Strongly coupled edge states in a graphene quantum Hall interferometer
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Electronic interferometers using the chiral, one-dimensional (1D) edge channels of the
quantum Hall effect (QHE) can demonstrate a wealth of fundamental phenomena. The recent
observation of phase jumps in a Fabry-Pérot (FP) interferometer revealed anyonic quasiparticle
exchange statistics in the fractional QHE. When multiple integer edge channels are involved, FP
interferometers have exhibited anomalous Aharonov-Bohm (AB) interference frequency doubling,
suggesting putative pairing of electrons into 2e quasiparticles. Here, we use a highly tunable
graphene-based QHE FP interferometer to observe the connection between interference phase jumps
and AB frequency doubling, unveiling how strong repulsive interaction between edge channels leads
to the apparent pairing phenomena. By tuning electron density in-situ from filling factor v <2 tov >
7, we tune the interaction strength and observe periodic interference phase jumps leading to AB
frequency doubling. Our observations demonstrate that the combination of repulsive interaction
between the spin-split v =2 edge channels and charge quantization is sufficient to explain the
frequency doubling, through a near-perfect charge screening between the localized and extended
edge channels. Our results show that interferometers are sensitive probes of microscopic interactions
and enable future experiments studying correlated electrons in 1D channels using density-tunable

graphene.

INTRODUCTION

Electrons in 1D quantum systems exhibit striking phenomena, including the breakdown of Fermi liquid
theory and quasiparticle formation in favor of collective modes'. Likewise, electrons confined to two dimensions and
subjected to perpendicular magnetic fields exhibit the quantum Hall effects (QHESs)?. Although the microscopic details
of QHE states are still an active area of research®*, their low-energy transport properties are known to be governed by

chiral, 1D edge channels®®. These edge channels (ECs) conduct charge ballistically, allowing for phase-coherent

9,10 11-13
. b

electronic experiments In particular, electronic Fabry-Pérot (FP) QHE interferometry was performed

extensively in GaAs, culminating in the observation of interference phase jumps as evidence for anyonic statistics of

14-17

fractional quasiparticles'*!’. Recently, FPs were developed in graphene, which showed Aharonov-Bohm (AB)



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

interference of integer ECs'®2°, with oscillation periodicity set by the magnetic flux quantum for electrons ®, = h/e.
Our previous design'® utilized graphite gates encapsulating the graphene channel, which screened bulk charges.
Without such screening layers?!, however, interferometers exhibit ‘Coulomb dominated’ (CD) behavior in which
strong coupling of the interfering EC to localized compressible states in the bulk determines the oscillation periodicity

and obscures the expected AB oscillations'>?2724,

When bulk charges were strongly screened, GaAs FPs showed unexpected doubling of the AB oscillation
frequency and shot noise corresponding to charge 2e when interfering the outermost EC with the bulk of the
interferometer in filling 2.5 < v < 4.5, suggesting a possibility of ‘pairing’ of elementary charges?. Furthermore, the
coherence and periodicity of the interfering outer EC were related to the coherence and the enclosed flux of the
adjacent inner EC?5, and the ‘pairing’ phenomena only occurred when the outer two modes belonged to the same spin-
split Landau level?’. Independently, single-electron capacitance measurements in GaAs quantum dots revealed that
tunneling into the edge of the dot corresponded to the entrance of two electrons rather than one for v > 2, and that
near v ~ 2.5 the charging peaks follow doubled magnetic flux frequency®®. Mechanisms of electron pairing are
important questions in emergent phenomena, e.g. high-temperature superconductivity?®® and the v = 5/2 fractional
QHE state in GaAs® and bilayer graphene?®!*2. However, theoretical work concerning FP interferometers was able to
explain the doubled AB oscillation frequency based on a microscopic model without explicit introduction of electron

pairing, though explaining other related phenomena in GaAs remains challenging?>.

In this work, we experimentally address the microscopic mechanism of coupling between QHE edges by
elucidating the relation between AB oscillation phase jumps and frequency doubling, employing a highly tunable QHE
FP interferometer with strongly screened bulk charge in graphene. We observe periodically modulating interference
phase jumps on the outer EC leading to nearly doubled AB oscillation frequency as we increase the electron density
in-situ, unveiling a density-induced transition which was not explored in GaAs. We find that strong repulsive
interactions between the outermost pair of spin-split ECs can explain both the observation of interference phase jumps

and the approximately doubled interference frequency.

RESULTS

Interferometer design and tuning



36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

We designed a graphene-based FP interferometer tuned by a local gate array (Fig. 1a). The FP cavity is
defined electrostatically using separated graphite top-gates (Methods and Supplementary Fig. 1), which ensure a high
channel quality and allow a high degree of density tunability in-situ. Metal bridges contact each top-gate, and we
additionally suspend metal bridges over the two quantum point contacts (QPCs), illustrated in Fig. 1b. By applying

voltages Vgpcq and Vgpc, to these suspended bridge gates, we can tune the transmission of each QPC independently

while keeping the filling factor of the surrounding regions fixed (Supplementary Section 1).

