierarchical
Density-Based Spatial Clustering (HDBSCAN) [3]. From n
snapshots in the evolution of 2D analytical placement, we
have 2n dimensional data that describe the coordinates of
standard cells throughout the process. We observe that stan-
dard cells that belong to the same logical modules tend to
move together and propagate as clusters throughout the evo-
lution of analytical placement, which motivates us to extract
these modular structures for further analysis. We also iden-
tify a set of noisy cells that do not belong to any clusters
during placement evolution. Cascade HDBSCAN can capture
modular structures at different scales using the dimensional
data. We refer to these clusters as Modular Clusters. And the
noisy cells detected by Cascade HDBSCAN are referred to as
as Inter-Cluster Networks.

Figure 1 illustrates the clustering phenomenon we discov-
ered during DREAMPlace [11] evolution in the global place-
ment stage. The colored groups represent naturally-formed
Modular Clusters, while the black dots represent the networks
between these clusters, referred to as Inter-Cluster Networks.
Cascade HDBSCAN identifies Inter-Cluster Networks, which
consist of standard cells considered as “noise" due to their
sparse nature and inability to attach to any Modular Clusters.
Our main contributions are summarized as follows:

e We identify naturally-formed Modular Clusters during
placement evolution and enhance the existing HDB-
SCAN algorithm to iteratively refine Modular Clusters
and Inter-Cluster Networks, enabling the detection of
patterns at varying levels of granularity.

e We provide a detailed analysis on Modular Clusters
and Inter-Cluster Networks, exploring their different
parameterizations of Rent’s rule.

e We demonstrate that VLSI netlists exhibit small-world
network properties and show that Modular Clusters
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Figure 1. Clustering phenomenon in the evolution of placement solutions. Snapshot (1)-(6) are taken chronologically when
running mixed-mode DREAMPlace on adaptec1 in ISPD 2005 benchmarks [15]. We perform cluster analysis on standard cells
throughout placement evolution using Cascade HDBSCAN, where colored cell groups represent Modular Clusters and scattered
black cells represent the Inter-Cluster Networks in standard cells. Gray boxes are macros.

and Inter-Cluster Networks serve distinct roles in the
network.

The rest of the paper is structured as follows: Section 2 pro-
vides background information and motivations; Section 3
details the formulation behind Cascade HDBSCAN;; Section 4
and 5 provide the formulations of Rent’s rule and small-world
networks respectively, which are used in our analysis; Sec-
tion 6 validates the meaningfulness of Modular Clusters and
Inter-Cluster Networks using Rent’s rule parameterization
and small-world network properties; Section 7 concludes the
paper and highlights future work. Our code is available on
GitHub [1].

2 Analytical Placement Evolution

We use the evolution of state-of-the-art analytical placement
based on ePlace[12] for clustering, which provides high-
quality placement solutions and wins various benchmarks.
In ePlace and its derivative DREAMPlace, a novel density
function is developed that draws an analogy between the
placement instance and an electrostatic system. Leveraging
electric force, each standard cell smoothly follows charge
movement and converges toward a global equilibrium state.
By incorporating techniques such as Fast Fourier Transform

and GPU acceleration, ePlace, and its derivative DREAM-
Place ensure scalable analytical placement, enabling efficient
placement of netlists containing millions of cells in seconds.

Here, we define the placement formulation. Each cell (or
macro) i in the netlist is analogous to a positively charged
particle, which emits an electric force denoted as F;. Formally,
we can define this force as:

Fi = qié;, (1)

where ¢; is the local electric field and g; is the electric quantity
on cell i. Its potential energy N; can be computed by:

Ni = qihi, (2)

where i; is the electric potential.

