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Abstract: The ocean oxygen (Oz) inventory has declined in recent decades but the estimates of
Os trend are uncertain due to its sparse and irregular sampling. A refined estimate of
deoxygenation rate is developed using machine learning techniques and biogeochemical Argo
array. The source data includes historical shipboard (bottle and CTD-O3) profiles from 1965 to
2020 and biogeochemical Argo profiles after 2005. Neural network and random forest
algorithms were trained using approximately 80% of this data and the remaining 20% for
validation. The training data is further divided into 5-fold decadal groups to perform cross
validation and hyperparameter tuning. Through different combinations of algorithm types and
predictor variable sets, an ensemble of gridded monthly O datasets was generated with similar
skills (root-mean-square error ~ 13-18 umol/kg and R? ~ 0.9). The largest errors are found in the
oxycline and frontal regions with strong lateral and vertical gradients. The mapping was repeated
with shipboard data only and with both shipboard and Argo data. The effect of including Argo
data on the estimated global deoxygenation trends has a major impact with an 56% increase

while reducing the uncertainty by 40% as measured by the ensemble spread. This study
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demonstrates the importance of new biogeochemical Argo arrays in relatively data-poor regions

such as the Southern Ocean.

Plain language summary

Oxygen is an essential molecule existing in the seawater. Its concentrations are declining in
many parts of the oceans. The causes of the decline are not fully understood but it is thought to
be linked to the recent warming of the surface ocean and its impact on the physics and chemistry
of the seawater. It is difficult to accurately estimate how much oxygen has been lost from the
oceans based on historical measurements because of sparse sampling density and irregular timing
of measurements. This study assesses the skill of machine-learning based estimates of oxygen in
the global oceans, with the specific aim of synthesizing historical ship-based measurements and
new autonomous data from robotic floats. By combining these data, we were able to determine
the rate of oxygen loss at finer temporal and spatial regions. Our results show that including float

data substantially increases the estimate of oxygen loss while reducing its uncertainty.

Key points
e A new ensemble dataset of oxygen is developed based on observations and machine
learning algorithms.
e The newly developed dataset is broadly consistent with established climatology and with
deoxygenation rates from other independent studies.
e Synthesis of shipboard and Argo-oxygen data increased estimated deoxygenation rates by

56% while reducing the uncertainties by 40%.
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1. Introduction

Historical observations from past decades have shown growing influences of
anthropogenic perturbations on marine ecosystems and biogeochemistry (Friedland et al., 2020;
Gruber et al., 2021; Pershing et al., 2015; Seidov et al., 2018). Dissolved oxygen is essential for
all multicellular life and its concentration can shape the habitats of marine organisms, cycling of
nutrients and trace elements, and the redox states of the seawater. There is a growing consensus
in the scientific community that the global ocean O> inventory has declined in recent decades.
Estimates of the oceanic oxygen inventory decline are in the range of 0.5-3.3% over the period of
1970-2010, equivalent of —0.48 £+ 0.35% per decade, for the upper 1,000m (Bindoff et al., 2019
and references therein). Assessing the global and regional Oz inventories requires filling data
gaps because the historical O> measurements are irregular in time and sparse in space. The wide
range in the estimates of ocean deoxygenation can be due to the different interpolation methods,
different data quality control standards, and different data sources.

There are three major groups of O2 observations including two types of shipboard
measurements and biogeochemical Argo floats. First, bottle O; profiles are typically measured
by modified Winkler titration method with a precision of about 1 umol/kg. Most modern oxygen
chemical titration measurements are based on Carpenter’s whole bottle titration method and an
amperometric or photometric end-point detection with a precision of about 0.5-1 pmol/kg
(Carpenter, 1965). Older bottle data prior to 1965 may have larger measurement uncertainties.
Secondly, Conductivity-Temperature-Depth (CTD) instruments have been equipped with O»
sensors since the late 1980s, and they are periodically calibrated to the bottle data (Culberson et

al., 1991).
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Argo is an international program that measures seawater temperature and salinity using a
fleet of robotic instruments that drift with the ocean currents and periodically sample the water
column by moving up to the surface, with a typical depth and cycle time of 2000m and 10 days
(Roemmich et al., 2019). Biogeochemical-Argo (BGC-Argo) aims to develop the global
network of biogeochemical sensors mounted on Argo floats including Oz, NO3, pH and bio-
optical properties (Bittig et al., 2019; Johnson et al., 2013; Sarmiento et al., 2023). Chemical
sensors for measuring biogeochemical data require post-deployment quality control and
calibration (Maurer et al., 2021). There are real-time, real-time adjusted and delayed mode data.
In-situ calibration using atmospheric reanalysis/in-air measurement and empirical algorithms can
bring accuracy to within 3 pmol/kg for Ox.

Calculations of basin-scale Oz inventory requires statistical gap-filling methods to
estimate O for the location and time where direct measurements are not available. Such gap-
filling techniques include objective analysis such as the multi-pass Barnes method (Barnes,
1964) and optimal interpolation or kriging (Wunsch, 1996). Irregular and uneven distribution of
observational data are known to cause increased uncertainties and underestimation of trends in
the data-poor regions (Ito et al., 2023). Recently, machine learning (ML) has become a powerful
tool in climate and ocean sciences (Chen et al., 2019; Gloege et al., 2021; Reichstein et al.,
2019). In marine biogeochemistry, ML has been used to generate the maps of partial pressure of
carbon dioxide (Chen et al., 2019; Gloege et al., 2021; Landschiitzer et al., 2013; Moussa et al.,
2016; Sharp et al., 2022; Zeng et al., 2015), oxygen (Sharp et al., 2023), alkalinity (Broullon et
al., 2019), dissolved iron (Huang et al., 2022), phytoplankton concentrations (Chen et al., 2020)
and nutrients (Sauzede et al., 2017). Typically, data gaps are filled by some form of nonlinear

regression models trained by available observational data. The underlying assumption is that
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there are significant, regional relationships between biogeochemical variables and other input
data such as temperature, salinity, pressure and/or geographic coordinates. With a large amount
of training data, ML algorithms can learn detailed relationships from existing observations. Once
the algorithm is trained and validated, it can be used to reconstruct gridded biogeochemical
fields. Sharp et al., (2023) recently developed gridded maps of global O distribution from 2004
to 2022 using two ML approaches including two-layer Neural Network (NN) and Random Forest
(RF) regression models. They found a global deoxygenation trend of —0.82 +0.11 % per decade
from 2004 to 2022 based on the machine learning technique and Argo-O, and GLODAP
observational datasets. This estimate is larger than that assessed by Bindoff et al. (2019) of
—0.48 £ 0.35 % per decade over a different period (1970 to 2010) but these estimates overlap
within the uncertainties.

