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Excitons, Coulomb-driven bound states of elec-

trons and holes, are typically composed of inte-

ger charges. However, in bilayer systems influ-

enced by charge fractionalization, a more exotic

form of interlayer exciton can emerge, where pair-

ing occurs between constituents that carry frac-

tional charges. Despite numerous theoretical pre-

dictions for such fractional excitons, their exper-

imental observation has remained elusive. Here,

we report transport signatures of excitonic pair-

ing within fractional quantum Hall effect states.

By probing the composition of these excitons and

their impact on the underlying wavefunction, we

uncover two novel quantum phases of matter.

One of these orders can be viewed as the frac-

tional counterpart of the exciton condensate at a

total filling of one, while the other involves a more

unusual type of exciton that obeys fermionic and

anyonic quantum statistics, challenging the stan-

dard paradigm of bosonic excitons.

Electric charges are typically multiples of a univer-
sal unit, the charge of an electron. However, in the
fractional quantum Hall effect (FQHE) observed in two-
dimensional electronic systems, quasiparticles carry only
a fraction of this fundamental charge due to the interplay
between correlation and topology [1]. These fractionally
charged quasiparticles follow anyonic quantum statis-
tics, setting them apart from conventional fermions and
bosons. The process of charge fractionalization becomes
more complex when electrons gain additional quantum
numbers such as spin, valley isospin, and layer pseudo-
spin. The presence of multiple electron species leads to
a multi-component wavefunction, first described by the
Halperin two-component wavefunction [2], and gives rise
to fractionally charged quasiparticles with an internal de-
grees of freedom [3–5].

In the presence of multiple electron species, the forma-
tion of excitons adds a rich new dimension to the FQHE
landscape [6–17]. Previous experimental studies have
demonstrated the formation of interlayer excitons by con-
fining charge carriers in closely separated but electrically
isolated graphene layers, particularly at a total integer
Landau level filling in quantum Hall bilayer structures.

These interlayer excitons are composed of constituents
with integer charges, and due to their bosonic nature,
they condense into a Bose-Einstein condensate at low
temperatures. This state can be detected through coun-
terflow drag experiments, where a perfect drag response
indicates the presence of the condensate [18–21].

Moving away from the total integer filling factor, the
coexistence of excitons and FQHE has been the focus
of extensive theoretical discussions. An example of this
is the (nnn) wavefunction, which represents a fractional
analogue of exciton condensates in quantum Hall bi-
layers [7]. Additionally, at fractional filling fractions,
excitons could form between fractionally charged con-
stituents, leading to the emergence of excitons that follow
non-bosonic statistics and behave like fermions or anyons
[14]. This could result in unique ground states that
are fundamentally different from the traditional Bose-
Einstein condensation.

Despite extensive theoretical discussions [6–17], coex-
istence of excitons and the FQHE has, to the best of our
knowledge, remained unexplored experimentally. This
leaves the nature of fractional excitons as open ques-
tions. These unresolved issues motivate this current re-
port, which is structured as follows: we begin by testing
perfect drag at a total integer filling factor. In agree-
ment with previous studies, we observe transport be-
havior indicative of an exciton condensate known as the
(111) state. This condensate persists even with signifi-
cant charge imbalances between the two layers, as long as
the overall filling factor remains constant, which is repre-
sented in Fig. 1. Next, we identify two classes of FQHE
states away from the integer filling, both of which ex-
hibit perfect drag response that is indicative of excitonic
pairing. The first class extends along lines of constant
fractional overall filling factors over a range of layer im-
balance. Similar to the (111) state, these states can be
explained by fractional analogues of exciton condensates.
The second class of FQHE is stable only around specific
points defined by the filling factor of each layer, corre-
sponding to a bilayer generalization of Jain’s composite
fermion states. We attribute this behavior to the pres-
ence of excitonic quasiparticles, which, at certain filling
factors, exhibit fractional statistics.
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FIG. 1. Excitonic pairing and fractional quantum Hall effect in quantum Hall bilayer. (a) Schematic of the edgeless
Corbino geometry used for transport measurements in parallel flow (PF), counterflow, and drag configurations. (b) Transport
response measured at νtotal= −1, at B = 1 T and T = 20 mK, in the PF geometry GPF (top panel), counterflow geometry
GCF (middle panel), and the drag ratio Idrag/Idrive (bottom panel). (c) Drag response at νtotal = −1 as a function of d.c.
voltage bias Vdc (left) and temperature T (right). (d) GPF mapped as a function of ν̃total and ∆ν at B = 12 T and T = 20
mK. White dashed and dash-dotted lines highlight two FQHE sequences to be examined in detail. (e-g) Schematic diagrams
showing FQHE associated with the (e) 2

0CF , (f) 2
1CF , and (g) 2

2CF constructions.

First, we will discuss the transport signatures of the
exciton condensate at an integer total filling of quan-
tum Hall graphene bilayer. To eliminate the influence of
edge channels, the samples are shaped into the edgeless
Corbino geometry, as shown in the schematic diagram in
Fig. 1a [22–25]. Electrical contacts, labeled 1 through
4, are connected to the inner and outer edges of both
graphene layers. Fig. 1b shows signatures of an exciton
condensate at a total filling of −1, which corresponds
to the filling fraction of hole-doped Landau levels [18–
22, 26–28]. In the parallel flow (PF) geometry (top panel
in Fig. 1b), the excitonic state (highlighted by the blue-
shaded stripe) behaves as an insulator. In contrast, this
state exhibits non-zero bulk conductance in the counter-
flow geometry (middle panel).

The most defining transport response is seen in the
drag geometry (bottom panel), where the graphene layers
are divided into two separate electrical circuits. Due to
exciton pairing, a drive current Idrive in the active circuit,

sent through the upper layer, generates a drag current
Idrag in the passive circuit across the bottom layer. As
a result, the exciton condensate, described by the (111)
wavefunction [2], acts like a perfect transformer, con-
verting 100% of the current in the drive layer into the
drag circuit. As the d.c. voltage bias and temperature
increase, the drag ratio deviates from unity, with the the
drive current Idrive becoming larger than the drag current
Idrag (see Fig. 1c). This behavior indicates the existence
of a critical threshold of d.c. voltage bias and temper-
ature, beyond which the generation of unpaired charge
carriers lead to the breakdown of the perfect drag condi-
tion.

In a quantum Hall graphene bilayer, the Landau level
(LL) filling of each graphene layer, ν1 and ν2, can be
independently controlled by adjusting the voltage bias
on the top and bottom gate electrodes. This allows for
a low-temperature phase space defined by total filling
νtotal = ν1 + ν2 and layer imbalance ∆ν = ν1 − ν2.
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FIG. 2. A new sequence of FQHE defined by interlayer excitons. (a) Schematic diagram illustrating the introduction
of interlayer excitons from a single-layer FQHE state by varying layer imbalance ∆ν. (b-c) Parallel flow conductance GPF (top
panel), drag ratio (middle panel), and counterflow conductance GCF (bottom panel) measured in (b) the single-layer regime at
ν̃1 = 0 and (c) the two-component regime at ν̃1 = 0.08. In the middle panel of (b), drag ratio is ill defined at 2

0ν
∗

2 = N ∈ Z as
Idrive and Idrag are both zero. These locations are masked by gray-shaded stripes.

Fig. 1d plots conductance measured from the PF geom-
etry, GPF, which probes the charge gaps associated with
FQHE states. In Fig. 1d, the white solid line outlines
the region of the phase space where charge carriers in
both graphene layers occupy the lowest LL, in the range
of −1 < ν1 < 0 and −1 < ν2 < 0. For simplicity, we
label the LL filling in this regime using the minority car-
rier filling ν̃1 = 1 + ν1 and ν̃2 = 1 + ν2. According to
this convention, ν̃total = ν̃1 + ν̃2 and ∆ν = ν̃1 − ν̃2. At
ν̃total = 1, the exciton condensate is shown as a promi-
nent insulator with vanishing GPF, which is depicted as
dark blue in the chosen color scale. Away from the to-
tal filling of one, insulating features form a well-defined
two-dimensional (2D) pattern, pointing to a sequence of
FQHE states with two-component correlation [23].
According to the composite fermion (CF) model, the

two-component nature of the Coulomb interaction in a
quantum Hall bilayer is modeled by forming CFs with
intra- and interlayer magnetic flux attachments [23, 29–
31]. Notably, fractional excitons are directly linked to
composite fermions constructions with interlayer flux at-
tachment. For simplicity, we denote a CF construction
with a intralayer and b interlayer flux attachments as
a

b
CF. Effective fillings of CFs in each layer is defined as,

a

b
ν∗1 =

ν1

1− aν1 − bν2
, a

b
ν∗2 =

ν2

1− aν2 − bν1
. (1)

Here, a

b
ν∗
i
denotes effective filling ν∗ of a

b
CFs on layer

i. According to the CF model, a FQHE with a robust
charge gap arises when a

b
ν∗1 and a

b
ν∗2 both take integer

values [23, 32]. When a

b
ν∗1 is held at a constant integer

value, varying a

b
ν∗2 stabilizes a sequence of FQHE state

belonging to the a

b
CF construction. As described by Eq.

(1), this sequence traces clear trajectories in the 2D phase
space. For instance, the expected trajectories of 2

0CF ,
2
1CF and 2

2CF states are shown as solid lines in Fig. 1e-g
and dashed lines in Fig. 1d. These trajectories serves as
a road map, outlining a systematic approach to under-
standing the connection between CFs and exciton pairing
in quantum Hall bilayers (see Fig. M2) [23, 29, 33].

The two new classes of fractional excitons reported
in this work are directly associated with the 2

1CF and
2
2CF constructions. In contrast, the 2

0CF construction
lacks interlayer flux attachments, resulting in a different
type of interlayer correlation for the corresponding FQHE
state. This is beyond the scope of the current study and
will not be explored here.

