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ADAPTIVE CONSENSUS: A NETWORK PRUNING APPROACH
FOR DECENTRALIZED OPTIMIZATION

SUHAIL M. SHAH', ALBERT S. BERAHAS}, AND RAGHU BOLLAPRAGADAT

Abstract. We consider network-based decentralized optimization problems, where each node in
the network possesses a local function and the objective is to collectively attain a consensus solution
that minimizes the sum of all the local functions. A major challenge in decentralized optimization
is the reliance on communication which remains a considerable bottleneck in many applications.
To address this challenge, we propose an adaptive randomized communication-efficient algorithmic
framework that reduces the volume of communication by periodically tracking the disagreement error
and judiciously selecting the most influential and effective edges at each node for communication.
Within this framework, we present two algorithms: Adaptive Consensus (AC) to solve the consensus
problem and Adaptive Consensus based Gradient Tracking (AC-GT) to solve smooth strongly convex
decentralized optimization problems. We establish strong theoretical convergence guarantees for the
proposed algorithms and quantify their performance in terms of various algorithmic parameters under
standard assumptions. Finally, numerical experiments showcase the effectiveness of the framework
in significantly reducing the information exchange required to achieve a consensus solution.
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1. Introduction. The problem of network-based decentralized optimization can
be formally stated as,

R
min - i\Tsg
(1.1) z;€RY n;f( )
st. x =, Vi, j€n :={12,--- ,n}

where fi(-) : R? — R is a component of the objective function located at node i € [n],
and z; € R? is a copy of the optimization variable at node i € [n]. A closely related
yet simplified version of this problem, whose goal is to reach consensus among the
nodes, i.e., z; = z; for all ¢ € [n], without minimizing an objective function, is referred
to as the consensus problem [43]. Problems of these types arise in several applications
including wireless sensor networks [38, 46], power systems design [21, 31|, parallel
computing [8, 15], and robotics [3, 11]. More recently, decentralized optimization
has experienced renewed interest owing to the abundance of decentralized data and
privacy-preserving machine learning [23, 44], where f; is a function of the data held
by node ¢ € [n]. Several classes of decentralized optimization algorithms have been
proposed to solve (1.1), where the main components consist of local computations
at every node and information exchange (communication) between nodes in order to
achieve consensus [8]. The communication requirement in many applications remains
a major bottleneck in the performance of decentralized optimization methods [27, 32,
35, 41, 42, 51].

In this work, we propose and develop a novel approach to reduce the commu-
nication requirements in decentralized optimization without significantly impacting
the convergence properties of the underlying algorithm. The core principle of our
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approach involves judiciously selecting a subset of the edges of the network (instead
of all the edges) along which communication is performed at each iteration, thereby
reducing the communication efforts. A key observation motivating this approach is
that selectively pruning the edges of the network has marginal impact on the spectral
properties of the mixing matrix associated with any graph topology. This matrix
plays a crucial role in determining the rate of information diffusion through the net-
work [51], which subsequently affects the rate of achieving consensus amongst nodes.
In fact, for many network structures, the spectral properties remain virtually un-
changed even after selectively pruning up to 50-60% of the edges (see Section 4.1),
thus retaining a consensus rate akin to that of an unpruned network while reducing
the communication volume.

However, to fully leverage the potential of such pruning approaches, one requires
information about the most influential edges, i.e., the edges that achieve consensus
with minimal communication cost, information that is typically unknown. For ex-
ample, the bridge edge that connects two fully connected components in a barbell
graph [22, Figure 2] has a significantly more influential role in the consensus process
than other edges. Therefore, it is beneficial to communicate along the bridge edge as
compared to other edges. Unfortunately, due to the decentralized nature of the net-
work, nodes cannot a priori determine these influential edges. Moreover, the relative
influence of different edges in achieving consensus can vary significantly depending on
the network state and structure, and the application. To overcome this challenge, our
work proposes a cyclic adaptive randomized procedure that can be implemented in
a decentralized manner to identify such edges and reduce the communication costs.
Specifically, we periodically track the disagreement error along edges during the con-
sensus process to estimate the relative importance of edges in achieving consensus
and maintain a network with only the most influential edges.

1.1. Contributions. A concise summary of the contributions is as follows:

e We propose an adaptive communication-efficient algorithmic framework. Within
this framework, we introduce two new algorithms: Adaptive Consensus (AC) to
solve the consensus problem and Adaptive Consensus based Gradient Tracking
(AC-GT) to solve the decentralized optimization problem!. The novelty in our
approach lies in the ability to exploit the underlying structure of the network
to reduce the volume of communication. This is accomplished via an adaptive
consensus scheme that selects the most influential and effective edges for com-
munication at each node based on the graph topology. The proposed framework
has broad applicability and can be integrated with other existing decentralized
optimization algorithms or adapted to other settings including directed graphs,
time-varying topologies, and asynchronous updates.

e We provide theoretical convergence guarantees for smooth strongly convex prob-
lems for both AC and AC-GT, demonstrating that they retain the linear conver-
gence properties of their base counterparts, i.e., methods that do not utilize
the adaptive consensus framework, while requiring reduced communication. The
analysis utilizes the inhomogeneous matrix product theory to prove linear con-
vergence by showing that the pruned matrix products remain contractive. In
contrast to prevalent analytical approaches in decentralized optimization with
time-varying graphs, the rate constant in our results is obtained using the coeffi-
cient of ergodicity which effectively highlights the dependence of the convergence

LFor better exposition of the consensus framework, the consensus and decentralized optimization

problems are treated separately even though the former is a simplified version of the latter.
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rate on the network pruning procedure parameters.

e We illustrate the empirical performance of AC in solving the standard consensus
problem and of AC-GT in solving linear regression and binary classification logistic
regression problems. Our numerical results highlight that the proposed methods
achieve significant communication savings while maintaining solution quality,
compared to the contemporary state-of-the-art techniques.

1.2. Literature Review. The proposed idea of exploiting the relative signif-
icance of edges to improve algorithmic efficiency is not exclusive to decentralized
optimization and has been studied in other fields that use graphical modeling on net-
works [17, 18, 30, 50]. In the context of traffic modeling, a converse analogue falls
under the category of “Braess’s paradox”, which suggests that adding one or more
roads to a road network can actually slow down the overall traffic flow [17, 50]. An-
other example, although somewhat tangential, is found in neural networks where the
“lottery ticket hypothesis” states that within dense, feed-forward networks, there are
smaller pruned sub-networks that, when trained in isolation, can achieve test accuracy
comparable to the original network in a similar number of iterations [18, 30].

Within decentralized optimization, several recent works have proposed communication-Ji

efficient algorithms that balance the communication and computation costs to achieve
overall efficiency [4-7, 10, 45, 57]. Our proposed approaches are complementary to and
can be integrated with these existing works. Furthermore, the proposed framework
(adaptive consensus) adds to the list of techniques that reduce the communication
costs. One such approach is gossip communication protocols where nodes selectively
communicate with neighbors asynchronously [9, 12, 53, 54]. It is worth noting that in
gossip protocols a convex optimization problem is often solved to optimize the spec-
tral gap of the expected consensus matrix [9]. Another class of approaches leverage
quantized communication where only quantized (reduced size) information is commu-
nicated to reduce the communication costs. However, these techniques typically lack
convergence guarantees to the solution [8, 48]. Moreover, quantization techniques can
also be incorporated into our framework to further reduce the communication over-
head. We emphasize that our approach differs significantly from the aforementioned
approaches in several ways including the focus on enhancing communication efficiency
by adaptively modifying the graph structure in a decentralized manner, and achieving
convergence guarantees to the solution.

While several classes of algorithms have been proposed for solving decentralized
optimization, gradient tracking methods have emerged as popular alternatives due to
their simplicity, optimal theoretical convergence properties and empirical performance
[4, 13, 26, 34, 49, 56]. We incorporate the proposed communication-efficient technique
into the gradient tracking algorithmic framework with the goal of reducing the com-
munication costs while retaining optimal convergence guarantees. Furthermore, we
note that the setting of time-varying graphs, which also arises in our work, has been
explored previously in [1, 33, 34, 52], among others.

1.3. Organization. The paper is organized as follows. In the remainder of this
section, we define the notation employed in the paper. In Section 2, we describe the
network model, introduce the Adaptive Consensus (AC) algorithm, and establish con-
vergence guarantees under standard assumptions. Building upon the adaptive consen-
sus procedure and gradient tracking algorithms, we propose the Adaptive Consensus
based Gradient Tracking (AC-GT) algorithm and study its convergence properties in
Section 3. Section 4 presents numerical results that illustrate the performance of the
proposed algorithms. Finally, concluding remarks are provided in Section 5.
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1.4. Notation. We use R to denote the set of real numbers and N to denote
the set of all strictly positive integers. The f-inner product between two vectors
is denoted by (-,-) and ® denotes the Kronecker product between two matrices. All
norms, unless otherwise specified, can be assumed to be £5-norms of a vector or matrix
depending on the argument. Let |z ([z]) denote the nearest integer less (greater)
than or equal to x. We use a|b to denote integer division between any two a,b € N,
ie., alb = |a/b]. We use 1, := 11, ® I; € R™*4, where 1, € R" is the column
vector of all ones and I; € R%? is the d x d identity matrix. For any matrix Q
with eigenvalues —1 < A, < -+ < Ay < Ay = 1, the spectral gap is defined as
0(Q) := 1 — max{|\,]|,|A2|}. The set A\ B consists of the elements of A which are
not elements of B. We use x* denotes the optimal solution of (1.1). We use the
column vector x; ;, € R to denote the value of the objective variable held by node i
at iteration k. The vector x; € R™ denotes the column-stacked version of 2, and
V1(x})) denotes the column-stacked gradients, i.e.,

Xg = [xl,k; B ,xn,k] (S Rnd and Vf(xk) = [Vfl (ka), s an(l‘mk)] S Rnd,

where Vf; : R? — R? is the gradient of the local function f;. The following quantities
are used in the presentation and analysis of the algorithms,

1 1
TE = E ;xivk S Rd, X = [i’k, ,fk] S Rnd, Vf(fk) = E;Vfl('jk) € ]Rd'

2. Adaptive Consensus. This section provides a description of the pruning
protocol which serves as the basic building block for the proposed consensus scheme re-
ferred to as the Adaptive Consensus algorithm (Algorithm 2.2, ADAPTIVE CONSENSUS
(AC)). We describe the network model we assume in the paper, discuss the pruning
protocol, and present the algorithm and its associated convergence guarantees.

