
Ito et al (in prep) to be submitted to Journal of Geophysical Research-Machine Learning and 
Computation 

 1 

Title: Mapping dissolved oxygen concentrations by combining shipboard and Argo observations 1 

using machine learning algorithms 2 

Authors: Takamitsu Ito(1), Ahron Cervania(1), Kaylin Cross(2), Sanika Ainchwar(3) and Sara 3 

Delawalla(1) 4 

Affiliation: (1) School of Earth and Atmospheric Sciences, Georgia Institute of Technology 5 

(2) School of Civil and Environmental Engineering, Georgia Institute of Technology 6 

(3) College of Computing, Georgia Institute of Technology 7 

Corresponding author email: taka.ito@eas.gatech.edu 8 

 9 

Abstract: The ocean oxygen (O2) inventory has declined in recent decades but the estimates of 10 

O2 trend are uncertain due to its sparse and irregular sampling. A refined estimate of 11 

deoxygenation rate is developed using machine learning techniques and biogeochemical Argo 12 

array. The source data includes historical shipboard (bottle and CTD-O2) profiles from 1965 to 13 

2020 and biogeochemical Argo profiles after 2005. Neural network and random forest 14 

algorithms were trained using approximately 80% of this data and the remaining 20% for 15 

validation. The training data is further divided into 5-fold decadal groups to perform cross 16 

validation and hyperparameter tuning. Through different combinations of algorithm types and 17 

predictor variable sets, an ensemble of gridded monthly O2 datasets was generated with similar 18 

skills (root-mean-square error ~ 13-18 µmol/kg and R2 ~ 0.9). The largest errors are found in the 19 

oxycline and frontal regions with strong lateral and vertical gradients. The mapping was repeated 20 

with shipboard data only and with both shipboard and Argo data. The effect of including Argo 21 

data on the estimated global deoxygenation trends has a major impact with an 56% increase 22 

while reducing the uncertainty by 40% as measured by the ensemble spread. This study 23 
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demonstrates the importance of new biogeochemical Argo arrays in relatively data-poor regions 24 

such as the Southern Ocean.  25 

 26 

Plain language summary 27 

Oxygen is an essential molecule existing in the seawater. Its concentrations are declining in 28 

many parts of the oceans. The causes of the decline are not fully understood but it is thought to 29 

be linked to the recent warming of the surface ocean and its impact on the physics and chemistry 30 

of the seawater. It is difficult to accurately estimate how much oxygen has been lost from the 31 

oceans based on historical measurements because of sparse sampling density and irregular timing 32 

of measurements. This study assesses the skill of machine-learning based estimates of oxygen in 33 

the global oceans, with the specific aim of synthesizing historical ship-based measurements and 34 

new autonomous data from robotic floats. By combining these data, we were able to determine 35 

the rate of oxygen loss at finer temporal and spatial regions. Our results show that including float 36 

data substantially increases the estimate of oxygen loss while reducing its uncertainty.  37 

 38 

Key points 39 

• A new ensemble dataset of oxygen is developed based on observations and machine 40 

learning algorithms.  41 

• The newly developed dataset is broadly consistent with established climatology and with 42 

deoxygenation rates from other independent studies.  43 

• Synthesis of shipboard and Argo-oxygen data increased estimated deoxygenation rates by 44 

56% while reducing the uncertainties by 40%.   45 

 46 
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 47 
1. Introduction  48 

Historical observations from past decades have shown growing influences of 49 

anthropogenic perturbations on marine ecosystems and biogeochemistry (Friedland et al., 2020; 50 

Gruber et al., 2021; Pershing et al., 2015; Seidov et al., 2018). Dissolved oxygen is essential for 51 

all multicellular life and its concentration can shape the habitats of marine organisms, cycling of 52 

nutrients and trace elements, and the redox states of the seawater. There is a growing consensus 53 

in the scientific community that the global ocean O2 inventory has declined in recent decades. 54 

Estimates of the oceanic oxygen inventory decline are in the range of 0.5-3.3% over the period of 55 

1970-2010, equivalent of −0.48 ± 0.35% per decade, for the upper 1,000m (Bindoff et al., 2019 56 

and references therein). Assessing the global and regional O2 inventories requires filling data 57 

gaps because the historical O2 measurements are irregular in time and sparse in space. The wide 58 

range in the estimates of ocean deoxygenation can be due to the different interpolation methods, 59 

different data quality control standards, and different data sources.  60 

There are three major groups of O2 observations including two types of shipboard 61 

measurements and biogeochemical Argo floats. First, bottle O2 profiles are typically measured 62 

by modified Winkler titration method with a precision of about 1 μmol/kg. Most modern oxygen 63 

chemical titration measurements are based on Carpenter’s whole bottle titration method and an 64 

amperometric or photometric end-point detection with a precision of about 0.5-1 μmol/kg 65 

(Carpenter, 1965). Older bottle data prior to 1965 may have larger measurement uncertainties.  66 

Secondly, Conductivity-Temperature-Depth (CTD) instruments have been equipped with O2 67 

sensors since the late 1980s, and they are periodically calibrated to the bottle data (Culberson et 68 

al., 1991).   69 
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Argo is an international program that measures seawater temperature and salinity using a 70 

fleet of robotic instruments that drift with the ocean currents and periodically sample the water 71 

column by moving up to the surface, with a typical depth and cycle time of 2000m and 10 days 72 

(Roemmich et al., 2019).  Biogeochemical-Argo (BGC-Argo) aims to develop the global 73 

network of biogeochemical sensors mounted on Argo floats including O2, NO3, pH and bio-74 

optical properties (Bittig et al., 2019; Johnson et al., 2013; Sarmiento et al., 2023). Chemical 75 

sensors for measuring biogeochemical data require post-deployment quality control and 76 

calibration (Maurer et al., 2021). There are real-time, real-time adjusted and delayed mode data. 77 

In-situ calibration using atmospheric reanalysis/in-air measurement and empirical algorithms can 78 

bring accuracy to within 3 μmol/kg for O2.  79 

Calculations of basin-scale O2 inventory requires statistical gap-filling methods to 80 

estimate O2 for the location and time where direct measurements are not available. Such gap-81 

filling techniques include objective analysis such as the multi-pass Barnes method (Barnes, 82 

1964) and optimal interpolation or kriging (Wunsch, 1996). Irregular and uneven distribution of 83 

observational data are known to cause increased uncertainties and underestimation of trends in 84 

the data-poor regions (Ito et al., 2023). Recently, machine learning (ML) has become a powerful 85 

tool in climate and ocean sciences (Chen et al., 2019; Gloege et al., 2021; Reichstein et al., 86 

2019). In marine biogeochemistry, ML has been used to generate the maps of partial pressure of 87 

carbon dioxide (Chen et al., 2019; Gloege et al., 2021; Landschützer et al., 2013; Moussa et al., 88 

2016; Sharp et al., 2022; Zeng et al., 2015), oxygen (Sharp et al., 2023), alkalinity (Broullón et 89 

al., 2019), dissolved iron (Huang et al., 2022), phytoplankton concentrations (Chen et al., 2020) 90 

and nutrients (Sauzède et al., 2017). Typically, data gaps are filled by some form of nonlinear 91 

regression models trained by available observational data. The underlying assumption is that 92 
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there are significant, regional relationships between biogeochemical variables and other input 93 

data such as temperature, salinity, pressure and/or geographic coordinates. With a large amount 94 

of training data, ML algorithms can learn detailed relationships from existing observations. Once 95 

the algorithm is trained and validated, it can be used to reconstruct gridded biogeochemical 96 

fields. Sharp et al., (2023) recently developed gridded maps of global O2 distribution from 2004 97 

to 2022 using two ML approaches including two-layer Neural Network (NN) and Random Forest 98 

