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Electronic interferometers using the chiral, one-dimensional (1D) edge channels of the 

quantum Hall effect (QHE) can demonstrate a wealth of fundamental phenomena. The recent 

observation of phase jumps in a Fabry-Pérot (FP) interferometer revealed anyonic quasiparticle 

exchange statistics in the fractional QHE. When multiple integer edge channels are involved, FP 

interferometers have exhibited anomalous Aharonov-Bohm (AB) interference frequency doubling, 

suggesting putative pairing of electrons into �ÿ quasiparticles. Here, we use a highly tunable 

graphene-based QHE FP interferometer to observe the connection between interference phase jumps 

and AB frequency doubling, unveiling how strong repulsive interaction between edge channels leads 

to the apparent pairing phenomena. By tuning electron density in-situ from filling factor � < � to � >�, we tune the interaction strength and observe periodic interference phase jumps leading to AB 

frequency doubling. Our observations demonstrate that the combination of repulsive interaction 

between the spin-split � = � edge channels and charge quantization is sufficient to explain the 

frequency doubling, through a near-perfect charge screening between the localized and extended 

edge channels. Our results show that interferometers are sensitive probes of microscopic interactions 

and enable future experiments studying correlated electrons in 1D channels using density-tunable 

graphene.

INTRODUCTION

Electrons in 1D quantum systems exhibit striking phenomena, including the breakdown of Fermi liquid 

theory and quasiparticle formation in favor of collective modes1. Likewise, electrons confined to two dimensions and 

subjected to perpendicular magnetic fields exhibit the quantum Hall effects (QHEs)2. Although the microscopic details 

of QHE states are still an active area of research3,4, their low-energy transport properties are known to be governed by 

chiral, 1D edge channels5–8. These edge channels (ECs) conduct charge ballistically, allowing for phase-coherent 

electronic experiments9,10. In particular, electronic Fabry-Pérot (FP) QHE interferometry11–13, was performed 

extensively in GaAs, culminating in the  observation of interference phase jumps as evidence for anyonic statistics of 

fractional quasiparticles14–17. Recently, FPs were developed in graphene, which showed Aharonov-Bohm (AB) 



interference of integer ECs18–20, with oscillation periodicity set by the magnetic flux quantum for electrons Φ0 ≡ //ă. 

Our previous design18 utilized graphite gates encapsulating the graphene channel, which screened bulk charges. 

Without such screening layers21, however, interferometers exhibit 8Coulomb dominated9 (CD) behavior in which 

strong coupling of the interfering EC to localized compressible states in the bulk determines the oscillation periodicity 

and obscures the expected AB oscillations13,22–24. 

When bulk charges were strongly screened, GaAs FPs showed unexpected doubling of the AB oscillation 

frequency and shot noise corresponding to charge 2ă when interfering the outermost EC with the bulk of the 

interferometer in filling 2.5 f � f 4.5, suggesting a possibility of 8pairing9 of elementary charges25. Furthermore, the 

coherence and periodicity of the interfering outer EC were related to the coherence and the enclosed flux of the 

adjacent inner EC26, and the 8pairing9 phenomena only occurred when the outer two modes belonged to the same spin-

split Landau level27. Independently, single-electron capacitance measurements in GaAs quantum dots revealed that 

tunneling into the edge of the dot corresponded to the entrance of two electrons rather than one for � g 2, and that 

near � j 2.5 the charging peaks follow doubled magnetic flux frequency28. Mechanisms of electron pairing are 

important questions in emergent phenomena, e.g. high-temperature superconductivity29 and the � = 5/2 fractional 

QHE state in GaAs30 and bilayer graphene31,32. However, theoretical work concerning FP interferometers was able to 

explain the doubled AB oscillation frequency based on a microscopic model without explicit introduction of electron 

pairing, though explaining other related phenomena in GaAs remains challenging33. 

In this work, we experimentally address the microscopic mechanism of coupling between QHE edges by 

elucidating the relation between AB oscillation phase jumps and frequency doubling, employing a highly tunable QHE 

FP interferometer with strongly screened bulk charge in graphene. We observe periodically modulating interference 

phase jumps on the outer EC leading to nearly doubled AB oscillation frequency as we increase the electron density 

in-situ, unveiling a density-induced transition which was not explored in GaAs. We find that strong repulsive 

interactions between the outermost pair of spin-split ECs can explain both the observation of interference phase jumps 

and the approximately doubled interference frequency.

RESULTS

Interferometer design and tuning



 We designed a graphene-based FP interferometer tuned by a local gate array (Fig. 1a). The FP cavity is 

defined electrostatically using separated graphite top-gates (Methods and Supplementary Fig. 1), which ensure a high 

channel quality and allow a high degree of density tunability in-situ. Metal bridges contact each top-gate, and we 

additionally suspend metal bridges over the two quantum point contacts (QPCs), illustrated in Fig. 1b. By applying 

voltages �QPC1 and �QPC2 to these suspended bridge gates, we can tune the transmission of each QPC independently 

while keeping the filling factor of the surrounding regions fixed (Supplementary Section 1).

