4334

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

BERN-NN-IBF: Enhancing Neural Network Bound
Propagation Through Implicit Bernstein Form and
Optimized Tensor Operations

Wael Fatnassi, Arthur Feeney, Valen Yamamoto, Apama Chandramowlishwaran™',
and Yasser Shoukry~, Senior Member, IEEE

Abstract—Neural networks have emerged as powerful tools
across various domains, exhibiting remarkable empirical
performance that motivated their widespread adoption in safety-
critical applications, which, in turn, necessitates rigorous formal
verification technigques to ensure their reliability and robustness.
Tight bound propagation plays a crucial role in the formal
verification process by providing precise bounds that can be
used to formulate and verify properties, such as safety, robust-
ness, and fairness. While state-of-the-art tools wse linear and
convex approximations to compute upper/lower bounds for each
neuron’s outputs, recent advances have shown that nonlinear
approximations based on Bernstein polynomials lead to tighter
bounds but suffer from scalability issues. To that end, this
article introduces BERN-NN-IBF, a significant enhancement of
the Bernstein-polynomial-based bound propagation algorithms.
BERN-NN-IBF offers three main contributions: 1) a memory-
efficient encoding of Bernstein polynomials to scale the bound
propagation algorithms; 2) optimized tensor operations for the
new polynomial encoding to maintain the integrity of the bounds
while enhancing computational efficiency; and 3) tighter under-
approximations of the RelLU activation function using quadratic
polynomials tailored to minimize approximation errors. Through
comprehensive testing, we demonstrate that BERN-NN-IBF
achieves tighter bounds and higher computational efficiency
compared to the original BRERN-NN and state-of-the-art methods,
including linear and convex programming used within the winner
of the VNN-COMPETITION.

Index Terms—Formal verification, model checking, newral
networks.

I. INTRODUCTION

N RECENT years, neural networks (NNs) have emerged as
indispensable tools across a myriad of applications, ranging
from computer vision to natural language processing, revolu-
tionizing fields, such as healthcare, finance, and autonomous
systems. The remarkable success of NNs is attributed to their
ability to learn complex patterns and representations from vast

Manuscript received 13 August 2024; accepted 13 August 2024, Date of
current version & Movember 2024, This work was supported in part by NSF
under Award CNS-2002405 and Award ECCS-2139781. This article was
presented at the International Conference on Embedded Software (EMS0OFT)
2024 and appeared as part of the ESWEEK-TCAD special issue. This article
was recommended by Associate Editor 5. Dailey. (Corresponding author:
Yasser Shoukry.)

The authors are with the Department of Electrical Engineering and
Computer Science, University of California at Irvine, Irvine, CA 92697
USA (e-mail: wiatnass@uci.edo; afeency@uciedu; vyamamot@uoct.edu;
amowli@uciedu; yshookry @uctedu).

Dhgital Object Identifier 1001 109/TCAD 2024 3447577

amounts of data, leading to state-of-the-art performance in
various tasks. However, the increasing reliance on NNs in
safety-critical domains raises significant concerns regarding
their trustworthiness, robustness, and reliability. As NNs are
deployed in applications where incorrect decisions can have
severe consequences, there is a pressing need for rigorous
verification techniques to ensure their behavior aligns with
safety requirements and user expectations. The importance
of NN verification has been emphasized in numerous stud-
ies [1], [2], [3] highlighting the potential risks associated with
the deployment of unverified models in critical systems.

This article aims to delve into the challenges and opportuni-
ties in NN verification, focusing on the necessity of employing
tight-bound propagation techniques to enhance the reliability
and robustness of NN systems. In particular, state-of-the-art
tools for NN verification hinge on the precise propagation of
input domain bounds to the outputs of the NN. This bound
propagation process is challenged by the networks™ nonlinear
and nonconvex nature, making exact output bound determi-
nation an NP-hard problem [4]. Previous methodologies in
the literature can be classified into three categories to harness
the inherent NP-hardness of the problem. The first category
leaned heavily on linear relaxation of the nonlinear activation
functions [5], [6]. [71. [8], [9], [10], [11], [12] or reachability
analysis based on linearfconvex relaxation [13], [14], [15],
[16], [17]. [18]. [19]. While linear and convex relaxations
are easy to compute, these techniques result in loose bounds
that deteriorate with the NN depth, which diminishes their
effectiveness.

The second category detours from ftraditional practices
by harnessing nonconvex approximations of the NN non-
linear activation function [20], [21]. In particular, the work
in [20] and [21] harnesses Bernstein polynomials’ power for
more accurate approximations of nonlinear activations. Such
nonconvex approximation was shown to lead to significant
improvement in terms of approximation errors, but the quest
for enhanced precision and efficiency remained ongoing.

The third category takes a design-for-verifiability approach,
focusing on identifying NNs or nonlinear activation functions
that allow for precise and tight analysis of NNs. Representative
of this category is the work presented in [22], [23], and [24].
For example, the work in [24] explores which NN architectures
lead to more scalable verification by identifying NN properties
that improve verification and incentivizing these properties

1937-4151 @© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https2f'www.ices. org/publications/rights/index html for more information.

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0840-4192
https://orcid.org/0000-0002-8224-8477

FATMASSI et al.: BERN-NN-IBF: ENHANCING NN BOUND PROPAGATION

through a verification loss. The work in [23] exploits the
properties of Bernstein polynomials to design novel nonlinear
activation functions that help with the computation of tight
upper/lower bounds of NN's output efficiently and shift some
of the computational efforts from the verification phase to the
training phase.

This article introduces BERN-NN-IBF, an improved tool
derived from BERN-NN [20]. BERN-NN-IBF introduces the
implicit Bernstein form (IBF), a novel representation that
employs 2-D tensors for bound propagation, sidestepping the
computational hurdles synonymous with the n-dimensional
tensors used in BERN-NN. Moreover, we have designed new
operations specific to the IBF format, enhancing essential
functions like summations, multiplications, and power, which
are implemented efficiently using specialized CUDA routines,
contributing significantly to the tool’s overall speed. Finally,
we reduce another source of approximation error by enhancing
the coefficients of the quadratic polynomial used for the under-
approximates of the rectified linear unit (Rel.U) function. We
achieve the optimal—in the £; sense—approximation error
by formulating and solving a dedicated optimization problem,
ensuring tighter bounds on the NN's outputs. This sophisti-
cated method surpasses the quadratic Bernstein approximation
used in BERN-NN. In summary, our main contributions can
be summarized as follows.

1) Accuracy: A novel, optimized technique for determining
the coefficients of a quadratic polynomial, presenting a
more refined under-approximation of the Rel.U function
and contributing to the precision of output bounds.

2) Memory and Computational Efficiency: The integration
of the IBF, an enhancement in simplifying and speeding
up bound representation and propagation.

3) Implementation: The introduction of IBF-specific oper-
ations, fine-tuning the accuracy and the efficiency of
bound-related calculations.

4) The addition of a custom CUDA routine, fast-tracking
the identification of minimum and maximum values
within the IBF structure.

Our extensive evaluations confirm that BERN-NN-1BF not
only outpaces its predecessor BERN-NN but also outperforms
state-of-the-art tools like those used in the winner of the VNN-
COMPETITON [25].

II. NEURAL NETWORK BOUND PROPAGATION USING
BERNSTEIN POLYNOMIALS

Bound propagation in NNs refers to the process of esti-
mating upper and lower bounds on the activations of neurons
throughout a Rel.U-based NN given a set of input data.
These bounds provide insights into the range of possible
values each neuron's activation can take, thereby enabling
the characterization of the network's behavior under dif-
ferent conditions. In particular, in this article, we seek to
encode the upper and lower bounds of neuron activations as
high-order polynomials, along with techniques to propagate
these polynomial-based bounds through different layers of
the network. As shown in [20] and visualized in Fig. 1,
higher-order polynomial approximations of RelL.U functions

4335

outperform state-of-the-art approaches of using linear approx-
imations (e.g., triangulation, crown, and zonotopes) in terms
of approximation errors. Albeit promising, the propagation of
bounds encoded as higher-order polynomials across different
NN layers is computationally challenging compared to linear
approximations. This section reviews the basics of higher-
order polynomial approximation of the RelL.U functions and
discusses their challenges.

