

1 **ADAPTIVE CONSENSUS: A NETWORK PRUNING APPROACH
2 FOR DECENTRALIZED OPTIMIZATION**

3 SUHAIL M. SHAH[†], ALBERT S. BERAHAS[‡], AND RAGHU BOLLAPRAGADA[†]

4 **Abstract.** We consider network-based decentralized optimization problems, where each node in
5 the network possesses a local function and the objective is to collectively attain a consensus solution
6 that minimizes the sum of all the local functions. A major challenge in decentralized optimization
7 is the reliance on communication which remains a considerable bottleneck in many applications.
8 To address this challenge, we propose an adaptive randomized communication-efficient algorithmic
9 framework that reduces the volume of communication by periodically tracking the disagreement error
10 and judiciously selecting the most influential and effective edges at each node for communication.
11 Within this framework, we present two algorithms: Adaptive Consensus (AC) to solve the consensus
12 problem and Adaptive Consensus based Gradient Tracking (AC-GT) to solve smooth strongly convex
13 decentralized optimization problems. We establish strong theoretical convergence guarantees for the
14 proposed algorithms and quantify their performance in terms of various algorithmic parameters under
15 standard assumptions. Finally, numerical experiments showcase the effectiveness of the framework
16 in significantly reducing the information exchange required to achieve a consensus solution.

17 **Key words.** Decentralized Optimization, Gradient Tracking Methods, Adaptive Consensus

18 **MSC codes.** 49M37, 65K05, 90C06, 90C25, 90C30, 90C35

19 **1. Introduction.** The problem of network-based decentralized optimization can
20 be formally stated as,

$$21 \quad (1.1) \quad \begin{aligned} \min_{x_i \in \mathbb{R}^d} \quad & \frac{1}{n} \sum_{i=1}^n f_i(x_i) \\ \text{s.t.} \quad & x_i = x_j, \forall i, j \in [n] := \{1, 2, \dots, n\}, \end{aligned}$$

22 where $f_i(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}$ is a component of the objective function located at node $i \in [n]$,
23 and $x_i \in \mathbb{R}^d$ is a copy of the optimization variable at node $i \in [n]$. A closely related
24 yet simplified version of this problem, whose goal is to reach consensus among the
25 nodes, i.e., $x_i = x_j$ for all $i \in [n]$, without minimizing an objective function, is referred
26 to as the consensus problem [43]. Problems of these types arise in several applications
27 including wireless sensor networks [38, 46], power systems design [21, 31], parallel
28 computing [8, 15], and robotics [3, 11]. More recently, decentralized optimization
29 has experienced renewed interest owing to the abundance of decentralized data and
30 privacy-preserving machine learning [23, 44], where f_i is a function of the data held
31 by node $i \in [n]$. Several classes of decentralized optimization algorithms have been
32 proposed to solve (1.1), where the main components consist of local computations
33 at every node and information exchange (communication) between nodes in order to
34 achieve consensus [8]. The communication requirement in many applications remains
35 a major bottleneck in the performance of decentralized optimization methods [27, 32,
36 35, 41, 42, 51].

37 In this work, we propose and develop a novel approach to reduce the communica-
38 tion requirements in decentralized optimization without significantly impacting
39 the convergence properties of the underlying algorithm. The core principle of our

[†]Operations Research and Industrial Engineering Program, UT Austin, Austin, TX, USA; E-mail: suhailshah2005@gmail.com, raghu.bollapragada@utexas.edu.

[‡]Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA; E-mail: albertberahas@gmail.com.

40 approach involves judiciously selecting a subset of the edges of the network (instead
41 of all the edges) along which communication is performed at each iteration, thereby
42 reducing the communication efforts. A key observation motivating this approach is
43 that selectively pruning the edges of the network has marginal impact on the spectral
44 properties of the mixing matrix associated with any graph topology. This matrix
45 plays a crucial role in determining the rate of information diffusion through the net-
46 work [51], which subsequently affects the rate of achieving consensus amongst nodes.
47 In fact, for many network structures, the spectral properties remain virtually un-
48 changed even after selectively pruning up to 50-60% of the edges (see Section 4.1),
49 thus retaining a consensus rate akin to that of an unpruned network while reducing
50 the communication volume.

51 However, to fully leverage the potential of such pruning approaches, one requires
52 information about the most influential edges, i.e., the edges that achieve consensus
53 with minimal communication cost, information that is typically unknown. For ex-
54 ample, the bridge edge that connects two fully connected components in a barbell
55 graph [22, Figure 2] has a significantly more influential role in the consensus process
56 than other edges. Therefore, it is beneficial to communicate along the bridge edge as
57 compared to other edges. Unfortunately, due to the decentralized nature of the net-
58 work, nodes cannot *a priori* determine these influential edges. Moreover, the relative
59 influence of different edges in achieving consensus can vary significantly depending on
60 the network state and structure, and the application. To overcome this challenge, our
61 work proposes a cyclic adaptive randomized procedure that can be implemented in
62 a decentralized manner to identify such edges and reduce the communication costs.
63 Specifically, we periodically track the *disagreement error* along edges during the con-
64 sensus process to estimate the relative importance of edges in achieving consensus
65 and maintain a network with only the most influential edges.

66 **1.1. Contributions.** A concise summary of the contributions is as follows:

- 67 • We propose an adaptive communication-efficient algorithmic framework. Within
68 this framework, we introduce two new algorithms: Adaptive Consensus (AC) to
69 solve the consensus problem and Adaptive Consensus based Gradient Tracking
70 (AC-GT) to solve the decentralized optimization problem¹. The novelty in our
71 approach lies in the ability to exploit the underlying structure of the network
72 to reduce the volume of communication. This is accomplished via an adaptive
73 consensus scheme that selects the most influential and effective edges for com-
74 munication at each node based on the graph topology. The proposed framework
75 has broad applicability and can be integrated with other existing decentralized
76 optimization algorithms or adapted to other settings including directed graphs,
77 time-varying topologies, and asynchronous updates.
- 78 • We provide theoretical convergence guarantees for smooth strongly convex prob-
79 lems for both AC and AC-GT, demonstrating that they retain the linear conver-
80 gence properties of their base counterparts, i.e., methods that do not utilize
81 the adaptive consensus framework, while requiring reduced communication. The
82 analysis utilizes the inhomogeneous matrix product theory to prove linear con-
83 vergence by showing that the pruned matrix products remain contractive. In
84 contrast to prevalent analytical approaches in decentralized optimization with
85 time-varying graphs, the rate constant in our results is obtained using the coeffi-
86 cient of ergodicity which effectively highlights the dependence of the convergence

¹For better exposition of the consensus framework, the consensus and decentralized optimization problems are treated separately even though the former is a simplified version of the latter.

87 rate on the network pruning procedure parameters.
 88 • We illustrate the empirical performance of AC in solving the standard consensus
 89 problem and of AC-GT in solving linear regression and binary classification logistic
 90 regression problems. Our numerical results highlight that the proposed methods
 91 achieve significant communication savings while maintaining solution quality,
 92 compared to the contemporary state-of-the-art techniques.

93 **1.2. Literature Review.** The proposed idea of exploiting the relative signif-
 94 icance of edges to improve algorithmic efficiency is not exclusive to decentralized
 95 optimization and has been studied in other fields that use graphical modeling on net-
 96 works [17, 18, 30, 50]. In the context of traffic modeling, a converse analogue falls
 97 under the category of “Braess’s paradox”, which suggests that adding one or more
 98 roads to a road network can actually slow down the overall traffic flow [17, 50]. An-
 99 other example, although somewhat tangential, is found in neural networks where the
 100 “lottery ticket hypothesis” states that within dense, feed-forward networks, there are
 101 smaller pruned sub-networks that, when trained in isolation, can achieve test accuracy
 102 comparable to the original network in a similar number of iterations [18, 30].

103 Within decentralized optimization, several recent works have proposed communication-
 104 efficient algorithms that balance the communication and computation costs to achieve
 105 overall efficiency [4–7, 10, 45, 57]. Our proposed approaches are complementary to and
 106 can be integrated with these existing works. Furthermore, the proposed framework
 107 (adaptive consensus) adds to the list of techniques that reduce the communication
 108 costs. One such approach is gossip communication protocols where nodes selectively
 109 communicate with neighbors asynchronously [9, 12, 53, 54]. It is worth noting that in
 110 gossip protocols a convex optimization problem is often solved to optimize the spec-
 111 tral gap of the expected consensus matrix [9]. Another class of approaches leverage
 112 quantized communication where only quantized (reduced size) information is commu-
 113 nicated to reduce the communication costs. However, these techniques typically lack
 114 convergence guarantees to the solution [8, 48]. Moreover, quantization techniques can
 115 also be incorporated into our framework to further reduce the communication over-
 116 head. We emphasize that our approach differs significantly from the aforementioned
 117 approaches in several ways including the focus on enhancing communication efficiency
 118 by adaptively modifying the graph structure in a decentralized manner, and achieving
 119 convergence guarantees to the solution.

120 While several classes of algorithms have been proposed for solving decentralized
 121 optimization, gradient tracking methods have emerged as popular alternatives due to
 122 their simplicity, optimal theoretical convergence properties and empirical performance
 123 [4, 13, 26, 34, 49, 56]. We incorporate the proposed communication-efficient technique
 124 into the gradient tracking algorithmic framework with the goal of reducing the com-
 125 munication costs while retaining optimal convergence guarantees. Furthermore, we
 126 note that the setting of time-varying graphs, which also arises in our work, has been
 127 explored previously in [1, 33, 34, 52], among others.

128 **1.3. Organization.** The paper is organized as follows. In the remainder of this
 129 section, we define the notation employed in the paper. In Section 2, we describe the
 130 network model, introduce the Adaptive Consensus (AC) algorithm, and establish con-
 131 vergence guarantees under standard assumptions. Building upon the adaptive consen-
 132 sus procedure and gradient tracking algorithms, we propose the Adaptive Consensus
 133 based Gradient Tracking (AC-GT) algorithm and study its convergence properties in
 134 Section 3. Section 4 presents numerical results that illustrate the performance of the
 135 proposed algorithms. Finally, concluding remarks are provided in Section 5.

136 **1.4. Notation.** We use \mathbb{R} to denote the set of real numbers and \mathbb{N} to denote
 137 the set of all strictly positive integers. The ℓ_2 -inner product between two vectors
 138 is denoted by $\langle \cdot, \cdot \rangle$ and \otimes denotes the Kronecker product between two matrices. All
 139 norms, unless otherwise specified, can be assumed to be ℓ_2 -norms of a vector or matrix
 140 depending on the argument. Let $\lfloor x \rfloor$ ($\lceil x \rceil$) denote the nearest integer less (greater)
 141 than or equal to x . We use $a|b$ to denote integer division between any two $a, b \in \mathbb{N}$,
 142 i.e., $a|b = \lfloor a/b \rfloor$. We use $\mathbf{1}_n := \frac{1}{n} \mathbf{1}_n \otimes I_d \in \mathbb{R}^{nd \times d}$, where $\mathbf{1}_n \in \mathbb{R}^n$ is the column
 143 vector of all ones and $I_d \in \mathbb{R}^{d \times d}$ is the $d \times d$ identity matrix. For any matrix Q
 144 with eigenvalues $-1 < \lambda_n \leq \dots \leq \lambda_2 < \lambda_1 = 1$, the *spectral gap* is defined as
 145 $\sigma(Q) := 1 - \max\{|\lambda_n|, |\lambda_2|\}$. The set $A \setminus B$ consists of the elements of A which are
 146 not elements of B . We use x^* denotes the optimal solution of (1.1). We use the
 147 column vector $x_{i,k} \in \mathbb{R}^d$ to denote the value of the objective variable held by node i
 148 at iteration k . The vector $\mathbf{x}_k \in \mathbb{R}^{nd}$ denotes the column-stacked version of $x_{i,k}$ and
 149 $\nabla \mathbf{f}(\mathbf{x}_k)$ denotes the column-stacked gradients, i.e.,

$$150 \quad \mathbf{x}_k := [x_{1,k}, \dots, x_{n,k}] \in \mathbb{R}^{nd} \quad \text{and} \quad \nabla \mathbf{f}(\mathbf{x}_k) := [\nabla f_1(x_{1,k}), \dots, \nabla f_n(x_{n,k})] \in \mathbb{R}^{nd},$$

151 where $\nabla f_i : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is the gradient of the local function f_i . The following quantities
 152 are used in the presentation and analysis of the algorithms,

$$153 \quad \bar{x}_k := \frac{1}{n} \sum_{i=1}^n x_{i,k} \in \mathbb{R}^d, \quad \bar{\mathbf{x}}_k = [\bar{x}_k, \dots, \bar{x}_k] \in \mathbb{R}^{nd}, \quad \nabla f(\bar{x}_k) := \frac{1}{n} \sum_{i=1}^n \nabla f_i(\bar{x}_k) \in \mathbb{R}^d.$$

154 **2. Adaptive Consensus.** This section provides a description of the pruning
 155 protocol which serves as the basic building block for the proposed consensus scheme re-
 156 ferred to as the Adaptive Consensus algorithm (Algorithm 2.2, ADAPTIVE CONSENSUS
 157 (AC)). We describe the network model we assume in the paper, discuss the pruning
 158 protocol, and present the algorithm and its associated convergence guarantees.