The first class of fractional exciton is stabilized by
adding excitonic pairing to the Jain-sequence of FQHE,
achieved by varying ∆ν, as illustrated in Fig. 2a. Fig. 2b
displays the Jain sequence of FQHE states when charge
carriers occupy only layer 1. These FQHE states exhibit
vanishing drag response (middle panel of Fig. 2b) and
zero counterflow conductance GCF = 0 (bottom panel of
Fig. 2b). This is consistent with the absence of inter-
layer correlation in the single-layer regime, where charge
carriers are confined to just one layer.

From this Jain-sequence of FQHE, exciton pairing is
induced by adjusting ν̃1 to a non-zero value. Fig. 2c plots
the transport response as a function of varying ν̃total at
ν̃1 = 0.08. Along this line, a series of FQHE states,
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FIG. 3. Constructing a sequence of FQHE with 2
2CF excitons. (a) Parallel flow conductance GPF (top panel) and

drag ratio (bottom panel) as a function of ν̃total and ν̃1. Horizontal line traces marked by gray and orange arrows correspond
to the measurements in Fig. 2b and c. (b) GPF (top panel), drag ratio Idrag/Idrive (middle panel), and GCF (bottom panel)
as a function of T measured at ν̃total = 1/3 and ν̃1 = 0.08. (c-d) Drive current Idrive and drag current Idrag as a function of
d.c. voltage bias, measured for (c) the excitonic state at ν̃1 = 0.08 and (d) in the single-layer regime at ν̃1 = 0. (e-f) Drive
current Idrive and dragcurrent Idrag as a function of temperature, measured with the drag geometry at ν̃total = 2/3 and (e) in
the single-layer regime at ν̃1 = 0 and (f) in the 2-component regime at ν̃1 = 0.10 (corresponding to open gray triangle and open
orange circle in (d), respectively).

revealed by vanishing bulk conductance in the PF geom-
etry, GPF = 0, appears at ν̃total = N/(1 + 2N), with
N ∈ Z. Each insulator with vanishing GPF is accompa-
nied by the perfect drag ratio Idrag/Idrive = 1 in the drag
geometry (middle panel Fig. 3c). At the same time, these
FQHE states are highly conductive in the counterflow ge-
ometry. These transport responses collectively indicate
the coexistence of a robust FQHE energy gap and the
charge-neutral mode of interlayer exciton. While the po-
sition of these FQHE states in ν̃total aligns with the con-
ventional Jain sequence, the presence of exciton pairing
incorporates interlayer correlation into the wavefunction,
signaling a distinct FQHE state.

Fig. 3a plots the evolution of transport responses with
varying ν̃1. The behavior of GPF with varying ν̃1 in-
dicates that the charge gap of each Jain sequence state
remains robust despite the introduction of excitons(the
top panel of Fig. 3a). This finding is consistent with
the charge neutral nature of interlayer excitons, which
do not affect the overall charge gap of the FQHE state.
Notably, the perfect drag response, shown as red in the

chosen color scale, extends along a vertical trajectory
(bottom panel of Fig. 3c). This robustness against ∆ν is
reminiscent of the behavior observed in the (111) state
[19, 20, 28], offering a crucial clue to the origin of frac-
tional excitons.

The first class of fractional excitons emerges when
the total effective filling of 2

2CF reaches integer values,
2
2ν

∗

total = 2
2ν

∗

1 + 2
2ν

∗

2 = N , with N ∈ Z. This condi-
tion, represented by the vertical red trajectories shown
in Fig. 1g, suggests that these fractional excitons arise
from exciton pairing between partially filled Λ-levels of
2
2CF . This draws a direct analogy with the (111) state,
indicating that the FQHE in this regime exhibits a simi-
lar form of interlayer correlation. Consequently, the exci-
tons formed are expected to obey bosonic statistics, with
the low-temperature ground state described by a Bose-
Einstein condensate.

Previous theoretical discussions have predicted a neu-
tral superfluid phase at total filling 1/3 in a quantum
Hall bilayer, characterized by a (333) wavefunction [7].
This phase corresponds to the fractional exciton state
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FIG. 4. Fractional excitons from the 2
1CF sequence. (a) Schematic diagram of 2

1CF states across a portion of ν̃total-∆ν
map. Blue solid lines denote integer values of 2

1ν
∗
i . Vertical red dashed line marks the expected trajectory of the 2

2CF exciton
order at ν̃total = 2/3. (b) GPF (top), and drag ratio (bottom) measured along the light blue solid line in panel (a). (c) Energy
gap extracted from the activation behavior in GPF for the 2

1CF sequence (top) and 2
0CF (bottom) sequence of FQHE states.

(d) Schematic diagram shows excitonic pairing between quasiparticle and quasi-hole excitations for different 2
1CF states.

at ν̃total = 1/3. Although Corbino measurements are
inherently two-terminal and cannot directly detect dissi-
pationless exciton flow, we can still gain insight by ex-
amining the temperature dependence and I-V character-
istics of the (333) state in comparison to those of the
(111) state. Fig. 3b plots the temperature dependence
of transport signatures at ν̃total = 1/3. Above a criti-
cal temperature around T = 1 K, the hallmark signa-
tures of excitonic transport begin to diminish: GPF in-
creases from zero and the drag ratio deviates from one
as T rises. This T -dependence suggests that free charges
are generated at T > 1 K, resulting in the formation of
an additional parallel transport channel that operates in-
dependently of exciton flow. Furthermore, the reduction
in counterflow conductance GCF indicates that exciton
flow is increasingly suppressed with rising T .

Theoretical work has recognized that an excitonic state
described by the (nnn) wavefunction exhibits collective
excitations in the form of unpaired vortexes, known as
merons and anti-merons [4, 7, 18, 21, 34, 35]. Since
these unpaired vortexes carry a non-zero electric charge,
the observed vanishing GPF and perfect drag response
suggest that all merons and anti-merons form charge-

netural form pairs at low temperature. According to the
Berezinskii-Kosterlitz-Thouless (BKT) model [36, 37],
this vortex pairing process defines the transition into a
low-temperature condensate phase at ν̃total = 1/3.

The potential condensate is further supported by the
I-V characteristics measured from the drag geometry at
ν̃total = 1/3 and ν̃1 = 0.08 (Fig. 3c). Below a critical
d.c. voltage bias of 2 mV, the FQHE state acts like a
perfect transformer, converting 100% of the current in
the drive layer into the drag circuit. This is in excellent
agreement with the observed behavior of the (111) state
in Fig. 1c. In contrast, the FQHE at ν̃total = 1/3 and
ν̃1 = 0, which is described by the single-layer Laughlin
wavefunction, acts like a decoupler, where the onset in
Idrive is accompanied by a vanishingly small drag current.

Along the same veins, Fig. 3e-f examines the fractional
exciton order at ν̃total = 2/3. At ν̃1 = 0, the drive and
drag circuits are decoupled by the lack of exciton flow
(Fig. 3e). However, tuning layer 1 to ν̃1 = 0.10 induces
exciton pairing, which stabilizes the perfect drag response
at T < 1 K (Fig. 3f). The presence of the fractional exci-
ton maintains a nonzero counterflow drag response down
to the base temperature of the dilution fridge, suggesting
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that the exciton-enabled charge-neutral mode is gapless.

Next, we turn our attention to the 2
1CF sequence of

FQHE, which hosts a different type of excitons with non-
bosonic properties. According to Eq. 1, the 2

1CF se-
quence of incompressible states are expected at points
where both 2

1ν
∗

1 and 2
1ν

∗

2 are integer values, indicated by
blue open circles in Fig. 4a. Transport measurements
along the light blue solid line in Fig. 4a reveals these ex-
pected FQHE state. By varying 2

1ν
∗

2 while holding 2
1ν

∗

1

constant, the top panel of Fig. 4b shows a sequence of
FQHE states with vanishing GPF at integer values of 2

1ν
∗

2

(indicated by vertical dashed lines). By examining the
thermally activated behavior ofGPF, we extract the value
of the charge gap ∆, which demonstrates a characteristic
hierarchical behavior (Fig. 4c): the charge gap becomes
more (less) robust with decreasing (increasing) effective
filling. This hierarchical behavior, along with the pre-
cise locations of the FQHE sequence, provides strong ev-
idence that the 2

1CF construction is responsible for the
formation of the charge gap.

Remarkably, the 2
1CF sequence of FQHE states are

accompanied by a perfect drag response, as shown in the
bottom panel of Fig. 4b. This provides a clear indica-
tion of the presence of exciton pairing. Given the 2

1CF
construction, the FQHE wavefunctions at these states,
which are located at integer values of 2

1ν
∗

1 and 2
1ν

∗

2 , can
be analyzed using theK-matrices formalism [38]. TheK-
matrices offers further insights into the likely composition
of the interlayer excitons (see Section IV in Method). In
the presence of a FQHE charge gap, exciton formation oc-
curs naturally by pairing quasiparticle and quasihole ex-
citations. At 2

1ν
∗

1 = 2
1ν

∗

2 = 1, the FQHE state is described
by the (331) wavefunction, which enables a quasiparticle
with charge −e/8 on one layer and +3e/8 on the other,
and a quasihole with charge −3e/8 and +e/8 across the
two layers, as illustrated in panel (i) of Fig. 4d. A bound
state of such a quasiparticle and quasihole leads to the
formation of a fractional exciton with particle and hole
charge of ±e/2. Remarkably, this exciton is not a com-
posite boson but instead obeys fermionic statistics (see
Section IV in Method). The emergence of a fermionic ex-
citon at half filling of a two-component system has been
previously proposed in theoretical discussions [14].

