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ABSTRACT. We prove a strong dichotomy result for countably-infinite oriented
graphs; that is, we prove that for all countably-infinite oriented graphs G, ei-
ther (i) there is a countably-infinite tournament K such that G Z K, or (ii)
every countably-infinite tournament contains a spanning copy of G. Further-
more, we are able to give a concise characterization of such oriented graphs.
Our characterization becomes even simpler in the case of transitive acyclic
oriented graphs (i.e. strict partial orders).

For uncountable oriented graphs, we are able to extend the dichotomy
result mentioned above to all regular cardinals x; however, we are only able to
provide a concise characterization in the case when kK = Nj.

1. INTRODUCTION

An oriented graph G is an anti-symmetric directed graph (that is, if (u,v) €
E(G), then (v,u) € E(G)). For other standard terminology, see Section [L.1]

A finite oriented graph is unavoidable if there exists a positive integer N such
that G is subgraph of every tournament on at least N vertices. In the case of
finite oriented graphs G, it is easy to see that G is unavoidable if and only if G is
acyclic. Indeed, an oriented graph G on n vertices is acyclic if and only if G is a
subgraph of the transitive tournament on n vertices, and it is well-known (see [11])
that every tournament on at least 2" ! vertices contains a transitive tournament of
order n. This leads to the following natural definition. For a finite acyclic oriented
graph G, let 7(G) be the smallest integer N such that every tournament on N
vertices contains a copy of G. While there were some earlier sporadic results, the
systematic study of bounding #(G) for general G began with [20] and [22]. A few of
the major results in this area are as follows: for the transitive tournament K, on
n vertices, 2/2 < F(I?n) < 27~! [11], for every oriented path P on n > 8 vertices,
7(P) = n [17], and for every oriented tree T on n vertices (for sufficiently large
n), 7(T) < 2n — 2, which is best possible for certain oriented trees T [18] (for a
refinement of this result, see [8], [3], [4]).

The goal of this paper is to extend the notion of unavoidability to infinite ori-
ented graphs. Given an infinite cardinal x, we say that an oriented graph G is
k-unavoidable if G is a subgraph of every tournament of cardinality x. When
k = w (i.e. when k is countably-infinite), we simply say G is unavoidable. It turns
out that in the countably-infinite case, it is not true that an oriented graph G is
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unavoidable if and only if G is acyclic. So our first goal is to characterize which
countably-infinite oriented graphs are unavoidable. Having done that, the next goal
would be to get quantitative results for unavoidable oriented graphs along the lines
of the results mentioned above. For instance, motivated by recent Ramsey-type
results regarding monochromatic subgraphs in edge-colorings of Ky ([7], [6], [,
[19], [1]), it would be natural try to prove that there exists d > 0 such that for
every countably-infinite unavoidable oriented tree T and every tournament K on
N, there is an embedding ¢ : T — K such that ¢(V(T)) C N has upper density at
least d.

So it is perhaps surprising that we prove the following result which both char-
acterizes unavoidable oriented graphs and proves that all such countably-infinite
unavoidable oriented graphs are unavoidable in a very strong sense (in a way
which makes the quantitative question mentioned above irrelevant). We say that
an countably-infinite oriented graph G is strongly unavoidable if G is a spanning
subgraph of every countably-infinite tournament.

Theorem 1.1. Let G be an countably-infinite oriented graph. The following are
equivalent:

(C1) G is strongly unavoidable.

(C2) G is unavoidable.

(C38) GC K, and G C K~.

(C4) G is acyclic, locally-finite, and has no infinite directed paths.

Note that trivially, [[C1)] = [(C2)| = [[C3)] and is it not hard to see that
= As we will see, Ramsey’s theorem implies [(C2)| < [(C3)| and another
classic order-theoretic result implies that [(C3)| < |(C4)l The surprising part, and
the main result of the paper, is that |(C4)| = |(C1

A strict partial order P = (V,<) is a relation < on a set V which is anti-
reflexive, anti-symmetric, and transitive. Defined in this way, every strict partial
order P = (V, <) is an acyclic oriented graph. While it is not the case that every
acyclic oriented graph is a strict partial order, there is an equivalence relation on
acyclic oriented graphs, where G ~ F'if and only if the transitive closures of G and
F' are isomorphic, where the equivalence classes correspond to strict partial orders.
Note that if G is acyclic, locally-finite, and has no infinite directed paths, then the
transitive closure of G is a strict partial order in which every element is comparable
to finitely many others (note that we aren’t using the phrase “locally-finite” in
the context of partial orders since this seems to have a different meaning in the
literature) and every strict partial order in which every element is comparable to
finitely many others is acyclic, locally-finite, and has no infinite directed paths. So
we have the following corollary of Theorem [L.1}

Corollary 1.2. Let P = (V, <) be an countably-infinite strict partial order. Then
P is strongly unavoidable if and only if P is unavoidable if and only if every element
in P is comparable to finitely many others.