159 **2.1. Network Model.** The underlying network is assumed to be modeled by a
 160 undirected graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$, where \mathcal{V} is the set of nodes and \mathcal{E} is the set of edges. We
 161 use the matrix $Q = [q_{ij}]_{i \in [n], j \in [n]}$ to denote the mixing matrix. The mixing matrix
 162 has the following properties: the entry $q_{ij} > 0$ (assumed to be equal to q_{ji}) if there
 163 is a link between any two nodes $i, j \in \mathcal{V}$. We use \mathcal{E}_i to denote the set of all edges
 164 (i, j) such that $j \in \mathcal{V}$ is a neighbor of $i \in \mathcal{V}$, i.e., the set of all $j \in \mathcal{V}$ with $j \neq i$ for
 165 which $q_{ij} > 0$. Note that the neighbors of i for any $i \in [n]$ is the set of all j such
 166 that $(i, j) \in \mathcal{E}_i$. Since we assume that the graph is undirected, $(i, j) \in \mathcal{E}_i$ if and only
 167 if $(j, i) \in \mathcal{E}_j$. We make the following assumption on the network.

168 ASSUMPTION 2.1 (Graph Connectivity). $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ is static and connected.

169 **2.2. Pruning Protocol.** The main goal of the pruning protocol is to provide
 170 a systematic approach for selecting the (subset of) edges within a graph along which
 171 to communicate in order to achieve consensus with reduced communication efforts.
 172 To be more precise, given the reference graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ and a set of node estimates a_i
 173 for all $i \in [n]$, the pruning protocol generates a modified graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ by selectively
 174 removing edges from the reference graph. The edges to be pruned are determined by
 175 a function of the node estimates. The function assigns a probability to each edge in \mathcal{E}
 176 based on its likelihood of being least effective and influential with respect to achieving
 177 consensus. The pseudo-code for the pruning protocol is given in Algorithm 2.1.

178 Algorithm 2.1 has three free (user-defined) parameters ($\bar{\kappa}_i$, κ_i and β). Broadly
 179 speaking, $\bar{\kappa}_i \in [0, 1]$ represents the fraction of edges to be pruned at node $i \in [n]$ and

Algorithm 2.1 PRUNING PROTOCOL($\mathcal{G}(\mathcal{V}, \mathcal{E})$, a_i , $(\bar{\kappa}_i, \underline{\kappa}_i)$, β).

Inputs: Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$; Node estimates a_i for all $i \in [n]$; Softmax parameter $\beta \in [0, \infty]$; Thresholding factors $(\bar{\kappa}_i, \underline{\kappa}_i) \in [0, 1]^2$ for all $i \in [n]$.

```

1: Set  $\mathcal{E}_i^{\text{prune}} := \{\}$  for all  $i \in [n]$ .
2: for all  $i \in [n]$  in parallel do
3:   Receive estimates  $a_j$  from all neighbors  $j$ .
4:   Compute a dissimilarity measure  $\Delta(a_i, a_j)$  for all edges  $(i, j) \in \mathcal{E}_i$ .
5:   while  $|\mathcal{E}_i^{\text{prune}}| \leq \lfloor \bar{\kappa}_i \times |\mathcal{E}_i| \rfloor$  do
6:     Draw a sample edge  $(i, j')$  from  $\mathcal{E}_i \setminus \mathcal{E}_i^{\text{prune}}$  according to:

$$p_{i,j} \sim \frac{\exp(-\beta\Delta(a_i, a_{j'}))}{\sum_{(i,j') \in \mathcal{E}_i \setminus \mathcal{E}_i^{\text{prune}}} \exp(-\beta\Delta(a_i, a_{j'}))}, \quad ((i, j) \in \mathcal{E}_i \setminus \mathcal{E}_i^{\text{prune}}).$$

7:     Update set  $\mathcal{E}_i^{\text{prune}} \rightarrow \mathcal{E}_i^{\text{prune}} \cup (i, j')$  for all  $i \in [n]$ .
8:   end while
9: end for
10: Set  $\bar{\mathcal{E}}_i := \mathcal{E}_i$ , for all  $i \in [n]$ .
11: for all all  $i \in [n]$  do
12:   Send requests to all neighbors  $j$  such that  $(i, j) \in \mathcal{E}_i^{\text{prune}}$  to prune edge  $(j, i) \in \mathcal{E}_j$ .
13:   Receive request from all neighbors  $j'$  such that  $(j', i) \in \mathcal{E}_{j'}^{\text{prune}}$  to prune edge  $(i, j') \in \mathcal{E}_i$ .
14:   for all  $(i, j')$  such that  $(i, j') \in \mathcal{E}_i^{\text{prune}}$  do
15:     Remove edge  $(i, j')$  from  $\bar{\mathcal{E}}_i$ .
16:   end for
17:   for all requests  $(i, j')$  such that  $(i, j') \notin \mathcal{E}_i^{\text{prune}}$  do
18:     if  $|\mathcal{E}_i| > \lceil \underline{\kappa}_i |\mathcal{E}_i| \rceil$  then
19:       Remove edge  $(i, j')$  from  $\bar{\mathcal{E}}_i$ .
20:     end if
21:   end for
22: end for
23: if Graph = 'Undirected' then
24:   for all  $(i, j) \in \bar{\mathcal{E}}_i$  and  $(j, i) \notin \bar{\mathcal{E}}_j$  do
25:     Update set  $\bar{\mathcal{E}}_j \rightarrow \bar{\mathcal{E}}_j \cup (j, i)$ .
26:   end for
27: end if
Output:  $\mathcal{G}(\mathcal{V}, \bar{\mathcal{E}})$ , where  $\bar{\mathcal{E}} := \bigcup_{i=1}^n \bar{\mathcal{E}}_i$ .

```

180 $\kappa_i \in [0, 1]$ is a lower bound on the minimum number of edges retained at node i . The
181 parameter $\beta \in [0, \infty]$ determines the level of influence of the dissimilarity measure
182 in assigning the pruning probabilities. The role and significance of these parameters
183 becomes evident by examining the main steps of the protocol, which we discuss next.

184 *Selecting Candidate Edges for Pruning.* To select the edges to be pruned, each
185 node $i \in [n]$ constructs a set $\mathcal{E}_i^{\text{prune}}$ by iteratively drawing a sample edge from the set
186 $\mathcal{E}_i \setminus \mathcal{E}_i^{\text{prune}}$, $\lfloor \bar{\kappa}_i \times |\mathcal{E}_i| \rfloor$ times, where $\bar{\kappa}_i$ represents the fraction of the total number of
187 edges to be removed at node i during pruning. The probability of selecting an edge
188 (i, j) is determined by the softmax of a dissimilarity measure (denoted by $\Delta(a_i, a_j)$)
189 between the estimates at i and j . A possible candidate for $\Delta(a_i, a_j)$ is the ℓ_1 -norm
190 difference between a_i and a_j , i.e., $\|a_i - a_j\|_1$. For large values of the parameter β
191 (the argument of the softmax) edges exhibiting small dissimilarity (small $\Delta(a_i, a_j)$),
192 where a_i and a_j are in similar, have an increased likelihood of being pruned.

193 More formally, for the k th draw at node $i \in [n]$, where $1 \leq k \leq \lfloor \bar{\kappa}_i |\mathcal{E}_i| \rfloor$, the
194 probability distribution over the set of edges $(i, j) \in \mathcal{E}_i \setminus \mathcal{E}_i^{\text{prune}}$ is given by

$$195 \quad p_{i,j} \sim \frac{\exp(-\beta\Delta(a_i, a_j))}{\sum_{(i,j') \in \mathcal{E}_i \setminus \mathcal{E}_i^{\text{prune}}} \exp(-\beta\Delta(a_i, a_{j'}))}, \quad \text{for all } (i, j) \in \mathcal{E}_i \setminus \mathcal{E}_i^{\text{prune}},$$

197 where $\beta \in [0, \infty]$ is the softmax parameter that controls the influence of the dissimi-

198 larity measure. Note that $\beta = \infty$ represents the greedy case, where each node $i \in [n]$
 199 selects the top $\lceil \bar{\kappa}_i |\mathcal{E}_i| \rceil$ edges with least dissimilarity measure. At the other extreme,
 200 $\beta = 0$ represents the case of random pruning independent of the dissimilarity measure.
 201 The

202 *Pruning Mechanism.* To perform the actual pruning, each node $i \in [n]$ sends a
 203 request to neighboring nodes j , where $(i, j) \in \mathcal{E}_i^{\text{prune}}$, to prune edge (j, i) . At the same
 204 time, node $i \in [n]$ receives and catalogues the requests from all its neighboring nodes
 205 j' with $(j', i) \in \mathcal{E}_{j'}^{\text{prune}}$ to prune edges (i, j') . It is worth noting that the request for
 206 (i, j') does not necessarily require (i, j') to be in $\mathcal{E}_i^{\text{prune}}$. Initially, each node creates
 207 a copy $\bar{\mathcal{E}}_i$ of the original set of edges \mathcal{E}_i . The following steps are then performed in
 208 order by each node:

209 (i) For each (i, j') such that $(i, j') \in \mathcal{E}_i^{\text{prune}}$, edge (i, j') is removed from $\bar{\mathcal{E}}_i$. This
 210 covers the ideal case where both nodes i and j' want to remove the edge (i, j')
 211 and (j', i) from their respective edge sets \mathcal{E}_i and $\mathcal{E}_{j'}$.
 212 (ii) If $(i, j') \notin \mathcal{E}_i^{\text{prune}}$, then the edge is pruned if $|\bar{\mathcal{E}}_i| > \lceil \kappa_i |\mathcal{E}_i| \rceil$. So, node $i \in [n]$
 213 prunes an edge not included in $\mathcal{E}_i^{\text{prune}}$ only if the number of edges remaining in
 214 $\bar{\mathcal{E}}_i$ is greater than a certain fraction κ_i of $|\mathcal{E}_i|$. An implicit assumption here is
 215 that $\kappa_i \leq 1 - \bar{\kappa}_i$ so that $\lceil \kappa_i |\mathcal{E}_i| \rceil \leq \lceil (1 - \bar{\kappa}_i) |\mathcal{E}_i| \rceil$. It should be noted that for the
 216 algorithm to be well-defined, pruning requests of this type are processed in the
 217 order in which they are received.

218 The output of Algorithm 2.1 is $\mathcal{G}(\mathcal{V}, \bar{\mathcal{E}})$, where $\bar{\mathcal{E}} := \cup_i \bar{\mathcal{E}}_i$. An important point worth
 219 noting here is that the resulting set $\bar{\mathcal{E}}_i$ for $i \in [n]$ may contain edges (i, j) for which
 220 $(j, i) \notin \bar{\mathcal{E}}_j$. To make the pruned graph undirected, there are two possible approaches;
 221 either node j adds (j, i) to $\bar{\mathcal{E}}_j$, or alternatively, node i removes (i, j) from $\bar{\mathcal{E}}_i$. These
 222 approaches can be implemented by performing one additional round of communication
 223 among the nodes with negligible overhead.

224 **2.3. Adaptive Consensus.** Building upon the pruning protocol presented in
 225 the previous subsection, we introduce an algorithm to solve the consensus problem
 226 [37, Section 1], which requires the convergence of all the node estimates to the average
 227 of their initial estimates. The pseudo-code is provided in Algorithm 2.2.

Algorithm 2.2 ADAPTIVE CONSENSUS (AC)

Inputs: Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$; Cycle length $\tau \in \mathbb{N}$; Softmax parameter $\beta \in [0, \infty]$; Thresholding factors $(\bar{\kappa}_i, \kappa_i) \in [0, 1]^2$ for all $i \in [n]$; Initial estimates $x_{i,0} \in \mathbb{R}^d$ for all $i \in [n]$; Total number of iterations $T \in \mathbb{N}$.

```

1: for  $k = 0, \dots, T$  do
2:   for all  $i \in [n]$  in parallel do
3:     if  $k \in \mathcal{I}$ , then
4:       Generate  $\mathcal{G}(\mathcal{V}, \bar{\mathcal{E}}_{k|\tau}) \sim \text{PRUNING PROTOCOL}(\mathcal{G}(\mathcal{V}, \mathcal{E}), x_{i,k}, (\bar{\kappa}_i, \kappa_i), \beta)$ .
5:       Get new weights  $\bar{q}_{ij}[k|\tau] \sim \text{GENERATE WEIGHTS } (\mathcal{G}(\mathcal{V}, \bar{\mathcal{E}}_{k|\tau}))$ .
6:     end if
7:     Update estimate at node  $i$  according to:  $x_{i,k+1} = \sum_{j=1}^n \bar{q}_{ij}[k|\tau] x_{j,k}$ .
8:   end for
9: end for
```

Output: $x_{i,T}$ for all $i \in [n]$.

228 We discuss the main steps of the algorithm and how to select the parameters $\bar{\kappa}_i$
 229 and κ_i . Algorithm 2.2 has a cyclic structure with cycle length $\tau \in \mathbb{N}$. The set of
 230 indices where the pruning protocol is executed is denoted by $\mathcal{I} := [\tau, 2\tau, \dots]$. For
 231 any $k \in \mathcal{I}$, the iterations $t \in [k, k + \tau)$ are said to constitute a *consensus cycle*.