In a similar fashion, the exciton composition at 2
1ν

∗

1 = 1
and 2

1ν
∗

2 = 2 involves a quasiparticle with charge +9e/13
in one layer and −3e/13 in the other, and a quasihole
with charge +4e/13 and −10e/13 across the two layers.
This pairing results in an exciton with a net charge of ±e.
The two types of quasiparticles that form an exciton have
different charges due to the presence of layer asymmetry.
While the resulting exciton has ±e charge across two lay-
ers, its depairing leads to fractionally charged quasipar-
ticle and quasihole, as shown in panel (ii) of Fig. 4d.
Analysis shows that excitons with this composition obey
bosonic statistics. Following the same K-matrix anal-
ysis, further increasing the effective filling of 2

1CF re-

veals fractional excitons that exhibit anyonic behavior.
At 2

1ν
∗

1 = 2
1ν

∗

2 = 2, exciton pairing gives rise to a bound
state with ±e/3 charge across two layers, as shown in
panel (iii) of Fig. 4d. This exciton acquires a statistical
phase of 4π/3 upon exchange.
Unlike 2

2CF excitons, which extends along lines of con-
stant ν̃total,

2
1CF excitons are stable only around specific

points in the phase space, defined by integer values of
2
1ν

∗

1 and 2
1ν

∗

2 . This distinction is demonstrated by a series
of transitions at ν̃total = 2/3 as a function of varying ∆ν
(see Fig. M7), offering further support for our identifica-
tion of two different types of fractional excitons.

The possibility of fractional excitons with non-bosonic
statistics raises intriguing questions regarding the nature
of the low-temperature phase. This is further compli-
cated by the construction of pairing between quasiparti-
cles and quasiholes. Since quasiparticles carry a non-zero
energy cost, their population is expected to vanish as
temperature approaches zero. However, our observation
of a perfect drag ratio at T = 20 mK, alongside a charge
gap of ∆ ∼ 8 K, suggests that the formation of charge-
neutral exciton substantially reduces the energy cost of
quasiparticle excitations. It is also worth considering
that a few fractional excitons could potentially combine
to form a larger, bosonic composite particle. Although
the intricate composition of such a construction makes
this scenario unlikely, it cannot be definitively ruled out
based solely on transport measurements. Therefore, our
findings raise an important question for future research
efforts.

In summary, our observations underscores the pivotal
role of charge neutral modes, including but not limited
to interlayer excitons, in defining the electronic orders
across the FQHE landscape. Given this critical role of ex-
citons, our findings are poised to have a far-reaching im-
pact beyond the conventional quantum Hall effect regime.
For example, the involvement of multiple electron species
and neutral modes may be key to understanding the
anomalous version of FQHE recently discovered in vari-
ous van der Waals structures under zero magnetic field
[39–43]. Overall, the studies of excitons in the FQHE
unlock a vast array of research opportunities, promising
to attract widespread interest and stimulate further ex-
ploration into the intricate behavior of multi-component
electronic systems.
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METHOD

In this section, we provide detailed discussions to fur-
ther substantiate results reported in the main text. This
section offers a comprehensive review, summarizing the
notations employed and elaborating on the measurement
configurations as well as the inter-layer degrees of free-
dom involved in the experiments. The theoretical meth-
ods section explores the relevant wave functions, the con-
ditions required for perfect drag, possible quantum Hall
states on the observed plateaus, the constituent charges
of excitons, and their quantum statistics. For additional
information and in-depth analysis, readers are directed
to the Supplementary Materials [44].

0. Notations of LL filling

The presence of layer pseudo-spin unlocks an extra
dimension in the phase space of FQHE, which requires
defining proper notation to describe the FQHE sequence.
Here, we use the 2

1CF sequence as an example to explain
the notation of LL filling and its connection with different
FQHE sequences.
Fig. 1f plots the schematic diagram of FQHE states

with the 2
1CF construction. This 2D map consists

of 8 separate FQHE sequences, which are marked in
Fig. M1. The range of the 2D map is determined by
the first integer filling of hole-doped LL. In the range
of −1 < νtotal < 0, FQHE states can be viewed as ef-
fective integer quantum Hall effect (IQHE) of hole-type
CF carriers, following the definition of Eq. (1). In this
range, four FQHE sequences are defined by 2

1ν
∗

1 > 0 (red
traces in Fig. M1b), 2

1ν
∗

1 < 0 (orange traces in Fig. M1b),
2
1ν

∗

2 > 0 (red traces in Fig. M1c), 2
1ν

∗

2 < 0 (orange traces
in Fig. M1c).
On the other hand, FQHE states in the range of

−2 < νtotal < −1 does not comply with the definition of
Eq. (1) directly. These FQHE states can be understood
by considering the particle-hole conjugate of Eq. (1). In-
stead of carrier filling ν, we consider the LL filling of mi-
nority carrier ν̃, defined as ν̃1 = 1+ ν1, and ν̃2 = 1+ ν2.
Following this definition, Eq. (1) is rewritten as,

a

b
ν̃∗1 =

ν̃1
1− aν̃1 − bν̃2

, a

b
ν̃∗2 =

ν̃2
1− aν̃2 − bν̃1

. (M1)

FQHE states in the range of −2 < νtotal < −1, therefore,
emerge along trajectories defined by a

b
ν̃∗1 and a

b
ν̃∗2 taking

positive and negative integer values.
According to Fig. 1d, the FQHE sequences defined by

Eq. (1) (−1 < νtotal < 0) and Eq. (M1) (−2 < νtotal <
−1) exhibit excellent symmetry around νtotal= −1. Such
symmetry is also noted in previous observations of 2-
component FQHE in quantum Hall graphene bilayer
[23].

Given the symmetry around νtotal= −1, this work fo-
cuses on examining the FQHE in the range of −2 <
νtotal < −1. This choice is also motivated by an ex-
perimental constraint: electric contacts to the graphene
bilayer tend to be more consistent in the range of −2 <
νtotal < −1. This constraint is especially prominent in
counterflow and drag geometries.
Following the definition of ν̃1 and ν̃2, we have ν̃total =

2 + νtotal and ∆ν = ν1 − ν2 = ν̃1 − ν̃2. The transport
responses shown in Fig. 4b is measured along a trajectory
marked by the blue dashed line in Fig. M1c. Tracing
constant value of 2

1ν̃
∗

1 = 1, this trajectory goes through
two FQHE sequences defined by 2

1ν̃
∗

2 > 0 (dark blue lines
in Fig. M1c) and 2

1ν̃
∗

2 < 0 (light blue lines in Fig. M1c).
The same sequences are observed along another trajec-

tory defined by 2
1ν̃

∗

1 = 2 (see Fig. S2). Due to the inter-
layer flux attachment in the 2

1CF construction, changing
2
1ν̃

∗

1 from 1 to 2 generates a shift in the location of FQHE
states defined by 2

1ν̃
∗

2 = N . This shift is demonstrated
by Fig. S2b and c.

I. Two types of CF states

FQHE states reported here fall into two categories: (i)
effective IQHE of CFs emerges from fully occupied Λ-
level in each graphene layer; (ii) effective excitonic pair-
ing between CFs arises when the sum of effective Λ-level
filling across two graphene layers equals an integer value.
This is directly comparable to the IQHE, when the LL
in a single layer is fully occupied (grey solid lines in
Fig. M2b), and the exciton state, when the sum of LL
filling across two graphene layers equal to one (vertical
blue stripe in Fig. M2b).
Effective IQHE of 2

1CF and 2
0CF are marked by blue

and black dashed lines in Fig. M2b, which correspond
to constant integer values of 2

1ν
∗

i
and 2

0ν
∗

i
. Along blue

(black) dashed lines, 2
1CF (20CF ) fully occupy an integer

number of Λ-levels. When integer 2
1ν

∗

i
is realized in only

one graphene layer, one graphene layer is incompressible
while the other is compressible. In this scenario, the
quantum Hall bilayer exhibits a phenomenon called semi-
quantization [32]. When integer 2

1ν
∗

i
is realized in both

graphene layers, a robust charge gap develops across both
layers of the quantum Hall bilayer structure, which gives
rise to insulating features with vanishing GPF and are
marked by open circles in Fig. M2b. A sequence of these
insulating features form the 2D pattern of FQHE states
in the νtotal-∆ν map (Fig. M2a-b).
Effective excitonic pairing is observed between 2

2CF .
Exciton pairing between 2

2CF gives rise to FQHE states
along red dashed lines in Fig. M3a, which are defined
by constant integer value of 2

2ν
∗

1 + 2
2ν

∗

2 = 2
2ν

∗

total. In con-
trast, constant integer values of 22ν

∗

i
are marked by orange

dashed lines in Fig. M3. The distinction between orange
and red dashed lines offers unambiguous evidence for ex-
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Δ
ν

ν ν ν

ν

ν >0

ν <0

ν >0

ν <0

ν ν

ν >0

ν <0

ν >0

ν <0

ν

FIG. M1. Notations of LL filling across the νtotal − ∆ν map. (a) Schematic map of 2
1CF states, which is the same as

Fig. 1f. (b-c) The same schematic map highlighting trajectories defined by integer values of (b) 2
1ν

∗
1 and (c) 2

1ν
∗
2 . In panels (b)

and (c), different colors highlight four distinct sequences in each layer. Red and orange denote the FQHE sequence of majority
charge carriers, which are the hole-type carriers in the chosen filling fraction of −2 < νtotal < 0. Blue and teal represent the
FQHE sequence of minority charge carriers. Furthermore, blue and red mark the sequence defined by positive effective filling,
whereas orange and teal label the sequence with negative effective filling.