In our experiments, we measure the diagonal conductance �D, as defined in Fig. 1b. In the regime that we 

study, �D =  �2/ �QPC where �QPC counts the number of edge channels transmitted through the device, with a partially 

transmitted channel counted as fraction34,35. To characterize the QPC transmissions, we measure �D as a function of 

the bottom-gate voltage and split-gate voltage for each QPC with the bulk of the interferometer tuned to � = 2 at þ =6 T (Supplementary Fig. 3). At � = 2, there are two spin-split Landau levels, of which the lower energy spin species 

hosts an EC closer to the effective boundary of the sample. Hence, we refer to the EC belonging to the lower (higher) 

energy spin species as the 8outer9 (8inner9) EC. Once appropriate bottom-gate and split-gate voltages are set, we tune �QPC1 and �QPC2, voltages applied on the suspended bridges to control the individual QPC transmissions. Fig. 1c and 

Fig. 1d show the measured �D as a function of �QPC1 and �QPC2, respectively, with the other QPC fully open. �D 

exhibits plateaus at (0,1,2) �2/ , corresponding to (neither, outer, both) ECs transmitted. In this regime, we define 

�QPC ≡ �D /�2 as the transmission of the QPC34, where 0 < �QPC < 1 corresponds to a partitioned outer EC and 1 < �QPC < 2 corresponds to a partitioned inner EC.   

Tuning to partial transmission of the inner EC for both QPCs, �QPC1 = �QPC2 = 1.5, we observe high-

visibility conductance oscillations as a function of plunger gate voltage �PG, which tunes the filling factor �PG under 

the plunger gate, in Fig. 1e. Similarly, we tune to �QPC1 = �QPC2 = 0.5 and measure conductance oscillations on the 

outer EC in Fig. 1f. In both cases, oscillations are largest for �PG < 0, which corresponds to a fully gate-defined 

interference path since electrons are depleted under the gate. Increasing �PG brings the interfering edge closer to the 

etched graphene boundary, inducing dephasing18. Notably, the inner EC oscillations survive until �PG = 2, when it 

flows close to the etched boundary of the graphene, while the outer EC reaches the boundary by �PG = 1. Another 



difference is the apparent irregularity of the oscillations on the outer EC compared to the inner EC, which we will 

understand in this work. 

Phase jumps and AB oscillation frequency transition 

High-visibility oscillations allow us to probe the dependence of interference phase � on magnetic field 

variation Āþ and gate voltage variations, which distinguishes the AB from the CD regimes13,15,18,19,22. For small 

variations in field and gate voltages in the AB regime, we expect Ā�/2� j ýĀþ/Φ0 + ÿPGĀ�PG/ă + ÿMGĀ�MG/ă, 

where ý, ÿPG, and ÿMG, are the (approximately constant) area enclosed by the interfering EC, interfering EC – plunger 

gate capacitance, and interfering EC – middle gate capacitance, respectively. Importantly, �MG also directly tunes the 

electron density in the interferometer, namely sweeping �MG over a large range will change the FP cavity filling factor �MG. To calibrate the filling that we expect in the cavity, we first measure standard Hall conductance in the region 

gated by �LG (see Supplementary Fig. 1e) and observe conductance plateaus (Fig. 2a). Since the top gates are 

identically coupled to the channel directly beneath them, an identical sweep of �MG will tune ���  through the same 

filling factors. Data in the remaining panels of Fig. 2 were taken with the QPCs set to �QPC1 = �QPC2 = 0.5 i.e. 

partitioning the outer EC. Near the lowest density of the ��� = 2 plateau (Fig. 2b), we observe a typical AB 

interference pattern. Constant phase stripes (Ā� = 0) trace out a negative slope Ā�PG/Āþ with magnetic field period ∆þ yielding Φ0/∆þ =  1.13 µm2, matching the designed area ý = 1.16 µm2. Plunger gate period ∆�PG yields 1/∆�PG  =  19.2 V21. Increasing ��� using �MG reveals more complicated interference patterns in Fig. 2c-d. Periodic 

shifts in the interference pattern persist and modulate until near the center of ��� = 4, as seen in Fig. 2e, when a 

simple stripe pattern returns. However, now Φ0/∆þ =  2.32 µm2 and 1/∆�PG  =  36.3 V21, both approximately 

doubled from Fig. 2b. Since ý is fixed, a doubling of Φ0/∆þ indicates oscillations with Φ0/2 =  //2ă periodicity 

instead of Φ0 so that Φ0/2∆þ =  1.16 µm2. Similarly, assuming a fixed ÿPG, then 1/∆�PG doubling corresponds to 

adding twice as many electrons to the system per flux quanta. Both could be interpreted as an effective charge ă∗ =2ă for the interfering particle, as interpreted in GaAs25–27, but our observations indicate a different interpretation. 

Importantly, we observe the entire density-tuned transition to the AB frequency-doubled regime at fixed þ 

by sweeping �MG and observing oscillations with �PG, as shown in Fig. 2f. Remarkably, the frequency transition occurs 

continuously. From the top panel, Φ0 interference is apparent. As �MG increases, periodic phase jumps begin to appear. 