To speed up the placement process, ePlace employs Pois-
son’s equation to efficiently capture the distribution of the
electric potential:

V- Vi(x) = —p(x), ®)

where p(x) is the charge density.
The objective function of DREAMPlace is formulated as:

min(Xeee Wi(e; Xe) + yD(X)), )
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where X, are the component-wise coordinates within net e;
& denotes a set of given nets; WI(:;-) is a function that com-
putes the cumulative wirelength of a net instance e; D(+) is a
function that computes the bin-wise density; and y is the den-
sity penalty weight. The WI(-;-) term can be regarded as an
attraction force among the components, while D(-) term can
be regarded as a repulsive force to balance out the attraction
force. By minimizing this objective function, DREAMPlace
is able to generate a compact and even placement for the
standard cells and macros.

Throughout the DREAMPlace iterations, the density penalty
weight y gradually increases, and the repulsive force also
increases over time. This increased repulsive force drives
the cells to spread across the entire placement region. Dur-
ing this placement evolution, the movement of the tangible
clusters is continuous and consistent. The smooth and contin-
uous placement evolution is a common characteristic of the
state-of-the-art analytical placement algorithms [4, 5, 11, 12].

3 Clustering based on Data Mining
Techniques

Data mining techniques, such as clustering algorithms, can
be used to analyze high-dimensional datasets with noise
and find inherent patterns in the data. Hierarchical cluster-
ing creates a dendrogram, a tree-like diagram revealing the
arrangement of potential clusters. Such an approach can
handle clusters of different shapes and sizes.

Density-based clustering is another technique that identi-
fies dense regions with many data points and separates them
from sparse or empty regions, making the clusters more re-
sistant to noise in the data. Hence, Density-based clustering
can effectively distinguish the meaningful clusters from the
noisy data points.

HDBSCAN algorithm combines the strengths of hierar-
chical and density-based clustering, allowing it to find con-
sistent cluster patterns in high-dimensional datasets while
being robust to noise. This makes HDBSCAN well-suited for
our application, as we are analyzing the placement evolution
data, which can be large and noisy. Due to the complexity
of placement tasks, cells can travel long distances before
reaching their final destinations in a placement evolution.
Therefore, identifying groups of cells that stay together con-
sistently as the placement evolves over time is crucial in
our flow. The following subsections describe the flow of our
proposed data mining technique, Cascade HDBSCAN, in the
context of standard cell placement.

3.1 Data Preparation

To prepare the data for our clustering analysis, we con-
catenate the standard cell locations across a series of snap-
shots from a DREAMPlace mixed-mode placement evolu-
tion. We denote the initial placement of standard cells as
Xge”. We then take a series of snapshots from the place-
ment evolution, resulting in a set of placements X .;; =
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l}. Here, T represents the total it-

3.2 Graph Construction

HDBSCAN is a density-based clustering method that oper-
ates on a mutual reachability graph. This mutual reachability
graph can be constructed using standard cells as nodes. First,
we construct a weighted graph G = (V, E), where v; € V is
a node that represents a standard cell i. The weight w;; on
the edge e;; € E is based on the mutual reachability distance
dmr(-,-) between the corresponding standard cells.

We compute the mutual reachability distance dmr using
the collected set of placements X_.;;. Denoting the coordinate

of a standard cell i at time ¢ as xl.t , the placement evolution for

such a standard cell is represented as xi{o """ T} To determine

the pair-wise distance between cells i and j, we use the
function dt(-,-), which computes the average Manhattan
Distance over time:

T
0.7} _{0..T} _ 1 ¢t
di (/x0T = ;m X, )
We define the core distance k; = dt(xlf{o""’T},x,EO""’T}),

]EO """ T} for cell i. Tt is the location over time for the

k-th nearest neighbor cell to cell i.! We compute the mutual
reachability distance dmr(-,-) between cell i and cell j as:

where x

0,...T} x{o,i..,r}) _

{
dmr(x; ;

While Euclidean distance assumes a uniform spherical
region, the mutual reachability distance dmr(-,-) used for
density-based clustering considers different neighborhood
regions for each standard cell. As depicted in Figure 1, the po-
tential clusters emerging from the intermediate placements
can have arbitrary shapes. Therefore, to accommodate these
varying cluster shapes, the dmr(-, -) metric is more suitable
than Euclidean distance. Once the mutual reachability dis-
tance dmr(-, ) is computed between each pair of cells, we
perform hierarchical clustering using the weighted graph G
constructed from these distances.