232 *Pruning Step.* At the start of the $k|\tau$ consensus cycle, the pruning protocol is
 233 executed to obtain the pruned graph $\mathcal{G}(\mathcal{V}, \bar{\mathcal{E}}_{k|\tau})$, where $\bar{\mathcal{E}}_{k|\tau} := \cup_i \bar{\mathcal{E}}_{i,k|\tau}$, using the
 234 current local estimates $x_{i,k}$ for all $i \in [n]$. Subsequently, the mixing matrix, denoted
 235 by $Q_{k|\tau} := [q_{ij}[k|\tau]]_{i \in [n], j \in [n]}$, of the pruned graph $\mathcal{G}(\mathcal{V}, \bar{\mathcal{E}}_{k|\tau})$ is constructed in a de-
 236 centralized manner. As an example, we can consider the Metropolis-Hastings scheme
 237 [34], which generates the weights via the following prescribed rule:

$$238 \quad (2.1) \quad q_{ij}[k|\tau] := \begin{cases} \frac{1}{(1+\max\{|\bar{\mathcal{E}}_{i,k|\tau}|, |\bar{\mathcal{E}}_{j,k|\tau}|\})} & \text{if } (i, j) \in \bar{\mathcal{E}}_{k|\tau} \\ 1 - \sum_{p=1}^n \bar{q}_{ip}[k|\tau] & \text{if } i = j \\ 0 & \text{otherwise,} \end{cases}$$

239 where $\bar{\mathcal{E}}_{i,k|\tau}$ denotes the (pruned) edge set at node $i \in [n]$.

240 *Pruned Graph based Averaging.* For all iterations $t \in [k, k + \tau)$ with $k \in \mathcal{I}$,
 241 the algorithm performs decentralized averaging using the pruned weights, $\bar{q}_{ij}[k|\tau]$.
 242 Subsequent to this, the pruning step (Line 4, Algorithm 2.2) is performed again with
 243 the updated node estimates.

244 REMARK 2.1. *We make the following remarks about Algorithm 2.2.*

- 245 • *It is worth noting that the ideal choice of values for $\bar{\kappa}_i$ and $\underline{\kappa}_i$ can be problem-
 246 specific and depends on the network structure. For instance, preserving connec-
 247 tivity might be crucial in some cases, while in others, optimizing for low com-
 248 munication overhead may take precedence. Broadly speaking, a higher value of
 249 $\bar{\kappa}_i$ results in aggressive pruning more suited to graphs with high edge density.
 250 Conversely, $\underline{\kappa}_i$ acts as a lower bound on the edges to be retained post pruning,
 251 and a higher value of $\underline{\kappa}_i$ corresponds to a more conservative pruning approach,
 252 which is beneficial if maintaining connectivity is important. For β , lower values
 253 lead to increased randomness in edge selection, resembling approaches such as the
 254 gossip protocol [9], while higher values promote a more deterministic and greedy
 255 approach to edge selection.*
- 256 • *If directed edges are permitted in the output of the pruning protocol, the appli-
 257 cation of the push-sum protocol [25] offers an alternative to simple distributed
 258 averaging that alleviates the requirement for doubly stochastic mixing matrices.*

259 **2.4. Convergence Analysis.** To provide convergence guarantees, we begin by
 260 writing the key step of AC (Line 7, Algorithm 2.2) in matrix form by employing the
 261 stacked vector notation,

$$262 \quad (2.2) \quad \mathbf{x}_{k+1} = \mathbf{Q}_k \mathbf{x}_k,$$

263 where $\mathbf{Q}_k = Q_k \otimes I_d = Q_{k|\tau} \otimes I_d \in \mathbb{R}^{nd \times nd}$, where $Q_{k|\tau} := [q_{ij}[k|\tau]]_{i \in [n], j \in [n]} \in \mathbb{R}^{n \times n}$
 264 denotes the mixing matrix of the pruned graph $\mathcal{G}(\mathcal{V}, \bar{\mathcal{E}}_{k|\tau})$ for the $k|\tau$ cycle. We use
 265 $\mathbf{Q}[r : s] \in \mathbb{R}^{nd \times nd}$ to denote the product of $s - r$ consecutive matrices indexed by
 266 $\{\mathbf{Q}_k\}_{k=r}^{s-1}$, i.e., $\mathbf{Q}[r : s] := \mathbf{Q}_{s-1} \times \dots \times \mathbf{Q}_r$, with the convention that $\mathbf{Q}[s : s] :=$
 267 $I_n \otimes I_d \in \mathbb{R}^{nd \times nd}$. Using the above notation, we can express $\mathbf{x}_{(k+1)\tau}$ for any $k \geq 0$ in
 268 terms of \mathbf{x}_0 as follows

$$269 \quad (2.3) \quad \begin{aligned} \mathbf{x}_{(k+1)\tau} &= \mathbf{Q}_{k|\tau}^\tau \mathbf{x}_{k\tau} = \mathbf{Q}[k\tau : (k+1)\tau] \mathbf{x}_{k\tau} \\ &= \mathbf{Q}[k\tau : (k+1)\tau] \times \dots \times \mathbf{Q}[0 : \tau] \mathbf{x}_0. \end{aligned}$$

270 We establish convergence under the following assumption.

ASSUMPTION 2.2 ($\bar{\tau}$ -Connectivity). *There exists a constant $\bar{\tau} \in \mathbb{N}$, such that for all $k \in \mathcal{I}_{\bar{\tau}} := \{\bar{\tau}, \bar{\tau} + \tau, \bar{\tau} + 2\tau, \dots\} \subset \mathcal{I}$, the graph $\mathcal{G}(\mathcal{V}, \mathcal{E}_{(k|\tau-\bar{\tau}+1)}) \cup \dots \cup \mathcal{G}(\mathcal{V}, \mathcal{E}_{k|\tau})$ is connected.*

REMARK 2.2. Assumption 2.2 plays a key role in the analysis. In words, it implies the existence of a constant $\bar{\tau}$, such that within $\bar{\tau}$ pruning cycles, the union of the resulting undirected (directed) pruned graphs is connected (strongly connected). For the special case where the pruned graph is connected for all cycles, $\bar{\tau} = 1$. It is possible to guarantee this assumption by imposing a consensus iteration with the reference graph every $\bar{\tau}$ iterations of the algorithm for some finite $\bar{\tau} \in \mathbb{N}$. Additionally, it is worth noting that it suffices to assume this property only for indices $\mathcal{I}_{\bar{\tau}}$ rather than for all $k \in \mathbb{N}$. Another important point to note is that the assumption can be replaced by a stochastic version which takes into account the utilization of softmax based sampling in the pruning protocol. Specifically, the assumption of connectedness can either be assumed to hold almost surely or replaced by an assumption that ensures a reduction in the consensus error in expectation (with respect to \mathbf{Q}_k) over a period of $\bar{\tau}$ iterations.

286 REMARK 2.3. We note that Assumption 2.2 is equivalent to assuming that every
 287 edge $(i, j) \in \mathcal{E}$ gets activated every $\bar{\tau}$ iterations for some finite $\bar{\tau} > 0$. Let \mathcal{A}_k denote
 288 a random subset of the edge set \mathcal{E} , composed of the subset of edges updated at time
 289 k , and let $\nu_{(i,j),k} := \sum_{m=0}^k \mathcal{I}\{(i,j) \in \mathcal{A}_m\}$, where $\mathcal{I}(\cdot)$ denotes the indicator function,
 290 representing the number of times (i, j) is activated up until time k . Assumption 2.2
 291 can be satisfied if the following condition holds:

$$292 \quad (2.4) \quad \liminf_{k \rightarrow \infty} \frac{\nu_{(i,j),k}}{k} > 0 \quad \forall (i,j) \in \mathcal{E}.$$

293 *That is, all edges are updated comparably often. To ensure this, we can mix the softmax*
 294 *policy with a uniformly random policy with an arbitrarily small θ . More formally, for*
 295 *node $i \in [n]$ the probability distribution over the set of edges (i, j) can be written as*

$$p_{i,j} \sim (1 - \theta) \frac{\exp(-\beta \Delta(a_i, a_j))}{\sum_{(i,j') \in \mathcal{E}_i / \mathcal{E}_i^{prune}} \exp(-\beta \Delta(a_i, a_{j'}))} + \frac{\theta}{|\mathcal{E}_i / \mathcal{E}_i^{prune}|}, \quad \forall (i, j) \in \mathcal{E}_i \setminus \mathcal{E}_i^{prune},$$

where $\theta > 0$ is an arbitrarily small parameter. Since $p_{i,j} \geq \frac{\theta}{|\mathcal{E}_i \setminus \mathcal{E}_i^{\text{prune}}|} > 0$ for any edge (i, j) , using Borel-Cantelli Lemma, we have that each edge (i, j) is activated infinitely often.

301 To prove convergence of the algorithm, we need to establish convergence of the
 302 following product sequence to the $\frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T$ rank-one matrix, i.e.,

$$\prod_{j=0}^k \mathbf{Q}[j\tau : (j+1)\tau] \rightarrow \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T, \quad \text{as } k \rightarrow \infty.$$

305 To show this, we use the notion of coefficient of ergodicity [47], denoted by $\rho(Q)$ for
 306 any row-stochastic matrix Q , defined as,

$$307 \quad (2.5) \quad \rho(Q) := 1 - \min_{i_1, i_2} \sum_{j=1}^n \min(q_{i_1 j}, q_{i_2 j}).$$

308 Using the coefficient of ergodicity instead of directly bounding the spectral gap offers
 309 several advantages, particularly in scenarios involving time-varying topologies. First,
 310 it allows us to clearly characterize the influence of different graph parameters, such as

311 maximum node degree and diameter, on convergence. This characterization helps us
 312 establish an explicit relationship between pruning and convergence. Second, it allows
 313 for extensions to directed graphs (with push-sum protocols) where the condition of
 314 double stochasticity may not be satisfied.

315 There are two key properties of (2.5) that will be useful in establishing convergence.
 316 The first property is that $\rho(\cdot)$ is sub-multiplicative, i.e., for any two matrices
 317 Q_1, Q_2 ,

318 (2.6)
$$\rho(Q_1 Q_2) \leq \rho(Q_1) \rho(Q_2).$$

319 The second property is that it can serve as an upper bound on the dissimilarity
 320 between the rows of matrix Q . More formally, we have (cf. [55, Lemma 2], [20,
 321 Lemma 4])

322 (2.7)
$$\delta(Q) := \max_j \max_{i_1, i_2} |q_{i_1 j} - q_{i_2 j}| \leq \rho(Q),$$

323 for any matrix Q which is ergodic, i.e., it is row stochastic, aperiodic and irreducible
 324 (cf. [55] or, [24, Chapter 8]).

325 Next, we state and prove the main theoretical result of this section.

326 **THEOREM 2.1.** *Suppose that: (i) Assumptions 2.1 and 2.2 hold, (ii) the matrices
 327 $Q_k := [q_{ij}[k]]_{i \in [n], j \in [n]}$ are doubly stochastic for all $k \geq 0$, (iii) $q_{ii}[k] > 0$ for all $k \geq 0$
 328 for at least one $i \in [n]$, and, (iv) if $q_{ij}[k] > 0$ for any $(i, j) \in \mathcal{E}$ and $k \geq 0$, then
 329 $q_{ij}[k] > q$ for some strictly positive constant $q > 0$ independent of k and (i, j) . Then,
 330 for any $k \geq 0$,*

331 (2.8)
$$\|\mathbf{x}_k - \bar{\mathbf{x}}_k\| \leq \min \left\{ n^{\frac{3}{2}} \gamma^{\left\lfloor \frac{k}{\bar{\tau} d_{\mathcal{G}}} \right\rfloor}, n \left(1 - \frac{q}{2n^2}\right)^{\frac{k}{\bar{\tau}}} \right\} \|\mathbf{x}_0 - \bar{\mathbf{x}}_0\|,$$

332 where $\gamma := (1 - q^{\bar{\tau} d_{\mathcal{G}}}) < 1$ with $q < 1$ and $d_{\mathcal{G}}$ is the diameter of a graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$
 333 defined as $d_{\mathcal{G}} := \max_{u, v \in \mathcal{V}} \{ \text{dist}(u, v) \}$, where $\text{dist}(u, v)$ denotes the shortest path dis-
 334 tance between any two vertices $u, v \in \mathcal{V}$.

335 *Proof.* We first establish the ergodicity of the product sequence $\mathbf{Q}[m\bar{\tau} : (m+1)\bar{\tau}]$
 336 for any $m \geq 0$ with $\bar{\tau} \in \mathbb{N}$ as in Assumption 2.2. The stochasticity of $\mathbf{Q}[m\bar{\tau} : (m+1)\bar{\tau}]$
 337 follows from that the fact that the product of stochastic matrices is also stochastic.
 338 Furthermore, a matrix is considered irreducible if its zero/non-zero structure corre-
 339 sponds to a connected graph. By Assumption 2.2, the structure of $\mathbf{Q}[m\bar{\tau} : (m+1)\bar{\tau}]$
 340 also exhibits this property [19, Section 1-C]. Finally, an irreducible matrix is aperiodic
 341 if it has at least one self-loop which is satisfied by $\mathbf{Q}[m\bar{\tau} : (m+1)\bar{\tau}]$ by condition (ii)
 342 in the theorem statement [19, Section 1-C].

343 Next, we establish a useful upper bound on $\delta(\mathbf{Q}[0 : k+1])$. To do this, we con-
 344 sider the following decomposition of $\mathbf{Q}[0 : k+1]$

345
$$\mathbf{Q}[0 : k+1]$$

 346
$$= \underbrace{\mathbf{Q}[0 : \bar{k}\bar{\tau}] \times \cdots \times \mathbf{Q}[m\bar{k}\bar{\tau} : (m+1)\bar{k}\bar{\tau}] \times \cdots \times \mathbf{Q}[(K-1)\bar{k}\bar{\tau} : K\bar{k}\bar{\tau}]}_{\mathbf{Q}[0 : K\bar{k}\bar{\tau}]} \times \mathbf{Q}[K\bar{k}\bar{\tau} : k+1]$$

 347

348 where $K := \lfloor k/\bar{k}\bar{\tau} \rfloor$, $\bar{k} \geq 1$ is a constant to be specified later. Let $\tau' := \bar{k}\bar{\tau}$. We bound
 349 $\delta(\mathbf{Q}[0 : K\tau'])$ by individually bounding $\rho(\mathbf{Q}[m\tau' : (m+1)\tau'])$ in the above product.