2.1. Network Model. The underlying network is assumed to be modeled by a
undirected graph G = {V, £}, where V is the set of nodes and £ is the set of edges. We
use the matrix @ = [gij]ic[n),je[n) to denote the mixing matrix. The mixing matrix
has the following properties: the entry g;; > 0 (assumed to be equal to gj;) if there
is a link between any two nodes i, j € V. We use &; to denote the set of all edges
(i,7) such that j € V is a neighbor of ¢ € V, i.e., the set of all j € V with j # ¢ for
which ¢;; > 0. Note that the neighbors of 7 for any i € [n] is the set of all j such
that (7,7) € &. Since we assume that the graph is undirected, (i,j) € & if and only
if (4,7) € £;. We make the following assumption on the network.

AsSsuMPTION 2.1 (Graph Connectivity). G = {V,E} is static and connected.

2.2. Pruning Protocol. The main goal of the pruning protocol is to provide
a systematic approach for selecting the (subset of) edges within a graph along which
to communicate in order to achieve consensus with reduced communication efforts.
To be more precise, given the reference graph G(V, ) and a set of node estimates a;
for all 7 € [n], the pruning protocol generates a modified graph G(V, €) by selectively
removing edges from the reference graph. The edges to be pruned are determined by
a function of the node estimates. The function assigns a probability to each edge in &€
based on its likelihood of being least effective and influential with respect to achieving
consensus. The pseudo-code for the pruning protocol is given in Algorithm 2.1.

Algorithm 2.1 has three free (user-defined) parameters (&;, &; and ). Broadly
speaking, &; € [0, 1] represents the fraction of edges to be pruned at node i € [n] and

4
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Algorithm 2.1 PRUNING PROTOCOL(G(V, &), ai, (i, k;), B)-

Inputs: Graph G(V, £); Node estimates a; for all i € [n]; Softmax parameter 8 € [0, oo]; Threshold-
ing factors (i, x;) € [0,1]2 for all i € [n].

1: Set EP™"¢ := {} for all i € [n].

2: for all ¢ € [n] in parallel do

3 Receive estimates a; from all neighbors j.

4:  Compute a dissimilarity measure A(a;,a;) for all edges (i,7) € &;.

5

6

while [EP™¢| < |R; x |&;]] do
Draw a sample edge (7,7’) from &; \ 8fru"e according to:

o exp(—BA(a;,a;)) .. . prune
Pod ™ Eaneenerrine oA, (B9 €ENETT).
7: Update set EX™ — EP™ U (4, §7) for all 4 € [n].
8: end while
9: end for

10: Set &; := &;, for all i € [n].

11: for all all ¢ € [n] do

12:  Send requests to all neighbors j such that (i,5) € £ to prune edge (j,1) € &;.

13:  Receive request from all neighbors j/ such that (5/,7) € Sjp.),rune to prune edge (i,5') € &;.

14:  for all (i, 5') such that (i,5") € £"""° do

15: Remove edge (4,j’) from &;.

16:  end for

17:  for all requests (4, j') such that (i,5') ¢ £/ do
18: if |&| > [k;|€i]] then

19: Remove edge (i,5’) from &;.

20: end if

21:  end for

22: end for

23: if Graph=‘Undirected’ then ~
24:  for all (i,7) € & and (j,i) ¢ £; do

25: Update set £ — &; U (4,
26: end for
27: end if

Output: G(V, £), where £ := UL, &;.

k; € ]0,1] is a lower bound on the minimum number of edges retained at node ¢. The
parameter 8 € [0,00] determines the level of influence of the dissimilarity measure
in assigning the pruning probabilities. The role and significance of these parameters
becomes evident by examining the main steps of the protocol, which we discuss next.

Selecting Candidate Edges for Pruning. To select the edges to be pruned, each
node i € [n] constructs a set X" by iteratively drawing a sample edge from the set
E N\ EPMC Ry x |€;|) times, where R; represents the fraction of the total number of
edges to be removed at node i during pruning. The probability of selecting an edge
(4,7) is determined by the softmax of a dissimilarity measure (denoted by A(a;,a;))
between the estimates at ¢ and j. A possible candidate for A(a;,a;) is the ¢;-norm
difference between a; and aj, ie., ||a; — aj|1. For large values of the parameter 3
(the argument of the softmax) edges exhibiting small dissimilarity (small A(a;,a;)),
where a; and a; are in similar, have an increased likelihood of being pruned.

More formally, for the kth draw at node i € [n], where 1 < k < [R;|&;]], the

probability distribution over the set of edges (4,7) € & \ X" is given by
exp(—BA(a;,a;)) for all (Z,]) c 51 \ giprune’

SN
Di,j S (157 yee; seprone exp(—BA(ai.a;))’

where 8 € [0, 00| is the softmax parameter that controls the influence of the dissimi-
5
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larity measure. Note that 8 = oo represents the greedy case, where each node i € [n]
selects the top |R;|&;|| edges with least dissimilarity measure. At the other extreme,
B = 0 represents the case of random pruning independent of the dissimilarity measure.
The

Pruning Mechanism. To perform the actual pruning, each node i € [n] sends a
request to neighboring nodes j, where (i, j) € EP™"°, to prune edge (j, ). At the same
time, node i € [n] receives and catalogues the requests from all its neighboring nodes
j' with (5',4) € E7™ to prune edges (i,j’). It is worth noting that the request for
(i,7') does not necessarily require (i, ) to be in ™. Initially, each node creates
a copy & of the original set of edges &. The following steps are then performed in
order by each node:

(i) For each (i, ;') such that (i,;’) € EP™, edge (i,5') is removed from &;. This
covers the ideal case where both nodes ¢ and j' want to remove the edge (¢,;")
and (j’,4) from their respective edge sets &; and ;.

(ii) If (i,5') ¢ EP™°, then the edge is pruned if |&;] > [k;|&i|]. So, node i € [n]
prunes an edge not included in £ only if the number of edges remaining in
& is greater than a certain fraction r; of |£;]. An implicit assumption here is
that k; <1 —R&; so that [k;|&]] < [(1—7;)|&]]. Tt should be noted that for the
algorithm to be well-defined, pruning requests of this type are processed in the
order in which they are received.

The output of Algorithm 2.1 is G(V, £), where € := U;&;. An important point worth
noting here is that the resulting set & for i € [n] may contain edges (i, j) for which
(j,1) ¢ E_j. To make the pruned graph undirected, there are two possible approaches;
either node j adds (j,4) to &;, or alternatively, node i removes (i, j) from &;. These
approaches can be implemented by performing one additional round of communication
among the nodes with negligible overhead.

2.3. Adaptive Consensus. Building upon the pruning protocol presented in
the previous subsection, we introduce an algorithm to solve the consensus problem
[37, Section 1], which requires the convergence of all the node estimates to the average
of their initial estimates. The pseudo-code is provided in Algorithm 2.2.

Algorithm 2.2 ADAPTIVE CONSENSUS (AC)

Inputs: Graph G(V,&); Cycle length 7 € N; Softmax parameter 8 € [0, oo]; Thresholding factors
(Ri, 6;) € [0,1)? for all 4 € [n]; Initial estimates z; 0 € R? for all i € [n]; Total number of iterations
T e N.
for k=0,...,7 do
for all i € [n] in parallel do
if k € Z, then
Generate G(V, fkh) ~ PRUNING PROTOCOL(G(V,E),x; k, (Ri, &;), B)-
Get new weights g;;[k|7] ~ GENERATE WEIGHTS (G(V, &y, ))-
end if
Update estimate at node 4 according to: x; g1 = 2?21 Gijlk| 7] k-
8: end for
9: end for

Output: z; 7 for all ¢ € [n].

We discuss the main steps of the algorithm and how to select the parameters &;
and k,. Algorithm 2.2 has a cyclic structure with cycle length 7 € N. The set of

indices where the pruning protocol is executed is denoted by Z := [r, 27,...). For
any k € Z, the iterations ¢t € [k, k + 7) are said to constitute a consensus cycle.
6
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Pruning Step. At the start of the k|7 consensus cycle, the pruning protocol is
executed to obtain the pruned graph G(V, Ekh), where 5k|7 = Ui&; Jk|r» using the
current local estimates x; i for all i € [n]. Subsequently, the mixing matrix, denoted
by Qpjr := [qi;[k|7]]icin],jem)» of the pruned graph G(V,&y,) is constructed in a de-
centralized manner. As an example, we can consider the Metropolis-Hastings scheme
[34], which generates the weights via the following prescribed rule:

1 e (s 5
(el 6y (7)€ Exyr
(2.1) Gii[KIT] = 1= 20 GiplkI 7] ifi=j
0 otherwise,

where gi,kh— denotes the (pruned) edge set at node ¢ € [n].