In our experiments, we measure the diagonal conductance Gp, as defined in Fig. 1b. In the regime that we
study, Gp = %vQPC where vgpc counts the number of edge channels transmitted through the device, with a partially
transmitted channel counted as fraction®*33. To characterize the QPC transmissions, we measure Gp as a function of
the bottom-gate voltage and split-gate voltage for each QPC with the bulk of the interferometer tunedtov = 2 at B =
6 T (Supplementary Fig. 3). At v = 2, there are two spin-split Landau levels, of which the lower energy spin species
hosts an EC closer to the effective boundary of the sample. Hence, we refer to the EC belonging to the lower (higher)

energy spin species as the ‘outer’ (‘inner’) EC. Once appropriate bottom-gate and split-gate voltages are set, we tune

Vapc1 and Vgpcs, voltages applied on the suspended bridges to control the individual QPC transmissions. Fig. 1c and

Fig. 1d show the measured Gp as a function of Vgpcq and Vpc,, respectively, with the other QPC fully open. Gp
2
exhibits plateaus at (0,1,2) %, corresponding to (neither, outer, both) ECs transmitted. In this regime, we define

Topc = GD£2 as the transmission of the QPC*, where 0 < Tqpc < 1 corresponds to a partitioned outer EC and

1 < Tqpc < 2 corresponds to a partitioned inner EC.

Tuning to partial transmission of the inner EC for both QPCs, Tqpcy; = Tqpcz = 1.5, we observe high-
visibility conductance oscillations as a function of plunger gate voltage Vpg, which tunes the filling factor vpg under
the plunger gate, in Fig. le. Similarly, we tune to Topcy = Tgpcz = 0.5 and measure conductance oscillations on the
outer EC in Fig. 1f. In both cases, oscillations are largest for vpg < 0, which corresponds to a fully gate-defined
interference path since electrons are depleted under the gate. Increasing vpg brings the interfering edge closer to the
etched graphene boundary, inducing dephasing'®. Notably, the inner EC oscillations survive until vpg = 2, when it

flows close to the etched boundary of the graphene, while the outer EC reaches the boundary by vpg = 1. Another
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difference is the apparent irregularity of the oscillations on the outer EC compared to the inner EC, which we will

understand in this work.

Phase jumps and AB oscillation frequency transition

High-visibility oscillations allow us to probe the dependence of interference phase 8 on magnetic field
variation 6B and gate voltage variations, which distinguishes the AB from the CD regimes'>!>!81922 For small
variations in field and gate voltages in the AB regime, we expect §6/2m = ASB/®y + CpgdVpg/e + CucdVmc/ e,
where A, Cpg, and Cyg, are the (approximately constant) area enclosed by the interfering EC, interfering EC — plunger
gate capacitance, and interfering EC — middle gate capacitance, respectively. Importantly, Vyg also directly tunes the
electron density in the interferometer, namely sweeping Vg over a large range will change the FP cavity filling factor
Vmg. To calibrate the filling that we expect in the cavity, we first measure standard Hall conductance in the region
gated by Vi (see Supplementary Fig. le) and observe conductance plateaus (Fig. 2a). Since the top gates are
identically coupled to the channel directly beneath them, an identical sweep of Vg will tune vy, through the same
filling factors. Data in the remaining panels of Fig. 2 were taken with the QPCs set to Tgpc; = Tgpcz = 0.5 i.e.
partitioning the outer EC. Near the lowest density of the v, = 2 plateau (Fig. 2b), we observe a typical AB
interference pattern. Constant phase stripes (68 = 0) trace out a negative slope 6Vpg /3B with magnetic field period
AB yielding ®,/AB = 1.13 um?, matching the designed area A = 1.16 um?. Plunger gate period AVpg yields
1/AVpg = 19.2 V1. Increasing v,,; using Vi reveals more complicated interference patterns in Fig. 2¢-d. Periodic
shifts in the interference pattern persist and modulate until near the center of v,,; = 4, as seen in Fig. 2e, when a
simple stripe pattern returns. However, now ®,/AB = 2.32 um? and 1/AVp; = 36.3 V1, both approximately
doubled from Fig. 2b. Since A is fixed, a doubling of ®,/AB indicates oscillations with ®,/2 = h/2e periodicity
instead of @ so that ®,/2AB = 1.16 um?. Similarly, assuming a fixed Cpg, then 1/AVp doubling corresponds to
adding twice as many electrons to the system per flux quanta. Both could be interpreted as an effective charge e* =
2e for the interfering particle, as interpreted in GaAs*27, but our observations indicate a different interpretation.