(RF) regression models. They found a global deoxygenation trend of −0.82 ± 0.11 % per decade 99 

from 2004 to 2022 based on the machine learning technique and Argo-O2 and GLODAP 100 

observational datasets. This estimate is larger than that assessed by Bindoff et al. (2019) of 101 

−0.48 ± 0.35 % per decade over a different period (1970 to 2010) but these estimates overlap 102 

within the uncertainties.  103 

Since the mid-2000s, a significant number of O2 profiles are measured by 104 

biogeochemical Argo floats and its share is increasing. The calibration of Argo-O2 data is still 105 

under development, especially for the response time of optode sensors in the upper ocean 106 

oxycline (Bittig & Körtzinger, 2017). Despite these potential biases and uncertainties, there can 107 

be significant advantage gained by including the quality-controlled Argo-O2 data to better 108 

estimate the O2 inventory by combining it with historical shipboard observations. The objective 109 

of this study is two-fold. First, we aim to develop four-dimensional (3-dimensional space and 110 

time) reconstructions of gridded O2 datasets using multiple ML approaches. This work is 111 

different from Sharp et al. (2023) who focused on the Argo O2 profiles after 2004.  This study 112 

covers a significantly longer period from January 1965 using the combination of Argo-O2 and 113 

historical shipboard observations. This study documents the development of the ML based O2 114 

mapping, leading to the formation of an ensemble of O2 reconstructions selected from a large 115 
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number of trained algorithms with different input variable sets and ML parameters. Secondly, we 116 

aim to quantify the impact of including Argo-O2 data. Separate sets of ML-based O2 ensembles 117 

are formed based on the shipboard data only (without Argo) and with the shipboard and Argo-O2 118 

data. The comparison of deoxygenation trends and the ensemble spread quantifies the potential 119 

impacts on the estimates of deoxygenation trends.  120 

 121 

2. Methods 122 

 This methods section first describes the data sources for dissolved oxygen and other input 123 

variables in section 2.1. We then provide the description of the machine learning approaches in 124 

section 2.2 followed by the experimental design and workflow in section 2.3.  125 

 126 

2.1 Data Sources 127 

Figure 1 shows the distribution of shipboard and Argo-O2 measurements based on World 128 

Ocean Database 2018 (WOD18, Boyer et al., 2018) for the period of January 1965 to December 129 

2020, downloaded in October 2023. The displayed profile count includes those profiles that 130 

passed the quality control step as discussed below. WOD18 is an international collaboration 131 

among national data centers, oceanographic research institutions and investigators to provide a 132 

comprehensive dataset of quality-controlled oceanographic variables. The preprocessing of the 133 

data includes data quality checks indicated by the WOD18 quality control (QC) flags of 0 134 

through 9. This study uses the accepted values (QCflag = 0) only. Data with the QC flags of 1 135 

through 9 are not used in this study as they are outliers or questionable data with several different 136 

criteria. The number of profiles taken each year/month fluctuates significantly. Prior to 1990, 137 

most O2 profiles are taken by ship-based bottle measurements. After the 1990s, the number of 138 
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CTD-O2 profiles increased and became a major O2 data source. Since the mid-2000s, the number 139 

of Argo-O2 profiles has steadily increased. Argo-O2 data is obtained from the Argo Global Data 140 

Assembly Center (GDAC) including the time, location, quality control flags, and descriptions of 141 

calibration methods for each O2 sensor. The entire archive of BGC Argo floats was downloaded 142 

in October, 2023. We specifically searched for floats containing delayed-mode O2 profiles using 143 

two standard methods of bias correction including in-air pO2 measurement with atmospheric 144 

reanalysis data (Bushinsky & Emerson, 2015; Johnson et al., 2015) and climatological air-sea 145 

disequilibrium of surface O2 (Takeshita et al., 2013). There are 1,366 BGC-Argo floats that 146 

satisfy this condition globally, and from these floats, O2 data points with acceptable QC flag 147 

indicated as QC flag of 1, 2 or 8 are selected (1=”good data”, 2=”probably good data” and 148 

8=“estimated data”). BGC-Argo and its calibration methods are still evolving. Sensor calibration 149 

bias for Argo-O2 observations can also include finite response time of optode sensors, which 150 

may cause systemic bias in the oxycline regions (Bittig et al., 2014; 2018).   151 

 152 

(Figure 1 here) 153 

 154 

Figure 1. Sampling density (A,B) Logarithm (base 10) of the cumulative profile count within 155 

each 1°x1° longitude-latitude cell for oxygen (O2) based on the World Ocean Database 2018 156 

(Boyer et al., 2018) downloaded in October 2023. The color saturates at 2 (more than 100 157 

profiles) per cell since 1965. (C) The cumulative profile count for the BGC-Argo O2 data. These 158 

profile counts only includes the profiles that passed the quality control step.  159 

 160 
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Including all three platforms, approximately one million (963,412) quality-controlled O2 161 

profiles are used in this study with 69 % bottle, 17 % CTD-O2 and 14 % Argo-O2 measurements 162 

from 1965 to 2020. Figure 2 shows the year-by-year temporal evolution of the profile counts 163 

from the three sources globally and in five open-ocean basins including the Atlantic, Pacific, 164 

Indian, Southern and Arctic Ocean. There are profiles taken in the marginal seas and coastal 165 

waters, that are not included in this basin-scale breakdown.  166 

 167 

(Figure 2 here) 168 

 169 

Figure 2. Yearly evolution of the O2 profile count.  The number of quality-controlled profiles 170 

are displayed as a function of time as "stacked” bar chart where Bottle profile count (blue) is 171 

placed at the bottom, upon which CTD profile count (orange) is placed. Argo-O2 profile count 172 

(green) is placed on the top without overlap. The vertical axis is in the units of thousands of 173 

profiles per year. The definition of ocean basin is taken from the basin mask of the World Ocean 174 

Atlas 2018 (Garcia et al., 2018).  175 

 176 

Globally, there are 10-20k O2 profiles per year, but their measurement platforms have 177 

evolved over time. Bottle data dominated during the earlier periods but it has been declining after 178 

1990. The decline of bottle profile count was partially compensated by the increase of CTD-O2 179 

profiles after 1990s and then Argo-O2 profiles after 2010s. The Atlantic and Pacific Oceans have 180 

the largest number of profiles (213k and 253k respectively), exhibiting similar evolution as the 181 

global data. The profile counts in the Indian (55k) and Southern Ocean (43k) significantly 182 



Ito et al (in prep) to be submitted to Journal of Geophysical Research-Machine Learning and 
Computation 

 9 

increased in the last decade owing to the Argo-O2 profiles. In contrast, Arctic profiles (46k) 183 

mainly come from before 1990s and are highly skewed towards the Atlantic sector.  184 

As a part of pre-processing, the original WOD18 standard-depth profiles with 102 depth 185 

levels are placed into monthly bins which are 1°x1° longitude-latitude grid cells. We focus on 186 

the upper 47 levels for 0-1,000 m of the water column. Argo-O2 data is interpolated onto the 187 

same standard depths, and placed into the 1°x1° longitude-latitude grid cells. The binning was 188 

performed separately for shipboard and Argo-O2 data, allowing them to be to mapped them 189 

together or separately. We focus on the five major ocean basins including Atlantic, Pacific, 190 

Indian, Southern and Arctic Oceans according to the definition of ocean basins taken from the 191 

World Ocean Atlas 2018 (WOA18; Garcia et al., 2018). The basin boundaries are shown in 192 

Figure 3. The definition of the Indian Ocean includes the Bay of Bengal.  193 

 194 

(Figure 3 here) 195 

 196 

Figure 3. Basin definition. The five major basins are filled with different color. This definition 197 

is taken from the basin mask of WOA18. Each basin is assigned a number. Here, we use Atlantic 198 