Pruned Graph based Averaging. For all iterations ¢ € [k,k 4+ 7) with k € Z,
the algorithm performs decentralized averaging using the pruned weights, g;;[k|T].
Subsequent to this, the pruning step (Line 4, Algorithm 2.2) is performed again with
the updated node estimates.

REMARK 2.1. We make the following remarks about Algorithm 2.2.

o [t is worth noting that the ideal choice of values for K, and k; can be problem-
specific and depends on the network structure. For instance, preserving connec-
tivity might be crucial in some cases, while in others, optimizing for low com-
munication overhead may take precedence. Broadly speaking, a higher value of
R; results in aggressive pruning more suited to graphs with high edge density.
Conversely, k; acts as a lower bound on the edges to be retained post pruning,
and a higher value of k; corresponds to a more conservative pruning approach,
which is beneficial if maintaining connectivity is important. For B, lower values
lead to increased randomness in edge selection, resembling approaches such as the
gossip protocol [9], while higher values promote a more deterministic and greedy
approach to edge selection.

e [f directed edges are permitted in the output of the pruming protocol, the appli-
cation of the push-sum protocol [25] offers an alternative to simple distributed
averaging that alleviates the requirement for doubly stochastic mizing matrices.

2.4. Convergence Analysis. To provide convergence guarantees, we begin by
writing the key step of AC (Line 7, Algorithm 2.2) in matrix form by employing the
stacked vector notation,

(2.2) X1 = QpXg,

where Q;, = Qi ® Iy = Qyr ® Iy € R">*"4 where Qy; = [g5;[k|7]licin).je[n) € R™*"
denotes the mixing matrix of the pruned graph G(V, &;) for the k|7 cycle. We use
Q[r : ] € Rd*nd to denote the product of s — r consecutive matrices indexed by

{Qk}k o e, Qr i8] i= Qe_y X -+ x Q,, with the convention that Q[s : s] :=
I, ® I; € Rrdxnd, Using the above notation, we can express X(j41)r for any £ > 0 in
terms of xq as follows

X(kt1)r = QprXer = QhT ¢ (K + 1)7]xr

(2.3)
=QlkT: (E+1)71] x--- x Q[0 : T]x0

We establish convergence under the following assumption.
7
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ASSUMPTION 2.2 (7-Connectivity). There exists a constant T € N, such that for
alk € Iy = {7, 7+ 7,7+ 27 } CZ, the graph GV, Ejr—741)) U--- UGV, Ep7)
is connected.

REMARK 2.2. Assumption 2.2 plays a key role in the analysis. In words, it implies
the existence of a constant T, such that within T pruning cycles, the union of the
resulting undirected (directed) pruned graphs is connected (strongly connected). For
the special case where the pruned graph is connected for all cycles, T = 1. It is possible
to guarantee this assumption by imposing a consensus iteration with the reference
graph every T iterations of the algorithm for some finite T € N. Additionally, it is
worth noting that it suffices to assume this property only for indices Iz rather than for
all k € N. Another important point to note is that the assumption can be replaced by
a stochastic version which takes into account the utilization of softmax based sampling
in the pruning protocol. Specifically, the assumption of connectedness can either be
assumed to hold almost surely or replaced by an assumption that ensures a reduction
in the consensus error in expectation (with respect to Q) over a period of T iterations.

REMARK 2.3. We note that Assumption 2.2 is equivalent to assuming that every
edge (i,7) € € gets activated every T iterations for some finite T > 0. Let Ay denote
a random subset of the edge set £, composed of the subset of edges updated at time
k, and let v j) r = anzo Z{(i,j) € A}, where Z(-) denotes the indicator function,
representing the number of times (i,7) is activated up until time k. Assumption 2.2
can be satisfied if the following condition holds:

(2.4) liminf 24k S 0 v (7, 5) e €.

k— o0 k
That is, all edges are updated comparably often. To ensure this, we can miz the softmaz
policy with a uniformly random policy with an arbitrarily small 8. More formally, for
node i € [n] the probability distribution over the set of edges (i,7) can be written as

pij ~ (1—10) exp(—BA(ai,a))

[ .. . prune
S aryee, ermme oxp(=BA(ara;) + Ener™ v (4,5) €ENE )

where 0 > 0 is an arbitrarily small parameter. Since p; j > m\;%ne‘ > 0 for any edge
(i,7), using Borel-Cantelli Lemma, we have that each edge (i, j) is activated infinitely
often.

To prove convergence of the algorithm, we need to establish convergence of the

following product sequence to the %lnlz rank-one matrix, i.e.,

k
HQUT5 (j+ 71— L1217, as k — 00.
=0

To show this, we use the notion of coefficient of ergodicity [47], denoted by p(Q) for
any row-stochastic matrix @, defined as,

(2.5) p(Q) :=1—min > min (i, Gis;) -

11,2
1, 2j_1

Using the coefficient of ergodicity instead of directly bounding the spectral gap offers
several advantages, particularly in scenarios involving time-varying topologies. First,
it allows us to clearly characterize the influence of different graph parameters, such as

8
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maximum node degree and diameter, on convergence. This characterization helps us
establish an explicit relationship between pruning and convergence. Second, it allows
for extensions to directed graphs (with push-sum protocols) where the condition of
double stochasticity may not be satisfied.

There are two key properties of (2.5) that will be useful in establishing conver-
gence. The first property is that p(-) is sub-multiplicative, i.e., for any two matrices

Q1, Q2,
(2.6) P(Q1Q2) < p(Q1)p(Q2).

The second property is that it can serve as an upper bound on the dissimilarity
between the rows of matrix . More formally, we have (cf. [55, Lemma 2], [20,
Lemma 4])

(2.7) 0(Q) = maxmax|gi,;j — gio5| < p(Q),

for any matrix ) which is ergodic, i.e., it is row stochastic, aperiodic and irreducible
(cf. [55] or, [24, Chapter §]).
Next, we state and prove the main theoretical result of this section.

THEOREM 2.1. Suppose that: (i) Assumptions 2.1 and 2.2 hold, (ii) the matrices
Qr = [qij[k]licin),jem) are doubly stochastic for all k > 0, (iii) qi[k] > 0 for all k >0
for at least one i € [n], and, (iv) if ¢;;[k] > 0 for any (i,5) € € and k > 0, then
qi;j[k] > q for some strictly positive constant ¢ > 0 independent of k and (i,j). Then,
for any k >0,
} l[x0 = Xoll,

where vy 1= (1 - q%dg) < 1 with ¢ < 1 and dg is the diameter of a graph G(V,E)
defined as dg := max, yep{dist(u,v)}, where dist(u,v) denotes the shortest path dis-
tance between any two vertices u, v € V.

Rl

_k
(2.8) I — %]l < min {nzwgJ,n (1- L)

Proof. We first establish the ergodicity of the product sequence Q[m7 : (m+1)7]
for any m > 0 with 7 € N as in Assumption 2.2. The stochasticity of Q[m7 : (m+1)7]
follows from that the fact that the product of stochastic matrices is also stochastic.
Furthermore, a matrix is considered irreducible if its zero/non-zero structure corre-
sponds to a connected graph. By Assumption 2.2, the structure of Q[m7 : (m + 1)7]
also exhibits this property [19, Section 1-C]. Finally, an irreducible matrix is aperiodic
if it has at least one self-loop which is satisfied by Q[m7 : (m + 1)7] by condition (i)
in the theorem statement [19, Section 1-C].

Next, we establish a useful upper bound on § (Q[0 : k 4 1]). To do this, we con-
sider the following decomposition of Q[0 : k + 1]

Q0 : k+1]
=Q[0: k7] X --- x Q[mkT : (m + 1)k7] x --- x Q[(K — 1)k7 : Kk7] xQ[KkT : k + 1]

Q[0: K k7]

where K := |k/k7|, k > 1is a constant to be specified later. Let 7/ := k7. We bound
5 (Q[0 : K7']) by individually bounding p (Q[m7’ : (m + 1)7']) in the above product.

9
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By (2.5), it follows that,
(2.9)

p(Q[mt i (m+ 1)7']) = lfmi_anin(qilj [m7" = (m+ 1)7'], qipjim7" = (m +1)7']),

1,12

where Q[m7’ : (m + 1)7'] := [gi;[m7" : (m + 1)7']]; jen)- By (2.9), we note that
p (Q[m7’ : (m + 1)7']) is guaranteed to satisfy p (Q[m7’ : (m + 1)7']) < 1, if for every
pair of rows ¢; and iy, there exists some j* such that g;, j«[m7’ : (m~+1)7'], ;= [m7" :
(m+1)7'] > 0, i.e., if there is a path from some j* to both i, and 5. This, in turn,
is always satisfied if for some k > 0, g;;[m7’ : (m + 1)7'] > 0 for every i, j € [n], i.e.,
all the entries are strictly positive.

To find such a candidate k, we make the following observation: Q[m7 : (m+ 1)7]
is ergodic, so there exists a path from i to j for every 4, j € [n]. Setting k = dg in
the definition of 7/, we have 7/ = k7 = dg7. It follows that for the matrix Q[m7’ :
(m + 1)7'], gijim7" : (m + 1)7'] > 0 for all 4, j € [n] since we can reach any node %
from any other node j in at most 7/ = dg7 steps.

For the remainder of the proof, let 7" = dg7. To lower bound g;;[m7’ : (m+1)7'] >
0, m > 0, we note that by the definition of ¢ and Assumption 2.2, it follows that
qi;pT + (p+ 1)7] > ¢7 for any p > 0 and any (4,j) € Epr U--- U Eppryz—1. Since
Qmr’ : (m+1)7'] = Q[m7’ : m7’' +7]--- Q[m7' + (dg — 1)T : m7’ + dg7], for any
i',j' € [n],

(2.10) Girjr[m7’ s (m +1)7'] > ¢7%.
By (2.9) and (2.10),
(2.11) p(Qm7" : (m+1)7']) <1 —¢"%.

