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Abstract
Clustering is a critical step in VLSI design. Good clusters
can aid in partitioning, !oorplanning, and netlist reduction.
In this work, we adopt a data mining technique to extract
modular clusters and networks between clusters from place-
ment evolution. We observe that state-of-the-art analytical
placers propagate standard cells as Modular Clusters during
placement evolution. And other noisy cells, which cannot
be assigned to a speci"c cluster, form a network structure
called Inter-Cluster Networks (ICNs). We propose Cascade
HDBSCAN to extract Modular Clusters at di#erent granular-
ity as well as Inter-Cluster Networks in placement evolution.
And we reveal Modular Clusters and Inter-Cluster Networks
adhere to di#erent Rent’s rules. Furthermore, we provide a
detailed analysis on the clustering structure and demonstrate
VLSI netlists are small-world networks. Modular Clusters are
localized groupings connected by Inter-Cluster Networks
that function as shortcuts in the networks.

CCS Concepts: • Hardware → Partitioning and !oor-
planning.

Keywords: Clustering, Data Mining, Placement, Rent’s Rule,
Small-World Networks, Floorplanning, Partitioning

1 Introduction
Clustering, a classic unsupervised machine learning method,
has been widely applied to various tasks in VLSI physical
design, including sampling layout pattern [14], automating
standard cell design [7], and partitioning netlists [8]. Cutting-
edge circuit designs can particularly bene"t from clustering
due to their increasing complexity. Clusters can be used for
!oorplanning, placement, and complexity reduction, and
numerous approaches have been explored in recent years.
Lu et al. [13] demonstrates a novel framework using Graph
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Neural Networks (GNN) to iteratively generate clusters that
leads to better power, performance, and area (PPA) results
when used to guide placement. Kahng et al. [10] proposed
a clustering method to perform macro placement with the
clustered netlist. However, these methods enforce that each
cell must belong to one of the clusters, overlooking the fact
that some cells may not logically "t within any cluster, such
as those in clock trees, scan chains, and buses.

In this work, we propose a data mining technique for VLSI
designs, Cascade HDBSCAN, which is based on Hierarchical
Density-Based Spatial Clustering (HDBSCAN) [3]. From 𝐿
snapshots in the evolution of 2D analytical placement, we
have 2𝐿 dimensional data that describe the coordinates of
standard cells throughout the process. We observe that stan-
dard cells that belong to the same logical modules tend to
move together and propagate as clusters throughout the evo-
lution of analytical placement, which motivates us to extract
these modular structures for further analysis. We also iden-
tify a set of noisy cells that do not belong to any clusters
during placement evolution. Cascade HDBSCAN can capture
modular structures at di#erent scales using the dimensional
data. We refer to these clusters as Modular Clusters. And the
noisy cells detected by Cascade HDBSCAN are referred to as
as Inter-Cluster Networks.

Figure 1 illustrates the clustering phenomenon we discov-
ered during DREAMPlace [11] evolution in the global place-
ment stage. The colored groups represent naturally-formed
Modular Clusters, while the black dots represent the networks
between these clusters, referred to as Inter-Cluster Networks.
Cascade HDBSCAN identi"es Inter-Cluster Networks, which
consist of standard cells considered as “noise" due to their
sparse nature and inability to attach to anyModular Clusters.
Our main contributions are summarized as follows:

• We identify naturally-formed Modular Clusters during
placement evolution and enhance the existing HDB-
SCAN algorithm to iteratively re"ne Modular Clusters
and Inter-Cluster Networks, enabling the detection of
patterns at varying levels of granularity.

• We provide a detailed analysis on Modular Clusters
and Inter-Cluster Networks, exploring their di#erent
parameterizations of Rent’s rule.

• We demonstrate that VLSI netlists exhibit small-world
network properties and show that Modular Clusters
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Figure 1. Clustering phenomenon in the evolution of placement solutions. Snapshot (1)-(6) are taken chronologically when
running mixed-mode DREAMPlace on adaptec1 in ISPD 2005 benchmarks [15]. We perform cluster analysis on standard cells
throughout placement evolution using Cascade HDBSCAN, where colored cell groups represent Modular Clusters and scattered
black cells represent the Inter-Cluster Networks in standard cells. Gray boxes are macros.

and Inter-Cluster Networks serve distinct roles in the
network.

The rest of the paper is structured as follows: Section 2 pro-
vides background information and motivations; Section 3
details the formulation behind Cascade HDBSCAN ; Section 4
and 5 provide the formulations of Rent’s rule and small-world
networks respectively, which are used in our analysis; Sec-
tion 6 validates the meaningfulness of Modular Clusters and
Inter-Cluster Networks using Rent’s rule parameterization
and small-world network properties; Section 7 concludes the
paper and highlights future work. Our code is available on
GitHub [1].