Since the mid-2000s, a significant number of O profiles are measured by
biogeochemical Argo floats and its share is increasing. The calibration of Argo-O> data is still
under development, especially for the response time of optode sensors in the upper ocean
oxycline (Bittig & Kortzinger, 2017). Despite these potential biases and uncertainties, there can
be significant advantage gained by including the quality-controlled Argo-O> data to better
estimate the O2 inventory by combining it with historical shipboard observations. The objective
of this study is two-fold. First, we aim to develop four-dimensional (3-dimensional space and
time) reconstructions of gridded O datasets using multiple ML approaches. This work is
different from Sharp et al. (2023) who focused on the Argo O» profiles after 2004. This study
covers a significantly longer period from January 1965 using the combination of Argo-O> and
historical shipboard observations. This study documents the development of the ML based O»

mapping, leading to the formation of an ensemble of O, reconstructions selected from a large
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number of trained algorithms with different input variable sets and ML parameters. Secondly, we
aim to quantify the impact of including Argo-O> data. Separate sets of ML-based Oz ensembles
are formed based on the shipboard data only (without Argo) and with the shipboard and Argo-O>
data. The comparison of deoxygenation trends and the ensemble spread quantifies the potential

impacts on the estimates of deoxygenation trends.

2. Methods
This methods section first describes the data sources for dissolved oxygen and other input
variables in section 2.1. We then provide the description of the machine learning approaches in

section 2.2 followed by the experimental design and workflow in section 2.3.

2.1 Data Sources

Figure 1 shows the distribution of shipboard and Argo-O> measurements based on World
Ocean Database 2018 (WOD18, Boyer et al., 2018) for the period of January 1965 to December
2020, downloaded in October 2023. The displayed profile count includes those profiles that
passed the quality control step as discussed below. WOD18 is an international collaboration
among national data centers, oceanographic research institutions and investigators to provide a
comprehensive dataset of quality-controlled oceanographic variables. The preprocessing of the
data includes data quality checks indicated by the WOD18 quality control (QC) flags of 0
through 9. This study uses the accepted values (QCflag = 0) only. Data with the QC flags of 1
through 9 are not used in this study as they are outliers or questionable data with several different
criteria. The number of profiles taken each year/month fluctuates significantly. Prior to 1990,

most O profiles are taken by ship-based bottle measurements. After the 1990s, the number of
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CTD-O: profiles increased and became a major O2 data source. Since the mid-2000s, the number
of Argo-Os profiles has steadily increased. Argo-O> data is obtained from the Argo Global Data
Assembly Center (GDAC) including the time, location, quality control flags, and descriptions of
calibration methods for each O sensor. The entire archive of BGC Argo floats was downloaded
in October, 2023. We specifically searched for floats containing delayed-mode O profiles using
two standard methods of bias correction including in-air pO2 measurement with atmospheric
reanalysis data (Bushinsky & Emerson, 2015; Johnson et al., 2015) and climatological air-sea
disequilibrium of surface O (Takeshita et al., 2013). There are 1,366 BGC-Argo floats that
satisfy this condition globally, and from these floats, O> data points with acceptable QC flag
indicated as QC flag of 1, 2 or 8 are selected (1="good data”, 2="probably good data” and
8="“estimated data”). BGC-Argo and its calibration methods are still evolving. Sensor calibration
bias for Argo-O; observations can also include finite response time of optode sensors, which

may cause systemic bias in the oxycline regions (Bittig et al., 2014; 2018).

(Figure 1 here)

Figure 1. Sampling density (A,B) Logarithm (base 10) of the cumulative profile count within
each 1°x1° longitude-latitude cell for oxygen (O.) based on the World Ocean Database 2018
(Boyer et al., 2018) downloaded in October 2023. The color saturates at 2 (more than 100
profiles) per cell since 1965. (C) The cumulative profile count for the BGC-Argo O data. These

profile counts only includes the profiles that passed the quality control step.
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Including all three platforms, approximately one million (963,412) quality-controlled O
profiles are used in this study with 69 % bottle, 17 % CTD-O: and 14 % Argo-O, measurements
from 1965 to 2020. Figure 2 shows the year-by-year temporal evolution of the profile counts
from the three sources globally and in five open-ocean basins including the Atlantic, Pacific,
Indian, Southern and Arctic Ocean. There are profiles taken in the marginal seas and coastal

waters, that are not included in this basin-scale breakdown.

(Figure 2 here)

Figure 2. Yearly evolution of the O profile count. The number of quality-controlled profiles
are displayed as a function of time as "stacked” bar chart where Bottle profile count (blue) is
placed at the bottom, upon which CTD profile count (orange) is placed. Argo-O- profile count
(green) is placed on the top without overlap. The vertical axis is in the units of thousands of
profiles per year. The definition of ocean basin is taken from the basin mask of the World Ocean

Atlas 2018 (Garcia et al., 2018).

Globally, there are 10-20k O> profiles per year, but their measurement platforms have
evolved over time. Bottle data dominated during the earlier periods but it has been declining after
1990. The decline of bottle profile count was partially compensated by the increase of CTD-O»
profiles after 1990s and then Argo-O- profiles after 2010s. The Atlantic and Pacific Oceans have
the largest number of profiles (213k and 253k respectively), exhibiting similar evolution as the

global data. The profile counts in the Indian (55k) and Southern Ocean (43k) significantly
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183  increased in the last decade owing to the Argo-O: profiles. In contrast, Arctic profiles (46k)
184  mainly come from before 1990s and are highly skewed towards the Atlantic sector.

185 As a part of pre-processing, the original WOD18 standard-depth profiles with 102 depth
186  levels are placed into monthly bins which are 1°x1° longitude-latitude grid cells. We focus on
187  the upper 47 levels for 0-1,000 m of the water column. Argo-O; data is interpolated onto the
188  same standard depths, and placed into the 1°x1° longitude-latitude grid cells. The binning was
189  performed separately for shipboard and Argo-O; data, allowing them to be to mapped them
190  together or separately. We focus on the five major ocean basins including Atlantic, Pacific,
191  Indian, Southern and Arctic Oceans according to the definition of ocean basins taken from the
192  World Ocean Atlas 2018 (WOA18; Garcia et al., 2018). The basin boundaries are shown in
193 Figure 3. The definition of the Indian Ocean includes the Bay of Bengal.

194

195 (Figure 3 here)

196

197 | Figure 3. Basin definition. The five major basins are filled with different color. This definition
198 | is taken from the basin mask of WOA18. Each basin is assigned a number. Here, we use Atlantic

199 | (1), Pacific (2), Indian (3, including Bay of Bengal of 56), Southern (10) and Arctic (11) basins.