For the uncountable case, the situation is more complicated and will be discussed
in much greater detail in Section Bl However, the main results from Section Bl are
simple enough to state. The first says that for regular cardinals, the statements
analogous to [[C1)| and [(C2)] are equivalent and the statements analogous to
and |(C4)|are equivalent (and trivially the statement analogous to implies the

statement analogous to|(C3)).
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Theorem 1.3. Let k be a uncountable reqular cardinal and let G be an oriented
graph with |V (G)| = k.
(i) G is strongly k-unavoidable if and only if G is k-unavoidable.
(i) G € Ky and G C K.+ if and only if G is acyclic, has no infinite directed
paths, and every verter has degree less than k.

Another main result from Section [3]is that for £ = Ny, the analogue of Theorem
[L.Ilholds; that is, the statement analogous toimplies the statement analogous
to[[C1)]

Theorem 1.4. Let G be an oriented graph with |V (G)| = Xy. If G is acyclic,
has no infinite directed paths, and every vertex has degree less than Ny, then G is
strongly Xy -unavoidable.

On the other hand when x = W5, the analogue of Theorem [1.4] does not hold if
the Continuum Hypothesis (CH) fails; that is, if 2% > Ry. We do not know if CH
is needed for this result, or whether the Generalized Continuum Hypothesis (GCH)
implies the corresponding version of Theorem [I.4] for cardinals greater than ;.

1.1. Notation. An (oriented) graph is locally-finite if every vertex is incident with
finitely many edges. A directed cycle on n vertices is the oriented graph C, with
V(C,) = {a1,...,2,} and E(C,) = {(z1,%2), ..., (n_1,2n), (xn,z1)}. Say that
an oriented graph is acyclic if it contains no directed cycles. A directed path is an
orientation of a finite, one-way-infinite, or two-way-infinite path having the property
that there are no vertices of out-degree 2 or in-degree 2. The infinite directed path
with exactly one vertex of in-degree 0 is called the infinite forward directed path
and the infinite directed path with exactly one vertex of out-degree 0 is called the
infinite backward directed path.

Say that an oriented graph G is connected if the underlying graph (i.e. the
symmetric closure of ) is connected. Note that this is typically referred to as
“weak connectivity”, but since we are only considering acyclic graphs G, the notion
of “strong connectivity” will not arise.

Given oriented graphs H and G, an embedding of H into G, denoted ¢ : H —
G is an injection ¢ : V(H) — V(G) with the property that (u,v) € E(H) =
(p(u),o(v)) € E(G). We say H is a subgraph of G, denoted H C G, if there exists
an embedding of H into G. We say that H is a spanning subgraph of G if there
exists a surjective embedding of H into G.

Given an oriented graph G and S C V(G), we let G[S] be the subgraph induced
by S. Given v € V(G), we let G —v = G[V(G) \ {v}], and more generally, given
S CV(G), welet G—S = G[V(G)\S]. If G is an oriented graph and (u,v) € E(G),
then we say that v is an out-neighbor of u, and that u is an in-neighbor of v. Given
v € V(G), the out-neighborhood of v, written N (v), is the set of out-neighbors of
v in V(G), and the in-neighborhood of v, written N~ (v) is the set of in-neighbors
of v in V(G). Throughout, we use + and — interchangeably with ‘out’ and ‘in’
respectively. For each ¢ € {4+, —}, the o-degree of v in G is d°(v) = |N°(v)| and
the common o-neighborhood of a set X C V(G) is N°(X) = N°(v).

Given an acyclic oriented graph G and u € V(G), let

't (u) = {v € V(G) : there exists a directed path from u to v}

veX

and let
I'"(u) = {v € V(G) : there exists a directed path from v to u}

Licensed to Miami Univ, Oxford. Prepared on Wed Aug 6 16:57:10 EDT 2025 for download from IP 134.53.235.241.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4234 ALISTAIR BENFORD, LOUIS DEBIASIO, AND PAUL LARSON

(equivalently, I'°(u) is the o-neighborhood of u in the transitive, reflexive closure
of G).

Given a strict total order 7 = (V, <), let K, be the tournament on V where
(u,v) € E(K;) if and only if u < v. We write 7* to be the converse of 7; that is,
7% = (V,>). We say that K, and K, - are the transitive tournaments of type-r.

Throughout the paper, we assume the axiom of choice whenever necessary. We
use the von Neumann definition of ordinals where an ordinal is the strictly well-
ordered set of all smaller ordinals. Thus, given an ordinal A, the definition of K and
K+ is given in the previous paragraph. As is standard, we let w be the first infinite
ordinal. Given a cardinal k, we view k as the smallest ordinal of cardinality . We
let T be the smallest cardinal greater than x, and we let 2¥ be the cardinality of
the power set of k.