2 Analytical Placement Evolution
We use the evolution of state-of-the-art analytical placement
based on ePlace[12] for clustering, which provides high-
quality placement solutions and wins various benchmarks.
In ePlace and its derivative DREAMPlace, a novel density
function is developed that draws an analogy between the
placement instance and an electrostatic system. Leveraging
electric force, each standard cell smoothly follows charge
movement and converges toward a global equilibrium state.
By incorporating techniques such as Fast Fourier Transform

and GPU acceleration, ePlace, and its derivative DREAM-
Place ensure scalable analytical placement, enabling e$cient
placement of netlists containing millions of cells in seconds.
Here, we de"ne the placement formulation. Each cell (or

macro) 𝑀 in the netlist is analogous to a positively charged
particle, which emits an electric force denoted as 𝑁𝐿 . Formally,
we can de"ne this force as:

𝑁𝐿 = 𝑂𝐿𝑃𝐿 , (1)

where 𝑃𝐿 is the local electric "eld and𝑂𝐿 is the electric quantity
on cell 𝑀 . Its potential energy 𝑄𝐿 can be computed by:

𝑄𝐿 = 𝑂𝐿𝑅𝐿 , (2)

where𝑅𝐿 is the electric potential.
To speed up the placement process, ePlace employs Pois-

son’s equation to e$ciently capture the distribution of the
electric potential:

↑ · ↑𝑅 (𝑆) = ↓𝑇 (𝑆), (3)

where 𝑇 (𝑆) is the charge density.
The objective function of DREAMPlace is formulated as:

min
𝑀

(∑𝑁↔E𝑈𝑉 (𝑊;𝑋𝑁 ) + 𝑌D(𝑋 )), (4)
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where 𝑋𝑁 are the component-wise coordinates within net 𝑊 ;
E denotes a set of given nets;𝑈𝑉 (·; ·) is a function that com-
putes the cumulative wirelength of a net instance 𝑊 ;D(·) is a
function that computes the bin-wise density; and𝑌 is the den-
sity penalty weight. The𝑈𝑉 (·; ·) term can be regarded as an
attraction force among the components, whileD(·) term can
be regarded as a repulsive force to balance out the attraction
force. By minimizing this objective function, DREAMPlace
is able to generate a compact and even placement for the
standard cells and macros.

Throughout theDREAMPlace iterations, the density penalty
weight 𝑌 gradually increases, and the repulsive force also
increases over time. This increased repulsive force drives
the cells to spread across the entire placement region. Dur-
ing this placement evolution, the movement of the tangible
clusters is continuous and consistent. The smooth and contin-
uous placement evolution is a common characteristic of the
state-of-the-art analytical placement algorithms [4, 5, 11, 12].

3 Clustering based on Data Mining
Techniques

Data mining techniques, such as clustering algorithms, can
be used to analyze high-dimensional datasets with noise
and "nd inherent patterns in the data. Hierarchical cluster-
ing creates a dendrogram, a tree-like diagram revealing the
arrangement of potential clusters. Such an approach can
handle clusters of di#erent shapes and sizes.

Density-based clustering is another technique that identi-
"es dense regions with many data points and separates them
from sparse or empty regions, making the clusters more re-
sistant to noise in the data. Hence, Density-based clustering
can e#ectively distinguish the meaningful clusters from the
noisy data points.
HDBSCAN algorithm combines the strengths of hierar-

chical and density-based clustering, allowing it to "nd con-
sistent cluster patterns in high-dimensional datasets while
being robust to noise. This makes HDBSCAN well-suited for
our application, as we are analyzing the placement evolution
data, which can be large and noisy. Due to the complexity
of placement tasks, cells can travel long distances before
reaching their "nal destinations in a placement evolution.
Therefore, identifying groups of cells that stay together con-
sistently as the placement evolves over time is crucial in
our !ow. The following subsections describe the !ow of our
proposed data mining technique, Cascade HDBSCAN, in the
context of standard cell placement.

3.1 Data Preparation
To prepare the data for our clustering analysis, we con-
catenate the standard cell locations across a series of snap-
shots from a DREAMPlace mixed-mode placement evolu-
tion. We denote the initial placement of standard cells as
𝑋 0
𝑂𝑁𝑃𝑃 . We then take a series of snapshots from the place-

ment evolution, resulting in a set of placements 𝑋𝑂𝑁𝑃𝑃 =

{𝑋 0
𝑂𝑁𝑃𝑃 ,𝑋

1
𝑂𝑁𝑃𝑃 , . . . ,𝑋

𝑄↓1
𝑂𝑁𝑃𝑃 ,𝑋

𝑄
𝑂𝑁𝑃𝑃 }. Here, 𝑍 represents the total it-

eration count.