200

201 The target analysis period is after 1965 when the modern oxygen titration method is
202  established by Carpenter (1965). Prior to 1987, only the bottle O data is selected for the
203  shipboard profiles due to the concern that very early CTD-O» data may contain larger

204  uncertainties. After 1987, the bottle and CTD-O; profiles are averaged within the 1°x1° bins

205  weighted by the profile counts.
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2.2 Machine learning algorithms

This study aims to extract regional relationships that allow filling data gaps in O2 using
surrogate (predictor) variables such as temperature (T), salinity (S), and pressure using machine
learning approaches. As a basis for the surrogate variables, optimally interpolated monthly
gridded T/S fields are obtained from the Hadley Centre EN version 4 dataset (hereafter, EN4,
Good et al., 2013). It is a global gridded dataset from 1900 to present at the horizontal resolution
of 1°x1° in longitude-latitude grid and with 42 vertical depth levels (20 levels within the 0-
1,000m). In supervised learning, a computer program is designed to learn the relationship
between a large number of paired input-output examples. The output (predictand) variable is the
O: concentration, and the input (predictor) variable can include physical variables and
coordinates. The potential predictor variables include absolute salinity, conservative temperature,
pressure, potential density, Brunt-Viisild frequency, longitude, latitude, time, and month. Some
of these variables are coordinates and others are derived from the EN4 dataset. Using the
Thermodynamic Equation of State 2010 (TEOS-10), conservative temperature (®) and absolute
salinity (Sa) are calculated. Potential density is a non-linear function of ®, Sa and pressure
(depth) and is calculated following TEOS-10. Tracer transport in the interior ocean is primarily
oriented along the potential density surfaces. While it can be computed from ©, Sa, and pressure,
including potential density may improve the machine learning algorithm. Brunt-Vaisala
frequency measures the local stratification, determined from the vertical density gradient. Since
stratification can be linked to turbulent mixing, Brunt-Viisild frequency may potentially
improve the algorithm. Having said this, however, it is not clear whether including all above

variables will improve the estimation of O,. The performance may depend on various factors

10
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including the choice of input variables and specific configuration of algorithms. Gregor et al.
(2019) showed biases and discrepancies between different methods to gap-fill pCO- data in
regions where training data is sparse. Applications of ML to ocean biogeochemistry often
struggles in data-sparse areas, and care must be taken to choose the algorithms that are best fit to
the specific problem (Brunton & Kutz, 2019).

Artificial neural networks and random forest regression are commonly used algorithms
for supervised learning, but they have distinct characteristics and operate in different ways.
Neural Networks (hereafter, NN) are composed of interconnected nodes (neurons) arranged in
layers including input, hidden, and output layers (LeCun et al., 1998). NN is capable of
representing complex, nonlinear relationships and can capture intricate patterns, but it requires a
large amount of training data. In contrast, Random Forest (hereafter, RF) is an ensemble learning
method that combines multiple decision trees to make predictions (Ho, 1995; Kleinberg, 2000).
RF can capture complex relationships, but it may struggle with very subtle patterns. RF can
handle missing data effectively by using surrogate splits, which means it may outperform NN in
data-poor regions. In addition, RF can provide feature importances which can help interpret the
results.

In this study, we will employ the Scikit-Learn version 1.3 (Pedregosa et al., 2011) for the
Python implementation of NN and RF regression models. For each type of algorithm, there are
several free parameters (hyperparameters) that cannot be learned from the data and must be
selected before training. These parameters govern the learning process and influence how the
model learns the relationship between the predictor and predictand variables. In practice, it's hard
to know in advance which algorithm/hyperparameter set works better for a particular problem,

and it requires testing multiple algorithms to make a good model choice by experimentation.

11
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Examples of hyperparameters include the number of nodes for each hidden layer in neural
networks, the regularization parameter, learning rate, or maximum features in RF.
Hyperparameter tuning involves selecting the best combinations of these settings to achieve the

best performance.

2.2.1 Train-test split by randomly selecting data from specific years

In oceanographic data, observations always contain some level of noise, which can come
from sensor accuracy and sampling uncertainty (spurious noise) as well as unexplained natural
variability. Overfitting occurs when an algorithm fits the noises in the training data rather than
capturing the signal, and as a result, it negatively impacts its ability to generalize to new, unseen
data. Overfitting could occur when a model is too complex relative to the size of the training data
and the noise level. In this study, we employ two types of strategies that the algorithms are not
overfit by evaluating their ability to generalize unseen data. First, approximately 80% of the
observed O: profiles are selected to train the algorithms, and the remaining 20% are withheld as
to measure how well the trained algorithms can reconstruct the profiles that are not used during
the training. Since oceanographic data is correlated in time and space, O> measurements from
similar region and time should not be shared between the training and test data. During the pre-
processing, O profiles within 1°x1° grid cell and within the same month are averaged into a
single bin. This reduces the possibility of having similar set of values between the train and test
data. The 80-20 split is implemented by randomly selecting 11 years out of the 55-year input
data (1965-2020), such that the performance of algorithms are measured by their ability to

reconstruct the 11 years of data unused in the training of the algorithm. The selections of the test

12
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data are randomized for each combination of input data set, algorithm type and hyperparameter

set.

2.2.2 Decadal group K-fold Cross Validation

The second level of protection against overfitting is the Decadal-group K-fold Cross
Validation (hereafter, DKCV), which is a resampling procedure that helps estimating how well
an algorithm will perform on unseen data. Figure 4 visually illustrates this procedure as we
apply DKCV for hyperparameter tuning. The training data (~80% of oxygen profiles) are split
into K decadal groups (K=5 in this study) and each set of hyperparameters is trained K times
using different (K-1) groups of training data, and its performance is validated by measuring how
well the trained algorithm reconstructs the one 10-year group that is withheld from the training in
terms of R? score and root mean square error. Considering the long memory of the ocean
properties, the K groups are defined by the decades including 1965-1974, 1975-1984, 1985-
1994, 1995-2004 and 2005-2020. The last segment is a 15-year long period for practically
covering the entire Argo-O> data. In this procedure, a decade of data are dropped from the
training set, avoiding the overlap within a 10-year period between the training and validation.
This procedure is repeated for all possible combinations of the hyperparameter set in
consideration, allowing to select the best configuration while minimizing the possible occurrence

of overfitting.
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(Figure 4 here)

Figure 4. Decadal group K-fold Cross Validation (DKCYV). Training data is divided into K
(=5) groups as illustrated by different horizontal bars, which is a suitable approach since
autocorrelation is suspected in oceanographic measurements. This ensures that data from the

same decade are not shared between training and testing of the algorithms.