Importantly, we observe the entire density-tuned transition to the AB frequency-doubled regime at fixed B
by sweeping V¢ and observing oscillations with Vp, as shown in Fig. 2f. Remarkably, the frequency transition occurs

continuously. From the top panel, @ interference is apparent. As Vyg increases, periodic phase jumps begin to appear.
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Both the V¢ spacing and magnitude of the phase jumps increase, until eventually the most apparent periodicity
corresponds to ®,/2 oscillations (i.e., doubled frequency 2d3;1).

To better understand the phase jumps, we use a general relation between charge and phase in FP
interferometers®®. When a single EC passes through the two constrictions with weak backscattering, the interference
phase seen by the device at zero temperature is 8 = 2mQ + 6,, mod 2w, where Q is the total electron charge (in units
e) in the region between the two scattering points and 6, is a constant for small variations in B, Vpg, and Vyg. In our
experimental regime, v > 2, we expect this relation to hold with Q = Q4 + Q,, where Q; is the total charge residing
in the lowest spin-split Landau level and Q, is the charge in the higher energy spin state (and also higher Landau
levels). Q; can vary continuously since the outer EC is connected to the source and drain charge reservoirs. In contrast,
Q, is required to be integer, as the corresponding energy levels are isolated through the incompressible QHE bulk. An
integral change in @, has no observable effect on the interference signal unless it produces a non-integral change in
Q; due to Coulomb coupling between the two types of charge. Hence, we can redefine 6 to include only the charge
Q1 in the lowest spin-split Landau level, and the values @, in the ground state of the interferometer determine 6.
Following similar models used to understand the CD regime'>?*37 and considering small changes in Q; and Q,, we
expand the change in ground state energy E = K;8Q,% + K,8Q,% + 2K,,60,50Q,, where K; is the charging energy
of the charge species i and K;, describes the mutual capacitive coupling between them. Energetic stability requires
that |K;,|? < K;K,. Within this capacitive coupling model, when Q, increases by 1, the charge Q; correspondingly
decreases by a discrete (generically non-integral) amount AQ; to screen the added charge, leading to a phase shift
A0 /21 = AQ = —K;,/K;.

1415 we extract several

By taking 1D fast Fourier transforms (FFTs) along lines parallel to the phase jumps
values of A@/2m near the center of the periodicity transition in Fig. 3a. We observe that the locations where the phase
jumps occur (marked in Fig. 3b) follow a steeper slope than the slope 6Vpg/6Vy¢ of constant phase lines of the main
interference oscillation in the Vyg-Vpg planes. A steeper slope also occurs in the B-Vpg plane (Fig. 2¢-d). Moreover,
these phase jump lines have negative slopes §Vpg/dB < 0, like the constant phase lines of AB oscillations. This
observation is in sharp contrast to the phase jumps reported in the FP interferometer operated in the fractional QHE
regime!4!® or in the FP interferometer operated in the integer CD regime®’, where phase jump lines follow positive

slope 6Vpg /6B > 0. The different slope suggests a different structure to the energy levels that are being populated in

our sample. Considering that the outer EC is partitioned at the QPCs, while the inner ECs are well isolated, we

6
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hypothesize that the charging events seen as phase jumps represent charge added to the annular, closed inner EC,
illustrated in Fig. 3. The dominant coupling K, is directly between the outer and inner v = 2 ECs. Any charges added
to higher Landau levels or to localized states in the bulk are not measurably coupled to the outer EC, presumably

because of effective screening by the gates.

AB frequency doubling from strongly coupled QHE edge states

We provide further evidence for capacitively coupled QHE edges tuning the AB frequency in Fig. 4. At fixed
VMg in the transition regime, we compare interference in the B-Vpg plane for the inner EC, Fig. 4a, to the outer EC,
Fig. 4b. This direct comparison is only possible because we can control QPC transmissions independently of bulk
filling. We observe that the slope of the oscillation maxima on the inner EC (dotted lines in Fig. 4a) matches the slope
of the phase jump lines on the outer EC (dotted lines in Fig. 4b). Reducing the transmission for the inner EC, the
interference maxima in Fig. 4a become sharper charging resonances, corresponding to charge @, — @, + 1 through
the inner EC. When the transmission of the inner EC vanishes, the inner EC is fully disconnected from the source and
drain charge reservoirs, and the outer EC is now partitioned at the QPCs to form a new interference path (shown in
the left panel in Fig. 4b). Since the electrostatic configurations for Fig. 4a and Fig. 4b are identical, the regions in
between the phase jump lines in Fig. 4b correspond to fixed Q,, and we see that the interference phase on the outer
EC shifts when the charge on the inner EC discretely changes.