3.2 Graph Construction
HDBSCAN is a density-based clustering method that oper-
ates on a mutual reachability graph. This mutual reachability
graph can be constructed using standard cells as nodes. First,
we construct a weighted graph 𝑎 = (𝑏 , 𝑐), where 𝑑𝐿 ↔ 𝑏 is
a node that represents a standard cell 𝑀 . The weight𝑒𝐿 𝑅 on
the edge 𝑊𝐿 𝑅 ↔ 𝑐 is based on the mutual reachability distance
𝑓𝑔𝑕 (·, ·) between the corresponding standard cells.

We compute the mutual reachability distance 𝑓𝑔𝑕 using
the collected set of placements𝑋𝑂𝑁𝑃𝑃 . Denoting the coordinate
of a standard cell 𝑀 at time 𝑖 as 𝑆𝑆𝐿 , the placement evolution for
such a standard cell is represented as 𝑆 {0,...,𝑄 }

𝐿 . To determine
the pair-wise distance between cells 𝑀 and 𝑗 , we use the
function 𝑓𝑖 (·, ·), which computes the average Manhattan
Distance over time:

𝑓𝑖 (𝑆 {0,...,𝑄 }
𝐿 , 𝑆 {0,...,𝑄 }

𝑅 ) = 1
𝑍 + 1

𝑄∑
𝑆=0

|𝑆𝑆𝐿 ↓ 𝑆𝑆𝑅 |, (5)

We de"ne the core distance 𝑘𝐿 = 𝑓𝑖 (𝑆 {0,...,𝑄 }
𝐿 , 𝑆 {0,...,𝑄 }

𝑇 ),
where 𝑆 {0,...,𝑄 }

𝑇 for cell 𝑀 . It is the location over time for the
𝑙-th nearest neighbor cell to cell 𝑀 .1 We compute the mutual
reachability distance 𝑓𝑔𝑕 (·, ·) between cell 𝑀 and cell 𝑗 as:

𝑓𝑔𝑕 (𝑆 {0,...,𝑄 }
𝐿 , 𝑆 {0,...,𝑄 }

𝑅 ) =

max(𝑘𝐿 ,𝑘 𝑅 ,𝑓𝑖 (𝑆 {0,...,𝑄 }
𝐿 , 𝑆 {0,...,𝑄 }

𝑅 )) . (6)

While Euclidean distance assumes a uniform spherical
region, the mutual reachability distance 𝑓𝑔𝑕 (·, ·) used for
density-based clustering considers di#erent neighborhood
regions for each standard cell. As depicted in Figure 1, the po-
tential clusters emerging from the intermediate placements
can have arbitrary shapes. Therefore, to accommodate these
varying cluster shapes, the 𝑓𝑔𝑕 (·, ·) metric is more suitable
than Euclidean distance. Once the mutual reachability dis-
tance 𝑓𝑔𝑕 (·, ·) is computed between each pair of cells, we
perform hierarchical clustering using the weighted graph 𝑎
constructed from these distances.

3.3 Single-linkage Hierarchical Clustering
Hierarchical clustering is a form of unsupervised cluster-
ing that, di#erent from k-means clustering, does not require
a prede"ned number of clusters. For a typical placement
problem, which involves millions of components, this is par-
ticularly advantageous as determining the number of clusters
beforehand can be challenging.

1The default value for 𝑇 is the same as 𝑈 , which is the minimum cluster
size. The value of 𝑇 can be adjusted to make the clustering more or less
conservative. HDBSCANwith a lower value of𝑇 will identify fewer standard
cells as noisy.
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To identify clusters, we "rst construct a Minimum Span-
ning Tree (MST), 𝑍 = (𝑏 ↗, 𝑐↗) using 𝑎 we obtained previ-
ously. In an MST, the removal of any single edge creates
multiple connected graphs that can be regarded as cluster
candidates. So an edge can be viewed as a single linkage, and
we de"ne the inverse of the weight of an edge as the 𝑚 value
for the corresponding removal action.
We then sort each edge of the tree in descending order

of 𝑓𝑔𝑕 (·, ·), and remove single linkages to form clusters. By
cutting horizontally at any depth of this cluster tree, the re-
sulting clusters share a similar 𝑓𝑔𝑕 (·, ·). However, the gran-
ularity and density of each cluster may vary signi"cantly
across placement solutions to di#erent designs. Therefore,
we need to take additional steps to obtain individual clusters
at di#erent tree depths.
3.4 Condensed Tree
Our clustering method considers not only clusters but also
noises (as networks). Not all leaves inside the cluster tree will
fall into a cluster. To distinguishModular Clusters from Inter-
Cluster Networks, we de"ne stability for potential clusters [2].