2.3 Workflow and experimental design

Building on the procedures discussed in Section 2.2, a workflow is developed for a suite
of ML algorithms for predicting the O> distribution. Table 1 organizes different combinations of
input/output variables as experiments (Exp) 1 through 6. All experiments use shipboard O; as the
predictand variable, and Argo-O» is also included in Exp 4 through 6. All experiments also
include conservative temperature (®), absolute salinity (Sa), longitude, latitude, pressure (P or
depth), and time as predictor variables. Time is counted as the number of months since January
1965. We also include the sine and cosine of the month of year (mon) to capture annual cycle

with 12-month periodicity as cos (" "9/} and sin(" mon/ 6)' Exp 2 and 5 includes potential

density (oe) and Exp3 and 6 additionally include the strength of stratification as the square of
Brunt-Viisila frequency (N?) which is proportional to the vertical density gradient. There are
some redundancies in the predictor variables where time can include month, and oo and N? can
be calculated as non-linear functions of T and S. However, these factors are explicitly included

because of their predictive potential. The seasonal cycle can be important for Oz especially in the
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near-surface layer for biological O> production. Isopycnal surfaces and water column
stratification can be important indicators of O, ventilation and transport. Comparing Exp 1-3

versus 4-6 can inform the importance of including the Argo-O- data.

® | Sa |long | lat | time| P | mon | o N2 | Argo

Exp 1
Exp 2
Exp 3
Exp 4
Exp 5
Exp 6

Table 1. Input variables. Experiments highlighted green contain only shipboard O2, while
experiments highlighted red contain both shipboard and Argo-O. “®” is conservative
temperature (°C). “Sa” is absolute salinity (g/kg). “long” is longitude and “lat” is latitude, both in
degrees except for Southern and Arctic Ocean where the polar stereographic coordinates are
used. “P” is pressure (dbar). “ce” is potential density (kg/m?), and “N>” is the square of Brunt-
Viisidla frequency (s™). “time” is measured as the number of month since January 1965. “mon”

is the month of year implemented as sine and cosine functions.

Two types of algorithms, NN and RF are trained for each experiment (Exp1-6). For each
algorithm, a suite of hyperparameters sets is considered (18 sets each for NN and RF), thus a
total of 216 algorithms are trained for different combinations of algorithm type, hyperparameter
sets, and input/output parameter choices. This was applied separately for each of the 5 basins
(Atlantic, Pacific, Indian, Southern and Arctic), leading to the total of 1080 basin-scale
algorithms. For NN, the number of nodes in hidden layers and the regularization parameter are

systematically changed (see Supplementary Table 1). A wide range of hidden layers are
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considered including 10-10-10-10, 20-20-20-20, 40-40-40-40, 60-60-60-60, 60-40-20-10, 20-20-
20-20-20-20-10-5, and three different regularization parameters are considered including 0.001,
0.01 and 0.1. Increasing the number of nodes and layers allows more complexity whereas
increasing the regularization parameter prevents the model from becoming too complex.
Regularization parameter is a coefficient multiplying the sum of squared weights, which is added
to the loss function. A larger regularization parameter tends to regulate the magnitude of weights.
The combination of hyperparameters results in 18 different configurations of the NN algorithm.
The NN algorithm used in this study trains using backpropagation with no activation function in
the output layer. It uses the square error as the loss function, and the output is a set of continuous
values. Weights are randomized at the initialization.

For RF, the reference hyperparameters are taken from Probst et al., (2019), and different
configurations are explored for two variables (see Supplementary Table 2) including the
minimum samples for split (min_samples_split) and the maximum features (max_features). The
value of min_samples_split is varied over a wide range from 2 to 64. If the number of samples in
a node is less than the specified "min_samples_split," the node will not be split, and it will
become a leaf node, effectively halting the tree's growth in that branch. Thus, increasing the
value of the min_samples_split prevents the model to become too complex and reduces the
overfitting. The maximum features (also referred to as “mtry” in literature) determines the
number of features randomly selected at each split when building the decision trees. The

maximum features should be less than the total number of predictor variables, and is varied from
2 to 5 in this study. This choice covers the canonical value of \/E ~ 3, where p is the number of

predictor variables (Probst et al., 2019). Limiting the maximum features reduces overfitting by

increasing the randomness and diversity among the trees.. A large number of trees avoids
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overfitting and stabilizes the algorithm, and it is set to 500 in this study. The combination of
these hyperparameters results in 18 different configurations of the RF algorithm.

A wide range of ML model complexity are explored through the diverse set of
hyperparameter sets. As stated in section 2.1, observed O: profiles are averaged into 1°x1°
longitude-latitude bins during pre-processing, which combines O: profiles from close proximity
in space and time into a single profile. Furthermore, DKCV is performed to select the best
possible configuration of the hyperparameters. Then we use ~20% of data unused during the
algorithm training to assess the algorithm skill and uncertainty of the resulting mapping products.
The schematic diagram (Figure 5) shows the overall workflow. The best performing algorithm is
selected after training of all possible combination of hyperparameters for each combination of
input/output variables and algorithm type. The performance metrics are root-mean-square error
(RMSE) and R? values. Once the best performing hyperparameters are found, the algorithms are
further evaluated with additional performance metrics including mean bias, root-mean-square-
error (RMSE), and R? value using the 20 % of the data that are held out from the training. Using
all of these factors, the ML algorithms’ performances are measured, and the gridded O- datasets

are generated by projection of predictor variables.

(Figure 5 here)

Figure 5. The workflow. This flowchart describes the preprocessing, training, tuning, and
testing of the algorithm to map O». The shaded region is repeated for 6 experiments (with

different input dataset) and 2 algorithms (NN and RF). The main outcomes are the gridded
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monthly maps and its uncertainty estimates boxed with the thick line. The entire workflow is

repeated for each of the 5 basins.

3. Hyperparameter tuning and performance evaluation

A total of 1080 ML algorithms is trained including 540 NN and 540 RF regression
models based on different combinations of input/output variables and hyperparameter sets for the
5 ocean basins. Each of the algorithms is trained 5 times using DKCV approach, thus the total of
5,400 trainings are performed. These calculations were computationally demanding but they can
be efficiently carried out in parallel computing platform using Derecho supercomputers at

National Center for Atmospheric Research (CISL, 2019).

3.1 Optimization of hyperparameters

For each set of input/output variables (Table 1), all possible configurations of
hyperparameters are explored with the DKCV approach, and the RMSE and R? scores are
recorded. Figure 6 and 7 shows the mean RMSE scores for the NN and RF algorithm for each
basin with the hyperparameter sets listed in Supplementary Tables 1 and 2. The algorithms are
capable of reproducing O> observations withheld from the training with RMSE range of 15-22
pumol/kg in all basins, which is greater than the measurement errors. It suggests that the mapping
(interpolation) error is the largest source of uncertainty in this dataset, which will be discussed in
detail later (Section 5). The R? scores (not shown) are approximately 0.9 and higher in all basins
except for the Arctic (R? ~ 0.7). The relatively low R?in the Arctic basin may reflect the
skewness in the sample distribution as most profiles are taken before 1990s and are primarily

from the Atlantic sector, in addition to the presence of sea ice which makes the shipboard
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observation difficult. The profile counts of the Southern and Indian Ocean are not significantly
greater than that of the Arctic, but they have wider spatial and temporal data coverage owing to

the recent deployment of BGC Argo floats.

