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A Stochastic Gradient Tracking Algorithm for
Decentralized Optimization With Inexact

Communication
Suhail M. Shah Raghu Bollapragada

Abstract— Decentralized optimization is typically stud-
ied under the assumption of noise-free transmission. How-
ever, real-world scenarios often involve the presence of
noise due to factors such as additive white Gaussian noise
channels or probabilistic quantization of transmitted data.
These sources of noise have the potential to degrade the
performance of decentralized optimization algorithms if not
effectively addressed. In this paper, we focus on the noisy
communication setting and propose an algorithm that
bridges the performance gap caused by communication
noise while also mitigating other challenges like data het-
erogeneity. We establish theoretical results of the proposed
algorithm that quantify the effect of communication noise
and gradient noise on the performance of the algorithm.
Notably, our algorithm achieves the optimal convergence
rate for minimizing strongly convex, smooth functions in
the context of inexact communication and stochastic gra-
dients. Finally, we illustrate the superior performance of
the proposed algorithm compared to its state-of-the-art
counterparts on machine learning problems using MNIST
and CIFAR-10 datasets.

Index Terms— Distributed Optimization, Network Opti-
mization, Optimization Algorithms

I. INTRODUCTION

The seminal works [1], [2] were one of the earliest works to
formally study the problem of decentralized decision making
and optimization. These works helped launch the field of de-
centralized optimization, where a connected network of multi
agents collectively optimize an objective function by only
exchanging information between neighboring agents in the
network. Formally, the problem of decentralized optimization
in its most succinct form can be stated as:

min
xi∈Rd

f(x) def
=

1

n

n∑
i=1

fi(xi)

s.t.xi = xj , ∀ i, j ∈ {1, 2, · · · , n} (1)

where x := (x1, · · · , xn) ∈ Rnd with xi being the copy of the
optimization variable held by the ith node (agent) of a network
and fi : Rd → R is the expected value fi(.) = Eξi [Fi(., ξi)]
of the stochastic function Fi(., ξi) : Rd → R private to node
i. Problems of this nature arise in several applications with
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a prominent example being machine learning, where the fi
is a function of the data held at node i. The formulation
also subsumes deterministic optimization for which Fi(x, ξ) =
fi(x), ∀ ξ.

A key aspect of decentralized algorithms is the need for
communication between nodes to achieve consensus (xi =
xj , ∀ i, j ∈ [n] := {1, 2, · · · , n}). However, this communica-
tion is typically not noise-free. For instance, in large-scale
distributed systems used for machine learning applications,
communicated vectors are often quantized to reduce overall
communication costs, resulting in inexact communication [3].
Such inexactness, if not properly addressed, can degrade the
algorithm’s performance. Even fundamental algorithms like
decentralized gradient descent (DGD) do not possess con-
vergence guarantees or assured performance in the presence
of inexact communication [4, Theorem III.8] or, Section IV,
ibid. Therefore, it is essential to develop a framework that
incorporates inexact communication to design algorithms that
effectively mitigate its adverse effects.

Data heterogeneity poses another challenge in decentralized
optimization. Here, data heterogeneity refers to the fact that
the training data is decentralized over the nodes or generated
on client devices so that each node has only access to fi(·).
Fundamental algorithms such as stochastic decentralized gra-
dient descent (S-DGD), used to solve (1) are adversely affected
by data heterogeneity [5]. To overcome these limitations,
Gradient Tracking (GT) type methods [6], [7] have been
developed which communicate an additional vector that tracks
the gradient of the global objective function. However, any
inexactness in the communication can again severely degrade
the overall performance [4], [8]. In fact, with quantization, GT
can empirically show divergent behavior [4, Section IV].

In this paper, we consider the question of whether the inade-
quacies in performance resulting from inexact communication
in decentralized algorithms can be properly addressed while
retaining the benefits such as achieving consensus or removing
data heterogeneity dependence. Specifically, our focus is on
designing and analyzing algorithms based on the GT strategy in
the setting where the information, which could be the current
iterate or the gradient tracking vector, is corrupted by additive
zero-mean noise with finite variance.

A. Related Work
Several works explored the topic of inexact communication

in the context of decentralized optimization, including [12]–
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TABLE I: Comparison of convergence rates for strongly convex, smooth functions with stochastic gradients/communication noise for related
works.

Reference Grad. Noise Comm. Noise No. of iterations to ϵ-acc.

[5], [7], [9] - Gradient Tracking (GT) ✗ ✗ O
(

L
µτ

log 1
ϵ

)
[10] - Stochastic DGD ✓ ✗ O

(
1
nµ

σ2
g

ϵ
+

√
L

µτ

σg√
ϵ
+

√
L

µτ
χ2
√
ϵ
+ L

µτ
log 1

ϵ

)
[5], [11] - Stochastic GT ✓ ✗ O

(
1
nµ

σ2
g

ϵ
+

√
L

µτ

σg√
ϵ
+ L

µτ
log 1

ϵ

)
[12] - QDGD ✗ ✓ O

(
L2

µ2τ
nχ2

ϵ2
+ L2

µ2τ

nσ2
c

ϵ2

)
[13] - S-Near DGDt ✓ ✓ Non convergent.

This work, (IC-GT) ✓ ✓ O
(

1
nµ

σ2
g

ϵ
+

√
L

µτ

σg√
ϵ
+ 1

µτ

σ2
c
ϵ

+ L
µτ

log 1
ϵ

)
Notation: σ2

g : Gradient noise Variance, σ2
c : Communication noise variance, χ2: Data heterogeneity constant satisfying n−1 ∑n

i=1 ∥∇fi(x
∗)−

∇f(x∗)∥2 ≤ χ2 for optimal point x∗.
L, µ, τ, n: Smoothness constant, strong convexity parameter, constant depending on network topology, total number of nodes.
For S-Near DGD, t denotes the number of consensus steps during each iteration and convergence is inexact even with t → ∞. The convergence
is to a neighbourhood of size O

(
τ2tχ2 + L2

µ2 σ
2
c

)
.

[19]. Notably, one of the earliest and significant works in this
setting is [20]. The current work extends them in several ways,
including the utilization of GT to address data heterogeneity
and the assumptions about the underlying functions. These dif-
ferences allow us to achieve superior theoretical and empirical
convergence properties compared to contemporary works, as
documented in Table 1 and discussed in Section III.

Another related line of research to our work is that of decen-
tralized optimization with randomized compressed communi-
cation [21]–[23]. These works focus on iterate quantization for
smooth and strongly convex deterministic optimization prob-
lems using randomized compression operators. However, there
are significant distinctions between our work and these prior
works, including differences in the underlying assumptions.
Specifically, the algorithms proposed in the aforementioned
works assume access to the compression error vector, which is
transmitted to the receiving node for error compensation over a
noiseless channel. Furthermore, the error variance is assumed
to be controllable ( [21, Assumption 2]) with the convergence
performance being intricately linked to it( [21, Theorem 1]).
In our setting, neither of these assumptions are applicable as
they are violated in many practical scenarios, as discussed in
Section II. On a related note, the work [24] explores a noisy
iterate setting for accelerated algorithms while [25] solves the
consensus problem in a continuous-time setting.

The benefits of using the GT strategy to address data
heterogeneity have been extensively studied in numerous
works [5], [7], [9].In the deterministic setting, algorithms
such as EXTRA [6] achieve linear convergence for strongly
convex, smooth functions. For the stochastic optimization
setting (without communication noise), [5], [11] demonstrate
that GT based DGD is agnostic to the data heterogeneity.
Furthermore, variants of GT such as NEXT [26] or the D2

algorithm proposed in [27] have been shown to mitigate the
effects of data heterogeneity. Other works exploring the GT
strategy in various contexts include [7], [9], [28]–[31].

B. Contributions

The main contributions can be summarized as follows:
- We propose and analyze a novel variant of the Gradient

Tracking algorithm called Inexact Communication based
Gradient Tracking (IC-GT) to address the challenges
posed by communication noise and data heterogeneity.
Unlike previous approaches, our method not only retains
the benefits of GT but also effectively eliminates the
negative impact of inexact communication on algorithm
performance through careful design interventions.

- We show IC-GT can recover (upto logarithmic factors)
the optimal convergence rate requirements of O(1/ϵ)
iterations required to achieve ϵ-accuracy for stochastic
optimization while removing the data heterogeneity de-
pendence even in the presence of communication noise.
By extending the theory for exact communication based
decentralized optimization [5], [32], our results improve
upon the existing works which consider communication
and gradient noise under similar assumptions and achieve
either a worse convergence rate or inexact convergence
(cf. Table 1).

- To validate our theoretical results, we report experimental
results that compare IC-GT with similar methods like
DGD [1], DIGGing [7], and EXTRA [6]. Our experiments
demonstrate the superior performance of IC-GT on lo-
gistic regression and image recognition problems on well
known datasets.

The paper is organized as follows. We introduce the notation
that is used through out the paper in the rest of this section. In
Section II, we describe the problem formulation and in Section
III, we present the proposed algorithm and its implementation.
Section IV provides the convergence analysis while Section
V presents the numerical evidence in its support. Future
directions of research and conclusions are listed in Section
6.

Notation: We use R to denote the set of real numbers
and N to denote the set of all strictly positive integers. We
use xk ∈ Rnd to denote the stacked version of {xi,k}i∈[n],
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where xi,k ∈ Rd is a column vector which denotes the
value of the objective variable held by node i at iteration
k, i.e. xk := (x1,k, · · · , xn,k). We define x̄k := 1

n (1n1
T
n ⊗

Id)xk =
(
1
n

∑n
i=1 xi,k, · · · , 1

n

∑n
i=1 xi,k

)
, where the column

vector 1n := (1, · · · , 1) ∈ Rn and Id ∈ Rd×d being the
identity matrix. The symbol ⊗ is used to denote the Kronecker
product between any two matrices while ∥ · ∥ is understood
to be the ℓ2-norm of a vector or a matrix depending upon
the argument. The ℓ2 inner product between any two vectors
is denoted using ⟨·, ·⟩. The following notation is used for
the gradients, ∇f(xk) := (∇f1(x1,k), · · · ,∇fn(xn,k)) and
∇f(x̄k) := (∇f1(x̄k), · · · ,∇fn(x̄k)). We also define the
matrices,

In = In ⊗ Id and Īn := In − 1n1
T
n ⊗ Id
n

.