3.3 Single-linkage Hierarchical Clustering

Hierarchical clustering is a form of unsupervised cluster-
ing that, different from k-means clustering, does not require
a predefined number of clusters. For a typical placement
problem, which involves millions of components, this is par-
ticularly advantageous as determining the number of clusters
beforehand can be challenging.

IThe default value for k is the same as 6, which is the minimum cluster
size. The value of k can be adjusted to make the clustering more or less
conservative. HDBSCAN with a lower value of k will identify fewer standard
cells as noisy.
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To identify clusters, we first construct a Minimum Span-
ning Tree (MST), T = (V’, E’) using G we obtained previ-
ously. In an MST, the removal of any single edge creates
multiple connected graphs that can be regarded as cluster
candidates. So an edge can be viewed as a single linkage, and
we define the inverse of the weight of an edge as the A value
for the corresponding removal action.

We then sort each edge of the tree in descending order
of dmr(-,-), and remove single linkages to form clusters. By
cutting horizontally at any depth of this cluster tree, the re-
sulting clusters share a similar dmr(-, -). However, the gran-
ularity and density of each cluster may vary significantly
across placement solutions to different designs. Therefore,
we need to take additional steps to obtain individual clusters
at different tree depths.

3.4 Condensed Tree

Our clustering method considers not only clusters but also
noises (as networks). Not all leaves inside the cluster tree will
fall into a cluster. To distinguish Modular Clusters from Inter-
Cluster Networks, we define stability for potential clusters [2].

Stability, denoted as S(-), can be defined as the lifetime of
a cluster within the tree before it is reduced to a size smaller
than a user-defined size threshold 6 (minimum number of
standard cells in a Modular Clusters ) at a deeper tree depth.
For each cluster ¢, we define its S(-) as:

S(c) = Z (Ap = Abirth) - (7)
cellec
This captures the stability of each cluster by summing the
differences between the A value at which each point p in the
cluster fell out of the cluster (denoted as A,) and the A value
at which the cluster was born (denoted as Apjh).

In the context of placement evolution, this metric evalu-
ates if standard cells of a cluster stay together consistently
throughout all the intermediate placements. If a cell does
not hold a membership to any clusters before splitting up,
it will be considered as a cell in Inter-Cluster Networks (or
noisy points). We summarize our flow in Algorithm 1.

3.5 Cascade HDBSCAN

To uncover as many sizable Modular Clusters as possible
without overlooking smaller clusters, we design Cascade
HDBSCAN shown in Algorithm 2, which executes the HDB-
SCAN algorithm multiple times. We begin with a large mini-
mum cluster size 6 to identify the prominent modules in the
original netlist. Subsequently, we decrease 6 and continue
to extract smaller Modular Clusters from the Inter-Cluster
Networks in the previous HDBSCAN results. These smaller
clusters exhibit good modularity, but they were previously
categorized as “noise" since their size did not exceed 6.
Cascade HDBSCAN allows us to leverage the strengths
of the HDBSCAN algorithm to hierarchically discover mod-
ular structures at different scales within the VLSI design.
By adjusting the minimum cluster size parameter, we can
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Algorithm 1 Single-linkage Hierarchical Clustering

Require: Set of standard cells {x; f\i 1» mutual reachability

distances dmr (-, -)

Ensure: Modular Clusters and Inter-Cluster Networks
Compute pairwise distance metric using Equation 6
Construct a graph G = (V, E) on {x; {il using dmr(-, -) as
weight
Construct a Minimum Spanning Tree T = (V’, E’) from G

Sort edges in E” of T by distance in descending order
Initialize modular clusters C « {{x,}fi 1}, dendrogram
D« 0
for each edge e € E' do

Remove the current cluster containing e from C

Add the two new clusters from single linkage to D
end for
for each cluster c¢ in the dendrogram D do

Calculate A value for ¢

Compute the stability S(c) using Equation 7
end for
Construct the condensed tree retaining only clusters with
significant stability
Add clusters with the highest stability scores from the
condensed tree to C
for each standard cell x; do

Assign x; to the most stable cluster it belongs to in C
end for
Initialize inter-cluster networks ICN «
for each standard cell x; do

if x; does not belong to any stable cluster then

Add x; to ICN

end if
end for
return C and ICN

progressively uncover both the large and dominant modules
as well as the small yet meaningful modular components
that may have been overlooked in a single-pass clustering.