(Figure 6 here)

Figure 6. Mean RMSE scores from the hyperparameter tuning of NN using DKCV approach.
Results from Exp1 (left, S for ship-only) and Exp 4 (right, S+A for ship+Argo) are shown. Each
row from top to bottom is Atlantic, Pacific, Indian, Southern and Arctic Oceans. Color bar shows
the magnitude of the RMSE in the units of pmol/kg. The dots indicate the best performing

hyperparameter set.

The hyperparameter sets with the lowest RMSE score are selected as the best performing
algorithm, and they generally match the ones with the highest R? scores. The displayed cases in
Figure 6 and 7 are from Exp 1 (ship only) and 4 (ship+Argo) but the general outcomes from
other experiments are similar, and are displayed as supplementary Figure S1-4. Comparing the
results between the cases with/without Argo data, there is a noticeable difference in the overall
magnitude of RMSE where the inclusion of Argo data decreased the error in NN.

In the NN algorithm, the number of hidden layers/nodes determines the complexity of the
algorithm. The best performing configurations are different depending on the basin and on the
inclusion of Argo data (Figure 6). The most complex configuration (60-60-60-60, 4 hidden
layers with 60 nodes for each layer) is selected for the Atlantic basin including shipboard and

Argo data where the highest regularization coefficient reduced the risk of the overfitting. The
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most complex configuration (60-60-60-60 with lowest regularization) performed the poorest in
general. Simpler configurations with fewer number of nodes performed better in relatively data
sparse basins including Indian, Southern and Arctic basins. There are multiple configurations
that exhibit similarly low value of RMSE. There are potentially multiple hyperparameter choices
that perform equally well, indicative of trade-offs between regularization and model complexity.
The primary determining factor for RF is the max_features (see Figure 7). For this study,
the canonical max_feature value is 3 (Probst et al., 2019) which was selected for the most basins.
In the relatively data-rich Atlantic and Pacific Ocean, larger values of min_samples_split
performed slightly better, which also avoids overfitting. Conversely, lower values of
min_samples_split performed slightly better in the relatively data-sparse Indian and Southern

Ocean.

(Figure 7 here)

Figure 7. Same as Figure 6 but for the RF algorithm.

3.2 Validation and quantification of uncertainties using the test data

We selected the best performing hyperparameter sets for NN and RF algorithms using
DKCV, and the algorithms are re-trained using all training data. They are evaluated against the
test data which consists of ~20% of all input data that are set aside and unused for training. The
test data is assembled from randomly selected 11 out of 55 years, and it is randomized differently
for each basin. Figure 8 shows an example of the distribution of the test data from RF with Exp

5. These test data are used to evaluate the algorithm and to quantify the uncertainties. The
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performance is evaluated using three metrics including mean bias, RMSE and R?, and the results

are listed in Supplementary Table 3 and 4.

The general performance of both algorithms is quite high with the overall R? scores of 0.9
and higher with the exception of the Arctic Ocean where it is in the range of 0.6-0.8. The mean
biases are generally low for all basins, less than 2.1 umol/kg for all algorithms. The magnitude of
RMSE is in the range of 13-18 umol/kg. RF algorithms overall performed slightly better than
NN in terms of these metrics. Comparing the results from ship-only (Exp 1-3) and ship and Argo
(Exp 4-6), these metrics are overall similar.

The panel C and D of Figure 8 shows the spatial distribution of the error as calculated by
the difference between the algorithm reconstructions and the test data based on the RF algorithm
from the Exp 5. The specific choice of the algorithm and input data does not significantly impact
on the overall structure of the error field. The major regions of disagreements are close to strong
background O> gradients. Relatively large errors >20 umol/kg occurs near the oxycline at the
depth range where there are strong vertical gradients. Similarly large errors are found at the
frontal region in the Southern Ocean and at the lateral boundaries of the tropical oxygen

minimum zone.

(Figure 8 here)

Figure 8. Test data for RF algorithm from the Exp 5. (A) Spatial distribution of test profiles that
are unused for training of algorithm. (B) Temporal distribution of the test profiles. (C, D)

Meridional section of misfit between estimated O, and test data as colored dots in Atlantic and
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Pacific basin taken from the boxed regions in panel A. The contours are annual mean

climatological O, concentrations based on World Ocean Atlas 2018 (Garcia et al., 2018).

The evaluation of ML algorithms, so far, are performed based on the total O
concentrations including climatological means and its temporal variability and trends. The high
R? values and very small mean bias suggest that the algorithms can reconstruct the overall spatial
patterns and mean values relatively well. The detailed comparison with the test data revealed the
weaknesses of the reconstructed O- in the oxycline regions and the lateral water mass
boundaries. The amplitude of O, anomalies generated by displacements of water parcel scales
with the magnitude of background O gradient. A possible explanation for very small mean bias
(<3 umol/kg) and relatively high RMSE (13-18 umol/kg) in the oxycline and frontal region can
be that the algorithm captures the climatological O distribution well but struggles to represent
the spatial and temporal variability. It is difficult to assess the algorithm skill separately for
background climatology and anomalies because of temporally sparse sampling. However, this is
not necessarily the case at the sites of ocean time series stations. The algorithm reconstructions
and test data are compared at two ocean time series stations, Station P (OSP, 145°00°W,
50°00°N) in the northeastern Pacific Ocean, and Bermuda Atlantic Time Series (BATS,
64°10°W, 31°40°N) in the subtropical North Atlantic Ocean. Larger numbers of samples taken at
these stations allow focused examination of skill for the reconstruction of temporal variability at
these stations.

Figure 9 shows the comparison of reconstructed and test data at the specific location of
OSP and BATS. Two isopycnal layers are selected for each station. Figure 9AB shows sigma-

theta level 26.8 and 27.0 which are in the upper/lower oxycline depths at OSP. As expected, R?
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values are in the range of 0.5 to 0.8, which is lower than the basin-scale value (~0.9). The RMSE
is in the range up to 18 umol/kg, which is comparable to the basin-scale value. Figure 9C
shows sigma-theta level 26.3 at BATS which is within the North Atlantic Subtropical Mode
Water. Figure 9D shows sigma-theta level 26.8 in the lower thermocline. Again, R? values are in
the range of 0.6 to 0.8, which reflects the algorithm skill to represent variability at these specific
locations, and the RMSE is in the range of 6-8 umol/kg which is significantly lower than the
basin-scale value. While we admit that the algorithms are not perfect, it is encouraging that this

approach can capture a significant fraction of temporal variability at these sites.

(Figure 9 here)

Figure 9 Validation of O variability at two ocean time series stations. (A,B) Ocean Station Papa
and (C,D) Bermuda Atlantic Ocean Time Series. Blue dots are for the NN algorithm, and red

dots are for the RF. The blue solid lines are 1:1 line.