Finally, for any two real valued functions f(·) and g(·), f(x) =
O(g(x)) denotes the standard Big-O notation which implies
that there exists a finite constant C > 0 and x0 such that
|f(x)| ≤ Cg(x) for all x ≥ x0. We use Õ(·) when ignoring
logarithmic factors.

II. PRELIMINARIES

In this section, we provide preliminaries regarding the
network and communication model, and also state the assump-
tions that are used in the paper.

The network is represented by a (undirected) graph G =
{V, E}, where V denotes the set of nodes and E represents the
set of edges. We use the matrix Q = [qij ]i,j∈[n] ∈ Rn×n to
denote the mixing matrix (or consensus matrix) that captures
the connectivity of the network. By this, we mean that the
entry qij > 0 (assumed to be equal to qji), if there is an edge
between any two nodes i, j ∈ V . We use N (i) to denote the
set of neighbours of i, i.e., the set j ∈ V with j ̸= i for
which qij > 0. We make the following assumption regarding
the matrix Q.

Assumption 1 (Mixing matrix). The mixing matrix Q is sym-
metric and doubly stochastic. Furthermore, the eigenvalues
{λi}i∈[n] of Q satisfy 1 = λ1 > λ2 ≥ · · · ≥ λn > −1.

Remark 1. The symmetric and double stochasticity assump-
tion of Q is standard in decentralized optimization along with
λ2 < 1 which implies that the graph is connected. Therefore,
it implies that (Q ⊗ Id)x = x if and only if xi = xj for
all i, j ∈ V . Moreover, it also ensures that the spectral gap
δ(Q) := 1 − max{|λ2|, |λn|} is greater than zero which in
turn ensures that the consensus error decreases linearly after
each averaging step, i.e.,∥∥∥∥(Q⊗ Id)x −

(
1n1

T
n

n
⊗ Id

)
x
∥∥∥∥2

≤ (1− δ)2
∥∥∥∥x −

(
1n1

T
n

n
⊗ Id

)
x
∥∥∥∥2 (2)

for any x ∈ Rnd. For undirected graphs, this assumption can
be guaranteed by using the Metropolis weights ( [7, Section
3]).

We next describe the communication model considered in
this work. We make the assumption that when any node i ∈ [n]
sends a signal vector xi,k ∈ Rd to a neighboring node j at
iteration k ∈ N, node j receives the vector φc(xi,k) ∈ Rd

instead of the original vector xi,k, where φc(·) : Rd → Rd

represents a random transformation given by

φc(xi,k) := xi,k + ϵi,k,c ,

where ϵi,k,c ∈ Rd is a random vector. We emphasize that we
do not assume access to the values of ϵi,k,c. We make the
following assumption concerning ϵi,k,c.

Assumption 2 (Noisy signal transmission). The random noisy
vector ϵi,k,c is assumed to be zero mean conditioned on xk

with bounded variance for all i ∈ [n] and k ∈ N, i.e.,

E [ϵi,k,c|xi,k] = 0, E [∥ϵi,k,c∥2] ≤ σ2
c ,

for some finite σc > 0.

We note that inexact communication settings with noise
satisfying Assumption 2 are widely studied in the context
of decentralized optimization [13], [14], [16], [33], [34]. We
emphasize that we define φc(·) instead of directly stating
a zero-mean white noise assumption on the communication
noise to highlight the fact that the noise in the communication
process can arise from fundamentally different processes. To
illustrate, we describe two important examples of φc(·) for
which Assumption 2 is satisfied.

Additive White Gaussian Noise channel (AWGN): The most
common approach to modeling an analog based communica-
tion channel between two nodes is through an AWGN channel
[35]. In this scenario, when a node transmits a signal ytr ∈ R to
a neighboring node, the received signal at the receiving node,
denoted as yrc, can be represented as

yrc = hytr + ϵc,

where h ∈ R captures channel effects like fading [36], and
ϵc represents zero-mean Gaussian noise with variance σ2

c ,
independent of the transmitted signal ytr. Assuming that the
receiving node possesses a prior estimate of h [37, Chapter
4], it can construct an estimate of the true signal ŷrc as,

ŷrc =
1

h
yrc = ytr +

ϵc
h
.

Hence, in this scenario, we can express φc(·) as,

φc(ytr) = ytr +
ϵc
h
,

implying Assumption 2 is satisfied since E [φc(ytr)] = ytr and
E [∥φc(ytr)− ytr∥2] ≤ σ2

c/h
2.

Probabilistic Quantization: Another significant example of
operator φc arises in the context of quantization with unbiased
compression operators. Specifically, consider a scalar x ∈ R.
The quantized value φc(x) can be determined based on the
following rule:

φc(x) =

{
⌊x⌋p with probability (⌈x⌉p − x)∆p

⌈x⌉p with probability (x− ⌊x⌋p)∆p

(3)
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where ⌊x⌋p and ⌈x⌉p denote the operations of rounding down
and up to the nearest integer multiple of 1

∆p
respectively,

and ∆p is a positive integer. The operator φc defined in
(3) satisfies E [φc(x)] = x and E [|φc(x) − x|2] ≤ 1

4∆2
p

as
shown in [38] implying Assumption 2 is satisfied. However,
it is important to note that [38] provides only a simplistic
analysis and does not take into consideration the saturation
errors ( [39], [40]) that arise in quantization. Moreover, other
quantization approaches, such as uniform quantization, natural
compression, and LM (see [41] and references therein), while
satisfying the unbiasedness assumption, exhibit varying
variance rather than bounded variance.

We also make the following assumptions regarding the objec-
tive function.

Assumption 3 (Regularity and convexity). Each local function
fi is L-smooth and µ-strongly convex.

Assumption 4 (Unbiased gradient samples). Each node i
has access to conditionally unbiased, finite variance gradient
samples ∇Fi(xi,k, ξk) of ∇fi(xi,k) for any given xi,k ∈ Rd,
k ∈ N. That is,

Eξi,k [∇Fi(xi,k, ξi,k) |xi,k] = ∇fi(xi,k)

Eξi,k [∥∇Fi(xi,k, ξi,k)−∇fi(xi,k)∥2] ≤ σ2
g

for some finite σg > 0 with ξi,k being assumed to be
independent of ϵi,k,c.

Remark 2. The finite variance assumption in Assumption 4
can be relaxed along two possible lines with minor modi-
fications to the convergence analysis. One relaxation would
be to allow the noise to grow with the gradient norm (cf.
Assumption 3b, [32]). The other possibility is to replace σ2

with σ2
∗ := 1

n

∑n
i=1 ∥∇F (x∗, ξi)−∇f(x∗)∥2, the noise at the

optimal point x∗, as in [42].

Remark 3. The convergence analysis can also be extended to
a non-convex setting by modifying the measure of stationary
to be the ℓ2-norm of the gradient.

III. THE IC-GT METHOD

In this section, we describe the proposed method that
accounts for inexact communication, referred to as Inexact
Communication based Gradient Tracking (IC-GT) designed
to solve the problem (1). Algorithm 1 presents the pseudo code
of (IC-GT).

Algorithm 1 INEXACT COMMUNICATION based GRADIENT
TRACKING (IC-GT)

1: Input Graph G(V, E); Matrix Q = [qij ]i,j∈[n] ∈ Rn×n ; Operator
φc(·); Noise attenuation parameter γ > 0; Step size parameter α > 0.

2: Initialization xi,0 ∈ Rd, ∀i; yi,0 := ∇Fi(xi,0, ξi,0), ∀i.
3: while k ≥ 1 in parallel: do
4: for all i ∈ [n], do
5: vi,k = (1− γ)xi,k + γqiixi,k + γ

∑
j∈N (i) qijφc(xj,k)

6: xi,k+1 = vi,k − αyi,k
7: yi,k+1 = (1 − γ)yi,k + γqiiyi,k + γ

∑
j∈N (i) qijφc(yj,k) +

∇Fi(xi,k+1, ξi,k+1)−∇Fi(xi,k, ξi,k)
8: end for
9: k → k + 1

10: end while

To express IC-GT in matrix form, we introduce the matri-
ces Q′ := [q′ij ]i,j∈[n] and Q̂ := [q̂ij ]i,j∈[n] defined as follows:

Q′ def
= (In −Q)⊗Id Q̂ def

= (Q− diag(Q))⊗Id, (4)

where diag(Q) denotes the diagonal matrix with entries qij
for i = j and 0 otherwise. Using the communication model,
φc(xj,k) = xj,k + ϵj,k,c, we can express the iteration for vi,k
as follows:

vi,k = (1− γ(1− qii))xi,k + γ
∑

j∈N (i)

qijφc(xj,k)

= xi,k − γ(1− qii))xi,k + γ
∑

j∈N (i)

qijxj,k

+ γ
∑

j∈N (i)

qijϵj,k,c.

Performing a similar manipulation for the y update, we can
express IC-GT using (4) as follows:

vk = (In − γQ′)xk + γQ̂ϵk,c (5)
xk+1 = vk − αyk (6)
yk+1 = (In − γQ′)yk +∇F(xk+1, ξk+1)−∇F(xk, ξk)

+ γQ̂ϵ̂k,c (7)

where ϵ̂i,k,c := φc(yi,k) − yi,k, ϵk,c := (ϵ1,k,c, · · · , ϵn,k,c)
and ∇F(xk, ξk) := (∇F1(x1,k, ξ1,k), · · · ,∇Fn(xn,k, ξn,k)).

We next discuss the main modification made to the standard
DGD algorithm [1] utilized in IC-GT to better understand its
communicating and computational capabilities.

