A Bound on Topological Gap from Newton’s Laws

Navketan Batra and D. E. Feldman
Department of Physics, Brown University, Providence, Rhode Island 02912, USA and
Brown Theoretical Physics Center, Brown University, Providence, Rhode Island 02912, USA
(Dated: August 6, 2025)

A striking general bound on the energy gap in topological matter was recently discovered in Ref.
[Onishi and Fu, Phys. Rev. X 14, 011052 (2024)]. A non-trivial indirect derivation builds on the
properties of optical conductivity at an arbitrary frequency. We propose a simpler derivation, allow-
ing multiple generalizations, such as a universal bound on a gap in anisotropic systems, systems with
multiple charge carrier types, and topological systems with zero Hall conductance. The derivation
builds on the observation that the bound equals A times the ratio of the force by the external electric
field on the charge carriers and their total kinematic momentum in the direction perpendicular to

the force.

Gapped systems cannot absorb energy at the frequen-
cies below gap/h. Hence, their longitudinal d.c. con-
ductance is zero. On the other hand, a nonzero quan-
tized Hall conductance is allowed in topological insula-
tors [1, 2]. The Hall conductance o,, = Ce?/h with an
integer Chern number C in non-interacting two dimen-
sional (2D) electronic systems. Fractional values of C' are
allowed in the presence of electron interaction. At first
sight, Hall conductance tells nothing about the energy
gap. Indeed, one can build a model with an arbitrarily
large gap and zero C': just confine each electron in a har-
monic trap with an arbitrarily large level spacing. Yet,
in an unexpected twist, Onishi and Fu discovered [3, 4]
that a nonzero C' puts a universal upper bound on the
optical energy gap €gap-

The bound is remarkably simple:
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where m is an electron mass and n is the electron den-
sity in 2D. The derivation is, however, rather nontrivial
and involves properties of the response to high-frequency
circularly polarized light. The goal of this paper is to
offer a more intuitive, rigorous derivation. As we will
see, a simpler derivation opens a way to multiple gener-
alizations of the result, including even to some situations
with zero o4, in two or more dimensions [5-9]. The idea
comes from the following elementary observation.

Apply a uniform electric field F, along the z-axis in a
2D system. The force acting on the electrons

F, =eE,;nS, (2)

where e is an electron charge and S is the area. The
current density j, = (Ce?/h)E, = nvye, where v, is the
average velocity. Hence, the kinematic momentum

P, = Snmuv, = CemE,S/h. (3)
Eq. (1) can now be recast as
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This has a simple physical meaning. The average force
acting on the electrons in a stationary state is 0. If we
suddenly turn off the external field E,, they will expe-
rience an internal force —F,. This will cause rotation
of the momentum with the frequency w = F,/P,. The
existence of such characteristic frequency suggests the
presence of energies ¢ < h|w| in the spectrum. Indeed,
the characterstic response time is set by the intrinsic time
scales on the order of /i/e, where € is an excitation energy.
We will now turn this heuristic into a rigorous argu-
ment. Asin Ref. 3, we assume a kinetic energy operator,
quadratic in momentum for each particle,
S a())2
T: (p+a(r)) , (5)
2m
where a(r) is allowed to depend on spin. Such struc-
ture ensures the validity of the Ehrenfest theorem [10]
for the average force and the time derivative of the kine-
matic momentum. The Ehrenfest theorem is quantum
version of Newton’s second law. The total Hamiltonian
Hj also includes inter-electron interaction and the inter-
action with the external periodic and random potentials.
Besides the structure of the kinetic energy (5), the
Ehrenfest theorem relies on the canonical commutation
relations for the coordinate and dynamical-momentum
operators. The operators, acting on different parti-
cles, must commute, the components of the momen-
tum must commute, the coordinates must commute,
and the only nonzero commutators for each particle are
[#,Pz] = [y, Py] = th. These assumptions clearly hold if
P and r describe electrons in a microscopic model. In
that case, a(r) includes the vector potential of the ex-
ternal magnetic field, and the potential energy may be
spin-dependent through Zeeman terms. The spin-orbit
interaction p - (h/4m?c?)[VV x &] can be absorbed into
a as a spin-dependent contribution. In a microscopic
model, m is the mass of an electron in vacuum and the
concentration n includes all electrons in the material.
It may also be possible to derive a bound on the op-
tical gap from an effective low-energy model, so that m
becomes an effective mass and n includes only electrons



