
JOTA manuscript No.
(will be inserted by the editor)

Balancing Communication and Computation in Gradient Tracking
Algorithms for Decentralized Optimization

Albert S. Berahas, Raghu Bollapragada, Shagun
Gupta

Received: date / Accepted: date

Abstract Gradient tracking methods have emerged as one of the most popular approaches for
solving decentralized optimization problems over networks. In this setting, each node in the
network has a portion of the global objective function, and the goal is to collectively optimize
this function. At every iteration, gradient tracking methods perform two operations (steps): (1)
compute local gradients, and (2) communicate information with local neighbors in the network.
The complexity of these two steps varies across different applications. In this paper, we present
a framework that unifies gradient tracking methods and is endowed with flexibility with re-
spect to the number of communication and computation steps. We establish unified theoretical
convergence results for the algorithmic framework with any composition of communication and
computation steps, and quantify the improvements achieved as a result of this flexibility. The
framework recovers the results of popular gradient tracking methods as special cases, and allows
for a direct comparison of these methods. Finally, we illustrate the performance of the proposed
methods on quadratic functions and binary classification problems.

Keywords Decentralized Optimization · Gradient Tracking Methods · Network Optimization ·
Communication · Computation

Mathematics Subject Classification (2000) 49M05 · 49M37 · 65K05 · 90C06 · 90C25 ·
90C30 · 90C35

Albert S. Berahas
University of Michigan
Ann Arbor, MI 48109, USA
albertberahas@gmail.com

Raghu Bollapragada, Corresponding author
University of Texas at Austin
Austin, TX 78712, USA
raghu.bollapragada@utexas.edu

Shagun Gupta
University of Texas at Austin
Austin, TX 78712, USA
shagungupta@utexas.edu

2 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

1 Introduction

We consider the problem of minimizing a function over a network. In this setting, each node
of the network has a portion of the global objective function and the edges represent neighbor
nodes that can exchange information, i.e., communicate. The goal is to collectively minimize a
finite sum of functions where each component is only known to one of the n nodes (or agents) of
the network. Such problems arise in many application areas such as machine learning [17, 51],
sensor networks [4, 41], multi-agent coordination [10, 62] and signal processing [13]. The problem,
known as a decentralized optimization problem, can be represented as follows:

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1)

where f : Rd → R is the global objective function, fi : Rd → R for each i ∈ {1, 2, ..., n} is the
local objective function known only to node i and x ∈ Rd is the decision variable.

To decouple the computation across different nodes, (1) is often reformulated as

min
xi∈Rd

1

n

n∑
i=1

fi(xi)

s.t. xi = xj , ∀ (i, j) ∈ E ,
(2)

where xi ∈ Rd for each node i ∈ {1, 2, ..., n} is a local copy of the decision variable, and E
denotes the set of edges of the network; see e.g., [9, 38]. If the underlying network is connected,
the consensus constraint ensures that all local copies are equal, and, thus, problems (1) and (2)
are equivalent. For compactness, we express problem (2) as

min
xi∈Rd

f(x) =
1

n

n∑
i=1

fi(xi)

s.t. (W⊗ Id)x = x,

(3)

where x ∈ Rnd is a concatenation of local copies xi, W ∈ Rn×n is a matrix that captures the
connectivity of the underlying network, Id ∈ Rd×d is the identity matrix of dimension d, and
the operator ⊗ denotes the Kronecker product, W⊗ Id ∈ Rnd×nd. The matrix W, known as the
mixing matrix, is a symmetric, doubly-stochastic matrix with wii > 0 and wij > 0 (i ̸= j) if and
only if (i, j) ∈ E in the underlying network. This matrix ensures that (W⊗ Id)x = x if and only
if xi = xj ∀ (i, j) ∈ E in the connected network, thus, (2) and (3) are equivalent.

In this paper, we focus on gradient tracking methods. These first-order methods update and
communicate the local decision variables, and also maintain, update and communicate an addi-
tional auxiliary variable that estimates (tracks) the gradient of the global objective function. We
refer to the information shared by the methods as the communication strategy. When applied to
the same decentralized setting, the theoretical convergence guarantees and practical implementa-
tions of gradient tracking methods with different communication strategies can vary significantly.
We propose an algorithmic framework that unifies communication strategies in gradient track-
ing methods and that allows for a direct theoretical and empirical comparison. The framework
recovers popular gradient tracking methods as special cases.

The update form of gradient tracking methods can be generalized and decomposed as: (1) one
computation step of calculating the local gradients, and (2) one communication step of sharing
information based on the communication strategy. The complexity (cost) of these two steps can
vary significantly across applications. For example, a large-scale machine learning problem solved

Title Suppressed Due to Excessive Length 3

on a cluster of computers with shared memory access has a higher cost of computation than
communication [51]. On the other hand, optimally allocating channels over a wireless sensor
network requires economic usage of communications due to limited battery power [28]. The
subject of developing algorithms (and convergence guarantees) that balance these costs has
received significant attention in recent years; see e.g., [6–8, 11, 45, 61] and the references therein.
In this paper, we follow the approach used in [6] and explicitly decompose the two steps. As
a result, our algorithms are endowed with flexibility in terms of the number of communication
and computation steps performed at each iteration. We show the benefits of this flexibility
theoretically and empirically.

1.1 Literature Review

Decentralized Gradient Descent (DGD) [9, 38], a primal first-order method, is considered the
prototypical method for solving (1). At each iteration nodes perform local computations and
communicate local decision variable to neighbors. Gradient tracking methods, e.g., EXTRA [46],
SONATA [48], NEXT [15], DIGing [36], Aug-DGM [57], have emerged as popular alternatives
due to their superior theoretical guarantees and empirical performance. They maintain, update
and communicate an additional auxiliary variable that tracks the average gradient (additional
communication cost compared to DGD). These methods are usually applied to smooth convex
functions over undirected networks; however, they are also applicable to various other settings
such as time varying networks [36], uncoordinated step sizes [37, 57], directed networks [36, 43],
nonconvex functions [15, 48] and stochastic gradients [42]. Our algorithmic framework generalizes
and extends current gradient tracking methodologies, allowing for a unified analysis and direct
comparison of popular methods. Notably, our framework differs significantly from existing works
that aim to unify gradient tracking methods. In [49] and [60], semi-definite programming is used
for this purpose. In [1] and [56], the authors introduce unifying frameworks, similar to those
proposed in this paper, for comparing different communication strategies. However, our frame-
work is simpler and allows for the exact specification of communication and computation steps
at each iteration within the network. Furthermore, our proposed framework can accommodate
a wider range of communication strategies than those discussed in [1, 49, 56, 60]. As a result of
this increased algorithmic flexibility, our framework makes it possible to perform comprehensive
comparisons among popular gradient tracking methods.

Another class of popular methods is primal-dual methods [2, 21, 26, 29, 30, 47, 52]. Of these
methods, Flex-PD [30] and ADAPD [29] allow for flexibility with respect to the number of com-
munication and computation steps. That said, Flex-PD [30] does not show improved performance
with the employment of the flexibility and ADAPD [29] does not allow for a balance between
communication and computation. In [40], the authors propose LU-GT, an algorithm that has
similarities to our framework in terms of executing multiple local computation steps within gradi-
ent tracking methods. Despite the common motivation and similarities, there are several distinct
and notable differences. The LU-GT algorithm has two step size hyper-parameters, whereas our
approach has only one. Furthermore, our analysis results in less pessimistic step size conditions.
It is worth noting that modifying LU-GT to align with our framework by setting the second
step size to one is not possible due to the required conditions imposed in [40]. Additionally, our
framework also provides a unifying foundation encompassing several popular gradient tracking
methods.

Federated learning presents another class of algorithms for distributed optimization that
operate in a client-server setup [31]. In this setup, there is a central server that coordinates the
computations of all client nodes. This is equivalent to having a fully connected network with

4 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

equal weights in the decentralized setting, which ensures all agents are always in consensus after
a communication. As a result several algorithms have been proposed that perform multiple local
updates to reduce communication load. Examples of such methods include, but are not limited to,
Scaffnew [32], FedAvg [25], Scaffold [22], Local-SGD [19] and FedLin [33]. Moreover, specialized
algorithms have been proposed in federated learning that leverage the additional control and
network topology to improve performance via acceleration and momentum, and other problem-
specific customization [12, 14, 23, 24, 27, 58]. In the fully decentralized setting considered in this
work, where the network could be sparsely connected, the deviation of consensus error becomes
highly critical when performing multiple local updates. Therefore, the steps taken in the proposed
algorithm tend to be more conservative and are based on the connectivity of the network.

Several other settings beyond those considered in this work exist in decentralized optimization.
These include directed networks for broadcast applications; proposed to be solved via gradient
tracking methods and assuming row and column stochastic mixing matrices in [35, 36, 43, 53, 54],
using only row stochastic mixing matrices in [50, 55, 59], and via implicit gradient tracking
and using momentum in [18]. Proximal gradient-type methods have been proposed for tackling
problems involving compositions of convex and non-convex functions [1, 3, 56]. While our work
focuses on undirected networks and strongly convex problems, the proposed framework can be
extended to these settings.

1.2 Contributions

We summarize our main contributions as follows:

1. We propose a gradient tracking algorithmic framework (GTA) that unifies communication
strategies in gradient tracking methods and provides flexibility in the number of communica-
tion and computation steps performed at each iteration. The framework recovers as special
cases popular gradient tracking methods, i.e., GTA-1 [36, 46], GTA-2 [15, 48] and GTA-3

[37, 57]; see Table 1.
2. We establish the conditions required, on the communication strategy and the step size param-

eter, that guarantee a global linear rate of convergence for GTA with multiple communication
and multiple computation steps. We also compare the relative performance of the special case
gradient tracking algorithms, and illustrate the theoretical advantages of GTA-3 over GTA-2
(and GTA-2 over GTA-1), a direct comparison not established in prior literature.

3. We show that the rate of convergence improves with increasing the number of communi-
cation steps, and the extent of improvement depends on the communication strategy. The
improvements are much more profound in GTA-3 as compared to GTA-2 and GTA-1.

4. We illustrate the empirical performance of the proposed GTA framework on quadratic and
binary classification logistic regression problems. We show the effect and benefits of multiple
communication and/or computation steps per iteration on the performance of the algorithms.

1.3 Notation

Our proposed algorithmic framework is iterative and works with inner and outer loops. The
variables xi,k,j ∈ Rd and yi,k,j ∈ Rd denote the local copies of the decision variable and the
auxiliary variable, respectively, of node i, in outer iteration k and inner iteration j. The averages
of all local decision variables and local auxiliary variables are denoted by x̄k,j = 1

n

∑n
i=1 xi,k,j

and ȳk,j = 1
n

∑n
i=1 yi,k,j , respectively. Boldface lowercase letters represent concatenated vectors

Title Suppressed Due to Excessive Length 5

of local copies

xk,j =


x1,k,j

x2,k,j

...
xn,k,j

 ∈ Rnd, yk,j =


y1,k,j
y2,k,j
...

yn,k,j

 ∈ Rnd, ∇f(xk,j) =


∇f1(x1,k,j)
∇f2(x2,k,j)

...
∇fn(xn,k,j)

 ∈ Rnd.

The concatenated vector of the average of decision variables (x̄k,j) and auxiliary variables
(ȳk,j) repeated n times is denoted by x̄k,j and ȳk,j , respectively. The n dimensional vector of
all ones is denoted by 1n and the identity matrix of dimension n is denoted by In. The spectral
radius of square matrix A is ρ(A). Matrix inequalities are defined component wise. The Kronecker
product of any two matrices A ∈ Rn×n and B ∈ Rd×d is represented using the operator ⊗ and
denoted as A⊗B ∈ Rnd×nd.

1.4 Paper Organization

In Section 2, we describe our proposed gradient tracking algorithmic framework (GTA). In Sec-
tion 3, we provide theoretical convergence guarantees for the proposed algorithmic framework for
multiple communication steps and a single computation step at each iteration (Subsection 3.1)
and multiple communication and computation steps at each iteration (Subsection 3.2). In Sub-
section 3.3, we consider the special case of fully connected networks. Numerical experiments
on quadratic and binary classification logistic regression problems are presented in Section 4.
Finally, we provide concluding remarks in Section 5.

2 Gradient Tracking Algorithmic Framework

In this section, we describe our algorithmic framework (GTA) that unifies gradient tracking meth-
ods. We then extend the framework to allow for flexibility in the number of communication and
computation steps performed at every iteration. Finally, we make remarks about the algorithmic
framework and implementation, and then discuss popular gradient tracking methods as special
cases of our proposed framework.