(i) Use of In − γQ′: In the context of IC-GT, the weight
matrix In − γQ′ is employed instead of the typical Q used in
DGD [1]. To illustrate its effectiveness in mitigating communi-
cation noise, let us examine the sequence {xk}k≥0 generated
according to the recursion:

xk = (In − γQ′)xk−1 + γQ̂ϵk−1,c, (8)

where the noise term ϵk−1,c satisfies Assumption 2. The
recursion in (8) can be interpreted as a distributed averaging
algorithm using the weight matrix In−γQ′. Specifically, when
γ = 1 and ϵk−1,c = 0, (8) reduces to the standard distributed
averaging algorithm [43]. Next, we consider the expression
for the averaged iterates x̄k obtained by multiplying (8) by
1
n

(
1n1

T
n ⊗ Id

)
:

x̄k = x̄k−1 − γ
1

n

(
1n1

T
n ⊗ Id

)
Q̂ϵk−1,c, (9)

where we used
(
1Tn ⊗ Id

) (
In − γQ′) = (1Tn ⊗ Id) from

Assumption 1. Subtracting (9) from (8) and defining Q̃ :=(
In − n−11n1

T
n ⊗ Id

)
Q̂ and recalling Īn := In − 1n1

T
n⊗Id
n ,

we get,

xk − x̄k = (In − γQ′)(xk−1 − x̄k−1) + γQ̃ϵk−1,c

= (In − γQ′)(xk−1 − x̄k−1) + γQ̃ϵk−1,c

− 1n1
T
n ⊗ Id
n

(xk−1 − x̄k−1)

= (Īn − γQ′)(xk−1 − x̄k−1) + γQ̃ϵk−1,c,
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where the second equality is due to 1n1
T
n⊗Id
n (xk−1− x̄k−1) =

0. Applying norms and taking squares yields,

∥xk − x̄k∥2 ≤ ∥Īn − γQ′∥2∥xk−1 − x̄k−1∥2 + γ2∥Q̃ϵk−1,c∥2

+ 2γ
〈
(Īn − γQ′)(xk−1 − x̄k−1), Q̃ϵk−1,c

〉
.

(10)

Using the conditional zero mean and finite variance assump-
tion for ϵk−1,c (Assumption 2), we get,

E[∥xk − x̄k∥2]
≤ (1− γ(1− λ2))

2 E[∥xk−1 − x̄k−1∥2] + 2nγ2σ2
c ,

where we used ∥Īn−γQ′∥ ≤ 1−γ(1−λ2) since eigenvalues of
Īn−γQ′ are of the form 0 and 1−γ(1−λi) for i = 2, · · · , n,
and ∥Q̃∥2 ≤ 2. Applying the above inequality repeatedly
through iteration k = 0 yields,

E[∥xk − x̄k∥2] ≤ (1− γ(1− λ2))
2k ∥x0 − x̄0∥2 +

2nγσ2
c

1− λ2
.

(11)

(11) unveils a fundamental trade-off between two crucial
aspects: the rate of decay of the consensus error and the
mitigation of the influence exerted by the communication
noise variance. As the parameter γ decreases, a smaller final
consensus error can be achieved. However, this improvement
comes at the expense of a slower convergence rate in reducing
the consensus error. In view of this trade-off, the parameter γ is
referred to as the ‘noise attenuation’ parameter. An important
work [44] which studies adaptive filtering (specifically the
LMS adaptation algorithm), relates to these features of our
algorithm. However, our algorithm incorporates additional
considerations such as function optimization and weighted
averaging over neighboring nodes rendering the analysis and
results presented in the paper not applicable to our case.
(ii) Use of Gradient Tracking: Another crucial feature of
IC-GT is its ability to track gradients while accommodat-
ing inexact communication through gradient tracking. The
inclusion of gradient tracking offers the advantage of making
the algorithm agnostic to data heterogeneity. To elaborate,
the number of iterations required to achieve ϵ-accuracy using
stochastic DGD depends on O

(√
Lχ2

√
ϵ

)
[32], where χ is a

constant satisfies the inequality

1

n

n∑
i=1

∥∇fi(x
∗)−∇f(x∗)∥2 ≤ χ2,

with x∗ denoting the optimal solution of (1). In contrast,
IC-GT eliminates the dependence on χ entirely and, more-
over, recovers the linear convergence rate in scenarios where
the variances of both the gradient and communication noise
are zero.

IV. CONVERGENCE ANALYSIS

In this section, we establish theoretical convergence guar-
antees for the proposed IC-GT algorithm. We build up to our
main result through a series of technical lemmas which we
state next.

Preliminaries

For the sake of brevity, we assume ϵk,c = ϵ̂k,c in (5)-(7) for
all k ∈ N without loss of generality. We begin by expressing
the algorithm in terms of the difference between the variables
and their corresponding averages, which we refer to as the
consensus error. To denote this, we adopt the notation ∆z :=
z − z̄ for any variable z ∈ Rnd, where z̄ denotes the average,
i.e., z̄ :=

(
1n1

T
n

n ⊗ Id

)
z. We first establish a recursive relation

for the consensus error.

Lemma 1. [Recursive relation for consensus errors] Sup-
pose ϵk,c = ϵ̂k,c in (5)-(7) for all k ∈ N. Then, the iterates
generated by IC-GT satisfy the following recursive relation:

Ψk = JγΨk−1 + αEk−1, (12)

where

Ψk
def
=

 ∆vk

∆xk

α∆yk

 , Jγ
def
=

Īn − γQ′ 0 −(Īn − γQ′)
0 Īn − γQ′ −Īn
0 0 Īn − γQ′


(13)

and

Ek−1
def
=

γ

α

 Q̃ϵk,c
Q̃ϵk−1,c

αQ̃ϵk−1,c

+
 0

0
Īn (∇F(xk, ξk)−∇F(xk−1, ξk−1))


with Īn :=

(
In − 1n1

T
n

n

)
⊗ Id, Q′ def

= (In − Q) ⊗ Id, Q̂ def
=

(Q− diag(Q))⊗ Id and Q̃ def
= ĪnQ̂.

The proof of this lemma is provided in Appendix I. One
of the challenges in analyzing IC-GT is that the matrix Jγ

defined in (13) is not necessarily a contractive matrix. In other
words, the condition ∥Jγ∥ < 1 is not guaranteed to hold.
However, the following result demonstrates that despite this
restriction, there exists a positive integer τ such that ∥Jγ∥τ <
1.

Lemma 2. [Strict contractive property for Jγ] Suppose
Assumption 1 holds. For any given δ ∈ (0, 1), γ ∈ (0, 1/4)
and λ2 associated with the matrix Q, suppose τ ∈ N satisfies

τ ≥

⌈
2

γ(1− λ2)
max

{
4 ln

(
2

γ(1− λ2)

)
,(

γ(1− λ2)− ln

√
δ

4

)}⌉
, (14)

where ⌈·⌉ denotes the ceiling function. Then, ∥Jτ
γ∥2 ≤ δ < 1,

where Jτγ := Jγ × · · · × Jγ︸ ︷︷ ︸
τ times

.

The proof of this lemma is provided in Appendix II. The
next result establishes a descent relation for the consensus
error E [∥Ψt+τ∥2] in terms of E[∥Ψt∥2].

Lemma 3. [Descent relation for consensus error, E[∥Ψt∥2] ]
Suppose Assumptions 1-4 hold and ϵk,c = ϵ̂k,c in (5)-(7) for
all k ∈ N. If γ and α satisfy (20), then, for a given 0 < ρ′ ≤
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1/4, there exists a τ ∈ N such that the following relations are
satisfied for t ≥ τ :

E[∥Ψt∥2] ≤ ρ′E[∥Ψt−τ∥2] + 576α2τL2
t−1∑

i=t−τ

E[∥Ψi∥2]

+ 64γ2
(
2 + α2(τ2 + 1/2) + α2t

)
nσ2

cτ + 196n(τ + 1)α2σ2
g

+ 1344α2τ
t−1∑

i=t−τ

E
[
∥∇f(x̄i)−∇f(x∗)∥2

]
(15)

and for any ℓ < τ :

E[∥Ψℓ∥2] ≤ 2(1 + τ2)∥Ψ0∥2 + 576α2τL2
ℓ−1∑
i=0

E[∥Ψi∥2]

+ 64γ2
(
2 + α2(τ2 + 1/2) + α2t

)
nσ2

cτ + 196n(τ + 1)α2σ2
g

+ 1344α2τ
ℓ∑

i=0

E
[
∥∇f(x̄i)−∇f(x∗)∥2

]
(16)

The proof of this lemma is provided in Appendix III. We
next prove an auxiliary result that will be useful for bounding
the consensus error.

Lemma 4. Suppose the non-negative scalar sequences
{at}t≥0 and {et}t≥0 satisfy the following recursive relation
for a fixed τ ∈ N:

at ≤

ρ′at−τ + b
τ

∑t−1
i=t−τ ai + c

∑t−1
i=t−τ ei + r if t ≥ τ

ρ′′a0 +
b
τ

∑t−1
i=0 ai + c

∑t−1
i=0 ei + r if t < τ

(17)

where b, c, r, ρ′′ are non-negative constants satisfying b ≤
ρ′/4 and ρ′ ∈ (0, 1/4]. Then, for any t ∈ N,

at ≤ 20ρ′′
(
1− 3ρ

4τ

)t
a0 + 60c

t−1∑
i=0

(
1− 3ρ

4τ

)t−i

ei +
26r

ρ
,

(18)

where ρ := 1− 2ρ′.

The detailed proof of this lemma is provided in the online
version of this paper [45]. We are ready to state and prove the
main convergence result.

Main Result

For convenience, we define ∆x∗
k as

∆x∗
k

def
= E

[
∥x̄k − x∗∥2

]
, ∀k ∈ N. (19)

where x∗ is the optimal solution of (1).

Theorem 5. [Convergence rate of IC-GT] Suppose Assump-
tions 1-4 hold and ϵk,c = ϵ̂k,c in (5)-(7) for all k ∈ N. If

α ≤ min

{
1,

1

161280τL

}
and 0 < γ < 1/4, (20)

where

τ =
⌈

2
γ(1−λ2)

max
{
4 ln

(
2

γ(1−λ2)

)
, γ(1− λ2) + ln 16

}⌉
.

(21)

Then, for any T ∈ N, we have,

∆x∗
T ≤ (1− αµ/4)T

(
∆x∗

0 +
800(1 + τ2)L

n(1− αµ/4)µ
∥Ψ0∥2

)
+

(
4(1 + 2µ−1Tα)

µ

γ2

α

+
33280(2 + α2(τ2 + 1

2 ) + α2T )L

µ
nτγ2

)
σ2
c

n

+

(
4α

µ
+

101920nL(τ + 1)α2

µ

)
σ2
g

n
. (22)

We make the following remarks regrading Theorem 5.

Remark 4. (Dependence of τ on network) The parameter
τ depends on the network connectivity (λ2) and the noise
attenuation parameter γ (cf. (21)) which highlights the role
played by γ in shaping the consensus properties of IC-GT
(cf. Lemma 3). From (21), we note that a smaller value of
γ increases τ but reduces the impact of the communication
noise variance σ2

c in (22) which is reminiscent of the trade-off
discussed in Section III.