in topological bands. The bound only works if the ki-
netic energy is parabolic in a good approximation and the
canonical commutation relations hold at least approxi-
mately in the low-energy model, obtained by integrating
out high-energy degrees of freedom. As will be obvious
from the derivation below, the integration-out procedure
should retain all topological bands responsible for a non-
zero C. It is well known that the quantum Hall effect in
GaAs is well described by a model of electrons or holes
populating a parabolic band and obeying the canonical
commutation relations [11]. As discussed in Ref. 3, the
anomalous quantum Hall effect in twisted MoTe, also
derives from a model [12] with parabolic dispersion and
spin-dependent a where our assumptions apply.

As in Ref. 3, we consider an infinite system. Indeed, a
finite system has gapless edge states and hence no energy
gap. Thus, the area S is infinite. One can avoid the fac-
tor S in equations by rewriting Eqgs. (2) and (3) in terms
of the force and momentum densities. One can also elim-
inate S below by using the sum of all electron coordinates
in place of the product of S, n, and the center-of-mass
position.

We will follow the above heuristic argument and con-
sider the effect of a sudden switch of the electric field.
It is possible to give a closely related argument without
such a trick (see Appendix). We denote the energy of an
excited state |k) as €, > 0 and, without loss of generality,
set the energy of the ground state |0) to 0. In the pres-
ence of a weak electric field F,, the Hamiltonian gets a
correction —eE,nSX , where X is the center-of-mass po-
sition. In the first-order perturbation theory, the ground
state becomes

) = 10) +eBons Y D )
k#0

When FE, is suddenly turned off, the state does not
change immediately, and the internal force remains

where F, is given by Eq. (2)7 the time derivative
of the kinematic momentum dP,/dt = i[Hy,P;]/h,
and the kinematic momentum P, = mSndX /dt =
imSn[Ho, X]/h. A substitution of this definition into
Eq. (7) yields

2en’mS?E,

> = D exl (01X k)%, (8)
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A similar calculation of the average kinematic momentum

in the y-direction Py = Snde/ dt yields
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The ratio of the left-hand sides of Egs. (8) and (9) is
F,/P, = hn/Cm = w. This gives us the relation

23" e (01X ) = ihw S_[(01X k) (K[ V]0) - c.c.]. (10)

k0 k0

where c.c. denote complex conjugate.

The Hall current and the electric force just change
their directions and preserve their magnitudes, if the elec-
tric field is applied along the y-axis. Therefore, anal-
ogous relations can be found by considering the effect
of the electric field along the y-direction. The ratio of
the internal force and the kinematic momentum is now

F,/P, = —hn/Cm = —w, which yields,
2" el (0 k) [ = ihw S [(01X k) (K[Y|0) — c.c.]. (11)
k#0 k#0

By combining Eqgs. (10) and (11
> e([{0Y 1R + (01X k) ) =
k#£0

it Y (01X k) (k1Y 0) —
k0

) we arrive at,

(0]Y'|K) (k| X10)]

< hlw| > 2001 X k) (k[Y]0)].  (12)
k0

Finally, we apply the inequality (0| X |k) (k|Y|0)] <
(](0]Y'|k)|? 4 (0| X |k)|?) /2 and obtain

> (e = Blw) (O [E)[? + [(0[X[k)[*) < 0. (13)
k0

The bound (1,4) follows since the left-hand side is posi-
tive when all € > Alw|.

In a modified argument, one places the system on a
torus to eliminate gapless edges. The argument remains
essentially the same with two modifications. First, the
electric field is introduced through a time-dependent low-
frequency magnetic flux, parallel to the surface of the
torus. Second, one focuses on the momentum of the par-
ticles in place of the time derivatives of multi-valued coor-
dinates. The resulting proof is shorter and more rigorous
though perhaps less intuitive than the above argument
(see Appendix).