350 By (2.5), it follows that,

(2.9)

$$351 \quad \rho(\mathbf{Q}[m\tau' : (m+1)\tau']) = 1 - \min_{i_1, i_2} \sum_j \min(q_{i_1 j}[m\tau' : (m+1)\tau'], q_{i_2 j}[m\tau' : (m+1)\tau']),$$

352 where $\mathbf{Q}[m\tau' : (m+1)\tau'] := [q_{ij}[m\tau' : (m+1)\tau']]_{i,j \in [n]}$. By (2.9), we note that
353 $\rho(\mathbf{Q}[m\tau' : (m+1)\tau'])$ is guaranteed to satisfy $\rho(\mathbf{Q}[m\tau' : (m+1)\tau']) < 1$, if for every
354 pair of rows i_1 and i_2 , there exists some j^* such that $q_{i_1 j^*}[m\tau' : (m+1)\tau']$, $q_{i_2 j^*}[m\tau' : (m+1)\tau'] > 0$, i.e., if there is a path from some j^* to both i_1 and i_2 . This, in turn,
355 is always satisfied if for some $\bar{k} > 0$, $q_{ij}[m\tau' : (m+1)\tau'] > 0$ for every $i, j \in [n]$, i.e.,
356 all the entries are strictly positive.

357 To find such a candidate \bar{k} , we make the following observation: $\mathbf{Q}[m\bar{\tau} : (m+1)\bar{\tau}]$
358 is ergodic, so there exists a path from i to j for every $i, j \in [n]$. Setting $\bar{k} = d_G$ in
359 the definition of τ' , we have $\tau' = \bar{k}\bar{\tau} = d_G\bar{\tau}$. It follows that for the matrix $\mathbf{Q}[m\tau' : (m+1)\tau']$,
360 $q_{ij}[m\tau' : (m+1)\tau'] > 0$ for all $i, j \in [n]$ since we can reach any node i
361 from any other node j in at most $\tau' = d_G\bar{\tau}$ steps.

362 For the remainder of the proof, let $\tau' = d_G\bar{\tau}$. To lower bound $q_{ij}[m\tau' : (m+1)\tau'] > 0$,
363 $m \geq 0$, we note that by the definition of q and Assumption 2.2, it follows that
364 $q_{ij}[p\bar{\tau} : (p+1)\bar{\tau}] \geq q^{\bar{\tau}}$ for any $p \geq 0$ and any $(i, j) \in \mathcal{E}_{p\bar{\tau}} \cup \dots \cup \mathcal{E}_{(p+1)\bar{\tau}-1}$. Since
365 $\mathbf{Q}[m\tau' : (m+1)\tau'] = \mathbf{Q}[m\tau' : m\tau' + \bar{\tau}] \dots \mathbf{Q}[m\tau' + (d_G - 1)\bar{\tau} : m\tau' + d_G\bar{\tau}]$, for any
366 $i', j' \in [n]$,

$$369 \quad (2.10) \quad q_{i' j'}[m\tau' : (m+1)\tau'] \geq q^{\bar{\tau} d_G}.$$

370 By (2.9) and (2.10),

$$372 \quad (2.11) \quad \rho(\mathbf{Q}[m\tau' : (m+1)\tau']) \leq 1 - q^{\bar{\tau} d_G}.$$

373 Thus, it follows that,

$$374 \quad \delta(\mathbf{Q}[(0 : K\bar{\tau})]) \leq \rho(\mathbf{Q}[0 : K\bar{\tau}]) \\ 375 \quad \leq \rho(\mathbf{Q}[0 : \bar{\tau}] \dots \mathbf{Q}[(K-1)\bar{\tau} : K\bar{\tau}]) \\ 376 \quad \leq \rho(\mathbf{Q}[0 : \bar{\tau}]) \times \dots \times \rho(\mathbf{Q}[(K-1)\bar{\tau} : K\bar{\tau}]) \\ 377 \quad \leq (1 - q^{\bar{\tau} d_G})^K,$$

378 where the first inequality follows by (2.7), the second inequality by the the sub-
379 multiplicative property of $\rho(\cdot)$ (2.6), and the final inequality follows by (2.11). By
380 (2.2) and (2.3), it follows that,

$$382 \quad \mathbf{x}_k = \mathbf{Q}_{k-1} \mathbf{x}_{k-1} \\ 383 \quad = \mathbf{Q}[K\bar{\tau} + 1 : k] \mathbf{Q}[(K-1)\bar{\tau} : K\bar{\tau}] \times \dots \times \mathbf{Q}[0 : \bar{\tau}] \mathbf{x}_0 \\ 384 \quad = \mathbf{Q}[K\bar{\tau} + 1 : k] \mathbf{Q}[0 : K\bar{\tau}] \mathbf{x}_0.$$

385 Multiplying both sides of (2.13) by $\mathbf{1}_n$, by the the double stochasticity of $\mathbf{Q}[K\bar{\tau} + 1 : k]$
386 and $\mathbf{Q}[0 : K\bar{\tau}]$, it follows that,

$$388 \quad (2.14) \quad \bar{\mathbf{x}}_k = \bar{\mathbf{x}}_0 = \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^k \mathbf{x}_0 = \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^k \mathbf{Q}[0 : K\bar{\tau}] \mathbf{x}_0.$$

389 Subtracting (2.14) from (2.13),

$$391 \quad \mathbf{x}_k - \bar{\mathbf{x}}_k = \mathbf{Q}[K\bar{\tau} + 1 : k] \mathbf{Q}[0 : K\bar{\tau}] \mathbf{x}_0 - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^k \mathbf{Q}[0 : K\bar{\tau}] \mathbf{x}_0 \\ 392 \quad = \mathbf{Q}[K\bar{\tau} + 1 : k] (\mathbf{Q}[0 : K\bar{\tau}] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^k \mathbf{Q}[0 : K\bar{\tau}]) (\mathbf{x}_0 - \bar{\mathbf{x}}_0),$$

394 where the second equality holds due to $\mathbf{Q}[K\bar{\tau}+1:k]\mathbf{1} = \mathbf{1}$ and the fact that $\mathbf{A}\bar{\mathbf{x}}_0 = \bar{\mathbf{x}}_0$
 395 for any doubly stochastic matrix \mathbf{A} . Taking norms of the above, it follows that,

$$396 \quad \|\mathbf{x}_k - \bar{\mathbf{x}}_k\| \leq \|\mathbf{Q}[K\bar{\tau}+1:k]\| \|\mathbf{Q}[0:K\bar{\tau}] - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T\mathbf{Q}[0:K\bar{\tau}]\| \|\mathbf{x}_0 - \bar{\mathbf{x}}_0\|$$

$$397 \quad (2.15) \quad \leq \sqrt{n} \|\mathbf{Q}[0:K\bar{\tau}] - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T\mathbf{Q}[0:K\bar{\tau}]\|_1 \|\mathbf{x}_0 - \bar{\mathbf{x}}_0\|_1$$

399 where the first inequality is due to the Cauchy-Schwarz inequality and the second
 400 inequality follows due to the facts that $\|A\| \leq \sqrt{n}\|A\|_1$ for any $A \in \mathbb{R}^{n \times n}$ and
 401 $\|\mathbf{Q}[K\bar{\tau}+1:k]\| \leq 1$. We have by definition of the ℓ_1 -norm for matrices,

$$402 \quad \|\mathbf{Q}[0:K\bar{\tau}] - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T\mathbf{Q}[0:K\bar{\tau}]\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n \left| q_{ij}[0:K\bar{\tau}] - \frac{1}{n} \sum_{i'=1}^n q_{i'j}[0:K\bar{\tau}] \right|$$

$$403 \quad \leq \max_{1 \leq j \leq n} \sum_{i=1}^n \frac{1}{n} \sum_{i'=1}^n \underbrace{\left| q_{ij}[0:K\bar{\tau}] - q_{i'j}[0:K\bar{\tau}] \right|}_{\leq \delta(\bar{\mathbf{Q}}[0:K\bar{\tau}])}$$

$$404 \quad (2.16) \quad \leq n\delta(\bar{\mathbf{Q}}[0:K\bar{\tau}])$$

$$405 \quad (2.17) \quad \leq n(1 - q^{d_{\mathcal{G}}\bar{\tau}})^K,$$

407 where the last inequality follows by (2.12).

408 We can also bound $\|\mathbf{Q}[0:K\bar{\tau}] - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T\|_1$ using [35, Theorem 3.1], as

$$409 \quad (2.18) \quad \|\mathbf{Q}[0:K\bar{\tau}] - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T\|_1 \leq \sqrt{n} \left(1 - \frac{q}{2n^2}\right)^{\frac{1}{\bar{\tau}}}.$$

410 Combining (2.15), (2.17) and (2.18) with $K = \lfloor k/\bar{k}\bar{\tau} \rfloor$ gives the required bound. \square

411 We note that the convergence rate in Theorem 2.1 is primarily dependent of
 412 the diameter of the graph, $d_{\mathcal{G}}$, and the lower bound on the nonzero entries of the
 413 mixing matrix, q . The form of the convergence rate factor γ confirms the empirical
 414 observation that compact graphs with shorter diameters generally fare better with
 415 pruning since multiple information pathways can potentially exist between two nodes.
 416 The dependence on q can be illustrated by considering the Metropolis-Hastings scheme
 417 as described in (2.1). Let $n_{\mathcal{G}_{k|\tau}}$ denote the maximum node degree of graph $\mathcal{G}(\mathcal{V}, \mathcal{E}_{k|\tau})$.
 418 If $n_{\max} := \max_{k \in \mathcal{I}} n_{\mathcal{G}_{k|\tau}}$, denotes the maximum node degree amongst all the pruned
 419 graphs (assumed to be connected) obtained during the algorithm, then $q = \frac{1}{1+n_{\max}}$.
 420 Since n_{\max} can be smaller than the maximum node degree of the underlying reference
 421 graph, q can potentially be larger for AC.

422 Another point to note here is that either term on the right-hand side of the
 423 minimum in (2.8) can be active. For graphs, where $d_{\mathcal{G}}$ is large, the second term is
 424 active. Conversely, in the case of small $d_{\mathcal{G}}$ and large n , the first term is active. As a
 425 concrete example of the latter case, we can consider a dumbbell graph with $d_{\mathcal{G}} = 3$,
 426 $n \gg 1$, and $\bar{\tau} = 1$. The first term in (2.8) will be active provided, $(1 - q^3)^{\lfloor \frac{t}{3} \rfloor} \leq$
 427 $(1 - \frac{q}{2n^2})^t$, $t \geq 1$.

428 **REMARK 2.4.** *We make the following additional remarks about Theorem 2.1.*

- 429 *• It should be noted that the convergence factor γ in (2.8) may be a conservative
 430 estimate in general. Nevertheless, the analysis provided here remains applicable
 431 in a broad range of scenarios, even when tighter estimates for specific cases may
 432 not hold. In particular, the extension of Theorem 2.1 to a directed graph setting,*

433 where only column stochasticity is satisfied (as in the push-sum protocol), can
434 be derived relatively easily. This is due to the fact that the definition of the
435 coefficient of ergodicity and the associated bounds, e.g., (2.7), do not necessitate
436 a double-stochasticity assumption on the matrix Q_k .

- 437 • The assumptions on the matrix entries of Q_k in Theorem 2.1 are typical in ergodic
438 matrix literature [24] and multi-agent coordination and optimization problems [35]. For undirected graphs, the assumptions are satisfied if the weights are
439 generated according to (2.1).
- 440 • To understand (and quantify) the impact of pruning on distributed averaging
441 within a simplified context, let us consider a scenario where there is a total
442 communication budget of B bits, and each node utilizes D bits to transmit the
443 quantized objective variable to its neighboring nodes. The maximum number of
444 iterations that can be executed under these settings is given by $T = \frac{B}{2D|\mathcal{E}|}$. Let
445 $\sigma(Q)$ denote the spectral gap of the mixing matrix Q , assumed to be generated
446 in accordance to (2.1). Under Assumption 2.1, for x_k generated via (2.2) with
447 $\mathbf{Q}_k = Q \otimes I_d, \forall k$,

449 (2.19)
$$\|\mathbf{x}_T - \bar{\mathbf{x}}_T\| \leq (1 - \sigma(Q))^T \|\mathbf{x}_0 - \bar{\mathbf{x}}_0\|.$$

450 If we consider the same scenario with a fraction $\kappa < 1$ of the edges pruned
451 (where the pruned mixing matrix is denoted by Q^{prune}) and assume the pruned
452 graph satisfies Assumption 2.1, we have²,

453 (2.20)
$$\|\mathbf{x}_{T^{\text{prune}}} - \bar{\mathbf{x}}_{T^{\text{prune}}}\| \leq (1 - \sigma(Q^{\text{prune}}))^{T^{\text{prune}}} \|\mathbf{x}_0 - \bar{\mathbf{x}}_0\|.$$

454 Since $T^{\text{prune}} = \frac{B}{2(1-\kappa)D|\mathcal{E}|} = \frac{T}{1-\kappa} > T$, the upper bound for the consensus error
455 with the pruned network, where $\sigma(Q^{\text{prune}}) \approx \sigma(Q)$, is potentially tighter since
456 $(1 - \sigma(Q^{\text{prune}}))^{T^{\text{prune}}} \lesssim (1 - \sigma(Q))^T$. In Section 4.1 (Figure 1(c)), we empirically
457 observe that $\sigma(Q^{\text{prune}})$ for small to medium values of κ does not significantly
458 deviate from $\sigma(Q)$, suggesting that there are instances for which the inequality is
459 likely to hold.