Remark 5. (Iteration complexity of IC-GT) (20) and (21)
suggest that the choices of the step size α and the noise
attenuation parameter γ are inherently connected. Using (21)
in (20), we have the following relation:

α

γ
= Õ

(
1− λ2

L

)
(23)

To establish the iteration complexity, i.e. calculate the number
of iterations T required to reach ϵ-accuracy (i.e., T such that
∆x∗

T ≤ ϵ), we consider the contributions of the noise terms
in the complexity bound of Theorem 5 individually. To keep
the representation clear, we use the big-O notation which only
considers the dependence on the free parameters (T, α, γ) and
hides the dependence on constant factors such as µ, L, n,∆x∗

0

and ∥Ψ0∥2. Accordingly, we note that the contribution of the
gradient noise terms in (22) is given by

O
(
(α+ α2n)σ2

g/n
)
= O

(
ασ2

g/n
)

if α ≤ 1/n (24)

while the contribution of the communication noise terms in
(22) is given by:

O

((
(1 + Tα)γ2

α
+ (α2τ2 + α2T )nτγ2

)
σ2
c

n

)

= Õ

((
(1 + Tα)γ2

α
+

nα2

γ
+ nα2γT

)
σ2
c

n

)
, (25)

where we used τ = Õ(1/γ) and ignored the dependency on
other problem parameters. If we set γ = Õ(α) such that (23)
is satisfied, (25) simplifies to

Õ
((

(1 + Tα)α+ nα+ nα3T
) σ2

c

n

)
.

For any given ϵ > 0, we can set α = ϵ implying that
T = Õ(ϵ−1) iterations are required to achieve the specified
ϵ-accuracy.
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Remark 6. (σ2
c = 0, σ2

g = 0 and σ2
c = 0, σ2

g > 0): In the
absence of communication or gradient approximation errors
(σ2

c = 0, σ2
g = 0), we can achieve the deterministic linear

convergence rate of the gradient tracking algorithm [7].
Referring to equation (22), we obtain the following inequality:

∆x∗
T ≤ (1− αµ/4)T

(
∆x∗

0 +
800(1 + τ2)L

n(1− αµ/4)µ
∥Ψ0∥2

)
The case σ2

c = 0, σ2
g > 0 considers stochastic decentralized

optimization with no communication noise. For this scenario,
with a constant α > 0, we have linear convergence to a
neighbourhood of size O

(
(α2n + α)σ2

g/n
)

[11]. A point to
be remarked here is that IC-GT not only removes the data
heterogeneity terms which arise in the convergence bound for
DGD (cf. Table 1) but also makes sure that the variance scales
linearly with the number of nodes provided α ≤ 1/n (cf. (24)).

Remark 7. (Consensus Error): We can establish convergence
error bounds for the expected consensus error E[∥Ψk∥2] by
combining the results of Lemma 3 and Theorem 5. However,
for brevity, we omit the explicit presentation of these results
as they are of the same order as the results for ∆x∗

T .

Proof of Theorem 5: Using (5) and recalling that x̄ :=
(1n1

T
n )⊗Id
n x, the recursion for x̄k can be expressed as

x̄k+1 = v̄k − αȳk

= x̄k + γϵ̄k,c − αȳk, (26)

where ϵ̄k,c := 1
n

(
1n1

T
n ⊗ Id

)
Q̂ϵk,c and the last equality is

due to v̄k = x̄k + γϵ̄k,c. Similarly, the recursion for ȳk :=
1
n

(
1n1

T
n ⊗ Id

)
yk can be given as,

ȳk = ȳk−1 +
1

n

(
1n1

T
n ⊗ Id

)(
∇F(xk, ξk)−∇F(xk−1, ξk−1)

)
+ γϵ̄k−1,c.

Taking telescopic sum from 0 to k leads to the following
recursion:

ȳk =
1

n

(
1n1

T
n ⊗ Id

)
∇F(xk, ξk) + γ

k∑
j=1

ϵ̄j−1,c (27)

since ȳ0 = 1
n

(
1n1

T
n ⊗ Id

)
∇F(x0, ξ0). Plugging (27) in (26),

we get,

x̄k+1 = x̄k + γϵ̄k,c −
α

n

(
1n1

T
n ⊗ Id

)
∇F(xk, ξk)− γα

k−1∑
j=0

ϵ̄j,c

= x̄k − α

n

(
1n1

T
n ⊗ Id

)
∇f(xk) + γ

ϵ̄k,c − α
k−1∑
j=0

ϵ̄j,c


+

α

n

(
1n1

T
n ⊗ Id

)(
∇f(xk)−∇ F(xk, ξk)

)
= x̄k − α

n

(
1n1

T
n ⊗ Id

)
∇f(xk) + αϵk,g + γϵ̄k,c︸ ︷︷ ︸

δk

− αγ

k−1∑
j=0

ϵ̄j,c (28)

where ϵk,g is defined to be ϵk,g := 1
n

(
1n1

T
n ⊗

Id
)(

∇f(xk) − ∇F(xk, ξk)
)

with E [ϵk,g|xk] = 0 and

E[∥ϵk,g∥2] ≤ σ2
g from Assumption 4. Now, let Fk

def
=

σ(x0, ξ0, ϵ0,c, · · · , ξk−1, ϵk−1,c) be the sigma algebra gener-
ated by the random variables up to iteration k. Then, for any
constant β > 0, we have,

E[∥x̄k+1 − x∗∥2|Fk]

≤ (1 + β)E[∥x̄k − α

n

(
1n1

T
n ⊗ Id

)
∇f(xk)− x∗ + δk∥2|Fk]

+ (1 + β−1)α2γ2E


∥∥∥∥∥∥
k−1∑
j=0

ϵ̄j,c

∥∥∥∥∥∥
2 ∣∣∣Fk


= (1 + β)∥x̄k − α

n

(
1n1

T
n ⊗ Id

)
∇f(xk)− x∗∥2

+ (1 + β)E[∥δk∥2|Fk] + (1 + β−1)α2γ2E


∥∥∥∥∥∥
k−1∑
j=0

ϵ̄j,c

∥∥∥∥∥∥
2 ∣∣∣Fk

 ,

(29)

where the equality is due to E[δk|Fk] = 0 from Assumption
3. From Assumptions 2 and 4, we have,

E[∥δk∥2] = E[∥αϵk,g + γϵ̄k,c∥2] ≤ α2σ2
g + γ2σ2

c , (30)

where we have used E[⟨ϵk,g, ϵ̄k,c⟩] = 0. Furthermore, we have,

E


∥∥∥∥∥∥
k−1∑
j=0

ϵ̄j,c

∥∥∥∥∥∥
2
 = E

k−1∑
j=0

∥ϵ̄j,c∥2


+
∑

1≤p,p′≤k−1

E [⟨ϵ̄p,c, ϵ̄p′,c⟩] ≤
k−1∑
j=0

σ2
c = kσ2

c , (31)

where we use E[⟨ϵ̄p,c, ϵ̄p′,c⟩] = E[E [⟨ϵ̄p,c, ϵ̄p′,c⟩|Fp′ ]] = 0 for
p < p′. Taking full expectations in (29), it then follows that,

E[∥x̄k+1 − x∗∥2]

≤ (1 + β)E
[∥∥∥x̄k − α

n

(
1n1

T
n ⊗ Id

)
∇f(xk)− x∗

∥∥∥2]
+
(
(1 + β)(γ2σ2

c + α2σ2
g) + k(1 + β−1)α2γ2σ2

c

)
.

where we used (30) to get the inequality. We note that since
∥x̄k+1 − x∗∥2 =

∥∥ (11T )⊗Id
n (xk+1 − x∗)

∥∥2 = n∥x̄k+1 − x∗∥2,
the above inequality leads to,

E
[
∥x̄k+1 − x∗∥2

]
≤ (1 + β)E

∥∥∥∥∥x̄k − α

n

n∑
i=1

∇fi(xi,k)− x∗

∥∥∥∥∥
2


+ n−1
(
(1 + β)(γ2σ2

c + α2σ2
g) + k(1 + β−1)α2γ2σ2

c

)
.

(32)
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Considering the first term on the right hand side of (32), we
have,

∥∥∥x̄k − α

n

n∑
i=1

∇fi(xi,k)− x∗
∥∥∥2 = ∥x̄k − x∗∥2

−2α

n

〈
n∑

i=1

∇fi(xi,k), x̄k − x∗

〉
+α2

∥∥∥ 1
n

n∑
i=1

∇fi(xi,k)
∥∥∥2.

(33)

The second term on the right hand side of (33) is bounded as

⟨
n∑

i=1

∇fi(xi,k), x̄k − x∗⟩

= ⟨
n∑

i=1

∇fi(xi,k), x̄k − xi,k⟩+ ⟨
n∑

i=1

∇fi(xi,k), xi,k − x∗⟩

≥
n∑

i=1

[
fi(x̄k)− fi(xi,k)−

L

2
∥x̄k − xi,k∥2

+ fi(xi,k)− fi(x
∗) +

µ

2
∥xi,k − x∗∥2

]
≥

n∑
i=1

[
fi(x̄k)− fi(x

∗)− L+ µ

2
∥x̄k − xi,k∥2

+
µ

4
∥x̄k − x∗∥2

]
, (34)

where the second inequality is due to Assumption 3 and the
last inequality is due to the inequality ∥x̄k − x∗∥2 ≤ 2∥x̄k −
xi,k∥2 + 2∥xi,k − x∗∥2. The last term on the right hand side
of (33) can be bounded as

∥∥∥ 1
n

n∑
i=1

∇fi(xi,k)
∥∥∥2 =

∥∥∥ 1
n

n∑
i=1

∇fi(xi,k)−
1

n

n∑
i=1

∇fi(x̄k)

+
1

n

n∑
i=1

∇fi(x̄k)−
1

n

n∑
i=1

∇fi(x
∗)
∥∥∥2

≤ 2L2

n

n∑
i=1

∥x̄k − xi,k∥2 +
4L

n

n∑
i=1

(fi(x̄k)− fi(x
∗)),

(35)

where in the second summation, we used the fact that
∥∇fi(x̄k)−∇fi(x

∗)∥2 ≤ 2L(fi(x̄k)−fi(x
∗)) by Assumption

3 [46, Theorem 2.1.5]. Using (34) and (35) in (33) along with
α < 1/4L, we have,

∥x̄k+1 − x∗∥2

≤ (1− αµ/2)∥x̄k − x∗∥2 − α

n

( n∑
i=1

fi(x̄k)− fi(x
∗)
)

+
(3L/2 + µ)α

n

n∑
i=1

∥x̄k − xi,k∥2

≤ (1− αµ/2)∥x̄k − x∗∥2 − α (f(x̄k)− f(x∗)) +
5αL

2n
∥Ψk∥2,

(36)

where the last inequality is due to ∥∆xk∥2 ≤ ∥Ψk∥2. Using
(36) in (32), we get,

E[∥x̄k+1 − x∗∥2] ≤ (1 + β)

{
(1− αµ/2)E[∥x̄k − x∗∥2]

− α (E[f(x̄k)]− f(x∗)) +
5αL

2n
E[∥Ψk∥2]

}
+

1

n

(
(1 + β)(γ2σ2

c + α2σ2
g) + k(1 + β−1)α2γ2σ2

c

)
.