We say that an infinite cardinal x is regular if it cannot be written as the union
of fewer than x many sets, each of cardinality less than k. If x is not regular, we
say that it is singular. Given a limit ordinal «, the cofinality of «, denote cof(«),
is the smallest cardinality of a cofinal subset of « (S C « is cofinal if for all 8 < a,
there exists a v € S such that 5 < ~). With this terminology, we may equivalently
say that k is singular if and only if cof(k) < k.

By N we mean the set of positive integers.

2. COUNTABLY-INFINITE ORIENTED GRAPHS

2.1. Characterizing unavoidable oriented graphs. In this section we will prove
that [[C2)| < [(C3)] < [(C4

Lemma [2.1] can essentially be found in [14, 2.15.1] (we give the more general
statement later as Observation B.7] and Proposition [B.8). However, since the proof
of this special case is straightforward, we give it here.

Lemma 2.1. For every countably-infinite oriented graph G, < |(C4)|; that is,
G C K, and G C K~ if and only if G is acyclic, locally-finite, and has no infinite
directed paths.

Proof. |(C3)|=|(C4)} First note that if G has a cycle, then G € K, and G € K,~.
If G has a vertex of infinite in-degree, then G € K|, and if G has a vertex of infinite

out-degree, then G € K. If G has an infinite directed path with the first vertex
having out-degree 0, then G € K,,, and if G has an infinite directed path with the
first vertex having in-degree 0, then G € K.

(C4)| = Now suppose G is acyclic, locally-finite, and has no infinite
directed paths. Let (v;);c,, be an enumeration of V(G). For all v; € V(G), let
f(vi) = max{j : v; € I'"(v;)} and note that by the assumptions on degrees and the
fact that there are no infinite directed paths we have that f(v;) is finite.

We will produce an embedding ¢ : G — K|, as follows: Let iy € w be minimum
such that v;, has in-degree 0 in G and set ¢(v;,) = 0. On step j > 1, let i; € w be
minimum such that v;; has in-degree 0 in G — {vj,, ..., v;,_, } and set p(v;;) = j.

In the resulting embedding we have the property that for all i € w, »~1(i) has
no in-neighbors v with ¢(v) > ¢ and thus we have the desired embedding, provided
that V(G) = dom ¢. However, this holds because for all v € V(G), we will assign
a value for ¢(v) by step f(v;).

An embedding of G into K~ can be constructed similarly. O

Licensed to Miami Univ, Oxford. Prepared on Wed Aug 6 16:57:10 EDT 2025 for download from IP 134.53.235.241.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



UNAVOIDABLE STRUCTURES IN INFINITE TOURNAMENTS 4235

Lemma [2.2] shows that it is possible to use a Ramsey-type result to get a result
about transitive tournamentsl] We state it in a form which is more general than
what is needed for this section because we will make reference to it again later in a
more general setting. While this folklore result surely appears in the literature, we
include a proof for completeness.

Lemma 2.2. Let 0 = (5, <,) be a strict total order. If for every 2-coloring of the
pairs of elements in S, there exists a monochromatic copy of the strict total order
T = (T,<;), then for every tournament K of cardinality |S| we have K, C K or
K. CK.

Proof. Let K be a tournament of cardinality |S| and take an arbitrary bijection
¢ : V(K) - S. For (u,v) € E(K), if p(u) <, ¢(v), color (u,v) red, and if
o(u) > ¢(v), color (u,v) blue. By the assumption, there is a monochromatic copy
of 7. If the copy is red, then we have K, C K, and if the copy is blue, then we
have K.« C K. ([l

Lemma 2.3. For every countably-infinite oriented graph G, [(C2)| < [(C3)}; that
is, G is unavoidable if and only if G C K, and G C K.

Proof. [(C2)|=[(C3); If G € K, or G € K,~, then G is avoidable.

(C3)|=|(C2)} Suppose G C K, and G C K« and let K be a countably-infinite
tournament. By Ramsey’s theorem and Lemma 2.2] (with ¢ = 7 = w) we have
K, C K or K,~ C K. Either way, we have G C K. O

2.2. Unavoidable oriented graphs are strongly unavoidable. In this section
we prove = To prepare for the proof, we first need a structural result
about oriented graphs satisfying
Given an countably-infinite acyclic weakly-connected oriented graph G, a +-
partition of G is a partition {C; : i € N} of V(G) such that the following properties
hold:
A1 For all 7 € N, C; is finite and non-empty.
A2 For all (u,v) € E(G), there exists i € N such that {u,v} C C; U Citq.
A3 If 7 is odd, then every vertex in C; has in-degree 0 to C;_1 U C;11, and if ¢
is even, then every vertex in C; has out-degree 0 to C;_1 U Cy41.
A4 Tf i is odd, then there exists a vertex in C; with in-degree 0 in G, and if 4
is even there exists a vertex in C; with out-degree 0 in G.
If 7 is odd, we say that C; has type +, and if i is even, we say that C; has type —.
Likewise one can define a F-partition by switching every instance of in/out in
the above definition. We note that a similar definition for finite oriented trees was
given by Dross and Havet [g].