A. Notation

We use the symbols M and R to denote the set of
natural and real numbers, respectively. We denote by x =
(x]:X2,...,X,;) € B" the vector of n real-valued variables,
where x; € RB. We denote by Iid, d) = [d,.di] x ---x
[:_in,E,,] < R" the n-dimensional hyperrectangle, where d =
(d,....d,) and d = (d,,...,d,) are the lower and upper
bounds of the hyperrectangle, respectively. For a real-valued
vector x = (X, X2, ..., %) B" and an index-vector K =
kyi.....ky) € M", we denote by x* € R the scalar x¥¥ =
X' x...xx;". Given two multi-indices K = (ki ..., ky) € N"
and L = (l},..., ;) € ", we use the following notation
throughout this article:

K+L=iky+h,....kh+ 1)

()= (6) ()
DIEDINED I

k=i kn=lp
Finally, a real-valued multivariate polynomial p : BB" — R is
defined as

h h

In
PlX, ... Xq) = Z E...Zﬂu—l _____ tﬂ;x{’%“...xf;
0

k=i k=0
= E ﬂx’IK
K=L

where L = (I, [, ..., I;) is the maximum degree of x; for
all i = 1,...,n. While the multi-index I depends on the
input dimension n and the polynomial degree, for simplicity
of notation, we drop such dependencies.

B. Bernstein Polynomials as Multidimensional Tensors

In this article, we rely on a class of polynomials called
Bernstein polynomials, which are defined as follows.

Definition 1 (Bernstein Polynomials): Given a continuous
function p : B* — R, an input domain (hypercube) I,(d, d) C
R" and a multi-index L = (I}, ..., ;) € ", the polynomial

B,i(x) =) by Berg (%)
K<L
K L—K
Berg 1(x) = (L) G- @9

k) @-a"
¥ —p((@ —d)E g _dye L
K.L_p [1 _1} El +_1"“’(E"" _n'] E.I'I +_r|

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

4336

Ty =

y Iy

//All.r'fr "’;" /"’f 4
y f’r '

Fig. 1. llustrations of the over'under-approximation of the ReLUl activation
functions in the interval [—6, 10] vsing different approaches: (left) higher-
order polynomials, {center) triangulation, and (right) zonotope. The area of
the shaded set Ay, A2, A3 represents the approximation emror for each of the
approaches [20].

is called the Lth-order Bernstein polynomial of p, where
Berg p(x) and bp ;. are called the Bernstein basis and Bernstein
coefficients of p, respec:twely

Bernstein polynomials are particularly noted for their capac-
ity to approximate any continuous function on a closed
interval. This property is crucial when dealing with functions
that are not differentiable, as is the case with certain activation
functions in NNs, such as the RelLU function.

Given a Bernstein polynomial of order L, one can repre-
sent it as a dense multidimensional tensor Den(Bp ;) of n
dimensions, and of a shape of L =(l} +1,..., [+ 1), where
the K = (ki,...,ks) component of Den(Bp) is equal to
the Bernstein coefﬁc:e:nt Vg ;. The multidimensional tensor
Den(B,, ;) represents all the coefficients b} , VK < L.

Exampb: I: Consider the 2-D E:::mste:m pul}'nomla]

2 3

E E bf('h k). BTk k), (X1, X2)

k=0k;=0

By p(xy,x2) =

with orders L. =
as follows:

Den(By2) = |:b£ﬂ)L I?LH‘I)L bﬁﬂ’*}L bﬂj .3), L:|

1L0).L LILE 1.2).L 1L.3LL
b%’ru;;_ b-{LlI)L b'sz’r].L b%’rz;;_

C. Polynomial-Based Interval Bound Propagation Using
Bernstein Polynomials

The BERN-NN framework [20] employs Bernstein polyno-
mials to propagate interval bounds through NNs accurately and
can be summarized as follows. Step ! (Encode Input Domains
as Bernstein Polynomials): Given the input domain I,(d, d)
and a trained NN NN(x), the first step is to represent the
upperflower bounds of the input domain d = (d;.....d,)
and d = (d,d,) as zero-order polynomials of the form:
WP = @ NN[m{x} = d;, where the superscript (0)

i iy LN Ly,
denotes the zeroth layer (i.e., input layer) of the NN. We

encode the Bernstein representation of these polynomials as
pen(Byyo 1) = [Pen (B 10). -+ Dor (B 1o |

e 1) =). e)]

where LY = (0, ...,0).

Step 2 (Propagate the Bernstein Polynomials Through
Linear Weights): Given the weights and biases of the ith
layer of an NN (W@ p?) and the n-dimensional tensors

(2, 3). Its 2-D tensor representation is written

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11,

NOVEMBER 2024

representing the bounds of the i — 1 layer Den(By,i-1 ;6-1)
and Den{B—n Dy _1y), we propagate them through the linear
weights of I‘he ith layer using linear interval arithmetic

Den(.ﬂ_wfu_u—n) = Den(BHu_nlLu_n) * W-(i-}

+ Den Bﬁu—]: LU—”) * Wf‘l =+ b

Den(ﬂh_w.{.-,.‘m._“) — DEH(BNN"‘”.LU—”) * W_(:'J'
+ Den(ENNu-nlLu-n) * Wf" + b0

Wf’ = max(wm, ﬂ;‘xﬁ_”], WEJ = min(w{‘?’, U;'x(;'_n.)

where Wf’ and W denote the set of positive and nepative
weights between the (i—1)th layer to the ith layer and 0 ;1
denotes the zero matrix of dimension § = (i — 1).

Step 3 (Propagate the Bernstein Polynomials Through
the Nonlinear Activations): Next, BERN-NN overfunder-
approximate the nonlinear Rel.U activation function o(x) =
max(x, 0) using Bemstein polynomials Bz, and By ;. with
a user-defined approximation order L, (see the left subfigure
in Fig. 1). Next, it composes the polynomials as

Den(fi'@m_m) =B, (Dml(ﬂﬂunuu—n)) (2)
Den(Bﬁm‘Lm) = Fg[ﬂ (DE:I:I BWU",LU‘“))' (3)

Step 4: Repeat steps 2 and 3 until the bounds are prop-
agated through all the NN layers. The final step is to
compute the maximum of Den(Bgzm ;) and the minimum
of Den(Byym yw) for all layers i, which will produce the
upperﬂcrw-::_bnunds for all neuron outputs in the NN.

Unfortunately, implementing the interval bound propa-
gation (steps 1-4) cannot be done using standard tensor
operations due to the mathematical definition of Bernstein
polynomials. That is why BERN-NN [20] implements
special procedures called 1) Bernstein summation of n-
dimensional tensors (Sum_Bern); 2) Bernstein multiplication
of n-dimensional tensors (Prod_Bern); and 3) computing the
extreme (minimum and maximum) points of n-dimensional
tensors (MinMax_Bern).

D. Memory and Computational Complexity of BERN-NN

It is crucial to recall the memory and computational com-
plexity of the algorithms used in BERN-NN.

Proposition 1 [20]: The memory and computational com-
plexity of Sum_Bern, Prod_Bern, and Min/Max_Bern are
O((lmax)"), where lppy = mMax)<j=y [; is the maximum order
of the polynomials obtained during the bound propagation.
Moreover, lna; = (2%) with k the number of NN layers.

In other words, the algorithms needed by BERN-NN scale
exponentially with respect to the NN's input dimension s and
the NN depth, which makes it hard to use for deep NNs with
large input dimensions.