(1), Pacific (2), Indian (3, including Bay of Bengal of 56), Southern (10) and Arctic (11) basins.   199 

 200 

The target analysis period is after 1965 when the modern oxygen titration method is 201 

established by Carpenter (1965). Prior to 1987, only the bottle O2 data is selected for the 202 

shipboard profiles due to the concern that very early CTD-O2 data may contain larger 203 

uncertainties. After 1987, the bottle and CTD-O2 profiles are averaged within the 1°x1° bins 204 

weighted by the profile counts.  205 
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  206 

2.2 Machine learning algorithms 207 

This study aims to extract regional relationships that allow filling data gaps in O2 using 208 

surrogate (predictor) variables such as temperature (T), salinity (S), and pressure using machine 209 

learning approaches.  As a basis for the surrogate variables, optimally interpolated monthly 210 

gridded T/S fields are obtained from the Hadley Centre EN version 4 dataset (hereafter, EN4, 211 

Good et al., 2013). It is a global gridded dataset from 1900 to present at the horizontal resolution 212 

of 1°x1° in longitude-latitude grid and with 42 vertical depth levels (20 levels within the 0-213 

1,000m). In supervised learning, a computer program is designed to learn the relationship 214 

between a large number of paired input-output examples. The output (predictand) variable is the 215 

O2 concentration, and the input (predictor) variable can include physical variables and 216 

coordinates. The potential predictor variables include absolute salinity, conservative temperature, 217 

pressure, potential density, Brunt-Väisälä frequency, longitude, latitude, time, and month. Some 218 

of these variables are coordinates and others are derived from the EN4 dataset. Using the 219 

Thermodynamic Equation of State 2010 (TEOS-10), conservative temperature (Q) and absolute 220 

salinity (Sa) are calculated. Potential density is a non-linear function of Q, Sa and pressure 221 

(depth) and is calculated following TEOS-10. Tracer transport in the interior ocean is primarily 222 

oriented along the potential density surfaces. While it can be computed from Q, Sa, and pressure, 223 

including potential density may improve the machine learning algorithm. Brunt-Väisälä 224 

frequency measures the local stratification, determined from the vertical density gradient. Since 225 

stratification can be linked to turbulent mixing, Brunt-Väisälä frequency may potentially 226 

improve the algorithm. Having said this, however, it is not clear whether including all above 227 

variables will improve the estimation of O2. The performance may depend on various factors 228 
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including the choice of input variables and specific configuration of algorithms. Gregor et al. 229 

(2019) showed biases and discrepancies between different methods to gap-fill pCO2 data in 230 

regions where training data is sparse. Applications of ML to ocean biogeochemistry often 231 

struggles in data-sparse areas, and care must be taken to choose the algorithms that are best fit to 232 

the specific problem (Brunton & Kutz, 2019).  233 

Artificial neural networks and random forest regression are commonly used algorithms 234 

for supervised learning, but they have distinct characteristics and operate in different ways. 235 

Neural Networks (hereafter, NN) are composed of interconnected nodes (neurons) arranged in 236 

layers including input, hidden, and output layers (LeCun et al., 1998). NN is capable of 237 

representing complex, nonlinear relationships and can capture intricate patterns, but it requires a 238 

large amount of training data. In contrast, Random Forest (hereafter, RF) is an ensemble learning 239 

method that combines multiple decision trees to make predictions (Ho, 1995; Kleinberg, 2000). 240 

RF can capture complex relationships, but it may struggle with very subtle patterns. RF can 241 

handle missing data effectively by using surrogate splits, which means it may outperform NN in 242 

data-poor regions. In addition, RF can provide feature importances which can help interpret the 243 

results.  244 

In this study, we will employ the Scikit-Learn version 1.3 (Pedregosa et al., 2011) for the 245 

Python implementation of NN and RF regression models. For each type of algorithm, there are 246 

several free parameters (hyperparameters) that cannot be learned from the data and must be 247 

selected before training. These parameters govern the learning process and influence how the 248 

model learns the relationship between the predictor and predictand variables. In practice, it's hard 249 

to know in advance which algorithm/hyperparameter set works better for a particular problem, 250 

and it requires testing multiple algorithms to make a good model choice by experimentation. 251 
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Examples of hyperparameters include the number of nodes for each hidden layer in neural 252 

networks, the regularization parameter, learning rate, or maximum features in RF.  253 

Hyperparameter tuning involves selecting the best combinations of these settings to achieve the 254 

best performance.  255 

 256 

2.2.1 Train-test split by randomly selecting data from specific years 257 

In oceanographic data, observations always contain some level of noise, which can come 258 

from sensor accuracy and sampling uncertainty (spurious noise) as well as unexplained natural 259 

variability. Overfitting occurs when an algorithm fits the noises in the training data rather than 260 

capturing the signal, and as a result, it negatively impacts its ability to generalize to new, unseen 261 

data. Overfitting could occur when a model is too complex relative to the size of the training data 262 

and the noise level. In this study, we employ two types of strategies that the algorithms are not 263 

overfit by evaluating their ability to generalize unseen data. First, approximately 80% of the 264 

observed O2 profiles are selected to train the algorithms, and the remaining 20% are withheld as 265 

to measure how well the trained algorithms can reconstruct the profiles that are not used during 266 

the training. Since oceanographic data is correlated in time and space, O2 measurements from 267 

similar region and time should not be shared between the training and test data. During the pre-268 

processing, O2 profiles within 1°x1° grid cell and within the same month are averaged into a 269 

single bin. This reduces the possibility of having similar set of values between the train and test 270 

data. The 80-20 split is implemented by randomly selecting 11 years out of the 55-year input 271 

data (1965-2020), such that the performance of algorithms are measured by their ability to 272 

reconstruct the 11 years of data unused in the training of the algorithm. The selections of the test 273 
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data are randomized for each combination of input data set, algorithm type and hyperparameter 274 

set.   275 

 276 

2.2.2 Decadal group K-fold Cross Validation 277 

The second level of protection against overfitting is the Decadal-group K-fold Cross 278 

Validation (hereafter, DKCV), which is a resampling procedure that helps estimating how well 279 

an algorithm will perform on unseen data. Figure 4 visually illustrates this procedure as we 280 

apply DKCV for hyperparameter tuning. The training data (~80% of oxygen profiles) are split 281 

into K decadal groups (K=5 in this study) and each set of hyperparameters is trained K times 282 

using different (K-1) groups of training data, and its performance is validated by measuring how 283 

well the trained algorithm reconstructs the one 10-year group that is withheld from the training in 284 

terms of R2 score and root mean square error. Considering the long memory of the ocean 285 

properties, the K groups are defined by the decades including 1965-1974, 1975-1984, 1985-286 

1994, 1995-2004 and 2005-2020. The last segment is a 15-year long period for practically 287 

covering the entire Argo-O2 data. In this procedure, a decade of data are dropped from the 288 

training set, avoiding the overlap within a 10-year period between the training and validation. 289 

This procedure is repeated for all possible combinations of the hyperparameter set in 290 

consideration, allowing to select the best configuration while minimizing the possible occurrence 291 

of overfitting.  292 

  293 
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 294 

(Figure 4 here) 295 

 296 

Figure 4. Decadal group K-fold Cross Validation (DKCV). Training data is divided into K 297 

(=5) groups as illustrated by different horizontal bars, which is a suitable approach since 298 

autocorrelation is suspected in oceanographic measurements. This ensures that data from the 299 

same decade are not shared between training and testing of the algorithms.  300 

 301 

 302 

2.3 Workflow and experimental design 303 

 Building on the procedures discussed in Section 2.2, a workflow is developed for a suite 304 

of ML algorithms for predicting the O2 distribution. Table 1 organizes different combinations of 305 

input/output variables as experiments (Exp) 1 through 6. All experiments use shipboard O2 as the 306 

predictand variable, and Argo-O2 is also included in Exp 4 through 6. All experiments also 307 

include conservative temperature (Q), absolute salinity (Sa), longitude, latitude, pressure (P or 308 

depth), and time as predictor variables. Time is counted as the number of months since January 309 