Lemma 2.4. Let G be a countably-infinite oriented graph. If G is weakly-connected,
acyclic, locally-finite, and has no infinite directed paths, then for every vertex v of
in-degree 0, G has a £-partition with C1 = {v}, and for every vertex v of out-degree
0, G has a F-partition with C; = {v}.

Proof. Since G is acyclic and has no infinite directed paths, the set of vertices with
in-degree 0 is non-empty; let v be a vertex of in-degree 0 and set C; = {v}. For

1On the surface, it is strictly stronger because it is possible to order the vertices of the tour-
nament K and have a copy of K or K+ which doesn’t obey the ordering.
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even i > 1, let C; = (UvecH F+(v)) \ (Ci_1 U Ci_s), and for odd i > 1, let

C;, = (Uveci,l Ff(v)) \ (Ci—1 U C;_2). Note that since G is locally-finite, and
has no infinite directed paths, each C; is finite. In addition, because G is weakly-
connected, {C; : 7 € N} is a partition of V(G), and each C; is non-empty. Therefore,
[AT holds.

Suppose, for some i < j, that (u,v) € E(G) with v € C; and v € C;. Then,
we must have that ¢ is odd (else v € C;) and j = i+ 1. On the other hand, if
(v,u) € E(G) is such that v € C; and v € C; for some ¢ < j, then we must have
that i is even (else v € C;) and j = i + 1. Therefore, we deduce that [A2 and [A3]
hold.

Finally, note that since C; is finite and G is acyclic, G[C;] has a vertex u; of
in-degree 0 in G[C;] and a vertex v; of out-degree 0 in G[C;]. Thus, by [A3] if 7 is
even, then v; has out-degree 0 in G, and if ¢ is odd, then u; has in-degree 0 in G.
Therefore, [A4l holds, and {C; : i € N} is a +-partition with C; = {v}.

Likewise by switching every instance of in/out in the above proof, we get that
for every vertex v of out-degree 0, G has a F-partition with Cy = {v}. O

Theorem 2.5. For every countably-infinite oriented graph G,|(C4)|= [(C1)} that
is, if G is acyclic, locally-finite, and has mo infinite directed paths, then G is a
spanning subgraph of every countably-infinite tournament.

Proof. Suppose G is acyclic, locally-finite, and has no infinite directed paths. If G
is not weakly-connected, we can make it so while maintaining the three properties
(say by choosing a vertex v; from each component H; of G and adding an anti-
directed path on vy, vs,...). Let K be a countably-infinite tournament and let
(u;)ien be an enumeration of V(K). Define #7, %9, x3, .. . inductively by

.= {+ if (ﬂ;;ll N*i (uj)) N N*(u;) is infinite,
— otherwise.

Let VIt = {u; €e V(K) : %; = +} and let V— = {u; € V(K) : x, = —}. The key
property is that for all ¢, € {+,—} and all finite non-empty subsets X C V° and
Y CV* N°(X)N N*(Y) is infinite. (A more standard approach to assigning the
*; would have been to choose an ultrafilter on N and let x; = o iff N®(u;) is in
the ultrafilter. We note that our assignment of *; without the use of ultrafilters is
inspired by the proof of [19, Lemma 3.4].)

If x; = +, then we choose a vertex v; € V(G) with in-degree 0 and apply
Lemma [2.4] to get a +-partition {C; : i € N} of G with C; = {v;}. If x; = —, then
we choose a vertex v; € V(G) with out-degree 0 and apply Lemma 2.4 to get a
F-partition {C; : i € N} of G with C; = {v1}. We may suppose without loss of
generality that x; = 4+ and thus we choose a vertex v; € V(G) with in-degree 0 and
apply Lemma [2.4] to get a -partition {C; : i € N} of G with C; = {v1}. Finally,
define

{+ if i is odd,
O =

— ifi is even

and note that ¢; simply describes the type of the set C;.
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We construct a sequence i; < iz < ..., growing an embedding ¢ : G[U;¢| i;Ci | —

K as we do so, such that following properties hold for every j € N.
B1 {u1,...,u;} C p(Usepi;)Ci), and
B2 ¢(C;;) C Vi,

If such a sequence exists, then by [B1l the resulting embedding ¢ : G — K proves
the theorem.