IT1. ENHANCED ACCURACY USING OPTIMAL
UNDER-APPROXIMATION OF RELU FUNCTIONS

In this section, we present our first contribution to enhancing
the Bernstein-polynomial interval bound propagation accuracy

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

FATMASSI et al.: BERN-NN-IBF: ENHANCING NN BOUND PROPAGATION

described in Section II-C. In particular, step 3 of the BERN-
NN algorithm [20] utilizes a downward translation of the
Bernstein over-approximation of the ReLU & activation func-
tion to achieve its under-approximation (see the green curves
in Fig. 2). While the over-approximation is optimal [20]—i.e.,
produces the tightest over-approximation of the Rel.U function
in the f; sense—this under-approximation may not always
be optimal, especially when the negative side of the preinput
bounds significantly outweighs the positive side. To address
this issue, we confine our attention to the use of quadratic
polynomials, and we formulate the “optimal RelU under-
approximation problem™ as an optimization problem defined
as follows:

d
minimize A(a, b, c) = f (a'{x} — (axz + bx + r:))dx
d

a.b.c
subject to ax® +bx+c < a(x)
xe[d.d])

where o(x) is a ReLU function defined on an interval [Qj].
The optimization problem presented above addresses the
problem of finding the coefficients a, b, and ¢ for a quadratic
polynomial g(x) = ax® + bx + ¢, which provides a tight
under-approximation of a given Rel.U o (x). The goal is to
minimize the area A(a, b, ¢) between the RelLU curve and the
under-approximation curve over the interval [d, d]. where d
and d are the lower and upper bounds of the ReLU's domain,
respectively. By solving this optimization problem, we can
obtain a quadratic under-approximation of the Rel.U function
that accurately captures its behavior over the specified domain.

To ensure the soundness of the quadratic polynomial under-
approximation over the entire interval [d, d], the optimization
problem in (4) includes the constraint g(x) = ax” + bx +
¢ < o(x) ¥x € [d,d]. This constraint guarantees that
the under-approximation curve always lies below the Rel.U
curve. This quadratic constraint depends on the variable x,
making it harder to solve the optimization problem. In the
following proposition, we rewrite this constraint and remove
this dependency so that it depends only on the polynomial
coefficients a, b, and c.

Proposition 2: Assume that d is negative and d is positive,
ie., d = 0 <= d. The following conditions are sufficient to
ensure that the quadratic polynomial g(x) = ax® 4+ bx + cisan
under approximation of the Rel.U function—ie., gix) < o(x):

g(d) = ad®> +bd +c <0,
g(d) =ad +bd+c <4,

0=a.

(3)

Proaf: Our goal is to show that g(x) < o(x) for all x €
[d, d], subject to the given conditions. We divide the interval
[g,E] into two cases.

Case 1: For x € [d, 0], we have ax® < ad®. If b = 0, then
gx) =ax’’ +bx+c<qgd) =ad*+c<ad +bd+c < 0. If
b <0, then g(x) = ax’ + bx+ ¢ < g(d) = ad” + bd +c < 0.
In either case, we have g(x) = o(x) for all x € [d4,0].

Case 2: For x € [0, d], we define [(x) = mx + m, where
my = [g(d) — g(0)/d] and mz = g(0). It is clear that /(0) =
q(0) and I(d) = g(d). Furthermore, the quadratic polynomial

4337

T —A=3333

Fig. 2. (Left) State-of-the-ant over- and under-approximations of RellJ
functions o{x) using high-order polynomials. (Right) Proposed optimal over-
and under-approximation of RelLU functions o (x). The figure shows the area
between the two curves A, indicating the approximation error.

g is convex because a = 0. Therefore, g(x) = [(x) for all
x € [0, d]. To complete the proof, we must show that I(x) < x
for all x € [0, d].

We define lir(x) = I(x) — x = (Ig(@ — g(0) — dl/d)x +
g(0). Then, we have l3r(0) = g(0) = 0 and lgx(d) = g(d) —
d < 0. Since Ly is a line defined over [0, d] and Lser(0) < 0
and Lyr(d) < 0, we conclude that lgg(x) < 0 for all x € [0, 4.
Therefore, I{x) < x for all x < [0, d]. Consequently, we have
q(x) < a(x) for all x € [0,d].]

Remark 1: 1t is crucial to note that the polynomial under-
approximation is needed only whenever d is negative and d is
positive, i.e., d = 0 = d. In the cases when d is positive or d
is nepative, the RelLU function o (x) is linear (either o(x) =0
or o(x) = x) and polynomial approximation is not needed.
Hence, the proof of Proposition 2 focuses only on the case
when the condition d < 0 < d is satisfied.

Proposition 2 enables us to transform the optimization
problem’s nonlinear constraint into four linear constraints. We
reformulate the optimization problem (4) as

d
minimize Aa, b,) =f (cr{x}— (ﬂx2+bx+ c))dx
a.b.c d
subject to ad” + bd+c <0,
ad +bd+c<4d,

c=0,
0= a.

(6)

The objective function A(x) of the optimization problem can
be expressed in the following form:

d
Ala, b, c) = f (a'{x} - (a;lc2 + bx +c))
d

:Lia{x}dx—LE(af+bx+cdx
a(?_f)+b(32_£2)+c(ﬁ'—gj).

E
-2 (3 2
(7

By examining (7), it becomes apparent that the objective
function is linear with respect to the coefficients a, b, and c.
Hence, we can transform the optimization problem in {4) into

a linear programming (LP) problem

20 o(Z5L) s

maximize o
ab.c

subject to ad” + bd + ¢ < 0,
ad +bd+c<4d,

c=0,

0= a.

(8)

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

4338

We now focus on optimizing the problem further. A critical
observation based on the inequalities {[33 —d’/3) = 0,
([d" —d®1/2) = 0,d—d = 0, and ¢ < 0, allows us to consider
the following inequality:

Ya, b, and c € B:

a(? ;f) +a(32 ;f) s e@-d

(5 -(54)

The right side of the inequality is attained when ¢ = (1. This
adjustment simplifies our linear program (LP) by effectively
reducing the number of variables, thereby transforming it into
a more manageable form. The revised LP, with ¢ =0, is

maximize a = | +b =
a.b 3 2

subject to ad” 4+ bd <0
ad +bd <14, (9)

This step is crucial as it reduces the LP's dimensionality
from three to two, making the problem less complex and
more approachable. The number of constraints also drops from
four to three, further simplifying the solution process. These
reductions are strategic, streamlining the problem without
sacrificing the integrity of the solution space.

Finally, we concentrate on solving the LP problem delin-
eated in (9). For simplification, let us define the function
fia, b) representing our objective

@ ;f) +b(32 ;f).

f{afb} = ﬂ(

0=a.

The problem’s feasible region is notably a triangle, defined by
three vertices: v; = (0,0), v2 = ([1/d —d.[-d/(d — d)]).
and v = (0, 1). Our goal is to identify the maximum value of
fia, b) at these specific points, which correspond to potential
solutions of the LP. To that end, we proceed by evaluating f at
each vertex and comparing these values. The optimal solution
is determined based on which vertex (v, va,vs) yields the
maximum value as explained in Algorithm 1.

This approach simplifies the solution process by reducing
the problem to comparisons of function values at specific
points rather than requiring a more extensive search through
a continuous space. The solutions adapt based on the vertex
yielding the highest function value, guiding the parame-
ters a, b, and ¢ accordingly. Fig. 2 vividly illustrates that
the approximation error area from the quadratic polynomial
is significantly smaller than that of the original under-
approximation [20].

IV. MEmoRY EFFICIENCY USING IMPLICIT
REPRESENTATION OF BERNSTEIN POLYNOMIALS

In this section, we present our second contribution to reduce
the memory requirements of the dense tensor representation
used for bound propagation. Recall that Proposition 1 shows

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11,

NOVEMBER 2024

Algorithm 1 Quadratic Coefficients for RelLU Under-
Approximation
Input: | = [d, d]
Output: Coefficients a, b, ¢ for the quadratic polynomial
under-approximating Rel.U

1: function get_quad_coeffs_under{ [= [d, d]) do

2 fi=0

£« —Exd—aﬂ

4 f; <+ 11,"

5. if maxifi.fz, fz) == fi then

6 return a=b=c=0

7. else if max(fy, f>.f3) ——fz then

8 return a_ﬁ,-ﬁ:d_d-..i?:ﬂ'
9 else -

10 returm a=0,b=1,c=10

11: end if

12: end function

that the memory requirements of the n dimensional tensors
grow exponentially with the input dimensions n and the
NN depth [. Our approach hinges on the so-called “implicit
representation™ of Bernstein polynomials. We propose a novel
tensor representation of Bernstein polynomials that leads
to better memory and computational efficiency, which is
particularly beneficial for high-dimensional scenarios.