4 Rent’s Rule Parametrization

Rent’s rule is an empirical observation that relates the num-
ber of external signal pins to the number of internal gates in
a circuit [6]. For a reasonable clustering outcome, clusters
(or sub-circuits) should reflect a natural hierarchical struc-
ture of the original circuit while sharing a similar complexity.
Given a Cluster with number of external pins Cluster,;, and
number of internal gates Clusteryqz., Rent’s rule states that:

Clusterpi, =K - Clustergate. (8)

where K is the Rent’s coefficient and p is the Rent’s exponent.

We use Rent’s rule to demonstrate that Cascade HDBSCAN
is an effective clustering algorithm and that Modular Clusters
exhibit different properties from Inter-Cluster Networks. The
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Algorithm 2 Cascade HDBSCAN

N
i=1

Require: Set of standard cells {x;
distances dmr (-, -), 0123
Ensure: All Modular Clusters and Inter-Cluster Networks
Initialize Clusters « 0
Initialize Remaining Cells « {xi}ﬁil
// Tteratively run HDBSCASN three times
for (i=0;i < 3;i++) do
Set Minimum Cluster Size <« 0;
Run Algorithm 1 on Remaining Cells
Add all clusters in C to Clusters
Update Remaining Cells < ICN
end for
return Clusters and Remaining Cells

mutual reachability

traditional way of obtaining Rent’s rule data is through a
recursive partitioning process [6]. The choice of partitioning
algorithm influences the Rent’s exponent p. Our Cascade
HDBSCAN can also be considered as a partitioning algorithm,
with Modular Clusters as its results. Consequently, Rent’s
rule can be evaluated on these Modular Clusters. In Section 6,
we will analyze the difference between the Rent exponents
of Modular Clusters and those of Inter-Cluster Networks.

5 Small-World Networks

In many technological, biological, and social systems, net-
works often exhibit structures that are neither fully regular
nor entirely random [16]. These so-called small-world net-
works are characterized by a high degree of local clustering
combined with “shortcuts” between distant nodes, a phenom-
enon known as the “small-world effect” [17]. This network
structure, composed of tightly clustered nodes connected
predominantly by short-range links, with a few long-range
connections, enables efficient communication across the net-
work. The small-world effect is also evident in electronic
circuits [9]. Inspired by this concept, Ogras et al. [16] intro-
duced long-range links into standard mesh networks to act
as shortcuts, reducing circuit latency.

The structural properties of networks are often quantified
by the characteristic path length L and the clustering coeffi-
cient C. L characterizes the distance between vertices in the
graph and is defined as the average number of edges in the
shortest paths between all pairs of vertices. C quantifies the
clustering phenomenon within the neighborhood of single
vertices. For a vertex v having k neighbors, the maximum
number of edges between them is k(k — 1)/2. C, is the ratio
of the actual number of edges in the neighborhood to this
maximum. C is defined as the average of C, over all vertices.

Using the Watts—Strogatz model [17], a random graph
with the same number of nodes and edges as the original
small-world graph is generated. A small-world network has

the property that Lynall-world is slightly greater than Lrandom graphs

while Cimall-world is significantly larger than Crandom graph-
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In Section 6, we will demonstrate that modern VLSI netlists
are also small-world networks, with Modular Clusters and
Inter-Cluster Networks serving different functions. Specif-
ically, Modular Clusters create localized groupings, while
Inter-Cluster Networks function as shortcuts, connecting dis-
tant clusters.