Stability, denoted as S(·), can be de"ned as the lifetime of
a cluster within the tree before it is reduced to a size smaller
than a user-de"ned size threshold 𝑛 (minimum number of
standard cells in a Modular Clusters ) at a deeper tree depth.
For each cluster 𝑜 , we de"ne its S(·) as:

S(𝑜) =
∑

𝑂𝑁𝑃𝑃↔𝑂

(
𝑚𝑉 ↓ 𝑚birth

)
. (7)

This captures the stability of each cluster by summing the
di#erences between the 𝑚 value at which each point 𝑝 in the
cluster fell out of the cluster (denoted as 𝑚𝑉 ) and the 𝑚 value
at which the cluster was born (denoted as 𝑚birth).
In the context of placement evolution, this metric evalu-

ates if standard cells of a cluster stay together consistently
throughout all the intermediate placements. If a cell does
not hold a membership to any clusters before splitting up,
it will be considered as a cell in Inter-Cluster Networks (or
noisy points). We summarize our !ow in Algorithm 1.
3.5 Cascade HDBSCAN
To uncover as many sizable Modular Clusters as possible
without overlooking smaller clusters, we design Cascade
HDBSCAN shown in Algorithm 2, which executes the HDB-
SCAN algorithm multiple times. We begin with a large mini-
mum cluster size 𝑛 to identify the prominent modules in the
original netlist. Subsequently, we decrease 𝑛 and continue
to extract smaller Modular Clusters from the Inter-Cluster
Networks in the previous HDBSCAN results. These smaller
clusters exhibit good modularity, but they were previously
categorized as “noise" since their size did not exceed 𝑛 .
Cascade HDBSCAN allows us to leverage the strengths

of the HDBSCAN algorithm to hierarchically discover mod-
ular structures at di#erent scales within the VLSI design.
By adjusting the minimum cluster size parameter, we can

Algorithm 1 Single-linkage Hierarchical Clustering

Require: Set of standard cells {𝑆𝐿 }𝑊𝐿=1, mutual reachability
distances 𝑓𝑔𝑕 (·, ·)

Ensure: Modular Clusters and Inter-Cluster Networks
Compute pairwise distance metric using Equation 6
Construct a graph𝑎 = (𝑏 , 𝑐) on {𝑆𝐿 }𝑊𝐿=1 using 𝑓𝑔𝑕 (·, ·) as
weight
Construct a Minimum Spanning Tree 𝑍 = (𝑏 ↗, 𝑐↗) from𝑎

Sort edges in 𝑐↗ of 𝑍 by distance in descending order
Initialize modular clusters C ↘ {{𝑆𝐿 }𝑊𝐿=1}, dendrogram
D ↘ ≃
for each edge 𝑊 ↔ 𝑐↗ do
Remove the current cluster containing 𝑊 from C
Add the two new clusters from single linkage to D

end for
for each cluster 𝑜 in the dendrogram D do
Calculate 𝑚 value for 𝑜
Compute the stability S(𝑜) using Equation 7

end for
Construct the condensed tree retaining only clusters with
signi"cant stability
Add clusters with the highest stability scores from the
condensed tree to C
for each standard cell 𝑆𝐿 do
Assign 𝑆𝐿 to the most stable cluster it belongs to in C

end for
Initialize inter-cluster networks 𝑞𝑟𝑄 ↘ ≃
for each standard cell 𝑆𝐿 do
if 𝑆𝐿 does not belong to any stable cluster then
Add 𝑆𝐿 to 𝑞𝑟𝑄

end if
end for
return C and 𝑞𝑟𝑄

progressively uncover both the large and dominant modules
as well as the small yet meaningful modular components
that may have been overlooked in a single-pass clustering.

4 Rent’s Rule Parametrization
Rent’s rule is an empirical observation that relates the num-
ber of external signal pins to the number of internal gates in
a circuit [6]. For a reasonable clustering outcome, clusters
(or sub-circuits) should re!ect a natural hierarchical struc-
ture of the original circuit while sharing a similar complexity.
Given a𝑟𝑉𝑠𝑡𝑖𝑊𝑕 with number of external pins𝑟𝑉𝑠𝑡𝑖𝑊𝑕𝑉𝐿𝑋 and
number of internal gates 𝑟𝑉𝑠𝑡𝑖𝑊𝑕𝑌𝑍𝑆𝑁 , Rent’s rule states that:

𝑟𝑉𝑠𝑡𝑖𝑊𝑕𝑉𝐿𝑋 = 𝑢 ·𝑟𝑉𝑠𝑡𝑖𝑊𝑕𝑉𝑌𝑍𝑆𝑁 . (8)

where𝑢 is the Rent’s coe$cient and 𝑝 is the Rent’s exponent.
We use Rent’s rule to demonstrate that Cascade HDBSCAN

is an e#ective clustering algorithm and thatModular Clusters
exhibit di#erent properties from Inter-Cluster Networks. The
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Algorithm 2 Cascade HDBSCAN

Require: Set of standard cells {𝑆𝐿 }𝑊𝐿=1, mutual reachability
distances 𝑓𝑔𝑕 (·, ·), 𝑛1,2,3