1965. We also include the sine and cosine of the month of year (mon) to capture annual cycle 310 

with 12-month periodicity as cos	(𝜋	𝑚𝑜𝑛 6+ ) and sin/𝜋	𝑚𝑜𝑛 6+ 0. Exp 2 and 5 includes potential 311 

density (sq) and Exp3 and 6 additionally include the strength of stratification as the square of 312 

Brunt-Väisälä frequency (N2) which is proportional to the vertical density gradient. There are 313 

some redundancies in the predictor variables where time can include month, and sq and N2 can 314 

be calculated as non-linear functions of T and S. However, these factors are explicitly included 315 

because of their predictive potential. The seasonal cycle can be important for O2 especially in the 316 
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near-surface layer for biological O2 production. Isopycnal surfaces and water column 317 

stratification can be important indicators of O2 ventilation and transport. Comparing Exp 1-3 318 

versus 4-6 can inform the importance of including the Argo-O2 data.  319 

  Q Sa long lat time P mon sq N2 Argo 
Exp 1                     
Exp 2                     
Exp 3                     
Exp 4                     
Exp 5                     
Exp 6                     

 320 

Table 1. Input variables. Experiments highlighted green contain only shipboard O2, while 321 

experiments highlighted red contain both shipboard and Argo-O2. “Q” is conservative 322 

temperature (°C). “Sa” is absolute salinity (g/kg). “long” is longitude and “lat” is latitude, both in 323 

degrees except for Southern and Arctic Ocean where the polar stereographic coordinates are 324 

used. “P” is pressure (dbar). “sq” is potential density (kg/m3), and “N2” is the square of Brunt-325 

Väisälä frequency (s-1). “time” is measured as the number of month since January 1965. “mon” 326 

is the month of year implemented as sine and cosine functions.  327 

 328 

 Two types of algorithms, NN and RF are trained for each experiment (Exp1-6). For each 329 

algorithm, a suite of hyperparameters sets is considered (18 sets each for NN and RF), thus a 330 

total of 216 algorithms are trained for different combinations of algorithm type, hyperparameter 331 

sets, and input/output parameter choices. This was applied separately for each of the 5 basins 332 

(Atlantic, Pacific, Indian, Southern and Arctic), leading to the total of 1080 basin-scale 333 

algorithms. For NN, the number of nodes in hidden layers and the regularization parameter are 334 

systematically changed (see Supplementary Table 1). A wide range of hidden layers are 335 
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considered including 10-10-10-10, 20-20-20-20, 40-40-40-40, 60-60-60-60, 60-40-20-10, 20-20-336 

20-20-20-20-10-5, and three different regularization parameters are considered including 0.001, 337 

0.01 and 0.1. Increasing the number of nodes and layers allows more complexity whereas 338 

increasing the regularization parameter prevents the model from becoming too complex. 339 

Regularization parameter is a coefficient multiplying the sum of squared weights, which is added 340 

to the loss function. A larger regularization parameter tends to regulate the magnitude of weights. 341 

The combination of hyperparameters results in 18 different configurations of the NN algorithm. 342 

The NN algorithm used in this study trains using backpropagation with no activation function in 343 

the output layer. It uses the square error as the loss function, and the output is a set of continuous 344 

values. Weights are randomized at the initialization.  345 

For RF, the reference hyperparameters are taken from Probst et al., (2019), and different 346 

configurations are explored for two variables (see Supplementary Table 2) including the 347 

minimum samples for split (min_samples_split) and the maximum features (max_features). The 348 

value of min_samples_split is varied over a wide range from 2 to 64. If the number of samples in 349 

a node is less than the specified "min_samples_split," the node will not be split, and it will 350 

become a leaf node, effectively halting the tree's growth in that branch. Thus, increasing the 351 

value of the min_samples_split prevents the model to become too complex and reduces the 352 

overfitting. The maximum features (also referred to as “mtry” in literature) determines the 353 

number of features randomly selected at each split when building the decision trees.  The 354 

maximum features should be less than the total number of predictor variables, and is varied from 355 

2 to 5 in this study. This choice covers the canonical value of 1𝑝 ~ 3, where p is the number of 356 

predictor variables (Probst et al., 2019). Limiting the maximum features reduces overfitting by 357 

increasing the randomness and diversity among the trees.. A large number of trees avoids 358 
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overfitting and stabilizes the algorithm, and it is set to 500 in this study. The combination of 359 

these hyperparameters results in 18 different configurations of the RF algorithm.  360 

 A wide range of ML model complexity are explored through the diverse set of 361 

hyperparameter sets. As stated in section 2.1, observed O2 profiles are averaged into 1°x1° 362 

longitude-latitude bins during pre-processing, which combines O2 profiles from close proximity 363 

in space and time into a single profile. Furthermore, DKCV is performed to select the best 364 

possible configuration of the hyperparameters. Then we use ~20% of data unused during the 365 

algorithm training to assess the algorithm skill and uncertainty of the resulting mapping products. 366 

The schematic diagram (Figure 5) shows the overall workflow. The best performing algorithm is 367 

selected after training of all possible combination of hyperparameters for each combination of 368 

input/output variables and algorithm type. The performance metrics are root-mean-square error 369 

(RMSE) and R2 values. Once the best performing hyperparameters are found, the algorithms are 370 

further evaluated with additional performance metrics including mean bias, root-mean-square-371 

error (RMSE), and R2 value using the 20 % of the data that are held out from the training. Using 372 

all of these factors, the ML algorithms’ performances are measured, and the gridded O2 datasets 373 

are generated by projection of predictor variables.   374 

 375 

(Figure 5 here) 376 

 377 

Figure 5. The workflow.  This flowchart describes the preprocessing, training, tuning, and 378 

testing of the algorithm to map O2. The shaded region is repeated for 6 experiments (with 379 

different input dataset) and 2 algorithms (NN and RF). The main outcomes are the gridded 380 
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monthly maps and its uncertainty estimates boxed with the thick line. The entire workflow is 381 

repeated for each of the 5 basins.  382 

   383 

3. Hyperparameter tuning and performance evaluation 384 

A total of 1080 ML algorithms is trained including 540 NN and 540 RF regression 385 

models based on different combinations of input/output variables and hyperparameter sets for the 386 

5 ocean basins. Each of the algorithms is trained 5 times using DKCV approach, thus the total of 387 

5,400 trainings are performed. These calculations were computationally demanding but they can 388 

be efficiently carried out in parallel computing platform using Derecho supercomputers at 389 

National Center for Atmospheric Research (CISL, 2019).  390 

 391 

3.1 Optimization of hyperparameters  392 

 For each set of input/output variables (Table 1), all possible configurations of 393 

hyperparameters are explored with the DKCV approach, and the RMSE and R2 scores are 394 

recorded. Figure 6 and 7 shows the mean RMSE scores for the NN and RF algorithm for each 395 

basin with the hyperparameter sets listed in Supplementary Tables 1 and 2. The algorithms are 396 

capable of reproducing O2 observations withheld from the training with RMSE range of 15-22 397 

µmol/kg in all basins, which is greater than the measurement errors. It suggests that the mapping 398 