We initially set i1 = 1 and ¢(v1) = uy. Then, given i;_; and ¢ : G[Uieps,_,1Ci] —
K satisfying [B1] and [B2], we proceed as follows.

If uj € ©(Useps,_,)Ci), then set ij = ;1 (trivially, [BI] and [B2] are satisfied).
Otherwise, by B2 we have that U;_y := N*i(u;) N N®-1(¢(C;,_,)) is infinite. If
U,;—1 NV is infinite, set 7; to be the smallest integer at least i;_1 + 5 with O =+
(i.e. the smallest odd integer at least i;_1 + 5). Otherwise, U;_1 NV~ is infinite
and we set i; to be the smallest integer at least ;1 + 5 with ¢;, = — (i.e. the
smallest even integer at least i;_1 + 5). We now embed the acyclic finite subgraph
G[C;,_,+1U...UC;,] into the infinite tournament K [{u;} U (U;—1 NV )] in such
a way that if x; = ¢;,_,, then we will choose a vertex v; € C;,_, 12 which only has

*;j-neighbors and embed v; to uj, and if x; # ©;,_,, then we will choose a vertex
vj € Cj,_,+3 which only has *;-neighbors and embed v; to u;. Thus[B1lis satisfied.
Also note that by construction, every vertex in Cj; is embedded into V®i, so B2
is satisfied 2 |

3. UNCOUNTABLE ORIENTED GRAPHS

Let x be a cardinal and let G be an oriented graph with |[V(G)| < k. We say
that G is k-unavoidable if G is contained in every tournament K with |V (K)| = &,
otherwise we say that G is k-avoidable. We say that G is strongly k-unavoidable if
G is a spanning subgraph of every tournament K with |V (K)| = «.

The purpose of this section is to discuss the relationships between the follow-
ing analogues of |(C1)H(C4)| for oriented graphs G with |V (G)| = k where & is
uncountable.

(U1) G is strongly k-unavoidable.

(U2) @G is k-unavoidable.

(U3) G C K, and G C Ky~

(U4) G is acyclic, has no infinite directed paths, and every vertex has degree less
than « in the transitive closure of G.

As before, we trivially have [(U1)|= [(U2) = |(U3), and as before it is not hard
to see that [(U3)|=|(U4). At this point the reader may wonder why we have
instead of the following:

(U4') G is acyclic, has no infinite directed paths, and every vertex has degree less
than k.

The reason is that if x is a regular cardinal, then|(U4) and|(U4)|are equivalent,
but if x is singular, they are not (see Observatlonlm)

2In the above paragraph, it is instructive to have a specific example, so suppose ¢(C; ) C %
(i.e. 451 is odd), u; € V—, and (N~ (u;) N N T (¢( Ci;_,))NV ™ is infinite. In this case we would
set i; = i1 +5 (note that i; is even), embed a vertex from C;; 43 (i;—1 + 3 is also even) with
in-degree 0 to u; and embed the rest of Cj;_; 41U ---UC;; into (N~ (uj) NN T (p(Ci;_,)) NV .
Note that since i; is even and ¢(C;;) C V™, B2l is satisfied.
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We prove the following results.
Theorem 3.1. For all infinite cardinals s, < |(U4).
Theorem 3.2. If k is an uncountable regular cardinal, then < |(U2).

Theorem 3.3. If k =Ny, then = |(U1).
Theorem 3.4. If k is a strongly inaccessible cardinal, then = [(U1).

The natural generalization of Theorem [2.5] to the uncountable case would be
that |(U4) implies for all k. However, Theorem [B.5] shows that if A\ is an
infinite cardinal at which GCH fails (i.e., 2* > A*) then there is a graph G with
[V(G)| = 2* (trivially extending the graph H from the theorem) satisfying

but not .

Theorem 3.5. For all infinite cardinals X\, there exists a transitive tournament T
on 2* and an acyclic oriented graph H with no infinite directed paths and |V (H)| =
AT such that H does not embed into T.

In light of Theorems [3.2] and B.5] one pressing open question is whether the
assumption that a graph G embeds into every transitive tournament of cardinality
k gives any further structural information about G beyond what provides (in
order to find a potential replacement for .

Theorem [B.5] also leaves open the question of whether (or when) the GCH im-
plies the equivalence of and One could also ask Question [3.6] (which
necessarily falls short of giving a characterization for .

Question 3.6. Let x be an uncountable cardinal. For which cardinals u < x and
A < k is the following true?

(i) If G is an oriented graph with |V(G)| = p such that G is acyclic, has no
infinite directed paths, and every vertex has degree at most A, then G is
k-strongly-unavoidable.