Ensure: All Modular Clusters and Inter-Cluster Networks
Initialize 𝑟𝑉𝑠𝑡𝑖𝑊𝑕𝑡 ↘ ≃
Initialize 𝑣𝑊𝑔𝑤𝑀𝐿𝑀𝐿𝑥 𝑟𝑊𝑉𝑉𝑡 ↘ {𝑆𝐿 }𝑊𝐿=1
// Iteratively run HDBSCASN three times
for (𝑀 = 0; 𝑀 < 3; 𝑀 + +) do
Set𝑦𝑀𝐿𝑀𝑔𝑠𝑔 𝑟𝑉𝑠𝑡𝑖𝑊𝑕 𝑧𝑀𝛥𝑊 ↘ 𝑛𝐿
Run Algorithm 1 on 𝑣𝑊𝑔𝑤𝑀𝐿𝑀𝐿𝑥 𝑟𝑊𝑉𝑉𝑡
Add all clusters in C to 𝑟𝑉𝑠𝑡𝑖𝑊𝑕𝑡
Update 𝑣𝑊𝑔𝑤𝑀𝐿𝑀𝐿𝑥 𝑟𝑊𝑉𝑉𝑡 ↘ 𝑞𝑟𝑄

end for
return 𝑟𝑉𝑠𝑡𝑖𝑊𝑕𝑡 and 𝑣𝑊𝑔𝑤𝑀𝐿𝑀𝐿𝑥 𝑟𝑊𝑉𝑉𝑡

traditional way of obtaining Rent’s rule data is through a
recursive partitioning process [6]. The choice of partitioning
algorithm in!uences the Rent’s exponent 𝑝 . Our Cascade
HDBSCAN can also be considered as a partitioning algorithm,
with Modular Clusters as its results. Consequently, Rent’s
rule can be evaluated on theseModular Clusters. In Section 6,
we will analyze the di#erence between the Rent exponents
of Modular Clusters and those of Inter-Cluster Networks.

5 Small-World Networks
In many technological, biological, and social systems, net-
works often exhibit structures that are neither fully regular
nor entirely random [16]. These so-called small-world net-
works are characterized by a high degree of local clustering
combined with “shortcuts” between distant nodes, a phenom-
enon known as the “small-world e#ect” [17]. This network
structure, composed of tightly clustered nodes connected
predominantly by short-range links, with a few long-range
connections, enables e$cient communication across the net-
work. The small-world e#ect is also evident in electronic
circuits [9]. Inspired by this concept, Ogras et al. [16] intro-
duced long-range links into standard mesh networks to act
as shortcuts, reducing circuit latency.

The structural properties of networks are often quanti"ed
by the characteristic path length 𝛩 and the clustering coe$-
cient 𝑟 . 𝛩 characterizes the distance between vertices in the
graph and is de"ned as the average number of edges in the
shortest paths between all pairs of vertices. 𝑟 quanti"es the
clustering phenomenon within the neighborhood of single
vertices. For a vertex 𝑑 having 𝑙 neighbors, the maximum
number of edges between them is 𝑙 (𝑙 ↓ 1)/2. 𝑟𝑎 is the ratio
of the actual number of edges in the neighborhood to this
maximum. 𝑟 is de"ned as the average of 𝑟𝑎 over all vertices.
Using the Watts–Strogatz model [17], a random graph

with the same number of nodes and edges as the original
small-world graph is generated. A small-world network has
the property that𝛩small-world is slightly greater than𝛩random graph,
while 𝑟small-world is signi"cantly larger than 𝑟random graph.

In Section 6, wewill demonstrate thatmodernVLSI netlists
are also small-world networks, with Modular Clusters and
Inter-Cluster Networks serving di#erent functions. Specif-
ically, Modular Clusters create localized groupings, while
Inter-Cluster Networks function as shortcuts, connecting dis-
tant clusters.

Figure 2. Cascade HDBSCAN clustering results for
adaptec1 in a placement snapshot. Macros are excluded
for clarity. Top plot showsModular Cluster cells. Bottom plot
shows Inter-Cluster Networks cells. Modular Cluster cells are
signi"cantly denser than Inter-Cluster Networks cells.

6 Experimental Results
In this section, we provide a comprehensive analysis of the
generated Modular Clusters and Inter-Cluster Networks. We
hypothesize that the generated Modular Clusters and Inter-
Cluster Networks follow di#erent Rent’s rules, and VLSI de-
signs exhibit the small-world e#ect. The ISPD 2005 contest
benchmarks [15] were used in our experiments.
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6.1 Cascade HDBSCAN Clustering on DREAMPlace
Snapshots

The cell coordinates are extracted from the DREAMPlace
global placement evolution every 50 iterations, starting from
iteration 200. These coordinates are concatenated to form
the data for clustering. The "rst 200 iterations are excluded
because the cell coordinates do not change signi"cantly dur-
ing this period. After extracting the data, we perform three
iterative rounds of HDBSCAN for clustering. The hyperpa-
rameter 𝑛 mentioned in Section 3 is set to 400, 200, and 100
for each round. In rounds 2 and 3, HDBSCAN is applied to
the noisy points identi"ed in the previous round to itera-
tively uncover smaller clusters and reduce the number of
Inter-Cluster Networks cells.