For most input/output variable sets (Table 1), RF algorithms showed lower RMSE than
NN but R? and mean biases are similar to NN, indicating slightly better skill (Supplementary
Table 3 and 4). Comparing the algorithms trained with shipboard only (Exp 1-3) and shipboard
and Argo data (Exp 4-6), there is a slight improvement in terms of RMSE or R? in favor of
inclusion of Argo data. This is expected as Argo data contributed to the significant increase in
data coverage even though it is limited to the period after 2005.

In comparison to a recently developed global dataset, GOBAI-O- (Sharp et al., 2023),

whose global-scale RMSE is 8.8 umol/kg, our results show a larger RMSE of 13-18 umol/kg.
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GOBAI-O; employs similar neural network and random forest algorithms under different
configurations, and their data sources are mainly based on Argo-O; (with additional GLODAPv2

profiles), thus we do not expect the same uncertainties.

3.3 Evaluation of climatological O distribution

Using the algorithms developed and tested in Section 3.2, we projected O distributions
using the gridded EN4 data from 1965 to 2020, and we further analyze the results in comparison
to the well-established climatological distribution using World Ocean Atlas 2018 (WOA18).
Figure 10 shows the summary of comparison for annual mean climatology averaged over 0-
1,000 m. This is not a validation in the strict sense since many of the shipboard data used to
assemble World Ocean Atlas were also used in the training of the algorithms. Rather, it is
reassuring to find similar climatological distribution to the widely adopted WOA18 since our
method of mapping is fundamentally different from that of WOA. Figure 10AB shows vertically
averaged, annual mean O climatology from the WOA18 and the ensemble average of algorithm-

based reconstruction.

(Figure 10 here)

Figure 10. Comparison of annual mean climatology between this study and World Ocean Atlas
2018 (WOAI18). (A) Vertically averaged WOA18 O climatology from 0-1,000m. (B) Same as
(A) but for the ensemble mean of both algorithms including Exp1-6. (C) Difference between (A)

and (B). (D) Area-weighted mean vertical profile of O>. Red line is WOA18. Blue lines are ship-
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only (Exp 1-3) algorithms, and magenta lines are ship+Argo (Exp 4-6) algorithms. (E)

Differences between the algorithms in (D) and WOA18.

Figure 10C shows a slight, widespread negative bias in the open ocean with some localized
overestimation of O> along the eastern boundary of ocean basins and along the Antarctic coasts.
The horizontally (area-weighted) averaged vertical profile of O; is displayed in Figure 10D. It
shows general similarity between the WOA18 and the reconstructed Oz, and the difference
between them (Figure 10E) reveals the negative bias of 2-4 umol/kg overall. The reconstructed
O2 climatologies with ML approaches are slightly lower than WOA18. The inclusion of Argo-O»
data does not significantly impact on the negative bias of the climatological O> profile. Factors
contributing to the negative mean bias may include differences in the period represented by the
WOAI18 and this study. The period represented by the ML-based climatology may reflect the
time windows over which the training data were collected. The representations of the temporal
trends are further examined in Section 4. Comparing the reconstructions with potential density
and/or stratification as additional input variables (Exp 2,3,5,6), the addition of these variables did
not significantly change the climatology. Based on the comparison with WOA 18, both RF and

NN algorithm performed well for reproducing the annual mean climatology.

3.4 Feature importances to explain relative contributions

In the RF algorithm, feature importances measure the relative importance between each
of the predictor variables in estimating O;. It is calculated by randomly removing a feature from
the dataset during training and measuring how much each feature decreases the algorithm's

overall accuracy. The larger the decrease in performance, the more important the feature is
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deemed to be. Figure 11 shows the feature importances determined from the Exp 1-6 with the
best performing hyperparameter sets for each basin. The feature importances significantly vary
across basins. In the Atlantic and Indian Ocean, latitude was considered the most influential
variable in making O> estimation. In the Pacific and Southern Ocean, pressure was the most
influential variable. Other variables, such as salinity, temperature, longitude, and potential
density, all played some roles when they are included with relatively small influences. Inclusion
of Argo data made little impact as the pairs of Exp 1&4, 2&5, and 3&6 show very similar feature

importances.

(Figure 11 here)

Figure 11. Feature importances of the Random Forest algorithm for each basin. The relative
importance of each feature variables is shown for Exp 1 through 6. “Pden” indicates potential
density. Latitude (Lat*) and longitude (Lon*) are transformed to polar stereographic coordinates

for the Arctic and Southern Ocean.

Feature importances offer insights into which factors contribute most significantly to the
estimation of O,. Climatological O; significantly varies latitudinally and in depth (pressure),
likely making them two of the most important factors. Variability of T/S on isopycnal surfaces
can indicate water mass shifts and circulation variability, thus these variables can play some
important roles in estimating O variability. Comparing Exp 1 and 2 (and Exp 4 and 5), the
addition of potential density, in some cases, reduced the relative importance of T and S.

Similarly, comparing Exp 2 and 3 (and Exp 5 and 6), the further addition of N? does not
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significantly change the importance of T/S/ce, indicating some roles played by the stratification.
It is important to note that feature importances are calculated for the specific configuration of RF

algorithms used in this study, and they may not indicate causal relationships.

4. Assessment of deoxygenation trends

Based on the comparison with the test data and annual mean climatology, we consider
both NN and RF to provide reasonable reconstructions of the Oz distribution, forming 12
ensemble members (NN 1-6 and RF 1-6) where numbers after NN and RF indicates the
experiment number in Table 1. This ensemble includes 6 algorithms trained with shipboard data
only, and another 6 with shipboard and Argo data. The following analysis aims to evaluate the
impact of the Argo data on the reconstructions of deoxygenation trends.

The top panel in Figure 12 shows the 12-month running mean of the O inventory time
series integrated over 0-1,000m. Figure 12A shows results from all algorithms grouped by
(blue) ship-only and (red) ship and Argo ensemble members with the mean and range of 6
reconstructions respectively. Figure 12BC show separately the results of RF and NN algorithms
including the mean and range of 3 reconstructions for each algorithm type. In general, all
ensemble members show a moderate decrease from 1965 to around 1990, followed by stronger
decline after 1990. They share similar climatological O; inventory but the deoxygenation trend is
generally stronger in the NN algorithm. Before 2000s, the ship-only and ship+Argo
reconstructions show similar O, inventory, and they diverge after mid-2000s regardless of the
algorithm type. This coincides with the introduction of Argo O> data after 2005.

The ship+Argo reconstructions have much stronger deoxygenation rates during the

2010s. To highlight this point, deoxygenation trends of Oz inventory (0-1,000m) are calculated
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for 12 ensemble members over the 40-year period between 1970-2010. To avoid the end-point
effect, linear regression is not used and the trend is calculated by taking the difference of 10-year
means between (1965-1975) and (2005-2015). The ensemble mean trend is -229 + 33
Tmol/decade for the ship only reconstructions, and the uncertainty is estimated based on the
ensemble range. The magnitude of this trend is stronger than the recent deoxygenation estimates
based on optimal interpolation of shipboard observation by Ito et al., (2024) of -175 + 24
Tmol/decade. The optimal interpolation of Ito et al., (2024) likely underestimated the
deoxygenation trend in data-sparse regions. For the ship+Argo reconstructions, the ensemble
mean trend is -358 + 93 Tmol/decade, which is approximately 57% stronger than the ship-only

reconstruction, and caused by the stronger O decrease after the mid-2000s.