(interpolation) error is the largest source of uncertainty in this dataset, which will be discussed in 399 

detail later (Section 5). The R2 scores (not shown) are approximately 0.9 and higher in all basins 400 

except for the Arctic (R2 ~ 0.7). The relatively low R2 in the Arctic basin may reflect the 401 

skewness in the sample distribution as most profiles are taken before 1990s and are primarily 402 

from the Atlantic sector, in addition to the presence of sea ice which makes the shipboard 403 
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observation difficult. The profile counts of the Southern and Indian Ocean are not significantly 404 

greater than that of the Arctic, but they have wider spatial and temporal data coverage owing to 405 

the recent deployment of BGC Argo floats.  406 

 407 

(Figure 6 here) 408 

 409 

Figure 6. Mean RMSE scores from the hyperparameter tuning of NN using DKCV approach. 410 

Results from Exp1 (left, S for ship-only) and Exp 4 (right, S+A for ship+Argo) are shown. Each 411 

row from top to bottom is Atlantic, Pacific, Indian, Southern and Arctic Oceans. Color bar shows 412 

the magnitude of the RMSE in the units of µmol/kg. The dots indicate the best performing 413 

hyperparameter set.  414 

 415 

The hyperparameter sets with the lowest RMSE score are selected as the best performing 416 

algorithm, and they generally match the ones with the highest R2 scores. The displayed cases in 417 

Figure 6 and 7 are from Exp 1 (ship only) and 4 (ship+Argo) but the general outcomes from 418 

other experiments are similar, and are displayed as supplementary Figure S1-4. Comparing the 419 

results between the cases with/without Argo data, there is a noticeable difference in the overall 420 

magnitude of RMSE where the inclusion of Argo data decreased the error in NN.  421 

In the NN algorithm, the number of hidden layers/nodes determines the complexity of the 422 

algorithm. The best performing configurations are different depending on the basin and on the 423 

inclusion of Argo data (Figure 6). The most complex configuration (60-60-60-60, 4 hidden 424 

layers with 60 nodes for each layer) is selected for the Atlantic basin including shipboard and 425 

Argo data where the highest regularization coefficient reduced the risk of the overfitting. The 426 
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most complex configuration (60-60-60-60 with lowest regularization) performed the poorest in 427 

general. Simpler configurations with fewer number of nodes performed better in relatively data 428 

sparse basins including Indian, Southern and Arctic basins. There are multiple configurations 429 

that exhibit similarly low value of RMSE. There are potentially multiple hyperparameter choices 430 

that perform equally well, indicative of trade-offs between regularization and model complexity.   431 

The primary determining factor for RF is the max_features (see Figure 7). For this study, 432 

the canonical max_feature value is 3 (Probst et al., 2019) which was selected for the most basins. 433 

In the relatively data-rich Atlantic and Pacific Ocean, larger values of min_samples_split 434 

performed slightly better, which also avoids overfitting. Conversely, lower values of 435 

min_samples_split performed slightly better in the relatively data-sparse Indian and Southern 436 

Ocean.   437 

 438 

(Figure 7 here) 439 

 440 

Figure 7. Same as Figure 6 but for the RF algorithm.   441 

 442 

3.2 Validation and quantification of uncertainties using the test data 443 

We selected the best performing hyperparameter sets for NN and RF algorithms using 444 

DKCV, and the algorithms are re-trained using all training data. They are evaluated against the 445 

test data which consists of ~20% of all input data that are set aside and unused for training. The 446 

test data is assembled from randomly selected 11 out of 55 years, and it is randomized differently 447 

for each basin. Figure 8 shows an example of the distribution of the test data from RF with Exp 448 

5.  These test data are used to evaluate the algorithm and to quantify the uncertainties. The 449 
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performance is evaluated using three metrics including mean bias, RMSE and R2,and the results 450 

are listed in Supplementary Table 3 and 4.  451 

The general performance of both algorithms is quite high with the overall R2 scores of 0.9 452 

and higher with the exception of the Arctic Ocean where it is in the range of 0.6-0.8. The mean 453 

biases are generally low for all basins, less than 2.1 µmol/kg for all algorithms. The magnitude of 454 

RMSE is in the range of 13-18 µmol/kg.  RF algorithms overall performed slightly better than 455 

NN in terms of these metrics. Comparing the results from ship-only (Exp 1-3) and ship and Argo 456 

(Exp 4-6), these metrics are overall similar.  457 

The panel C and D of Figure 8 shows the spatial distribution of the error as calculated by 458 

the difference between the algorithm reconstructions and the test data based on the RF algorithm 459 

from the Exp 5. The specific choice of the algorithm and input data does not significantly impact 460 

on the overall structure of the error field. The major regions of disagreements are close to strong 461 

background O2 gradients. Relatively large errors >20 µmol/kg occurs near the oxycline at the 462 

depth range where there are strong vertical gradients. Similarly large errors are found at the 463 

frontal region in the Southern Ocean and at the lateral boundaries of the tropical oxygen 464 

minimum zone.  465 

 466 

(Figure 8 here) 467 

 468 

Figure 8. Test data for RF algorithm from the Exp 5. (A) Spatial distribution of test profiles that 469 

are unused for training of algorithm. (B) Temporal distribution of the test profiles. (C, D) 470 

Meridional section of misfit between estimated O2 and test data as colored dots in Atlantic and 471 
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Pacific basin taken from the boxed regions in panel A. The contours are annual mean 472 

climatological O2 concentrations based on World Ocean Atlas 2018 (Garcia et al., 2018).  473 

 474 

The evaluation of ML algorithms, so far, are performed based on the total O2 475 

concentrations including climatological means and its temporal variability and trends. The high 476 

R2 values and very small mean bias suggest that the algorithms can reconstruct the overall spatial 477 

patterns and mean values relatively well. The detailed comparison with the test data revealed the 478 

weaknesses of the reconstructed O2 in the oxycline regions and the lateral water mass 479 

boundaries. The amplitude of O2 anomalies generated by displacements of water parcel scales 480 

with the magnitude of background O2 gradient. A possible explanation for very small mean bias 481 

(<3 µmol/kg) and relatively high RMSE (13-18 µmol/kg) in the oxycline and frontal region can 482 

be that the algorithm captures the climatological O2 distribution well but struggles to represent 483 

the spatial and temporal variability. It is difficult to assess the algorithm skill separately for 484 

background climatology and anomalies because of temporally sparse sampling. However, this is 485 

not necessarily the case at the sites of ocean time series stations. The algorithm reconstructions 486 

and test data are compared at two ocean time series stations, Station P (OSP, 145°00’W, 487 

50°00’N) in the northeastern Pacific Ocean, and Bermuda Atlantic Time Series (BATS, 488 

64°10’W, 31°40’N) in the subtropical North Atlantic Ocean. Larger numbers of samples taken at 489 

these stations allow focused examination of skill for the reconstruction of temporal variability at 490 

these stations.  491 

Figure 9 shows the comparison of reconstructed and test data at the specific location of 492 

OSP and BATS. Two isopycnal layers are selected for each station. Figure 9AB shows sigma-493 

theta level 26.8 and 27.0 which are in the upper/lower oxycline depths at OSP. As expected, R2 494 
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values are in the range of 0.5 to 0.8, which is lower than the basin-scale value (~0.9). The RMSE 495 

is in the range up to 18 µmol/kg, which is comparable to the basin-scale value.  Figure 9C 496 

shows sigma-theta level 26.3 at BATS which is within the North Atlantic Subtropical Mode 497 

Water. Figure 9D shows sigma-theta level 26.8 in the lower thermocline. Again, R2 values are in 498 

the range of 0.6 to 0.8, which reflects the algorithm skill to represent variability at these specific 499 

locations, and the RMSE is in the range of 6-8 µmol/kg which is significantly lower than the 500 

basin-scale value. While we admit that the algorithms are not perfect, it is encouraging that this 501 

approach can capture a significant fraction of temporal variability at these sites.  502 

 503 

(Figure 9 here) 504 

 505 

Figure 9 Validation of O2 variability at two ocean time series stations. (A,B) Ocean Station Papa 506 

and (C,D) Bermuda Atlantic Ocean Time Series. Blue dots are for the NN algorithm, and red 507 

dots are for the RF. The blue solid lines are 1:1 line.  508 

 509 

For most input/output variable sets (Table 1), RF algorithms showed lower RMSE than 510 