Taking Fourier transform of the interference signal provides further understanding of interactions between
the two ECs involved in the interference. The bottom panels of Fig. 4a and 4b show the 2D FFTs of the corresponding
interference patterns in in the B-Vpg planes. For interference of the inner EC (Fig. 4a), we observe a simple FFT
pattern of peaks corresponding to the fundamental frequency of the inner EC f;, a vector containing the peak position
in the 2D FFT, and its harmonics (nf;, where n is an integer). The FFT pattern of the outer EC interference (Fig. 4b)
exhibits a more complicated lattice of Fourier peaks. If we label one of the dominant peaks as the fundamental
frequency of the outer EC, f,, we can then identify the rest of the peaks by addition or subtraction of the same vector

fi evident in the inner EC data. The lowest order peaks correspond to the sum f,,; = f, + f; and the difference
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fozi = fo — fi- We show a similar Fourier lattice construction in Supplementary Fig. 5 for interference in the B-Vyg
plane.

By tuning Vg, we modulate the filling factor of the interferometer cavity in a wide range and observe the
evolution of the interference patterns and corresponding peaks for the outer (inner) EC in Supplementary Fig. 2 (3).
As in Fig. 2, phase jumps appear only within the periodicity transition. Fig. 4c shows the magnitude of individual
phase jumps as a function of Vyg. We find that the phase jump continuously evolves from A6 /2m = 0 (Vg < 0.6 V)
through the periodicity transition to A8/2m =~ —1( Vyg > 1.6 V), corresponding to the strongly coupled limit
Ki,/K; = 1. The transition regime marked by non-trivial phase jumps spans from the appearance of the inner EC
(Vmg = 0.6 V) to the strongly coupled outer two EC limit (Vyg = 1.6 V).

The Fourier peaks’ evolution tuned by V¢ provides insight into the interaction between ECs. Fig. 4d displays
the normalized Fourier peak intensity as a function of V. The amplitude of the Fourier peak f, decays through the
transition regime (0.6 V < Vg < 1.6 V), replaced by f,4; as the dominant peak. We plot the magnetic field frequency
multiplied by @, (Fig. 4e) and the plunger gate frequency (Fig. 4f), respectively, for each of the lowest-order peaks
fos fi> fo+i> and fo_; as a function of V. At the beginning of the transition regime where the ECs are not interacting,
both f, and f,.; approach the corresponding AB frequency ®;1 = e/h through the designed area. As Vyg increases,
however, f, stays nearly unchanged, while f,,; increases to reach the doubled value 2d;1. The experimental
observation that the dominant peak in the frequency-doubled regime corresponds to f,; precludes the possibility of
2e charge pairing within the outer EC alone.

Instead, our frequency-doubled regime arises from Coulomb interaction between the spin-split ECs combined
with charge quantization on the inner EC (Methods). Electrons would naturally tend to enter the inner EC at frequency
fi, but, due to charge quantization, cannot enter continuously. Hence, as the magnetic flux increases continuously, the
area enclosed by the inner EC must shrink to maintain fixed charge. During this shrinking process, electron charge is
transferred continuously into the interior, leaving missing electron charge between the outer and inner ECs. In the
strongly coupled EC limit, this missing charge attracts an equal charge onto the outer EC for screening. In the absence
of this screening effect, charge is continuously added to the outer EC with frequency f, according to the increased
AB phase. In the coupled ECs, the combination of the screening-induced charge and the natural AB effect results in
the outer EC charging at a frequency f .. Therefore, the interference phase follows f ;. In addition to this continuous

charging effect, electrons can tunnel into the inner EC from the external reservoirs. As previously discussed, each



170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

electron addition repels some electron charge from the outer EC, causing the negative interference phase shifts that
we observed. For larger values of Vg, as the bulk density increases, the inner and outer EC move closer together, and
the system approaches the strong coupling limit, where the phase jumps are close to —2m and unobservable, reflecting
a full electron charge screening. Moreover, as the inner and outer ECs asymptotically enclose the same area, set by
the confining potential of the device, the frequency f,.; approaches 2d;1.

Note: a concurrent work also observed apparent AB frequency tripling, corresponding to the sum of the three
v = 3 edge channel frequencies®®. The framework that we developed here can be expected to naturally explain this
observation, since in devices utilizing the graphene crystal edge, the sharp confining potential can lead to multiple
ECs developing within a few magnetic lengths of the edge.® The combination of reduced spatial separation and reduced
screening by nearby graphite gates may account for the observation of apparent tripling, arising from the outer EC

screening both internal localized ECs.

DISCUSSION

We have investigated phase jumps and AB frequency modulation in a highly tunable graphene QHE FP
interferometer with coupled co-propagating edge modes. We identify that interference phase jumps are related to the
single electron charging events in the inner EC, and the transition of the AB frequency can be connected to the
corresponding screening effect of the outer EC. As V¢ increases, the EC coupling becomes strong and the AB
frequency doubles, indicating a near-perfect screening between the ECs. Thus, our experimental observation supports
the proposal that AB frequency doubling can be explained without explicitly introducing electron pairing within the
outer two ECs*. In other words, a half flux quantum introduced in the two strongly coupled ECs can bring a full
charge from the external reservoir and a 2r evolution of the observed interferometer phase.