Thus, it follows that,

5(QU(0 < K7]) < p(QU0 - K7))
<p(QO:7]-- QUK - 1)T: K7])
< p(Q[O:7]) x -+ x p(Q[(K —1)T : K7])
(2.12) < (1—g7%)"

where the first inequality follows by (2.7), the second inequality by the the sub-
multiplicative property of p(-) (2.6), and the final inequality follows by (2.11). By
(2.2) and (2.3), it follows that,

Xp = Qr_1Xp—1
= QKT+ 1:kQ[K —1)7: K7] x --- x Q[0 : T]xq
(213) = QIKT +1: KQ[0: K7lxq.

Multiplying both sides of (2.13) by 1,,, by the the double stochasticity of QK741 : k]
and Q0 : K7], it follows that,

(2.14) X, = X0 = 21, 15x0 = 21,15Q[0 : K7]xq.
Subtracting (2.14) from (2.13),
xp — Xk = QKT+ 1: k]Q[0: K7]xo — 11,17Q[0: K7]xo
= QKT +1: k] (Q[0: K7] - $1,13Q[0: K7]) (x0 — %o),

10
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where the second equality holds due to Q[K7+1 : k]1 = 1 and the fact that Axg = Xg
for any doubly stochastic matrix A. Taking norms of the above, it follows that,

Ik — el < [QIET +1: | [|QI0: K7] — 21,15Q[0 : 57| 0 — %ol
(2.15) <Vnl||Q[0: K7] - £1,15Q[0 : K7]||, [x0 — %ol1
where the first inequality is due to the Cauchy—-Schwarz inequality and the second

inequality follows due to the facts that ||A]| < /n|A|; for any A € R™ "™ and
IQIKT+1:k]|| <1. We have by definition of the ¢;-norm for matrices,

n

|Q[0: K7] — 11,17Q[0: K7]||, = max ¢ij[0: K7] — qu [0: K7]
=1

1<j<n ~
< lrgjag)(nz 1 2 ¢i;[0 : K7] — qi;[0 : KT]‘
<§(Q[o:K7))
(2.16) <ndé(Q0: K7))
(2.17) <n(1-q%7)",

where the last inequality follows by (2.12).
We can also bound ||Q[0 : K7] — %lnl,TLH1 using [35, Theorem 3.1], as

A=

(2.18) Qo : K7 = f1,17], < v (1- 555)

Combining (2.15), (2.17) and (2.18) with K = |k/k7] gives the required bound. 0O

We note that the convergence rate in Theorem 2.1 is primarily dependent of
the diameter of the graph, dg, and the lower bound on the nonzero entries of the
mixing matrix, g. The form of the convergence rate factor v confirms the empirical
observation that compact graphs with shorter diameters generally fare better with
pruning since multiple information pathways can potentially exist between two nodes.
The dependence on ¢ can be illustrated by considering the Metropolis-Hastings scheme
as described in (2.1). Let ng,, denote the maximum node degree of graph G(V, E).
If nmax = maxgker NGy, denotes the maximum node degree amongst all the pruned
graphs (assumed to be connected) obtained during the algorithm, then ¢ = m
Since nyax can be smaller than the maximum node degree of the underlying reference
graph, ¢ can potentially be larger for AC.

Another point to note here is that either term on the right-hand side of the
minimum in (2.8) can be active. For graphs, where dg is large, the second term is
active. Conversely, in the case of small dg and large n, the first term is active. As a
concrete example of the latter case, we can consider a dumbbell graph with dg = 3,

t
n > 1, and 7 = 1. The first term in (2.8) will be active provided, (1 - q3) 5] <
(1-g%)" > 1.
REMARK 2.4. We make the following additional remarks about Theorem 2.1.
o [t should be noted that the convergence factor v in (2.8) may be a conservative
estimate in general. Nevertheless, the analysis provided here remains applicable

in a broad range of scenarios, even when tighter estimates for specific cases may
not hold. In particular, the extension of Theorem 2.1 to a directed graph setting,

11
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where only column stochasticity is satisfied (as in the push-sum protocol), can
be derived relatively easily. This is due to the fact that the definition of the
coefficient of ergodicity and the associated bounds, e.g., (2.7), do not necessitate
a double-stochasticity assumption on the matrix Q.

o The assumptions on the matrix entries of Qy in Theorem 2.1 are typical in er-
godic matriz literature [24] and multi-agent coordination and optimization prob-
lems [85]. For undirected graphs, the assumptions are satisfied if the weights are
generated according to (2.1).

o To understand (and quantify) the impact of pruning on distributed averaging
within a simplified context, let us consider a scenario where there is a total
communication budget of B bits, and each node utilizes D bits to transmit the
quantized objective variable to its neighboring nodes. The mazximum number of
iterations that can be executed under these settings is given by T = %}5‘. Let
o(Q) denote the spectral gap of the mizing matriz Q, assumed to be generated
in accordance to (2.1). Under Assumption 2.1, for xy generated via (2.2) with

Qr=Q® Iy, VEk,
(2.19) [xr — %[l < (1—a(Q))" %0 — Xol|-

If we consider the same scenario with a fraction K < 1 of the edges pruned
(where the pruned mizing matriz is denoted by QP™"°) and assume the pruned
graph satisfies Assumption 2.1, we have?,

(2:20) [Xgrine — Repprun pomne

< (1 —o(QP™"))

%0 — %o-

Since TP = W = % > T, the upper bound for the consensus error
with the pruned ’nretwork, where o(QP™") ~ o(Q), is potentially tighter since
(1- U(QPT“”E))TP S (1- (@), In Section 4.1 (Figure 1(c)), we empiri-
cally observe that o(QP™"¢) for small to medium values of k does not significantly

deviate from o(Q), suggesting that there are instances for which the inequality is
likely to hold.

3. Adaptive Consensus based Decentralized Optimization. In this sec-
tion, we describe the proposed Adaptive Consensus based Gradient Tracking algo-
rithm (Algorithm 3.1, AC-GT) for decentralized optimization. The problem under
consideration can be expressed as,

. 1
(3.1) min ()= 2> filw)

s.t. Qx =x,
where f : R = R and Q := Q®I; € R">*"4_ Under Assumption 2.1, the constraint
is equivalent to the condition that x; = z;, for all 4, j € [n], and thus problems (3.1)

and (1.1) are equivalent. We make the following assumption with regards to the
component functions (f;).

AssuMPTION 3.1 (Regularity and convexity of f;). FEach f; is L-smooth and
u-strongly convez.

2To keep the presentation clear, we assume T, TPT"¢ ¢ N,

12
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The general idea of AC-GT is to leverage the adaptive consensus protocol of the
previous section and combine it with a gradient tracking algorithm [34] in a manner
that preserves the strong convergence guarantees of the latter while harnessing the
communication savings of the former. The pseudo-code for the algorithm is provided
in Algorithm 3.1.

Algorithm 3.1 ADAPTIVE CONSENSUS BASED GRADIENT TRACKING (AC-GT)

Inputs: Graph G(V,€); Cycle Length T € N; Softmax parameter 8 € [0, oo]; Thresholding factors
(Riyk;) € [0,1] for all 4 € [n]; Step size a > 0; Initial iterates ;0 € RY, y; 0 = Vfi(2:,0) for all
i € [n]; Total number of iterations T" € N.
1: for k=0,...,7 do
for all ¢ € [n] in parallel do
if k€Z, then
Generate G(V, €y|,) ~ PRUNING PROTOCOL(G(V, &), i k, (Ri, &), B)-
Get new weights g;;[k|7] ~ GENERATE WEIGHTS (G(V, E_k‘_r)).
Generate G(V, Ey|,) ~ PRUNING PROTOCOL(G(V,E), yi i, (Ri, 5;), B).-
Get new weights §;;[k|7] ~ GENERATE WEIGHTS (G(V, é'kh)).
end if
Update estimate at node i according to: x; 41 = Z?:l Gij k|7 (xj’k - ayjﬁk).

v

10: Update gradient estimate at node 4 according to: y; k41 = Z?zl Gijlk| Ty 6 +
Vfi(xipr1) — Vi(ziw)-

11: end for

12: end for

Output: z; 7 for all i € [n].

To provide intuition for the algorithm, we review the main steps of the gradient
tracking algorithm (GTA), as it serves as a foundational component of AC-GT. The
main iterations of the gradient tracking algorithm can be expressed as,

n

n
Tikir = Y dij (T — k), Vikt1 = Y GijYik + VIi(@ir) = Vi(zig),

=1 j=1

where a > 0 is a constant referred to as the step size.

The underlying computational principles of AC-GT are similar to those of GTA.
However, the communication structure of AC-GT is based on AC. Similar to AC, AC-GT
operates in a cyclical manner. In the k|7 cycle, if k belongs to the set Z, the pruning
protocol is executed twice. The first instance employs the x estimates to get the
pruned graph (@) and the associated mixing matrix, which are subsequently utilized
to update the x estimate,

(32) Xk =Qy(xk —ayy), where Q= Qur, Vk € [(k|7)7, (k|7 + 1)7).

The second instance of the protocol obtains a different pruned graph (Qk) using the
y estimates. The mixing matrix corresponding to this graph is then used to update
the y estimate as follows,

(3.3)
Yi+1 = QkYk + VE(xp41) — VE(x), where Qk = Qkh—a Vk € [(k|T)T, (k|7 +1)7).

The pruning protocol is executed twice because the dissimilarity between the y es-
timates is expected to be different from the dissimilarity between the x estimates.
AC-GT employs a constant step size o > 0 which depends on both the properties of
the function and the structure of the pruned network as shown in the next subsection.