Set β
def
= αµ

4(1−αµ
2 ) . We note that (1 + β−1) ≤ 4/αµ and

(1 + β) = (1−αµ/4)
(1−αµ/2) with 1 ≤ (1 + β) ≤ 2. Then, we have,

E
[
∥x̄k+1 − x∗∥2

]
≤
{
(1− αµ/4)E

[
∥x̄k − x∗∥2

]
− α (E[f(x̄k)]− f(x∗)) +

5αL

n
E[∥Ψk∥2]

}
+

1

n

(
(2 + 4µ−1kα)γ2σ2

c + 2α2σ2
g

)
. (37)

Multiplying both sides of (37) by wk+1
def
= (1−αµ/4)−(k+1),

we have,

wk+1∆x∗
k+1 ≤ (1− αµ/4)wk+1∆x∗

k

+
5αL

n
wk+1E[∥Ψk∥2]− αwk+1(E[f(x̄k)]− f(x∗))

+
wk+1

n

(
γ2(2 + 4kµ−1α)σ2

c + 2α2σ2
g

)
.

Rearranging the terms, we get,

0 ≤ wk∆x∗
k − wk+1∆x∗

k+1 +
5αL

n
wk+1E[∥Ψk∥2]− αwk+1

× (E [f(x̄k)]− f(x∗)) +
wk+1

n

(
γ2(2 + 4kµ−1α)σ2

c + 2α2σ2
g

)
.

Summing the above inequality from k = 0 to T − 1, we get,

wT∆x∗
T ≤ w0∆x∗

0 +
1

n

(
γ2(2 + 4Tµ−1α)σ2

c + 2α2σ2
g

) T−1∑
k=0

wk+1

+
5αL

n

T−1∑
k=0

wk+1E[∥Ψk∥2]− α

T−1∑
k=0

wk+1(E[f(x̄k)]− f(x∗)).

(38)

We note that we can write the relations (15)-(16) in Lemma
3 in the form of (17) with

b := 576α2L2τ2 c := 1344α2τ

r := 64γ2
(
2 + α2(τ2 + 1/2) + α2T

)
nσ2

cτ + 196n(τ + 1)α2σ2
g

ek := E
[
∥∇f(x̄k)−∇f(x∗)∥2

]
(39)

and we have taken ρ′ = 1/4 which fixes τ in (21) according
to the bound (14) (cf. (83)). Note that since α <

√
ρ′

2
√
576Lτ

,

b ≤ ρ′

4 = 1
16 . Then, with at

def
= E[∥Ψt∥2] in Lemma 4, we

get,

E[∥Ψt∥2] ≤ 40(1 + τ2)

(
1− 3ρ

4τ

)t

∥Ψ0∥2

+ 60c
t−1∑
j=0

(
1− 3ρ

4τ

)t−j

E
[
∥∇f(x̄j)−∇f(x∗)∥2

]
+ 52r

(40)
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with ρ′′ = 2(1 + τ2)∥Ψ0∥2 and ρ = 1− 2ρ′ = 1/2. We next
bound the summation

∑T−1
k=0 wk+1E∥Ψk∥2 in (38). To do this,

we multiply both sides of (40) by wk+1 and sum from t = 0
to T − 1:

T−1∑
k=0

(1− αµ/4)−(k+1)E∥Ψk∥2

≤ 40(1 + τ2)∥Ψ0∥2
T−1∑
k=0

(1− αµ/4)−(k+1)

(
1− 3ρ

4τ

)k

+ 60c
T−1∑
k=0

(1− αµ/4)−(k+1)
k−1∑
j=0

(
1− 3ρ

4τ

)t−j

ej + 52rWT−1,

(41)

where WT−1 =
∑T−1

k=0 wk+1. From (20), we have,

αµ/2 ≤ 3ρ/4τ =⇒ αµ/2(1− αµ/8) ≤ 3ρ/4τ

=⇒ 1− 3ρ/4τ ≤ (1− αµ/4)2. (42)

We use (42) to bound the two summations on the right hand
side of (41) as follows:

T−1∑
k=0

(1−αµ/4)−(k+1)
(
1−3ρ

4τ

)k
≤

T−1∑
k=0

(1−αµ/4)k−1 ≤ 4w1

αµ
,

(43)
and

T−1∑
k=0

(1− αµ/4)−(k+1)
k−1∑
j=0

(
1− 3ρ

4τ

)k−j

ej

=
T−1∑
k=0

k−1∑
j=0

(1− αµ/4)−(k+1)+j+1
(
1− 3ρ

4τ

)k−j

wj+1ej

=

T−1∑
k=0

k−1∑
j=0

(
1− 3ρ/4τ

1− αµ/4

)k−j

wj+1ej

≤
T−1∑
k=0

k−1∑
j=0

(1− αµ/4)k−jwj+1ej

≤
T−1∑
k=0

(1− αµ/4)k
T−1∑
k=0

wk+1ek ≤ 4

µα

T−1∑
k=0

wk+1ek, (44)

where the first equality is due to (42) and the second in-
equality is obtained using the relation

∑T−1
k=0

∑k−1
j=0 ak−jbj ≤∑T−1

k=0 ak
∑T−1

k=0 bk for any two non-negative scalar sequences
ak, bk, k ≥ 0. Plugging the previous two bounds in (41), we
get,

T−1∑
k=0

wk+1E[∥Ψk∥2] ≤
160w1(1 + τ2)∥Ψ0∥2

αµ

+
240ncL

µα

T−1∑
k=0

wk+1 (E[f(x̄k)]− f(x∗)) + 52rWT−1,

where we have additionally used the fact that ∥ek∥2 =
E
[
∥∇f(x̄k))−∇f(x∗)∥2

]
≤ 2nL(E[f(x̄k))] − f(x∗)) from

Assumption 3 [46, Theorem 2.1.5]. Finally, using the above

bound in (38), we get,

wT∆x∗
T ≤ w0∆x∗

0 +
1

n

(
γ2(2 + 4Tµ−1α)σ2

c + 2α2σ2
g

)
WT−1

+
5αL

n

(
160w1(1 + τ2)∥Ψ0∥2

µα
+

240ncL

µα

T−1∑
k=0

wk+1(E[f(x̄k)]

− f(x∗)) + 52rWT−1

)
− α

T−1∑
k=0

wk+1(E[ f(x̄k)]− f(x∗)).

Rearranging the terms in the above inequality and recalling
that c = 1344α2τ , we get,

∆x∗
T ≤ 1

wT

{
∆x∗

0 +
800w1(1 + τ2)L

nµ
∥Ψ0∥2

}

+
2

µα

{
γ2(2 + 4Tµ−1α)σ2

c

n
+

2α2σ2
g

n

}
+

520Lr

nµ

+ α

{
1612800τL2

µ
α− 1

}
︸ ︷︷ ︸

≤0

T−1∑
k=0

wk+1

wT
(E[f(x̄k)]− f(x∗))︸ ︷︷ ︸

≥0

,

where we used WT−1/wT ≤ 2/µα. The last term on the right
had side is less than zero due to the condition on α (see (20)).
Plugging the value of r from (39) in the above inequality
completes the proof.

V. NUMERICAL EXPERIMENTS

In this section, we present an empirical evaluation of
the performance of IC-GT through two sets of numerical
experiments. The first set focuses on logistic regression on
the MNIST dataset, while the second set explores the effect
of different noise variances in a deep learning setting. All ex-
periments were implemented using PyTorch, with a dedicated
CPU core functioning as a node.

Logistic regression
We first consider ℓ2 regularized logistic regression problems

of the form,

min
x∈Rd

{
L(x; y, z) := − 1

m

m∑
i=1

{
zi logφ(xT yi)

+ (1− zi) log(1− φ(xT yi))
}
+

λ

2
∥x∥2

}
, (45)

where x ∈ Rd denote the learnable model parameters,
{yi, zi}mi=1 denote the set of m data points, φ(·) denotes the
sigmoid function, and λ > 0 is the regularization parameter.
We use the MNIST dataset which consists of 60,000, 28×28
pixel grayscale images of handwritten single digits between 0
and 9. The data is partitioned in a disjoint manner amongst the
nodes by assigning each node 103 data samples independently.
To simulate the inexact communication setting, we incorporate
zero-mean Gaussian noise with a variance of σ2

c into the
transmitted model estimates independently. We adopt a star
topology with n = 10 for the communication structure.
In evaluating the performance, we employ the ℓ2 distance
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(a) (c)

(b) (d)

Fig. 1: (a)-(b) Optimality Error, Average consensus error vs. communication rounds for MNIST dataset with star topology (n = 10). (c) Final Optimal
error ∥xT −x∗∥2, T = 5× 103 for n ∈ {5, 10, 15, 20, 25} for different topologies. (d) Final Optimal error ∥xT −x∗∥2 for σc ∈ {10−3, 10−2, 10−1, 1}

between the averaged variable x̄k and the optimal point x∗.
The optimal point x∗ is computed using the L-BFGS algorithm
from the SciPy library in Python. We also include the average
consensus error as a performance metric, which is computed
as 1

|E|
∑

(i,j)∈E ∥xi − xj∥2, where E represents the edge set.
We compare our proposed algorithm (IC-GT) with several
baselines, including the NEAR-SGD algorithm from [13], the
EXTRA algorithm proposed in [6], and the gradient tracking
method [5]. Additionally, we include the performance of the
DGD algorithm for comparison purposes.