Our observations do not exclude the possibility of further correlation effects in the strongly coupled ECs;
instead, the tunably coupled ECs discovered here provide a system to test the emergence of electron correlations in
1D systems*’. However, AB frequency multiplication, which we explained within a single particle picture, cannot
substantiate the correlation effect. Further experiments probing the transition from the weakly to strongly coupled

1542 energy relaxation®, and high-frequency transport*4¢ will

limit, such as shot noise?>***!, finite-bias dependence
provide further insight into the ground state and excitations. More generally, inter-edge screening could affect

interferometry in fractional fillings containing multiple ECs*>*", and the recent observation of fractional interference
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in similar bilayer and monolayer graphene devices

30-52 will enable further experiments to probe the interacting co-

propagating fractional QHE edge modes.
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METHODS

Sample preparation. The monolayer graphene stacks with hBN and graphite encapsulation used in this study were
fabricated using the same polycarbonate (PC) polymer dry transfer method described in detail in our previous work
(Ref. 19). The graphite top-gates and bottom-gate, which encapsulate the graphene channel after stacking, are crucial
to screen charge disorder from the graphene channel, stabilizing robust integer and fractional QHE states at low
magnetic fields (Supplementary Fig. 2). The stack used for all data shown here had a top (bottom) hBN thickness of
49 (27) nm. After adhering the stack to a substrate and annealing in vacuum at 300°C, the top gate was first etched
into a simplified shape by reactive ion etching in an inductively coupled plasma etching chamber with 30W O, plasma
using a polymethyl methacrylate (PMMA) resist patterned with electron-beam lithography as the etch mask. Next, a
full etch through the entire stack was performed to define all outer boundaries. This etching was in several steps: first
a pure 30W O, etch remnants of the top graphite; then a 30W process O,/CHF; to etch through the underlying hBN,
graphene, and hBN; and finally another 30W O, etch to remove the bottom graphite. Next, edge contacts to the exposed
graphene were made by a 30W CHF3 etch on the exposed hBN/graphene/hBN contact regions and thermal evaporating
2/7/150 nm of Cr/Pd/Au at an angle with rotation. Then, air bridge contacts were made to the top-graphite in various
locations using a bilayer PMMA process followed by a short 20-25s 30W O plasma PMMA residue clean and thermal
evaporation of 2/7/350 nm Cr/Pd/Au. Then, to etch the ~100 nm width trenches to separate the top graphite regions,
a thinner PMMA resist was used and again a reactive ion etch with gentle 30W O, plasma alone was done in ~1 minute
steps. In between etches, the two-probe resistance between each bridge-contacted gate was checked until they were
all separated. Finally, bridge contacts to the separated central hexagon gate and suspended bridges over the QPC

regions were deposited. See Supplementary Fig. 1 for more details on the fabrication process and the final device.

Measurements. The 8 top graphite gates in the device were separately controlled to set filling factors in each region

at perpendicular magnetic field B, since Landau level filling factor (also simply called ‘filling’) v = Me /n 6> where

ng = eB / j, and ne is the areal electron density. At the region in the middle of the top-gate split-gates, where the

graphite is etched away for a separation of ~150 nm, the electrostatics are tuned to create a saddle-point potential at
the QPC. See Supplementary Section 1 for details of this tuning process. Once an approximate saddle-point is formed
at the QPCs using the graphite top-gates and bottom-gate, the suspended metal bridges over the QPCs are tuned to
precisely set transmissions Tgpcy and Tgpc,. The neighboring top-gates screen out stray fields generated by the

15



355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

suspended bridges such that Vgpcy and Vigpc, are primarily coupled to the graphene at the saddle-point of the QPCs.
We interpret non-integer values 0 < Tgpc < 1 as a transmission probability for electrons in the outer EC, which is
partially transmitted, while for 1 < Topc < 2, Tgpc — 1 gives the transmission probability for the inner EC.
Experiments were performed in an Oxford wet dilution system with base temperature ~20 mK and estimated
~20-25 mK electron temperature. The 24 DC measurement lines of the fridge were carefully thermalized through
Thermocoax cables and 3 Sapphire plates between room temperature and the mixing chamber. A series of lumped
element Pi and RC filters at the mixing chamber reduced electronic noise and ensured low electron temperature. Unless
otherwise noted, a constant 6T perpendicular magnetic field was applied. Measurements were taken using standard
low-frequency lock-in amplifier techniques with a typical AC excitation current of 1 nA at 17.77 Hz applied to the
sample and simultaneously measured AC voltage drops and drained current. Graphite and suspended bridge gates
were controlled with a house-made, low-noise 16-bit D/A voltage source. Bias dependence (see Supplementary
Section 4) was taken by voltage biasing instead and adding in a DC bias at the source. Simultaneously, the DC voltage
drop Vp was measured on the same probes measuring the AC conductance so that the accurate voltage drop across the

FP cavity was known. All data collected and analysis programs have been made available.