13
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REMARK 3.1. We make a couple of remarks about AC-GT (Algorithm 3.1).

o fFort=1and Qr = Q ® Iy for all k € N, where @ is the mizing matrix cor-
responding to the reference graph, AC-GT reduces to a standard gradient tracking
algorithm (DIGing) [34).

e The extension of AC-GT to a directed graph setting is feasible by leveraging the
push-pull gradient algorithm (Push-DIGing) [39]. Similar to AC, the principles
and theory of AC-GT for the directed graph setting can be derived from the current
framework, with appropriate adjustments.

3.1. Convergence Analysis. We provide theoretical convergence guarantees
for AC-GT. For simplicity, we assume that Q = Qy for all k > 0 in (3.2) and (3.3)
and note that one can derive the same results verbatim for the case where Qj # Qk,
with additional notation required. We build up to our main result through a series
of technical lemmas which we state next. We begin by proving a descent relation for
the consensus error ¥y, defined as,

X — Xk 2nd
3.4 U, = _ e R“"4,
34 ¢ [am - ykﬂ

~ LeEmwmA 3.1. Suppose that the matrices Qg, for all k, are doubly stochastic and
Qi = Qg. For Uy given in (3.4) and 7 € N,

(3.5)
k—1 k—1
[ < p[h—2 1 +b D 1917+ D> (F@) — f="), if k>4,
j=k—% j=k—7%
(3.6)

k—1 k—1
[k <51+ #2)1Woll® + b Y T511° + > (F(&;) - f(2*), if 0<k<*,
j=0 §=0

where p' == 2(1+ %) maxs<j<; | Q[ — 7 : j] — %1n1£||2, b:=180a2L%(1+72)7, and
c:=320na*L3(1 + 72)7.

Proof. We start by considering the expression x; — X;. By (3.2) and the double
stochasticity of Qy,

(37) X — )Zk = (Qk—l — 1"nlz> (Xk_1 - Xk—l - Oé(Yk_l - yk_l)) .

Using (3.3), a similar expression for y, — ¥, is given as,
(3.8)

Y =V = (Qk—l - 1"n15> (Yk_1 - yk—l) — (In — %) (VE(xg) — VE(xp-1)),

where I, := I, ® I; € R"*"4_ The expressions in (3.7) and (3.8) can be compactly
represented in matrix form as follows,

U =Jp 1V +aBp_y
(3.9) =Jk—7: KW s +aY Jk—j+1:kE
j=1

14
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(3.10)
Qr — % —(Qk— # y

and J[k —j : k] :== Jp—1---Jp—j, for any j < 7 < k. The matrix J[k — j : k] can be
expressed as,
T T
Qle—j: k- 22 —j(Qle—j: k] - 2t )]
0 Qlk—j: k] — B2t

The above equation can be derived by a straightforward induction argument using
the facts that

(3.11) Jk—j: k= l

A —A y Ay —As|  |A1Ay —2A,A4A,
0 Ay 0 As | 0 A1As |7

and, for any two doubly stochastic matrices Q and Q’,

(@) (@ - 1) = (@@ - =)

By (3.11), it follows that

(3.12) 13k — G K2 < (1432 || Qlk— g k] — 21,177

and, since ||Q[k —j: k — 1] — n_llnlﬂy2 <4,
(3.13) | Ik — g K]|)? <4(1+5%) <4(1+4?), Vi<t

Taking the norm square of (3.9),

. 2
1T5% = J[lc—%:k]\llk,f—kai].][k—j—kl:k]Ek,j
Jj=1 % ,
<L+ 5) 13k =7 ks s ?+ 50 D Ik —j+1: kEx_;
j=1
(3.14)
<3214+ ||Q[k—7: k] — 21 1Ty| [We_z]|? + 20a2(1 4 72) ZHEk il%

where the first inequality is due to the fact that ||a+0b[|* < (14&)||al|?+ (1+&71)|b]|?
for any constant £ > 0, and the second inequality follows by (3.12) with j = 7, (3.13),

. 2 A
and the fact that HZ;—:l ajH <737 llaj[*. We next bound ||E,_|| for any p > 1.
By the definition of Ej (3.10) with k& = p,

(315) 1By < || (10 — 2225 (VE(xy) — THxp-1)) | < 196(x,) — P 1)
15
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The term on the right-hand-side of (3.15) can be bounded as follows

IVE(x,) — VE(xp-1)]*

SLZHXP - prlHQ

:L2||(Qp—1 = L) (xp—1 — Xp—1) — an—1YP—1)H2
<2L%[[(Qp-1 — L) (%p—1 = Zp-1) I + 202 L1y, 4 ||?
(3.16) §8L2HX1771 —Xp-1 H2 + 40‘2L2||YP71 - S’pfl”2 + 4042L2||3_’p71 ||2a
where we have used Assumption 3.1 to get the first inequality, (3.2) with k =p —1

to substitute for x, and the fact that (Q,—1 — I,)X,—1 = 0 to get the equality, and
1Qp—1 —I,]| <2 to obtain the first term in the last inequality. By Assumption 3.1,

1571 11* =nll7p—1 ]I

1 n
ﬁ z_; vfi(xi,pfl)

2

1 n
<2’I’L vaz LTi,p— 1 ﬁz fz xp 1

i=1 i=1

1 2

+2n Zsz Tp-1) £2sz
(3.17) <22 xp1 — Kpoa [P+ AL S (fil@y1) — fila).

i=1

Combining (3.15), (3.16) and (3.17), and using the fact that o < 1/3L, it follows that
for any p > 1,

IEp1]? <[IVE(x,) — VE(x,-1)|”
(3~18) §9L2 (Hprl - ipleQ —+ 042”}’1771 - S’p*1||2>

n

+ 160213 Z (fi(@p—1) — filz™)).

i=1

Using (3.18) with p =k — j + 1 to bound ||Ex_;||, 1 < j < 7 in (3.14), we get,

2
9] <200+ 7%) [ Qlk = 7 2 K] = S L7 10—
+ 18002 L% (1 + 72 )%Z\|\1/k_j|\2
j=1

+320n0’ L3(1+72)7 Y (f(@h—j) — f(z%)),

j=1
which proves (3.5). To prove (3.6), we note that for k < 7, we can write (3.9) as

k—1
(3.19) U =T W1 +aBp 1 =J[0: kT +ad J[k—j:kE
j=0
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Taking the norm square of (3.19),

2
k—1
[kl < (1+ 3) 190« k] Wol|* + 50 | > Ik —j : k]E
j=0
k—1
(3.20) < 5(1472)[[Wol|* + 2003 ( Z 1E; (1%,
=0

where we have used |la + b[|? < (14 &)|la|* + (1 + &~ )||b||2 for any constant £ > 0 in
the first inequality and (3.13) to obtain the second inequality. The final result (3.6)
can be derived using (3.18) with p=j+1for 1 < j <k —1 in (3.20). O

Next, we state an auxiliary lemma whose proof can be found in [48, Lemma 4].

LEMMA 3.2. Suppose the non-negative scalar sequences {as}i>0 and {ei}1>0 sat-
isfy the following recursive relation for a fized 7 € N

(3.21) at<pat7+ Zal—l-cZez—l—r if t>7,
zt 7 i=t—7
b _
3.22 < pag + ; P if <7,
(3:22) (lt_Pao—&-%Z:a +cZe +r if T

where b, ¢, r,p"” are non-negative constants, b < p'/4 and p' € (0,1/4). Then, for
any t €N,

(3.23) ar < 20" (1- 7) ag + 60c Z (1- —)t_ e + %,

1=0
where p:=1—2p.
We are ready to state and prove the main theorem.

THEOREM 3.1. Suppose that: (i) Assumptions 2.1 and 3.1 hold, and, (ii) Qg are
doubly stochastic matrices and Qr = Qg for k > 0. Let z;j denote the iterates
generated via the recursions (3.2)-(3.3) and Ty, :=n"1* Y| x; . Then, for all k >0,

|z — 2|

ko, _ " 2 _ _
< (1= )" (2o — ") + 22ECERD (xo —%ol* + a®[lyo — 50l1*)
un(l % )

(3.24)

where + € N with p' :=2(1 + #%) maxs<;<x |Q[t — 7 : 1] — %lnlﬂﬁ <1/4 and
(3.25) o <min {1,575 }.
Proof. By (3.2), the optimization error of the average iterates for any ¢ € N is

[Ze41 — a*|? = |2 — g — 2*||
a n
Ty — o ;vfi(l'i,t) -
* 20[ = = *
(3.26) = ||z, —2*|? — — <Z Vii(xis), Ty — > +a?

2

1 n
= Vi)
n =1

i=1
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where g =n~' 3" | Vfi(x;;). (This can be proven by an induction argument using
(3.3).) The second term in (3.26) can be bounded as,

<Z Vfi($i7t), ft — I*>

=1
= <Z Vfi(xis), T — $i7t> + <Z Vfi(xis), zis — 30*>
i=1 i=1
>3 [fi@) = fiwie) = 1T — 2idl® + filwig) — fi(a®) + &laie — 2*|]
i=1

(3:27) 27 [fi@) — fila) = BEE — wal? + 7 - 2]

s
Il
—

where Assumption 3.1 is used in the first inequality and the bound ||z, — z*||? <
2|2, — zi4]|? + 2|7 — 2*||? is used to derive the last inequality. The last term in
(3.26) can be bounded as,

% Z Vfi(wiy)
=1
Z V(i) Z Vi) - S V@) - Y Vi
=1 =1

202 & 4L &
(328 <N -l + () - 5.
i=1 i=1
where in the second summation we have used the fact that ||V f;(Z;) — V fi(z*)[]? <
2L(fi(Z¢) — fi(z*)) by Assumption 3.1 [36, Theorem 2.1.5]. Using (3.27) and (3.28)
in (3.26) along with o < 1/4L, it follows that,

— * 12 1Y — *
|1Zer1 — (I < (1— %) 2 — 2™||* - (Zfz — fil )>
3L/24 o o
+ BLRT RS o P

n :
i=1

(3.29) < (1 -9 ||z — ¥ - (Z fi(@e) = fil )) B || f?,

where the last inequality follows due to [|%; — x;[|? < ||\I/t||2 Let ry := ||z — 2*|%
Multiplying both sides of (3.29) by w1 = (1 — ayu/4)~ D it follows that,

(3.30) WeaTer1 < were — wepra (f(T) = f(@")) + ween G W],

where w41 (1 — ap/2) < w.