Figure 2. Cascade HDBSCAN clustering results for
adaptecl in a placement snapshot. Macros are excluded
for clarity. Top plot shows Modular Cluster cells. Bottom plot
shows Inter-Cluster Networks cells. Modular Cluster cells are
significantly denser than Inter-Cluster Networks cells.

6 Experimental Results

In this section, we provide a comprehensive analysis of the
generated Modular Clusters and Inter-Cluster Networks. We
hypothesize that the generated Modular Clusters and Inter-
Cluster Networks follow different Rent’s rules, and VLSI de-
signs exhibit the small-world effect. The ISPD 2005 contest
benchmarks [15] were used in our experiments.
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6.1 Cascade HDBSCAN Clustering on DREAMPlace
Snapshots

The cell coordinates are extracted from the DREAMPlace
global placement evolution every 50 iterations, starting from
iteration 200. These coordinates are concatenated to form
the data for clustering. The first 200 iterations are excluded
because the cell coordinates do not change significantly dur-
ing this period. After extracting the data, we perform three
iterative rounds of HDBSCAN for clustering. The hyperpa-
rameter 0 mentioned in Section 3 is set to 400, 200, and 100
for each round. In rounds 2 and 3, HDBSCAN is applied to
the noisy points identified in the previous round to itera-
tively uncover smaller clusters and reduce the number of
Inter-Cluster Networks cells.

Table 1 presents the clustering statistics. On average, 5.16%
of the standard cells are identified as Inter-Cluster Networks
cells, and the number of Modular Clusters is approximately
one-thousandth of the total number of cells. Figure 2 illus-
trates the clustering results for adaptec? in one placement
snapshot, with separate plots of Modular Cluster and Inter-
Cluster Networks. Each Modular Cluster exhibits high cell
density with a well-defined clustering structure. In contrast,
the Inter-Cluster Networks are much sparser and primarily
distributed between clusters. This density contrast affirms
the validity of the Modular Clusters. However, some smaller
clusters are also observed within the Inter-Cluster Networks,
which is due to the algorithm’s granularity. These smaller
clusters could be further captured by additional HDBSCAN
iterations, though this may lead to some Inter-Cluster Net-
works being misclassified as clusters.

6.2 Rent’s Rule Analysis

Our analysis of Rent’s rule is conducted on four different
types of groups. Each group, except Modular Clusters, is
formed by dividing the final placement region into n X n
windows, where n € {4, 8,16,32}. The relevant cell types
within each window are then treated as individual groups.

e Whole Circuit: Traditionally, Rent’s rule is evaluated
on the whole circuit, without differentiating between
Modular Clusters and Inter-Cluster Networks. To mea-
sure Rent’s rule of the whole circuit, we extract the
final placement coordinates of standard cells, take all
the cells inside a window as a group, and evaluate the
number of cells in each group (grid) and the number
of pins connected to the rest of the circuit.

e Modular Clusters: We also evaluate Rent’s rule for the
clusters we find. Each cluster is treated as a group, and
its external connections to the rest of the circuit are
counted.

o Inter-Cluster Networks: Rent’s rule is obtained for Inter-
Cluster Networks only. Inside each window, we take
all the standard cells belonging to the Inter-Cluster
Networks as a group. The external connections of these
groups are then counted.
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e Intra-Cluster Networks: To characterize the internal
connectivity of Modular Clusters, we obtain Rent’s rule
for each Modular Cluster. Inside each window, we take
all the cells belonging to the target Modular Cluster as a
group, and count the number of external connections.

After obtaining the number of nodes and pins (external con-
nections) for each group, we use linear regression on the
logarithmic scale to derive Rent’s exponent p and Rent’s
coefficient K.

10*

10?

Number of pins

J
z :; . Whole Circuit
101 S :,a . s e Modular Cluster
. e . « Inter-Cluster Network
M ¢ Whole Circuit Rent's rule
.