Estimation of the coupling strength. Although we have not attempted a detailed calculation of the coupling constants
important for our analysis, we can at least advance some qualitative arguments for the trend that emerges from our
analysis. The edge of the sample consists of alternating compressible and incompressible stripes whose width is set
by electrostatics®. ECs are located in compressible stripes. It may be expected that the outermost EC is located along
an electron density contour where the local Landau-level filling factor is ~ 0.5, while the second EC is located along
a contour with filling ~1.5. Due to residual disorder and electron-electron interactions, the Hall plateau at v = 2 will
set in when the bulk filling is smaller than 2, though larger than 1.5. The density profile produced by charges on
confining gates should be relatively smooth, so that the spatial separation between the outer most EC and the second
EC should be relatively large at this point, and the Coulomb coupling between the channels, screened by the gates,
should be relatively weak. As the electron density is increased, the inner EC should move closer to the outer edge, and
the coupling should become stronger, and it is plausible that by the time the device enters the v = 3 plateau, the value

of K;,/K; is close to 1.
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Further increases in the density should produce additional ECs, which are totally reflected at the QPCs and
do not contribute directly to the transport. The number of electrons on any additional closed ECs, as on other localized
states, will be restricted to integer values, and in principle, due to Coulomb interactions, there should be a jump in the
interference phase of outer edge states each time this integer changes by one. However, Coulomb interactions in our
system are strongly screened by the nearby gates, so if the additional channels are not close to the outer two ECs, the
jumps would be too small to be observable. In monolayer graphene, the energy gap at v = 2, which is due to the
cyclotron energy, is much larger than the gaps at v =1, 3, 4, and 5, which arise from electron-electron interactions.
Consequently, we expect that the spatial separation between the outermost EC and the second EC will tend to be small
compared to the separation between the second EC and any additional ECs.

Another issue is the stability criterion embodied in the requirement |K;,|?> < K;K,. This requirement is
automatically satisfied if we assume that when the two outer ECs are close together, the energy for adding an electron
to either one of them is dominated by an electrostatic energy that depends primarily on the total charge on the edges,
and only weakly on the difference between them, so that E = a §Q,% + b §Q,° + 2K,,(5Q, + 8Q,)?, with a and b
small compared to K;,. Then, K; and K, will be approximately equal to each other and slightly larger than K;,.

This analysis is compatible with experiments in GaAs interferometers where the ECs occur at the boundary
between two QHE states of different integer filling fractions (Ref. 27). There it was found that the h/2e periodicity
occurred only if the outer EC and second EC belong to the same orbital Landau level, and not if they belong to different
levels. In the first case, the energy gap for the QHE state between the two ECs will arise from electron-electron
interactions, while the energy gap in the second case will be dominated by the generally larger cyclotron energy.
Therefore, in the first case, when the density is increased enough to populate a third QHE state in the bulk of the
sample, the two outer ECs might be pushed so close to each other that they are strongly coupled, while this might not

be expected to happen in the second case.

Physics of AB frequency doubling at strong coupling. The meaning of the charge fluctuations §Q; and 6§Q, can be
made more precise as follows. As stated in the main text, we define Q; as the number of electrons in the lowest spin-
split Landau level enclosed by the outer edge mode and @, as the number of electrons in the higher spin state enclosed
by the inner mode. These charges are related to the enclosed areas A; and 4, by Q; = A;B/®,, where i = 1 or 2.

These areas are allowed to deviate slightly from the ideal areas A;, which are assumed to be smooth functions of Vpg
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and, at most weakly varying functions of B and V. Then §Q; = Q; — BA;/®,, and the energy E may be expanded
to quadratic order in §Q; as stated above.

When the inner mode is completely reflected at the QPC, the charge @, is constrained to be an integer, while
the charge @ can change continuously, assuming that the outer edge is mostly transmitted through the QPCs. At low
temperatures the charges will be determined so as to minimize E, subject to the integer constraint.

If Q, is held fixed while the magnetic field is increased by a small amount dB, the inner edge charge §Q,
will change by an amount —dBA,/®,. This happens because, as the area shrinks, charge is transferred from the edge
region to the interior, where it is effectively screened by the gates, leaving a charge deficit at the edge. In the strong
coupling limit, this will cause § Q; to increase by an equal amount. Thus, the total charge Q; in the lowest spin-split
Landau level will increase by dQ; = dB(A; + A,)/®,, and the interferometer phase 6 will increase by 2rdQ;.