(ii) If k is singular and G is an oriented graph with |V (G)| = k such that G is
acyclic, has no infinite directed paths, and there exists a v < k such that
every vertex has degree at most v, then G is fi—strongly—unavoidable

3.1. Characterizing oriented graphs which embed into both K, and K,-.
In this section we prove Theorem [3.1] We begin by observing that implies

[(T4):

Observation 3.7. Let k be an infinite cardinal and let G be an oriented graph with
[V(G)| <k. If GCK,and G C K-, then G is acyclic, G has no infinite directed
paths, and every vertex has degree less than x in the transitive closure of G.

Proof. Note that K, and K- are acyclic, K,, has no infinite backwards directed
paths and every vertex in K, has in-degree less than k, and K.+ has no infinite
forwards directed paths and every vertex in K« has out-degree less than . So if
G C K, and G C K+, then the transitive closure G of G also satisfies G C K,
and G C K, « and thus G is acyclic, has no infinite forward or backward directed
paths, and every vertex of G has in-degree and out-degree less than k. ]

3This is weaker than = for singular k because there is a uniform upper bound on
the degrees.
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The reverse implication can essentially be found in [14] 2.15.1], where it is at-
tributed to Milner and Pouzet.

Proposition 3.8. Let k be an infinite cardinal and let G be an acyclic transitive
oriented graph with |V (G)| < k. If G has no infinite directed paths and every vertex
has degree less than k, then G C K, and G C K«

By applying Proposition 3.8 to the transitive closure of GG, we obtain =
(U3).

3.2. Regular cardinals. In this section we prove Theorems [3.2] B.3] and [B.4
We begin with a few preliminary results, the first of which just follows from the
definition of regular cardinal.

Observation 3.9. Let x be an uncountable cardinal and let G be an acyclic oriented
graph with |V(G)| = k. If k is a regular cardinal and every vertex in G has degree
less than k, then the transitive closure of G has k many connected components each
of which has cardinality less than x.

Next is the key lemma we will use for obtaining a surjective embedding.

Lemma 3.10. Let k be an infinite cardinal, let G be an oriented graph with
[V(G)| < &, and let K be a tournament with |V(K)| = k. If G is k-unavoidable,
then for each v € V(K) there exists an embedding ¢ : G — K such that v €

p(V(G))-

Proof. Let v € V(K). Either v is incident with x many out-edges or x many in-
edges. If it is the former, let v € V(@) have in-degree 0 and set K’ = K[N*(v)]. If
it is the latter, let u € V(G) have out-degree 0 and set K’ = K[N~(v)]. In either
case set p(u) = v. Since G is k-unavoidable, we can embed G — u in K’, which
gives us an embedding ¢ : G — K such that v € o(V(G)). O

Lemma [3.17] gives a sufficient condition for obtaining a surjective embedding.

Lemma 3.11. Let k be an uncountable regular cardinal and let G be an oriented
graph with |V (G)| = k. If G has k many connected components of cardinality less
than K, each of which is k-unavoidable, then G is strongly k-unavoidable.

Proof. Let K be a tournament of cardinality k, let (vy)yex be an enumeration of
V(K), and let (G4 )aer be an enumeration of the components of G. We construct
a surjective embedding ¢: G — K as the union of a recursively chosen collection
of embeddings ¢, : G, — K with disjoint ranges.

Suppose that a € x and that ¢g (8 < a) have been chosen. Since k is regular
and each G has cardinality less than r, K, = K — Js_, ran(pp) has cardinality
k. Let 74 € k be minimal such that v, is in K,. Apply Lemma [3.10] to find an
embedding ¢,: Go — K, in such a way that v, is in the range of ¢,. Having
chosen ¢, for all a < &, let ¢ = J,.,. ¢a. Since every vertex v, is in the range of
some @, this completes the proof. ([l

Proof of Theorem B2l Since G is k-unavoidable, by Observation B.7 G is acyclic,
has no infinite directed paths, and every vertex (in the transitive closure of G) has
degree less than . So by ObservationB.9] G has k-many connected components all
of which are k-unavoidable. Thus by Lemma[3.11] G is strongly k-unavoidable. [
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We note that the previous proof does not apply to singular cardinals because for
singular cardinals «, does not imply that G has k many components (in fact
G can even be connected in this case — see Observation B.18) and thus we cannot
make use of Lemma [B.11]

In Section 2.1] we showed that = by using Ramsey’s theorem. If
there was an analogue of Ramsey’s theorem for the uncountable case which implied
[(U3) = [(U2), then from Theorem B.1] and Theorem [3.2] we would already have
that |(U1)-(U4) are equivalent. However, it is known by a result of Laver (see [16])
that there is a tournament of cardinality X; which doesn’t contain any transitive
subtournament of cardinality N;. (Furthermore, Justin Moore pointed out to us
that results of Rinot and Todorcevic [21] can be used to show that the corresponding
fact holds at the successor of any regular cardinal.)