A. 2-D Tensor Encoding of High-Dimensional Polynomials

Given a multivariate polynomial p of order L = (I}, ..., [Iy),
that consists of [terms, as follows:
pxi, ... %) =) agx® (10)
E=L
where K € (K), ..., KL and0 < K; = L¥j e {1,....). Now,
1

fr

. . . k;
the polynomial p consists of ¢ terms: agrﬁ = ﬂ_g}l'l'f N

where K; = (kl,...,k’-“}. Let us denote by term(K;) =

! k" .t‘
axjx’:" - Xy , the jth term of p. Let us denote by var{k‘} =x;,
1 = i < n, the ith variable in the jth term. We represmt all
tlle Bernstein coefficients for var{k’} as Imp{.ﬂm.w} i) which

is shown as follows:

k; -tj is encoded as
\"H:I'(_.l-) =I‘; 1

Imp(B""(ij] r.-) = [b;i[*}},. ..,bﬁ[*ﬂ} (n

We call Imp{ﬂmujuj} in (11) the implicit form representa-
tion (IBF) of one single variable var{k;:} which is the Bernstein
coefficients for that variable. Because the order of this var{k;:}
is l;, we can have up to [; + 1 Bernstein coefficients.

Now, computing all the Bernstein coefficients of the jth
term, term(Kj), is equal to the Cartesian product of the
Bernstein coefficients of every single variable Iﬂ]p{.g,'"u.x) i)
and multiply the resultant multidimensional tensor h}r the
coefficient ax;. However, this process is not memory efficient

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

FATMASSI et al.: BERN-NN-IBF: ENHANCING NN BOUND PROPAGATION

because the Cartesian product will result in a multidimensional
tensor, which is the drawback of the dense representation.
Instead, we compute the IBF of the jth term, term(Kj), by
stacking the IBF of every single variable Tmp(B, ar(hd), ;) TOW-
wise. After that, we multiply the coefficient ax; by just the
first row. All this is summarized in the following equation:

term(K;) = agti SSUS

aKJ' Tmp (B\'nr[k} },E])

(8,0 ().)

The length of the ith row in Imp(Biermik;.L) is equal to
li+1,1=i=<n We denote by lnw = max<ij<xl;. The size
of the IBF of the jth term, term(Kj), Imp(Biermix;).L). is equal
to A % (Igax + 1), where we pad the rows of lengths §; < [pax
with lpas — I + 1 zeros at the right side.

Now, the total Bernstein coefficients of the whole polyno-
mial p is the summation of Bernstein coefficients of every term
term(Kj), 1 = j =< 1. This translates to the IBF of the whole
polynomial p is by stacking the IBF of every term as follows:

21 (B) = o

PX1, .. X)) = Eaxxx Isencodedag

K<L

[Impiﬂmm }.L}—I
Trp(By.1) = : SENCE
I'"P[BM(K.}.L}J
MNow, the total size of Imp(Bp) is equal to nf = (lne + 1).
Below is an illustrative example.

Example 2: Consider the multivariate polynomial
p(x1,x2) = x3x; — 30x,x2, defined over the domain [=
[1,2] =[2, 4], with L = (3, 2). The IBF ufx'{g x%._, x1, and x;
is as follows:

1m0 B 5) = 1.2:4.3

T (Bua).2) = 45 “5}

Imp(B‘wH}j) = :—1, —4/3,-5/3, —2}
Tmp(B)) = :2+3,4]. (14)

Using (12) and (13), the IBF of the polynomial p is written
as follows:
1 2 4 8
4 8 16 0
— 30 —40 —50 —60 |-
2 3 4 0

This example illustrates that if a polynomial p comprises
f terms, and each term is represented by n rows, the total
number of rows in the implicit representation amounts to af.
The length of each row is given by Inay +1 = max <=, ()4 1.
Therefore, the overall size of the implicit representation matrix
is determined by the dimensions af x (lpay + 1)

IIFIP(EPIL] = (13)

4339

B. Efficient Multiplication of Implicit Bernstein Polynomials

Given the memory-efficient encoding in the previous sec-
tion, we focus on how to implement an efficient procedure to
compute the product of two Bernstein polynomials encoded
using the 2-D tensors discussed above.

1) Monomial Bernstein Polynomial Multiplication: We
focus initially on polynomials comprising a single term.
Consider two monomials g;(x) = a;x* and g2(x) = axx'2,
with £y = L and k2 = L. The implicit representations of their
Bernstein polynomials, Imp(By, r,) and Imp(Bg,:,). The
implicit representation of the product of these polynomials,
Imp(By, 1By, 1), is computed using the following procedure:

(16)
(7

Imp{ﬂm ~Ll] = ImP(Brn.L]} * Cpy

Imp(By,.1,) = Imp(Byy.1,) * Cuy
1

CL] +Ia
Conv(Imp(By 1,), Tmp(Bgo.i2)) (18)

where Cp denotes the multidimensional binomial tensor, with
its Kth component in the ith row defined as (Cp), =
[i',} With some abuse of notation, we use 1/C;. to denote
the multidimensional binomial tensor where its Kth com-
ponent in the ith row is equal to “"II{.E’]}' The notation
% represents element-wise multiplication, while Conv(A, B)
denotes the row-wise convolution between matrices A and B.
The above formulation efficiently generalizes the concept of
scaled Bernstein polynomials [26] to a-dimensional inputs.
Efficiently implementing these operations on GPUs—by lever-
aging element-wise and convolution operations—ensures high
computational performance. We denote the process in (16)—
(18) as Prod_Bern_Imp(Bp, 1. Bp, 1,).

2) Multivariate Bernstein Polynomial Multiplication: The
method can be extended to handle the multiplication of
implicit representations of Bernstein polynomials consisting of
multiple terms. Consider two polynomials, py = 3 p o, a}rxx
and pr = ¥ goy, apx, with f; and f; terms, respectively.
Their implicit representations are denoted as Imp(Bp, r,) and
Imp(Bp, 1,)- The multiplication of these polynomials in their
IBF is given by

Imp (Brni-] B‘?LLZ] = *

Imp(Bp, 1, Bp,.1,)
[Prod_Bern_Impl(Imp'(Bp, 1,). Imp' (Bpy.1,)) |

= Pl‘od_Bem_lmpl{Impi-{Bp, Ly), Imp/ (Bp, 1))

_Prud_Bem_lmpl[Irrp" {Bm ,L|] , Imp™? {BM.L:!]}_
Il=i=n,l=j<h (19)

Here, Tmp'(Bp, 1) and Imp/(Bp, 1,) represent the ith and
jth submatrices (terms) in Imp(Bp, 1) and Imp(Bp, 1,).
respectively. These submatrices are obtained by sepmenting
the original implicit representations into f; and f> submatrices
along their rows. This formulation reveals that multiplying
multivariate polynomials in IBF effectively boils down to
multiplying terms from one polynomial with those from
another, which can be parallelized efficiently using GPUs.

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

C. Efficient Summation of Implicit Bernstein Polynomials

In this section, we exploit the 2-D tensor encoding of
Bernstein polynomials to implement effective procedures to
add two Bernstein polynomials.

1) Monomial Bernstein Polynomial Summation: Building
upon the foundational work in [27], which addresses the
addition of 1-D Bernstein polynomials over the unit interval,
this section introduces an advanced and generalized approach
for the summation of implicit Bernstein polynomials in
a multivariate framework. Our extension caters to scenar-
ios with n variables over any specified interval I,(d,d).
Initially, we focus on monomials of the form q(x) =
ﬂ|I‘t' and q2(x) = ﬂz.l.’h, where k; = L) and &k = La.
Their respective implicit Bernstein polynomial representations,
Imp(Bg, 1,) and Imp(By, 1,), are conceived as n x N blocks.
The summation of these polynomials in their implicit form,
Imp(Bg +g3.Lam). 15 delineated through the following propo-
sition.