Next, we express (3.5) (and (3.6)) in the form of (3.21) (and (3.22)) with a; =
W%, b =180a2L3(1+72)72, ¢ = 320na* L3 (1 +73)7, e; = f(Z;) — f(z*) and r = 0.
By Lemma 3.2, it follows that,

2

(3.31)
t—1 )
1412 < 100(1 +72) (1 — 32)" || Wo||? + 1920004 L3 (1 + 72)72 Y (1 - 32) ¢,
§=0
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Note that the condition on the step size (3.25) ensures that b < p’/4. Multiplying
both sides of (3.31) by w1 := (1 — ayu/4)~ D and summing from ¢t =0 to k — 1

k—1 )
(1 - %) H‘I’t“2
t=0
—(t+1)
(3.32)  <100(1+ \WMPEZ (1-)
k—1 g L L
+19200na’ L3(1 +72)72 Y (1 - 2) " *TUS T (1 3y e,
t=0
By (3.25), we have a < i/fz < 2L » < & < ;;Lp , where the second inequality is due

to v/p' < 1/2, the third inequality follows by 7 > 1 and p =1—2p" > 1/2 for p/ < 1/4,
and the last inequality is due to the fact that u < L. Thus, it follows that

IN

(3.33) ap < B e oy <3 32 < (1 - ap)2

We use (3.33) to bound the two summations on the right-hand-side of (3.32) as follows

k— 1 —(t+1) k-1 -
(3.34) (1-9) <Y (- <,
t:O t=0
and
k—1 (1) t—1 s
- —J
(1-<) Y (-8 e
t=0 j=0
k—1t—1 )i o
=3 =) T 2 ey
t=0 j=0
k—1t—1 L s0/a t—j
:ZZ ( 1::;{/;-) Wj+1€;
t=0 j=0
k—1t—1
< Z (1 -4 ) ’ Wj+1€;
t=0 j=0
k—1 tk_l k—1
(335) S (1 — %) Z’U)t+1€t S 0?7 Zwt+1et,

t=0 t=0 t=0

where the second inequality is due to (3.33) and the relation Z 2170 ar—;b; <

fzol ag tho b; for any two non-negative scalar sequences at, by, t € N. By (3.34),

(3.35) and (3.32), it follows that,

k—1
> w22
t=0
k—1

400w (147 76800na’ L3 (14-72)7 _ *
< 200U |2 + LOATIE N g (f(20) = f(27)).
t=0

(3.36)
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Finally, summing (3.30) from ¢ = 0 to k — 1, and dividing by wy, it follows that,

— Wk nuy

~2
- <<UJOTO+ 1000w1(1+'r )LH\IJOHZ

+(% )Zwt+1 —flz *))>,

where we have used (3.36) to bound Y, wy11]|¥,||*. To prove (3.24), we note that
wy ' = (1—apu)* by definition, and the last term in the above inequality is non-positive
since o < L O

Broadly, Theorem 3.1 establishes the decay of the optimization error for a gradi-
ent tracking method with time inhomgeneous weight matrices. The convergence rate
of the algorithm remains linear even when using time-varying matrices, and the form
of the convergence factor remains remarkably consistent. However, it is worth men-
tioning that this convergence factor can potentially be smaller due to the possibility of
using smaller step sizes, which depend on the value of 7. In this context, the constant
7 determines the effect of the network on the step size via (3.25). More precisely, 7

2x307200L373 *

2,
is a constant chosen to ensure that ( ||Q -7k - is less than one.

This implies that for better connected graphb, i.e., smaller ||Q[k -7 k] — %11T||2, T
can be smaller so that o can be larger (cf. (3.25)). For time-inhomogeneous matrices
satisfying Assumption 2.2, we can establish precise upper bounds on the value of 7
using the coefficient of ergodicity (cf. Corollary 3.1). We note that our final conver-
gence bound has a better dependency in terms of the condition number by a factor
of \/% as compared to [34]. We believe the reason for this improvement is due to the

utilization of small-gain theorem in [33] compared to our more standard approach of
bounding the spectral norm of the associated matrices (cf. Lemma 3.1).

REMARK 3.2. For fixed graphs, one can recover the optimal convergence rate of
the DIGing algorithm [34], up to logarithmic factors, from Theorem 3.1. For GTA, we

have Qu = Q ® I, for all k> 0. Then, for # <k, if # > O (ﬁlog ﬁ),

2 —

<21 H

j=k—
<471 = o(Q) < 1/4

1 2
Qk—7:k— 1,1}
n

p=2(1+7% Q—fz 1}

which implies o = @(@), where (7)() hides logarithmic factors. Thus, from Theo-
rem 3.1 we have ||Zp — z*||2 <€, if T > O (% log %)
We have the following corollary to Theorem 3.1.

COROLLARY 3.1. Suppose that: (i) Assumptions 2.1, 2.2 and 5.1 hold, (ii) the
matrices Qy, := [qij[k]lie[n),jem) are doubly stochastic and Qi = Qu for allk >0, (#i1)
qis[k] > 0 for all k > 0 for at least one i € [n], and, (iv) if g;;[k] > 0 for any (3,5) € €
and k > 0, then g;;[k] > q for some strictly positive constant ¢ > 0 independent of k
and (i,7). Let T, := nTdg, where T is defined in Assumption 2.2 and n € N satisfies

max{In 16n372d%,16In4/~}
(3.37) nz| 4 |
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where v := q%7. Then, if « = O (#), (8.24) is satisfied for Ty generated via the
recursions (3.2)-(3.3).

Proof. To prove the corollary, we need to show that there exists a constant n € N
such that for 7, = n7dg, we have p/ := 2(1 + 77) QL — 7 : 4] — 21,17 || < 1/4 for
any 7, < j <t to ensure the results of Theorem 3.1 hold with 7 = 7,,. It follows that

S(Q[U — 7y :4]) < p(Q[(J — 7 : 4])
<p(Qlj —n7dg : j — (n—1)7dg]) -~ p(Q[(j — 7dg : j]))
< (1 - ’Y)n )
where v := ¢7% and the first, second and third inequalities are due to (2.7), (2.6)
and (2.11), respectively. Following the same logic as in (2.16), it follows that,

(338)  ||Qli — 7 : 4] — £1a1]]|, <nd(Qlj — 7 : 4]) < n(1—7)" < nexp(—yn).
Consequently, this implies,
. . 2 . . 2
20+ 72)[|Ql — 7 : 4] — 21,17||” <20+ 7)n || QL — 7y 1 5] — 21,17
< 2n°(1 + n*7°dg) exp(—27n)
(3.39) < 4nP72dg n® exp(—27m),
=A

where the second inequality is due to (3.38) and the last inequality follows since
nTdg > 1. We next prove the following claim for any scalars n,A > 1 and 0 < v < 1:

(3.40) nexp(—2ym) < & if > [max{%}—‘ .
To prove the claim, we note that the assumed inequality implies (1 — h;—:) n> 71“2‘};4,
Let 77 € R be such that 0 < In7/vn < 1/4. Then, for any n > 17,
2In4A 4A
(3.41) n > i
To prove the existence of a 7 satisfying In7/7 < v/4 := €, we consider 7 = 41ln 1/6 <

~ -~ In2+4lnln i
L For such a 7, we have, In7/f = enctnmg

1 i1~ < € Combining (3.41) w1th A=
4n372dg and n > 77 = 161n(4/7)/v gives the lower bound on 7 in (3.40). 2Fi—
nally, by (3.40), (3.39) can be bounded as, 2(1 + 77) QL — 7 : 4] — 1,17

An? exp(—2yn) < 1, which completes the proof. 0

The exact convergence rate of AC-GT can be derived from Corollary 3.1. By (3.24),
the number of iterations required to reach e-accuracy, denoted by T, is of the order of

2
0 (% log %) since o = O (L%g) Using (3.37) to bound 7 in 7, = n7dg, it follows

T—0 (L772'r2d2 log ) o ((figé) %log %)

where O(-) hides logarithmic factors. Compared to the iteration complexity of GTA
(see Remark 3.2) under the connected graph assumption, we note that the number

~ =2 32
of iterations can potentially increase by a factor of O (Tvczlg ) This is expected given
the weaker assumptions made, i.e., the underlying graph is static and connected.
Despite the increased iteration complexity, one can potentially have savings in overall
communication volume for AC-GT (cf. Section 4.2) analogous to those for AC (cf.
Remark 2.4).
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Fig. 1: (a)-(b) Total communication volume/rounds required to achieve a consensus error of
10710, (c) Variation of spectral gap with respect to pruning threshold, x € {0.1,0.2,...,0.9}.

(d)-(f) Total communication volume required to achieve a consensus error of 107'% for
different x € {0.1,0.2,...,0.9}, 7 € {1,10%,10%} and 8 € {0,1,10", 10}, respectively.