NN but R2 and mean biases are similar to NN, indicating slightly better skill (Supplementary 511 

Table 3 and 4). Comparing the algorithms trained with shipboard only (Exp 1-3) and shipboard 512 

and Argo data (Exp 4-6), there is a slight improvement in terms of RMSE or R2 in favor of 513 

inclusion of Argo data. This is expected as Argo data contributed to the significant increase in 514 

data coverage even though it is limited to the period after 2005.  515 

In comparison to a recently developed global dataset, GOBAI-O2 (Sharp et al., 2023), 516 

whose global-scale RMSE is 8.8 µmol/kg, our results show a larger RMSE of 13-18 µmol/kg. 517 
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GOBAI-O2 employs similar neural network and random forest algorithms under different 518 

configurations, and their data sources are mainly based on Argo-O2 (with additional GLODAPv2 519 

profiles), thus we do not expect the same uncertainties.  520 

 521 

3.3 Evaluation of climatological O2 distribution 522 

Using the algorithms developed and tested in Section 3.2, we projected O2 distributions 523 

using the gridded EN4 data from 1965 to 2020, and we further analyze the results in comparison 524 

to the well-established climatological distribution using World Ocean Atlas 2018 (WOA18). 525 

Figure 10 shows the summary of comparison for annual mean climatology averaged over 0-526 

1,000 m. This is not a validation in the strict sense since many of the shipboard data used to 527 

assemble World Ocean Atlas were also used in the training of the algorithms. Rather, it is 528 

reassuring to find similar climatological distribution to the widely adopted WOA18 since our 529 

method of mapping is fundamentally different from that of WOA. Figure 10AB shows vertically 530 

averaged, annual mean O2 climatology from the WOA18 and the ensemble average of algorithm-531 

based reconstruction.  532 

 533 

(Figure 10 here) 534 

 535 

Figure 10. Comparison of annual mean climatology between this study and World Ocean Atlas 536 

2018 (WOA18).  (A) Vertically averaged WOA18 O2 climatology from 0-1,000m. (B) Same as 537 

(A) but for the ensemble mean of both algorithms including Exp1-6. (C) Difference between (A) 538 

and (B). (D) Area-weighted mean vertical profile of O2. Red line is WOA18. Blue lines are ship-539 
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only (Exp 1-3) algorithms, and magenta lines are ship+Argo (Exp 4-6) algorithms. (E) 540 

Differences between the algorithms in (D) and WOA18.   541 

 542 

Figure 10C shows a slight, widespread negative bias in the open ocean with some localized 543 

overestimation of O2 along the eastern boundary of ocean basins and along the Antarctic coasts. 544 

The horizontally (area-weighted) averaged vertical profile of O2 is displayed in Figure 10D. It 545 

shows general similarity between the WOA18 and the reconstructed O2, and the difference 546 

between them (Figure 10E) reveals the negative bias of 2-4 µmol/kg overall. The reconstructed 547 

O2 climatologies with ML approaches are slightly lower than WOA18. The inclusion of Argo-O2 548 

data does not significantly impact on the negative bias of the climatological O2 profile. Factors 549 

contributing to the negative mean bias may include differences in the period represented by the 550 

WOA18 and this study. The period represented by the ML-based climatology may reflect the 551 

time windows over which the training data were collected. The representations of the temporal 552 

trends are further examined in Section 4. Comparing the reconstructions with potential density 553 

and/or stratification as additional input variables (Exp 2,3,5,6), the addition of these variables did 554 

not significantly change the climatology. Based on the comparison with WOA18, both RF and 555 

NN algorithm performed well for reproducing the annual mean climatology.  556 

 557 

3.4 Feature importances to explain relative contributions 558 

 In the RF algorithm, feature importances measure the relative importance between each 559 

of the predictor variables in estimating O2. It is calculated by randomly removing a feature from 560 

the dataset during training and measuring how much each feature decreases the algorithm's 561 

overall accuracy. The larger the decrease in performance, the more important the feature is 562 
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deemed to be. Figure 11 shows the feature importances determined from the Exp 1-6 with the 563 

best performing hyperparameter sets for each basin. The feature importances significantly vary 564 

across basins. In the Atlantic and Indian Ocean, latitude was considered the most influential 565 

variable in making O2 estimation. In the Pacific and Southern Ocean, pressure was the most 566 

influential variable. Other variables, such as salinity, temperature, longitude, and potential 567 

density, all played some roles when they are included with relatively small influences. Inclusion 568 

of Argo data made little impact as the pairs of Exp 1&4, 2&5, and 3&6 show very similar feature 569 

importances.  570 

 571 

(Figure 11 here) 572 

 573 

Figure 11. Feature importances of the Random Forest algorithm for each basin. The relative 574 

importance of each feature variables is shown for Exp 1 through 6. “Pden” indicates potential 575 

density. Latitude (Lat*) and longitude (Lon*) are transformed to polar stereographic coordinates 576 

for the Arctic and Southern Ocean.  577 

 578 

Feature importances offer insights into which factors contribute most significantly to the 579 

estimation of O2. Climatological O2 significantly varies latitudinally and in depth (pressure), 580 

likely making them two of the most important factors. Variability of T/S on isopycnal surfaces 581 

can indicate water mass shifts and circulation variability, thus these variables can play some 582 

important roles in estimating O2 variability. Comparing Exp 1 and 2 (and Exp 4 and 5), the 583 

addition of potential density, in some cases, reduced the relative importance of T and S. 584 

Similarly, comparing Exp 2 and 3 (and Exp 5 and 6), the further addition of N2 does not 585 
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significantly change the importance of T/S/sq, indicating some roles played by the stratification. 586 

It is important to note that feature importances are calculated for the specific configuration of RF 587 

algorithms used in this study, and they may not indicate causal relationships.  588 

 589 

4. Assessment of deoxygenation trends 590 

Based on the comparison with the test data and annual mean climatology, we consider 591 

both NN and RF to provide reasonable reconstructions of the O2 distribution, forming 12 592 

ensemble members (NN 1-6 and RF 1-6) where numbers after NN and RF indicates the 593 

experiment number in Table 1. This ensemble includes 6 algorithms trained with shipboard data 594 

only, and another 6 with shipboard and Argo data. The following analysis aims to evaluate the 595 

impact of the Argo data on the reconstructions of deoxygenation trends.   596 

The top panel in Figure 12 shows the 12-month running mean of the O2 inventory time 597 

series integrated over 0-1,000m.  Figure 12A shows results from all algorithms grouped by 598 

(blue) ship-only and (red) ship and Argo ensemble members with the mean and range of 6 599 

reconstructions respectively.  Figure 12BC show separately the results of RF and NN algorithms 600 

including the mean and range of 3 reconstructions for each algorithm type. In general, all 601 

ensemble members show a moderate decrease from 1965 to around 1990, followed by stronger 602 

decline after 1990. They share similar climatological O2 inventory but the deoxygenation trend is 603 

generally stronger in the NN algorithm. Before 2000s, the ship-only and ship+Argo 604 

reconstructions show similar O2 inventory, and they diverge after mid-2000s regardless of the 605 

algorithm type. This coincides with the introduction of Argo O2 data after 2005.  606 

The ship+Argo reconstructions have much stronger deoxygenation rates during the 607 

2010s. To highlight this point, deoxygenation trends of O2 inventory (0-1,000m) are calculated 608 
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for 12 ensemble members over the 40-year period between 1970-2010. To avoid the end-point 609 

effect, linear regression is not used and the trend is calculated by taking the difference of 10-year 610 

means between (1965-1975) and (2005-2015).  The ensemble mean trend is -229 ±	33 611 