Proposition 3: Given two Bernstein polynomials By, r, (x)
and By, ,(x) with two different orders L, = (I],....1})
and Ly = (5,....), let Lym = max(Ly, L), where the
max operator is applied element-wise. The implicit tensor
representation of By 44, 7 can be computed as

Loym = (max{!'},!%}, e max{!,l,,fﬁ}) (20
Imp{.ﬂ.h Lm}

= Prod_Bern_Imp(Imp(By, 1) 1 —r,41) (21
I"]P{B-?LLm}

= Prod_Bern_Imp(Imp(Byy 1) limm—1,41) (22)

Imp(By) rom }:|

In]p{ﬂ'?'l 'H?'LLM} = |:Im(3‘i'2~lsu:l} {23}

Here, 15,y signifies a 2-D tensor with dimensions nx (L. —
L + 1), exclusively containing ones.

The proof, which extends the argument in [27], is not
presented for brevity. In this context, operations (21) and (22)
are recognized as degree elevation processes, where tensor
dimensions are suitably altered. The final summation, defined
by (23), is executed by vertically concatenating both tensors
once they align dimensionally. We denote this procedure by
Sum_Bern_Imp.

2) Multivariate Bernstein Polynomial Summation: We fur-
ther extend the method to accommodate summation of implicit
Bernstein polynomial representations containing multiple
terms. Consider polynomials py = Y ., azx* and p; =
Y k<, Agx", with t; and f, terms, respectively, denoted
as Imp(Bp, r,) and Imp(Bp, 1,). To sum these polynomials
in their IBF, we first dissect Imp(Bp, ;) and Imp(Bp, r,)
along their primary dimension into f; and f; submatrices,
respectively, as Imp'(Bp, 1,) and Imp/(Bp, 1,). Subsequent to
applying degree elevation via (21) and (22) to each submatrix,
we amalgamate the resulting matrices vertically in accordance
with (23). This efficient and elegant approach encapsulates the
core principle of multivariate Bernstein polynomial summation
in a multiterm context.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

D. Memory and Computational Complexity of Implicit
Bernstein Polynomial Representations

The following result summarizes the benefits of the
proposed representation of the implicit Bernstein polynomial
representation.

Proposition 4: Given n-dimensional Bernstein polynomial
p that comprises of ¢ terms and of order L = (l1.....).
Bp y(x). Its implicit representation Imp(Bp ;) is 2-D tensor
of size af % (Igax + 1), Le., the memory complexity of the
implicit representation is O{ntly,,). Moreover, the computa-
tional complexity of Sum_Bern_Ilmp and Prod_Bern_Imp is
O(t3 1M gy), Where [= max, -, I; is the maximum order
of the polynomials obtained during the bound propagation and
fmax 15 the maximum number of terms in the polynomials
obtained during the bound propagation.

Comparing Propositions | and 4, we can notice that the
implicit representation reduced the scaling—with respect to
the dimension n—from exponential scaling in the dense
representation to linear scaling on the expense of depending
on the number of terms £. In the worst case, when the number
of terms t grows exponentially, the implicit form may result
in exponential memory usage. Nevertheless, in practice—as
we show in Section VI—the number of terms does not grow
exponentially, which makes the implicit representation ideal
for higher dimensions. In addition, the IBF representation
is always a 2-D tensor no matter the dimension n or the
polynomial order compared to its counterparti— the dense
representation—which represents the polynomial as an n-
dimensional tensor.

V. GPU ALGORITHMS FOR BERNSTEIN POLYNOMIAL
EXTREMA

Recall that the polynomial-based interval bound
propagation—described in Section [I-C—requires three proce-
dures, namely, Sum_Bern, Prod_Bern, and Min/Max_Bern.
While Section IV showed how to address the memory and
computational challenges with Sum_Bern and Prod_Bern
using the 2-D tensor encoding, computing the minimum and
maximum coefficients (the Min/Max_Bern procedure) cannot
be carried over using the 2-D tensor encoding since it requires
access to the dense n-dimensional tensor representation.

A direct approach is to convert the implicit representa-
tion Imp(Bp ;) into the corresponding dense representation
Den(Bp 1) followed by finding the minimum and maximum
coefficients. This conversion can be computationally demand-
ing and memory-intensive, especially for large degrees d and
input dimensions (number of variables) n. To address poten-
tial inefficiencies, we aim to avoid materializing the tensor
explicitly, yet we aim to find the minimum and maximuom
values within the n-dimensional dense tensor Den(Bp) while
avoiding storing the entire tensor in memory.

A. Implicit Form Min-Max Computation

To find the minimum and maximum values within the tensor
Tpen = Den(Bp 1) without explicitly computing and storing it
in the memory, we design a customized CUDA kernel. Given
a 2-D implicit tensor Trgp = Imp(Bp ;). we can index into the

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

FATMASSI et al.: BERN-NN-IBF: ENHANCING NN BOUND PROPAGATION

tensor T, (i, j. k, ..) by directly accessing memory locations
offset by the axis sizes

Toen(isj. k. ..) = Traplid™ ™' +jd" 2 + kd" > + ... 1.

Using this connection between the dense and implicit repre-
sentation, our CUDA kernel uses multiple threads in parallel
to compute the local minimum/maximum within partitions of
the dense form. Each CUDA thread is associated with an ID,
ebf_id in Algorithm 2, that is mapped to a unique set of
indices {i,j, k,...} to access and compute elements of the
explicit Bernstein form. As ¢ (number of terms), 4 (number of
columns in the implicit form tensor), and a (input dimension)
are known, this mapping is achieved through a set of iterative
equations

i=|t/d"!]

j=t/d"*) —id

k= |t/d" 3] —id® —jd
(24)

The indices are computed on-the-fly within the algorithm,
eliminating the need for storage. This iteration comesponds
to lines 12-14 of Algorithm 2. The variable index corre-
sponds to the sequence of indices and the variable tracker
corresponds to the subtracted portion. Precomputed powers
d! for r e {1,...,n} are stored in constant global memory
and all the threads in a warp compute the same power in
each iteration, which ensures low-latency access. Algorithm 2
returns the extrema for the portion of the tensor Trgp that
is covered by a CUDA block. Then, we apply an additional
reduction to compute the global extrema.

B. Quadrant-Constrained Min—Max Computation

In models where the input domain [, is consirained to a
single quadrant, specifically when all the variables are positive,
we can significantly streamline the computation for both the
min and max values. This constraint allows for a simplified
kernel, where the computation narrows down to evaluating
only two points in the dense n-dimensional tensor form. This
simplification effectively eliminates the need for a loop over
the entire dense tensor, reducing the computational complexity
to a single iteration over the terms.

C. Distribution Strategy and Challenges

Distributing Bern-NN-IBF across multiple GPUs is essential
for handling large models that may not fit within the memory
constraints of a single GPU. Our approach involves having
each GPU compute bounds for a batch of nodes in a layer,
followed by an allpather operation to ensure that all GPUs
have the input bounds necessary for processing the subsequent

layer.

We leverage PyTorch Distributed with the
NCCL backend [28] for efficient GPU com-
munication. For the allgather operation, we use

torch.distributed.all gather object. This
choice is motivated by the need to communicate Python
objects, specifically tensors of different shapes, as part of the

4341

Algorithm 2 Computing the Extrema of a Bernstein
Polynomial in Implicit Form

Input: Ty = Imp(Bpp). a 2D tensor representing a
Bernstein polynomial. E, the number of elements in the
explicit (or dense) Bernstein form. nterms, nvars, d respec-
tively denote the number of terms, variables, and columns used
in the implicit Bernstein form.