In our experiments, we set the batch size to 32 and tune the
step size α using a grid-search over the range α ∈ [10−4, 1] to
obtain the best performance for all the algorithms. The total
number of communication rounds is set to T = 5 × 103. We
selected γ using the results of Theorem 5 (which suggests the
noise attenuation parameter be set as γ = α log T ), where α
is the step size. While fine tuning, we found that, in general,
the ratio α

γ ∈ [0.1, 0.01] tends to give the best performance.
Outside this range, the performance began to steadily decrease
with increase or decrease in the ratio. Accordingly, we set
the attenuation noise parameter γ to γ = α × log T . The
performance results are reported in Figure 1(a)-(b). For the
comparative experiments (Fig 1 (a)-(b)), we incorporated zero-
mean Gaussian noise with a variance of σ2

c = 0.01 into the
transmitted model estimates for all the compared algorithms.
From the plots, it is evident that IC-GT outperforms all the
other algorithms in terms of both the optimality error and the
consensus error.

To assess the scalability of IC-GT and examine the impact
of graph connectivity on its convergence accuracy, we con-
ducted experiments with varying network sizes, specifically
n ∈ {5, 10, 15, 20, 25}. We kept the noise variance fixed
at σ2

c = 0.01 for the following graph topologies: (i) Fully
connected (f.c.), (ii) Erdős-Rényi graph with an edge proba-
bility of 0.5 (rand), (iii) Ring topology, and (iv) Star topology.
From Figure 1(c), we observe that as the graph connectivity
deteriorates, the final performance of IC-GT also deteriorates.
In the case of a fully connected graph, there is an improvement
in performance with an increasing number of nodes due to
a decrease in gradient variance resulting from an increased
effective mini-batch size. Finally, we also investigate the effect
of varying σ2

c on the performance of IC-GT, as depicted in
Figure 1(d).

Neural network based experiments
In this subsection, we investigate a deep learning scenario

that involves random compressed communication using proba-
bilistic quantization (see (3)). We assume a star-based topology
with n = 10 for both the MNIST and CIFAR datasets. For
the MNIST dataset, we utilize a learning model with a total
of 8.4K parameters. This model comprises two convolution
layers, the first with 250 parameters and the second with 5K
parameters, followed by a fully connected layer with 3.2K
parameters. For the CIFAR-10 dataset, we adopt the standard
LENET architecture, which consists of three convolution layers
and two fully connected layers. This architecture has a total of
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0.54M parameters. The configuration of the max-pooling and
batch normalization layers follows the standard settings used
in LENET models.

We compare IC-GT with two other strategies commonly
employed to address noise in an inexact communication set-
ting. The first strategy involves utilizing a decreasing noise
variance policy, where the variance decreases as the number
of communication rounds progresses. In this approach, we
employ GT with quantization and adjust the quantization levels
to become finer as the rounds increase. Specifically, in the
case of (3), we increase the parameter ∆p from ∆p = 1 to
∆p = 5 × 103 as the rounds progress. This results in higher
levels of noise variance in the initial rounds and lower levels
in the final rounds. The second strategy maintains a uniform
quantization level of ∆p = 102 throughout all communication
rounds, leading to a fixed noise variance. We employ the same
quantization level of ∆p = 102 for IC-GT.

The results of the comparison have been plotted in Fig-
ure 2(a)-(b). In both plots, the baseline represents the highest
achievable accuracy that can be obtained in a centralized
setting using the models employed. From the plots, we ob-
serve that for both the CIFAR-10 and MNIST datasets,
the performance of IC-GT is the closest to the baseline.
The performance difference between IC-GT and the baseline
appears to be more pronounced in the case of CIFAR-10
compared to MNIST.

VI. FINAL REMARKS

In this paper, we proposed a gradient tracking based algo-
rithm for decentralized optimization in an inexact communica-
tion scenario. We established theoretical convergence guaran-
tees and analyzed the impact of communication and gradient
noise on performance. Our algorithm effectively mitigates the
impact of communication noise and data heterogeneity, and
achieves optimal iteration complexity for strongly convex,
stochastic smooth functions. Experimental results on logistic
regression and neural networks demonstrated the superiority
of the proposed algorithm over existing methods. As future
work, the algorithm can be extended to other settings, such
as directed graphs and asynchronous updates, and incorpo-
rate variance reduction techniques to enhance convergence
rate. Moreover, probabilistic quantization can be subject to
saturation errors ( [39], [40]) and other complex quantization
approaches, which are commonly used in machine learning,
may involve different noise models that do not satisfy As-
sumption 2 [41]. Investigating the impact of such errors on
IC-GT and decentralized optimization algorithms, in general,
could be another potential avenue for future research.

APPENDIX I: PROOF OF LEMMA 1
Proof: From (5), we have,

vk = (In − γQ′)xk + γQ̂ϵk,c. (46)

Multiplying both sides of (46) by 1
n1n1

T
n ⊗ Id, we get,

v̄k = x̄k +
γ

n

(
1n1

T
n ⊗ Id

)
Q̂ϵk,c

= (In − γQ′)x̄k +
γ

n

(
1n1

T
n ⊗ Id

)
Q̂ϵk,c. (47)

where we used 1
n1

T
nQ′ = 0 to get the first inequality and

(In − γQ′)x̄k = x̄k to get the last inequality. Subtracting (47)
from (46) and adding − 1

n1n1
T
n∆xk, we get,

∆vk = (Īn − γQ′)∆xk + γQ̃ϵk,c. (48)

From (6), the expression for ∆xk can be written as,

∆xk = ∆vk−1 − α∆yk−1. (49)

Substituting for ∆xk in (48) using (49) yields the following
recursive relation for ∆vk in terms of ∆vk−1 and ∆yk−1:

∆vk = (Īn − γQ′)∆vk−1 − α(Īn − γQ′)∆yk−1 + γQ̃ϵk,c

Next, the recursive relation for ∆xk in terms of ∆xk−1 and
∆yk−1 is obtained by substituting for ∆vk−1 in (49) using
(48). That is,

∆xk = (Īn − γQ′)∆xk−1 + γQ̃ϵk−1,c − α∆yk−1.

The recursive expression for ∆yk can be obtained similarly
using the expression for ȳk and subtracting it from (7),
concluding the proof.

APPENDIX II: PROOF OF LEMMA 2

Proof: Using mathematical induction, we can show that
Jτγ for any τ ∈ N is given as,

Jτγ =

(Īn − γQ′)τ 0 −τ(Īn − γQ′)τ

0 (Īn − γQ′)τ −τ(Īn − γQ′)(τ−1)

0 0 (Īn − γQ′)τ

 .

(50)
Taking norms in (50) and using triangle inequality, we get,

∥Jτ
γ∥ ≤ ∥(Īn−γQ′)τ∥+τ∥(Īn−γQ′)(τ−1)∥+τ∥(Īn−γQ′)τ∥.

(51)
We will next bound the terms on the right hand side of (51).
Note that the smallest eigenvalue of the matrix (Īn − γQ′)τ

is zero and the remaining eigenvalues are of the form (1 −
γ(1− λi))

τ for i = 2, . . . , n, where λi are the eigenvalues of
Q defined in Assumption 1. Therefore,

∥(Īn − γQ′)τ∥ = max
i=2,...,n

(1− γ(1− λi))
τ

= (1− γ(1− λ2))
τ . (52)

From (14), it follows that τ ≥ 2
(
1− ln

√
δ/4

γ(1−λ2)

)
> − ln

√
δ/2

γ(1−λ2)
.

Substituting this inequality in (52), we get,(
1− γ(1− λ2)

)τ ≤ exp
(
− τγ(1− λ2)

)
≤

√
δ

2
. (53)

We next bound the second term in (51). For convenience, we
define Q1

def
= τ(Īn − γQ′)τ−1. The smallest eigenvalue of

Q1 is zero and the remaining eigenvalues are of the form
τ(1− γ(1− λi))

τ−1, for i = 2, . . . , n. Therefore,

∥Q1∥ ≤ τ(1− γ(1− λ2))
τ−1 ≤ τ exp(−(τ − 1)γ(1− λ2)).

(54)

Taking logarithm on both sides of (54) yields,

ln ∥Q1∥ ≤ ln τ − (τ − 1)γ(1− λ2). (55)
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(a) (b)

Fig. 2: (a) Test Accuracy vs. communication rounds for CIFAR-10 dataset with star topology (n = 10). (b) Test Accuracy vs. communication rounds for
MNIST dataset with star topology (n = 10).

Now, consider ln τ
τ as a function of τ and observe that it is

monotonically decreasing for any τ > exp(1) since its first
derivative 1−ln τ

τ2 < 0. From (14), we have τ ≥ 16 ln 4 >
exp(1) since γ < 1/4 and λ2 ∈ (−1, 1). For convenience,
we define ϵγ,λ2 = γ(1−λ2)

2 ∈ [0, 1/4). Therefore, from(14), it
follows that,

ln τ

τ
≤ ϵγ,λ2

ln 4
ϵγ,λ2

+ ln ln 1
ϵγ,λ2

4 ln 1/ϵγ,λ2

≤ ϵγ,λ2 =
γ(1− λ2)

2
.

(56)

Using (56) and τ ≥ 2
(
1− ln

√
δ/4

γ(1−λ2)

)
in (55), we get,

ln ∥Q1∥ ≤ ln τ − (τ − 1)γ(1− λ2)

≤ τγ(1− λ2)

2
− (τ − 1)γ(1− λ2)

= γ(1− λ2)
(
1− τ

2

)
≤ ln

√
δ/4.

Therefore,

∥Q1∥ ≤
√
δ/4. (57)

Finally, we bound the third term in (51) as,

τ∥(Īn − γQ′)τ∥ ≤ ∥Q1∥ ≤
√
δ/4. (58)

Combining, (51), (55),(57) and (58), we get,

∥Jτγ∥2 ≤

(√
δ

2
+

√
δ

4
+

√
δ

4

)2

= δ.

.