The iterate update form (for all k ≥ 0) for the decision variable x ∈ Rnd and the auxiliary
variable y ∈ Rnd that we propose to unify gradient tracking methods is

xk+1,1 = Z1xk,1 − αZ2yk,1

yk+1,1 = Z3yk,1 + Z4(∇f(xk+1,1)−∇f(xk,1)),
(4)

where α > 0 is the constant step size, Zi = Wi⊗Id ∈ Rnd×nd for i = 1, 2, 3, 4 and Wi ∈ Rn×n are
communication matrices. A communication matrix U ∈ Rn×n is a symmetric, doubly stochastic
matrix that respects the connectivity of the network, i.e., uii > 0 and uij ≥ 0 (i ̸= j) if (i, j) ∈ E
and uij = 0 (i ̸= j) if (i, j) /∈ E . The communication matrices, Wi for i = 1, 2, 3, 4, represent four
(possibly different) network topologies consisting of all the nodes and (possibly different) subsets
of the edges of the network over which the corresponding vectors are communicated. The update
form given in (4) generalizes many popular gradient tracking methods for different choices of
the communication matrices; see Table 1. While the methodology has similarities to [1, 56], our
framework allows for the exact specification of the communication quantities within the network
and does not impose any interdependent conditions among the communication matrices Wi for
i = 1, 2, 3, 4. In (4) one communication and one computation step is performed at every iteration

6 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

and so the inner iteration index is always 1. We include this subscript for consistency with the
presentation of the algorithm and analysis with multiple communication and computation steps.

Table 1: Special cases of Gradient Tracking Algorithm (GTA).

Method
Communication Matrices Algorithms in literature

W1 W2 W3 W4 (nc = ng = 1)

GTA-1 W In W In DIGing [36], EXTRA [46],
GTA-2 W W W In SONATA [48], NEXT [15, 43]
GTA-3 W W W W Aug-DGM [57], ATC-DIGing [37]

Note: W is a mixing matrix.

We incorporate multiple communications in (4) by replacing Zi with Znc
i = Wnc

i ⊗ Id for
i = 1, 2, 3, 4, where nc ≥ 1 is the number of communication steps at each iteration. Taking the
communication matrices to the nc power represents performing nc communication (consensus)
steps at every iteration. We further extend (4) to incorporate multiple computation steps at
each iteration. That is, the algorithm performs multiple local updates before communicating
information with local neighbors. Our full algorithmic framework with flexibility in the number
of communication and computation steps, i.e., nc ≥ 1 and ng ≥ 1, is given in Algorithm 1. A
balance between the number of communication and computation steps is required to achieve
overall efficiency for different applications, and GTA allows for such flexibility in these steps via
the parameters ng and nc.

Algorithm 1 GTA: Gradient Tracking Algorithm

Inputs: initial point x0,1 ∈ Rnd, step size α > 0, computations ng ≥ 1,
communications nc ≥ 1.

1: y0,1 ← ∇f(x0,1)
2: for k ← 0, 1, 2 ... do
3: if ng > 1 then
4: for j ← 1, 2 ... , ng − 1 do
5: xk,j+1 ← xk,j − αyk,j
6: yk,j+1 ← yk,j +∇f(xk,j+1)−∇f(xk,j)
7: end for
8: end if
9: xk+1,1 ← Znc

1 xk,ng − αZnc
2 yk,ng

10: yk+1,1 ← Znc
3 yk,ng

+ Znc
4 (∇f(xk+1,1)−∇f(xk,ng))

11: end for

Remark 2.1 We make the following remarks about Algorithm 1.

– Communications and Computations: The number of communication and computation
steps are dictated by nc and ng, respectively. By performing multiple communication steps,
the goal is to improve consensus across the local decision variables. By performing multiple
computation steps, the goal is for individual nodes to make more progress on their local
objective functions.

– Inner and Outer Loops: Lines 2–8 form the outer loop and Lines 4–6 form the inner
loop. The algorithm performs nc communication steps each outer iteration (Lines 7 and 8).
The algorithm performs ng local (gradient) computations at each outer iteration; ng − 1
computations in the inner loop (Line 6, ∇f(xk,j+1)) and one computation in the outer loop

Title Suppressed Due to Excessive Length 7

(Line 8, ∇f(xk+1,1)). The inner loop is only executed if more than one computation, i.e.,
ng > 1, is to be performed every outer iteration (Line 3). By default, we refer to outer
iterations when we say iterations unless otherwise specified.

– Step size (α > 0): The algorithm employs a constant step size that depends on the problem
parameters, the choices of nc and ng, and the communication strategy, i.e., Wi for i =
1, 2, 3, 4.

We analyze GTA and provide results for several popular communication strategies as special
cases; summarized in Table 1. The choice of the communication matrices (Wi for i = 1, 2, 3, 4),
or equivalently the communication strategy, impact both the convergence of the algorithm and
practical implementation. Notice that all methods in Table 1 require that W1 and W3 are mixing
matrices. Our theoretical results recover this for the general framework. Consider GTA-1, GTA-2
and GTA-3 defined in Table 1 with ng = 1. In GTA-1 and GTA-2, computing local gradients and
communications can be performed in parallel because the local gradients need not be communi-
cated (W4 = In). On the other hand, in GTA-3, these steps need to be performed sequentially.
Such trade-offs can create significant impact depending on the problem setting and system.

As mentioned above, the communication matrices (Wi for i = 1, 2, 3, 4) in GTA need not
be the same. That is, different information can be exchanged on subsets of the edges of the
network. This allows for a flexibility in the communication strategy that current gradient tracking
methodologies do not possess. Such strategies can be useful in applying gradient tracking methods
to decentralized settings with networks with bandwidth limitations, e.g., optimization problems
in cyberphysical systems with battery powered wireless sensors [28].

3 Convergence Analysis

In this section, we present theoretical convergence guarantees for our proposed algorithmic frame-
work (GTA). The analysis is divided into three subsections. In Subsection 3.1, we analyze the effect
of multiple communications, i.e., nc ≥ 1 (and ng = 1), on GTA and the three special cases GTA-1,
GTA-2 and GTA-3. While these results are a special case of the results presented in Subsection 3.2,
we present these results first as they are simpler to derive, easier to follow and allow us to gain
intuition about the effect of the number of communications. We then look at the effect of mul-
tiple computations in conjunction with multiple communications, i.e., nc ≥ 1 and ng ≥ 1, in
Subsection 3.2 by extending the analysis from Subsection 3.1. In Subsection 3.3, we analyze
GTA-2 and GTA-3 for fully connected networks; this special case is not captured by the analysis
in the previous subsections.

We make the following assumption on the functions.

Assumption 3.1 The global objective function f : Rd → R is µ-strongly convex. Each compo-
nent function fi : Rd → R (for i ∈ {1, 2, . . . , n}) has L-Lipschitz continuous gradients. That is,
for all z, z′ ∈ Rd

f(z′) ≥ f(z) + ⟨∇f(z), z′ − z⟩+ µ
2 ∥z

′ − z∥22,
∥∇fi(z)−∇fi(z

′)∥2 ≤ L∥z − z′∥2, ∀ i = 1, . . . , n.

By Assumption 3.1, the global minimizer of (1) is unique, and we denote it by x∗. For
notational convenience, we define

βnc =
∥∥∥Wnc − 1n1

T
n

n

∥∥∥
2
, βnc

i =
∥∥∥Wnc

i − 1n1
T
n

n

∥∥∥
2
, ∀ i = 1, 2, 3, 4,

8 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

where β ∈ [0, 1) because W is a mixing matrix for a connected network and βi ∈ [0, 1] because
Wi for i = 1, 2, 3, 4 are symmetric, doubly stochastic matrices. Using the definitions of Znc =
Wnc ⊗ Id and Znc

i = Wnc
i ⊗ Id for i = 1, 2, 3, 4, it follows that

∥Znc − I∥2 = βnc , ∥Znc
i − I∥2 = βnc

i , ∀ i = 1, 2, 3, 4. (5)

We also define,

hk,j =
1

n

n∑
i=1

∇fi(xi,k,j), ℏk,j =
1

n

n∑
i=1

∇fi(xk,j), and I =
1n1

T
n

n
⊗ Id. (6)

where xi,k,j , denotes the local copy of the ith node, at outer iteration k and inner iteration j. In
the analysis, for all k ≥ 0, we consider the following error vector

rk =

 ∥xk,1 − x∗∥2
∥xk,1 − x̄k,1∥2
∥yk,1 − ȳk,1∥2

 .

The error vector rk combines the optimization error, ∥xk,1 − x∗∥2, and consensus errors, ∥xk,1 −
x̄k,1∥2 and ∥yk,1 − ȳk,1∥2 where xk,1 and yk,1 are the first iterates of outer iteration k. We
establish general technical lemmas that quantify the relation between rk+1 and rk for each case
of the presented algorithm.

3.1 GTA with multiple communication (nc ≥ 1, ng = 1)

In this section, we analyze GTA when only one computation step is performed per iteration. In
this setting (ng = 1), the inner loop (Lines 4–6 in Algorithm 1) is never executed. Thus, the
inner iteration counter in GTA can be ignored and the iteration simplifies to

xk+1 = Znc
1 xk − αZnc

2 yk,

yk+1 = Znc
3 yk + Znc

4 (∇f(xk+1)−∇f(xk)).
(7)

We note that throughout this subsection we drop the subscript related to the inner iteration
j, i.e., xi,k,j is denoted as xi,k (since j = 1), and similarly with other quantities. We first establish
the progression of the error vector rk for iterates generated by (7) as a linear system in Lemma 3.1,
introducing the matrix A(nc) in (8). Next, we analyse the spectral properties of the matrix A(nc)
to establish qualitative trends for the convergence of iterates generated by (7) with respect to nc,
and provide a qualitative comparison between the methods described in Table 1 in Theorem 3.2.
We then provide sufficient conditions on the step size in Theorem 3.3 using results from [42]
and the Perron-Forbenius Theorem [20, Theorem 8.4.4]. We also provide a convergence rate for
iterates generated by (7) in Theorem 3.4 using the approach from [44]. Finally, we provide the
step size condition and convergence rate of the special cases from Table 1 in Corollary 3.2 and
Corollary 3.3, respectively, and perform a theoretical comparison among the methods.

Lemma 3.1 Suppose Assumption 3.1 holds and the number of gradient steps in each outer
iteration of Algorithm 1 is set to one (i.e., ng = 1). If α ≤ 1

L , then for all k ≥ 0,

rk+1 ≤ A(nc)rk,

where A(nc) =

 1− αµ αL√
n

0

0 βnc
1 αβnc

2√
nαβnc

4 L2 βnc
4 L(∥Znc

1 − Ind∥2 + αL) βnc
3 + αβnc

4 L

 . (8)

Title Suppressed Due to Excessive Length 9

Proof If ng = 1, using (7), the average iterates can be expressed as

x̄k+1 = x̄k − αȳk,

ȳk+1 = ȳk + hk+1 − hk,

where hk is defined in (6). Taking the telescopic sum of ȳi+1 from i = 0 to k − 1 with ȳ0 = h0,
it follows that

ȳk = hk. (9)

We first consider the optimization error on the average iterates. That is,

∥x̄k+1 − x∗∥2 = ∥x̄k − αȳk + αℏk − αℏk − x∗∥2
≤ ∥x̄k − αℏk − x∗∥2 + α ∥ȳk − ℏk∥2
≤ (1− αµ)∥x̄k − x∗∥2 + α ∥hk − ℏk∥2

= (1− αµ)∥x̄k − x∗∥2 + α
n

∥∥∥∥∥
n∑

i=1

∇fi(xi,k)−∇fi(x̄k)

∥∥∥∥∥
2

≤ (1− αµ)∥x̄k − x∗∥2 + αL
n

n∑
i=1

∥xi,k − x̄k∥2

≤ (1− αµ)∥x̄k − x∗∥2 + αL√
n
∥xk − x̄k∥2 (10)

where the first inequality is due to the triangle inequality, the second inequality is obtained by
performing one gradient descent iteration on function f under Assumption 3.1 at the average
iterate x̄k with α ≤ 1

L [39, Theorem 2.1.14] and substituting using (9), the equality is due to
(6), the second to last inequality follows by Assumption 3.1, and the last inequality is due to∑n

i=1 ∥xi,k − xk∥2 ≤
√
n∥xk − x̄k∥2.