Output: min(Bp ;). max(By;) for each CUDA
block
1: function ibf-extrema(Tryp = Imp(Bp 1)) then
2. block_sum +« zeros(E, gridDim.v)
3 ebf_id « global thread id
4 while ebf_id = E do
5 tsum « 0
i term_id + blockIdx.y
T: while term_id < nterms do
8 acc «— |
o tracker « ()
10: forve{l,. ., nvar=s} do
11 p + lookup d™vars—v-!
12: index +« |ebf_id/p| — tracker
1% acc + acc X Igplterm_id][v][index]
14: tracker « (tracker + index) = d
15: end for
16 tsum «— tsum+ acc
17: term_id +« term_id+ gridDim.v
18: end while
19: block _sum[ebf_ id][blockIdx.y] « tsum
0 ebf id+« ebf id4 gridDim.x
21: end while

22: return block _sum
23: end function

bounding process. However, this flexibility comes at a cost of
communication inefficiencies because it involves transferring
tensors from the GPU to the CPU during the pickling process
(i.e., serialization of Python objects into a byte stream that
operates on CPU memory). This additional data transfer can
be an overhead and impact performance, particularly when
working with large polynomials and frequent communication
between GPUs. Since a1l _gather chject cannot
efficiently communicate objects over NVLink for direct
GPU-to-GPU communication, we are likely to encounter
a bottleneck that saturates the available communication
bandwidth. Thus, our implementation provides an upper bound
on the expected strong scaling.

V1. NUMERICAL STUDIES

In this section, we perform a series of numerical experi-
ments to evaluate the scalability and effectiveness of our tool.
First, we conduct an ablation study to check the effect of
varying different parameters (e.g., NN width, NN depth, and
Rel.U approximation order) on the performance of our tool.
We utilize two metrics.

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

1y Execution Time: which measures the time (in seconds)
needed to compute the final Bernstein polynomials.
Indeed, smaller values indicate better performance.

2) Relative Volume of the Output Set: this metric measures
the *“tightness” of the produced over- and under-
approximation polynomials. Without loss of generality,
we focus on NNs with one output z, and we compute
this metric as

Vol_Output -2

Vol Input ~ —
ot e (-:fe—gf,-)

where T and Z are the upper and lower bounds on the
NN’'s output 7 obtained by the end of the interval-
bound propagation process. Indeed, smaller values of
this metric indicate tighter approximations of the output
set.

After the ablation study, we compare our tool with a set of
state-of-the-art bound computation tools—including the win-
ner of the last 2023 verification of NN (VNN) competition—to
study the relative performance.

Vol _relative = (25)

A. Ablation Studies

We compare the performance and bounds attained by the
original BERN-NN [20] and the proposed BERN-NN-IBF for
the ablation studies. For these comparisons, we attempt to push
the approaches to their limits. We use randomly generated and
fully connected NNs with a single output. We change the input
dimension and the number of neurons in the hidden layers
across the experiments. We run each experiment multiple times
and report the execution time across all the experiments using
box-and-whisker plots. All our experiments were performed
using 8 Nvidia A100 GPU.

Experiment 1 (The Effect of Increasing the Hidden
Dimension): First, we consider a four-layer NN and keep
the input dimension fixed to 2 and the output size to 1.
Each trial varies the dimensions of all the hidden layers.
Fig. 3 reports the results of this experiment. The figure shows
that the performance scaling is favorable for BERN-NN-IBE
Moreover, BERN-NN is designed to use only one 1 GPU while
BERN-NN-IBF benefits significantly from the parallelization
provided by the developed CUDA kernels and the ability to
parallelize the algorithm across multiple GPUs. Moreover,
we notice the volume of BERN-NN-IBF is 2x smaller
than BERN-NN thanks to the optimal under-approximation
{Algorithm 1) resulting in enhanced bounds.

Experiment 2 (The Effect of Increasing the Tofal Number
of Layers): To study the effect of increasing the number
of layers, we keep the input dimension fixed to two with
a variable number of layers each with a hidden size of 5
neurons. Results are shown in Figs. 4. Again, we can see
that BERN-NN-IBF achieves better scaling than the original
BERN-NN. As we increase the number of layers, we see
a more obvious performance win for BERN-NN-IBE Even
with this narrow network, we are able to achieve reasonable
speedup by distributing over multiple GPUs. Also, similar

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

45 | mm BERK-NN

3,0 4 EEE IBF 1 GPUs i

= I I5F 2 GPUs

& 33 1 W JEF & GPUs i

E

£ ==

5 =

ERal L e

§oo1 - = = =

a5 - —— —
—

a0 A T T T T
0 20 0 -]

M
Hidden dirmenslon

—— HERM=NY
—— BERM-WHJEF
10 4
18 5 /

1] 40
Hidden dimansicn

Wolume

% 4
&

Fig. 3. Results of Expeniment 1. (Top) Execution time versus hidden
dimension. (Bottom) Relative volume versus hidden dimension.

%7 1 == aernenn &
o6 o I BF 1 GPUs i
i3 B I5F 3 GPUs =
EM B J6F 4 GPUS = -
IED.-*- = - = __
Zo3 E == = —
= 2 ==
EM. = = = —_
) 2
g |
1 z 3 a4 ¥ g # 0y
Hidden Layers
1% f —— BERSNY
—— BERS-NHJEF
1|J-“-|
E
ﬁ,ll}’1
16 4
p
] 5] 10
Hidden Layers

Fig. 4. Results of Expenment 2. (Top) Execution ime versus the total number
of layers. (Bottom) Relative volume versus the total number of layers.

to Experiment 1, we notice the effect of the optimal under-
approximation (Algorithm 1) in enhancing the accuracy of the
interval-bound propagation, leading to better relative volume.

Experiment 3 (Increasing the Total Number of Neurons):
In Fig. 5, we compute the bounds for progressively larger
models to compare the performance of the original BERN-
NN against the developed BERN-NN-IBE. Again, we observe
better scaling with BERN-NN-IBF even when using only 1
GPU for both BERN-NN and BERN-NN-IBF.

Experiment 4 {Assuming Positive Input Domain Ip): Tt is
common that input data can be normalized to fall in the
positive orthant. For instance, in computer vision applications,
pixel values may be normalized to [0, 1]. Assuming that data
falls into the positive orthant greatly simplifies finding the min-
imum and maximum of Bernstein polynomials (Algorithm 2),
as we no longer need to convert to the explicit form. In this
experiment, we use a network with an input dimension of 10
and a hidden layer of varying dimensions. Results are shown in

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

FATMASSI et al.: BERN-NN-IBF: ENHANCING NN BOUND PROPAGATION

Exgoution timae (s
£
=

o

200 400 (] 0o
Total numbser of newrans

1000

Fig. 5. Results of Experiment 3. Execotion time versus the total number of
newrons. Each layer has 100 newarons, and we successively add one layer.

195 | EEE BERMeKN —-_—
- B JEF 1 GPus
F 150 ==
£ 124 ——-—
=
§ 100 1 —
Bogs
Eu\' —— _—
0,50 o —
025 —r—
———
1 0 EL 40 L &0

Hidden dimension
= BERM-MN
= BERAN=NN-JEF

10 20 an A 50 &0
Hidden dimension

1

Weolume

1n*

Fig. 6. Results of Experiment 4. (Top) Execution time versus the total number
of layers. (Bottom) Relative volume versus the total number of layers.

Fig. 6. We notice that making the positive orthant assumption
results in a massive performance boost, with relatively little
effect on the resulting bounds in this case.

B. Comparison Against State-of-the-Art Tools

In this experiment, we compare the performance of our
tool in terms of execution time and the output set’s rel-
ative volume compared to bound propagation tools, such
as symbolic interval analysis (SIA) [29] and part of alpha-
CROWN [30]. We note that alpha-CROWN [30] won the
2023 VNN competition. We compare Bern-NN against the
bound propagation algorithm used within alpha-CROWN as a
representative tool for all the bound propagation techniques.
Moreover, alpha-CROWN is also designed to harness the
computational powers of GPUs.

Experiment 5 (Random Newral Networks): We compare the
performance of our tool to SIA, alpha-CROWN, and BERN-
NN for random NNs with varying numbers of neurons in the
hidden layers (Fig. 7). We compare the execution time and
relative volume as a function of the model's hidden dimension.
The time and volume reported are the averages of ten trials
on randomized models. We also compare the performance as
the input dimension of the network increases (Fig. 8).

The results show that SIA is the fastest in terms of
execution time for all different input hyperrectangles due to the
simplicity of its computations. However, its relative volume
is the highest. On the other hand, BERN-NN-IBF's relative
volume is the smallest for all input spaces, thanks to its

[M Sis BN Crow~ NN neak-sM EEE BERs-MNSE

Exgcution tme (5)
£
= F
&

Refative valume

Hidden dimeansion

Fig. 7. Results of Experiment 5 for varving the number of neurons in each
hidden layer.