APPENDIX III: PROOF OF LEMMA 3

Proof: We begin by iterating the relation (12) with k =
t+ τ :

Ψt+τ = JγΨt+τ−1 + αEt+τ−1

= JτγΨt + α
τ−1∑
i=0

Jτ−i−1
γ Et+i (59)

We next consider Ek whose definition is recalled here:

Ek−1 =

γ

α

 Q̃ϵk,c
Q̃ϵk−1,c

αQ̃ϵk−1,c


︸ ︷︷ ︸

Ec
k−1

+

 0
0

Īn(∇F(xk, ξk)−∇F(xk−1, ξk−1))


︸ ︷︷ ︸

Eg
k−1

(60)

for all k ∈ N. We note that

E

∥∥∥∥∥
τ−1∑
i=0

Jτ−i−1
γ Et+i

∥∥∥∥∥
2
 ≤ 2E

∥∥∥∥∥
τ−1∑
i=0

Jτ−i−1
γ Ec

t+i

∥∥∥∥∥
2


+ 2E

∥∥∥∥∥
τ−1∑
i=0

Jτ−i−1
γ Eg

t+i

∥∥∥∥∥
2
 (61)

We first bound the first term on the right hand side of (61).
Using the expression for the matrix product Jτ−i−1

γ for any
0 ≤ i ≤ τ − 1 (cf. (50)), we have,

Jτ−i−1
γ Ec

t+i =
γ

α
× (Īn − γQ′)τ−i−1Q̃(ϵt+i+1,c − α(τ − i− 1)ϵt+i,c)

(Īn − γQ′)τ−i−1Q̃ − α(τ − i− 1)(Īn − γQ′)τ−i−2Q̃
)
ϵt+i,c

α(Īn − γQ′)τ−i−1Q̃ϵt+i,c

 .

(62)

Note that, using ∥Q∥, ∥diag(Q)∥ ≤ 1, we have,

∥(Īn−γQ′)τ−i−1∥2 ≤ 1, ∥Q̂∥ = ∥(Q′−diag(Q′))⊗Id∥ ≤ 2,

∥Q̃∥ ≤
∥∥∥∥In − 11T

n

∥∥∥∥ ∥Q̂∥ ≤ 2. (63)

Taking norms in (62) and using the bounds (63), we get,

E
[
∥Jτ−i−1

γ Ec
t+i∥2

]
≤ 4γ2

α2
(2(1 + α2(τ − i− 1)2) + α2)×

max{E
[
∥ϵt+i+1,c∥2

]
,E
[
∥ϵt+i,c∥2

]
}

≤ 4γ2

α2
(2 + 2α2τ2 + α2)max{E

[
∥ϵt+i+1,c∥2

]
,E
[
∥ϵt+i,c∥2

]
}

≤ 8γ2

α2
(1 + α2

(
τ2 + 1/2

)
nσ2

c , (64)
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where the last inequality is due to Assumption 2. Hence,

E

∥∥∥∥∥
τ−1∑
i=0

Jτ−i−1
γ Ec

t+i

∥∥∥∥∥
2
 =

τ−1∑
i=0

E
[∥∥Jτ−i−1

γ Ec
t+i

∥∥2]
≤ 8γ2

α2

(
1 + α2(τ2 + 1/2)

)
nσ2

cτ,

(65)

where the equality is due to Assumption 2 and the fact that
the cross terms of the form ⟨ϵi,c, ϵj,c⟩ are all zero. That is,
if we denote Fk

def
= σ(x0, ξ0, ϵ0,c, · · · , ξk−1, ϵk−1,c) to be

the sigma algebra generated by the random variables up to
iteration k, we have for any i, j with i < j, E[⟨ϵi,c, ϵj,c⟩] =
E[E [⟨ϵi,c, ϵj,c⟩|Fj ]] = 0.

Next we consider Eg
k to bound the second summation in

(61). Let gk
def
= ∇F(xk, ξk) − ∇f(xk) and dk = ∇f(xk) −

∇f(x∗). We note from Assumption 4, gk is a zero mean vector
given xk with variance nσ2

g . Using Q̄
def
= (Īn − γQ′) and the

expression for the matrix product Jτ−i−1
γ (cf. (50)), we have,

E

∥∥∥∥∥
τ−1∑
i=0

Jτ−i−1
γ Eg

t+i

∥∥∥∥∥
2


= E
[∥∥∥ τ−1∑

i=0

(τ − i− 1)Q̄τ−i−1Īn(∇F(xt+i+1, ξt+i+1)

−∇F(xt+i, ξt+i))
∥∥∥2]

+ E
[∥∥∥ τ−1∑

i=0

(τ − i− 1)Q̄τ−i−2Īn(∇F(xt+i+1, ξt+i+1)

−∇F(xt+i, ξt+i))
∥∥∥2]

+ E
[∥∥∥ τ−1∑

i=0

Q̄τ−i−1Īn(∇F(xt+i+1, ξt+i+1)

−∇F(xt+i, ξt+i))
∥∥∥2]

≤ 2

{
E

∥∥∥∥∥
τ−1∑
i=0

(τ − i− 1)Q̄τ−i−1Īn(gt+i+1 − gt+i)

∥∥∥∥∥
2


+ E

∥∥∥∥∥
τ−1∑
i=0

(τ − i− 1)Q̄τ−i−1Īn(dt+i+1 − dt+i)

∥∥∥∥∥
2


+ E

∥∥∥∥∥
τ−1∑
i=0

(τ − i− 1)Q̄τ−i−2Īn(gt+i+1 − gt+i)

∥∥∥∥∥
2


+ E

∥∥∥∥∥
τ−1∑
i=0

(τ − i− 1)Q̄τ−i−2Īn(dt+i+1 − dt+i)

∥∥∥∥∥
2


+ E

∥∥∥∥∥
τ−1∑
i=0

Q̄τ−i−1Īn(gt+i+1 − gt+i)

∥∥∥∥∥
2


+ E

∥∥∥∥∥
τ−1∑
i=0

Q̄τ−i−1Īn(dt+i+1 − dt+i)

∥∥∥∥∥
2
},

(66)

where the inequality is obtained by adding and subtracting
the terms ∇f(xt+i+1), ∇f(xt+i), and ∇f(x∗) in each of the
three terms in the first equality. We bound the first term on
the right hand side of (66) and follow a similar approach to
bound the rest of the terms. However, before proceeding, we
state the following fact whose proof is provided at the end of
this appendix:∥∥∥(i+ 1)Q̄i+1Īn − iQ̄iĪn

∥∥∥2 ≤ 4, ∀i ∈ N. (67)

The first term on the right hand side of (66) is bounded as,

E

∥∥∥∥∥
τ−1∑
i=0

(τ − i− 1)Q̄τ−i−1Īn(gt+i+1 − gt+i)

∥∥∥∥∥
2


= E

[∥∥∥∥∥
τ−1∑
i=1

(
(τ − i)Q̄τ−iĪn − (τ − i− 1)Q̄τ−i−1

)
gt+i

− (τ − 1)Q̄τ−1Īngt

∥∥∥∥∥
2]

≤
τ−1∑
i=1

∥∥(τ − i)Q̄τ−1Īn − (τ − i− 1)Q̄τ−i−1Īn
∥∥2 E[∥gt+i∥2]

+
∥∥(τ − 1)Q̄τ−1Īn

∥∥2 E[∥gt∥2]

≤ 4
τ−1∑
i=1

E[∥gt+i∥2] + nσ2
g ≤ 4τnσ2

g (68)

where the first inequality is due to Assumption 4 and the fact
that the cross terms of the form E[⟨gp, gp′⟩] = 0, for any
p < p′, and the second the inequality is due to Assumption 4,
(67), and the fact that τ∥In − γQ′∥τ−1∥Īn∥ ≤ 1(cf. (57)).
Following a similar approach, we can bound the rest of the
terms involving gk as:

E

∥∥∥∥∥
τ−1∑
i=0

(τ − i− 1)Q̄τ−i−2Īn(gt+i+1 − gt+i)

∥∥∥∥∥
2
 ≤ 4τnσ2

g

E

∥∥∥∥∥
τ−1∑
i=0

Q̄τ−i−1Īn(gt+i+1 − gt+i)

∥∥∥∥∥
2
 ≤ 4(τ + 1)nσ2

g .

(69)

Similarly, considering the second term in (66), we have,

E

∥∥∥∥∥
τ−1∑
i=0

(τ − i− 1)Q̄τ−i−1Īn(dt+i+1 − dt+i)

∥∥∥∥∥
2


≤ τ
(
(τ − 1)∥Q̄τ−1Īn∥2E[∥dt∥2]

+

τ−1∑
i=1

∥∥(τ − i)Q̄τ−1Īn − (τ − i− 1)Q̄τ−i−1Īn
∥∥2 E[∥dt+i∥2]

)
≤ 4τ

τ−1∑
i=0

E[∥dt+i∥2], (70)

where the first inequality is due to the fact that
∥∥∥∑τ−1

i=0 ai

∥∥∥2 ≤
τ
∑τ−1

i=0 ∥ai∥2 for any a ∈ Rd. The same bound also holds for
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the fourth term in (66) while for the last term, we have,

E

∥∥∥∥∥
τ−1∑
i=0

Q̄τ−i−1Īn(dt+i+1 − dt+i)

∥∥∥∥∥
2
 ≤ 4τ

τ∑
i=0

E[∥dt+i∥2].