μ

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Δ
ν

−1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2
ν

−1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2
ν

 = 12 T
 = 20 mK

FIG. M2. Two-component FQHE states with different CF constructions. (a) GPF as a function of νtotal and ∆ν
at B = 12T and T = 20mK. (b) Schematic diagram showing FQHE associated with the 2

0CF (black), 2
1CF (blue), and 2

2CF
(red) constructions. Grey solid lines mark IQHE states at constant integer LL fillings. Together, these IQHE states define
the diamond shaped phase space that is of interests in this work. All two-component FQHE states emerge within this phase
space. The excitonic state described by the (111) wavefunction is observed along the vertical trajectory at νtotal = −1, which
is marked by the blue vertical stripe in (b). Effective IQHE of 2

1CF and 2
0CF are marked by blue and black dashed lines,

which correspond to constant integer values of 2
1νi and 2

0νi. The effective excitonic pairing between 2
2CF leads to FQHE states

along red dashed lines, which are defined by constant integer value of 2
2ν

∗
1 + 2

2ν
∗
2 = 2

2ν
∗
total. By matching expected trajectories

of different CF constructions, we are able to identify the origin of FQHE states and the composition of fractional excitons.

citonic pairing between composite particles and holes fol-
lowing the 2

2CF construction. The 2
2CF excitons are

fractional analogue of the (111) state and can be directly
compared with the excitonic state along the vertical tra-
jectory at total filling of one.

Fig. M4 examines the FQHE at ν̃total = 1/3 as a func-
tion of varying ∆ν. We show that this 2-component

FQHE is in excellent agreement with the Halperin (333)
wavefunction. According to previous theoretical discus-
sion, this FQHE is expected to emerge at ν̃1 + ν̃2 = 1/3
[7]. Following the construction in Fig. 2a, a (333) state
(top panel in Fig. 2a) can be viewed as a combination of
the Laughlin state in one layer (middle panel in Fig. 2a),
and an ensemble of interlayer excitons (bottom panel in
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μ

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Δ
ν

22ν    = 22ν    =

2+2  c.f.

FIG. M3. Effective IQHE of 2
2CF and exciton pairing between 2

2CF . (a) GPF as a function of νtotal and ∆ν at
B = 12T and T = 20mK. (b) Schematic diagram marks the most prominent features associated with the 2

2CF constructions.
Orange dashed lines correspond to constant integer values of 2

2ν
∗
1 and 2

2ν
∗
2 , which mark the expected trajectory of effective

IQHE of 2
2CF . This is distinct from the 2

2CF excitons. When the sum of effective Λ-level fillings across two graphene layers
equals an integer value, an emerging FQHE state is directly comparable with the exciton state at total filling of one. At
2
2ν

∗
total = N ∈ Z, the ground state order is described by exciton pairing between 2

2CF . At ν̃total = 2/5, we observe transitions
between 2

2CF exciton, marked by vertical red solid lines, and an effective IQHE of 2
2CF , marked by red open circle in (b).

Along the same vein, a series of transitions are observed at ν̃total = 3/7. Notably, 2
1CF and 2

0CF constructions are unlikely to
produce incompressible states in the portion of the phase space near ν̃total = 2/5. Therefore, the observation of FQHE states
along the expected trajectories of 2

2CF states provides strong support for the 2
2CF construction.

μ

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Δ
ν

242ν    =
Δν

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

μ

2

4

6

 = 12 T
 = 20 mK

ν

FIG. M4. (333) wavefunction and the fractional analogue of the (111) exciton condensate. (a) Schematic diagram
of the (333) wavefunction at ν̃1 + ν̃2 = 1/3 (top), which is constructed from a single-layer FQHE state (middle) combined with
interlayer excitons (bottom). (b) According to the construction in (a), the FQHE at ν̃total = 1/3 exhibits different exciton
density while maintaining the same excitonic order across different ∆ν-regimes. (c) GPF (black trace) and GCF (blue trace)
as a function of ∆ν measured at ν̃total = 1/3. Blue shaded background marks regimes where robust charge gap coexists with
charge-neutral exciton flow. (d-e) Idrive and Idrag as a function of d.c. voltage bias measured (d) for the excitonic state at
∆ν= −0.2 and (e) in the single-layer regime at ∆ν= −0.33. (f) GPF (top panel), drag ratio Idrag/Idrive (middle panel), and
GCF (bottom panel) as a function of T measured at ν̃total = 1/3 and ∆ν= −0.20.

Fig. 2a). According to this construction, varying ∆ν only
changes the excitonic density, while having no impact on
the excitonic nature of the FQHE state. Consequently,
the (333) state is expected to be stable over a wide range
of ∆ν.

Fig. M4a plots the PF conductance GPF as a func-
tion of ∆ν and ν̃total. In the two-component regime, the
FQHE state at ν̃total = 1/3, indicated by the red arrows
and vertical dashed line, is shown to extend along con-
stant total filling, occupying the entire ∆ν range. This
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robustness against ∆ν is in alignment with the expected
(333) state.
The nature of the ground state is revealed by trans-

port responses measured with varying ∆ν. A robust ex-
citonic state is observed in the ∆ν regime marked by
the blue shaded background (Fig. M4b), where vanish-
ingGPF (black trace) coincides with non-zero counterflow
conductance GCF (blue trace). This background under-
scores the stability of 2

2CF excitons against layer imbal-
ance.
Near ∆ν= 0, a reduction in the charge gap gives rise

to free charge carriers, resulting in non-zero GPF and
a reduced drag response. Despite this reduction in the
charge gap, the ground state order remains unchanged
across the entire ∆ν range, as illustrated in Fig. S3. It
is important to note that the reduction in the charge
gap near ∆ν= 0 is consistent with the (111) state [19,
28]. The dependence on ∆ν offers an indirect evidence
supporting the (333) wavefunction as the origin of the
FQHE at ν̃total.
It should be emphasized that the excitonic order at

2
1CF states is distinct from 2

2CF excitons. For 2
2CF ex-

citons, the appearance of a charge gap is directly related
to the exciton pairing. For states 2

1CF , the emergence
of a charge gap originates from the formation of Λ-levels.
Indeed, the observation of excitonic pairing along 2

1CF
states in Fig. 4 raises an interesting open question. In
this paper, we discuss one of the most natural explana-
tions by invoking exciton pairing between quasiparticle
and quasihole excitations. This gives rise to excitons with
fractionally charged constituents.

II. Measurement Configurations and Sample

Geometry

In this work, quantum Hall graphene bilayer samples
are shaped into the edgeless Corbino geometry, as shown
in Fig. 1a. This geometry allows three distinct mea-
surement geometry: parallel flow (PF), counterflow, and
drag. The PF geometry probes the charge gap of the
FQHE state. The presence of a robust FQHE state will
be manifested in an insulating feature in PF geometry
with vanishing bulk conductance GPF = 0. The coun-
terflow and drag geometries probe excitonic flow in the
charge-neutral counterflow channel. In both geometries,
current flows in opposite directions across the top and
bottom layers. For simplicity, we refer to the top layer
as layer 1, and the bottom layer as layer 2.
We discuss expected transport properties of a FQHE

state, where a robust charge gap coexists with excitons
that are overall charge neutral mode. Due to the robust
charge gap, we expect to observe an insulating state in
the PF geometry. The presence of interlayer excitons al-
lows the counterflow measurement to directly couple to
exciton flow, which generates a conductive response in

να

νβ να

νβ να

νβ

FIG. M5. Reversing drive and drag layers in the drag

geometry. Three drag configurations are shown here. (0)
represents the configuration used in the main text, where top
graphene layer (layer 1) is the drive layer at LL filling να, and
bottom graphene layer (layer 2) is the drag layer at νβ . (i) is
the first reversed configuration, where bottom graphene layer
is the drive layer at να and top graphene layer is the drag
layer at νβ . (ii) is the second reversed configuration, bottom
graphene layer is the drive layer at νβ and top graphene layer
is the drag layer at να.

the counterflow geometry. Most importantly, the coexis-
tence of a robust charge gap and charge-neutral excitons
will give rise to a characteristic transport behavior. Since
current is carried solely by the counterflow mode of ex-
citon flow, a current across the drive layer is perfectly
converted into a current with equal amplitude and op-
posite direction across the drag layer (Fig. M5). This
unique transport response, described by Idrag/Idrive = 1,
is referred to as the perfect drag response. If unpaired
free charge is generated, the drag ratio will deviate from
one, with Idrag being smaller than Idrive.

Fig. M5 shows three drag configurations. Configura-
tion (0) is utilized as the drag geometry in the main text,
where the top graphene layer (layer 1) is the drive layer
and the bottom graphene layer (layer 2) the drag layer.
Along the orange line in Fig. 3b and the blue line in
Fig. 4d, drive and drag layers are tuned to different LL
fillings. Given a non-zero layer imbalance, there are two
options for reversing the drive and drag layers. For sim-
plicity, we denote the drive and drag layer filling in con-
figuration (0) as να and νβ . In configuration (i), bottom
graphene layer is the drive layer at να and top graphene
layer is the drag layer at νβ . Configuration (i) maintains
the same LL fillings of drive and drag layers compared to
configuration (0). In configuration (ii), bottom graphene
layer is the drive layer at νβ and top graphene layer is
the drag layer at να. Configuration (ii) maintains the
same LL fillings of the top and bottom graphene layers
compared to configuration (0).

As can be seen in Fig. M6, the perfect drag response
remains the same between three drag configurations, (0),
(i), and (ii). Perfect drag ratio of one, Idrag/Idrive = 1,
always coincides with the robust charge gap evidenced
by vanishing GPF.
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FIG. M6. Reversing drive and drag layers. (a) GPF (top), drag ratio Idrag/Idrive measured from configuration (0) (middle),
and drag ratio measured from configuration (i) (bottom) as a function of ν̃total along the dashed orange line in Fig. 3a. (b)
GPF (top), drag ratio Idrag/Idrive measured from configuration (0) (middle), and drag ratio measured from configuration (ii)
(bottom) as a function of ν̃total. (b) is measured from B = 5 T along the trajectory that is equivalent to the orange dashed
line in Fig. 3a.