(Figure 12 here)

Figure 12. Oxygen inventory in the units of Pmol (10> mol) and its ensemble spread. (A) All 12
ensembles including RF and NN algorithms. (B) RF only and (C) NN only. 12 month running
mean is applied to remove mean seasonal cycle. The shaded region is the ensemble spread

calculated as the difference between yearly maximum and minimum.

Figure 12B shows the O» inventory time series based on the RF algorithm for the ship-only and
ship+Argo groups, which has two important implications. First, the inclusion of Argo data
significantly changes the recent (2005-) trajectory of O inventory with a significantly stronger

deoxygenation rate. Secondly, the additional input of potential density and/or stratification (N?)
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had practically no impact for the RF algorithms. However, these variables made significant
impacts on the NN algorithm.

Figure 12C shows the O; inventory time series from the NN algorithms. Similar to the
RF, the inclusion of Argo increases the deoxygenation rate. The NN algorithms also shows more
spread across the ensemble with additional input of potential density and/or stratification. The
ranges of reconstructed O inventories are different between ship-only and ship+Argo groups,
primarily coming from the NN algorithm. The range is calculated by the difference between
maximum and minimum Oz inventories (as illustrated by the blue and red shaded regions in
Figure 12) which primarily comes from the NN algorithms. On average, the range of ship-only
algorithms is 0.77 Pmol. The inclusion of Argo data significantly reduced the range to 0.47
Pmol, which is approximately 40% less than the ship-only case. This implies that the inclusion of
Argo data not only increases the magnitude of deoxygenation trends but also reduces the spread
between ensemble members with different configuration of input variables.

Spatial patterns of O, changes are examined as difference between the two decadal
averages centered at 1970 and 2010. Figure 13A shows the horizontally (area-weighted)
averaged vertical profiles of O2, O solubility and (-1) x AOU. The concentration of O, at
saturation (Ozso1) s calculated with solubility coefficients derived from the data of Benson and
Krause (1984) as fitted by Garcia and Gordon (1992). AOU stands for apparent oxygen
utilization, and it is defined as the difference between O; solubility and Oz, AOU = O01(S,T) —
Os. Near the surface, the O> decline is relatively moderate, and it sharply increases through the
upper 200m. The largest O» decline occurs approximately at 150m depth, and it becomes

relatively constant below 300m. The breakdown of the O decrease is approximately equal split
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between solubility and AOU at the surface, but the importance of AOU increases with depth, and
approximately 85-90% of O decline is explained by AOU below 300m.

Figure 13BCD shows the spatial patterns of the 40-year change as vertically (thickness-
weighted) averages of Oz, Ox01 and (-1) x AOU over 0-1,000m. There are regions of strong O
decline including North Pacific, Southern Ocean, equatorial oceans in all basins, and along the
northeastern coastline of North American continent. This pattern is in good agreement with the
previously published study by Oschlies et al., (2018, Figure 3a). Comparing the patterns between
the two components, AOU clearly dominates the overall O decline, and in some regions, the
solubility contributes significantly, including the northeastern coastline of North America and the
frontal regions in the Southern Ocean. Subtropical south Pacific and south Indian Oceans are
regions of moderate O increase, and these features are also consistent with the previous work
(Oschlies et al., 2018). In summary, the main driver of Oz decline is AOU in the upper 1,000m,
and our results are in qualitative agreement with previous works in terms of spatial patterns (e.g.

Schmidtko et al., 2017; Oschlies et al., 2018; Ito et al., 2017).

(Figure 13 here)

Figure 13. 40-year ensemble mean change of O, AOU and O: solubility for (A) area-weighted
horizontal averages and (BCD) thickness-weighted vertical averages from 0-1,000m. All plotted
values are concentrations in the units of umol/kg. The ensemble mean is calculated for both
algorithm type trained with shipboard and Argo data. The 40-year change is estimated as the

difference between the two 10-year means between (2005-2014) minus (1965-1974).
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Figure 14 shows the regional breakdown of the O2 inventory with an emphasis on
comparing (blue) ship-only and (red) ship+Argo reconstructions. There are regional differences
in the evolution of O> inventory. While there are significant overlaps between ship-only and
ship+Argo cases, the ship+Argo reconstructions exhibit stronger decrease of O> inventory after
2000s including North/Equatorial Atlantic, North/Equatorial Pacific, Indian and Southern
Oceans. Inclusion of Argo data significantly reduced the ensemble spread in the
Equatorial/South Pacific Ocean. Detailed results from inventory trend calculations are displayed

in the supplementary Table 5.

(Figure 14 here)

Figure 14. Basin-scale O inventory trend. Global ocean is divided to 10 basins. Blue lines and
shading show ensemble mean and ensemble range for ship-only reconstructions, and red lines
and shading are for ship+Argo reconstructions. Arctic is northward of 60°N, and the Southern
Ocean is southward of 50°S. The division between equatorial and North Atlantic/Pacific basin is
set to 15°N, and the division between equatorial and South Atlantic/Pacific/Indian basin is set to

15°S.

The inclusion of Argo data has different impact on the estimated deoxygenation trend.
Globally, the 40-year trend (1970-2010) increased by 56% when Argo data is included. The
strongest effects are in the Equatorial Pacific (+94%), Equatorial Indian (+73%), and South
Indian (+66%), where these regions have been relatively under-sampled by historical shipboard

observations (Figure 1). In terms of the contributions to the global deoxygenation trend, the
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three major regions are North Pacific (23%), Equatorial Pacific (20%), and Southern Ocean
(18%). These three regions together explain more than 60% of the global deoxygenation trend,
and this is predominantly (>85%) driven by the increasing AOU. Thus, the effect of warming-
induced solubility loss is unlikely the major mechanism for ocean deoxygenation, and it must be
primarily driven by the circulation and biochemical changes as expressed by the AOU

component.