460 **3. Adaptive Consensus based Decentralized Optimization.** In this section,
461 we describe the proposed Adaptive Consensus based Gradient Tracking algorithm
462 (Algorithm 3.1, AC-GT) for decentralized optimization. The problem under
463 consideration can be expressed as,

464 (3.1)
$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^{nd}} \quad & f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(x_i) \\ \text{s.t.} \quad & \mathbf{Q}\mathbf{x} = \mathbf{x}, \end{aligned}$$

465 where $f : \mathbb{R}^{nd} \rightarrow \mathbb{R}$ and $\mathbf{Q} := Q \otimes I_d \in \mathbb{R}^{nd \times nd}$. Under Assumption 2.1, the constraint
466 is equivalent to the condition that $x_i = x_j$, for all $i, j \in [n]$, and thus problems (3.1)
467 and (1.1) are equivalent. We make the following assumption with regards to the
468 component functions (f_i).

469 ASSUMPTION 3.1 (Regularity and convexity of f_i). Each f_i is L -smooth and
470 μ -strongly convex.

²To keep the presentation clear, we assume $T, T^{\text{prune}} \in \mathbb{N}$.

471 The general idea of AC-GT is to leverage the adaptive consensus protocol of the
472 previous section and combine it with a gradient tracking algorithm [34] in a manner
473 that preserves the strong convergence guarantees of the latter while harnessing the
474 communication savings of the former. The pseudo-code for the algorithm is provided
475 in Algorithm 3.1.

Algorithm 3.1 ADAPTIVE CONSENSUS BASED GRADIENT TRACKING (AC-GT)

Inputs: Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$; Cycle Length $\tau \in \mathbb{N}$; Softmax parameter $\beta \in [0, \infty]$; Thresholding factors $(\bar{\kappa}_i, \kappa_i) \in [0, 1]^2$ for all $i \in [n]$; Step size $\alpha > 0$; Initial iterates $x_{i,0} \in \mathbb{R}^d$, $y_{i,0} = \nabla f_i(x_{i,0})$ for all $i \in [n]$; Total number of iterations $T \in \mathbb{N}$.

```

1: for  $k = 0, \dots, T$  do
2:   for all  $i \in [n]$  in parallel do
3:     if  $k \in \mathcal{I}$ , then
4:       Generate  $\mathcal{G}(\mathcal{V}, \bar{\mathcal{E}}_{k|\tau}) \sim \text{PRUNING PROTOCOL}(\mathcal{G}(\mathcal{V}, \mathcal{E}), x_{i,k}, (\bar{\kappa}_i, \kappa_i), \beta)$ .
5:       Get new weights  $\bar{q}_{ij}[k|\tau] \sim \text{GENERATE WEIGHTS } (\mathcal{G}(\mathcal{V}, \bar{\mathcal{E}}_{k|\tau}))$ .
6:       Generate  $\mathcal{G}(\mathcal{V}, \hat{\mathcal{E}}_{k|\tau}) \sim \text{PRUNING PROTOCOL}(\mathcal{G}(\mathcal{V}, \mathcal{E}), y_{i,k}, (\bar{\kappa}_i, \kappa_i), \beta)$ .
7:       Get new weights  $\hat{q}_{ij}[k|\tau] \sim \text{GENERATE WEIGHTS } (\mathcal{G}(\mathcal{V}, \hat{\mathcal{E}}_{k|\tau}))$ .
8:     end if
9:     Update estimate at node  $i$  according to:  $x_{i,k+1} = \sum_{j=1}^n \bar{q}_{ij}[k|\tau] (x_{j,k} - \alpha y_{j,k})$ .
10:    Update gradient estimate at node  $i$  according to:  $y_{i,k+1} = \sum_{j=1}^n \hat{q}_{ij}[k|\tau] y_{j,k} +$ 
         $\nabla f_i(x_{i,k+1}) - \nabla f_i(x_{i,k})$ .
11:  end for
12: end for
Output:  $x_{i,T}$  for all  $i \in [n]$ .
```

476 To provide intuition for the algorithm, we review the main steps of the gradient
477 tracking algorithm (GTA), as it serves as a foundational component of AC-GT. The
478 main iterations of the gradient tracking algorithm can be expressed as,

$$479 \quad x_{i,k+1} = \sum_{j=1}^n q_{ij} (x_{j,k} - \alpha y_{j,k}), \quad y_{i,k+1} = \sum_{j=1}^n q_{ij} y_{j,k} + \nabla f_i(x_{i,k+1}) - \nabla f_i(x_{i,k}),$$

481 where $\alpha > 0$ is a constant referred to as the step size.

482 The underlying computational principles of AC-GT are similar to those of GTA.
483 However, the communication structure of AC-GT is based on AC. Similar to AC, AC-GT
484 operates in a cyclical manner. In the $k|\tau$ cycle, if k belongs to the set \mathcal{I} , the pruning
485 protocol is executed twice. The first instance employs the \mathbf{x} estimates to get the
486 pruned graph (Q_k) and the associated mixing matrix, which are subsequently utilized
487 to update the \mathbf{x} estimate,

$$488 \quad (3.2) \quad \mathbf{x}_{k+1} = \mathbf{Q}_k (\mathbf{x}_k - \alpha \mathbf{y}_k), \text{ where } \mathbf{Q}_k = \mathbf{Q}_{k|\tau}, \forall k \in [(k|\tau)\tau, (k|\tau+1)\tau).$$

490 The second instance of the protocol obtains a different pruned graph (\hat{Q}_k) using the
491 \mathbf{y} estimates. The mixing matrix corresponding to this graph is then used to update
492 the \mathbf{y} estimate as follows,

$$493 \quad (3.3) \quad \mathbf{y}_{k+1} = \hat{\mathbf{Q}}_k \mathbf{y}_k + \nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{x}_k), \text{ where } \hat{\mathbf{Q}}_k = \hat{\mathbf{Q}}_{k|\tau}, \forall k \in [(k|\tau)\tau, (k|\tau+1)\tau).$$

495 The pruning protocol is executed twice because the dissimilarity between the \mathbf{y} es-
496 timates is expected to be different from the dissimilarity between the \mathbf{x} estimates.
497 AC-GT employs a constant step size $\alpha > 0$ which depends on both the properties of
498 the function and the structure of the pruned network as shown in the next subsection.

499 REMARK 3.1. We make a couple of remarks about **AC-GT** (Algorithm 3.1).

500 • For $\tau = 1$ and $\mathbf{Q}_k = Q \otimes I_d$ for all $k \in \mathbb{N}$, where Q is the mixing matrix cor-
501 responding to the reference graph, **AC-GT** reduces to a standard gradient tracking
502 algorithm (**DIGing**) [34].

503 • The extension of **AC-GT** to a directed graph setting is feasible by leveraging the
504 push-pull gradient algorithm (**Push-DIGing**) [39]. Similar to **AC**, the principles
505 and theory of **AC-GT** for the directed graph setting can be derived from the current
506 framework, with appropriate adjustments.

507 **3.1. Convergence Analysis.** We provide theoretical convergence guarantees

508 for **AC-GT**. For simplicity, we assume that $\mathbf{Q}_k = \hat{\mathbf{Q}}_k$ for all $k \geq 0$ in (3.2) and (3.3)
509 and note that one can derive the same results verbatim for the case where $\mathbf{Q}_k \neq \hat{\mathbf{Q}}_k$,
510 with additional notation required. We build up to our main result through a series
511 of technical lemmas which we state next. We begin by proving a descent relation for
512 the consensus error Ψ_k , defined as,

$$513 \quad (3.4) \quad \Psi_k := \begin{bmatrix} \mathbf{x}_k - \bar{\mathbf{x}}_k \\ \alpha(\mathbf{y}_k - \bar{\mathbf{y}}_k) \end{bmatrix} \in \mathbb{R}^{2nd}.$$

514

515 LEMMA 3.1. Suppose that the matrices \mathbf{Q}_k , for all k , are doubly stochastic and
516 $\hat{\mathbf{Q}}_k = \mathbf{Q}_k$. For Ψ_k given in (3.4) and $\hat{\tau} \in \mathbb{N}$,

$$517 \quad (3.5) \quad \|\Psi_k\|^2 \leq \rho' \|\Psi_{k-\hat{\tau}}\|^2 + b \sum_{j=k-\hat{\tau}}^{k-1} \|\Psi_j\|^2 + c \sum_{j=k-\hat{\tau}}^{k-1} (f(\bar{x}_j) - f(x^*)), \quad \text{if } k \geq \hat{\tau},$$

$$518 \quad (3.6) \quad \|\Psi_k\|^2 \leq 5(1 + \hat{\tau}^2) \|\Psi_0\|^2 + b \sum_{j=0}^{k-1} \|\Psi_j\|^2 + c \sum_{j=0}^{k-1} (f(\bar{x}_j) - f(x^*)), \quad \text{if } 0 < k < \hat{\tau},$$

520 where $\rho' := 2(1 + \hat{\tau}^2) \max_{\hat{\tau} \leq j \leq t} \|\mathbf{Q}[j - \hat{\tau} : j] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T\|^2$, $b := 180\alpha^2 L^2(1 + \hat{\tau}^2)\hat{\tau}$, and
521 $c := 320n\alpha^4 L^3(1 + \hat{\tau}^2)\hat{\tau}$.

522 *Proof.* We start by considering the expression $\mathbf{x}_k - \bar{\mathbf{x}}_k$. By (3.2) and the double
523 stochasticity of \mathbf{Q}_k ,

$$524 \quad (3.7) \quad \mathbf{x}_k - \bar{\mathbf{x}}_k = \left(\mathbf{Q}_{k-1} - \frac{1_n \mathbf{1}_n^T}{n} \right) (\mathbf{x}_{k-1} - \bar{\mathbf{x}}_{k-1} - \alpha(\mathbf{y}_{k-1} - \bar{\mathbf{y}}_{k-1})).$$

526 Using (3.3), a similar expression for $\mathbf{y}_k - \bar{\mathbf{y}}_k$ is given as,

$$527 \quad (3.8) \quad \mathbf{y}_k - \bar{\mathbf{y}}_k = \left(\mathbf{Q}_{k-1} - \frac{1_n \mathbf{1}_n^T}{n} \right) (\mathbf{y}_{k-1} - \bar{\mathbf{y}}_{k-1}) - \left(\mathbf{I}_n - \frac{1_n \mathbf{1}_n^T}{n} \right) (\nabla f(\mathbf{x}_k) - \nabla f(\mathbf{x}_{k-1})),$$

528 where $\mathbf{I}_n := I_n \otimes I_d \in \mathbb{R}^{nd \times nd}$. The expressions in (3.7) and (3.8) can be compactly
529 represented in matrix form as follows,

$$530 \quad \Psi_k = \mathbf{J}_{k-1} \Psi_{k-1} + \alpha \mathbf{E}_{k-1}$$

$$531 \quad (3.9) \quad = \mathbf{J}[k - \hat{\tau} : k] \Psi_{k-\hat{\tau}} + \alpha \sum_{j=1}^{\hat{\tau}} \mathbf{J}[k - j + 1 : k] \mathbf{E}_{k-j},$$

533 where

(3.10)

$$534 \quad \mathbf{J}_k := \begin{bmatrix} \mathbf{Q}_k - \frac{\mathbf{1}_n \mathbf{1}_n^T}{n} & -\left(\mathbf{Q}_k - \frac{\mathbf{1}_n \mathbf{1}_n^T}{n}\right) \\ 0 & \mathbf{Q}_k - \frac{\mathbf{1}_n \mathbf{1}_n^T}{n} \end{bmatrix}, \mathbf{E}_{k-1} := \begin{bmatrix} 0 \\ \left(\mathbf{I}_n - \frac{\mathbf{1}_n \mathbf{1}_n^T}{n}\right)(\nabla \mathbf{f}(\mathbf{x}_{k-1}) - \nabla \mathbf{f}(\mathbf{x}_k)) \end{bmatrix}$$

535 and $\mathbf{J}[k-j:k] := \mathbf{J}_{k-1} \cdots \mathbf{J}_{k-j}$, for any $j \leq \hat{\tau} \leq k$. The matrix $\mathbf{J}[k-j:k]$ can be
536 expressed as,

$$537 \quad (3.11) \quad \mathbf{J}[k-j:k] = \begin{bmatrix} \mathbf{Q}[k-j:k] - \frac{\mathbf{1}_n \mathbf{1}_n^T}{n} & -j \left(\mathbf{Q}[k-j:k] - \frac{\mathbf{1}_n \mathbf{1}_n^T}{n}\right) \\ 0 & \mathbf{Q}[k-j:k] - \frac{\mathbf{1}_n \mathbf{1}_n^T}{n} \end{bmatrix}.$$

539 The above equation can be derived by a straightforward induction argument using
540 the facts that

$$541 \quad \begin{bmatrix} A_1 & -A_1 \\ 0 & A_1 \end{bmatrix} \times \begin{bmatrix} A_2 & -A_2 \\ 0 & A_2 \end{bmatrix} = \begin{bmatrix} A_1 A_2 & -2A_1 A_2 \\ 0 & A_1 A_2 \end{bmatrix},$$