- L_ETH ICEUEN NN T
2]
]
R
i
o
[=5. 51 [=14, 10 [=20, 201!
104
el
=
Faq
22
3.

[=5. 5]

[=10. 101
Inpaut space

{20, 207
Fig. 8. Results of Expeniment 5 for varying the input volume.

tight higher-order Rel.U approximations. Compared to alpha-
CROWN (which also runs on GPUs), BERN-NN-IBF is both
faster and produces tighter bounds, leading to an average of
5x execution time speedup while achieving the same or better
in the relative volume metric. We conclude that BERN-NN-
IBF generally strikes a pood balance between performance and
tightness.

Experiment 6 (Case Study for Control Benchmarks): In
this experiment, we comprehensively assessed various tools
applied to benchmarks derived from NN controllers [21]
to determine the precision of their estimated bounds. The
architecture of the networks employed in each benchmark
can be found in [21]. Table I encapsulates the performance
metrics of these tools, focusing on average execution time
and average relative volume across six control benchmarks.
Notably, BERN-NN-IBF consistently emerged as the second
quickest tool, yet it invariably provided the most accurate
bounds. This accuracy is particularly significant for control
applications, where the specification of interest often spans a
time horizon and necessitates multistep reachability analysis;
therefore, achieving finer bounds at each stage is imper-
ative. Moreover, BERN-NN-IBF outperformed CROWN in
terms of speed across all benchmarks, with the exception of
Benchmark 5. While SIA exhibited faster performance than
BERN-NN-IBE it compromised on the precision of bound
estimates. Each benchmark was subjected to tests with five
distinct hyperrectangles, all centered at zero, with radii varying
within 1, 1.5,2,2.5,3, to ensure a robust evaluation. This
rigporous testing methodology underscores the effectiveness
of BERN-NN-IBF in delivering precise and computationally
efficient solutions for control applications, highlighting its

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11,

NOVEMBER 2024

TABLE I
REsULTS 0F EXPERIMENT 6: EXECUTION TIME AND VOLUME FOR SIA, ALPHA-CROWN, BERN-NN, anp BERMN-NN-IBF
Benchmark T Benchmark 2 Benchmark 3 Benchmark 4 Benchmark 5 Benchmark 6
Time (5} Vol Time Vol Time Vol Time Val Time Vol Time Vol
Sia 0.013 2540 | 0010 | 9790 | 0000 | 1.032 | 0000 | 8549 0014 | 53391 | 0biZ | 2798
Crown 2,389 3641 | 2860 | BST4 | ZBTS | U735 | 2674 | 15869 | 2912 | TI.734 | 3077 | 3264
BERMN-NM 0.551 1.442 | 0846 | 9629 | 0844 | 1106 | 0916 | 8921 18,367 | 54.810 | 1.338 | 3454
BERN-NM-IBF 0.218 1719 | 0475 | 9003 | 0357 | 0835 | 0.304 [7.161 7604 | 42.747 | 0340 | 2.141
:x 1 wa oy
E) I I “-- :
§11 —chia T . e
E p i BEARBF Time: i T
3 : an —
g 11 ; T
LIS - -“._]
a 4 B [] o 33 S,
Spacilication
) — el | | |
1 £ a L]
Haminer of G
Fig. 10. Strong scaling up to eight NVIDIA A100 GPUs. We use a fixed

iadlih

s,—. —_

Fig. 9. Results of Expeniment 7. (Top) Average execution time of Crown
and BERM-NM-IBF on the ACAS XU benchmark. Error bars represent
the standard deviation. (Bottom) Average bound of five neurons across
ten specifications from the ACAS XU benchmark. True bounds (blue) were
obtained by evaluating the NN with 100000 samples from the input domain.

superiority in optimizing both speed and accuracy in bound
estimation.

Experiment 7 (Case Study for ACAS Xu Benchmark): In this
comprehensive experiment, we assess the efficacy of BERN-
NN-IBF in contrast to CROWN within the context of the
unmanned Airborne Collision Avoidance System (ACAS Xu)
benchmark, as detailed in [31]. This benchmark encompasses
ten distinct properties across 45 NNs that are instrumental
in generating turn advisories for aircraft to avert collisions.
Each network comprises 300 neurons distributed over six
layers, utilizing Rel.U activation functions. The networks are
designed with five inputs that represent the states of the
aircraft and produce five outputs, with the system adopting the
minimum output value as the turn advisory. Further insights
into this benchmark are elaborated in [31].

Empirical data presented in Fig. 9 underscore the superior
performance of BERN-NN-IBF over CROWN, both in terms
of computational speed and the precision of the volume
estimations across all ten specifications. This enhancement in
performance is pivotal, particularly in the high-stakes domain
of collision avoidance, where the rapid and accurate compu-
tation of turn advisories is critical for ensuring the safety of
the airspace. BERN-NN-IBF's ability to outperform CROWN
in these key areas demonstrates its potential to significantly
improve the reliability and efficiency of NN-based decision-
making systems in safety-critical applications.

C. Scaling Bern-NN-IBF Across Multiple GPUs

Experiment 8 (Strong Scaling Experiments): To demonstrate
the scalability of our approach, we perform strong scaling

model with an input dimension of 5, two hidden layers with 100 neurons
each, and an output dimension of 1. The dashed line represents the ideal
strong scaling. The red crosses are the average montime of 20 trals with the
comesponding GPU count. We found that the 95% confidence intervals of the
mean runtimes are all within 5% of the mean, so we excluded them from the
plot.

experiments on eight NVIDIA A100 GPUs. Results are shown
in Fig. 10. The batch-parallel computation of node bounds
across GPUs accelerates BERN-NN-IBF while preserving
the bounds accuracy. This enables bounding larger models,
where intermediate computations do not fit in a single GPU's
memory.

Despite the limitations of allgather with pickling package,
we expect strong scaling due to the computational complexity
of computing bounds for each layer. In future work, exploring
alternative communication strategies or optimizations tailored
for large polynomial data transfers may be essential to further
enhance the scalability of distributed BERN-NN-IBE

Experiment 9 (Memory Scalability Experiments): Finally,
we compare the memory scalability of BERN-NN-IBF against
BERN-NN. In this experiment, we perform memory scalability
over a single NVIDIA A100 GPU while limiting the GPU
memory to 10 GB. We use NNs with random weights, 5 layers
and 25 neurons per hidden layer. We iteratively increase the
input dimension n and we record the input dimension at which
the GPU will run out of memory. Our experiments show that
when n = 6, the dense representation used in BERN-NN
consumes the entire 10 GB of memory and the BERN-NN
can no longer finish the bound propagation procedure. On the
other side, and thanks to the 2-D tensor representation used
in BERN-NN-IBE we can scale up to n = 25. Repeating the
same experiment while limiting the GPU memory to 20 GB
results in a maximum n = 8 for BERN-NN and a maximum
n = 47 for BERN-NN-IBF which reflects the linear scalability
with the input dimension n in Proposition 4.

VII. CONCLUSION

This article introduces BERN-NN-IBE, which significantly
enhances the BERN-NN framework by implementing the IBF

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

FATMASSI et al.: BERN-NN-IBF: ENHANCING NN BOUND PROPAGATION

to improve memory efficiency. Key innovations include the
design of IBF-specific operations and the implementation of
specialized CUDA routines, improving the speed and accuracy
of essential functions like summations and multiplications.
Additionally, we developed a novel optimization technique
for determining the coefficients of a quadratic polynomial
under-approximation of the RelU function, resulting in
tighter output bounds. Empirical evaluations demonstrate
that BERN-NN-IBF outperforms not only its predecessor,
BERN-NN, but also state-of-the-art tools. These advance-
ments position BERN-NN-IBF as a highly efficient tool for
NN bound propagation, offering significant improvements in
memory efficiency, computational speed, and precision.