Next, we consider the consensus error in xk,

xk+1 − x̄k+1 = Znc
1 xk − x̄k − αZnc

2 yk + αȳk

= Znc
1 xk − Znc

1 x̄k − αZnc
2 yk + αZnc

2 ȳk − I(xk − x̄k) + I(yk − ȳk)

= (Znc
1 − I) (xk − x̄k)− α (Znc

2 − I) (yk − ȳk).

where the second equality follows from adding −I(xk − x̄k) = 0 and I(yk − ȳk) = 0. By the
triangle inequality and (5),

∥xk+1 − x̄k+1∥2 ≤ ∥Znc
1 − I∥2 ∥xk − x̄k∥2 + α ∥Znc

2 − I∥2 ∥yk − ȳk∥2
= βnc

1 ∥xk − x̄k∥2 + αβnc
2 ∥yk − ȳk∥2.

(11)

Finally, we consider the consensus error in yk. By the triangle inequality and (5),

∥yk+1 − ȳk+1∥2
= ∥Znc

3 yk − ȳk + Znc
4 (∇f(xk+1)−∇f(xk))− I(∇f(xk+1)−∇f(xk))∥2

≤∥(Znc
3 − I) (yk − ȳk)∥2 + ∥(Znc

4 − I) (∇f(xk+1)−∇f(xk))∥2
≤βnc

3 ∥yk − ȳk∥2 + βnc
4 ∥∇f(xk+1)−∇f(xk)∥2 .

(12)

10 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

The last term in (12) can be bounded as follows,

∥∇f(xk+1)−∇f(xk)∥2 ≤ L∥xk+1 − xk∥2
= L∥Znc

1 xk − αZnc
2 yk − xk∥2

= L∥(Znc
1 − Ind)(xk − x̄k)− αZnc

2 yk∥2
≤ L∥Znc

1 − Ind∥2∥xk − x̄k∥2 + αL∥Znc
2 ∥2∥yk + ȳk − ȳk∥2

≤ L∥Znc
1 − Ind∥2∥xk − x̄k∥2 + αL∥yk − ȳk∥2 + αL ∥ȳk∥2 , (13)

where the first inequality is due to Assumption 3.1, the first equality is due to iterate update
form (7), the second equality is by adding −(Znc

1 − Ind)x̄k = 0 and the last two inequalities are
applications of the triangle inequality. Next we bound the term ∥ȳk∥2. By (9), Assumption 3.1
and

∑n
i=1 ∥xi,k − xk∥2 ≤

√
n∥xk − x̄k∥2,

∥ȳk∥2 ≤
√
n∥ȳk∥2

=
√
n∥hk∥2

≤
√
n

∥∥∥∥∥ 1
n

n∑
i=1

∇fi(xi,k)− 1
n

n∑
i=1

∇fi(x̄k)

∥∥∥∥∥
2

+
√
n

∥∥∥∥∥ 1
n

n∑
i=1

∇fi(x̄k)

∥∥∥∥∥
2

= 1√
n

∥∥∥∥∥
n∑

i=1

∇fi(xi,k)−
n∑

i=1

∇fi(x̄k)

∥∥∥∥∥
2

+ 1√
n

∥∥∥∥∥
n∑

i=1

∇fi(x̄k)−
n∑

i=1

∇fi(x
∗)

∥∥∥∥∥
2

≤ L ∥xk − x̄k∥2 +
√
nL∥x̄k − x∗∥2. (14)

Thus, by (12), (13) and (14), it follows that

∥yk+1 − ȳk+1∥2 ≤ βnc
4

√
nαL2∥x̄k − x∗∥2 + βnc

4 L (∥Znc
1 − Ind∥2 + αL) ∥xk − x̄k∥2

+ (βnc
3 + βnc

4 αL) ∥yk − ȳk∥2.
(15)

Combining (10), (11) and (15) concludes the proof. ⊓⊔

Using Lemma 3.1, we now provide the explicit form for A(nc) in order to establish the
progression of the error vector rk for the special cases defined in Table 1.

Corollary 3.1 Suppose the conditions of Lemma 3.1 are satisfied. Then, the matrices A(nc) for
the methods described in Table 1 are defined as:

GTA-1: A1(nc) =

1− αµ αL√
n

0

0 βnc α√
nαL2 L(2 + αL) βnc + αL

 ,

GTA-2: A2(nc) =

1− αµ αL√
n

0

0 βnc αβnc

√
nαL2 L(2 + αL) βnc + αL

 , (16)

GTA-3: A3(nc) =

 1− αµ αL√
n

0

0 βnc αβnc

βnc
√
nαL2 βncL(2 + αL) βnc(1 + αL)

 .

Proof Substituting the matrix values for each method in (8) and using ∥Znc
1 − Ind∥2 ≤ 2 gives

the desired result. ⊓⊔

Title Suppressed Due to Excessive Length 11

The convergence properties of GTA when ng = 1 can be analyzed using the spectral radius of
the matrix A(nc). We now qualitatively establish the effect of nc on ρ(A(nc)), the spectral radius
of the matrix A(nc), and the relative ordering between ρ(A1(nc)), ρ(A2(nc)) and ρ(A3(nc)).

Theorem 3.2 Suppose Assumption 3.1 holds and the number of gradient steps in each outer
iteration of Algorithm 1 is set to one (i.e., ng = 1). If α ≤ 1

L , then as nc increases, ρ(A(nc))
decreases where A(nc) is defined in (8). Thus, as nc increases, ρ(Ai(nc)) decreases, for i = 1, 2, 3
defined in (16). Moreover, if all three methods described in Table 1 (GTA-1, GTA-2 and GTA-3)
employ the same step size,

ρ(A1(nc)) ≥ ρ(A2(nc)) ≥ ρ(A3(nc)),

where the matrices A1(nc), A2(nc) and A3(nc) are defined in (16).

Proof Note that A(nc) ≥ 0 and A(nc) ≥ A(nc +1) ≥ 0. By [20, Corollary 8.1.19], it follows that
ρ(A(nc)) ≥ ρ(A(nc+1)). The same argument is applicable for A1(nc), A2(nc) and A3(nc). Now,
observe that A1(nc) ≥ A2(nc) ≥ A3(nc) ≥ 0 when the same step size is employed. Thus, again
by [20, Corollary 8.1.19], it follows that ρ(A1(nc)) ≥ ρ(A2(nc)) ≥ ρ(A3(nc)). ⊓⊔

We now derive conditions for establishing a linear rate of convergence to the solution for
Algorithm 1 when ng = 1 in terms of network parameters (β1, β2, β3, β4) and objective function
parameters (L, µ, κ = L

µ).

Theorem 3.3 Suppose Assumption 3.1 holds and the number of gradient steps at each outer
iteration of Algorithm 1 is set to one (i.e., ng = 1). If the matrix A(nc) is irreducible, β1, β3 < 1
and

α < min

{
1
L ,

1−βnc
3

Lβnc
4

,
(1−βnc

1 +2βnc
2)

2βnc
2 κ(L+µ)

(√
1 +

4(1−βnc
1)(1−βnc

3)βnc
2 (κ+1)

βnc
4 (1−βnc

1 +2βnc
2)2

− 1

)}
, (17)

then, for all ϵ > 0 there exists a constant Cϵ > 0 such that, for all k ≥ 0,

∥rk∥2 ≤ Cϵ(ρ(A(nc)) + ϵ)k∥r0∥2, where ρ(A(nc)) < 1.

Proof Following [42, Lemma 5], derived from the Perron-Forbenius Theorem [20, Theorem 8.4.4]
for a 3× 3 matrix, when the matrix A(nc) is non-negative and irreducible, it is sufficient to show
that the diagonal elements of A(nc) are less than one and that det(I3 − A(nc)) > 0 in order to
guarantee ρ(A(nc)) < 1. We upper bound ∥Znc

1 − Ind∥2 ≤ 2 in A(nc) for the results.
Let us first consider the diagonal elements of the matrix A(nc). The first element is, 1−αµ ≤

1 − µ
L < 1 by (17). The second element is βnc

1 < 1 as β1 < 1. Finally, the third element is

βnc
3 + αβnc

4 L < βnc
3 +

1−βnc
3

βnc
4 L

βnc
4 L = 1 due to (17) and β3 < 1.

Next, we consider

det(I3 −A(nc))

=− α(α2L2βnc
2 βnc

4 (L+ µ) + αµLβnc
4 (1− βnc

1 + 2βnc
2)− µ (1− βnc

1) (1− βnc
3))

=− L2βnc
2 βnc

4 (L+ µ)α(α− αl)(α− αu),

where αl = α1 − α2, αu = α1 + α2, and

α1 =
−(1−βnc

1 +2βnc
2)

2βnc
2 κ(L+µ)

and α2 = −α1

√
1 +

4(1−βnc
1)(1−βnc

3)βnc
2 (κ+1)

βnc
4 (1−βnc

1 +2βnc
2)2

.

12 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

Observe that αl < 0 < αu and α2 > |α1|. From (17), we have 0 < α < αu. Therefore, det(I3 −
A(nc)) > 0, which combined with the fact that the diagonal elements of the matrix are less
than 1, implies ρ(A(nc)) < 1. Finally, we bound the norm of error vector ∥rk∥2 by telescoping
ri+1 ≤ A(nc)ri from i = 0 to k − 1 and the triangle inequality as

∥rk∥2 ≤ ∥A(nc)
k∥2∥r0∥2.

From [20, Corollary 5.6.13], we can bound ∥A(nc)
k∥2 ≤ Cϵ(ρ(A(nc))+ ϵ)k where ϵ > 0 and Cϵ is

a positive constant that depends on A(nc) and ϵ. ⊓⊔

The only constraint Theorem 3.3 imposes on the system (network) is β1, β3 < 1. This implies
that the communication matrices W1 and W3 must represent connected networks (not necessar-
ily the same network). Properties of W2 and W4 change the step size requirement but are not
part of the sufficient conditions for convergence. Theorem 3.3 also does not require any relation
among W1, W2, W3 and W4. This allows for more flexibility than the structures considered
in the literature. The variables can be communicated along different connections within the net-
work. We note that if A(nc) is a reducible matrix, the analysis for the progression of rk can be

further simplified from Lemma 3.1. For example, when W =
1n1

T
n

n , i.e., β = 0, in GTA-2 and
GTA-3. The analysis for these cases is presented in Subsection 3.3.

The next result establishes step size conditions that guarantee a linear rate of convergence
for the three special cases (GTA-1, GTA-2 and GTA-3).

Corollary 3.2 Suppose Assumption 3.1 holds, W ̸= 1n1
T
n

n , and the number of gradient steps
at each outer iteration of Algorithm 1 is set to one (i.e., ng = 1). If the following step size
conditions hold for the methods described in Table 1,

GTA-1: α < min

{
1−βnc

L , (3−βnc)
2κ(L+µ)

(√
1 + 4(κ+ 1)

(
1−βnc

3−βnc

)2
− 1

)}
,

GTA-2: α < min

{
1−βnc

L , (1+βnc)
2κ(L+µ)βnc

[√
1 + 4(κ+ 1)βnc

[
1−βnc

1+βnc

]2
− 1

]}
,

GTA-3: α < min

{
1
L ,

1−βnc

Lβnc , (1+βnc)
2κ(L+µ)βnc

(√
1 + 4(κ+ 1)

(
1−βnc

1+βnc

)2
− 1

)}
,

then, for all ϵ > 0 there exist constants Ci,ϵ > 0 such that, for all k ≥ 0,

∥rk∥2 ≤ Ci,ϵ(ρ(Ai(nc)) + ϵ)k∥r0∥2, where ρ(Ai(nc)) < 1, for i = 1, 2, 3.

Proof The conditions given in Theorem 3.3 are satisfied for all three methods. That is, the

matrices are irreducible as W ̸= 1n1
T
n

n , i.e., β > 0 and β1, β3 < 1 in all the three methods as
β < 1 because W is mixing matrix of a connected network. Thus, we can use (17) to derive the
conditions on the step size for each of the methods. Substituting the values for β1, β2, β3 and β4

for each method yields the desired result. We should note that in GTA-1 and GTA-2, we ignore
the term 1

L since 1
L > 1−βnc

L . ⊓⊔

Corollary 3.2 shows how the communication strategy affects the step size when ng = 1.
Among the three methods, GTA-3 allows for the largest step size, even having the possibility to
use the step size 1

L if sufficiently large number of communications steps are performed (high nc)
and depending on β. Among GTA-1 and GTA-2, GTA-2 allows for a larger step size. While these
share the same first term in the bound, the presence of the βnc factor in the denominator of the

Title Suppressed Due to Excessive Length 13

second term in GTA-2 makes the bound larger than GTA-1, possibly allowing for a larger step
size. Theorem 3.3 states that there exists a step size such that GTA converges at a linear rate
when ng = 1. We now proceed to analyze the convergence rate GTA when ng = 1. Before that,
we provide a technical lemma that shows that the largest eigenvalue of the matrix A(nc) is a
positive real number.