Table 1 presents the clustering statistics. On average, 5.16%
of the standard cells are identi"ed as Inter-Cluster Networks
cells, and the number of Modular Clusters is approximately
one-thousandth of the total number of cells. Figure 2 illus-
trates the clustering results for adaptec1 in one placement
snapshot, with separate plots of Modular Cluster and Inter-
Cluster Networks. Each Modular Cluster exhibits high cell
density with a well-de"ned clustering structure. In contrast,
the Inter-Cluster Networks are much sparser and primarily
distributed between clusters. This density contrast a$rms
the validity of the Modular Clusters. However, some smaller
clusters are also observed within the Inter-Cluster Networks,
which is due to the algorithm’s granularity. These smaller
clusters could be further captured by additional HDBSCAN
iterations, though this may lead to some Inter-Cluster Net-
works being misclassi"ed as clusters.
6.2 Rent’s Rule Analysis
Our analysis of Rent’s rule is conducted on four di#erent
types of groups. Each group, except Modular Clusters, is
formed by dividing the "nal placement region into 𝐿 ⇐ 𝐿
windows, where 𝐿 ↔ {4, 8, 16, 32}. The relevant cell types
within each window are then treated as individual groups.

• Whole Circuit: Traditionally, Rent’s rule is evaluated
on the whole circuit, without di#erentiating between
Modular Clusters and Inter-Cluster Networks. To mea-
sure Rent’s rule of the whole circuit, we extract the
"nal placement coordinates of standard cells, take all
the cells inside a window as a group, and evaluate the
number of cells in each group (grid) and the number
of pins connected to the rest of the circuit.

• Modular Clusters: We also evaluate Rent’s rule for the
clusters we "nd. Each cluster is treated as a group, and
its external connections to the rest of the circuit are
counted.

• Inter-Cluster Networks: Rent’s rule is obtained for Inter-
Cluster Networks only. Inside each window, we take
all the standard cells belonging to the Inter-Cluster
Networks as a group. The external connections of these
groups are then counted.

• Intra-Cluster Networks: To characterize the internal
connectivity ofModular Clusters, we obtain Rent’s rule
for eachModular Cluster. Inside each window, we take
all the cells belonging to the targetModular Cluster as a
group, and count the number of external connections.

After obtaining the number of nodes and pins (external con-
nections) for each group, we use linear regression on the
logarithmic scale to derive Rent’s exponent 𝑝 and Rent’s
coe$cient 𝑢 .

Figure 3. Rent’s rule of three di#erent types of groups on
adaptec1 benchmark:Whole Circuit, Modular Clusters, and
Inter-Cluster Networks. Each point represents a speci"c group
of cells. The lines represent the linear regression of Rent’s
rule. Intra-Cluster Networks are excluded here, as each cluster
has its own Intra-Cluster Networks Rent’s rule, and these
results are shown in Figure 4.

Figure 3 shows the Rent’s rule results on adaptec1 bench-
mark for the "rst three types of groups: Whole Circuit, Mod-
ular Clusters, and Inter-Cluster Networks (ICNs). It demon-
strates that the "rst three types of groups have di#erent
Rent’s rule. The data points from Inter-Cluster Networks are
at the top, the Whole Circuit data points are mainly in the
middle, and the data points ofModular Clusters are generally
at the bottom. Due to the relatively small size of each cluster
compared to the total number of cells, Region II of Rent’s
rule is not observed in our experiments.
Table 2 presents the numerical results for Rent’s rule.

Across all ISPD 2005 benchmarks, the Rent’s exponent 𝑝
value for Modular Clusters is, on average, 33.3% lower than
that of the Whole Circuit. This indicates that the external
connectivity of Modular Clusters is weaker than that of the
partitions derived from the traditional Rent’s rule process.
This suggests that Cascade HDBSCAN is an e#ective clus-
tering algorithm, as it produces clusters with fewer external
connections for the same number of cells.
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Table 1. Cascade HDBSCAN clustering result on ISPD 2005 benchmarks.

Design #Cells #nets #ICN cells Total ICN% #Clusters DREAMPlace
Runtime (s)

HDBSCAN
Runtime (s)

adaptec1 211K 221K 7,353 3.48% 223 25 21
adaptec2 255K 266K 10,800 4.23% 315 33 18
adaptec3 452K 467K 20,914 4.63% 520 54 79
adaptec4 496K 516K 30,143 6.08% 549 61 83
bigblue1 278K 284K 19,676 7.07% 256 34 45
bigblue2 558K 577K 20,733 3.72% 483 72 53
bigblue3 1,097K 1,123K 69,941 6.38% 1,236 115 284
bigblue4 2,177K 2,230K 123,391 5.67% 2,354 2556 721

Table 2. Rent’s exponent 𝑝 and Rent’s coe$cient 𝑢 for the
ISPD 2005 benchmarks.