2

3

4

I3

[6]

M

[8]

k)]

(1o

[

(12

[13]

REFERENCES

X. Sun, H. Khedr, and Y. Shoukry, “Formal venfication of neural
network controlled autonomous systems,” in Proc. 22rd ACM Int. Conf
Hybrid Syst., Comput. Controd, 2019, pp. 147-156.

D. J. Fremont, J. Chiu, D D Margineantu,). Osipychev, and
5. A, Seshia, "Formal analysis and redesign of a newral network-based
aircraft taxiing system with VenfAL” in Proc. Int. Conf. Comput. Aided
Verif, 2020, pp. 122-134.

L. Santa Cruz and Y. Shoukry, “NNLander-VerF: A neoral network
formal venfication framework for vision-based autonomous arcraft
landing.” in Proc. NASA Formal Methods Symp., 2022, pp. 213-230.
G. Katz, C. Barrett, [0, L. Dull, K. Julan, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural
networks,” in Proc. Int. Conf Comput. Aided Verif, 2017, pp. 97-117.
5. Dutta, X. Chen, 5. Jha, 5. Sankaranarayanan, and A. Tiwar,
“Sherlock-a tool for verfication of neural network feedback systems:
Demo abstract.” in Proc. 22nd ACM Int. Conf. Hyvbrid Syst., Comput.
Contral, 2019, pp. 262-263.

E. Botoeva, P. Kouvaros, J. Krongvist, A. Lomuscio, and B. Misener,
“Efficient verification of relo-based newral networks via depen-
dency analysis,” in Proc. AAAT Conf Anif Intell, wvol. 34, 2020,
pp. 3291-3209.

V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural
networks with mixed integer programming,” in Proc. Int. Conf. Learn.
Represent., 2019, pp. 1-21.

(). Bastani, Y. loannou, L. Lampropoulos,). Vytiniotis, A. Nor,
and A. Crnminisi, “Measuring newral net robustness with con-
straints,” in Proc. Adv Newral Inf Process. Svst, vol. 29, 2016,
pp. 2613-2621.

E. Bunel, J. Lo, I. Turkaslan, P Kohli, P. Torr, and P. Mudigonda,
“Branch and bound for piccewise linear neural network verification,” J.
Mach. Learn. Res., vol. 21, no. 42, pp. 1-39, 2020,

M. Fischetti and J. Jo, “Deep neural networks and mixed integer linear
optimization,” Constraints, vol. 23, no. 3, pp. 206-309, 2018,

R. Anderson, . Huchette, W. Ma, C. Tjandrastmadja, and J. P. Viclma,
“Strong mixed-integer programming formulations for trained newral
networks,” Math. Program., vol. 183, no. 1, pp. 3-39, 2020,

C.-H. Cheng, G. Nihrenberg, and H. Ruess, “Maximum resilience of
artificial newral networks,” in Proc. Int. Symp. Awtom. Technol. Verif
Anal., 2017, pp. 251-268.

W. Xiang, H-D. Tran, J. A. Rosenfeld, and T. T. Johnson, “Reachable
set estimation and safety venfication for piecewise linear systems with
neural network controllers,” in Proc. Anau. Amer. Control Conf. (ACC),
2018, pp. 1574-1579.

[14]

[13]

[16]

[

[18]

(19

[201

21

[22]

[23]

[24]

[23]

[26]

[27

[28]

[29]

(301

31

W. Xiang, H-D. Tran, and T. T. Johnson, “"Cutput reachable set
estimation and wverfication for multilayer newral networks” TEEE
Trans. Newral Netw. Learn. Syst, vol. 29, no. 11, pp. 53777-5T83,
Mow. 2018.

T. Gehr, M. Mirman, D). Drachsler-Cohen, P. Tzankov, 5. Chawdhur, and
M. Vechev, "Al2: Safety and robustness certification of neural networks
with abstract interpretation,” in Proc. IEEE Symp. Security Privacy (5P),
2018, pp. 3-18.

5. Wang, K. Pei, J. Whitchouse,). Yang, and 5. Jana, “Formal security
analysis of neural networks using symbolic intervals,” in Proc. 27th
USENIX Conf. Security Symp., 2018, pp. 1599-1614.

H.-D. Tran et al., “NNV: The neural network verfication tool for deep
neural networks and learmning-enabled cyber-physical systems.” in Proc.
Int. Conf. Comput. Aided Verif., 2020, pp. 3-17.

E. Ivanov, J. Weimer, B. Alur, G. J. Pappas, and 1. Lee, “Versig:
Verfying safety propertics of hybnd systems with neural network
controllers,” in Proc. 22nd ACM Int. Conf. Hvbrid Svst., Comput.
Control, 2019, pp. 160-178.

M. Fazlyab, A. Robey, H. Hassani, M. Moran, and G. Pappas,
“Efficient and accurate estimation of Lipschitz constants for deep
neural networks” in Proc. Adv. Newral Inf. Process. Syst., 2019,
pp. 1142311434,

W. Fatnassi, H. Khedr, V. Yamamoto, and Y. Shoukry, “BERN-NN:
Tight bound propagation for neural networks using bernstein polynomial
interval anthmetic,” in Proc. 26th ACM Int. Conf. Hybrid Syst., Comput.
Control, 2023, pp. 1-11.

C. Huang, J. Fan, X. Chen, W. Li, and (). Zhu, “POLAR: A poly-
nomial arthmetic framework for verifying newral-network controlled
systems,” in Proc. Int. Symp. Awtom. Technol Verif Amal, 2022,
pp- 414430,

I. Ferlez, H. Khedr, and Y. Shoukry, “Fast BATLLNN: Fast box analysis
of two-level lattice newral networks” in Proc. 25th ACM Int. Conf.
Hybrid Syst., Comput. Control, 2022, pp. 1-11.

H. Khedr and Y. Shoukry, “DecpBemn-Nets: Taming the complexity of
certifying neural networks using Bemnstein polynomial activations and
precise bound propagation,” in Proc. AAAT Conf. Artif. Intell., vol. 38,
no. 19, 2024, pp. 2123221240,

V. Lin, B. Ivanov, J. Weimer, (. Sokolsky, and L. Lee, “T4V: Exploring
neural network architectures that improve the scalability of newral
network venfication,” in Principles of Systems Design: Essays Dedicated
to Thomas A. Henzinger on the Occasion of His 60th Birthday. Cham,
Switzerland: Springer, 2022, pp. 585-603.

5. Wang et al, "Beta-CROWN: Efficient bound propagation with
per-neuron split constraints for newral network robustness venfica-
tion,” in Proc. Adv. Newral Inf Process. Syst., 2021, pp. 1-27.

1. Sanchez-Reyes, “Algebraic manipulation in the Bemstein form made
simple via convolotions,” Comput.-Aided Design, vol. 35, no. 10,
pp. 950-947, 2003.

R. T. Farouki and V. Rajan, “Algorthms for polynomials in Bemstein
form,” Comput. Aided Geom. Design, vol. 5, no. 1, pp. 1-26, 1988,
A, Paszke et al, "PyTorch: An imperative style, high-performance
deep learming lhibrary,” in Proc. Adv. Newral Inf. Process. Syst., 2019,
pp. 30248035, [Online]. Available: http-//papers. neurips.co/paper/90 13-
pytorch-an-imperative-style-high-performance-deep-leaming -library. pdf
5. Wang, K. Pei, J. Whitchouse, J. Yang, and 5. Jana, “Efficient formal
safety analysis of neural networks” in Proc. Adv. Newral Inf. Process.
Syst., vol. 31, 2018, pp. 6367-6377.

K. Xu et al., “Fast and complete: Enabling complete neural network ver-
ification with rapid and massively parallel incomplete venfiers,” in Proc.
ICLR, 2021, pp. 1-15.

D. M. Lopez. T. T. Johnson, 5. Bak, H.-I). Tran, and K. Hobbs,
“Evaluation of neural network verfication methods for air to air collision
avoidance,” AIAA J. Air Transp., vol. 31, no. 1, pp. 1-7, 2022,

Authorized licensed use limited foc Access paid by The UC Irvine Libraries. Downloaded on August 08,2025 at 23:06:00 UTC from IEEE Xplore. Restrictions apply.