Both the �MG spacing and magnitude of the phase jumps increase, until eventually the most apparent periodicity 

corresponds to Φ0/2 oscillations (i.e., doubled frequency 2Φ021). 

To better understand the phase jumps, we use a general relation between charge and phase in FP 

interferometers36. When a single EC passes through the two constrictions with weak backscattering, the interference 

phase seen by the device at zero temperature is � = 2�Ā + �0, mod 2�, where Ā is the total electron charge (in units ă) in the region between the two scattering points and �0 is a constant for small variations in þ, �PG, and �MG. In our 

experimental regime, � g 2, we expect this relation to hold with Ā = Ā1 + Ā2, where Ā1 is the total charge residing 

in the lowest spin-split Landau level and Ā2 is the charge in the higher energy spin state (and also higher Landau 

levels). Ā1 can vary continuously since the outer EC is connected to the source and drain charge reservoirs. In contrast, Ā2 is required to be integer, as the corresponding energy levels are isolated through the incompressible QHE bulk. An 

integral change in Ā2 has no observable effect on the interference signal unless it produces a non-integral change in Ā1 due to Coulomb coupling between the two types of charge. Hence, we can redefine � to include only the charge Ā1 in the lowest spin-split Landau level, and the values Ā1 in the ground state of the interferometer determine �. 

Following similar models used to understand the CD regime15,24,37 and considering small changes in Ā1 and Ā2, we 

expand the change in ground state energy � =  �1ĀĀ12 + �2ĀĀ22 + 2�12ĀĀ1ĀĀ2, where �ÿ is the charging energy 

of the charge species ÿ and �12 describes the mutual capacitive coupling between them. Energetic stability requires 

that |�12|2 f �1�2. Within this capacitive coupling model, when Ā2 increases by 1, the charge Ā1 correspondingly 

decreases by a discrete (generically non-integral) amount ∆Ā1 to screen the added charge, leading to a phase shift ∆�/2� = ∆Ā1 = 2�12/�1. 

By taking 1D fast Fourier transforms (FFTs) along lines parallel to the phase jumps14,15, we extract several 

values of ∆�/2� near the center of the periodicity transition in Fig. 3a. We observe that the locations where the phase 

jumps occur (marked in Fig. 3b) follow a steeper slope than the slope Ā�PG/Ā�MG of constant phase lines of the main 

interference oscillation in the �MG-�PG planes. A steeper slope also occurs in the þ-�PG plane (Fig. 2c-d). Moreover, 

these phase jump lines have negative slopes Ā�PG/Āþ < 0, like the constant phase lines of AB oscillations. This 

observation is in sharp contrast to the phase jumps reported in the FP interferometer operated in the fractional QHE 

regime14,15 or in the FP interferometer operated in the integer CD regime37, where phase jump lines follow positive 

slope Ā�PG/Āþ > 0. The different slope suggests a different structure to the energy levels that are being populated in 

our sample. Considering that the outer EC is partitioned at the QPCs, while the inner ECs are well isolated, we 



hypothesize that the charging events seen as phase jumps represent charge added to the annular, closed inner EC, 

illustrated in Fig. 3. The dominant coupling �12 is directly between the outer and inner � = 2 ECs. Any charges added 

to higher Landau levels or to localized states in the bulk are not measurably coupled to the outer EC, presumably 

because of effective screening by the gates.

AB frequency doubling from strongly coupled QHE edge states

We provide further evidence for capacitively coupled QHE edges tuning the AB frequency in Fig. 4. At fixed �MG in the transition regime, we compare interference in the þ-�PG plane for the inner EC, Fig. 4a, to the outer EC, 

Fig. 4b. This direct comparison is only possible because we can control QPC transmissions independently of bulk 

filling. We observe that the slope of the oscillation maxima on the inner EC (dotted lines in Fig. 4a) matches the slope 

of the phase jump lines on the outer EC (dotted lines in Fig. 4b). Reducing the transmission for the inner EC, the 

interference maxima in Fig. 4a become sharper charging resonances, corresponding to charge Ā2 → Ā2 + 1 through 

the inner EC. When the transmission of the inner EC vanishes, the inner EC is fully disconnected from the source and 

drain charge reservoirs, and the outer EC is now partitioned at the QPCs to form a new interference path (shown in 

the left panel in Fig. 4b). Since the electrostatic configurations for Fig. 4a and Fig. 4b are identical, the regions in 

between the phase jump lines in Fig. 4b correspond to fixed Ā2, and we see that the interference phase on the outer 

EC shifts when the charge on the inner EC discretely changes. 