4. Numerical Experiments. In this section, we illustrate the empirical per-
formance of AC and AC-GT via two sets of experiments. The first set of experiments
demonstrates the benefits of AC compared to the distributed averaging algorithm in
achieving consensus and illustrates the effect of the parameters of the pruning pro-
tocol on the performance of AC. The second set of experiments show the merits of
AC-GT compared to popular methods on a linear regression problem with synthetic
data [28], and a logistic regression problem with real datasets [29, 40] from the UCI
repository [2]. All methods are implemented in Python, with a dedicated CPU core
functioning as a node.

4.1. Performance of AC. We first showcase the effectiveness of AC in achieving
consensus, where the goal is for all nodes to attain the average value of the initial esti-
mates of the nodes [9, Section 1]. The network topologies (graphs) are generated ran-
domly using the Erdés-Rényi graph model [16] and are represented as G(n,p), where
n represents the number of nodes, and p € {0.2,0.4,0.6,0.8} denotes the probability
with which each possible edge is independently included in the pruned graph. The per-
formance metric used is the average consensus error, defined as ﬁ 2 jee 1T — 4,

where & represents the set of all edges and z; € R? for all i € [n] with d = 10. The
total communication volume is measured as the total number of vectors exchanged
amongst all the nodes in the network. The initial values {z;0}ic[n) at each node are
generated following a standard normal distribution.

Comparison to distributed averaging. Figs. 1(a)-(b) compare the performance
of AC to distributed averaging [43]. The latter can be considered a specific case of AC
with £ = 0 and 7 = co. For the pruning protocol part of AC, we have set k; = xk = 0.75
for all ¢ € [n] and choose k; to ensure that |£;| > 1, so that each node has at least
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one neighbor. The softmax parameter is set to § = 1 and the cycle length is set to
7 = 10. The mixing matrix is generated using the Metropolis Hastings rule (cf. (2.1)).
Fig. 1(a) shows a significant reduction in the total communication volume required
to reach a consensus error of 10719 as compared to distributed averaging across all
graph topologies. Fig. 1(b) demonstrates that the number of communication rounds
for AC undergoes only a modest increase as compared to distributed averaging.

Variation of pruning threshold (k). In Fig. 1(c), we plot the average spectral
gap of the mixing matrices as a function of x € {0.1,0.2,...,0.9}. The average
spectral gap is defined as the average of the spectral gaps of all the weight matrices
obtained throughout the pruning cycles in a run of the algorithm. The plot reveals
an important observation: pruning up to 50-60% of the edges does not significantly
affect the spectral properties of the mixing matrix. Moreover, increasing the value of
k leads to a decrease in communication volume across all graphs, see Fig. 1(d).

Variation of consensus cycle length (7). Intuitively, one expects AC to perform
better with shorter cycles since more frequent pruning of the graph can potentially
allow AC to adapt more effectively to varying consensus errors. Fig. 1(e) confirms
this intuition, where we consider 7 € {1,10,100} with x = 0.75. While a value of
7 = 1 yields optimal performance in terms of communication volume, it necessitates
executing the pruning protocol at every iteration.

Variation of softmaz parameter (). Fig. 1(f) plots the total communication
volume required to achieve a consensus error of 10710 as a function of the softmax
parameter 5 € {0,1,10,100} with 7 = 10 and x = 0.75. The total communication
volume is obtained by averaging over 100 independent trials. Fig. 1(f) shows that
higher values of 3 tend to show a modest improvement in the performance.

4.2. Performance of AC-GT. This subsection considers the evaluation of the
performance of AC-GT on linear and logistic regression problems.

4.2.1. Linear Regression. We first consider a linear least-squares regression
problem with synthetic data, formally defined as,

N

1
min f(x .:—E a;
zER? N

=1

x—b

where a; € R? denotes the ith feature vector and b; € R denotes the corresponding
label. The data is generated using the technique proposed in [28] with N = 32000
and d = 10. The network topologies considered are G(n,p), where n = 32 and
p € {0.2,0.5,0.8}. The data is partitioned uniformly in a disjoint manner amongst
the nodes. We tuned the step size parameter in AC-GT using a grid-search over the
range o € {1074,1073,1072,1071,10°} and present the results for the best step size.
The softmax parameter is set to 8 = 1 and the cycle length is set to 7 = 10. The
mixing matrix is generated using the Metropolis Hastings rule (cf. (2.1)).

Fig. 2 illustrates the performance of AC-GT in terms of two metrics, optimality
error, defined as f(zavg) — f(z*), where zavg = % >-r, x;, and average consensus error
described in Section 4.1, with respect to the total communication volume. The results
suggest that, in terms of optimality error, it is preferable to use a higher value of x,
the pruning threshold. This observation is consistent across graph topologies. That
said, there is a slight degradation in the decay of the consensus error as k increases.
This degradation becomes more noticeable in sparser topologies, as seen in Fig. 2(c).
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Fig. 2: Performance of AC-GT on linear regression problems for three different graphs, (a)
G(32,0.8) (b) G(32,0.5) (c) G(32,0.2). Top: Optimality Error versus Total Communication
Volume. Bottom: Average Consensus Error versus Total Communication Volume.

4.2.2. Logistic Regression. We consider ¢5-regularized logistic regression prob-i
lems with real datasets of the form,

N
min  f(z):=—% Z {bilogo(aj )+ (1 —b;)log (1 — o(a] 2))} + 3|z
i=1

zeRd

where {a;,b;}¥| represent the training samples with label b; € {0,1}, A > 0 is the
regularization parameter and o(z) = ﬁp(%)’ Vz € R is the sigmoid function.

We consider the Statlog [40] and the Mushroom [29] datasets from the UCI reposi-
tory [2]. The Statlog dataset consists of N = 690 samples and d = 14 features whereas
the Mushroom dataset consists of N = 8124 samples and d = 22 features. For these
experiments, we consider G(n,p) with n = 16 and p = 0.5. The data partition and
the algorithm parameters for AC-GT are set in the same manner as Section 4.2.1. The
step size is tuned using a grid-search over the range o € {1074,1073,1073,1071,10°}
for all the algorithms. The regularization parameter is set to A = 107%. The opti-
mal solution z* is computed using the L-BFGS algorithm from the SciPy library in
Python and solving the problems to high accuracy.

The performance of AC-GT is compared to EXTRA [49] a popular gradient track-
ing algorithm (denoted by “Gradient Tracking” in the plots) and the random gossip
algorithm [9]2. In addition to the previous metrics, we also report the optimality
error versus the total number of gradient evaluations of f(-). From the optimality
error plots shown in Figs. 3(a) and (c), it is evident that AC-GT with a parameter
value of kK = 0.9 exhibits the best performance. Note that the curves of the algorithms
AC-GT and Gradient Tracking are overlapping here. While the optimality error of
random gossip is comparable to AC-GT with x = 0.5 in terms of total communication
volume, AC-GT outperforms the former with respect to total gradient evaluations. As

3To solve the semi-definite problem required for implementing the random gossip algorithm from
[9], we utilize the CVXPY library [14].
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Fig. 3: Performance of AC-GT on logistic regression problems: (a) Optimality Error
versus Total Communication Volume (b) Consensus Error versus Total Communi-
cation Volume (c) Optimality Error versus Total number of Gradient Evaluations.
Top: Statlog Dataset, G(16,0.5). Bottom: Mushroom Dataset, G(16,0.5).

for the consensus error, there is no notable difference in algorithm performance for
the Statlog dataset. However, for the Mushroom dataset, random gossip and gradient
tracking appear to exhibit inferior performance.

5. Conclusion. In this paper, we have developed an adaptive randomized algo-
rithmic framework aimed at enhancing the communication efficiency of decentralized
algorithms. Based on this framework, we have proposed the AC algorithm to solve
the consensus problem and the AC-GT algorithm to solve the decentralized optimiza-
tion problem. The distinguishing feature of the framework is the ability to reduce
the volume of communication by making use of the inherent network structure and
local information. We have established theoretical convergence guarantees and have
analyzed the impact of various algorithmic parameters on the performance of the algo-
rithms. Numerical results on the consensus problem, and linear and logisitc regression
problems, demonstrate that proposed algorithms achieve significant communication
savings as compared to existing methodologies.

Finally, several interesting extensions of the proposed algorithmic framework can
be considered. From a communication perspective, one could consider directed graphs.
Most of the groundwork for this setting has already been laid out in this work and
as mentioned earlier, the theory can be extended to accommodate push-pull gradi-
ent methods [39], where either row or column stochasticity is satisfied. Additionally,
asynchronous updating within each consensus cycle can also be incorporated to allevi-
ate the constraints imposed by slower (straggler) nodes. Other interesting directions
include nonconvex problems, stochastic local information and inexact communication.

References.

[1] Mahmoud S Assran and Michael G Rabbat. Asynchronous gradient push. IEEE Trans-
actions on Automatic Control, 66(1):168-183, 2020.

[2] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

[3] Randal W Beard and Vahram Stepanyan. Information consensus in distributed multiple

25

This manuscript is for review purposes only.



[4]

[5]

[6]

[7]

8]
[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]
(18]

(19]

20]

(21]

(22]

23]

vehicle coordinated control. In 42nd IEEE International Conference on Decision and
Control (IEEE Cat. No. 03CH37475), volume 2, pages 2029-2034. IEEE, 2003.

Albert S Berahas, Raghu Bollapragada, and Shagun Gupta. Balancing communication
and computation in gradient tracking algorithms for decentralized optimization. arXiv
preprint arXiw:2303.14289, 2023.

Albert S Berahas, Raghu Bollapragada, Nitish Shirish Keskar, and Ermin Wei. Balanc-
ing communication and computation in distributed optimization. IEFEE Transactions
on Automatic Control, 64(8):3141-3155, 2018.