5. Uncertainty analysis

There are 3 types of uncertainty including measurement error, sampling error and
mapping (interpolation) error, and for each type, there can be random errors and biases.
Assuming that measurement (AO2meas), sampling (AO2samp1) and interpolation (AOzinterp) €rTO1S are
independent and uncorrelated, the combined median uncertainty can be calculated as:

1/2
A02 = {AO%meas + A0§sampl + AO%

interp} (1)
Measurement errors depend on specific techniques and instrumentation for making
measurements. Bottle Oz can include random errors of 1 umol/kg or smaller with Winkler
titration (Carpenter, 1965). CTD-O> sensors calibrated to Winkler O, data is expected to have
similar errors. Delayed-mode adjusted Argo-O> has overall errors of about 3 umol/kg (Maurer et
al., 2021). In the oxycline region, there can be a larger error of approximately 10 pmol/kg for
Argo-O; data due to uncorrected sensor response time, potentially including random and

systemic bias components. Response time correction has not yet been applied to the delayed

mode adjusted data used in this study. For simplicity, uniform constant measurement error is
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assumed including AOzmeas = 1 pmol/kg for bottle and CTD-O; data, and AO2zmeas = 3 pmol/kg for
the Argo-O: data.

When multiple profiles are available within the monthly bin, the standard deviation can
be used to estimate the magnitude of the sampling error. The variance of the binned data is
averaged over time and depth for the shipboard (bottle/CTD-02) and Argo data separately. They
are combined with the measurement errors according to Eq. (1). Figure 15AB shows the non-
uniform distribution of this uncertainty. The global mean value of the combined measurement
and sampling error is 4.8 umol/kg for the shipboard (bottle/CTD-0O,) data, and is 5.5 pmol/kg for
Argo data. However, there is significant spatial variability for the sampling errors likely due to
the regional variability of the background O gradient and wave/eddy activities. Other potential
factors can include the sampling density. It can exceed 20 umol/kg in regions such as Scotia and

Newfoundland shelves and Kuroshio/Oyashio region.

(Figure 15 here)

Figure 15. An estimate of measurement, sampling and mapping errors based on the standard
deviation and vertically averaged over 0-1,000m including (A) shipboard measurement and
sampling errors, (B) Argo measurement and sampling errors, and (C) mapping errors from the

test data including Exp 4-6 for both algorithms. The units are in pmol/kg.

Mapping uncertainties can be estimated by the comparison with the O data withheld
from the training as documented in section 3.2. The estimated O> values had the mean bias of

less than 2 umol/kg and RMSE of 13-18 pumol/kg globally. Its spatial structure can be calculated
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by the misfit between the reconstructed O and test data not used in the training of algorithm.
The misfit can include mean bias and random error. To calculate the random component of the
mapping error (AOzinwerp?), the square of average misfit (mean bias) is subtracted from the
averaged misfit squared, and this calculation is performed for each longitude-latitude grid cell to
determine pattern of mapping uncertainty (Figure 15C). The global mean value of the
interpolation (mapping) error (AO2interp) 18 12.3 pmol/kg. Similar to the sampling errors, the
magnitude of the mapping error is elevated nearby the eastern and western boundary current
systems, tropical oxygen minimum zones, and the Southern Ocean. These regions contain
elevated levels of horizontal and vertical gradients of O. This error estimates are comparable but
somewhat greater than the magnitude of “algorithm errors” for the GOBAI-O> dataset of Sharp
et al., (2023). Based on the typical magnitudes of these errors as discussed above, the combined
uncertainty is approximately 13.5 umol/kg globally, which is primarily dominated by the
interpolation errors and secondary by the sampling error. The uncertainty is regionally elevated
near the edge of oxygen minimum zones and strong ocean currents close to the western and

eastern boundaries of ocean basins.

6. Conclusion

Since the mid-2000s, Argo floats equipped with O sensors have been deployed in
different parts of the global oceans, and the development of in-situ calibration methods reduced
the measurement uncertainties of the Argo-O, sensors to approximately 3 pmol/kg.
Coincidentally the number of shipboard observations has decreased in recent decades, and as a
result, it is difficult to estimate the basin-scale deoxygenation trends based on shipboard

observation only. Recently, a gridded, time-varying O; product has been developed using ML
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approaches (Sharp et al., 2023), reconstructing the global O distribution since 2004. This study
and GOBAI-O are similar in methodology, but there are some differences. Both this study and
GOBAI-O; used delayed mode Argo data, but we further limited to the O» profiles calibrated
with two established methods including in-air pO, measurement (Johnson et al., 2015; Bushinsky
and Emerson 2015) and climatological air-sea disequilibrium (Takeshita et al., 2013). GOBAI-
O, further applied a bias correction of -1.18 umol/kg based on the match-up profiles (Sharp et
al., 2013, Appendix D). The GOBAI-O: product is an average of two ML-based datasets with
two-layer NN and RF. In this study, we trained a larger number of algorithms with varying sets
of input data and hyperparameters and selected 12 algorithms to form an ensemble of O
estimates. Results from each of the ensemble members with and without Argo-O» data are
available in public domain from zenodo (Ito and Cervania, 2024).

Contrasting algorithms trained with ship only and ship+Argo O: profiles was the main
theme of this paper. The historical observations since 1965 included quality-controlled bottle
and CTD-O: data, but the number of shipboard profiles has been declining since 1980s (see
Figure 2). The inclusion of Argo data made two major impacts on the representation of global
ocean deoxygenation. First, the inclusion of Argo data increased the magnitude of the global
deoxygenation significantly. The 40-year (1970-2010) trend of 0-1,000m O, inventory is -229
+ 33 Tmol/decade for the ship only reconstructions, but it is -358 + 93 Tmol/decade for the case
of ship+Argo, which is approximately 56% stronger. This implies that recent increase in data
coverage by BGC Argo array had impact on reconstruction of global-scale O, changes. Increased
data coverage has contributed to capture recent declines of O in regions where no shipboard
observation is available. Secondly, the inclusion of Argo data significantly decreased the range

of the global O2 inventory estimates among the ensemble members. The range of ship-only
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algorithms is 0.77 Pmol on average, and the inclusion of Argo data significantly reduced the
range to 0.47 Pmol, which is approximately a 40% reduction. Thus, the inclusion of Argo data
not only increases the magnitude of deoxygenation trends but also narrows the uncertainty.

Our uncertainty analysis considered three sources of errors including measurement,
sampling, and interpolation errors. Of these, interpolation errors are likely the largest source of
the errors with the global mean magnitude of 13.5 umol/kg averaged over the ensemble
members. Regionally it can be twice as high as this global mean value. These regions exhibit
strong variability and strong background O gradients, which can generate large uncertainties
than the global mean. Additional potential source of errors includes the sensor calibration bias
for Argo-O; observations due to finite response time of optode sensors, which may cause
systemic bias in the oxycline regions (Bittig et al., 2014; 2018).

Due to the results of anthropogenic carbon dioxide and other greenhouse gas emissions,
the ocean is warming, losing oxygen and being acidified. While these ecosystem stressors are
projected to intensify for coming decades, our understandings of their impacts on marine
ecosystems remains limited. While this study at 1°x1° resolution focused on improving the
method of filling data gaps for basin-scale O distribution, this resolution is too low for coastal
studies. It remains to be tested how well ML approaches can be used to map biogeochemical

properties at higher resolution in the coastal waters.
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