Taking Fourier transform of the interference signal provides further understanding of interactions between 

the two ECs involved in the interference. The bottom panels of Fig. 4a and 4b show the 2D FFTs of the corresponding 

interference patterns in in the þ-�PG planes. For interference of the inner EC (Fig. 4a), we observe a simple FFT 

pattern of peaks corresponding to the fundamental frequency of the inner EC Āi, a vector containing the peak position 

in the 2D FFT, and its harmonics (ÿĀi, where ÿ is an integer). The FFT pattern of the outer EC interference (Fig. 4b) 

exhibits a more complicated lattice of Fourier peaks. If we label one of the dominant peaks as the fundamental 

frequency of the outer EC,  Āo, we can then identify the rest of the peaks by addition or subtraction of the same vector Āi evident in the inner EC data. The lowest order peaks correspond to the sum Āo+i = Āo + Āi and the difference 



Āo2i = Āo 2 Āi. We show a similar Fourier lattice construction in Supplementary Fig. 5 for interference in the þ-�MG 

plane. 

 By tuning �MG, we modulate the filling factor of the interferometer cavity in a wide range and observe the 

evolution of the interference patterns and corresponding peaks for the outer (inner) EC in Supplementary Fig. 2 (3). 

As in Fig. 2, phase jumps appear only within the periodicity transition. Fig. 4c shows the magnitude of individual 

phase jumps as a function of �MG. We find that the phase jump continuously evolves from ∆�/2� j 0 (�MG < 0.6 V) 

through the periodicity transition to ∆�/2� j  21 ( �MG > 1.6 V), corresponding to the strongly coupled limit �12/�1 j 1. The transition regime marked by non-trivial phase jumps spans from the appearance of the inner EC 

(�MG j 0.6 V) to the strongly coupled outer two EC limit (�MG j 1.6 V). 

The Fourier peaks9 evolution tuned by �MG provides insight into the interaction between ECs. Fig. 4d displays 

the normalized Fourier peak intensity as a function of �MG. The amplitude of the Fourier peak Āo decays through the 

transition regime (0.6 V < �MG < 1.6 V), replaced by Āo+i as the dominant peak. We plot the magnetic field frequency 

multiplied by Φ0 (Fig. 4e) and the plunger gate frequency (Fig. 4f), respectively, for each of the lowest-order peaks Āo, Āi, Āo+i, and Āo2i as a function of �MG. At the beginning of the transition regime where the ECs are not interacting, 

both  Āo and Āo+i approach the corresponding AB frequency Φ021 = ă// through the designed area. As �MG increases, 

however, Āo stays nearly unchanged, while Āo+i increases to reach the doubled value 2Φ021. The experimental 

observation that the dominant peak in the frequency-doubled regime corresponds to Āo+i precludes the possibility of 2ă charge pairing within the outer EC alone. 

Instead, our frequency-doubled regime arises from Coulomb interaction between the spin-split ECs combined 

with charge quantization on the inner EC (Methods). Electrons would naturally tend to enter the inner EC at frequency Āi, but, due to charge quantization, cannot enter continuously. Hence, as the magnetic flux increases continuously, the 

area enclosed by the inner EC must shrink to maintain fixed charge. During this shrinking process, electron charge is 

transferred continuously into the interior, leaving missing electron charge between the outer and inner ECs. In the 

strongly coupled EC limit, this missing charge attracts an equal charge onto the outer EC for screening. In the absence 

of this screening effect, charge is continuously added to the outer EC with frequency Āo according to the increased 

AB phase. In the coupled ECs, the combination of the screening-induced charge and the natural AB effect results in 

the outer EC charging at a frequency Āo+i. Therefore, the interference phase follows Āo+i. In addition to this continuous 

charging effect, electrons can tunnel into the inner EC from the external reservoirs. As previously discussed, each 



electron addition repels some electron charge from the outer EC, causing the negative interference phase shifts that 

we observed. For larger values of �MG, as the bulk density increases, the inner and outer EC move closer together, and 

the system approaches the strong coupling limit, where the phase jumps are close to 22� and unobservable, reflecting 

a full electron charge screening. Moreover, as the inner and outer ECs asymptotically enclose the same area, set by 

the confining potential of the device, the frequency Āo+i approaches 2Φ021. 

Note:  a concurrent work also observed apparent AB frequency tripling, corresponding to the sum of the three � = 3 edge channel frequencies38. The framework that we developed here can be expected to naturally explain this 

observation, since in devices utilizing the graphene crystal edge, the sharp confining potential can lead to multiple 

ECs developing within a few magnetic lengths of the edge.8 The combination of reduced spatial separation and reduced 

screening by nearby graphite gates may account for the observation of apparent tripling, arising from the outer EC 

screening both internal localized ECs. 

DISCUSSION

We have investigated phase jumps and AB frequency modulation in a highly tunable graphene QHE FP 

interferometer with coupled co-propagating edge modes. We identify that interference phase jumps are related to the 

single electron charging events in the inner EC, and the transition of the AB frequency can be connected to the 

corresponding screening effect of the outer EC. As �MG increases, the EC coupling becomes strong and the AB 

frequency doubles, indicating a near-perfect screening between the ECs. Thus, our experimental observation supports 

the proposal that AB frequency doubling can be explained without explicitly introducing electron pairing within the 

outer two ECs33. In other words, a half flux quantum introduced in the two strongly coupled ECs can bring a full 

charge from the external reservoir and a 2� evolution of the observed interferometer phase.