On the other hand a result of Baumgartner and Hajnal [2] shows that the next
best thing is true; that is, for every countable ordinal o and every 2-coloring of
the pairs in wy, there is a monochromatic copy of a, which by Lemma [2.2] implies
that every tournament of cardinality Ny contains K, or K,+. (Note that while
Baumgartner and Hajnal use some deep set-theoretic ideas to establish their result
in ZFC, Galvin [15] later gave a direct combinatorial proof in ZFC.)

Theorem 3.12 (Baumgartner-Hajnal; Galvin). Let K be an uncountable tourna-
ment. For every countable ordinal o we have K, C K or K.~ C K.

Using Theorem [B.12] we are able to establish = [(U1) for k = N;. First
we need another variant on Szpilrajn’s extension theorem (see the comment before
Lemma [2.1]) which is essentially equivalent to the fact that every well-founded
partial order of cardinality x can be extended to a well-order of cardinality x. A
sketch of a proof can be found in [14] 2.9.2], but we give a full proof for completeness.

Proposition 3.13. Let k be an infinite cardinal and let G be an acyclic oriented
graph with |V(G)| < k. If G has no infinite backward directed paths, then there
exists an ordinal B of cardinality at most k such that G C Kg. Likewise if G has
no infinite forward directed paths, then there exists an ordinal f of cardinality at
most Kk such that G C Kg-.

Proof. We prove the first conclusion; the proof of the second is essentially the same.
Let h be the function from G to the ordinals defined recursively by the formula
h(z) =sup{h(w)+1:w el (a)},

for all z € V(G). Given an ordinal a, let V,, be {z € V(G) : h(z) = a}. Let fy =
{a :V, # 0} (which is an ordinal). Note that Sy has cardinality at most &, since
otherwise G has more than k-many non-empty levels, which means |V(G)| > &,
giving a contradiction. Let 8 =73 _5 [Va| Then again |3 < .

For each a < By, let (v§),<|v,| be an enumeration of V. Then there exists an
injection ¢: G — Kp such that 4,0(1)2‘:) < p(vg) if and only if o/ < a, or @ = «
and v/ < 7. O

We now prove that |(U4) = for k = Ny.

Proof of Theorem 3.3l By Observation B.9] G has R; many components each of
cardinality at most Ng. By Proposition B.13] for every component H of G there
exists a countable ordinal « such that H embeds into both K, and K,~. By
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Theorem [B.12] every tournament of cardinality N; contains either K, or K-, and
thus H is Ny-unavoidable.

So G has N; many components each of which is Nj-unavoidable and thus by
applying Lemma [3.11] we have that G is strongly R;-unavoidable. |

Remark 3.14. The proof of Theorem [B.3] also shows that Question B.6l(i) has a
positive answer whenever A = Ng.

Note that the proof of Theorem [B.3lwould generalize to any uncountable regular
cardinal x provided there was a generalization of Theorem B.12] for x > ws (that is,
for every ordinal a < k, every tournament K of cardinality s contains K, or K,-).
As it turns out, this is a problem first raised by Erdés and Hajnal [10, Problem 10]
and it is still an open question whether it is consistent that any successor cardinal
K > wy can have this property (see [13] 9.1] and [12, Question 5.1]). As we shall see
in Section [B.4] consistently this property fails at every double successor cardinal.

Finally, we consider the case of strongly inaccessible cardinals. A cardinal s is
strongly inaccessible if it is regular and a strong limit; that is, 2* < & for all X < k.
Taking the place of Theorem [B.12] in this case is the following classical result of
Erdés [9] (stated here in slightly less general form and using Lemma [2.2] as we did
for Theorem [3.12]).

Theorem 3.15 (Erdés). For all infinite cardinals \, every tournament K of car-
dinality (2*)* contains Ky+ or K+«

Now it is a routine matter to complete the proof.

Proof of Theorem B4l Since k is regular, Observation [3.9] implies that G has k
many components each of cardinality less than x. By Proposition [3.13] every com-
ponent H of G of cardinality A\ embeds into K+ and K(y+)-. Since Mt < &,
Theorem [3.15]implies that every tournament of cardinality s contains contains K+
or K(x+)-, and thus H is k-unavoidable.

So G has k many components each of which is k-unavoidable and thus by ap-
plying Lemma [B.11] we have that G is strongly x-unavoidable. O

Remark 3.16. The proof of Theorem [B.4] also shows that Question B.6l(i) has a
positive answer whenever x > (2*)7.

3.3. Singular cardinals. In this section we collect two observations about the case
of singular . We first show that [(U4) and |(U4’)| are not equivalent for singular
cardinals.