If B is increased by a large amount, the value of Q, will not be fixed but will undergo periodic integer jumps.
In the strong coupling limit, the jump in Q; caused by a jump in Q, will also be an integer. This will cause € to jump
by a multiple of 2mr, which will be invisible in an interferometer experiment. Thus, the observed rate of change of the
phase will be d8/dB = 2m(4; + A4,)/®, , which is equal to 4mA;/®, , if we neglect the difference between 4; and
A,. This rate of change is twice as fast as would have been observed in the absence of coupling between the inner and
outer edge modes.

We remark that in the course of adding one flux quantum to the area A4,, one would expect on average to have
a jump by one electron in each spin state. So, in general, one will have one positive jump in @, and one negative jump
in Q. Thus, while the observed interference phase will change by an amount equivalent to a change of two electrons,

the actual change in Q will only be one electron.

Robustness of the theoretical predictions. As discussed in Ref. 36, when a single EC passes through the two
constrictions, with weak backscattering at the constrictions, the interference phase seen at low temperatures and low
source-drain voltage is given by 8 = 21nQ + 6,, mod 2w, where Q is the total electron charge (in units e) in the region
between the two scattering points (the expectation value of the charge on the interferometer in its ground state) and
6, is a constant for small variations in B, Vpg, and V. The argument is essentially the same if the backscattering is
not weak. The principal effect of stronger backscattering at the QPCs is to add a term to the energy E that favors

integer values of the charge @, and hence integer values of the total charge on the interferometer. This means that as
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the control parameters are varied continuously, the phase difference 8 — 8, will undergo an additional modulation
pulling it towards the nearest integer multiple of 2r. If we define 6y as the value of the interferometer phase that
would occur in the limit of weak backscattering, for the given value of the control parameters, then the actual value
of 8 should have the form 8 = 6, + 68, where &0 is a periodic function of 8, — 6. In addition, in the presence of
finite back scattering, interference contribution to the measured resistivity may no longer be a simple sinusoidal
function of 6 but can contain higher harmonics. The combination of these effects means that the interference current
will remain a periodic function of 6,,, with period 2m, but the relative amplitudes of various harmonics may be
modified. In the main text, it was argued that cos 6, should be a two-dimensional periodic function of B and the gate
voltages, with frequencies expressed in terms of two non-colinear fundamental vectors in reciprocal parameter space.
The effect of finite backscattering at the QPCs will be to modify the amplitudes of the various Fourier components,
but not to change their positions.

Using similar arguments, we may argue that measurement at finite temperature should not change the
locations of the fundamental frequency vectors, but thermal fluctuations will reduce the Fourier amplitudes. In general,

T/¢ where € will

at high temperatures T, the amplitude of a given Fourier component will fall off, proportional to e~
be different for each Fourier component. At sufficiently high temperatures, therefore, only the one or two components
with the largest values of € will remain visible. The values of € will depend on details of the system, but typically the
Fourier components that are most prominent at T = 0 will be the ones that persist to highest temperatures.

For our system, in the case where there is only a single EC, as we find for bulk filling less than 2, the value
of & for the lowest Fourier mode is predicted to be ¢ = hv/(2m%P), where v is the EC velocity and P is the perimeter
of the interferometer path. For the case of two strongly coupled edge channels, the prediction is & = hv/(4m%P),
where v is now the velocity of the fast charge mode. In both cases, the dominant effects come from thermal fluctuations

e8Q of the charge on the edge, whose energy cost is given by (e6Q)?/(2yP), where y is the capacitance per unit

length of the edge. The velocity v is given by v = §ay,/y, where §ayy is the change in Hall conductance across the

edge. Using our lithographically defined perimeter P = 4.24 um and the velocity v, = eAZDP = 1.46 X 10° m/s

extracted from finite-bias dependence in the uncoupled case (SI), we find € = 83.7 mK, well above our estimated

electron temperature.
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Figure 1. Highly tunable Fabry-Pérot interferometer in graphene. a, False-colour scanning electron microscopy
image of a FP device identical to the device measured here. The graphite top-gate layer is selectively etched to form
8 separated top-gates (purple). Metal bridges (blue) connect to each graphite top-gate region and two additional bridges
(yellow) suspend over the QPCs. The lithographic area of the interferometer cavity (area A = 1.16 pm?) is defined
by the central hexagonal top-gate. Scale bar: 1 um. b, Simplified schematic of a FP tuned so that v; g = vyg = vrg =
2 and vgg, = Vpg = Vsgp = 0 illustrating interference of the partitioned outer EC (red) while the inner EC (blue)
forms a closed annulus inside the FP. Voltages applied to the suspended metal bridges Vypcy and Vgpc, selectively
gate the QPC constrictions through the etched graphite gaps. We measure the diagonal conductance Gp =
Iq/ (V5 = V5), where V];—r and Iy are measured voltages in (1) probes and drained current, respectively. See
Supplementary Fig. 1 for the full device geometry and additional details. In addition to magnetic field, we tune the
interference phase using voltage Vg on the ‘middle gate’ or Vpg on the ‘plunger gate’. ¢, Conductance as a function
of Vapcs With Vgpez = 7 V (i.e. open with Topc, = 2) demonstrating QPC1 tunings to interfere outer EC (red dot) and
inner EC (blue dot) in v = 2. d, Same type of plot as ¢, but demonstrating QPC2 operation instead of QPC1. See
Supplementary Fig. 3 for QPC tuning details and voltages set on the other gates to form the necessary QPC saddle-
points to acquire this data. e-f, Characteristic FP oscillations as a function of Vpg for the inner EC and outer EC,