Lemma 3.2 Suppose Assumption 3.1 holds, the number of gradient steps at each outer iteration
of Algorithm 1 is set to one (i.e., ng = 1) and α ≤ 1

L . If the matrix A(nc) defined in (8) is
irreducible, then, the spectral radius of A(nc) is the largest eigenvalue of A(nc) and is a positive

real number. Consequently, if W ̸= 1n1
T
n

n , the spectral radius of matrices A1(nc), A2(nc), A3(nc)
defined in (16) are also positive real numbers and equal to their largest eigenvalues, respectively.

Proof The statement about the matrix A(nc) follows from the Perron-Forbenius Theorem [20,
Theorem 8.4.4], and the fact that the matrix is non-negative and irreducible. Using similar
arguments, the statement about the matrices A1(nc), A2(nc) and A3(nc) follows as these matrices

are irreducible when W ̸= 1n1
T
n

n , i.e., β > 0. ⊓⊔

The next theorem provides an upper bound on the convergence rate of GTA for sufficiently
small constant step sizes.

Theorem 3.4 Suppose Assumption 3.1 holds and the number of gradient steps at each outer
iteration of Algorithm 1 is set to one (i.e., ng = 1). If the matrix A(nc) is irreducible and α ≤ 1

L ,
then,

ρ(A(nc)) ≤ λu = max

{
1− αµ

2 , λ̂+
√
2αLκβnc

2 βnc
4

}
, (18)

where λ̂ =
βnc
1 +βnc

3 +Lαβnc
4 +

√
(βnc

1 −βnc
3 −Lαβnc

4)
2
+4βnc

2 βnc
4 L2α2+8Lαβnc

2 βnc
4

2 .

Proof Using Lemma 3.2, we know that the spectral radius of A(nc) is equal to the largest
eigenvalue which is a positive real number. Following a similar approach to [44], we prove λu is
an upper bound on the largest eigenvalue by showing the characteristic equation is non-negative
at λu and strictly increasing for all values greater than λu. Consider

g(λ) =det(λI3 −A(nc))

=(λ− 1 + αµ) ((λ− βnc
1)(λ− βnc

3 − αLβnc
4)− αL(2 + αL)βnc

2 βnc
4)

− α3L3βnc
2 βnc

4

=(λ− 1 + αµ)q(λ)− α3L3βnc
2 βnc

4 ,

where q(λ) = λ2 − λ(βnc
1 + βnc

3 +Lαβnc
4) + βnc

1 βnc
3 +Lαβnc

4 (βnc
1 − 2βnc

2 −Lαβnc
2). Let the roots

of the quadratic function q(λ) be denoted as λ1 and λ2. Then, we have,

max{λ1, λ2} =
βnc
1 +βnc

3 +Lαβnc
4 +

√
(βnc

1 +βnc
3 +Lαβnc

4)
2−4(βnc

1 βnc
3 +Lαβnc

4 (βnc
1 −2βnc

2 −Lαβnc
2))

2

=
βnc
1 +βnc

3 +Lαβnc
4 +

√
(βnc

1 −βnc
3 −Lαβnc

4)
2
+4βnc

2 βnc
4 L2α2+8Lαβnc

2 βnc
4

2 .

14 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

Thus, for any λ ≥ max
{
1− αµ, λ̂

}
, the function g(λ) is increasing and is lower bounded by

(λ− 1 + αµ)(λ− λ̂)2 − α3L3βnc
2 βnc

4 . By λu ≥ max
{
1− αµ, λ̂

}
,

g(λu) ≥ (λ− 1 + αµ)(λ− λ̂)2 − α3L3βnc
2 βnc

4

≥
(
1− αµ

2 − 1 + αµ
)
(λ− λ̂)2 − α3L3βnc

2 βnc
4

≥ αµ
2

(
2αL2βnc

2 βnc
4

µ

)
− α3L3βnc

2 βnc
4

= α2L2βnc
2 βnc

4 (1− αL) ≥ 0,

where the second and third inequalities are due to the definition of λu and the final quantity is
non-negative since α ≤ 1

L . Therefore, by the above arguments, we conclude that ρ(A(nc)) ≤ λu

which completes the proof. ⊓⊔

Theorem 3.4 is derived independent of the conditions in Theorem 3.3. When ρ(A(nc)) < 1
is imposed using Theorem 3.4, β1, β3 < 1 is a necessary condition for convergence. We show

this by constructing a lower bound on λu, λu ≥ λ̂ ≥ βnc
1 +βnc

3 +|βnc
1 −βnc

3 |
2 . For convergence we

require λu < 1, i.e., β1+β3+|β1−β3|
2 < 1, which implies β1, β3 < 1 as β1, β3 ∈ [0, 1]. Thus, again we

require W1 and W3 to represent a connected network. The step size condition in Theorem 3.3
is O(L−1κ−0.5) while Theorem 3.4 requires O(L−1κ−1), which is more pessimistic. That said,
the precise and interpretable characterization of the convergence rate in Theorem 3.4 allows us
to better differentiate amongst the communication strategies and the effect of nc.

Corollary 3.3 Suppose Assumption 3.1 holds, W ̸= 1n1
T
n

n , and the number of gradient steps at
each outer iteration of Algorithm 1 is set to one (i.e., ng = 1). If α ≤ 1

L , then, the spectral radii
for the methods described in Table 1 satisfy

GTA-1: ρ(A1(nc)) ≤ max
{
1− αµ

2 , βnc +
√
αL
(
2.5 +

√
2κ
)}

,

GTA-2: ρ(A2(nc)) ≤ max
{
1− αµ

2 , βnc +
√
αL
(
2.5 +

√
2κβnc

)}
,

GTA-3: ρ(A3(nc)) ≤ max
{
1− αµ

2 , βnc

(
1 +

√
αL
(
2.5 +

√
2κ
))}

.

Proof The conditions in Theorem 3.4 are satisfied due to Lemma 3.2. Thus, we can plug in the
values for βi (i = 1, 2, 3, 4) for each method to get an upper bound on the spectral radii. The
upper bound λu for GTA-1 can be simplified as

λ̂+

√
2αL2βnc

2 βnc
4

µ = 2βnc+Lα+
√
5L2α2+8Lα

2 +
√

2αL2

µ

= βnc +
√
αL
2

(√
αL+ 2

√
2κ+

√
8 + 5Lα

)
≤ βnc +

√
αL
(
2.5 +

√
2κ
)

where the last inequality is due to α ≤ 1
L . Following the same approach, λu for GTA-2 can be

simplified as

λ̂+

√
2αL2βnc

2 βnc
4

µ =
2βnc+Lα+

√
L2α2+4L2α2βnc+8Lαβnc

2 +
√

2αL2βnc

µ

= βnc +
√
αL
2

(√
αL+ 2

√
2κβnc +

√
8βnc + 4Lαβnc + Lα

)
≤ βnc +

√
αL
(
2.5 +

√
2κβnc

)

Title Suppressed Due to Excessive Length 15

where the last inequality uses α ≤ 1
L and β < 1. Finally, the upper bound λu for GTA-3 is

λ̂+

√
2αL2βnc

2 βnc
4

µ =
2βnc+Lαβnc+

√
5L2α2(βnc)2+8Lα(βnc)2

2 +

√
2αL2(βnc)2

µ

= βnc

(
1 +

√
αL
2

(√
αL+ 2

√
2κ+

√
8 + 5Lα

))
≤ βnc

(
1 +

√
αL
(
2.5 +

√
2κ
))

where the last inequality is due to α ≤ 1
L and β < 1. ⊓⊔

Corollary 3.3 characterizes the effect of multiple communication steps (when ng = 1) on
the convergence rates of GTA-1, GTA-2 and GTA-3. First, the convergence rate improves with
increased communications (increase in nc) when ng = 1 for all methods. The improvement is
most apparent in GTA-3 as increasing nc drives the second term in the max bound to zero. Thus,
if a sufficient number of communication steps are performed in GTA-3, the method can achieve
convergence rates similar to those of gradient descent, i.e., (1 − αµ

2). The improvement is less
apparent in GTA-2 and the least in GTA-1. With an increase in nc, the dominating term in the
max bound, i.e.,

√
2αLκ, remains unchanged in GTA-1 and changes to

√
2αLκβnc in GTA-2 which

is affected by the number of communication steps nc.

3.2 GTA with multiple communication and computation (nc ≥ 1, ng ≥ 1)

In this section, we analyze GTA when multiple computation and communication steps are per-
formed every iteration. We extend the analysis from Subsection 3.1; the case ng = 1 is a special
case of the analysis in this section. The subscript for the inner iteration counter is re-introduced
in this section as we consider cases with ng > 1 and the inner loop (Lines 4–6 in Algorithm 1) is
executed. We first present Lemma 3.3, which bounds the errors introduced due to the execution
of the inner loop. Following a similar approach to Subsection 3.1, we establish the progression of
the error vector rk for Algorithm 1 as a linear system in Lemma 3.4 using the matrix B(nc, ng).
We then analyze the spectral properties of the matrix B(nc, ng) to establish qualitative trends
for the convergence rate of Algorithm 1 with respect to both nc and ng, and perform a qual-
itative comparison between methods described in Table 1 in Theorem 3.5. Finally, we provide
sufficient conditions on the step size in Theorem 3.6 for linear convergence for any composition
of communication and computation steps.

Lemma 3.3 Suppose Assumption 3.1 holds and α ≤ 1
ngL

in Algorithm 1. Then, for all k ≥ 0

and 1 ≤ j ≤ ng

∥ȳk,1∥2 ≤ ∥yk,1 − ȳk,1∥2 + L ∥xk,1 − x̄k,1∥2 + L
√
n∥x̄k,1 − x∗∥2 (19)

∥xk,j − xk,1∥2 ≤ 2α(j − 1)∥yk,1∥2, (20)

∥xk,j − x̄k,j∥2 ≤ 2α(j − 1)∥yk,1∥2 + ∥xk,1 − x̄k,1∥2, (21)

Proof Taking a telescopic sum of yk,i+1 = yk,i +∇f(xk,i+1) −∇f(xk,i), the inner loop update,
from i = 1 to j − 1 we get

yk,j = yk,1 +∇f(xk,j)−∇f(xk,1). (22)

Using (22), yk+1,1 can be expressed as

yk+1,1 = Znc
3

(
yk,1 +∇f(xk,ng

)−∇f(xk,1)
)
+ Znc

4

(
∇f(xk+1,1)−∇f(xk,ng

)
)

= Znc
3 yk,1 + Znc

4 ∇f(xk+1,1)− Znc
3 ∇f(xk,1) + Znc

3 ∇f(xk,ng
)− Znc

4 ∇f(xk,ng
).

(23)

16 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

Taking the component-wise average across all nodes in (22) and (23) and using (6), it follows
that

ȳk,j = ȳk,1 + hk,j − hk,1, (24)

ȳk+1,1 = ȳk,1 + hk+1,1 − hk,1. (25)

Performing a similar telescopic sum as (9) with (25), we obtain ȳk,1 = hk,1. Thus, substituting
ȳk,1 = hk,1 in (24) yields

ȳk,j = ȳk,1 + hk,j − hk,1 = hk,j . (26)

By the triangle inequality, ∥yk,1∥2 ≤ ∥yk,1 − ȳk,1∥2 + ∥ȳk,1∥2, where ∥ȳk,1∥2 can be bounded by
a similar procedure to (14) due to ȳk,1 = hk,1 to yield (19). Now, taking the telescopic sum of

the inner loop update xk,i = xk,i−1 − αyk,i−1 from i = 2 to j yields xk,j = xk,1 − α
∑j−1

i=1 yk,i.

The sum
∑j−1

i=1 yk,i is evaluated using (22) as

j−1∑
i=1

yk,j = yk,1 +

j−1∑
i=2

yk,i +∇f(xk,i)−∇f(xk,1)

= (j − 1)yk,1 +

j−1∑
i=2

∇f(xk,i)−∇f(xk,1).

(27)

By the triangle inequality and Assumption 3.1, it follows that

∥xk,j − xk,1∥2 ≤ α(j − 1)∥yk,1∥2 + α

j−1∑
i=1

∥∇f(xk,i)−∇f(xk,1)∥2

≤ α(j − 1)∥yk,1∥2 + αL

j−1∑
i=1

∥xk,i − xk,1∥2.