For the quantum Hall bilayer sample used in this
work, interlayer separation is 4.5 nm for the device with
Corbino geometry. The sample consists of graphite gate
electrodes as the top most and bottom most encapsu-
lating layer. Charge carrier density in layers 1 and 2,
n1 and n2, can be independently controlled by applying
voltage bias to top and bottom graphite gate electrodes.
LL filling in each layer is defined as νi = niΦ0/B. Here,
Φ0 denotes the quantum of magnetic flux, B is the ex-
ternal magnetic field. As such, B/Φ0 defines the number
of magnetic flux penetrating a unit area of the sample.

III. Layer Pseudo-spin and Spin

Unlike 2
2CF excitons that extends along lines of con-

stant ν̃total,
2
1CF excitons are only stable around specific

points in the phase space, defined by integer values of
2
1ν

∗

1 and 2
1ν

∗

2 . This distinction is demonstrated by a se-
ries of transitions at ν̃total = 2/3 as a function of vary-
ing ∆ν. At this filling, changing ∆ν stabilizes a cascade
of FQHE states with robust energy gaps (indicated by
arrows and vertical dashed lines in Fig. 4e-g). The con-
struction of each FQHE is highlighted by the schematic
map in Fig. 4a, where ν̃total = 2/3 is marked by the
vertical red dashed line. With full layer polarization at
∆ν= ±2/3, the single-layer regime is highlighted by a
grey-shaded background, where a lack of interlayer cor-
relation gives rise to a FQHE state with the 2

0CF con-
struction. As ∆ν deviates from full polarization, 2

2CF
excitons occupy a range of ∆ν marked with a red-shaded

background. Further decreasing ∆ν stabilizes 2
1CF ex-

citon states, specifically at (21ν
∗

1 = 1, 2
1ν

∗

2 = −3), and
(21ν

∗

1 = 2, 2
1ν

∗

2 = −4). These points are uniquely con-
nected to the 2

1CF construction, setting them apart from
the more continuous presence of 2

2CF excitons.
In quantum Hall bilayers, adjusting layer imbalance

∆ν allows access to the full range of pseudo-spin polar-
ization Sz, which is defined as,

Sz =
ν̃1 − ν̃2
ν̃1 + ν̃2

=
∆ν

ν̃total
. (M2)

Given the experimental challenges to control and probe
electronic quantum numbers, such as spin, valley isospin,
and sublattice, layer pseudo-spin in quantum Hall bi-
layers offers an exceptional simulator for these quan-
tum numbers. Although the detection of neutral
modes presents an outstanding challenge for most two-
component electron systems [45, 46], quantum Hall bi-
layer are an exception, as excitonic neutral modes can be
easily detected and examined with counterflow measure-
ments.
Using the language of layer pseudo-spin, the presence

of a robust charge gap at Sz = 0 suggests a pseudo-spin
antiferromagnetic insulator (see section IV in Methods).
This insulator is accompanied by a gapless neutral mode,
as evidenced by the observation of the perfect drag ratio
(see Fig. M7d). This phenomenon is directly comparable
to the spin superfluid in a single 2D layer, which has been
explored in association with a spin antiferromagnetic in-
sulator [47–50]. This analogy underscores the unique
capability of quantum Hall bilayers to simulate and ex-



14

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

ν∗
1

2
1

ν∗
2

2
1

2

∞

-2

-4

2

∞
-4

-2

Δ
ν

2
2

42ν  =

Δν

0.0

1.0

2.0

−2/3 −1/3 −2/9 0.0 2/9 1/3 2/3

0.4

0.6

0.8

1.0

/
μ

Δ

0

10

20

= 12 T   
 = 20 mK  

2

4

ν = -4/3

= −1 −0.47−0.69 −0.39 0 0.39 0.47 0.69
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plore complex electronic behaviors in the FQHE land-
scape, offering unprecedented insights into phenomena
such as antiferromagnetic and canted-antiferromagnetic
orders, as well as neutral mode dynamics, which are oth-
erwise challenging to detect and study in conventional
2D electron systems.

Given the analogy between pseudo-spin and spin, the
insulating phase at ∆¿= 0 can be viewed as an anti-
ferromagnetic insulator in the pseudospin channel. The
presence of perfect drag response is indicative of a charge-
neutral mode enabled by pairing between two pseudo-
spin species. Since the energy gap at ¿ = 0 is close to 20
K, quasiparticle excitation is negligible at T = 20 mK.
As such, we argue that interlayer exciton is a gapless
neutral mode. This enables an exciton condensate as the
ground state. This condensate is the pseudo-spin equiv-
alent of the spin superfluid, which is proposed to arise
from charge neutral modes of an antiferromagnetic in-
sulator [47–50]. Interestingly, transport measurements
in quantum Hall bilayer uncover many excitonic states
when Sz deviates from 0. Adopting the same language
of spinful electrons, these excitonic states at non-zero ∆¿
correspond to canted-antiferromagnetic orders.

Given the different dimensions between the phase
space of spin and pseudo-spin, the analogy between
pseudo-spin and spin is not intended to be exact. Never-
theless, our observations establish an unambiguous indi-
cation for a hidden dimension underlying the landscape
of FQHE, which cannot be accessed by charge transport
alone. While it remains an experimental challenge to
directly probe the spin and valley order, or control their
polarization, quantum Hall bilayer provides an ideal plat-
form to investigate the nature of two-component FQHE
and their neutral modes.

Interestingly, the ∆¿-dependence at ¿̃total = 1/3 is
drastically different. At this filling, the charge gap re-
mains robust across the transition from a single-layer
Laughlin state to the excitonic order of 2

2CF (Fig. M4).

The dependence of 2-component FQHE on Sz can be
compared with the stability of single-layer FQHE against
an inplane magnetic field [51–53]. With increasing in-
plane magnetic field, it was shown that the energy gap
at ¿ = 2/3 diminishes before the emergence of another
incompressible state, whereas the energy gap at ¿ = 1/3
appears unaffected by the in-plane B-field. In both cases,
the application of an inplane field favors a spin-polarized
state. Our observations in quantum Hall bilayer suggest
that there are more viable configurations at ¿ = 2/3 com-
pared to ¿ = 1/3. This creates an experimental basis for
understanding the dependence on an in-plane magnetic
field.

IV. Theoretical Methods

We consider Abelian states of the Halperin (nnm) type
and their generalizations. Here n is an odd number, while
m is any integer such that m f n for the state to be
stable. The state is comprised of composite fermions,
which carry n− 1 quanta of intralayer magnetic flux and
m quanta of inter-layer flux.
In terms of the electron positions xk + iyk, the wave

function is a product of an exponential factor, which is
the same for all states, and a polynomial, which depends
on the topological order. To construct the polynomial,
we divide electrons into two or more groups, so that the
two layers correspond to different groups. If the positions
of the electrons in the two groups are za = xa + iya and
wb = xb + iyb, the polynomial part of the (nnm) wave
function is Πa>c(za−zc)

nΠb>d(wb−wd)
nΠa,b(za−wb)

m.
The structure of the wave function is encoded in its K-
matrix [38].

(nnn) states

An (nnn) state has a degenerate K-matrix, and its
physics is different from other Halperin states. It de-
scribes a Laughlin state at the filling factor 1/n, where
electrons are allowed to reside in both layers. Such states
are encountered for some combinations of the filling fac-
tors in this paper. Their neutral excitations are gener-
ated by moving composite fermions between two layers
locally. Such excitations are bosons since they can be cre-
ated by a local operation. Hence, we can think of them
as excitons. Their charges in the two layers are simply
equal to the charge of a composite fermion ±e.

Drag current

For FQHE states following the 2
1CF construction, drag

current can be generated either as a current of bilayer ex-
citons or a backflow current due to interlayer flux attach-
ment. Bilayer excitons combine opposite charges in the
two layers. Thus, any motion of excitons results in the
opposite electric currents in the two layers. This can nat-
urally explain perfect drag. Alternatively, a drag current
can emerge due to inter-layer flux attached to composite
fermions. Thus, when composite fermions in one layer
move, their attached flux moves, and its motion creates
an effective electric field in the other layer. This field ex-
cites current in the second layer. We will see below that
in the latter case, the drag current is less than the drive
current, i.e., the drag is not perfect.
As an example, we compute the backflow current in

a system populated by composite fermions of positive
charge e carrying 2 intralayer flux quanta and 1 interlayer
flux quantum. The composite fermion filling factors in
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the upper and lower layers are ¿∗1 and ¿∗2 respectively.
Consider the drive current density jdrive through the up-
per layer. Each moving composite fermion drags the at-
tached magnetic flux with it. This induces an effective
electric field. To compute the drag current density jdrag
in the lower layer, we find the effective electric field Eeff

generated by the currents jdrive and jdrag in the lower
layer,

Eeff = −(jdrive + 2jdrag)
Φ0

ec
, (M3)

where Φ0 = hc/e is a flux quantum. From the quantized
conductance of the composite fermions,

jdrag =
¿∗2e

2

h
Eeff = −

¿∗2
1 + 2¿∗2

jdrive, (M4)

where we assumed zero Ãxx in the lower layer. Thus,
the backflow current cannot provide perfect drag, which
we ascribe to excitons. In the Supplemental text, we re-
peat the calculation for a small but non-zero longitudinal
conductivity Ãxx in both layers.