(71)

We next bound the summation
∑τ

i=0 E[∥dt+i∥2. For all i < τ :

∥dt+i∥2 = ∥∇f(xt+i)−∇f(x̄t+i) +∇f(x̄t+i)−∇f(x∗)∥2

≤ 2L2∥Ψt+i∥2 + 2∥∇f(x̄t+i)−∇f(x∗)∥2, (72)

where the second inequality is due to Assumption 3. Now, for
i = τ , we have,

∥dt+τ∥2 ≤ 2L2∥Ψt+τ∥2 + 2∥∇f(x̄t+τ )−∇f(x∗)∥2

≤ 2L2∥Ψt+τ∥2 + 4∥∇f(x̄t+τ )−∇f(x̄t+τ−1)∥2

+ 4∥∇f(x̄t+τ−1)−∇f(x∗)∥2

≤ 2L2∥Ψt+τ∥2 + 4L2∥x̄t+τ − x̄t+τ−1∥2

+ 4∥∇f(x̄t+τ−1)−∇f(x∗)∥2.
(73)

The expression for x̄t+τ can be written as (cf. (28)),

x̄t+τ = x̄t+τ−1 −
α

n

(
1n1

T
n ⊗ Id

)
∇f(xt+τ−1) + αϵt+τ−1,g

+ γϵ̄t+τ−1,c − αγ
t+τ−2∑
j=0

ϵ̄j,c,

where ϵk,g
def
= 1

n

(
1n1

T
n ⊗ Id

)(
∇f(xk) − ∇F(xk, ξk)

)
and

ϵ̄k,c
def
= 1

n

(
1n1

T
n ⊗ Id

)
Q̂ϵk,c for any k ∈ N. Taking square

norms and expectations, we get,

E[∥x̄t+τ − x̄t+τ−1∥2|Ft+τ−1]

≤ 2E
[∥∥∥α

n

(
1n1

T
n ⊗ Id

)
(∇f(xt+τ−1)−∇f(x∗)) + αϵt+τ−1,g

+γϵ̄t+τ−1,c

∥∥∥2∣∣∣Ft+τ−1

]
+2α2γ2E


∥∥∥∥∥∥
t+τ−2∑
j=0

ϵ̄j,c

∥∥∥∥∥∥
2 ∣∣∣Ft+τ−1

 ,

(74)

where we used the fact that 1
n

(
1n1

T
n ⊗ Id

)
∇f(x∗) = 0. From

Assumptions 2 and 4, we have for all k ∈ N,

E[αϵk,g+γϵ̄k,c|Fk] = 0, E[∥αϵk,g + γϵ̄k,c∥2] ≤ α2σ2
g+γ2σ2

c ,
(75)

and

E


∥∥∥∥∥∥
k−1∑
j=0

ϵ̄j,c

∥∥∥∥∥∥
2
 = E

k−1∑
j=0

∥ϵ̄j,c∥2
+

∑
1≤p,p′

≤k−1

E [⟨ϵ̄p,c, ϵ̄p′,c⟩]

≤
k−1∑
j=0

σ2
c = kσ2

c , (76)

where the last inequality is due to the fact that
E[⟨ϵ̄p,c, ϵ̄p′,c⟩] = E[E [⟨ϵ̄p,c, ϵ̄p′,c⟩|Fp′ ]] = 0 for any

p < p′. Combining (74), (75) and (76), we have,

E[∥x̄t+τ − x̄t+τ−1∥2]

≤ 2E
[∥∥∥α

n

(
1n1

T
n ⊗ Id

)
(∇f(xt+τ−1)−∇f(x∗))

∥∥∥2]
+ 2α2σ2

g + 2
(
1 + α2(t+ τ)

)
γ2σ2

c

≤ 2E
[∥∥∥α

n

(
1n1

T
n ⊗ Id

)(
∇f(xt+τ−1)−∇f(x̄t+τ−1)

+∇f(x̄t+τ−1)−∇f(x∗)
)∥∥∥2]

+ 2α2σ2
g + 2

(
1 + α2(t+ τ)

)
γ2σ2

c

≤ 4α2L2E
[
∥Ψt+τ−1∥2

]
+ 4α2E

[
∥∇f(x̄t+τ−1)−∇f(x∗)∥2

]
+ 2α2σ2

g + 2
(
1 + α2(t+ τ)

)
γ2σ2

c . (77)

Taking expectations in (73) and using (77), we get,

E[∥dt+τ∥2]
≤ 2L2E[∥Ψt+τ∥2] + 4E[∥∇f(x̄t+τ−1)−∇f(x∗)∥2]
+ 16L4α2E[∥Ψt+τ−1∥]2 + 16α2L2E[∥∇f(x̄t+τ−1)−∇f(x∗)∥2]

+ 8L2
(
α2σ2

g + γ2(1 + α2(t+ τ))σ2
c

)
≤ 2L2E[∥Ψt+τ∥2] + 5E[∥∇f(x̄t+τ−1)−∇f(x∗)∥2]
+ L2E[∥Ψt+τ−1∥2] + 8L2

(
α2σ2

g + γ2(1 + α2(t+ τ))σ2
c

)
,

(78)

where the last inequality is due to α2 < 1/16L2. Using (72)
and (78) in (71), we have,

E

∥∥∥∥∥
τ−1∑
i=0

Q̄τ−i−1Īn(dt+i+1 − dt+i)

∥∥∥∥∥
2


≤ 12τL2
τ−1∑
i=0

E[∥Ψt+i∥2] + 28τ
τ−1∑
i=0

E[∥∇f(x̄t+i)−∇f(x∗)∥2]

+ 8τL2E[∥Ψt+τ∥2] + 32τL2
(
α2σ2

g + γ2(1 + α2(t+ τ))σ2
c

)
(79)

The rest of the terms involving dk in (66) can be bounded in
the same manner. Using (68), (69) and (79) in (66), we get,

τ−1∑
i=0

E
[
∥Jτ−i−1

γ Eg
t+i∥

2
]
≤ 24n(τ + 1)σ2

g + 72τL2
τ−1∑
i=0

E[∥Ψt+i∥2]

+ 168τ
τ−1∑
i=0

E[∥∇f(x̄t+i)−∇f(x∗)∥2] + 48τL2E[∥Ψt+τ∥2]

+ 192τL2
(
α2σ2

g + γ2(1 + α2(t+ τ))σ2
c

)
. (80)

Using (65) and (80) to bound the right hand side in (61), we
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have,

E

[∥∥∥ τ−1∑
i=0

Jτ−i−1
γ Et+i

∥∥∥2]

≤ 16γ2

α2

(
1 + α2(τ2 + 1/2)

)
nσ2

cτ + 144τL2
τ−1∑
i=0

E[∥Ψt+i∥2]

+ 96τL2E[∥Ψt+τ∥2] + 336τ
τ−1∑
i=0

E
[
∥∇f(x̄t+i)−∇f(x∗)∥2

]
+ 48n(τ + 1)σ2

g + 384τL2
(
α2σ2

g + γ2(1 + α2(t+ τ))σ2
c

)
≤ 144τL2

τ−1∑
i=0

E[∥Ψt+i∥2] +
1

4α2
E[∥Ψt+τ∥2]

+ 336τ
τ−1∑
i=0

E
[
∥∇f(x̄t+i)−∇f(x∗)∥2

]
+ 49n(τ + 1)σ2

g

+
16γ2

α2

(
2 + α2(τ2 + 1/2) + α2(t+ τ)

)
nσ2

cτ (81)

where we used α2 < 1/384τL2. Next, taking square norms
and expectations in (59), we get,

E
[
∥Ψt+τ∥2

]
= E

∥∥∥∥∥JτγΨt + α
τ−1∑
i=0

Jτ−i−1
γ Et+i

∥∥∥∥∥
2


≤ 2E
[∥∥JτγΨt

∥∥2]+ 2α2E

∥∥∥∥∥
τ−1∑
i=0

Jτ−i−1
γ Et+i

∥∥∥∥∥
2
 .

(82)

From Lemma 2, it follows that there there exists a τ such that
∥Jτ

γ∥2 ≤ 1
4ρ

′ for a given ρ′ ∈ (0, 1/4]. Therefore,

4∥JτγΨt∥2 ≤ 4∥Jτγ∥2∥Ψt∥2 ≤ ρ′∥Ψt∥2. (83)

To conclude, we substitute (81) and (83) in (82) to get the
required inequality,

E
[
∥Ψt+τ∥2

]
≤ 2E

[∥∥JτγΨt

∥∥2]+ 288α2τL2
τ−1∑
i=0

E
[
∥Ψt+i∥2

]
+ 672α2τ

τ−1∑
i=0

E
[
∥∇f(x̄t+i)−∇f(x∗)∥2

]
+

1

2
E[∥Ψt+τ∥2]+

32γ2
(
2 + α2(τ2 + 1/2) + α2(t+ τ)

)
nσ2

cτ + 98n(τ + 1)α2σ2
g

E
[
∥Ψt+τ∥2

]
≤ ρ′E∥Ψt∥2 + 576α2τL2

τ−1∑
i=0

E[∥Ψt+i∥2]+

1344α2τ
τ−1∑
i=0

E
[
∥∇f(x̄t+i)−∇f(x∗)∥2

]
+ 196n(τ + 1)α2σ2

g

+ 64γ2
(
2 + α2(τ2 + 1/2) + α2(t+ τ)

)
nσ2

cτ,

which proves the bound (15). The bound (16) for ℓ < τ is
proved exactly along the same lines with the only modification
being that the first term is scaled by ∥Jℓ

γ∥2, ℓ < τ instead of
∥Jτγ∥2. The former can be bounded by using the expression

for Jℓγ (cf. (50)) as follows:

∥JℓγΨ0∥2 ≤
∥∥(Īn − γQ′)ℓ − ℓ(Īn − γQ′)ℓ

∥∥2∥∆v0∥2

+
∥∥(Īn − γQ′)ℓ − ℓ(Īn − γQ′)ℓ−1

∥∥2∥∆x0∥2

+ α2
∥∥∥(Īn − γQ′)ℓ∥∥∥2 ∥∆y0∥2

≤ 2(1 + ℓ2)(∥∆v0∥2 + ∥∆x0∥2 + α2∥∆y0∥2)
≤ 2(1 + τ2)∥Ψ0∥2

where the second inequality is due to
∥∥∥(Īn − γQ′)ℓ∥∥∥2 ≤ 1

and the last inequality is due to ℓ < τ .

To conclude, we provide the proof of (67).

Claim: ∥(i+ 1)Q̄i+1Īn − iQ̄iĪn∥2 ≤ 4.

Proof: We have

∥(i+ 1)Q̄i+1Īn − iQ̄iĪn∥2

≤ ∥(i+ 1)Q̄i+1 − iQ̄i∥2∥Īn∥2

≤ max
j∈[n]

|(i+ 1)(1− γ(1− λj)
i+1 − i(1− γ(1− λj)

i|2

=
∣∣(1 + i)(1− γ(1− λ̄))i+1 − i(1− γ(1− λ̄))i

∣∣2
(for some λ̄)

=
∣∣(1− γ(1− λ̄))i+1 + i(1− γ(1− λ̄))i(1− γ(1− λ̄)− 1)

∣∣2
= |(1− γ(1− λ̄))i+1 − iγ(1− λ̄)(1− γ(1− λ̄))i|2

≤ 2|(1− γ(1− λ̄))|2i+2 + 2γ2(1− λ̄)2
(
i(1− γ(1− λ̄))i︸ ︷︷ ︸

≤ 1
γ(1−λ̄)

)2
≤ 4

where the second inequality is due to ∥Īn∥ ≤ 1 and the last
inequality is due to γ(1− λ̄) ∈ [0, 1].
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