respectively, at the indicated QPC tunings. All data is at fixed magnetic field B = 6 T.
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Figure 2. Density-tuned AB oscillation frequency doubling transition of outer EC. a, Hall conductance Gy, of the
device with both QPCs tuned to be fully open, demonstrating that V¢ tunes the filling v of the FP at a fixed magnetic
field B = 6 T. Colored dots indicate points at which interference data are shown in b-e while vertical dashed lines
show the range of V¢ swept for f. Top inset pictures illustrate the corresponding compressible regions expected in
the FP cavity. b-e, Conductance Gy, oscillations on the outer EC with Vpg and B, for each of the indicated Vyg values.
f, Conductance Gy, oscillations on the outer EC with Vpg and Vg, for Viyg swept continuously over the transition from

2
apparent h/e to h/2e oscillations periodicity, at B = 6T. Here we plot G as a percentage of % deviation from the

average value, which is calculated for each fixed Vyg linecut and subtracted off. QPCs are retuned to maintain Tgpc, =
Tqpcz = 0.5 over the dataset. We do not observe further phase jumps or periodicity changes past Vg ~ 1.7 V (checked

up to up Vg = 3.2V, corresponding to v = 7).
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Figure 3. Phase jump extraction in the transition regime. a, Phase of the 1D fast Fourier transform (FFT) extracted
along linecuts parallel to the phase jumps in (b). The phase is evaluated at the dominant frequency in the FFT amplitude
spectrum for the linecuts in between phase jumps. A linear increase in phase extracted from the regions without phase
jumps is subtracted off to make the phase jump magnitude evident as the vertical shift between plateaus in panel (a).
From this data we extract A8 /2w =~ —0.47, reflecting approximately half of an electron repelled from the outer EC
for each charge added to Q.. Inset: illustration of the coupling K;, between the outer and inner ECs contributing to
the phase jumps. b, Conductance G oscillations on the outer EC with Vpg and Vyyg near the center of the transition
regime showing periodic phase jumps along the dashed black lines. Note that increasing Vyc adds electrons to the
system or equivalently increases phase, so the phase jumps correspond to negative shifts in phase i.e., repulsion of
electrons from the FP cavity. Similar interference patterns are observed in both the strong and weak QPC

backscattering regimes (Supplementary Fig. 4) as well as at elevated temperatures (Supplementary Fig. 5).
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Figure 4. Comparison of inner and outer EC interference and couplings across transition. a, Conductance Gp
oscillations on the inner EC (Tgpcy = Tqpcz = 1.5) with Vpg and B, for Viyg = 1.2V. Left: illustration of interference
on inner EC. Bottom: 2D FFT of the Gp oscillations showing peak f; and its harmonics. b, Same analysis and Vyg
value as in (a) but for interference on the outer EC (Tqpcy = Tqpcz = 0.5), showing the peaks f,, fo4i, and f,_; and
their harmonics. ¢, Magnitude of the phase jump (obtained using the method shown in Fig. 3) as a function of Vyg,
showing that it is continuously tunable. Each data point is averaged over ~0.25 V range in V¢ and error bars indicate
+1 standard deviation over the phase jumps detected in this range. Unfilled data points represent zero observable
phase jumps over the corresponding V¢ range, hence we infer a magnitude of 0 or —1. We show G, of the device
taken in an identical measurement to Fig. 2a, reflecting the expected vyg, for reference. d, Normalized magnitudes
Iy, Iy4i, and I,_; of the respective peaks f,, fo1i, and f,_; obtained as a function of Vyg. Iy, Io4i, and I,_; are
normalized by the sum I, + I,,; + I,_; to show their relative contributions. We extract each data point from a 2D
dataset like panel (b), a subset of which are shown in Supplementary Fig. 7. e, Magnetic field frequency multiplied
by ®, = h/e for peaks f,, fi, fo+i>» and f,_; tracked through the transition. Note that f; is measured from a separate
measurement of interference on the inner EC (Supplementary Fig. 8), while the other peaks are all extracted from
interference on the outer EC. f, Same as (e) but for plunger gate frequency. Horizontal dashed lines in (e-f) indicate
the corresponding f, and 2f, values before the transition. Black (red) dots show calculated f, + f; from outer and
inner EC data, which match the peaks identified as f,; and f,_;, respectively.
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