Our derivation makes no assumptions about neutral
degrees of freedom. A topological gap can be affected
by interaction with the electromagnetic field in a res-
onator [13]. The bound still must hold. The derivation
also easily accommodates anisotropy when the effective
mass depends on the direction, that is, the quadratic
in the momentum part of the energy of each particle is
p2/2my + pi/2m,. Two different masses now enter the
deﬁnltlons of the kinematic momenta in two directions,

= Snm,dX /dt and P, = Snm,dY /dt. The same
steps lead to the bound
Th2n(mg +m,)
yup < e 2 1) (14)
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The above argument makes minimal use of two-
dimensionality, and it is straightforward to extend the
bound to insulators in three dimensions (3D). We just
introduce the 3D charge density nsp so that the force
per unit volume F, = enspFE,. The Hall current density
Jy = 0xyFy = nzpvye. The same derivation yields

(15)

Another generalization is to systems with multiple car-
rier types with different charges e, and masses m,. This
is relevant, in particular, for a low-energy effective the-
ory in which carriers with different effective masses are
present. For example, this may happen in a van der
Waals structure with layers of different natures. Bilayer
topological liquids are well established experimentally
[14].

When we turn off a weak electric field E, along the
z-axis, the total force on carriers of type a becomes
—Fy o = dPy o/dt = —eqEyng S, where n, is their den-
sity and P, , is the z-component of the kinematic mo-
mentum. This can be used to find the second derivative
of the dipole moment D, = )"  SnaeqXq, where X, is
the center-of-mass coordinate for carriers of type a. We
get

d? eq d e2n
~_D, = —Ppo=-E o2 1
a2 % Z Mg, dt xsza: Me, (16)

We focus on the dipole moment because it couples to the
electric field FE,, so the field-dependent correction to the
Hamiltonian is —E,D,. The perturbed state |¢,) is now
given by a modified Eq. (6) with ﬁm/eSn in place of X.
Similar to Eq. (7) we equate the expression (16) and the
average of the operator d2D, /dt? in the state [¢),). We
find
42 2, ,

ﬁD:c =TTz ];%KMDQUUVH? (17)

We now turn to the electric current density
Jy = OzyEs. (18)
{t can also be computed as the average of the operator
y = Do NabadYy/dt = S~tdD, /dt in the state |1,),
1B,

k0

(01 Dy k) (k| D |0)].

(19)
The rest of the argument is essentially the same as for a
single carrier type. First, by considering the effect of the
electric field E, along the y-direction, we get an analog
of Eq. (17) for matrix elements of ﬁy,
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Next, combining Egs. (16,17,18,19,20) we find that

> (101D ]R)[* + (0] Dy [R)[*) =
k0
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The inequality can only hold if at least one energy level
satisfies the bound

€ <

> &z ”a. (22)

We finally turn to a situation, where an electric field
does not cause a Hall current or a nonzero momentum
in the perpendicular direction. As an example, we con-
sider a spin Hall system [15] in which a spin current

s = CeE, /4w is present due to the opposite electric
currents of spin-up and -down electrons

|‘7my|
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We assume no spin-flip processes so the Ehrenfest the-
orem applies separately to spin-up and -down electrons.
We also assume equal densitites n/2 of spin-up and -down
particles.

We will consider fictitious electric fields Ey =
(Bt Ery) and E| = (E| 4, E| ), which are coupled to
only spin-up or only spin-down electrons. The physical
electric field E corresponds to E = E; = E|. In linear
response,

. c c
(J_m) _ (o (ETI> Lo (Ew)
Tty 3t o Ery =t o Eyy

(24)
and
. c c
(Jm)z o (E¢x>+ o = <E¢z>
Iy -5 UN Eyy =t oy Eyy
(25)

where the diagonal and non-diagonal matrix elements
stay for the longitudinal and Hall conductances. The re-
sponse to the physical electric field E = E+ = E| imposes
the constraints o4y = —o4, o4 = —oyy, Cpp + C 1y =
Ce?/h, and Cy + C|| = —Ce?/h.