Modular Cluster Rent's rule
Inter-Cluster Network Rent's rule

10! 102 10° 10¢
Number of cells

Figure 3. Rent’s rule of three different types of groups on
adaptec1 benchmark: Whole Circuit, Modular Clusters, and
Inter-Cluster Networks. Each point represents a specific group
of cells. The lines represent the linear regression of Rent’s
rule. Intra-Cluster Networks are excluded here, as each cluster
has its own Intra-Cluster Networks Rent’s rule, and these
results are shown in Figure 4.

Figure 3 shows the Rent’s rule results on adaptec1 bench-
mark for the first three types of groups: Whole Circuit, Mod-
ular Clusters, and Inter-Cluster Networks (ICNs). It demon-
strates that the first three types of groups have different
Rent’s rule. The data points from Inter-Cluster Networks are
at the top, the Whole Circuit data points are mainly in the
middle, and the data points of Modular Clusters are generally
at the bottom. Due to the relatively small size of each cluster
compared to the total number of cells, Region II of Rent’s
rule is not observed in our experiments.

Table 2 presents the numerical results for Rent’s rule.
Across all ISPD 2005 benchmarks, the Rent’s exponent p
value for Modular Clusters is, on average, 33.3% lower than
that of the Whole Circuit. This indicates that the external
connectivity of Modular Clusters is weaker than that of the
partitions derived from the traditional Rent’s rule process.
This suggests that Cascade HDBSCAN is an effective clus-
tering algorithm, as it produces clusters with fewer external
connections for the same number of cells.
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Table 1. Cascade HDBSCAN clustering result on ISPD 2005 benchmarks.

Table 2. Rent’s exponent p and Rent’s coefficient K for the
ISPD 2005 benchmarks.

Whole Modular ICN Intra-Cluster
Design Circuit Cluster Network

P K| p K| p K| p K

adaptecl | 0.56 13.48 | 0.21 71.44 | 0.92 3.76 | 0.89 3.00
adaptec2 | 0.55 15.32 | 0.41 17.27 | 1.09 1.17 | 0.76 3.76
adaptec3 | 0.57 13.59 | 0.51 10.36 | 0.89 4.02 | 0.87 2.50
adaptec4 | 0.52 18.56 | 0.41 16.41 | 0.80 7.36 | 0.96 1.59
bigbluel | 0.69  5.00 | 0.45 22.78 | 0.98 2.70 | 0.86 3.39
bigblue2 | 0.66  4.09 | 0.42 14.04 | 0.96 2.20 | 0.91 2.40
bigblue3 | 0.65 5.81 | 0.41 1598 | 0.95 2.98 | 0.90 2.33
bigblue4 | 0.57 13.50 | 0.41 19.95 | 0.91 4.52 | 0.99 1.27
Average | 0.60 11.17 | 0.40 23.53 | 0.94 3.59 | 0.89 2.53

The p for Inter-Cluster Networks is on average 56.7% higher
than that of the Whole Circuit. Since Rent’s rule expects a
consistent level of connectivity across the netlist, this higher-
than-average p suggests that the Inter-Cluster Networks iden-
tified by our algorithm have connectivity properties that
differ from those of other cells in the netlist, which are Mod-
ular Clusters cells.

However, in Figure 3, some Modular Cluster data points
are above the Whole Circuit Rent’s rule, exhibiting a strong
external connection. To justify these clusters, we obtain the
Rent’s rule of Intra-Cluster Networks for each Modular Clus-
ter. Experimental results in Table 2 show that their internal
connection is even stronger, thus forming Modular Clusters.

Figure 4 shows the Rent’s exponent p and Rent’s coeffi-
cient K of the Intra-Cluster Networks for each Modular Cluster
on adaptec1 benchmark. The Rent’s rule data of the Intra-
Cluster Networks are finally aggregated and shown in Table
2. The results show that Modular Clusters have a Rent’s ex-
ponent p that is 48.3% higher than of the Whole Circuit and
122.5% higher than the Inter-Cluster Networks on average.
This indicates that the Modular Clusters have stronger in-
ternal connectivity than external connectivity, which is the
reason for their formation.