Now we apply induction to show (20) using the above inequality.

For j = 1, ∥xk,1 − xk,1∥2 = 0 = 2α(1− 1)∥yk,1∥2.

For j ≥ 2, ∥xk,j − xk,1∥2 ≤ α(j − 1)∥yk,1∥2 + αL

j−1∑
i=1

∥xk,i − xk,1∥2

≤ α(j − 1)∥yk,1∥2 + 2α2L

j−1∑
i=1

(i− 1)∥yk,1∥2

= α(j − 1)∥yk,1∥2 + 2α2L∥yk,1∥2 (j−2)(j−1)
2

= α(j − 1) (1 + αL(j − 2)) ∥yk,1∥2
≤ 2α(j − 1)∥yk,1∥2,

where the first equality uses the sum of j − 1 natural numbers and the second to last inequality
is due to αL ≤ 1

ng
and j ≤ ng.

By (20), the triangle inequality and ∥Ind − I∥2 = 1, it follows that

∥xk,j − x̄k,j∥2 ≤ ∥xk,j − xk,1 + x̄k,1 − x̄k,j∥2 + ∥xk,1 − x̄k,1∥2
≤ ∥(Ind − I)(xk,j − xk,1)∥2 + ∥xk,1 − x̄k,1∥2
≤ ∥xk,j − xk,1∥2 + ∥xk,1 − x̄k,1∥2.

⊓⊔

Title Suppressed Due to Excessive Length 17

The two bounds in Lemma 3.3 ((20) and (21)) bound the deviation of the local decision
variables from the start of the outer iteration, ∥xk,j − xk,1∥2, and the consensus error, ∥xk,j −
x̄k,j∥2, in inner iteration j, respectively. Combined with (19), these quantities are bounded as
an O(αj) multiple of the components of the error vector rk. This property has two implications;
(1) if one performs more inner iterations, i.e., increases ng, the constant step size α needs to be
reduced to reduce these quantities, (2) if an outer iterate is the optimal solution, the inner loop
does not introduce any deviations in the iterates and maintains optimality.

We now establish the progression of error vector rk under multiple communication and com-
putation steps being performed every iteration in Algorithm 1.

Lemma 3.4 Suppose Assumption 3.1 holds and α ≤ 1
ngL

in Algorithm 1. Then, for all k ≥ 0,

rk+1 ≤ B(nc, ng)rk, where B(nc, ng) = A(nc, ng) + αL(ng − 1)E(nc, ng),

A(nc, ng) =

(1− αµ)ng κ√
n
(1− (1− αµ)ng) 0

0 βnc
1 α ((ng − 1)βnc

1 + βnc
2)√

nαβnc
4 L2 βnc

4 L(∥Znc
1 − Ind∥2 + αL) βnc

3 + αβnc
4 L

 ,

E(nc, ng) =

 αLng
αLng√

n

αng√
n√

nαLδ1(nc, ng) αLδ1(nc, ng) αδ1(nc, ng)√
nLδ2(nc, ng) Lδ2(nc, ng) δ2(nc, ng)

 ,

(28)

and
δ1(nc, ng) = 2βnc

2 + βnc
1 (ng − 2),

δ2(nc, ng) = 2
(
βnc
4 ∥Znc

1 − Ind∥2 + βnc
4

ng
+ βnc

3

)
.

(29)

Proof We first consider the optimization error of the average iterates xk,1. Similar to (10), we
bound the optimization error as

∥x̄k,j+1 − x∗∥2 ≤ (1− αµ)∥x̄k,j − x∗∥2 + αL√
n
∥xk,j − x̄k,j∥2 ∀ 1 ≤ j ≤ ng − 1,

where the above holds by using (26) (the generalization of (9)) and the error bound of gradient
descent from [39, Theorem 2.1.14]. Next, we bound the optimization error in xk+1,1 with respect
to xk,ng

in a similar manner as,

∥x̄k+1,1 − x∗∥2 ≤ (1− αµ)∥x̄k,ng
− x∗∥2 + αL√

n
∥xk,ng

− x̄k,ng
∥2.

Recursively applying the above two bounds, by (21) it follows that,

∥x̄k+1,1 − x∗∥2 ≤ (1− αµ)ng∥x̄k,1 − x∗∥2 + αL√
n

ng∑
j=1

(1− αµ)ng−j∥xk,1 − x̄k,1∥2

+ 2α2L√
n

ng∑
j=1

(1− αµ)ng−j(j − 1)∥yk,1∥2

≤ (1− αµ)ng∥x̄k,1 − x∗∥2 + κ√
n
[1− (1− αµ)ng] ∥xk,1 − x̄k,1∥2

+ α2L√
n
ng(ng − 1)∥yk,1∥2,

where the last inequality is due to the fact that (1−αµ)ng−j ≤ 1 ∀j = 1, 2, ..., ng due to α ≤ 1
Lng

,

the coefficient of the second term is the sum of a geometric progression, and the coefficient of the

18 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

third term is the sum of the first ng − 1 natural numbers. By (19), we obtain the desired bound
on the optimization error.

Next, we consider the consensus error in xk,1,

xk+1,1 − x̄k+1,1

=(Ind − I)xk+1,1 = (Ind − I) (Znc
1 xk,ng

− αZnc
2 yk,ng

)

= (Ind − I)

Znc
1

xk,1 − α

ng−1∑
j=1

yk,j

− αZnc
2 yk,ng


=(Ind − I)

Znc
1 xk,1 − αZnc

1

(ng − 1)yk,1 +

ng−1∑
j=2

∇f(xk,j)−∇f(xk,1)


− α (Ind − I)

(
Znc

2 (yk,1 +∇f(xk,ng)−∇f(xk,1))
)

=(Znc
1 − I) (xk,1 − x̄k,1)− α ((ng − 1) (Znc

1 − I) + (Znc
2 − I)) (yk,1 − ȳk,1)

− α (Znc
2 − I)

(
∇f(xk,ng

)−∇f(xk,1)
)
− α (Znc

1 − I)

ng−1∑
j=2

∇f(xk,j)−∇f(xk,1)


where the second equality is a telescopic sum of the inner loop update (xk,i = xk,i−1 − αyk,i−1)
from i = 2 to ng and the third equality is due to (27). By the triangle inequality, Assumption 3.1
and (5),

∥xk+1,1 − x̄k+1,1∥2 ≤ βnc
1 ∥xk,1 − x̄k,1∥2 + α ((ng − 1)βnc

1 + βnc
2) ∥yk,1 − ȳk,1∥2

+ αβnc
2 L∥xk,ng − xk,1∥2 + αβnc

1 L

ng−1∑
j=2

∥xk,j − xk,1∥2.

Adding αβnc
1 L∥xk,1 − xk,1∥2 = 0 to the right hand side and (20), it follows,

∥xk+1,1 − x̄k+1,1∥2 ≤ βnc
1 ∥xk,1 − x̄k,1∥2 + α ((ng − 1)βnc

1 + βnc
2) ∥yk,1 − ȳk,1∥2

+ α2βnc
2 L(2(ng − 1))∥yk,1∥2 + α2βnc

1 L

ng−1∑
j=1

2(j − 1)∥yk,1∥2

= βnc
1 ∥xk,1 − x̄k,1∥2 + α ((ng − 1)βnc

1 + βnc
2) ∥yk,1 − ȳk,1∥2

+ 2α2L(ng − 1)
(
βnc
2 + βnc

1
(ng−2)

2

)
∥yk,1∥2.

The desired bound for the consensus error in xk,1 follows by using (19).

Finally, we consider the consensus error in yk,1. By (23),

yk+1,1 − ȳk+1,1 = (Ind − I)yk+1,1

= (Ind − I) (Znc
3 yk,1 + Znc

4 ∇f(xk+1,1)− Znc
3 ∇f(xk,1))

+ (Ind − I) (Znc
3 ∇f(xk,ng)− Znc

4 ∇f(xk,ng))

= (Znc
3 − I) (yk,1 − ȳk,1) + (Znc

4 − I) (∇f(xk+1,1)−∇f(xk,ng))

+ (Znc
3 − I) (∇f(xk,ng)−∇f(xk,1)).

Title Suppressed Due to Excessive Length 19

By Assumption 3.1 and (5),

∥yk+1,1 − ȳk+1,1∥2
≤ βnc

3 ∥yk,1 − ȳk,1∥2 + βnc
4 L∥xk+1,1 − xk,ng∥2 + βnc

3 L∥xk,ng − xk,1∥2
= βnc

3 ∥yk,1 − ȳk,1∥2 + βnc
4 L∥(Znc

1 − Ind)(xk,ng − x̄k,ng)− αZnc
2 yk,ng∥2

+ βnc
3 L∥xk,ng − xk,1∥2

≤ βnc
3 ∥yk,1 − ȳk,1∥2 + βnc

4 L∥Znc
1 − Ind∥2∥xk,ng − x̄k,ng∥2 + αβnc

4 L∥Znc
2 ∥2∥yk,ng∥2

+ βnc
3 L∥xk,ng − xk,1∥2

= βnc
3 ∥yk,1 − ȳk,1∥2 + βnc

4 L∥Znc
1 − Ind∥2∥xk,ng − x̄k,ng∥2

+ αβnc
4 L∥yk,1 +∇f(xk,ng)−∇f(xk,1)∥2 + βnc

3 L∥xk,ng − xk,1∥2
≤ βnc

3 ∥yk,1 − ȳk,1∥2 + βnc
4 L∥Znc

1 − Ind∥2∥xk,ng − x̄k,ng∥2
+ αβnc

4 L∥yk,1∥2 + αβnc
4 L2∥xk,ng

− xk,1∥2 + βnc
3 L∥xk,ng

− xk,1∥2

where the first equality follows from xk+1,1 = Znc
1 xk,ng

−αZnc
2 yk,ng

and −(Znc
1 − Ind)x̄k,ng

= 0,
the second inequality is by the triangle inequality, the second equality follows by (22), and the
last inequality is an application of triangle inequality and Assumption 3.1. By (20), (21) and
αL ≤ 1

ng
, it follows,

∥yk+1,1 − ȳk+1,1∥2
≤βnc

3 ∥yk,1 − ȳk,1∥2 + βnc
4 L∥Znc

1 − Ind∥2∥xk,1 − x̄k,1∥2

+
(
αβnc

4 L+ 2α(ng − 1)L
(
βnc
4 ∥Znc

1 − Ind∥2 + βnc
4

ng
+ βnc

3

))
∥yk,1∥2.

Substituting (19) yields the desired bound for the consensus error in yk,1. ⊓⊔

Lemma 3.4 quantifies the progression of error vector rk using the matrix B(nc, ng), similar
to Lemma 3.1 but now allowing for multiple computation steps. Notice that when ng = 1,
Lemma 3.4 reduces to Lemma 3.1, making it a special case of this analysis. We split the matrix
B(nc, ng) into the matrices A(nc, ng) and E(nc, ng). The latter matrix is characterized by the
terms δ1(nc, ng) and δ2(nc, ng). We now define the explicit form of B(nc, ng) for the methods
defined in Table 1.

Corollary 3.4 Suppose the conditions of Lemma 3.4 are satisfied. Then, the matrices A(nc, ng)
for the methods described in Table 1 are defined as:

GTA-1: A1(nc, ng) =

(1− αµ)ng κ√
n
(1− (1− αµ)ng) 0

0 βnc α ((ng − 1)βnc + 1)√
nαL2 L(2 + αL) βnc + αL

 ,

GTA-2: A2(nc, ng) =

(1− αµ)ng κ√
n
(1− (1− αµ)ng) 0

0 βnc αβncng√
nαL2 L(2 + αL) βnc + αL

 ,

GTA-3: A3(nc, ng) =

(1− αµ)ng κ√
n
(1− (1− αµ)ng) 0

0 βnc αβncng√
nαβncL2 βncL(2 + αL) βnc(1 + αL)

 .

(30)

The matrix E(nc, ng) for the methods described in Table 1 is defined using the error terms
(δ1(nc, ng) and δ2(nc, ng)). The error terms for the methods described in Table 1 are defined in
Table 2.