Our observations do not exclude the possibility of further correlation effects in the strongly coupled ECs; 

instead, the tunably coupled ECs discovered here provide a system to test the emergence of electron correlations in 

1D systems39. However, AB frequency multiplication, which we explained within a single particle picture, cannot 

substantiate the correlation effect. Further experiments probing the transition from the weakly to strongly coupled 

limit, such as shot noise25,40,41, finite-bias dependence15,42, energy relaxation43, and high-frequency transport44–46 will 

provide further insight into the ground state and excitations. More generally, inter-edge screening could affect 

interferometry in fractional fillings containing multiple ECs42,47–49, and the recent observation of fractional interference 



in similar bilayer and monolayer graphene devices50–52 will enable further experiments to probe the interacting co-

propagating fractional QHE edge modes.
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METHODS

Sample preparation. The monolayer graphene stacks with hBN and graphite encapsulation used in this study were 

fabricated using the same polycarbonate (PC) polymer dry transfer method described in detail in our previous work 

(Ref. 19). The graphite top-gates and bottom-gate, which encapsulate the graphene channel after stacking, are crucial 

to screen charge disorder from the graphene channel, stabilizing robust integer and fractional QHE states at low 

magnetic fields (Supplementary Fig. 2). The stack used for all data shown here had a top (bottom) hBN thickness of 

49 (27) nm. After adhering the stack to a substrate and annealing in vacuum at 300°C, the top gate was first etched 

into a simplified shape by reactive ion etching in an inductively coupled plasma etching chamber with 30W O2 plasma 

using a polymethyl methacrylate (PMMA) resist patterned with electron-beam lithography as the etch mask. Next, a 

full etch through the entire stack was performed to define all outer boundaries. This etching was in several steps: first 

a pure 30W O2 etch remnants of the top graphite; then a 30W process O2/CHF3 to etch through the underlying hBN, 

graphene, and hBN; and finally another 30W O2 etch to remove the bottom graphite. Next, edge contacts to the exposed 

graphene were made by a 30W CHF3 etch on the exposed hBN/graphene/hBN contact regions and thermal evaporating 

2/7/150 nm of Cr/Pd/Au at an angle with rotation. Then, air bridge contacts were made to the top-graphite in various 

locations using a bilayer PMMA process followed by a short 20-25s 30W O2 plasma PMMA residue clean and thermal 

evaporation of 2/7/350 nm Cr/Pd/Au. Then, to etch the ~100 nm width trenches to separate the top graphite regions, 

a thinner PMMA resist was used and again a reactive ion etch with gentle 30W O2 plasma alone was done in ~1 minute 

steps. In between etches, the two-probe resistance between each bridge-contacted gate was checked until they were 

all separated. Finally, bridge contacts to the separated central hexagon gate and suspended bridges over the QPC 

regions were deposited. See Supplementary Fig. 1 for more details on the fabrication process and the final device.

Measurements. The 8 top graphite gates in the device were separately controlled to set filling factors in each region 

at perpendicular magnetic field B, since Landau level filling factor (also simply called 8filling9) � ≡ ÿ� ÿ�⁄  , where 

ÿ� = eþ /⁄  and ÿ� is the areal electron density. At the region in the middle of the top-gate split-gates, where the 

graphite is etched away for a separation of ~150 nm, the electrostatics are tuned to create a saddle-point potential at 

the QPC. See Supplementary Section 1 for details of this tuning process. Once an approximate saddle-point is formed 

at the QPCs using the graphite top-gates and bottom-gate, the suspended metal bridges over the QPCs are tuned to 

precisely set transmissions �QPC1 and �QPC2. The neighboring top-gates screen out stray fields generated by the 



suspended bridges such that �QPC1 and �QPC2 are primarily coupled to the graphene at the saddle-point of the QPCs. 

We interpret non-integer values 0 < �QPC < 1 as a transmission probability for electrons in the outer EC, which is 

partially transmitted, while for 1 < �QPC < 2, �QPC 2 1 gives the transmission probability for the inner EC. 

Experiments were performed in an Oxford wet dilution system with base temperature ~20 mK and estimated 

~20-25 mK electron temperature. The 24 DC measurement lines of the fridge were carefully thermalized through 

Thermocoax cables and 3 Sapphire plates between room temperature and the mixing chamber. A series of lumped 

element Pi and RC filters at the mixing chamber reduced electronic noise and ensured low electron temperature. Unless 

otherwise noted, a constant 6T perpendicular magnetic field was applied. Measurements were taken using standard 

low-frequency lock-in amplifier techniques with a typical AC excitation current of 1 nA at 17.77 Hz applied to the 

sample and simultaneously measured AC voltage drops and drained current. Graphite and suspended bridge gates 

were controlled with a house-made, low-noise 16-bit D/A voltage source. Bias dependence (see Supplementary 

Section 4) was taken by voltage biasing instead and adding in a DC bias at the source. Simultaneously, the DC voltage 

drop �D was measured on the same probes measuring the AC conductance so that the accurate voltage drop across the 

FP cavity was known. All data collected and analysis programs have been made available. 