Design
Whole
Circuit

Modular
Cluster ICN Intra-Cluster

Network
p K p K p K p K

adaptec1 0.56 13.48 0.21 71.44 0.92 3.76 0.89 3.00
adaptec2 0.55 15.32 0.41 17.27 1.09 1.17 0.76 3.76
adaptec3 0.57 13.59 0.51 10.36 0.89 4.02 0.87 2.50
adaptec4 0.52 18.56 0.41 16.41 0.80 7.36 0.96 1.59
bigblue1 0.69 5.00 0.45 22.78 0.98 2.70 0.86 3.39
bigblue2 0.66 4.09 0.42 14.04 0.96 2.20 0.91 2.40
bigblue3 0.65 5.81 0.41 15.98 0.95 2.98 0.90 2.33
bigblue4 0.57 13.50 0.41 19.95 0.91 4.52 0.99 1.27
Average 0.60 11.17 0.40 23.53 0.94 3.59 0.89 2.53

The 𝑝 for Inter-Cluster Networks is on average 56.7% higher
than that of the Whole Circuit. Since Rent’s rule expects a
consistent level of connectivity across the netlist, this higher-
than-average 𝑝 suggests that the Inter-Cluster Networks iden-
ti"ed by our algorithm have connectivity properties that
di#er from those of other cells in the netlist, which are Mod-
ular Clusters cells.
However, in Figure 3, some Modular Cluster data points

are above theWhole Circuit Rent’s rule, exhibiting a strong
external connection. To justify these clusters, we obtain the
Rent’s rule of Intra-Cluster Networks for each Modular Clus-
ter. Experimental results in Table 2 show that their internal
connection is even stronger, thus forming Modular Clusters.
Figure 4 shows the Rent’s exponent 𝑝 and Rent’s coe$-

cient𝑢 of the Intra-Cluster Networks for eachModular Cluster
on adaptec1 benchmark. The Rent’s rule data of the Intra-
Cluster Networks are "nally aggregated and shown in Table
2. The results show that Modular Clusters have a Rent’s ex-
ponent 𝑝 that is 48.3% higher than of the Whole Circuit and
122.5% higher than the Inter-Cluster Networks on average.
This indicates that the Modular Clusters have stronger in-
ternal connectivity than external connectivity, which is the
reason for their formation.

6.3 Small-World Network Analysis
To verify that if the netlists from the ISPD 2005 benchmarks
exhibit small-world properties, each netlist is compared to a
random graph. 𝑟netlist represents the clustering coe$cient
for the netlist, while 𝑟random graph denotes that of the ran-
dom graph. They are calculated based on the de"nitions in

Figure 4. Intra-cluster Rent’s rule on adaptec1 benchmark.
Each data point represents Rent’s rule for a Modular Clus-
ter. The x-axis is the Rent’s exponent 𝑝 , and the y-axis is
the Rent’s coe$cient 𝑢 . All Modular Clusters have a Rent’s
exponent 𝑝 larger than both the Whole Circuit and the Inter-
Cluster Networks.

Section 5. Since calculating 𝛩netlist and 𝛩random graph for all
possible pairs of cells is computationally expensive, their
values are estimated by randomly sampling 10,000 pairs.
The results, shown in Table 3, indicate that 𝛩netlist is 4.51%
greater than 𝛩random graph, while 𝑟netlist is 8,845 times larger
than𝑟random graph on average. This is consistent with the two
small-world properties discussed in Section 5 and con"rms
that the netlists are indeed small-world networks.

Next, we aim to demonstrate the distinct roles of Modular
Clusters and Inter-Cluster Networks in small-world networks.
We measure 𝛩ICN as the average distance between two ran-
domly picked Inter-Cluster Networks cells, and 𝛩cluster as the
average distance for pairs from Modular Clusters. Similarly,
𝑟ICN and𝑟cluster are measured separately for these two types
of cells. The results are presented in Table 3. In the table,
𝑟ICN and𝑟cluster showmarginal di#erence. This can be attrib-
uted to the fact that the clustering coe$cient𝑟 characterizes
individual vertices (cells), and its granularity is too small to
represent the global clustering properties of our Modular
Clusters. However, 𝛩ICN is smaller than 𝛩cluster in the "rst six
benchmarks, supporting our hypothesis that Modular Clus-
ters form localized groupings, while Inter-Cluster Networks
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Table 3. Comparison of characteristic Path Length 𝛩 and Clustering Coe$cient 𝑟 for netlists from the ISPD 2005 benchmarks
against random graphs. Additionally, 𝛩cluster and 𝑟cluster are measured for Modular Clusters, and 𝛩ICN and 𝑟ICN are measured
for Inter-Cluster Networks.