Since the system is gapped, there is no dissipative
transport, that is, Eq - j; +E; - j, = 0. This gives ad-
ditional constraints any indexes = 0 and Cpp — C) ) =
2Ce? /h. Thus, linear response simplifies to



and

. Crpy—GoC
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where Gy = e?/h. We can now estimate the gap in two
ways: 1) by looking at the response of spin-up parti-
cles to the field Ey at zero Ej; 2) by looking at the
response of spin-down particles to the field E; at zero
E;. The two estimates are most easily obtained with our
initial classical-mechanical argument from the ratios of
the electric forces acting on spin-up/down electrons to
their total kinematic momenta. The two upper bounds
are he’n/|Cys|m and he?n/|2CGo — Cq|m. We observe
that max(|C’TT\, |2CGO - CTTD > |CG0‘ Finally,

21h%n
€gap < Cim (28)

Besides charge and spin currents, much interest has
been attracted to quantized heat currents in topolog-
ical matter [16-19]. It is unclear if our approach ex-
tends to heat currents. Indeed, our derivation assumes
that the current flows in the gapped bulk. Yet, the low-
temperature heat current in a gapped system flows along
its edges. This is different from the electric current.
Even though charge transport in the quantum Hall effect
is usually modeled with the one-dimensional chiral Lut-
tinger model [1], the current actually flows in the bulk of
an incompressible system, and only the dynamic degrees
of freedom live at the edges.

In conclusion, we find a simple derivation of a large
family of bounds on the energy gap in topological sys-
tems. The bounds apply to a generic situation when an
external force, acting in the bulk of the system, causes a
current in the bulk. We derive bounds for systems with
topological electrical and spin currents with and without
an external magnetic field [20-23]. The same derivation
would apply to other types of transport, such as val-
leytronics [24].
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E. Volovik for useful comments. This research was sup-
ported in part by the National Science Foundation un-
der Grant No. DMR-2204635 and by grant NSF PHY-
2309135 to the Kavli Institute for Theoretical Physics
(KITP).

Appendix: A proof on a torus

A shorter and more rigorous proof is obtained by plac-
ing the system on a torus. The coordinate x now runs
along the great circles of the torus and y runs along the
orthogonal circles. The electric field is introduced with
a vector potential A = Ag cos(wt) along the = direction.
The low-frequency uniform electric field E = —dA/cdt
points along the great circles. In place of the coordi-
nates we use the operators of the average current den-
sities along the = and y directions, J, — ”f:CA and Jy,
where we explicitly show the A-dependent term in the
definition of the current.

The Hall conductance is given by the Kubo formula,

2
O _ g5 (ORI HLAI0) — O k)T 10)
h - €
(29)
where S is the area of the torus, |0) the ground state, and
€ the energies of the excited states as before. Fractional
quantum Hall systems have multiple ground states on
a torus. This does not matter for our argument since
nonzero matrix elements of current density as well as
any other local operator only exist for states in the same
topological sector, and the gap should be understood as
the gap in a given topological sector.

The low-frequency longitudinal conductance is zero in
an insulator. Yet, the calculation of the average current
in the z direction with the time-dependent perturbation
theory produces a contribution of order 1/w, where w —
0. Clearly, the coeflicient in front of 1/w must be 0. This
yields the equation

ne? _ (0] Tz | )]
= 25%: e (30)

By applying an electric field in the y direction we get a
similar result for J,,:

ne? (O] y| k)|
= 9 Y . 1
m Szk: €L (3 )

Finally, we apply the inequality of the arithmetic and
geometric means, |(0|J;|k)(k|J,|0) — (0| J,|k)(k|J|0)| <
|(0] J|k)|? + (0| J,|k) |2, to Eq. (29). We find

Cle? (01T )2 + {01y )
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where we used Egs. (30) and (31) at the last step. The
bound on the optical gap follows.
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