Observed states in the bilayer system

The (nnm)-type states, and their generalizations, with
well-defined invertible K-matrices are labeled in terms of
the composite fermion a

bCF filled levels. As is relevant
to the observed data, we focus on the states belonging
to 2

0CF,
2
1CF, and

2
2CF families. The K-matrices, and

their corresponding t-vectors, for the bilayer states are
described in terms of blocks,

K =

(

K1 bJ
bJT K2

)

, and t = t1 · t2. (M5)

The blocks K1 and K2, along with their respective
charge vectors t1 and t2, describe the CF filled ¿∗1 ∈ Z

and ¿∗2 ∈ Z monolayer states respectively. The operation
· denotes direct sum. The matrix J is a constant matrix
of ones with dimensions dim t1 × dim t2, and b = 0, 1, 2.
We work in the symmetric representation in which the t

vector is tT = (1, . . . , 1) of dimension dim t1+dim t2. In
the above construction, the total filling fraction is given
by ¿̃t = tTK−1t and the difference of the fillings is given
by ∆¿ = tTK−1(t1 · 0) − tTK−1(0 · t2) (see Supple-
mentary text). As an example, in the bilayer 2

1CF family,
the ¿∗1 = ¿∗2 = 1 state is represented by K = {3, 1; 1, 3}
with tT = (1, 1) and is observed at ¿̃t = 1/2 and ∆¿ = 0.

Using the above prescription, we construct the K-
matrices describing some of the observed bilayer states
discussed in the main text. For brevity, we use the nota-
tion a

b (¿
∗
1 , ¿

∗
2 ) which denotes a bilayer state at CF effec-

tive fillings ¿∗1 and ¿∗2 belonging to the a
bCF family. Start-

ing with the state 2
1(1, 2) at ¿̃t = 7/13 and ∆¿ = −1/13,

the K-matrix is,

2
1(1, 2) state : K =





3 1 1
1 3 2
1 2 3



 , t =





1
1
1



 . (M6)

Next, for the state 2
1(2, 2) at ¿̃t = 4/7 and ∆¿ = 0,

2
1(2, 2) state : K =









3 2 1 1
2 3 1 1
1 1 3 2
1 1 2 3









, t =









1
1
1
1









. (M7)

For the state 2
1(1, 3) at ¿̃t = 5/9 and ∆¿ = −1/9,

2
1(1, 3) state : K =









3 1 1 1
1 3 2 2
1 2 3 2
1 2 2 3









, t =









1
1
1
1









. (M8)

For the state 2
1(1,−3) at ¿̃t = 2/3 and ∆¿ = −1/3,

2
1(1,−3) state : K =









3 1 1 1
1 1 2 2
1 2 1 2
1 2 2 1









, t =









1
1
1
1









. (M9)

Finally, the state 2
1(2,−4) at ¿̃t = 2/3 and ∆¿ = −2/9,

2
1(2,−4) state : K =

















3 2 1 1 1 1
2 3 1 1 1 1
1 1 1 2 2 2
1 1 2 1 2 2
1 1 2 2 1 2
1 1 2 2 2 1

















, t =

















1
1
1
1
1
1

















.

(M10)

All the properties of the topological order can be ex-
tracted from these K-matrices and their corresponding
t-vectors. In the next section, we use the K-matrix for-
malism to find the exciton charges and statistics.

Exciton charges and statistics

It is possible to find the fundamental quasiparticle ex-
citations, and their statistics for a given K-matrix. The
excitons are then the neutral excitations with quasipar-
ticle charges localized in the two layers. A generic quasi-
particle excitation with charge Q1 in layer 1 and Q2 in
layer 2 is labeled by the vector l with integer components
where dim l = dim t1 + dim t2. The quasiparticle charge
in each layer is given by (see Supplementary text),

Q1 = −e(t1 · 0)TK−1l, (M11)

in layer 1 and similarly, in layer 2 it is,

Q2 = −e(0· t2)
TK−1l. (M12)
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From the above formula, it is evident that a generic ex-
citation charge in the bilayer state, Q = Q1 + Q2, con-
sists of charges localized in both layers. Thus, a frac-
tional charge excitation in the bilayer state is composed
of fractional charges localized in the two layers, however,
these individual layer charges are not independently cre-
ated. The exciton charge is computed from the condition
Q1 + Q2 = 0. Additionally, the self statistical phase ¹s
accumulated when a quasiparticle labeled by a vector l,
in the bilayer system is exchanged with the same kind
of another quasiparticle, is given by (see Supplementary
text),

¹s = ÃlTK−1l mod 2Ã. (M13)

In the example considered before, in the bilayer 2
1CF

family, the ¿∗1 = ¿∗2 = 1 state allows excitons which are
bound states of quasiparticles with charge of Q1 = −3e/8
and Q2 = e/8 is the two layers, along with qausiholes
with charge of Q1 = −e/8 and Q2 = 3e/8. Thus the ex-
citon has a charge of ±e/2, as illustrated in Fig. 4d. We
would like to emphasize again that Q1 and Q2 are not to
be thought of as independent charges. The ±e/2 exciton
acquires a self statistical phase of Ã after exchange, which
makes it a fermionic exciton.
An advantage of working in the symmetric representa-

tion is that the charges Q1, Q2, and their statistics, only
depend on the following two integers ℓ1, ℓ2 ∈ Z,

ℓ1 ≡

dim t1
∑

i=1

li, and ℓ2 ≡

dim t2
∑

i=1

li+dim t1
. (M14)

See Supplementary text for a proof of the above state-
ment. We compute the minimal exciton charge construc-
tion corresponding to the K-matrices given for some of
the observed bilayer states discussed in the main text.
First, for the state 2

1(1, 2) at ¿̃t = 7/13 and ∆¿ = −1/13,
we obtain,

Q1

e
=

5

13
ℓ1 −

1

13
ℓ2, and

Q2

e
=

3

13
ℓ2 −

2

13
ℓ1, (M15)

which results in the exciton charge Qexciton = ±e. This
exciton acquires a self statistical phase of 8Ã modulo 2Ã,
which makes it a boson. We would like to emphasize
that although for 2

1(1, 2) state the exciton is bosonic with
charge ±e, depairing of such excitons leads to highly non-
trivial fractional quasiparticles. Next, for the state 2

1(2, 2)
at ¿̃t = 4/7 and ∆¿ = 0, the charges are,

Q1

e
=

5

21
ℓ1 −

2

21
ℓ2, and

Q2

e
=

5

21
ℓ2 −

2

21
ℓ1, (M16)

which results in the exciton charge Qexciton = ±e/3. In
this state, the statistical phase acquired when an exciton
goes around another is ¹s = 4Ã/3. Next, for the state
2
1(1, 3) at ¿̃t = 5/9 and ∆¿ = −1/9, the charges are,

Q1

e
=

7

18
ℓ1 −

1

18
ℓ2, and

Q2

e
=

1

6
ℓ2 −

1

6
ℓ1, (M17)

which leads to an exciton charge Qexciton = ±e/2. The
statistical phase for this exciton is ¹s = 7Ã/2, or equiva-
lently 3Ã/2. Although the two states, 2

1(1, 1) and
2
1(1, 3),

share the same exciton charge, they follow different
statistics, which highlights the rich internal structure of
these fractional excitons. Next, for the state 2

1(1,−3) at
¿̃t = 2/3 and ∆¿ = −1/3, the charges are,

Q1

e
=

5

12
ℓ1 −

1

12
ℓ2, and

Q2

e
=

1

4
ℓ2 −

1

4
ℓ1, (M18)

which leads to an exciton charge Qexciton = ±e/2. The
statistical phase for this exciton is ¹s = 2Ã making it a
boson. Finally, for the state 2

1(2,−4) at ¿̃t = 2/3 and
∆¿ = −2/9, the charges are,

Q1

e
=

7

27
ℓ1 −

2

27
ℓ2, and

Q2

e
=

5

27
ℓ2 −

4

27
ℓ1, (M19)

which results in the exciton charge Qexciton = ±e/3. The
statistical phase for this exciton is ¹s = 2Ã, thus it is
bosonic as well. The illustration for some of the exciton
constructions is shown in Fig. 4d. As a general rule, for
a state belonging to the 2

1CF family with effective integer
fillings ¿∗1 and ¿∗2 , the exciton charge is given by

Qexciton = ±
e

gcd(|¿∗1 + 1|, |¿∗2 + 1|)
, (M20)

where the integer valued function gcd(n1, n2) computes
the greatest common divisor of the integers n1 and n2.
Similarly, for integer filled ¿∗1 , ¿

∗
2 ∈ Z states belonging to

the 2
2CF family, the exciton charge is always ±e.