Albert S Berahas, Raghu Bollapragada, and Ermin Wei. On the convergence of nested
decentralized gradient methods with multiple consensus and gradient steps. I[FEFE
Transactions on Signal Processing, 69:4192—-4203, 2021.

Albert S Berahas, Charikleia Iakovidou, and Ermin Wei. Nested distributed gradient
methods with adaptive quantized communication. In 2019 IEEE 58th Conference on
Decision and Control (CDC), pages 1519-1525. IEEE, 2019.

Dimitri Bertsekas and John Tsitsiklis. Parallel and distributed computation: numerical
methods. Athena Scientific, 2015.

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEFE transactions on information theory, 52(6):2508-2530, 2006.

Annie I Chen and Asuman Ozdaglar. A fast distributed proximal-gradient method.
In 2012 50th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 601-608. IEEE, 2012.

Titus Cieslewski, Siddharth Choudhary, and Davide Scaramuzza. Data-efficient decen-
tralized visual slam. In 2018 IEEE international conference on robotics and automation
(ICRA), pages 2466-2473. IEEE, 2018.

George Cybenko. Dynamic load balancing for distributed memory multiprocessors.
Journal of parallel and distributed computing, 7(2):279-301, 1989.

Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization.
IEEE Transactions on Signal and Information Processing over Networks, 2(2):120-136,
2016.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language
for convex optimization. Journal of Machine Learning Research, 17(83):1-5, 2016.
Alexandros G Dimakis, Soummya Kar, José MF Moura, Michael G Rabbat, and Anna
Scaglione. Gossip algorithms for distributed signal processing. Proceedings of the IEEFE,
98(11):1847-1864, 2010.

Paul Erdds and Alfréd Rényi. On random graphs. Publ. math. debrecen, 6(290-297):18,
1959.

Marguerite Frank. The braess paradox. Mathematical Programming, 20(1):283-302,
1981.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv preprint arXiv:1803.03635, 2018.

Christoforos N Hadjicostis and Themistoklis Charalambous. Average consensus in the
presence of delays in directed graph topologies. IEEE Transactions on Automatic Con-
trol, 59(3):763-768, 2013.

John Hajnal and Maurice S Bartlett. Weak ergodicity in non-homogeneous markov
chains. In Mathematical Proceedings of the Cambridge Philosophical Society, volume
54(2), pages 233-246. Cambridge University Press, 1958.

Yubin He, Mingyu Yan, Mohammad Shahidehpour, Zhiyi Li, Chuangxin Guo, Lei Wu,
and Yi Ding. Decentralized optimization of multi-area electricity-natural gas flows based
on cone reformulation. IEEE Transactions on Power Systems, 33(4):4531-4542, 2017.
Mark Herbster and Massimiliano Pontil. Prediction on a graph with a perceptron.
Advances in neural information processing systems, 19, 2006.

Mingyi Hong, Meisam Razaviyayn, Zhi-Quan Luo, and Jong-Shi Pang. A unified al-
gorithmic framework for block-structured optimization involving big data: With appli-
cations in machine learning and signal processing. IEEE Signal Processing Magazine,

26

This manuscript is for review purposes only.



(24]

(25]

(26]

27]

28]

29]

(30]

(31]

32]

(33]

(34]

(35]
(36]
(37]

(38]

(39]

(40]

(41]

42]

(43]

33(1):57-77, 2015.

Roger A Horn and Charles R Johnson. Matriz analysis. Cambridge university press,
2012.

David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of ag-
gregate information. In j4th Annual IEEE Symposium on Foundations of Computer
Science, 2003. Proceedings., pages 482—491. IEEE, 2003.

Anastasiia Koloskova, Tao Lin, and Sebastian U Stich. An improved analysis of gradient
tracking for decentralized machine learning. Advances in Neural Information Processing
Systems, 34:11422-11435, 2021.

Guanghui Lan, Soomin Lee, and Yi Zhou. Communication-efficient algorithms for de-
centralized and stochastic optimization. Mathematical Programming, 180(1):237-284,
2020.

Melanie L Lenard and Michael Minkoff. Randomly generated test problems for pos-
itive definite quadratic programming. ACM Transactions on Mathematical Software
(TOMS), 10(1):86-96, 1984.

Gary H Lincoff. Field guide to North American mushrooms. Knopf National Audubon
Society, 1997.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the
lottery ticket hypothesis: Pruning is all you need. In International Conference on
Machine Learning, pages 6682—6691. PMLR, 2020.

Daniel K Molzahn, Florian Dorfler, Henrik Sandberg, Steven H Low, Sambuddha
Chakrabarti, Ross Baldick, and Javad Lavaei. A survey of distributed optimization
and control algorithms for electric power systems. IEEE Transactions on Smart Grid,
8(6):2941-2962, 2017.

Angelia Nedic, Alex Olshevsky, Asuman Ozdaglar, and John N Tsitsiklis. Distributed
subgradient methods and quantization effects. In 2008 47th IEEE conference on decision
and control, pages 4177-4184. TEEE, 2008.

Angelia Nedic, Alex Olshevsky, Asuman Ozdaglar, and John N Tsitsiklis. On distributed
averaging algorithms and quantization effects. IEEE Transactions on automatic control,
54(11):2506-2517, 2009.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for
distributed optimization over time-varying graphs. SIAM Journal on Optimization,
27(4):2597-2633, 2017.

Angelia Nedich. Convergence rate of distributed averaging dynamics and optimization
in networks. Foundations and Trends®) in Systems and Control, 2(1):1-100, 2015.
Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course.
Lecture notes, 3(4):5, 1998.

Alex Olshevsky and John N Tsitsiklis. Convergence speed in distributed consensus and
averaging. SIAM journal on control and optimization, 48(1):33-55, 2009.

Joel B Predd, Sanjeev R Kulkarni, and H Vincent Poor. A collaborative training algo-
rithm for distributed learning. IEEE Transactions on Information Theory, 55(4):1856—
1871, 2009.

Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedi¢. Push—pull gradient methods for dis-
tributed optimization in networks. IEEE Transactions on Automatic Control, 66(1):1—-
16, 2020.

J. Ross Quinlan. Simplifying decision trees. International journal of man-machine
studies, 27(3):221-234, 1987.

Michael G Rabbat and Robert D Nowak. Quantized incremental algorithms for distrib-
uted optimization. IEEE Journal on Selected Areas in Communications, 23(4):798-808,
2005.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, and Ramtin Pedarsani. An
exact quantized decentralized gradient descent algorithm. IEEE Transactions on Signal
Processing, 67(19):4934-4947, 2019.

Wei Ren, Randal W Beard, and Ella M Atkins. A survey of consensus problems in

27

This manuscript is for review purposes only.



974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

998

(44]
(45]

(46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

multi-agent coordination. In Proceedings of the 2005, American Control Conference,
2005., pages 1859-1864. IEEE, 2005.

Peter Richtarik and Martin Takaé. Parallel coordinate descent methods for big data
optimization. Mathematical Programming, 156(1):433-484, 2016.

Ali H Sayed. Diffusion adaptation over networks. In Academic Press Library in Signal
Processing, volume 3, pages 323-453. Elsevier, 2014.

Ioannis D Schizas, Alejandro Ribeiro, and Georgios B Giannakis. Consensus in ad hoc
wsns with noisy links—part i: Distributed estimation of deterministic signals. IFEE
Transactions on Signal Processing, 56(1):350-364, 2007.

Eugene Seneta. Coefficients of ergodicity: structure and applications. Advances in
applied probability, 11(3):576-590, 1979.

Suhail M. Shah and Raghu Bollapragada. A stochastic gradient tracking algo-
rithm for decentralized optimization with inexact communication. arXiv preprint
arXiv:2307.14942, 2020.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for
decentralized consensus optimization. SIAM Journal on Optimization, 25(2):944-966,
2015.

Richard Steinberg and Willard I Zangwill. The prevalence of braess’ paradox. Trans-
portation Science, 17(3):301-318, 1983.

John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms. IEEE Transactions on
Automatic Control, 31(9):803-812, 1986.

John N Tsitsiklis. Problems in decentralized decision making and computation. Tech-
nical report, Massachusetts Inst of Tech Cambridge Lab for Information and Decision
Systems, 1984.

Deniz Ustebay, Boris N Oreshkin, Mark J Coates, and Michael G Rabbat. Greedy gossip
with eavesdropping. IEEE Transactions on Signal Processing, 58(7):3765-3776, 2010.
Ashwin Verma, Marcos M Vasconcelos, Urbashi Mitra, and Behrouz Touri. Maximal
dissent: a state-dependent way to agree in distributed convex optimization. IEFE
Transactions on Control of Network Systems, 2023.

Jacob Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices. Proceed-
ings of the American Mathematical Society, 14(5):733-737, 1963.

Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed
gradient methods for multi-agent optimization under uncoordinated constant stepsizes.
In 2015 54th IEEE Conference on Decision and Control (CDC), pages 2055-2060. IEEE,
2015.

Yuchen Zhang and Lin Xiao. Communication-efficient distributed optimization of self-
concordant empirical loss. Large-Scale and Distributed Optimization, pages 289-341,
2018.

28

This manuscript is for review purposes only.



	Introduction
	Contributions
	Literature Review
	Organization
	Notation

	Adaptive Consensus
	Network Model
	Pruning Protocol
	Adaptive Consensus
	Convergence Analysis

	Adaptive Consensus based Decentralized Optimization
	Convergence Analysis

	Numerical Experiments
	Performance of AC
	Performance of AC-GT
	Linear Regression
	Logistic Regression


	Conclusion