542 and, for any two doubly stochastic matrices \mathbf{Q} and \mathbf{Q}' ,

$$543 \quad \left(\mathbf{Q} - \frac{\mathbf{1}_n \mathbf{1}_n^T}{n}\right) \left(\mathbf{Q}' - \frac{\mathbf{1}_n \mathbf{1}_n^T}{n}\right) = \left(\mathbf{Q}\mathbf{Q}' - \frac{\mathbf{1}_n \mathbf{1}_n^T}{n}\right).$$

544 By (3.11), it follows that

$$545 \quad (3.12) \quad \|\mathbf{J}[k-j:k]\|^2 \leq (1+j^2) \|\mathbf{Q}[k-j:k] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T\|^2,$$

547 and, since $\|\mathbf{Q}[k-j:k-1] - n^{-1} \mathbf{1}_n \mathbf{1}_n^T\|^2 \leq 4$,

$$548 \quad (3.13) \quad \|\mathbf{J}[k-j:k]\|^2 \leq 4(1+j^2) \leq 4(1+\hat{\tau}^2), \quad \forall j < \hat{\tau}.$$

549 Taking the norm square of (3.9),

$$550 \quad \|\Psi_k\|^2 = \left\| \mathbf{J}[k-\hat{\tau}:k] \Psi_{k-\hat{\tau}} + \alpha \sum_{j=1}^{\hat{\tau}} \mathbf{J}[k-j+1:k] \mathbf{E}_{k-j} \right\|^2$$

$$551 \quad \leq \left(1 + \frac{1}{4}\right) \|\mathbf{J}[k-\hat{\tau}:k] \Psi_{k-\hat{\tau}}\|^2 + 5\alpha^2 \left\| \sum_{j=1}^{\hat{\tau}} \mathbf{J}[k-j+1:k] \mathbf{E}_{k-j} \right\|^2$$

$$(3.14) \quad \leq \frac{5}{4}(1+\hat{\tau}^2) \|\mathbf{Q}[k-\hat{\tau}:k] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T\|^2 \|\Psi_{k-\hat{\tau}}\|^2 + 20\alpha^2(1+\hat{\tau}^2) \hat{\tau} \sum_{j=1}^{\hat{\tau}} \|\mathbf{E}_{k-j}\|^2,$$

552 where the first inequality is due to the fact that $\|a+b\|^2 \leq (1+\xi)\|a\|^2 + (1+\xi^{-1})\|b\|^2$
553 for any constant $\xi > 0$, and the second inequality follows by (3.12) with $j = \hat{\tau}$, (3.13),
554 and the fact that $\left\| \sum_{j=1}^{\hat{\tau}} a_j \right\|^2 \leq \hat{\tau} \sum_{j=1}^{\hat{\tau}} \|a_j\|^2$. We next bound $\|\mathbf{E}_{p-1}\|$ for any $p \geq 1$.
555 By the definition of \mathbf{E}_k (3.10) with $k = p$,

$$558 \quad (3.15) \quad \|\mathbf{E}_{p-1}\|^2 \leq \left\| \left(\mathbf{I}_n - \frac{\mathbf{1}_n \mathbf{1}_n^T}{n}\right) (\nabla \mathbf{f}(\mathbf{x}_p) - \nabla \mathbf{f}(\mathbf{x}_{p-1})) \right\|^2 \leq \|\nabla \mathbf{f}(\mathbf{x}_p) - \nabla \mathbf{f}(\mathbf{x}_{p-1})\|^2.$$

559 The term on the right-hand-side of (3.15) can be bounded as follows

$$\begin{aligned}
560 \quad & \|\nabla \mathbf{f}(\mathbf{x}_p) - \nabla \mathbf{f}(\mathbf{x}_{p-1})\|^2 \\
561 \quad & \leq L^2 \|\mathbf{x}_p - \mathbf{x}_{p-1}\|^2 \\
562 \quad & = L^2 \|(\mathbf{Q}_{p-1} - \mathbf{I}_n)(\mathbf{x}_{p-1} - \bar{\mathbf{x}}_{p-1}) - \alpha \mathbf{Q}_{p-1} \mathbf{y}_{p-1}\|^2 \\
563 \quad & \leq 2L^2 \|(\mathbf{Q}_{p-1} - \mathbf{I}_n)(\mathbf{x}_{p-1} - \bar{\mathbf{x}}_{p-1})\|^2 + 2\alpha^2 L^2 \|\mathbf{y}_{p-1}\|^2 \\
564 \quad (3.16) \quad & \leq 8L^2 \|\mathbf{x}_{p-1} - \bar{\mathbf{x}}_{p-1}\|^2 + 4\alpha^2 L^2 \|\mathbf{y}_{p-1} - \bar{\mathbf{y}}_{p-1}\|^2 + 4\alpha^2 L^2 \|\bar{\mathbf{y}}_{p-1}\|^2,
\end{aligned}$$

566 where we have used Assumption 3.1 to get the first inequality, (3.2) with $k = p - 1$
567 to substitute for \mathbf{x}_p and the fact that $(\mathbf{Q}_{p-1} - \mathbf{I}_n)\bar{\mathbf{x}}_{p-1} = 0$ to get the equality, and
568 $\|\mathbf{Q}_{p-1} - \mathbf{I}_n\| \leq 2$ to obtain the first term in the last inequality. By Assumption 3.1,

$$\begin{aligned}
569 \quad & \|\bar{\mathbf{y}}_{p-1}\|^2 = n \|\bar{\mathbf{y}}_{p-1}\|^2 \\
570 \quad & = n \left\| \frac{1}{n} \sum_{i=1}^n \nabla f_i(x_{i,p-1}) \right\|^2 \\
571 \quad & \leq 2n \left\| \frac{1}{n} \sum_{i=1}^n \nabla f_i(x_{i,p-1}) - \frac{1}{n} \sum_{i=1}^n \nabla f_i(\bar{x}_{p-1}) \right\|^2 \\
572 \quad & \quad + 2n \left\| \frac{1}{n} \sum_{i=1}^n \nabla f_i(\bar{x}_{p-1}) - \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^*) \right\|^2 \\
573 \quad (3.17) \quad & \leq 2L^2 \|\mathbf{x}_{p-1} - \bar{\mathbf{x}}_{p-1}\|^2 + 4L \sum_{i=1}^n (f_i(\bar{x}_{p-1}) - f_i(x^*)) \\
574
\end{aligned}$$

575 Combining (3.15), (3.16) and (3.17), and using the fact that $\alpha < 1/3L$, it follows that
576 for any $p \geq 1$,

$$\begin{aligned}
577 \quad & \|\mathbf{E}_{p-1}\|^2 \leq \|\nabla \mathbf{f}(\mathbf{x}_p) - \nabla \mathbf{f}(\mathbf{x}_{p-1})\|^2 \\
578 \quad (3.18) \quad & \leq 9L^2 (\|\mathbf{x}_{p-1} - \bar{\mathbf{x}}_{p-1}\|^2 + \alpha^2 \|\mathbf{y}_{p-1} - \bar{\mathbf{y}}_{p-1}\|^2) \\
579 \quad & \quad + 16\alpha^2 L^3 \sum_{i=1}^n (f_i(\bar{x}_{p-1}) - f_i(x^*)).
\end{aligned}$$

581 Using (3.18) with $p = k - j + 1$ to bound $\|E_{k-j}\|$, $1 \leq j \leq \hat{\tau}$ in (3.14), we get,

$$\begin{aligned}
582 \quad & \|\Psi_k\|^2 \leq 2(1 + \hat{\tau}^2) \|\mathbf{Q}[k - \hat{\tau} : k] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T\|^2 \|\Psi_{k-\hat{\tau}}\|^2 \\
& \quad + 180\alpha^2 L^2 (1 + \hat{\tau}^2) \hat{\tau} \sum_{j=1}^{\hat{\tau}} \|\Psi_{k-j}\|^2 \\
& \quad + 320n\alpha^4 L^3 (1 + \hat{\tau}^2) \hat{\tau} \sum_{j=1}^{\hat{\tau}} (f(\bar{x}_{k-j}) - f(x^*)),
\end{aligned}$$

583 which proves (3.5). To prove (3.6), we note that for $k < \hat{\tau}$, we can write (3.9) as,

$$\begin{aligned}
584 \quad (3.19) \quad & \Psi_k = \mathbf{J}_{k-1} \Psi_{k-1} + \alpha \mathbf{E}_{k-1} = \mathbf{J}[0 : k] \Psi_0 + \alpha \sum_{j=0}^{k-1} \mathbf{J}[k-j : k] \mathbf{E}_j.
\end{aligned}$$

586 Taking the norm square of (3.19),

$$587 \quad \|\Psi_k\|^2 \leq \left(1 + \frac{1}{4}\right) \|\mathbf{J}[0:k]\Psi_0\|^2 + 5\alpha^2 \left\| \sum_{j=0}^{k-1} \mathbf{J}[k-j:k]\mathbf{E}_j \right\|^2 \\ 588 \quad \leq 5(1 + \hat{\tau}^2) \|\Psi_0\|^2 + 20\alpha^2(1 + \hat{\tau}^2) \hat{\tau} \sum_{j=0}^{k-1} \|\mathbf{E}_j\|^2, \\ 589$$

590 where we have used $\|a + b\|^2 \leq (1 + \xi)\|a\|^2 + (1 + \xi^{-1})\|b\|^2$ for any constant $\xi > 0$ in
591 the first inequality and (3.13) to obtain the second inequality. The final result (3.6)
592 can be derived using (3.18) with $p = j + 1$ for $1 \leq j \leq k - 1$ in (3.20). \square

593 Next, we state an auxiliary lemma whose proof can be found in [48, Lemma 4].

594 **LEMMA 3.2.** *Suppose the non-negative scalar sequences $\{a_t\}_{t \geq 0}$ and $\{e_t\}_{t \geq 0}$ sat-
595 isfy the following recursive relation for a fixed $\hat{\tau} \in \mathbb{N}$*

$$596 \quad (3.21) \quad a_t \leq \rho' a_{t-\hat{\tau}} + \frac{b}{\hat{\tau}} \sum_{i=t-\hat{\tau}}^{t-1} a_i + c \sum_{i=t-\hat{\tau}}^{t-1} e_i + r, \quad \text{if } t \geq \hat{\tau},$$

$$597 \quad (3.22) \quad a_t \leq \rho'' a_0 + \frac{b}{\hat{\tau}} \sum_{i=0}^{t-1} a_i + c \sum_{i=0}^{t-1} e_i + r, \quad \text{if } t < \hat{\tau}, \\ 598$$

599 where b, c, r, ρ'' are non-negative constants, $b \leq \rho'/4$ and $\rho' \in (0, 1/4)$. Then, for
600 any $t \in \mathbb{N}$,

$$601 \quad (3.23) \quad a_t \leq 20\rho'' \left(1 - \frac{3\rho}{4\hat{\tau}}\right)^t a_0 + 60c \sum_{i=0}^{t-1} \left(1 - \frac{3\rho}{4\hat{\tau}}\right)^{t-i} e_i + \frac{26r}{\rho}, \\ 602$$

603 where $\rho := 1 - 2\rho'$.

604 We are ready to state and prove the main theorem.

605 **THEOREM 3.1.** *Suppose that: (i) Assumptions 2.1 and 3.1 hold, and, (ii) \mathbf{Q}_k are
606 doubly stochastic matrices and $\hat{\mathbf{Q}}_k = \mathbf{Q}_k$ for $k \geq 0$. Let $x_{i,k}$ denote the iterates
607 generated via the recursions (3.2)-(3.3) and $\bar{x}_k := n^{-1} \sum_{i=1}^n x_{i,k}$. Then, for all $k \geq 0$,*

$$608 \quad (3.24) \quad \|\bar{x}_k - x^*\|^2 \\ \leq \left(1 - \frac{\alpha\mu}{4}\right)^k \left(\|\bar{x}_0 - x^*\|^2 + \frac{1000L(1+\hat{\tau}^2)}{\mu n(1-\frac{\alpha\mu}{4})} (\|\mathbf{x}_0 - \bar{\mathbf{x}}_0\|^2 + \alpha^2 \|\mathbf{y}_0 - \bar{\mathbf{y}}_0\|^2) \right)$$

609 where $\hat{\tau} \in \mathbb{N}$ with $\rho' := 2(1 + \hat{\tau}^2) \max_{\hat{\tau} \leq t \leq k} \|\mathbf{Q}[t - \hat{\tau} : t] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T\|^2 < 1/4$ and

$$610 \quad (3.25) \quad \alpha < \min \left\{ 1, \frac{\sqrt{\rho'}}{58L\hat{\tau}^2} \right\}.$$

611 *Proof.* By (3.2), the optimization error of the average iterates for any $t \in \mathbb{N}$ is

$$612 \quad \|\bar{x}_{t+1} - x^*\|^2 = \|\bar{x}_t - \alpha \bar{y}_t - x^*\|^2 \\ 613 \quad = \left\| \bar{x}_t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(x_{i,t}) - x^* \right\|^2 \\ 614 \quad = \|\bar{x}_t - x^*\|^2 - \frac{2\alpha}{n} \left\langle \sum_{i=1}^n \nabla f_i(x_{i,t}), \bar{x}_t - x^* \right\rangle + \alpha^2 \left\| \frac{1}{n} \sum_{i=1}^n \nabla f_i(x_{i,t}) \right\|^2, \\ 615$$