20 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

Table 2: Error terms (δ1(nc, ng) and δ2(nc, ng)) for GTA-1, GTA-2 and GTA-3

Method δ1(nc, ng) δ2(nc, ng)

GTA-1 2 + βnc (ng − 2) 2
(
2 + 1

ng
+ βnc

)
GTA-2 ngβnc 2

(
2 + 1

ng
+ βnc

)
GTA-3 ngβnc 2βnc

(
3 + 1

ng

)

Proof Substituting the matrix values for each method in (28) and bounding ∥Znc
1 − Ind∥2 ≤ 2

gives the desired result. ⊓⊔

Corollary 3.4 presents the explicit form of the matrices Bi(nc, ng) = Ai(nc, ng) + αL(ng −
1)Ei(nc, ng) for i = 1, 2, 3, for each of the methods in Table 1. The convergence properties of GTA
can be analyzed using the spectral radius of B(nc, ng). We now qualitatively establish the effect of
the number of communication steps nc on ρ(B(nc, ng)) and a relative ordering for ρ(B1(nc, ng)),
ρ(B2(nc, ng)) and ρ(B3(nc, ng)).

Theorem 3.5 Suppose Assumption 3.1 holds. If α ≤ 1
Lng

in Algorithm 1, then as nc in-

creases, ρ(B(nc, ng)) decreases where B(nc, ng) is defined in Lemma 3.4. Thus, as nc increases,
ρ(Bi(nc, ng)) decreases for all i = 1, 2, 3 defined in Corollary 3.4. Moreover, if all three methods
defined in Table 1 (GTA-1, GTA-2 and GTA-3) employ the same step size,

ρ(B1(nc, ng)) ≥ ρ(B2(nc, ng)) ≥ ρ(B3(nc, ng)).

Proof Note that A(nc, ng) ≥ 0 and E(nc, ng) ≥ 0, thus B(nc, ng) ≥ 0. Also, A(nc, ng) ≥
A(nc+1, ng), δ1(nc, ng) ≥ δ1(nc+1, ng), δ2(nc, ng) ≥ δ2(nc+1, ng), thus E(nc, ng) ≥ E(nc+1, ng)
and B(nc, ng) ≥ B(nc+1, ng). By [20, Corollary 8.1.19], it follows that ρ(A(nc, ng)) ≥ ρ(A(nc+
1, ng)), ρ(E(nc, ng)) ≥ ρ(E(nc + 1, ng)) and ρ(B(nc, ng)) ≥ ρ(B(nc + 1, ng)). The same argu-
ment is applicable for B1(nc, ng), B2(nc, ng) and B3(nc, ng). Now, observe that B1(nc, ng) ≥
B2(nc, ng) ≥ B3(nc, ng) ≥ 0 when the same step size is employed. Thus, again by [20, Corollary
8.1.19], it follows that ρ(B1(nc, ng)) ≥ ρ(B2(nc, ng)) ≥ ρ(B3(nc, ng)). ⊓⊔

The effect of the number of computation steps ng on ρ(B(nc, ng)) is not as clear as the effect
of the number of communication steps nc. Increasing ng increases all elements of the matrix
αL(ng − 1)E(nc, ng), while (1 − αµ)ng in the matrix A(nc, ng) decreases since α ≤ 1

Lng
. Thus,

the effect of ng on ρ(B(nc, ng)) is not monotonic.

We now derive conditions for establishing a linear rate of convergence for Algorithm 1 with
multiple communication and computation steps every iteration in terms of network parameters
(β1, β2, β3, β4) and objective function parameters (L, µ, κ = L

µ).

Theorem 3.6 Suppose Assumption 3.1 holds and a finite number of computation steps are per-
formed at each outer iteration of Algorithm 1 (i.e., 1 ≤ ng < ∞). If the matrix B(nc, ng) is
irreducible, β1, β3 < 1 and

α < min

{
1

ngL
, µ
(2L2+µ2)(ng−1) ,

1
2L

√
3(1−βnc

1)
δ1(nc,ng)(ng−1) ,

3(1−βnc
3)

4L(βnc
4 +δ2(nc,ng)(ng−1))

,
−b2+

√
b22+4b1b3

2b1

}
(31)

Title Suppressed Due to Excessive Length 21

where

b1 =
µL2ng

2 [(ng − 1) (βnc
1 + δ1(nc, ng)) + βnc

2] [βnc
4 + (ng − 1)δ2(nc, ng)]

+ L3ng(ng − 1)
[
δ1(nc, ng)

(
1−βnc

3

4

)
+ (βnc

4 + (ng − 1)δ2(nc, ng))
(

1−βnc
1

4

)]
+ L2(ng − 1)2

[
Lδ1(nc, ng) (3β

nc
4 + (ng − 1)δ2(nc, ng)) + δ1(nc, ng)

(
1−βnc

3

4

)]
+ L2[βnc

4 + (ng − 1)δ2(nc, ng)] [Lng + (ng − 1)] [(ng − 1) (βnc
1 + δ1(nc, ng)) + βnc

2]

b2 =µngβ
nc
4 L ((ng − 1)(βnc

1 + δ1(nc, ng)) + βnc
2) , and b3 =

µng

2

(
1−βnc

1

4

)(
1−βnc

3

4

)
and δ1(nc, ng) and δ2(nc, ng) are defined in (29), then, for all ϵ > 0 there exists a constant Cϵ > 0
such that, for all k ≥ 0,

∥rk∥2 ≤ Cϵ(ρ(B(nc, ng)) + ϵ)k∥r0∥2, where ρ(B(nc, ng)) < 1.

Proof By the binomial expansion of (1 − αµ)ng and the condition that α ≤ 1
Lng

, it follows that

1−αµng ≤ (1−αµ)ng ≤ 1−αµng+α2µ2 ng(ng−1)
2 . Following a similar approach to [43, Theorem

2], since the step size satisfies (31), the first, second and third diagonal terms of B(nc, ng) can
be upper bounded as

(1− αµ)ng + α2L2ng(ng − 1) ≤ 1− αµng + α2(L2 + µ2

2)ng(ng − 1) < 1− αµng

2 ,

βnc
1 + α2L2(ng − 1)δ1(nc, ng) <

3+βnc
1

4 ,

βnc
3 + αβnc

4 L+ αL(ng − 1)δ2(nc, ng) <
3+βnc

3

4 .

With the above bounds, (1−αµ)ng ≥ 1−αµng and ∥Znc
1 − Ind∥ ≤ 2, we construct the 3× 3

matrix B̃(nc, ng) that has entries b̃ij defined as follows:

b̃11 = 1− αµng

2 , b̃12 =
αLng√

n
(1 + αL(ng − 1)) , b̃13 =

α2Lng(ng−1)√
n

b̃21 =
√
nα2L2(ng − 1)δ1(nc, ng), b̃22 =

3+βnc
1

4 ,

b̃23 = α ((ng − 1)(βnc
1 + αLδ1(nc, ng)) + βnc

2) ,

b̃31 =
√
nαL2 (βnc

4 + (ng − 1)δ2(nc, ng)) ,

b̃32 = βnc
4 L(2 + αL) + αL2(ng − 1)δ2(nc, ng), b̃33 =

3+βnc
3

4 ,

such that 0 ≤ B(nc, ng) ≤ B̃(nc, ng) and by [20, Corollary 8.1.19], ρ(B(nc, ng)) ≤ ρ(B̃(nc, ng)).
Following [42, Lemma 5] derived from the Perron-Forbenius Theorem [20, Theorem 8.4.4] for a
3 × 3 matrix, when the matrix B̃(nc, ng) is nonnegative and irreducible, it is sufficient to show

that the diagonal elements of B̃(nc, ng) are less than one and det(I3 − B̃(nc, ng)) > 0 in order

to guarantee ρ(B̃(nc, ng)) < 1 which suffices to show ρ(B(nc, ng)) < 1.

Consider the diagonal elements of the matrix B̃(nc, ng). The first element is 1 − αµng

2 ≤
1 − µ

2L < 1 by (31). The second element is
3+βnc

1

4 < 1 as β1 < 1. Finally the third element is

22 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

3+βnc
3

4 < 1 as β3 < 1. Next, let us consider,

det(I3 − B̃(nc, ng))

=
αµng

2

(
1−βnc

1

4

)(
1−βnc

3

4

)
− α3L3ng(ng − 1)

[
βnc
4

(
1−βnc

1

4

)
+ δ1(nc, ng)

(
1−βnc

3

4

)]
− α2µLng

2 [(ng − 1)(βnc
1 + αLδ1(nc, ng)) + βnc

2] [βnc
4 (2 + αL) + αL(ng − 1)δ2(nc, ng)]

− α4L4ng(ng − 1)2δ1(nc, ng) [2β
nc
4 + αL (βnc

4 + (ng − 1)δ2(nc, ng))]

− α3L3ng (1 + α(ng − 1)) [βnc
4 + (ng − 1)δ2(nc, ng)] [(ng − 1)(βnc

1 + αLδ1(nc, ng)) + βnc
2]

− α3L3ng(ng − 1)2
[
δ2(nc, ng)

(
1−βnc

1

4

)
+ αδ1(nc, ng)

(
1−βnc

3

4

)]
≥α(−b1α

2 − b2α+ b3) = −b1α(α− αl)(α− αu)

where the inequality is due to αLng ≤ 1 and thus αL ≤ 1 as ng ≥ 1, and

αl =
−b2−

√
b22+4b1b3

2b1
and αu =

−b2+
√

b22+4b1b3
2b1

.

Observe that αl < 0 < αu since b1, b2, b3 ≥ 0. From (31), we have 0 < α < αu. Therefore,
det(I3 − B̃(nc, ng)) > 0, which combined with the fact that the diagonal elements of the matrix

are less than 1, implies ρ(B(nc, ng)) ≤ ρ(B̃(nc, ng)) < 1.
Finally, we bound the norm of error vector ∥rk∥2 by telescoping ri+1 ≤ B(nc, ng)ri from i = 0

to k − 1 and triangle inequality as

∥rk∥2 ≤ ∥B(nc, ng)
k∥2∥r0∥2.

From [20, Corollary 5.6.13], we can bound ∥B(nc, ng)
k∥2 ≤ Cϵ(ρ(B(nc, ng)) + ϵ)k where ϵ > 0

and Cϵ is a positive constant depending on B(nc, ng) and ϵ. ⊓⊔

Remark 3.1 Linear convergence can be established for the iterates generated by Algorithm 1 by
treating inner iterations as a special case of of time-varying networks and following the analysis
techniques in [36, 37, 40]. Such analysis would ensure descent in each inner iteration and require
that the step size satisfy a pessimistic O(1

n2
g
) condition. Our analysis takes a different approach;

we quantify the error across outer iterations, and as a result, the condition on the step size is
less pessimistic, i.e., O(1

ng
). That said, the analysis involves a complicated error recursion that

makes it difficult to explicitly quantify the rate of convergence of Algorithm 1. In our follow-up
work [5], we present an analogous randomized algorithm that explicitly quantifies the complexity
in terms of number of communication and computation steps.

Similar to Theorem 3.4, the only constraint Theorem 3.6 imposes on the system is β1, β3 < 1.
This implies the communication matrices W1 and W3 must represent connected networks (not
necessarily the same network) even when multiple communication and multiple computation
steps are performed. Theorem 3.6 does not impose any restrictions on the relation among W1,
W2, W3 and W4. Thus, it allows for more flexibility than the structures considered in the
literature even when multiple communication and multiple computation steps are performed.
Theorem 3.6 uses a relaxation of the original matrix B(nc, ng) to provide a more pessimistic step
size condition than required. But observe, when ng = 1, (31) recovers the O(L−1κ−0.5) step size
condition of Theorem 3.3, suggesting it might not be very pessimistic.

Based on Theorem 3.6, the step size conditions for methods described in Table 1 can be
derived. We omit these conditions as they are complex and do not offer any additional insights.
We also omit the counterpart to Theorem 3.4 as the matrix B(nc, ng) is now a dense matrix,

Title Suppressed Due to Excessive Length 23

thus any such bounds are again highly complex and do not offer strong insights into the effects
of communication and computation on the convergence rate. If B(nc, ng) is a reducible matrix,
the analysis for the progression of rk can be further simplified from Lemma 3.4. The analysis for

this case is presented in Subsection 3.3 with the examples of GTA-2 and GTA-3 when W =
1n1

T
n

n ,
i.e., β = 0.

3.3 Fully connected network

In this section, we analyze the methods defined in Table 1 under a fully connected network.
While showing linear convergence of GTA in Theorem 3.6, we assume B(nc, ng) is an irreducible

matrix. When the network is fully connected, i.e., W =
1n1

T
n

n and β = 0, the assumption does
not hold for GTA-2 and GTA-3 as the matrices B2(nc, ng) and B3(nc, ng) defined by Corollary 3.4
are reducible. For GTA-1, such an issue does not arise as A1(nc, ng) defined in Corollary 3.4
is irreducible for all β ∈ [0, 1]. Thus, we now present sufficient conditions for linear rate of
convergence and the convergence rate for GTA-2 and GTA-3 for the special case of fully connected
networks.