Observation 3.17. Let k be a singular cardinal. There exists a graph G with

|[V(G)| = k in which G is acyclic, has no infinite directed paths, and every ver-
tex has degree less than s, but some vertex has degree k in the transitive closure
of G.

Proof. Let (A\y : a < cof(k)) be an increasing cofinal sequence of regular cardinals
less than x.

Let X = {z, : @ < cof(k)} be a set of vertices such that each z, has a distinct
set of A\, many in-neighbors and let Z = {z, : @ < cof(x)} be a set of vertices such
that each z, has a distinct set of A\, many out-neighbors. Then add a vertex y
such that N~ (y) = X and N*(y) = Z. Call the resulting oriented graph G. Note
that y has in-degree and out-degree equal to cof(k) < k and every other vertex has
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in-degree and out-degree at most A\, < k for some o < cof(k). If say G C K, then
since K, is transitive, the transitive closure, é, of G satisfies G C K, (likewise if
G C Ky~). However, in G it is the case that y has in-degree and out-degree equal to
k. So by Observation 3.7 we have that G Z K,; and G Z K, a contradiction. [

We next explain why iU4} does not imply that G has k-many components in
the singular case and at the same time show that having x-many components is
not a necessary condition for |[(U2).

Observation 3.18. There exists a graph G with |[V(G)| = X, in which G is acyclic,
has no infinite directed paths, every vertex has degree less than X, in the transitive
closure of GG, but GG is connected and N, -unavoidable.

Proof. Let A, (n € w), be disjoint sets, with each A,, of cardinality 8,,, and let b,
(n € w), be an additional set of vertices. Let G be the graph with vertex set

{bn, :n€w}U UA"

necw

and the following edges: each b,, points to all the vertices in A,,, and b,, points to
by, whenever |[n —m| = 1 and n is odd. Any tournament on X, will have distinct
vertices ¢, (n € w), where ¢, points to at least R,, many elements. Thinning via
Ramsey’s theorem for pairs of integers, we can assume that either m < n implies
that ¢, points to ¢, or m < n implies that ¢, points to c,. Either way we
can embed the b,,’s into the ¢,’s in such a way that each b,, is sent to a c,, with
m>n. O

3.4. |[(U4)| does not imply [(U2)|in general. In this section we proof Theorem
[B.5] First we introduce the following graphs satisfying which will be used

in the proof. Let A be an ordinal and let H(A) be the oriented graph where the
vertices of H(A) are pairs (o, ) € A x A, and H()) contains an edge from (e, ) to
(7,9) if and only if & > v and 8 < J. Note that H is a transitive acyclic oriented
graph with |V(H)| = ||, no infinite directed paths, and every vertex has degree at
most |A.

Given an ordinal ), the lexicographical order on 2* (viewed as the set of functions
from A — {0,1}) is defined as follows: let f <jex g if f # g and f(«) < g(a) where
« is minimal such that f(a) # g(). This is a linear ordering of 2* which contains
no ascending or descending sequences of length A*. (One way to see this is to prove
inductively on o < A that all but at most |A| many members of each such sequence
would have to have the same restriction to «.)

We now show that, for any infinite cardinal A, H(A") does not embed into the
tournament on 2* induced by the lexicographical order. This shows that if the
GCH fails at A (i.e., if 2% > AT¥), then does not imply for graphs of
cardinality AT (or, for that matter, for graphs of any cardinality in the interval

[)\++72)\])'

Proof of Theorem B.5. Let H := H(AT) and note that H is a transitive acyclic
oriented graph with |V (H)| = A", H has no infinite directed paths, and every
vertex has degree at most AT. Let K := Kjex(2r) be the tournament on 2% where
(f,g) is an edge of K if and only if f <jex g. We now show that there is no
embedding of H into K.
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Suppose toward a contradiction that ¢: AT x AT — 2* were such an embedding;
that is, for all o, 8,7,6 € AT,

((a, ), (7,0)) € E(H) = (e, B) <iex ¢(7,9)-
By the way H is defined, this implies that

(1) a>~vand <0 = ¢(a,B) <iex ©(7,9).
For each B € AT, let
o Xg={p(a,B):a€ X"} and
e S3 be the set of x € 2* which are <jex-below AT many members of Xg.

Since 2* has no descending A*-sequences, each set X5 N S5 is non-empty.

We claim that for all § < 6, every member of Sg is <jex-below every member
of Xs. To see this suppose that z € Sz is <jex-above some ¢(y,d). Then since
z € Sg and is <jex-below AT many members of X3, there exists an o > + such that

©(7,0) <iex T <1ex p(a, B), contradicting ().
Picking then, for each 8 € AT, a member of X3NSs gives an increasing sequence

of length AT in K, which is impossible. (]
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