Competing states

At certain special points in the ¿t-∆¿ phase space, the
observed incompressible states lie on the intersection of
the family of curves belonging to multiple a

bCF-type con-
structions, which makes identifying the underlying struc-
ture of the wavefunction ambiguous. Such states, for
example at ¿t = 2/3 and ∆¿ = 0, admit several topolog-
ically inequivalent competing orders which, in general,
lead to different excitonic charges. Hence, with the aid
of future experiments, the ground states can be resolved.
In this section, we discuss some of these competing

states. Starting with the state at ¿t = 2/3 and ∆¿ =
0, a K-matrix can be constructed belonging to the 2

0CF
family,

2
0(1, 1) state: K =

(

3 0
0 3

)

, t =

(

1
1

)

. (M21)

An equally possible construction, belonging to the 2
2CF

family, involves integer filled ¿∗1 = ¿∗2 = −1 state. The
K-matrix for such a state is given by,

2
2(−1,−1) state: K =

(

1 2
2 1

)

, t =

(

1
1

)

. (M22)
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Naturally, since the two topological orders belong to dif-
ferent equivalence classes, the two descriptions have dif-
ferent physical properties. The exciton charge, for ex-
ample, in the 2

0CF type state is simply a bound state of
quasiparticle-quasihole charges in the two layers, which is
Qexciton = ±e/3. The self statistical phase is ¹s = 2Ã/3.
In the 2

2CF type state, however, the charges are given by,

Q1

e
=

1

3
ℓ1 −

2

3
ℓ2, and

Q2

e
=

1

3
ℓ2 −

2

3
ℓ1, (M23)

which leads to the exciton charge Qexciton = ±e, with self
statistical phase of ¹s = 2Ã, making it a boson. Another
set of competing orders exist at ¿t = 4/5 and ∆¿ = 0.
Belonging to the 2

0CF family, the state can be described
as,

2
0(2, 2) state: K =









3 2 0 0
2 3 0 0
0 0 3 2
0 0 2 3









, t =









1
1
1
1









. (M24)

Since there is no interlayer flux, the state admits an ex-
citon with charge given simply as Qexciton = ±e/5. The
self statistical phase is ¹s = 6Ã/5. At the same time, the
state can be described in terms of the 2

1CF family as,

2
1(−2,−2) state: K =









1 2 1 1
2 1 1 1
1 1 1 2
1 1 2 1









, t =









1
1
1
1









. (M25)

whose charges in each layer are given by,

Q1

e
=

3

5
ℓ1 −

2

5
ℓ2, and

Q2

e
=

3

5
ℓ2 −

2

5
ℓ1, (M26)

leading to the exciton charge Qexciton = ±e, that follows
bosonic statistics ¹s = 2Ã.
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SUPPLEMENTARY TEXT

Drag current in bilayer Corbino setup

The philosophy behind the calculation is the same as presented in Section IV in Method. Focusing on the FQHE
bilayer states belonging to the 2

1CF family, we apply an external electric field to layer 1 and compute the backflow
current due to interlayer fluxes. As the composite fermions move, they drag along the attached magnetic flux. This
in turn creates an effective electric field which results in the drag current.

By convention, we assume the magnetic field to be pointing along the negative z direction. We apply an external
electric field E along x which results in the flow of composite fermion current ji,α along ³ = x, y direction in ith layer.
Since the composite fermions carry (2+1) fluxes, the induced electric fields due to the motion of fluxes are,

¶E1,x = −
2Φ0

ec
j1,y −

Φ0

ec
j2,y, and ¶E1,y =

2Φ0

ec
j1,x +

Φ0

ec
j2,x, (S1)

where Φ0 = hc/e is the flux quantum. The subscripts of ¶Ei,α represent the layer index i = 1, 2 and the direction
³ = x, y. Similarly, the induced electric fields in the second layer are,

¶E2,x = −
Φ0

ec
j1,y −

2Φ0

ec
j2,y, and ¶E2,y =

Φ0

ec
j1,x +

2Φ0

ec
j2,x. (S2)

Since the external electric field is only applied to the first layer, we compute the current assuming non-zero but small
longitudinal conductivity Ãi

xx ̸= 0, and quantized transverse conductivity Ãi
xy = ¿∗i e

2/h for the ith layer, where ¿∗i ∈ Z

are the effective CF fillings. We have,

j1,x = Ã1
xx

[

E −
2Φ0

ec
j1,y −

Φ0

ec
j2,y

]

− Ã1
xy

[

2Φ0

ec
j1,x +

Φ0

ec
j2,x

]

, (S3)

j2,x = Ã2
xx

[

−
Φ0

ec
j1,y −

2Φ0

ec
j2,y

]

− Ã2
xy

[

Φ0

ec
j1,x +

2Φ0

ec
j2,x

]

, (S4)

j1,y = Ã1
xx

[

2Φ0

ec
j1,x +

Φ0

ec
j2,x

]

+ Ã1
xy

[

E −
2Φ0

ec
j1,y −

Φ0

ec
j2,y

]

, (S5)

j2,y = Ã2
xx

[

Φ0

ec
j1,x +

2Φ0

ec
j2,x

]

+ Ã2
xy

[

−
Φ0

ec
j1,y −

2Φ0

ec
j2,y

]

. (S6)

The coupled equations can be solved for the currents ji,α in each layer and each direction up to the leading order
in Ãxx. From Ohm’s law, jx ∼ ÃxxE in each layer, thus up to leading order, we obtain,

j1,y =
¿∗1 (1 + 2¿∗2 )

1 + 2(¿∗1 + ¿∗2 ) + 3¿∗1¿
∗
2

e2

h
E, and j2,y = −

¿∗1¿
∗
2

1 + 2(¿∗1 + ¿∗2 ) + 3¿∗1¿
∗
2

e2

h
E. (S7)

Assuming Ã1
xx ≈ Ã2

xx ≡ Ãxx we solve for the current densities along x direction,

j1,x =
¿∗21 + (1 + 2¿∗2 )

2

[1 + 2(¿∗1 + ¿∗2 ) + 3¿∗1¿
∗
2 ]

2
ÃxxE, and j2,x = −

¿∗1 + ¿∗2 + 2(¿∗21 + ¿∗22 )

[1 + 2(¿∗1 + ¿∗2 ) + 3¿∗1¿
∗
2 ]

2
ÃxxE. (S8)
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The condition of perfect drag is now

¿∗21 + (1 + 2¿∗2 )
2 = ¿∗1 + ¿∗2 + 2(¿∗21 + ¿∗22 ). (S9)

If the drive layer is layer 2 then the perfect drag condition becomes

¿∗22 + (1 + 2¿∗1 )
2 = ¿∗1 + ¿∗2 + 2(¿∗21 + ¿∗22 ). (S10)

The sum of the two equations yields

(1 + ¿∗1 )
2 + (1 + ¿∗2 )

2 = 0, (S11)

that is, ¿∗1 = ¿∗2 = −1. Beyond this limit, the mechanism of this section cannot produce perfect drag for a drive in
each of the two layers.

Filling fractions, quasiparticle charges, and exciton statistics from K-matrix formalism

In this subsection, we give the derivation of the expressions for total filling ¿̃t and the difference of fillings ∆¿ stated
in the main text. We also derive the formulae for quasiparticle charges localized in each layer and exciton statistics.
For a symmetric K-matrix constructed via the prescription presented in the Methods section, and their corresponding
t1 and t2 vectors, the action for the bilayer system, involving dim t1 + dim t2 emergent U(1) gauge fields {aiµ}, is
given as,

S =
e2

ℏc
ϵλµν

∫

d2xdt

[

1

4Ã
aTλK∂µaν −

A1
λ

2Ã
(t1 · 0)T∂µaν −

A2
λ

2Ã
(0· t2)

T∂µaν

]

, (S12)

where the operation · denotes direct sum, and we represent the emergent gauge fields as a vector aTµ ≡ (a1µ, a
2
µ, . . . ).

The current density in the two layers, Jλ
1 = (e2/hc)ϵλµν(t1 · 0)T∂µaν and Jλ

2 = (e2/hc)ϵλµν(0 · t2)
T∂µaν , couple

to vector potentials A1
µ and A2

µ respectively which result from an externally applied displacement field, therefore,

Ai
µ = A0

µ + ¶Ai
µ for layers i = 1, 2. By varying the action, one finds the equation of motion, corresponding to each

gauge field, that is compactly written in matrix form,

A1
µt1 ·A2

µt2 = Kaµ ⇒ K−1
(

A1
µt1 ·A2

µt2
)

= aµ. (S13)

We now integrate out all the emergent U(1) gauge fields {aiµ}, and using the symmetric property of the K-matrix,
one obtains an effective action,

Seff = −
e2

4Ãℏc
ϵλµν

∫

d2xdt
[

A1
λ∂µA

1
ν(t1 · 0)TK−1(t1 · 0) +A2

λ∂µA
2
ν(0· t2)

TK−1(0· t2)

+A1
λ∂µA

2
ν(t1 · 0)TK−1(0· t2) +A2

λ∂µA
1
ν(0· t2)

TK−1(t1 · 0)
]

. (S14)

Since the two layers are coupled to different vector potentials, leading order variation of the externally applied
displacement field gives the filling of the individual layers ¿̃1 and ¿̃2,

Seff = −
e2

4Ãℏc
ϵλµν

∫

d2xdt
[

A0
λ∂µA

0
ν(t1 · t2)

TK−1(t1 · t2) +
(

A0
λ∂µ¶A

1
ν + ¶A1

λ∂µA
0
ν

)

(t1 · t2)
TK−1(t1 · 0)

+
(

A0
λ∂µ¶A

2
ν + ¶A2

λ∂µA
0
ν

)

(t1 · t2)
TK−1(0· t2) +O(¶A)2

]

. (S15)

From here we obtain the response of the bilayer state with respect to the change in the displacement field. Conse-
quently, the individual layer filling fractions are given by,

¿̃1 = (t1 · t2)
TK−1(t1 · 0) and ¿̃2 = (t1 · t2)

TK−1(0· t2). (S16)

The total filling and the difference of fillings are then defined as ¿̃t ≡ ¿̃1 + ¿̃2 and ∆¿ ≡ ¿̃1 − ¿̃2, which lead to the
expressions used in the main text.
The same setup can also be used to extract the quasiparticle charges in each layer by including the source terms.