Theorem 3.7 Suppose Assumption Theorem 3.1 holds, W =
1n1

T
n

n and a finite number of com-
putation steps are performed each outer iteration of GTA-3 defined in Table 1 (i.e., 1 ≤ ng < ∞).

If α < min
{

µ
(2L2+µ2)(ng−1) ,

1
Lng

}
, then for all k ≥ 0,

∥xk+1,1 − x∗∥2 ≤
(
(1− αµ)ng + α2L2ng(ng − 1)

)
∥xk,1 − x∗∥2.

Moreover, suppose the number of computation steps performed each outer iteration of GTA-2
and GTA-3 defined in Table 1 is set to one (i.e., ng = 1). If α ≤ 1

L , then for both the methods,
for all k ≥ 0,

∥xk+1,1 − x∗∥2 ≤ (1− αµ)∥xk,1 − x∗∥2.

Proof When we substitute β = 0 in Corollary 3.4 as α < 1
ngL

, the matrices B2(nc, ng) and

B3(nc, ng) now have rows of zeros that make them reducible. Thus, we reduce these matrices by
ignoring the error terms corresponding to the row of zeros. This yields the following systems for
the progression of errors in these methods,

GTA-2: r̃k+1 ≤

[
(1− αµ)ng + α2L2ng(ng − 1)

α2Lng(ng−1)√
n√

nαL2δ̃(nc, ng) αLδ̃(nc, ng)

]
r̃k, (32)

GTA-3: ∥xk+1,1 − x∗∥2 ≤
(
(1− αµ)ng + α2L2ng(ng − 1)

)
∥xk,1 − x∗∥2, (33)

where δ̃(nc, ng) = 1 + 2(ng − 1)
(
2 + 1

ng

)
and r̃k =

[
∥xk,1 − x∗∥2
∥yk,1 − ȳk,1∥2

]
.

By α < µ
(2L2+µ2)(ng−1) and (1− αµ)ng ≤ 1− αµng + α2µ2 ng(ng−1)

2 from Theorem 3.6,

(1− αµ)ng + α2L2ng(ng − 1) ≤ 1− αµng + α2
(
L2 + µ2

2

)
ng(ng − 1) < 1,

and thus the result for GTA-3 follows. When the number of computation steps performed each
outer iteration is set to one, i.e., ng = 1, the result for GTA-3 follows by substituting ng = 1 in (33),

where 1−αµ < 1 as α ≤ 1
L . Substituting ng = 1 in (32) for GTA-2 yields, r̃k+1 ≤

[
1− αµ 0√
nαL2 αL

]
r̃k,

where the bound on optimization error is independent of the consensus error in yk,1. Thus, we
obtain ∥xk+1,1 − x∗∥2 ≤ (1− αµ) ∥xk,1 − x∗∥2 for GTA-2. ⊓⊔

24 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

By Theorem 3.7 if the network is fully connected and a single computation step is performed,
i.e., ng = 1, GTA-2 and GTA-3 display gradient descent performance. For GTA-2, when the network
is fully connected and ng > 1, the convergence rate can be expressed as the spectral radius of
the 2× 2 matrix in (32).

4 Numerical Experiments

In this section, we illustrate the empirical performance of the methods defined in Table 1 using
Python implementations2. The aim of this section is to show, over multiple problems, that
different communication strategies and the balance between communication and computation
steps can substantially effect the algorithm’s performance. Specifically, we establish the relative
performance of the methods defined in Table 1 and illustrate the benefits of the flexibility in
terms of communication and computation steps.

We present results on two problems: (1) a synthetic strongly convex quadratic problem (Sub-
section 4.1); and, (2) binary classification logistic regression problems over the mushroom and
australian datasets [16] (Subsection 4.2). We investigated two network structures (different mix-
ing matrix W) with n = 16 nodes: (1) a connected cyclic network (β = 0.992) where all nodes
have two neighbours; and, (2) a connected star network (β = 0.95) where all nodes are con-
nected to a single central node. Both networks have low connectivity (i.e., high β). We should
note that the performance of Algorithm 1 with multiple communication steps is equivalent to
the performance over a network with higher connectivity (i.e., lower β).

The methods defined in Table 1 are denoted as GTA−i(nc, ng), i = 1, 2, 3, where nc and
ng are the number of communication and computation steps, respectively. We tested 5 values
of nc and ng for each of the methods; nc ∈ {1, 5, 10, 50, 100} and ng ∈ {1, 5, 20, 50, 100}. We
compared the performance of popular gradient tracking methods, which are special cases of
our generalized framework. The step sizes were tuned over the set {2−t|t = 0, 1, 2, .., 20} for
all algorithms and problems, and the initial iterates for all algorithms, problems and nodes
were set to the zero vector (i.e., xk = 0). The performance of the methods was measured in
terms of the optimization error (∥x̄k − x∗∥2) and the consensus error (∥xk − x̄k∥2). We do
not report the consensus error in the auxiliary variable yk (∥yk − ȳk∥2) as this measure does
not provide any significant additional insights about the performance of the algorithms. The
optimal solution x∗ for quadratic problem was obtained analytically and for the logistic regression
problems was obtained by running gradient descent in the centralized setting to high accuracy,
i.e., ∥∇f(x∗)∥2 ≤ 10−12.

4.1 Quadratic Problems

We first consider quadratic problems

f(x) =
1

n

n∑
i=1

1

2
xTQix+ bTi x,

where Qi ∈ R10×10, Qi ≻ 0 and bi ∈ R10 is the local information at each node i ∈ {1, 2, .., n}, and
n = 16. Each local problem is strongly convex and was generated using the procedure described
in [34], with global condition number κ ≈ 104.

2 Our code will be made publicly available upon publication of the manuscript. Github repository: https:

//github.com/SANDOPT/Gradient-Tracking-Algorithmic-Framework.git. Moreover, additional extensive numer-
ical results can be found in the same repository.

https://github.com/SANDOPT/Gradient-Tracking-Algorithmic-Framework.git
https://github.com/SANDOPT/Gradient-Tracking-Algorithmic-Framework.git

Title Suppressed Due to Excessive Length 25

Figs. 1 and 2 show the performance of GTA-1, GTA-2 and GTA-3 over a cyclic network and a
star network, respectively. Our first observation, from the iteration plots in both the figures, is
that the optimization error and consensus error converge at a linear rate for all methods, match-
ing the theoretical results of Section 3. Moreover, improvements in the rates of convergence of all
methods are observed as a result of the flexibility in terms of the number of communication and
computation steps. Specifically, the consensus error is improved (and on par optimization error)
when multiple communication steps with single computation step are performed (see GTA-i(1,
1) vs. GTA-i(nc, 1) lines), and the optimization error is improved (and on par consensus er-
ror) when multiple computation steps with same number of communication steps are performed
(see GTA-i(nc, 1) vs. GTA-i(nc, ng) lines). These observations match the theory presented in
Section 3.2. That being said, these improvements come at a higher cost in terms of total com-
munication or computation steps, respectively, and an optimal choice of (nc, ng) depends on the
exact cost structure that combines the complexity of both these steps; see e.g., [6]. Finally, we
also observe that GTA-2 and GTA-3 outperform GTA-1 in terms of optimization error and achieve
similar consensus error. The performance of GTA-2 and GTA-3 is very similar for this problem,
we suspect the reason for this behavior is due to the large β and the high condition number
(κ ≈ 104) that dominate the rate constant; see Corollary 3.3.

0 1 2 3 4 5
1e4

10 1

100

101

Op
tim

iza
tio

n
Er

ro
r

0 2 4 6 8 10
1e4

10 1

100

101

0 5 10 15 20 25
1e4

10 1

100

101

0 1 2 3 4 5
Iterations 1e4

10 9

10 7

10 5

10 3

10 1

Co
ns

en
su

s E
rro

r

0 2 4 6 8 10
Gradients 1e4

10 9

10 7

10 5

10 3

10 1

0 5 10 15 20 25
Communications 1e4

10 9

10 7

10 5

10 3

10 1

GTA-1 (1, 1) GTA-2 (1, 1) GTA-3 (1, 1) GTA-1 (10, 1) GTA-2 (10, 1) GTA-3 (10, 1)
GTA-1 (10, 5) GTA-2 (10, 5) GTA-3 (10, 5)

Fig. 1: Optimization Error (∥xk − x∗∥2) and Consensus Error (∥xk − x̄k∥2) of GTA-1, GTA-2
and GTA-3 with respect to number of iterations, communications and gradient evaluations for a
synthetic quadratic problem (n = 16, d = 10, κ = 104) over a cyclic network (β = 0.992).

4.2 Binary Classification Logistic Regression

Next, we consider ℓ2-regularized binary classification logistic regression problems of the form

f(x) =
1

n

n∑
i=1

1

ni
log(1 + e−bTi Aix) +

1

ni
∥x∥22,

26 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

0 1 2 3 4 5
1e4

10 2

10 1

100

101
Op

tim
iza

tio
n

Er
ro

r

0 1 2 3 4 5
1e4

10 2

10 1

100

101

0 2 4 6 8 10
1e4

10 2

10 1

100

101

0 1 2 3 4 5
Iterations 1e4

10 9

10 7

10 5

10 3

Co
ns

en
su

s E
rro

r

0 1 2 3 4 5
Gradients 1e4

10 9

10 7

10 5

10 3

0 2 4 6 8 10
Communications 1e4

10 9

10 7

10 5

10 3

GTA-1 (1, 1) GTA-2 (1, 1) GTA-3 (1, 1) GTA-1 (10, 1) GTA-2 (10, 1) GTA-3 (10, 1)
GTA-1 (10, 20) GTA-2 (10, 20) GTA-3 (10, 20)

Fig. 2: Optimization Error (∥xk − x∗∥2) and Consensus Error (∥xk − x̄k∥2) of GTA-1, GTA-2
and GTA-3 with respect to number of iterations, communications and gradient evaluations for a
synthetic quadratic problem (n = 16, d = 10, κ = 104) over star network(β = 0.95).

where each node i ∈ {1, 2, .., n} has a portion of data samples Ai ∈ Rni×d and corresponding
labels bi ∈ {0, 1}ni . Experiments were performed over the mushroom dataset (n = 16, d = 117,∑n

i=1 ni = 8124) and the australian dataset (n = 16, d = 41,
∑n

i=1 ni = 690) [16].
Figs. 3 and 4 show the performance of GTA-1, GTA-2 and GTA-3 over a cyclic network (β =

0.992) for the mushroom dataset and a star network for the australian dataset (β = 0.95),
respectively. Similar observations to those made for the quadratic problem with respect to the
effect of performing multiple communication and computation steps can also be made for these
problems. Additionally, we observe that GTA-3 outperforms GTA-2 on these problems. We should
note that although GTA-3 performs the best within these experiments, it also brings certain
implementation constraints; see Section 2.

5 Final Remarks

In this paper, we have proposed a framework that unifies and generalizes communication strate-
gies in gradient tracking methods with flexibility in the number of communication and com-
putation steps performed at every iteration. We have established convergence guarantees for
the proposed gradient tracking framework. Specifically, we have shown linear convergence for
the general framework and the special cases of gradient tracking methods. Moreover, we have
shown the positive influence of performing multiple communication steps at every iteration on
the convergence rate and provide results that allow for the direct comparison of popular gradient
tracking methods. Our experiments on quadratic and logistic regression problems illustrate the
effects of different communication strategies and the benefits of the flexibility in terms of iter-
ations and number of communication and computation steps. The advantages of the proposed
framework can be further realized when the actual cost, i.e., a combination of the complexity of
both communication and computation steps that is application specific, is considered. The frame-
work is extendable to diverse decentralized optimization settings, such as non-convex problems,

Title Suppressed Due to Excessive Length 27

0 200 400 600 800 100010 2

10 1

100

Op
tim

iza
tio

n
Er

ro
r

0 200 400 600 800 100010 2

10 1

100

0 500 1000 1500 200010 2

10 1

100

0 200 400 600 800 1000
Iterations

10 4

10 2

100

Co
ns

en
su

s E
rro

r

0 200 400 600 800 1000
Gradients

10 4

10 2

100

0 500 1000 1500 2000
Communications

10 4

10 2

100

GTA-1 (1, 1) GTA-2 (1, 1) GTA-3 (1, 1) GTA-1 (10, 1) GTA-2 (10, 1) GTA-3 (10, 1)
GTA-1 (10, 5) GTA-2 (10, 5) GTA-3 (10, 5)

Fig. 3: Optimization Error (∥xk − x∗∥2) and Consensus Error (∥xk − x̄k∥2) of GTA-1, GTA-2 and
GTA-3 with respect to number of iterations, communications and gradient evaluations for binary
logistic regression on Mushroom dataset (n = 16, d = 117,

∑n
i=1 ni = 8124) over cyclic network

(β = 0.992).