Estimation of the coupling strength. Although we have not attempted a detailed calculation of the coupling constants 

important for our analysis, we can at least advance some qualitative arguments for the trend that emerges from our 

analysis. The edge of the sample consists of alternating compressible and incompressible stripes whose width is set 

by electrostatics6. ECs are located in compressible stripes. It may be expected that the outermost EC is located along 

an electron density contour where the local Landau-level filling factor is ~ 0.5, while the second EC is located along 

a contour with filling ~1.5. Due to residual disorder and electron-electron interactions, the Hall plateau at � = 2 will 

set in when the bulk filling is smaller than 2, though larger than 1.5. The density profile produced by charges on 

confining gates should be relatively smooth, so that the spatial separation between the outer most EC and the second 

EC should be relatively large at this point, and the Coulomb coupling between the channels, screened by the gates, 

should be relatively weak. As the electron density is increased, the inner EC should move closer to the outer edge, and 

the coupling should become stronger, and it is plausible that by the time the device enters the � = 3 plateau, the value 

of �12/�1 is close to 1. 



Further increases in the density should produce additional ECs, which are totally reflected at the QPCs and 

do not contribute directly to the transport. The number of electrons on any additional closed ECs, as on other localized 

states, will be restricted to integer values, and in principle, due to Coulomb interactions, there should be a jump in the 

interference phase of outer edge states each time this integer changes by one.  However, Coulomb interactions in our 

system are strongly screened by the nearby gates, so if the additional channels are not close to the outer two ECs, the 

jumps would be too small to be observable. In monolayer graphene, the energy gap at � = 2, which is due to the 

cyclotron energy, is much larger than the gaps at � = 1, 3, 4, and 5, which arise from electron-electron interactions. 

Consequently, we expect that the spatial separation between the outermost EC and the second EC will tend to be small 

compared to the separation between the second EC and any additional ECs.

Another issue is the stability criterion embodied in the requirement |�12|2 f �1�2. This requirement is 

automatically satisfied if we assume that when the two outer ECs are close together, the energy for adding an electron 

to either one of them is dominated by an electrostatic energy that depends primarily on the total charge on the edges, 

and only weakly on the difference between them, so that � =  ÿ ĀĀ12 + Ā ĀĀ22 + 2�12(ĀĀ1 + ĀĀ2)2, with ÿ and Ā 

small compared to �12. Then, �1 and �2 will be approximately equal to each other and slightly larger than �12.

This analysis is compatible with experiments in GaAs interferometers where the ECs occur at the boundary 

between two QHE states of different integer filling fractions (Ref. 27). There it was found that the //2ă periodicity 

occurred only if the outer EC and second EC belong to the same orbital Landau level, and not if they belong to different 

levels. In the first case, the energy gap for the QHE state between the two ECs will arise from electron-electron 

interactions, while the energy gap in the second case will be dominated by the generally larger cyclotron energy. 

Therefore, in the first case, when the density is increased enough to populate a third QHE state in the bulk of the 

sample, the two outer ECs might be pushed so close to each other that they are strongly coupled, while this might not 

be expected to happen in the second case.

Physics of AB frequency doubling at strong coupling. The meaning of the charge fluctuations ĀĀ1 and ĀĀ2 can be 

made more precise as follows. As stated in the main text, we define Ā1 as the number of electrons in the lowest spin-

split Landau level enclosed by the outer edge mode and Ā2 as the number of electrons in the higher spin state enclosed 

by the inner mode. These charges are related to the enclosed areas ý1 and ý2 by Āÿ =  ýÿþ/Φ0, where ÿ = 1 or 2.  

These areas are allowed to deviate slightly from the ideal areas  ý̅ÿ, which are assumed to be smooth functions of �PG 



and, at most weakly varying functions of þ and �MG. Then ĀĀÿ = Āÿ 2 þý̅ÿ/Φ0, and the energy � may be expanded 

to quadratic order in ĀĀÿ as stated above.

When the inner mode is completely reflected at the QPC, the charge Ā2 is constrained to be an integer, while 

the charge Ā1 can change continuously, assuming that the outer edge is mostly transmitted through the QPCs. At low 

temperatures the charges will be determined so as to minimize �, subject to the integer constraint.

If Ā2 is held fixed while the magnetic field is increased by a small amount Ăþ, the inner edge charge ĀĀ2 

will change by an amount 2Ăþý̅2/Φ0.  This happens because, as the area shrinks, charge is transferred from the edge 

region to the interior, where it is effectively screened by the gates, leaving a charge deficit at the edge.  In the strong 

coupling limit, this will cause ĀĀ1 to increase by an equal amount. Thus, the total charge Ā1 in the lowest spin-split 

Landau level will increase by ĂĀ1 = Ăþ(ý̅1 + ý̅2)/Φ0, and the interferometer phase � will increase by 2�ĂĀ1. 

If þ is increased by a large amount, the value of Ā2 will not be fixed but will undergo periodic integer jumps.  