Tmol/decade for the ship only reconstructions, and the uncertainty is estimated based on the 612 

ensemble range. The magnitude of this trend is stronger than the recent deoxygenation estimates 613 

based on optimal interpolation of shipboard observation by Ito et al., (2024) of -175 ±	24 614 

Tmol/decade. The optimal interpolation of Ito et al., (2024) likely underestimated the 615 

deoxygenation trend in data-sparse regions. For the ship+Argo reconstructions, the ensemble 616 

mean trend is -358 ±	93 Tmol/decade, which is approximately 57% stronger than the ship-only 617 

reconstruction, and caused by the stronger O2 decrease after the mid-2000s.  618 

 619 

(Figure 12 here) 620 

 621 

Figure 12. Oxygen inventory in the units of Pmol (1015 mol) and its ensemble spread. (A) All 12 622 

ensembles including RF and NN algorithms. (B) RF only and (C) NN only. 12 month running 623 

mean is applied to remove mean seasonal cycle. The shaded region is the ensemble spread 624 

calculated as the difference between yearly maximum and minimum.  625 

 626 

Figure 12B shows the O2 inventory time series based on the RF algorithm for the ship-only and 627 

ship+Argo groups, which has two important implications. First, the inclusion of Argo data 628 

significantly changes the recent (2005-) trajectory of O2 inventory with a significantly stronger 629 

deoxygenation rate. Secondly, the additional input of potential density and/or stratification (N2) 630 
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had practically no impact for the RF algorithms. However, these variables made significant 631 

impacts on the NN algorithm.  632 

Figure 12C shows the O2 inventory time series from the NN algorithms. Similar to the 633 

RF, the inclusion of Argo increases the deoxygenation rate. The NN algorithms also shows more 634 

spread across the ensemble with additional input of potential density and/or stratification. The 635 

ranges of reconstructed O2 inventories are different between ship-only and ship+Argo groups, 636 

primarily coming from the NN algorithm. The range is calculated by the difference between 637 

maximum and minimum O2 inventories (as illustrated by the blue and red shaded regions in 638 

Figure 12) which primarily comes from the NN algorithms. On average, the range of ship-only 639 

algorithms is 0.77 Pmol. The inclusion of Argo data significantly reduced the range to 0.47 640 

Pmol, which is approximately 40% less than the ship-only case. This implies that the inclusion of 641 

Argo data not only increases the magnitude of deoxygenation trends but also reduces the spread 642 

between ensemble members with different configuration of input variables.  643 

Spatial patterns of O2 changes are examined as difference between the two decadal 644 

averages centered at 1970 and 2010. Figure 13A shows the horizontally (area-weighted) 645 

averaged vertical profiles of O2, O2 solubility and (-1) x AOU. The concentration of O2 at 646 

saturation (O2sol) is calculated with solubility coefficients derived from the data of Benson and 647 

Krause (1984) as fitted by Garcia and Gordon (1992). AOU stands for apparent oxygen 648 

utilization, and it is defined as the difference between O2 solubility and O2, AOU = O2sol(S,T) – 649 

O2. Near the surface, the O2 decline is relatively moderate, and it sharply increases through the 650 

upper 200m. The largest O2 decline occurs approximately at 150m depth, and it becomes 651 

relatively constant below 300m. The breakdown of the O2 decrease is approximately equal split 652 
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between solubility and AOU at the surface, but the importance of AOU increases with depth, and 653 

approximately 85-90% of O2 decline is explained by AOU below 300m.  654 

Figure 13BCD shows the spatial patterns of the 40-year change as vertically (thickness-655 

weighted) averages of O2, O2sol and (-1) x AOU over 0-1,000m.  There are regions of strong O2 656 

decline including North Pacific, Southern Ocean, equatorial oceans in all basins, and along the 657 

northeastern coastline of North American continent. This pattern is in good agreement with the 658 

previously published study by Oschlies et al., (2018, Figure 3a). Comparing the patterns between 659 

the two components, AOU clearly dominates the overall O2 decline, and in some regions, the 660 

solubility contributes significantly, including the northeastern coastline of North America and the 661 

frontal regions in the Southern Ocean. Subtropical south Pacific and south Indian Oceans are 662 

regions of moderate O2 increase, and these features are also consistent with the previous work 663 

(Oschlies et al., 2018). In summary, the main driver of O2 decline is AOU in the upper 1,000m, 664 

and our results are in qualitative agreement with previous works in terms of spatial patterns (e.g. 665 

Schmidtko et al., 2017; Oschlies et al., 2018; Ito et al., 2017).   666 

 667 

(Figure 13 here) 668 

 669 

Figure 13. 40-year ensemble mean change of O2, AOU and O2 solubility for (A) area-weighted 670 

horizontal averages and (BCD) thickness-weighted vertical averages from 0-1,000m. All plotted 671 

values are concentrations in the units of µmol/kg. The ensemble mean is calculated for both 672 

algorithm type trained with shipboard and Argo data. The 40-year change is estimated as the 673 

difference between the two 10-year means between (2005-2014) minus (1965-1974).  674 

 675 
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Figure 14 shows the regional breakdown of the O2 inventory with an emphasis on 676 

comparing (blue) ship-only and (red) ship+Argo reconstructions. There are regional differences 677 

in the evolution of O2 inventory. While there are significant overlaps between ship-only and 678 

ship+Argo cases, the ship+Argo reconstructions exhibit stronger decrease of O2 inventory after 679 

2000s including North/Equatorial Atlantic, North/Equatorial Pacific, Indian and Southern 680 

Oceans. Inclusion of Argo data significantly reduced the ensemble spread in the 681 

Equatorial/South Pacific Ocean.  Detailed results from inventory trend calculations are displayed 682 

in the supplementary Table 5.  683 

 684 

(Figure 14 here) 685 

 686 

Figure 14. Basin-scale O2 inventory trend. Global ocean is divided to 10 basins. Blue lines and 687 

shading show ensemble mean and ensemble range for ship-only reconstructions, and red lines 688 

and shading are for ship+Argo reconstructions.  Arctic is northward of 60°N, and the Southern 689 

Ocean is southward of 50°S. The division between equatorial and North Atlantic/Pacific basin is 690 

set to 15°N, and the division between equatorial and South Atlantic/Pacific/Indian basin is set to 691 

15°S.  692 

 693 

 The inclusion of Argo data has different impact on the estimated deoxygenation trend. 694 

Globally, the 40-year trend (1970-2010) increased by 56% when Argo data is included. The 695 

strongest effects are in the Equatorial Pacific (+94%), Equatorial Indian (+73%), and South 696 

Indian (+66%), where these regions have been relatively under-sampled by historical shipboard 697 

observations (Figure 1). In terms of the contributions to the global deoxygenation trend, the 698 
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three major regions are North Pacific (23%), Equatorial Pacific (20%), and Southern Ocean 699 

(18%). These three regions together explain more than 60% of the global deoxygenation trend, 700 

and this is predominantly (>85%) driven by the increasing AOU. Thus, the effect of warming-701 

induced solubility loss is unlikely the major mechanism for ocean deoxygenation, and it must be 702 

primarily driven by the circulation and biochemical changes as expressed by the AOU 703 

component.  704 

 705 

5. Uncertainty analysis 706 

There are 3 types of uncertainty including measurement error, sampling error and 707 

mapping (interpolation) error, and for each type, there can be random errors and biases. 708 

Assuming that measurement (DO2meas), sampling (DO2sampl) and interpolation (DO2interp) errors are 709 

independent and uncorrelated, the combined median uncertainty can be calculated as:  710 