616 where $\bar{y}_t = n^{-1} \sum_{i=1}^n \nabla f_i(x_{i,t})$. (This can be proven by an induction argument using
617 (3.3).) The second term in (3.26) can be bounded as,

$$\begin{aligned}
618 \quad & \left\langle \sum_{i=1}^n \nabla f_i(x_{i,t}), \bar{x}_t - x^* \right\rangle \\
619 \quad &= \left\langle \sum_{i=1}^n \nabla f_i(x_{i,t}), \bar{x}_t - x_{i,t} \right\rangle + \left\langle \sum_{i=1}^n \nabla f_i(x_{i,t}), x_{i,t} - x^* \right\rangle \\
620 \quad &\geq \sum_{i=1}^n [f_i(\bar{x}_t) - f_i(x_{i,t}) - \frac{L}{2} \|\bar{x}_t - x_{i,t}\|^2 + f_i(x_{i,t}) - f_i(x^*) + \frac{\mu}{2} \|x_{i,t} - x^*\|^2] \\
621 \quad (3.27) \quad &\geq \sum_{i=1}^n \left[f_i(\bar{x}_t) - f_i(x^*) - \frac{L+\mu}{2} \|\bar{x}_t - x_{i,t}\|^2 + \frac{\mu}{4} \|\bar{x}_t - x^*\|^2 \right], \\
622
\end{aligned}$$

623 where Assumption 3.1 is used in the first inequality and the bound $\|\bar{x}_t - x^*\|^2 \leq$
624 $2\|\bar{x}_t - x_{i,t}\|^2 + 2\|x_{i,t} - x^*\|^2$ is used to derive the last inequality. The last term in
625 (3.26) can be bounded as,

$$\begin{aligned}
626 \quad & \left\| \frac{1}{n} \sum_{i=1}^n \nabla f_i(x_{i,t}) \right\|^2 \\
627 \quad &= \left\| \frac{1}{n} \sum_{i=1}^n \nabla f_i(x_{i,t}) - \frac{1}{n} \sum_{i=1}^n \nabla f_i(\bar{x}_t) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\bar{x}_t) - \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^*) \right\|^2 \\
628 \quad (3.28) \quad &\leq \frac{2L^2}{n} \sum_{i=1}^n \|x_{i,t} - \bar{x}_t\|^2 + \frac{4L}{n} \sum_{i=1}^n (f_i(\bar{x}_t) - f_i(x^*)), \\
629
\end{aligned}$$

630 where in the second summation we have used the fact that $\|\nabla f_i(\bar{x}_t) - \nabla f_i(x^*)\|^2 \leq$
631 $2L(f_i(\bar{x}_t) - f_i(x^*))$ by Assumption 3.1 [36, Theorem 2.1.5]. Using (3.27) and (3.28)
632 in (3.26) along with $\alpha < 1/4L$, it follows that,

$$\begin{aligned}
633 \quad & \|\bar{x}_{t+1} - x^*\|^2 \leq \left(1 - \frac{\alpha\mu}{2}\right) \|\bar{x}_t - x^*\|^2 - \frac{\alpha}{n} \left(\sum_{i=1}^n f_i(\bar{x}_t) - f_i(x^*) \right) \\
634 \quad &+ \frac{(3L/2 + \mu)\alpha}{n} \sum_{i=1}^n \|\bar{x}_t - x_{i,t}\|^2 \\
635 \quad (3.29) \quad &\leq \left(1 - \frac{\alpha\mu}{2}\right) \|\bar{x}_t - x^*\|^2 - \frac{\alpha}{n} \left(\sum_{i=1}^n f_i(\bar{x}_t) - f_i(x^*) \right) + \frac{5\alpha L}{2n} \|\Psi_t\|^2, \\
636
\end{aligned}$$

637 where the last inequality follows due to $\|\bar{x}_t - x_t\|^2 \leq \|\Psi_t\|^2$. Let $r_t := \|\bar{x}_t - x^*\|^2$.
638 Multiplying both sides of (3.29) by $w_{t+1} = (1 - \alpha\mu/4)^{-(t+1)}$, it follows that,

$$639 \quad (3.30) \quad w_{t+1} r_{t+1} \leq w_t r_t - w_{t+1} \alpha (f(\bar{x}_t) - f(x^*)) + w_{t+1} \frac{5\alpha L}{2n} \|\Psi_t\|^2,$$

641 where $w_{t+1}(1 - \alpha\mu/2) \leq w_t$.

642 Next, we express (3.5) (and (3.6)) in the form of (3.21) (and (3.22)) with $a_t =$
643 $\|\Psi_t\|^2$, $b = 180\alpha^2 L^2(1 + \hat{\tau}^2)\hat{\tau}^2$, $c = 320n\alpha^4 L^3(1 + \hat{\tau}^2)\hat{\tau}$, $e_t = f(\bar{x}_t) - f(x^*)$ and $r = 0$.
644 By Lemma 3.2, it follows that,
(3.31)

$$645 \quad \|\Psi_t\|^2 \leq 100(1 + \hat{\tau}^2) \left(1 - \frac{3\rho}{4\hat{\tau}}\right)^t \|\Psi_0\|^2 + 19200n\alpha^4 L^3(1 + \hat{\tau}^2)\hat{\tau}^2 \sum_{j=0}^{t-1} \left(1 - \frac{3\rho}{4\hat{\tau}}\right)^{t-j} e_j.$$

646 Note that the condition on the step size (3.25) ensures that $b < \rho'/4$. Multiplying
647 both sides of (3.31) by $w_{t+1} := (1 - \alpha\mu/4)^{-(t+1)}$ and summing from $t = 0$ to $k - 1$

$$\begin{aligned}
& \sum_{t=0}^{k-1} \left(1 - \frac{\alpha\mu}{4}\right)^{-(t+1)} \|\Psi_t\|^2 \\
648 \quad (3.32) \quad & \leq 100(1 + \hat{\tau}^2) \|\Psi_0\|^2 \sum_{t=0}^{k-1} \left(1 - \frac{\alpha\mu}{4}\right)^{-(t+1)} \left(1 - \frac{3\rho}{4\hat{\tau}}\right)^t \\
& + 19200n\alpha^4 L^3 (1 + \hat{\tau}^2) \hat{\tau}^2 \sum_{t=0}^{k-1} \left(1 - \frac{\alpha\mu}{4}\right)^{-(k+1)} \sum_{j=0}^{t-1} \left(1 - \frac{3\rho}{4\hat{\tau}}\right)^{t-j} e_j.
\end{aligned}$$

649 By (3.25), we have $\alpha \leq \frac{\sqrt{\rho'}}{L\hat{\tau}^2} \leq \frac{1}{2L\hat{\tau}^2} \leq \frac{\rho}{L\hat{\tau}} \leq \frac{3\rho}{2\mu\hat{\tau}}$, where the second inequality is due
650 to $\sqrt{\rho'} \leq 1/2$, the third inequality follows by $\hat{\tau} \geq 1$ and $\rho = 1 - 2\rho' \geq 1/2$ for $\rho' < 1/4$,
651 and the last inequality is due to the fact that $\mu < L$. Thus, it follows that

$$652 \quad (3.33) \quad \frac{\alpha\mu}{2} \leq \frac{3\rho}{4\hat{\tau}} \implies \frac{\alpha\mu}{2} \left(1 - \frac{\alpha\mu}{8}\right) \leq \frac{3\rho}{4\hat{\tau}} \implies 1 - \frac{3\rho}{4\hat{\tau}} \leq \left(1 - \frac{\alpha\mu}{4}\right)^2.$$

653 We use (3.33) to bound the two summations on the right-hand-side of (3.32) as follows

$$654 \quad (3.34) \quad \sum_{t=0}^{k-1} \left(1 - \frac{\alpha\mu}{4}\right)^{-(t+1)} \left(1 - \frac{3\rho}{4\hat{\tau}}\right)^t \leq \sum_{t=0}^{k-1} \left(1 - \frac{\alpha\mu}{4}\right)^{t-1} \leq \frac{4w_1}{\alpha\mu},$$

655 and

$$\begin{aligned}
656 \quad & \sum_{t=0}^{k-1} \left(1 - \frac{\alpha\mu}{4}\right)^{-(t+1)} \sum_{j=0}^{t-1} \left(1 - \frac{3\rho}{4\hat{\tau}}\right)^{t-j} e_j \\
657 \quad & = \sum_{t=0}^{k-1} \sum_{j=0}^{t-1} \left(1 - \frac{\alpha\mu}{4}\right)^{-(t+1)+j+1} \left(1 - \frac{3\rho}{4\hat{\tau}}\right)^{t-j} w_{j+1} e_j \\
658 \quad & = \sum_{t=0}^{k-1} \sum_{j=0}^{t-1} \left(\frac{1-3\rho/4\hat{\tau}}{1-\alpha\mu/4}\right)^{t-j} w_{j+1} e_j \\
659 \quad & \leq \sum_{t=0}^{k-1} \sum_{j=0}^{t-1} \left(1 - \frac{\alpha\mu}{4}\right)^{t-j} w_{j+1} e_j \\
660 \quad (3.35) \quad & \leq \sum_{t=0}^{k-1} \left(1 - \frac{\alpha\mu}{4}\right)^t \sum_{t=0}^{k-1} w_{t+1} e_t \leq \frac{4}{\alpha\mu} \sum_{t=0}^{k-1} w_{t+1} e_t,
\end{aligned}$$

662 where the second inequality is due to (3.33) and the relation $\sum_{t=0}^{k-1} \sum_{j=0}^{t-1} a_{t-j} b_j \leq$
663 $\sum_{t=0}^{k-1} a_t \sum_{t=0}^{k-1} b_t$ for any two non-negative scalar sequences $a_t, b_t, t \in \mathbb{N}$. By (3.34),
664 (3.35) and (3.32), it follows that,

$$\begin{aligned}
665 \quad (3.36) \quad & \sum_{t=0}^{k-1} w_{t+1} \|\Psi_t\|^2 \\
& \leq \frac{400w_1(1+\hat{\tau}^2)}{\mu\alpha} \|\Psi_0\|^2 + \frac{76800n\alpha^3 L^3 (1+\hat{\tau}^2) \hat{\tau}}{\mu} \sum_{t=0}^{k-1} w_{t+1} (f(\bar{x}_t) - f(x^*)).
\end{aligned}$$

666 Finally, summing (3.30) from $t = 0$ to $k - 1$, and dividing by w_t , it follows that,

$$667 \quad r_k \leq \frac{1}{w_k} \left(w_0 r_0 + \frac{1000w_1(1+\hat{\tau}^2)L}{n\mu} \|\Psi_0\|^2 \right. \\ 668 \quad \left. + \left(\frac{192000\alpha^4 L^4 (1+\hat{\tau}^2)\hat{\tau}}{\mu} - \alpha \right) \sum_{t=0}^{k-1} w_{t+1} (f(\bar{x}_t) - f(x^*)) \right), \\ 669$$

670 where we have used (3.36) to bound $\sum_t w_{t+1} \|\Psi_t\|^2$. To prove (3.24), we note that
671 $w_k^{-1} = (1-\alpha\mu)^k$ by definition, and the last term in the above inequality is non-positive
672 since $\alpha^3 \leq \frac{1}{2 \times 307200 L^3 \hat{\tau}^3}$. \square

673 Broadly, Theorem 3.1 establishes the decay of the optimization error for a gradi-
674 ent tracking method with time inhomogeneous weight matrices. The convergence rate
675 of the algorithm remains linear even when using time-varying matrices, and the form
676 of the convergence factor remains remarkably consistent. However, it is worth men-
677 tioning that this convergence factor can potentially be smaller due to the possibility of
678 using smaller step sizes, which depend on the value of $\hat{\tau}$. In this context, the constant
679 $\hat{\tau}$ determines the effect of the network on the step size via (3.25). More precisely, $\hat{\tau}$
680 is a constant chosen to ensure that $(1 + \hat{\tau}^2) \|\mathbf{Q}[k - \hat{\tau} : k] - \frac{1}{n} \mathbf{1} \mathbf{1}^T\|^2$ is less than one.
681 This implies that for better connected graphs, i.e., smaller $\|\mathbf{Q}[k - \hat{\tau} : k] - \frac{1}{n} \mathbf{1} \mathbf{1}^T\|^2$, $\hat{\tau}$
682 can be smaller so that α can be larger (cf. (3.25)). For time-inhomogeneous matrices
683 satisfying Assumption 2.2, we can establish precise upper bounds on the value of $\hat{\tau}$
684 using the coefficient of ergodicity (cf. Corollary 3.1). We note that our final conver-
685 gence bound has a better dependency in terms of the condition number by a factor
686 of $\sqrt{\frac{L}{\mu}}$ as compared to [34]. We believe the reason for this improvement is due to the
687 utilization of small-gain theorem in [33] compared to our more standard approach of
688 bounding the spectral norm of the associated matrices (cf. Lemma 3.1).