In the strong coupling limit, the jump in Ā1 caused by a jump in Ā2 will also be an integer. This will cause � to jump 

by a multiple of 2�, which will be invisible in an interferometer experiment. Thus, the observed rate of change of the 

phase will be Ă�/Ăþ = 2�(ý̅1 + ý̅2)/Φ0 , which is equal to  4�ý̅1/Φ0 , if we neglect the difference between ý̅1 and ý̅2.  This rate of change is twice as fast as would have been observed in the absence of coupling between the inner and 

outer edge modes. 

We remark that in the course of adding one flux quantum to the area ý̅1, one would expect on average to have 

a jump by one electron in each spin state. So, in general, one will have one positive jump in Ā2  and one negative jump 

in Ā1. Thus, while the observed interference phase will change by an amount equivalent to a change of two electrons, 

the actual change in Ā1 will only be one electron. 

Robustness of the theoretical predictions. As discussed in Ref. 36, when a single EC passes through the two 

constrictions, with weak backscattering at the constrictions, the interference phase seen at low temperatures and low 

source-drain voltage is given by � = 2�Ā + �0, mod 2�, where Ā is the total electron charge (in units ă) in the region 

between the two scattering points (the expectation value of the charge on the interferometer in its ground state) and �0 is a constant for small variations in þ, �PG, and �MG. The argument is essentially the same if the backscattering is 

not weak. The principal effect of stronger backscattering at the QPCs is to add a term to the energy � that favors 

integer values of the charge Ā1 and hence integer values of the total charge on the interferometer. This means that as 



the control parameters are varied continuously, the phase difference � 2 �0 will undergo an additional modulation 

pulling it towards the nearest integer multiple of 2�. If we define �b as the value of the interferometer phase that 

would occur in the limit of weak backscattering, for the given value of the control parameters, then the actual value 

of � should have the form  � =  �b + Ā�,   where Ā� is a periodic function of �b 2 �0. In addition, in the presence of 

finite back scattering, interference contribution to the measured resistivity may no longer be a simple sinusoidal 

function of � but can contain higher harmonics. The combination of these effects means that the interference current 

will remain a periodic function of  �b, with period 2�, but the relative amplitudes of various harmonics may be 

modified. In the main text, it was argued that āĀ� �b should be a two-dimensional periodic function of þ and the gate 

voltages, with frequencies expressed in terms of two non-colinear fundamental vectors in reciprocal parameter space. 

The effect of finite backscattering at the QPCs will be to modify the amplitudes of the various Fourier components, 

but not to change their positions. 

Using similar arguments, we may argue that measurement at finite temperature should not change the 

locations of the fundamental frequency vectors, but thermal fluctuations will reduce the Fourier amplitudes. In general, 

at high temperatures �, the amplitude of a given Fourier component will fall off, proportional to ă2� �⁄ , where ā will 

be different for each Fourier component. At sufficiently high temperatures, therefore, only the one or two components 

with the largest values of ā will remain visible. The values of ā will depend on details of the system, but typically the 

Fourier components that are most prominent at � = 0 will be the ones that persist to highest temperatures. 

For our system, in the case where there is only a single EC, as we find for bulk filling less than 2, the value 

of ā for the lowest Fourier mode is predicted to be ā = /� (2�2ÿ)⁄ , where � is the EC velocity and ÿ is the perimeter 

of the interferometer path.  For the case of two strongly coupled edge channels, the prediction is  ā = /� (4�2ÿ)⁄ , 

where � is now the velocity of the fast charge mode. In both cases, the dominant effects come from thermal fluctuations ăĀĀ of the charge on the edge, whose energy cost is given by (ăĀĀ)2 (2ÿÿ)⁄ , where ÿ is the capacitance per unit 

length of the edge. The velocity � is given by � = Ā�xy ÿ⁄ , where Ā�xy is the change in Hall conductance across the 

edge. Using our lithographically defined perimeter ÿ = 4.24 μm and the velocity �e = �∆�D�/ = 1.46 × 105 m/s 

extracted from finite-bias dependence in the uncoupled case (SI), we find ā = 83.7 mK, well above our estimated 

electron temperature.
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FIGURES

Figure 1. Highly tunable Fabry-Pérot interferometer in graphene. a, False-colour scanning electron microscopy 

image of a FP device identical to the device measured here. The graphite top-gate layer is selectively etched to form 

8 separated top-gates (purple). Metal bridges (blue) connect to each graphite top-gate region and two additional bridges 

(yellow) suspend over the QPCs. The lithographic area of the interferometer cavity (area ý = 1.16 µm2) is defined 

by the central hexagonal top-gate.  Scale bar: 1 μm. b, Simplified schematic of a FP tuned so that �LG = �MG = �RG =2 and �SG1 = �PG = �SG2 = 0 illustrating interference of the partitioned outer EC (red) while the inner EC (blue) 

forms a closed annulus inside the FP. Voltages applied to the suspended metal bridges �QPC1 and �QPC2 selectively 

gate the QPC constrictions through the etched graphite gaps. We measure the diagonal conductance �D = �d (�D+ 2 �D2)⁄ , where �D± and �d are measured voltages in (±) probes and drained current, respectively. See 