 711 

Δ𝑂! = ;Δ𝑂!"#$%! + Δ𝑂!%$"&'! + Δ𝑂!()*#+&! =,/! (1) 712 

 713 

Measurement errors depend on specific techniques and instrumentation for making 714 

measurements. Bottle O2 can include random errors of 1 µmol/kg or smaller with Winkler 715 

titration (Carpenter, 1965). CTD-O2 sensors calibrated to Winkler O2 data is expected to have 716 

similar errors. Delayed-mode adjusted Argo-O2 has overall errors of about 3 µmol/kg (Maurer et 717 

al., 2021). In the oxycline region, there can be a larger error of approximately 10 µmol/kg for 718 

Argo-O2 data due to uncorrected sensor response time, potentially including random and 719 

systemic bias components. Response time correction has not yet been applied to the delayed 720 

mode adjusted data used in this study. For simplicity, uniform constant measurement error is 721 
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assumed including DO2meas = 1 µmol/kg for bottle and CTD-O2 data, and DO2meas = 3 µmol/kg for 722 

the Argo-O2 data.  723 

When multiple profiles are available within the monthly bin, the standard deviation can 724 

be used to estimate the magnitude of the sampling error. The variance of the binned data is 725 

averaged over time and depth for the shipboard (bottle/CTD-O2) and Argo data separately. They 726 

are combined with the measurement errors according to Eq. (1). Figure 15AB shows the non-727 

uniform distribution of this uncertainty. The global mean value of the combined measurement 728 

and sampling error is 4.8 µmol/kg for the shipboard (bottle/CTD-O2) data, and is 5.5 µmol/kg for 729 

Argo data. However, there is significant spatial variability for the sampling errors likely due to 730 

the regional variability of the background O2 gradient and wave/eddy activities. Other potential 731 

factors can include the sampling density. It can exceed 20 µmol/kg in regions such as Scotia and 732 

Newfoundland shelves and Kuroshio/Oyashio region.  733 

 734 

(Figure 15 here) 735 

 736 

Figure 15. An estimate of measurement, sampling and mapping errors based on the standard 737 

deviation and vertically averaged over 0-1,000m including (A) shipboard measurement and 738 

sampling errors, (B) Argo measurement and sampling errors, and (C) mapping errors from the 739 

test data including Exp 4-6 for both algorithms. The units are in µmol/kg.  740 

 741 

Mapping uncertainties can be estimated by the comparison with the O2 data withheld 742 

from the training as documented in section 3.2. The estimated O2 values had the mean bias of 743 

less than 2 µmol/kg and RMSE of 13-18 µmol/kg globally. Its spatial structure can be calculated 744 
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by the misfit between the reconstructed O2 and test data not used in the training of algorithm. 745 

The misfit can include mean bias and random error. To calculate the random component of the 746 

mapping error (DO2interp2), the square of average misfit (mean bias) is subtracted from the 747 

averaged misfit squared, and this calculation is performed for each longitude-latitude grid cell to 748 

determine pattern of mapping uncertainty (Figure 15C). The global mean value of the 749 

interpolation (mapping) error (DO2interp) is 12.3 µmol/kg. Similar to the sampling errors, the 750 

magnitude of the mapping error is elevated nearby the eastern and western boundary current 751 

systems, tropical oxygen minimum zones, and the Southern Ocean. These regions contain 752 

elevated levels of horizontal and vertical gradients of O2. This error estimates are comparable but 753 

somewhat greater than the magnitude of “algorithm errors” for the GOBAI-O2 dataset of Sharp 754 

et al., (2023). Based on the typical magnitudes of these errors as discussed above, the combined 755 

uncertainty is approximately 13.5 µmol/kg globally, which is primarily dominated by the 756 

interpolation errors and secondary by the sampling error. The uncertainty is regionally elevated 757 

near the edge of oxygen minimum zones and strong ocean currents close to the western and 758 

eastern boundaries of ocean basins.  759 

 760 

6. Conclusion 761 

Since the mid-2000s, Argo floats equipped with O2 sensors have been deployed in 762 

different parts of the global oceans, and the development of in-situ calibration methods reduced 763 

the measurement uncertainties of the Argo-O2 sensors to approximately 3 µmol/kg. 764 

Coincidentally the number of shipboard observations has decreased in recent decades, and as a 765 

result, it is difficult to estimate the basin-scale deoxygenation trends based on shipboard 766 

observation only. Recently, a gridded, time-varying O2 product has been developed using ML 767 
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approaches (Sharp et al., 2023), reconstructing the global O2 distribution since 2004. This study 768 

and GOBAI-O2 are similar in methodology, but there are some differences. Both this study and 769 

GOBAI-O2 used delayed mode Argo data, but we further limited to the O2 profiles calibrated 770 

with two established methods including in-air pO2 measurement (Johnson et al., 2015; Bushinsky 771 

and Emerson 2015) and climatological air-sea disequilibrium (Takeshita et al., 2013). GOBAI-772 

O2 further applied a bias correction of -1.18 µmol/kg based on the match-up profiles (Sharp et 773 

al., 2013, Appendix D). The GOBAI-O2 product is an average of two ML-based datasets with 774 

two-layer NN and RF. In this study, we trained a larger number of algorithms with varying sets 775 

of input data and hyperparameters and selected 12 algorithms to form an ensemble of O2 776 

estimates. Results from each of the ensemble members with and without Argo-O2 data are 777 

available in public domain from zenodo (Ito and Cervania, 2024).  778 

Contrasting algorithms trained with ship only and ship+Argo O2 profiles was the main 779 

theme of this paper.  The historical observations since 1965 included quality-controlled bottle 780 

and CTD-O2 data, but the number of shipboard profiles has been declining since 1980s (see 781 

Figure 2). The inclusion of Argo data made two major impacts on the representation of global 782 

ocean deoxygenation. First, the inclusion of Argo data increased the magnitude of the global 783 

deoxygenation significantly. The 40-year (1970-2010) trend of 0-1,000m O2 inventory is -229 784 

±	33 Tmol/decade for the ship only reconstructions, but it is -358 ±	93 Tmol/decade for the case 785 

of ship+Argo, which is approximately 56% stronger. This implies that recent increase in data 786 

coverage by BGC Argo array had impact on reconstruction of global-scale O2 changes. Increased 787 

data coverage has contributed to capture recent declines of O2 in regions where no shipboard 788 

observation is available. Secondly, the inclusion of Argo data significantly decreased the range 789 

of the global O2 inventory estimates among the ensemble members. The range of ship-only 790 
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algorithms is 0.77 Pmol on average, and the inclusion of Argo data significantly reduced the 791 

range to 0.47 Pmol, which is approximately a 40% reduction. Thus, the inclusion of Argo data 792 

not only increases the magnitude of deoxygenation trends but also narrows the uncertainty.   793 

 Our uncertainty analysis considered three sources of errors including measurement, 794 

sampling, and interpolation errors. Of these, interpolation errors are likely the largest source of 795 

the errors with the global mean magnitude of 13.5 µmol/kg averaged over the ensemble 796 

members. Regionally it can be twice as high as this global mean value. These regions exhibit 797 

strong variability and strong background O2 gradients, which can generate large uncertainties 798 

than the global mean. Additional potential source of errors includes the sensor calibration bias 799 

for Argo-O2 observations due to finite response time of optode sensors, which may cause 800 

systemic bias in the oxycline regions (Bittig et al., 2014; 2018).   801 

Due to the results of anthropogenic carbon dioxide and other greenhouse gas emissions, 802 

the ocean is warming, losing oxygen and being acidified. While these ecosystem stressors are 803 

projected to intensify for coming decades, our understandings of their impacts on marine 804 

ecosystems remains limited. While this study at 1°x1° resolution focused on improving the 805 

method of filling data gaps for basin-scale O2 distribution, this resolution is too low for coastal 806 

studies. It remains to be tested how well ML approaches can be used to map biogeochemical 807 

properties at higher resolution in the coastal waters.  808 
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