Design Characteristic Path Length 𝛩 Clustering Coe$cient 𝑟
𝛩netlist 𝛩random graph 𝛩cluster 𝛩ICN 𝑟netlist 𝑟random graph 𝑟cluster 𝑟ICN

adaptec1 9.85 9.68 9.83 9.59 0.0631 13.0e-6 0.0627 0.0651
adaptec2 11.82 9.84 11.88 11.76 0.0303 6.7e-6 0.0301 0.0255
adaptec3 13.13 11.31 13.06 12.67 0.0599 8.0e-6 0.0587 0.0549
adaptec4 15.14 13.37 15.06 14.93 0.1033 9.0e-6 0.1017 0.1202
bigblue1 7.39 7.42 7.42 7.15 0.0399 10.0e-6 0.0401 0.0397
bigblue2 7.58 7.84 7.59 6.87 0.0487 9.3e-6 0.0486 0.0482
bigblue3 7.85 8.22 7.80 8.34 0.0924 2.3e-6 0.0923 0.0941
bigblue4 7.03 8.65 6.97 7.31 0.1145 4.3e-6 0.1147 0.1055
Average 9.97 9.54 9.95 9.83 0.0690 7.8e-6 0.0484 0.0692

Table 4. Proportion of Inter-Cluster Network cells on shortest
paths versus their overall proportion in the netlist.

Design Total ICN% Shortest Path ICN%
adaptec1 3.48% 15.93%
adaptec2 4.23% 17.58%
adaptec3 4.63% 19.78%
adaptec4 6.08% 19.93%
bigblue1 7.07% 13.15%
bigblue2 3.72% 18.94%
bigblue3 6.38% 11.41%
bigblue4 5.67% 21.40%
Average 5.16% 17.26%

act as shortcuts connecting distant clusters. In bigblue3
and bigblue4, 𝛩ICN is larger than 𝛩cluster. This is due to a
signi"cant number of Inter-Cluster Networks located near the
placement edge. Inter-Cluster Networks are primarily com-
posed of IO-related cells and scan chains, which have low
connectivity to the rest of the graph.
To further validate our hypothesis, we conduct two ex-

periments. The "rst experiment evaluates the proportion of
Inter-Cluster Network cells on the shortest paths compared
to their overall proportion in the netlist. In this experiment,
we randomly select 10,000 pairs of cells and calculate the
number of Inter-Cluster Network cells on these paths, then
divide it by the total number of cells in the paths. Results are
shown in Table 4. Since Inter-Cluster Networks act as short-
cuts within the whole circuit, they appear more frequently
along the shortest paths. As a result, Inter-Cluster Networks
make up a higher proportion of the shortest paths compared
to their scale in the whole circuit.
The "rst experiment shows that the proportion of Inter-

Cluster Network cells is signi"cantly higher on the shortest
paths. Despite their low overall proportion of 5.2% on average
in the entire netlist, their presence on the shortest paths is
notably large, averaging 17.3%, more than three times greater.
In the second experiment, we examine how 𝛩 changes

when all Inter-Cluster Network cells are removed, denoted
as 𝛩remove ICN. For comparison, we conduct a control experi-
ment where the same number of randomly selected cells are

Table 5. Comparison of path length 𝛩 with and without
Inter-Cluster Network cells. Removing ICNs increases 𝛩 by
an average of 21.5% over the control.

Design 𝛩netlist 𝛩remove ICN 𝛩remove control
adaptec1 9.85 10.89 9.99
adaptec2 11.82 13.32 11.96
adaptec3 13.13 15.26 13.47
adaptec4 15.14 17.79 16.63
bigblue1 7.39 8.35 7.66
bigblue2 7.58 14.74 7.72
bigblue3 7.85 9.32 8.14
bigblue4 7.03 10.97 7.24
Average 9.97 12.58 10.35

removed from the graph, denoted the result as 𝛩remove control.
Results are shown in Table 5.

The second experiment demonstrates that 𝛩remove ICN is, on
average, 21.5% greater than 𝛩remove control. Results from both
experiments further validate the critical role Inter-Cluster
Networks play in the connectivity of the netlist, acting as
shortcuts that e$ciently link distant clusters.

7 Conclusion
In this work, we discover the clustering phenomenon during
placement evolution. To e#ectively extract these Modular
Clusters and the Inter-Cluster Networks, we utilize Cascade
HDBSCAN for noise-aware clustering across intermediate
placements.We verify thatModular Clusters and Inter-Cluster
Networks adhere to di#erent Rent’s rules, with Inter-Cluster
Networks exhibiting stronger external connections thanMod-
ular Clusters. Additionally, we con"rm that VLSI netlists ex-
hibit small-world properties, where Modular Clusters form
localized groupings and Inter-Cluster Networks serve as short-
cuts connecting distant clusters. Our future studies include
combining Cascade HDBSCAN with placement to study its
impact on power, performance, area, and potential design
complexity reduction.
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