Supplementary Fig. 1 for the full device geometry and additional details. In addition to magnetic field, we tune the 

interference phase using voltage �MG on the 8middle gate9 or �PG on the 8plunger gate9. c, Conductance as a function 

of �QPC1 with �QPC2 = 7 V (i.e. open with �QPC2 = 2) demonstrating QPC1 tunings to interfere outer EC (red dot) and 

inner EC (blue dot) in � = 2. d, Same type of plot as c, but demonstrating QPC2 operation instead of QPC1. See 

Supplementary Fig. 3 for QPC tuning details and voltages set on the other gates to form the necessary QPC saddle-

points to acquire this data. e-f, Characteristic FP oscillations as a function of �PG for the inner EC and outer EC, 

respectively, at the indicated QPC tunings.  All data is at fixed magnetic field þ = 6 T.  



Figure 2. Density-tuned AB oscillation frequency doubling transition of outer EC. a, Hall conductance �xy of the 

device with both QPCs tuned to be fully open, demonstrating that �MG tunes the filling � of the FP at a fixed magnetic 

field þ = 6 T. Colored dots indicate points at which interference data are shown in b-e while vertical dashed lines 

show the range of �MG swept for f. Top inset pictures illustrate the corresponding compressible regions expected in 

the FP cavity. b-e, Conductance �D oscillations on the outer EC with �PG and þ, for each of the indicated �MG values. 

f, Conductance �D oscillations on the outer EC with �PG and �MG, for �MG swept continuously over the transition from 

apparent //ă to //2ă oscillations periodicity, at þ = 6T. Here we plot �D as a percentage of �2/  deviation from the 

average value, which is calculated for each fixed �MG linecut and subtracted off. QPCs are retuned to maintain �QPC1 =�QPC2 = 0.5 over the dataset. We do not observe further phase jumps or periodicity changes past �MG j 1.7 V (checked 

up to up �MG = 3.2 V, corresponding to � = 7). 



  

Figure 3. Phase jump extraction in the transition regime. a, Phase of the 1D fast Fourier transform (FFT) extracted 

along linecuts parallel to the phase jumps in (b). The phase is evaluated at the dominant frequency in the FFT amplitude 

spectrum for the linecuts in between phase jumps. A linear increase in phase extracted from the regions without phase 

jumps is subtracted off to make the phase jump magnitude evident as the vertical shift between plateaus in panel (a). 

From this data we extract ∆�/2� j 20.47, reflecting approximately half of an electron repelled from the outer EC 

for each charge added to Ā2. Inset: illustration of the coupling �12 between the outer and inner ECs contributing to 

the phase jumps. b, Conductance �D oscillations on the outer EC with �PG and �MG near the center of the transition 

regime showing periodic phase jumps along the dashed black lines. Note that increasing �MG adds electrons to the 

system or equivalently increases phase, so the phase jumps correspond to negative shifts in phase i.e., repulsion of 

electrons from the FP cavity. Similar interference patterns are observed in both the strong and weak QPC 

backscattering regimes (Supplementary Fig. 4) as well as at elevated temperatures (Supplementary Fig. 5).



Figure 4. Comparison of inner and outer EC interference and couplings across transition. a, Conductance �D 
oscillations on the inner EC (�QPC1 = �QPC2 = 1.5) with �PG and þ, for �MG = 1.2V. Left: illustration of interference 
on inner EC. Bottom: 2D FFT of the �D oscillations showing peak Āi and its harmonics. b, Same analysis and �MG 
value as in (a) but for interference on the outer EC (�QPC1 = �QPC2 = 0.5), showing the peaks Āo, Āo+i, and Āo2i and 
their harmonics. c, Magnitude of the phase jump (obtained using the method shown in Fig. 3) as a function of �MG, 
showing that it is continuously tunable. Each data point is averaged over ~0.25 V range in �MG and error bars indicate ±1 standard deviation over the phase jumps detected in this range. Unfilled data points represent zero observable 
phase jumps over the corresponding �MG range, hence we infer a magnitude of 0 or 21. We show �xy of the device 
taken in an identical measurement to Fig. 2a, reflecting the expected �MG, for reference. d, Normalized magnitudes �o, �o+i, and �o2i  of the respective peaks Āo, Āo+i, and Āo2i obtained as a function of  �MG. �o, �o+i, and �o2i  are 
normalized by the sum �o + �o+i + �o2i to show their relative contributions. We extract each data point from a 2D 
dataset like panel (b), a subset of which are shown in Supplementary Fig. 7. e, Magnetic field frequency multiplied 
by Φ0 ≡ //ă for peaks Āo, Āi, Āo+i, and Āo2i tracked through the transition. Note that Āi is measured from a separate 
measurement of interference on the inner EC (Supplementary Fig. 8), while the other peaks are all extracted from 
interference on the outer EC. f, Same as (e) but for plunger gate frequency. Horizontal dashed lines in (e-f) indicate 
the corresponding Āo and 2Āo values before the transition. Black (red) dots show calculated  Āo ± Āi from outer and 
inner EC data, which match the peaks identified as Āo+i and Āo2i, respectively.