6.3 Small-World Network Analysis

To verify that if the netlists from the ISPD 2005 benchmarks
exhibit small-world properties, each netlist is compared to a
random graph. Cpeyist represents the clustering coefficient
for the netlist, while Crandom graph denotes that of the ran-
dom graph. They are calculated based on the definitions in

Design #Cells | #nets | #ICN cells | Total ICN% | #Clusters D;{E AMPIace HDB.S CAN
untime (s) | Runtime (s)

adaptec] 211K 221K 7,353 3.48% 223 25 21
adaptec2 255K 266K 10,800 4.23% 315 33 18
adaptec3 452K 467K 20,914 4.63% 520 54 79
adaptec4 496K 516K 30,143 6.08% 549 61 83
bigbluel 278K 284K 19,676 7.07% 256 34 45
bighlue2 558K 577K 20,733 3.72% 483 72 53
bigblue3 | 1,097K | 1,123K 69,941 6.38% 1,236 115 284
bigblue4 | 2,177K | 2,230K 123,391 5.67% 2,354 2556 721

> . Intra—éluster Network Rent's rule

70

Whole Circuit Rent's rule
Inter-Cluster Network Rent's rule

6 Modular Cluster Rent's rule

50

40

30

20

10

0.2 0.4 0.6 0.8

P

Figure 4. Intra-cluster Rent’s rule on adaptec1 benchmark.
Each data point represents Rent’s rule for a Modular Clus-
ter. The x-axis is the Rent’s exponent p, and the y-axis is
the Rent’s coefficient K. All Modular Clusters have a Rent’s
exponent p larger than both the Whole Circuit and the Inter-
Cluster Networks.

Section 5. Since calculating Lneist and Lrandom graph for all
possible pairs of cells is computationally expensive, their
values are estimated by randomly sampling 10,000 pairs.
The results, shown in Table 3, indicate that Lyey;s is 4.51%
greater than Lrandom graph, While Creqist is 8,845 times larger
than Crandom graph On average. This is consistent with the two
small-world properties discussed in Section 5 and confirms
that the netlists are indeed small-world networks.

Next, we aim to demonstrate the distinct roles of Modular
Clusters and Inter-Cluster Networks in small-world networks.
We measure Licn as the average distance between two ran-
domly picked Inter-Cluster Networks cells, and Ljyster as the
average distance for pairs from Modular Clusters. Similarly,
Cicn and Cepyster are measured separately for these two types
of cells. The results are presented in Table 3. In the table,
Cicn and Cepyster show marginal difference. This can be attrib-
uted to the fact that the clustering coefficient C characterizes
individual vertices (cells), and its granularity is too small to
represent the global clustering properties of our Modular
Clusters. However, Licy is smaller than Ljygter in the first six
benchmarks, supporting our hypothesis that Modular Clus-
ters form localized groupings, while Inter-Cluster Networks
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Table 3. Comparison of characteristic Path Length L and Clustering Coefficient C for netlists from the ISPD 2005 benchmarks
against random graphs. Additionally, Lejyster and Cejyster are measured for Modular Clusters, and Licn and Cien are measured

for Inter-Cluster Networks.

. Characteristic Path Length L Clustering Coefficient C
Design
Lnetlist  Lrandom graph Leuster  LicN | Chetlist  Crandom graph Celuster Cren
adaptec] 9.85 9.68 9.83 9.59 | 0.0631 13.0e-6  0.0627 0.0651
adaptec2 | 11.82 9.84 11.88 11.76 | 0.0303 6.7e-6  0.0301 0.0255
adaptec3 | 13.13 11.31 13.06 12.67 | 0.0599 8.0e-6  0.0587 0.0549
adaptec4 | 15.14 13.37 15.06 14.93 | 0.1033 9.0e-6 0.1017 0.1202
bigbluel 7.39 7.42 7.42  7.15 | 0.0399 10.0e-6  0.0401 0.0397
bigblue2 7.58 7.84 7.59  6.87 | 0.0487 9.3e-6  0.0486 0.0482
bigblue3 7.85 8.22 7.80  8.34 | 0.0924 2.3e-6 0.0923 0.0941
bigblue4 7.03 8.65 6.97 7.31] 0.1145 4.3e-6 0.1147 0.1055
Average 9.97 9.54 9.95 9.83 | 0.0690 7.8e-6 0.0484 0.0692

Table 4. Proportion of Inter-Cluster Network cells on shortest
paths versus their overall proportion in the netlist.