0 100 200 300 400 50010 3

10 2

10 1

100

Op
tim

iza
tio

n
Er

ro
r

0 100 200 300 400 50010 3

10 2

10 1

100

0 100 200 300 400 50010 3

10 2

10 1

100

0 100 200 300 400 500
Iterations

10 3

10 2

10 1

100

Co
ns

en
su

s E
rro

r

0 100 200 300 400 500
Gradients

10 3

10 2

10 1

100

0 100 200 300 400 500
Communications

10 3

10 2

10 1

100

GTA-1 (1, 1) GTA-2 (1, 1) GTA-3 (1, 1) GTA-1 (5, 1) GTA-2 (5, 1) GTA-3 (5, 1)
GTA-1 (5, 5) GTA-2 (5, 5) GTA-3 (5, 5)

Fig. 4: Optimization Error (∥xk − x∗∥2) and Consensus Error (∥xk − x̄k∥2) of GTA-1, GTA-2 and
GTA-3 with respect to number of iterations, communications and gradient evaluations for binary
logistic regression on Australian dataset (n = 16, d = 41,

∑n
i=1 ni = 690) over star network

(β = 0.95).

28 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

non-smooth structured problems, stochastic local objective functions, and directed communica-
tion graphs. It is also valuable to adapt the framework to asynchronous communication setups.
This allows for adaptive schemes in which agents determine the number of communication and
computation steps independently based on local information.

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the
corresponding author on reasonable request.

References

1. Sulaiman A Alghunaim, Ernest K Ryu, Kun Yuan, and Ali H Sayed. Decentralized proximal
gradient algorithms with linear convergence rates. IEEE Transactions on Automatic Control,
66(6):2787–2794, 2020.

2. Yossi Arjevani, Joan Bruna, Bugra Can, Mert Gurbuzbalaban, Stefanie Jegelka, and
Hongzhou Lin. Ideal: Inexact decentralized accelerated augmented lagrangian method. Ad-
vances in Neural Information Processing Systems, 33:20648–20659, 2020.

3. Necdet Serhat Aybat, Zi Wang, Tianyi Lin, and Shiqian Ma. Distributed linearized alter-
nating direction method of multipliers for composite convex consensus optimization. IEEE
Transactions on Automatic Control, 63(1):5–20, 2017.

4. Brian Baingana, Gonzalo Mateos, and Georgios B Giannakis. Proximal-gradient algorithms
for tracking cascades over social networks. IEEE Journal of Selected Topics in Signal Pro-
cessing, 8(4):563–575, 2014.

5. Albert S Berahas, Raghu Bollapragada, and Shagun Gupta. A flexible gradient tracking al-
gorithmic framework for decentralized optimization. arXiv preprint arXiv:2312.06814, 2023.

6. Albert S Berahas, Raghu Bollapragada, Nitish Shirish Keskar, and Ermin Wei. Balancing
communication and computation in distributed optimization. IEEE Transactions on Auto-
matic Control, 64(8):3141–3155, 2018.

7. Albert S. Berahas, Raghu Bollapragada, and Ermin Wei. On the convergence of nested de-
centralized gradient methods with multiple consensus and gradient steps. IEEE Transactions
on Signal Processing, 69:4192–4203, 2021.

8. Albert S Berahas, Charikleia Iakovidou, and ErminWei. Nested distributed gradient methods
with adaptive quantized communication. In 2019 IEEE 58th Conference on Decision and
Control (CDC), pages 1519–1525. IEEE, 2019.

9. Dimitri Bertsekas and John Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Athena Scientific, 2015.

10. Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in
the study of distributed multi-agent coordination. IEEE Transactions on Industrial Infor-
matics, 9(1):427–438, 2012.

11. Annie I Chen and Asuman Ozdaglar. A fast distributed proximal-gradient method. In 2012
50th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 601–608. IEEE, 2012.

12. Fengwen Chen, Guodong Long, Zonghan Wu, Tianyi Zhou, and Jing Jiang. Personalized
federated learning with graph. arXiv preprint arXiv:2203.00829, 2022.

13. Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal
processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering,
pages 185–212. Springer, 2011.

Title Suppressed Due to Excessive Length 29

14. Rudrajit Das, Anish Acharya, Abolfazl Hashemi, Sujay Sanghavi, Inderjit S Dhillon, and
Ufuk Topcu. Faster non-convex federated learning via global and local momentum. In
Uncertainty in Artificial Intelligence, pages 496–506. PMLR, 2022.

15. Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization. IEEE
Transactions on Signal and Information Processing over Networks, 2(2):120–136, 2016.

16. Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017.
17. Pedro A Forero, Alfonso Cano, and Georgios B Giannakis. Consensus-based distributed

support vector machines. Journal of Machine Learning Research, 11(5), 2010.
18. Diyako Ghaderyan, Necdet Serhat Aybat, A Pedro Aguiar, and Fernando Lobo Pereira. A

fast row-stochastic decentralized method for distributed optimization over directed graphs.
IEEE Transactions on Automatic Control, 2023.

19. Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new
efficient methods. In International Conference on Artificial Intelligence and Statistics, pages
3556–3564. PMLR, 2021.

20. Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge university press, 2012.
21. Dušan Jakovetić, José MF Moura, and Joao Xavier. Linear convergence rate of a class of

distributed augmented lagrangian algorithms. IEEE Transactions on Automatic Control,
60(4):922–936, 2014.

22. Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning.
In International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

23. Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. Peer-to-peer
federated learning on graphs. arXiv preprint arXiv:1901.11173, 2019.

24. Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated Learning:
Challenges, Methods, and Future Directions. IEEE Signal Processing Magazine, 37(3):50–
60, 2020.

25. Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the conver-
gence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

26. Qing Ling, Wei Shi, Gang Wu, and Alejandro Ribeiro. Dlm: Decentralized linearized alternat-
ing direction method of multipliers. IEEE Transactions on Signal Processing, 63(15):4051–
4064, 2015.

27. Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated learning via
momentum gradient descent. IEEE Transactions on Parallel and Distributed Systems,
31(8):1754–1766, 2020.

28. Sindri Magnússon. Bandwidth Limited Distributed Optimization with Applications to Net-
worked Cyberphysical Systems. PhD thesis, KTH Royal Institute of Technology, 2017.

29. Gabriel Mancino-Ball, Yangyang Xu, and Jie Chen. A decentralized primal-dual framework
for non-convex smooth consensus optimization. arXiv preprint arXiv:2107.11321, 2021.

30. Fatemeh Mansoori and Ermin Wei. Flexpd: A flexible framework of first-order primal-dual
algorithms for distributed optimization. IEEE Transactions on Signal Processing, 69:3500–
3512, 2021.

31. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

32. Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip:
Yes! local gradient steps provably lead to communication acceleration! finally! arXiv preprint
arXiv:2202.09357, 2022.

33. Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. Linear convergence in
federated learning: Tackling client heterogeneity and sparse gradients. Advances in Neural

30 Albert S. Berahas, Raghu Bollapragada, Shagun Gupta

Information Processing Systems, 34:14606–14619, 2021.
34. Aryan Mokhtari, Qing Ling, and Alejandro Ribeiro. Network newton distributed optimiza-

tion methods. IEEE Transactions on Signal Processing, 65(1):146–161, 2016.
35. Angelia Nedić and Alex Olshevsky. Distributed optimization over time-varying directed

graphs. IEEE Transactions on Automatic Control, 60(3):601–615, 2014.
36. Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed

optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633,
2017.

37. Angelia Nedić, Alex Olshevsky, Wei Shi, and César A Uribe. Geometrically convergent dis-
tributed optimization with uncoordinated step-sizes. In 2017 American Control Conference
(ACC), pages 3950–3955. IEEE, 2017.

38. Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

39. Yurii Nesterov. Introductory lectures on convex programming volume i: Basic Course. Lecture
Notes, 3(4):5, 1998.

40. Edward Duc Hien Nguyen, Sulaiman A Alghunaim, Kun Yuan, and César A Uribe. On the
performance of gradient tracking with local updates. arXiv preprint arXiv:2210.04757, 2022.

41. Joel B Predd, Sanjeev R Kulkarni, and H Vincent Poor. Distributed Learning in Wireless
Sensor Networks. John Wiley & Sons: Chichester, UK, 2007.

42. Shi Pu and Angelia Nedić. Distributed stochastic gradient tracking methods. Mathematical
Programming, 187(1):409–457, 2021.

43. Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedić. Push–pull gradient methods for distributed
optimization in networks. IEEE Transactions on Automatic Control, 66(1):1–16, 2020.

44. Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization. IEEE
Transactions on Control of Network Systems, 5(3):1245–1260, 2017.

45. Ali H Sayed. Diffusion adaptation over networks. In Academic Press Library in Signal
Processing, volume 3, pages 323–453. Elsevier, 2014.

46. Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for
decentralized consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

47. Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear convergence of the
admm in decentralized consensus optimization. IEEE Transactions on Signal Processing,
62(7):1750–1761, 2014.

48. Ying Sun, Gesualdo Scutari, and Amir Daneshmand. Distributed optimization based on
gradient tracking revisited: Enhancing convergence rate via surrogation. SIAM Journal on
Optimization, 32(2):354–385, 2022.

49. Akhil Sundararajan, Bin Hu, and Laurent Lessard. Robust convergence analysis of dis-
tributed optimization algorithms. In 2017 55th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pages 1206–1212. IEEE, 2017.

50. Ye Tian, Ying Sun, and Gesualdo Scutari. Asy-sonata: Achieving linear convergence in
distributed asynchronous multiagent optimization. In 2018 56th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pages 543–551. IEEE, 2018.

51. Konstantinos I Tsianos, Sean Lawlor, and Michael G Rabbat. Consensus-based distributed
optimization: Practical issues and applications in large-scale machine learning. In 2012 50th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
1543–1550. IEEE, 2012.

52. Ermin Wei and Asuman Ozdaglar. On the o (1= k) convergence of asynchronous distributed
alternating direction method of multipliers. In 2013 IEEE Global Conference on Signal and
Information Processing, pages 551–554. IEEE, 2013.

Title Suppressed Due to Excessive Length 31

53. Chenguang Xi and Usman A Khan. Dextra: A fast algorithm for optimization over directed
graphs. IEEE Transactions on Automatic Control, 62(10):4980–4993, 2017.

54. Chenguang Xi, Ran Xin, and Usman A. Khan. Add-opt: Accelerated distributed directed
optimization. IEEE Transactions on Automatic Control, 63(5):1329–1339, 2018.

55. Ran Xin, Chenguang Xi, and Usman A Khan. Frost—fast row-stochastic optimization with
uncoordinated step-sizes. EURASIP Journal on Advances in Signal Processing, 2019:1–14,
2019.

56. Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. Distributed algorithms for composite
optimization: Unified framework and convergence analysis. IEEE Transactions on Signal
Processing, 69:3555–3570, 2021.

57. Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant stepsizes. In 2015 54th
IEEE Conference on Decision and Control (CDC), pages 2055–2060. IEEE, 2015.

58. Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent. Advances
in Neural Information Processing Systems, 33:5332–5344, 2020.

59. Jiaqi Zhang and Keyou You. Asyspa: An exact asynchronous algorithm for convex optimiza-
tion over digraphs. IEEE Transactions on Automatic Control, 65(6):2494–2509, 2020.

60. Shengjun Zhang, Xinlei Yi, Jemin George, and Tao Yang. Computational convergence anal-
ysis of distributed optimization algorithms for directed graphs. In 2019 IEEE 15th Interna-
tional Conference on Control and Automation (ICCA), pages 1096–1101. IEEE, 2019.

61. Yuchen Zhang and Lin Xiao. Communication-efficient distributed optimization of self-
concordant empirical loss. Large-Scale and Distributed Optimization, pages 289–341, 2018.

62. Ke Zhou and Stergios I Roumeliotis. Multirobot active target tracking with combinations of
relative observations. IEEE Transactions on Robotics, 27(4):678–695, 2011.

	Introduction
	Gradient Tracking Algorithmic Framework
	Convergence Analysis
	Numerical Experiments
	Final Remarks