We define dim t1 + dim t2 current densities {jiµ} associated to the emergent gauge fields {aiµ}, each of which couple
to the emergent gauge field, thus we include

Ssource = −

∫

d2xdt ¶µνjTµaν , (S17)
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the source term to the action Eq. S12. Here we represent the sources as a vector jTµ ≡ (j1µ, j
2
µ, . . . ). The equation of

motion for the system with the source term is now given as,

jλ =
e2

hc
ϵλµν

[

−∂µ(A
1
νt1 ·A2

νt2) +K∂µaν
]

⇒ K−1jλ =
e2

hc
ϵλµν

[

−K−1∂µ(A
1
νt1 ·A2

νt2) + ∂µaν
]

(S18)

Using these equations of motion, the actual current densities, Jµ
1 and Jµ

2 in the two layers, are then computed in
terms of the sources. Quasiparticles are created by inserting sources, j0(r) = −el¶(r − r0), labelled by a vector l of
dimensions dim l = dim t1 + dim t2 and integer components. Since the charge associated with the emergent gauge
field is different from the charge in the original EM field, we obtain the charges,

Q1 = −e(t1 · 0)TK−1l, and Q2 = −e(0· t2)
TK−1l, (S19)

localized in the two layers. A generic excitation in the bilayer state, labeled by an integer vector l, consists of charges
localized in both layers. The exciton condition is given by Q1+Q2 = 0, i.e., for an exciton labeled by le, the condition
translates to (t1·t2)

TK−1le = 0. Strictly speaking, the exciton condition is also accompanied by a constraint that le
correspond to a minimal Q1,2 ̸= 0, since more complicated states may have neutral excitations that are not excitons.
Following similar arguments as presented above, one finds the self-statistical phase ¹s accumulated when one exciton,

labeled by le, in the bilayer system, is exchanged with the same kind of another exciton,

¹s = ÃlTe K
−1le mod 2Ã. (S20)

We notice that the exciton condition (t1· t2)
TK−1le = 0 may have distinct solutions corresponding to integer valued

le. All such minimal excitons, corresponding to the distinct le, however, lead to the same statistical phase modulo
2Ã. We show this in the next section.

Some useful properties of the bilayer K-matrices

In this section, we exploit some of the useful properties of the bilayer K matrix in the symmetric representation.
We use the prescription given in Section IV in Method. As a reminder, the K-matrices, and their corresponding
t-vectors, for the bilayer states are described in terms of blocks in Eq. M5. The blocks K1 and K2, along with
their respective charge vectors t1 and t2, describe the CF filled ¿∗1 , ¿

∗
2 ∈ Z monolayer states respectively. Now, in the

symmetric representation, the charge vectors take the form, tT = (1, . . . , 1), depending on their respective dimensions,
i.e., dim t1 and dim t2 respectively. In this representation, the monolayer K-matrices take the form,

Ki = ÃiI+ piJ, with Ãi = ±1, pi ∈ Z, (S21)

where the matrices I and J are the identity and constant matrix of ones respectively. The subscript i = 1, 2 denotes
the layer index. Naturally, depending on the layer index, i = 1, 2 the monolayer matrices have a dimension of
dim ti × dim ti. The simple form of the monolayer K-matrices admits a simple form of their inverses,

K−1
i = ÃiI−

Ãipi
pi dimKi + Ãi

J. (S22)

Using these results, the structure of the inverse of the bilayer K-matrix, constructed via the prescription in Eq. (M5),
is given as,

K−1 =

(

Ã1I+ ¼1J1 ¼′J

¼′JT Ã2I+ ¼2J2

)

, with Ãi = ±1, and ¼i, ¼
′ ∈ Q. (S23)

The structure of the inverse of the bilayer K-matrix allows us to make certain claims about the dependence of
quasiparticle charge and statistics on the choice of l-vector. The quasiparticle charge in each layer is given by Eqs.
(M11), and (M12). Claim 1: In the symmetric representation, the quasiparticle charges in each layer Q1 and Q2

depend only on the two integers ℓ1, ℓ2 ∈ Z, defined in Eq. (M14). Proof: To prove, we use the structure of the inverse
of the K-matrix and write,

Q1 = −e(t1 · 0)TK−1l = −e
n
∑

i,j=1

K−1
ij lj − e

n
∑

i=1

n+m
∑

j=1+n

K−1
ij lj (S24)

= −e

n
∑

i,j=1

(Ã1¶ij + ¼1) lj − en¼′

m
∑

j=1

lj = −e [(Ã1 + n¼1) ℓ1 + n¼′ℓ2] , (S25)
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where for convinience we defined n ≡ dim t1 and m ≡ dim t2. Since the K-matrix is symmetric, and the two diagonal
blocks have the same form, the argument for Q2 is the same. ■
Claim 2: In the symmetric representation, for the quasiparticle represented by the vector l, the self statistics ¹s

depend only on the two integers ℓ1, ℓ2 ∈ Z. Proof: Again, the structure of the inverse of K-matrix allows one to prove
the claim. Using symmetric property, we have,

lTK−1l =

n
∑

i,j=1

liljK
−1
ij +

m+n
∑

i,j=1+n

liljK
−1
ij + 2

n
∑

i=1

m+n
∑

j=1+n

liljK
−1
ij (S26)

=

n
∑

i,j=1

lilj (Ã1¶ij + ¼1) +

m+n
∑

i,j=1+n

lilj (Ã2¶ij + ¼2) + 2¼′

n
∑

i=1

li

m+n
∑

j=1+n

lj (S27)

= Ã1

n
∑

i=1

l2i + Ã2

m
∑

i=1

l2i+n + ¼1ℓ
2
1 + ¼2ℓ

2
2 + 2¼′ℓ1ℓ2. (S28)

We need to show that the first two terms in the above expression do not change ¹s = ÃlTK−1l modulo 2Ã, when the
components of the vector l change such that they result in the same Q1 and Q2. From our previous proof, we showed
that the charges only depend on the integers ℓ1 and ℓ2 rather than all the components of l. Therefore, we show that
¹s remains invariant as the vector l changes keeping ℓ1,2 fixed. These transformations are achieved by repeatedly
replacing lk → lk + s1 and lj → lj − s1 for some 1 f k, j f n and similarly, replacing lk → lk + s2 and lj → lj − s2
for some n+ 1 f k, j f m+ n where s1, s2 ∈ Z. These transformations result in,

Ã1

n
∑

i=1

l2i (mod 2) −→ Ã1(lk + s1)
2 + Ã1(lj − s1)

2 + Ã1

n
∑

i=1,i ̸=j,k

l2i (mod 2) (S29)

= 2Ã1s1(lk + lj) + 2Ã1s
2
1 + Ã1

n
∑

i=1

l2i (mod 2) = Ã1

n
∑

i=1

l2i (mod 2), (S30)

where in the last equality, we make use of the fact that Ã1 = ±1 and s1, li ∈ Z. Similarly, under these changes the
expression Ã2

∑m

i=1 l
2
i+n modulo 2 is invariant therefore, ¹s = ÃlTK−1l modulo 2Ã is determined by the integers ℓ1

and ℓ2. ■
A similar argument can be used to compare mutual statistics of two excitons with identical ℓ1, ℓ2 but different

l-vectors. We discover that the statistical angle is uniquely defined up to Ã. This phase difference has no physical
consequences since an exchange of non-identical objects does not return the system to the initial quantum state. If,
on the other hand, one exciton makes a full circle around another exciton then the statistical-phase difference doubles
Ã → 2Ã and is irrelevant.
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FIG. S1. 2-component FQHE effect with 2
2CF excitons. (a) Schematic diagram of the 2

2CF exciton construction.
(b) GPF and (c) drag ratio Idrag/Idrive measured as a function of ν̃total and ν̃1. The orange horizontal line indicates the same
orange line in Fig. 3b. (d-e) Bulk conductance measured across (d) layer 1 and (e) layer 2 as a function of ν̃total at ν̃1 = 0.08.
Varying ν̃total at ν̃1 = 0.08 defines the orange line in panel b and c, which corresponds to the same trajectory as the orange
line in Fig. 3b. Along the orange line, LL filling in layer 1 remains a constant, ν̃1 = 0.08. As such, it is remarkable that
bulk conductance measured across layer 1, G1, exhibits the same oscillation as that of layer 2 G2. Since ν̃1 is a constant,
only ν̃2 changes along the orange line. The fact that G1 varies between highly conductive and insulating with varying ν̃2
provides unambiguous evidence for interlayer excitonic pairing. Moreover, layer 1 is conductive with non-zero G1 away from
2
2CF excitonic orders. This is an independent confirmation that layer 1 is populated with free charge carriers and the quantum
Hall bilayer is outside the single-layer regime.
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FIG. S3. ∆ν-evolution at ν̃total = 1/3. (a) GPF versus νtotal and ∆ν. (b-g) GPF (top) and Idrag/Idrive (bottom) versus νtotal
near νtotal = −5/3 at different ∆ν: (b) −0.17, (c) −0.1, (d) −0.05, (e) 0, (f) 0.05 (g) 0.1 (marked as white solid lines in panel a).
All measurements are performed at B = 12 T, T = 20 mK. Near ∆ν= 0, the stability of the 2-component FQHE ν̃total = 1/3 is
partially suppressed, which is evidenced by the non-zero GPF and drag ratio that deviates from one. Nevertheless, GPF always
exhibits a local minimum, and drag ratio always displays a local maximum ν̃total = 1/3 regardless of ∆ν. We argue that the
ground state order is described by the (333) wavefunction throughout the ∆ν range. The non-zero GPF near ∆ν= 0 arises
from unpaired vortices at the base temperature of the dilution fridge, suggesting that the transition temperature of the exciton
condensate is suppressed near ∆ν= 0. Such suppression is analogous to the observed behavior of the exciton condensate at
total filling of one [19, 28, 54].
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FIG. S4. Charge gaps and neutral modes at ν̃total = 2/3. (a) GPF as a function of ∆ν and ν̃total. Vertical dashed lines
and red arrows highlight two interesting filling fractions, ν̃total = 1/3 and 2/3. (b) Schematic diagram marks the location of
2
2CF and 2

1CF states with red and blue lines, respectively. Open circles mark different FQHE states appearing at ν̃total = 2/3.
(c) Arrhenius plot of PF conductance measured at ν̃total = 2/3 and different ∆ν.
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