Design | Total ICN% | Shortest Path ICN%
adaptec] 3.48% 15.93%
adaptec?2 4.23% 17.58%
adaptec3 4.63% 19.78%
adaptec4 6.08% 19.93%
bigbluel 7.07% 13.15%
bigblue2 3.72% 18.94%
bigblue3 6.38% 11.41%
bigblue4 5.67% 21.40%
Average 5.16% 17.26%

act as shortcuts connecting distant clusters. In bigblue3
and bigblue4, Licy is larger than Ljystey. This is due to a
significant number of Inter-Cluster Networks located near the
placement edge. Inter-Cluster Networks are primarily com-
posed of I0-related cells and scan chains, which have low
connectivity to the rest of the graph.

To further validate our hypothesis, we conduct two ex-
periments. The first experiment evaluates the proportion of
Inter-Cluster Network cells on the shortest paths compared
to their overall proportion in the netlist. In this experiment,
we randomly select 10,000 pairs of cells and calculate the
number of Inter-Cluster Network cells on these paths, then
divide it by the total number of cells in the paths. Results are
shown in Table 4. Since Inter-Cluster Networks act as short-
cuts within the whole circuit, they appear more frequently
along the shortest paths. As a result, Inter-Cluster Networks
make up a higher proportion of the shortest paths compared
to their scale in the whole circuit.

The first experiment shows that the proportion of Inter-
Cluster Network cells is significantly higher on the shortest
paths. Despite their low overall proportion of 5.2% on average
in the entire netlist, their presence on the shortest paths is
notably large, averaging 17.3%, more than three times greater.

In the second experiment, we examine how L changes
when all Inter-Cluster Network cells are removed, denoted
as Lyemove 1cN- For comparison, we conduct a control experi-
ment where the same number of randomly selected cells are

Table 5. Comparison of path length L with and without
Inter-Cluster Network cells. Removing ICNs increases L by
an average of 21.5% over the control.

DeSign Lyetlist | Lremove ICN | Lremove control
adaptecl | 9.85 10.89 9.99
adaptec2 | 11.82 13.32 11.96
adaptec3 | 13.13 15.26 13.47
adaptec4 | 15.14 17.79 16.63
bigbluel 7.39 8.35 7.66
bigblue2 | 7.58 14.74 7.72
bigblue3 | 7.85 9.32 8.14
bigblue4 | 7.03 10.97 7.24
Average 9.97 12.58 10.35

removed from the graph, denoted the result as Lyemove control-
Results are shown in Table 5.

The second experiment demonstrates that Lyemove 10N 1S, On
average, 21.5% greater than Lyemove control. Results from both
experiments further validate the critical role Inter-Cluster
Networks play in the connectivity of the netlist, acting as
shortcuts that efficiently link distant clusters.

7 Conclusion

In this work, we discover the clustering phenomenon during
placement evolution. To effectively extract these Modular
Clusters and the Inter-Cluster Networks, we utilize Cascade
HDBSCAN for noise-aware clustering across intermediate
placements. We verify that Modular Clusters and Inter-Cluster
Networks adhere to different Rent’s rules, with Inter-Cluster
Networks exhibiting stronger external connections than Mod-
ular Clusters. Additionally, we confirm that VLSI netlists ex-
hibit small-world properties, where Modular Clusters form
localized groupings and Inter-Cluster Networks serve as short-
cuts connecting distant clusters. Our future studies include
combining Cascade HDBSCAN with placement to study its
impact on power, performance, area, and potential design
complexity reduction.
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