689 **REMARK 3.2.** *For fixed graphs, one can recover the optimal convergence rate of*
690 *the DIGing algorithm [34], up to logarithmic factors, from Theorem 3.1. For GTA, we*
691 *have $\mathbf{Q}_k = Q \otimes I_d$, for all $k \geq 0$. Then, for $\hat{\tau} < k$, if $\hat{\tau} > \mathcal{O}\left(\frac{1}{\sigma(Q)} \log \frac{1}{\sigma(Q)}\right)$,*

$$692 \quad \rho' = 2(1 + \hat{\tau}^2) \left\| \mathbf{Q}[k - \hat{\tau} : k] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \right\|^2 \leq 2(1 + \hat{\tau}^2) \prod_{j=k-\hat{\tau}}^{k-1} \left\| \mathbf{Q} - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \right\|^2 \\ 693 \quad \leq 4\hat{\tau}^2 (1 - \sigma(Q))^{2\hat{\tau}} < 1/4.$$

695 which implies $\alpha = \tilde{\mathcal{O}}\left(\frac{\sigma^2(Q)}{L}\right)$, where $\tilde{\mathcal{O}}(\cdot)$ hides logarithmic factors. Thus, from Theo-
696 rem 3.1 we have $\|\bar{x}_T - x^*\|^2 \leq \epsilon$, if $T \geq \tilde{\mathcal{O}}\left(\frac{L}{\mu\sigma^2(Q)} \log \frac{1}{\epsilon}\right)$.

697 We have the following corollary to Theorem 3.1.

698 **COROLLARY 3.1.** *Suppose that: (i) Assumptions 2.1, 2.2 and 3.1 hold, (ii) the*
699 *matrices $Q_k := [q_{ij}[k]]_{i \in [n], j \in [n]}$ are doubly stochastic and $\hat{\mathbf{Q}}_k = \mathbf{Q}_k$ for all $k \geq 0$, (iii)*
700 *$q_{ii}[k] > 0$ for all $k \geq 0$ for at least one $i \in [n]$, and, (iv) if $q_{ij}[k] > 0$ for any $(i, j) \in \mathcal{E}$*
701 *and $k \geq 0$, then $q_{ij}[k] > q$ for some strictly positive constant $q > 0$ independent of k*
702 *and (i, j) . Let $\tau_\eta := \eta \bar{\tau} d_{\mathcal{G}}$, where $\bar{\tau}$ is defined in Assumption 2.2 and $\eta \in \mathbb{N}$ satisfies*

$$703 \quad (3.37) \quad \eta \geq \left\lceil \frac{\max\{\ln 16n^3 \bar{\tau}^2 d_{\mathcal{G}}^2, 16 \ln 4/\gamma\}}{\gamma} \right\rceil$$

704 where $\gamma := q^{d_G \bar{\tau}}$. Then, if $\alpha = \mathcal{O}\left(\frac{1}{L\tau_\eta^2}\right)$, (3.24) is satisfied for \bar{x}_k generated via the
 705 recursions (3.2)-(3.3).

706 *Proof.* To prove the corollary, we need to show that there exists a constant $\eta \in \mathbb{N}$
 707 such that for $\tau_\eta = \eta \bar{\tau} d_G$, we have $\rho' := 2(1 + \tau_\eta^2) \|\mathbf{Q}[j - \tau_\eta : j] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T\|_1 < 1/4$ for
 708 any $\tau_\eta \leq j \leq t$ to ensure the results of Theorem 3.1 hold with $\hat{\tau} = \tau_\eta$. It follows that

$$\begin{aligned} 709 \quad \delta(\mathbf{Q}[(j - \tau_\eta : j)]) &\leq \rho(\mathbf{Q}[(j - \tau_\eta : j)]) \\ 710 \quad &\leq \rho(\mathbf{Q}[j - \eta \bar{\tau} d_G : j - (\eta - 1) \bar{\tau} d_G]) \cdots \rho(\mathbf{Q}[(j - \bar{\tau} d_G : j)]) \\ 712 \quad &\leq (1 - \gamma)^\eta, \end{aligned}$$

713 where $\gamma := q^{\bar{\tau} d_G}$, and the first, second and third inequalities are due to (2.7), (2.6)
 714 and (2.11), respectively. Following the same logic as in (2.16), it follows that,

$$715 \quad (3.38) \quad \|\mathbf{Q}[j - \tau_\eta : j] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T\|_1 \leq n \delta(\mathbf{Q}[j - \tau_\eta : j]) \leq n(1 - \gamma)^\eta \leq n \exp(-\gamma \eta).$$

717 Consequently, this implies,

$$\begin{aligned} 718 \quad 2(1 + \tau_\eta^2) \|\mathbf{Q}[j - \tau_\eta : j] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T\|^2 &\leq 2(1 + \tau_\eta^2) n \|\mathbf{Q}[j - \tau_\eta : j] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T\|_1^2 \\ 719 \quad &\leq 2n^3(1 + \eta^2 \bar{\tau}^2 d_G^2) \exp(-2\gamma\eta) \\ 720 \quad (3.39) \quad &\leq \underbrace{4n^3 \bar{\tau}^2 d_G^2 \eta^2}_{:=A} \exp(-2\gamma\eta), \end{aligned}$$

721 where the second inequality is due to (3.38) and the last inequality follows since
 722 $\eta \bar{\tau} d_G \geq 1$. We next prove the following claim for any scalars $\eta, A \geq 1$ and $0 < \gamma < 1$:

$$724 \quad (3.40) \quad \eta^2 \exp(-2\gamma\eta) < \frac{1}{4A} \quad \text{if} \quad \eta > \left\lceil \max \left\{ \frac{\ln 4A, 16 \ln 4/\gamma}{\gamma} \right\} \right\rceil.$$

726 To prove the claim, we note that the assumed inequality implies $\left(1 - \frac{\ln \eta}{\gamma\eta}\right) \eta > \frac{\ln 4A}{2\gamma}$.

727 Let $\tilde{\eta} \in \mathbb{R}$ be such that $0 < \ln \tilde{\eta}/\gamma\tilde{\eta} < 1/4$. Then, for any $\eta > \tilde{\eta}$,

$$728 \quad (3.41) \quad \eta \geq \frac{2 \ln 4A}{3\gamma}.$$

729 To prove the existence of a $\tilde{\eta}$ satisfying $\ln \tilde{\eta}/\tilde{\eta} \leq \gamma/4 := \epsilon$, we consider $\tilde{\eta} = \frac{4 \ln 1/\epsilon}{\epsilon}$, $\epsilon <$
 730 $\frac{1}{4}$. For such a $\tilde{\eta}$, we have, $\ln \tilde{\eta}/\tilde{\eta} = \epsilon \frac{\ln \frac{4}{\epsilon} + \ln \ln \frac{1}{\epsilon}}{4 \ln 1/\epsilon} < \epsilon$. Combining (3.41) with $A =$
 731 $4n^3 \bar{\tau}^2 d_G^2$ and $\eta \geq \tilde{\eta} = 16 \ln(4/\gamma)/\gamma$ gives the lower bound on η in (3.40). Finally, by (3.40), (3.39) can be bounded as, $2(1 + \tau_\eta^2) \|\mathbf{Q}[j - \tau_\eta : j] - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T\|^2 \leq$
 733 $A\eta^2 \exp(-2\gamma\eta) < \frac{1}{4}$, which completes the proof. \square

734 The exact convergence rate of **AC-GT** can be derived from Corollary 3.1. By (3.24),
 735 the number of iterations required to reach ϵ -accuracy, denoted by T , is of the order of
 736 $\mathcal{O}\left(\frac{L\tau_\eta^2}{\mu} \log \frac{1}{\epsilon}\right)$ since $\alpha = \mathcal{O}\left(\frac{1}{L\tau_\eta^2}\right)$. Using (3.37) to bound η in $\tau_\eta = \eta \bar{\tau} d_G$, it follows

$$737 \quad 738 \quad T = \mathcal{O}\left(\frac{L\eta^2 \bar{\tau}^2 d_G^2}{\mu} \log \frac{1}{\epsilon}\right) = \tilde{\mathcal{O}}\left(\left(\frac{\bar{\tau}^2 d_G^2}{\gamma^2}\right) \frac{L}{\mu} \log \frac{1}{\epsilon}\right).$$

739 where $\tilde{\mathcal{O}}(\cdot)$ hides logarithmic factors. Compared to the iteration complexity of **GTA**
 740 (see Remark 3.2) under the connected graph assumption, we note that the number
 741 of iterations can potentially increase by a factor of $\tilde{\mathcal{O}}\left(\frac{\bar{\tau}^2 d_G^2}{\gamma^2}\right)$. This is expected given
 742 the weaker assumptions made, i.e., the underlying graph is static and connected.
 743 Despite the increased iteration complexity, one can potentially have savings in overall
 744 communication volume for **AC-GT** (cf. Section 4.2) analogous to those for **AC** (cf.
 745 Remark 2.4).

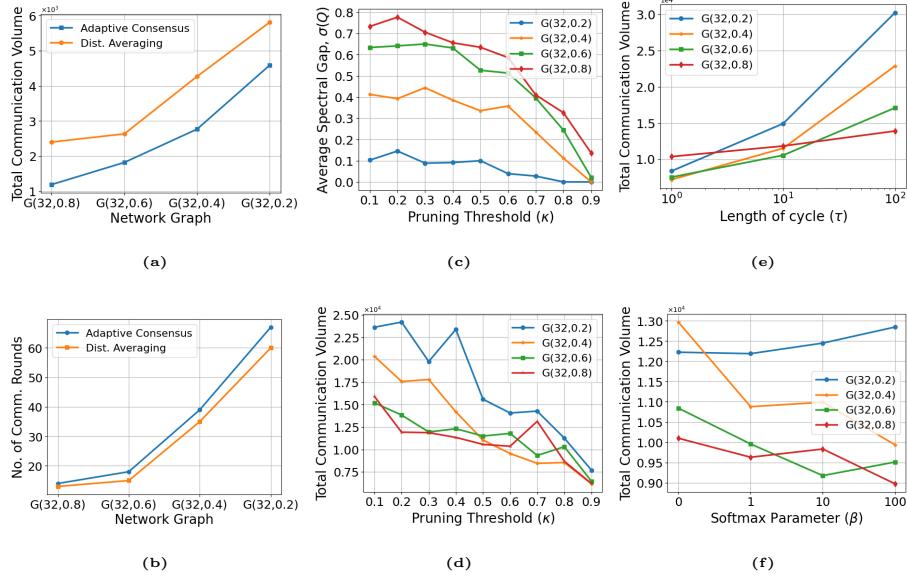


Fig. 1: (a)-(b) Total communication *volume/rounds* required to achieve a consensus error of 10^{-10} . (c) Variation of spectral gap with respect to pruning threshold, $\kappa \in \{0.1, 0.2, \dots, 0.9\}$. (d)-(f) Total communication volume required to achieve a consensus error of 10^{-10} for different $\kappa \in \{0.1, 0.2, \dots, 0.9\}$, $\tau \in \{1, 10^1, 10^2\}$ and $\beta \in \{0, 1, 10^1, 10^2\}$, respectively.

746 **4. Numerical Experiments.** In this section, we illustrate the empirical per-
 747 formance of AC and AC-GT via two sets of experiments. The first set of experiments
 748 demonstrates the benefits of AC compared to the distributed averaging algorithm in
 749 achieving consensus and illustrates the effect of the parameters of the pruning pro-
 750 tocol on the performance of AC. The second set of experiments show the merits of
 751 AC-GT compared to popular methods on a linear regression problem with synthetic
 752 data [28], and a logistic regression problem with real datasets [29, 40] from the UCI
 753 repository [2]. All methods are implemented in Python, with a dedicated CPU core
 754 functioning as a node.

755 **4.1. Performance of AC.** We first showcase the effectiveness of AC in achieving
 756 consensus, where the goal is for all nodes to attain the average value of the initial esti-
 757 mates of the nodes [9, Section 1]. The network topologies (graphs) are generated ran-
 758 domly using the Erdős-Rényi graph model [16] and are represented as $G(n, p)$, where
 759 n represents the number of nodes, and $p \in \{0.2, 0.4, 0.6, 0.8\}$ denotes the probability
 760 with which each possible edge is independently included in the pruned graph. The per-
 761 formance metric used is the average consensus error, defined as $\frac{1}{|\mathcal{E}|} \sum_{(i,j) \in \mathcal{E}} \|x_i - x_j\|$,
 762 where \mathcal{E} represents the set of all edges and $x_i \in \mathbb{R}^d$ for all $i \in [n]$ with $d = 10$. The
 763 total communication volume is measured as the total number of vectors exchanged
 764 amongst all the nodes in the network. The initial values $\{x_{i,0}\}_{i \in [n]}$ at each node are
 765 generated following a standard normal distribution.

766 *Comparison to distributed averaging.* Figs. 1(a)-(b) compare the performance
 767 of AC to distributed averaging [43]. The latter can be considered a specific case of AC
 768 with $\bar{\kappa} = 0$ and $\tau = \infty$. For the pruning protocol part of AC, we have set $\bar{\kappa}_i = \kappa = 0.75$
 769 for all $i \in [n]$ and choose κ_i to ensure that $|\mathcal{E}_i| \geq 1$, so that each node has at least

770 one neighbor. The softmax parameter is set to $\beta = 1$ and the cycle length is set to
 771 $\tau = 10$. The mixing matrix is generated using the Metropolis Hastings rule (cf. (2.1)).
 772 Fig. 1(a) shows a significant reduction in the total communication volume required
 773 to reach a consensus error of 10^{-10} as compared to distributed averaging across all
 774 graph topologies. Fig. 1(b) demonstrates that the number of communication rounds
 775 for AC undergoes only a modest increase as compared to distributed averaging.

776 *Variation of pruning threshold (κ).* In Fig. 1(c), we plot the average spectral
 777 gap of the mixing matrices as a function of $\kappa \in \{0.1, 0.2, \dots, 0.9\}$. The average
 778 spectral gap is defined as the average of the spectral gaps of all the weight matrices
 779 obtained throughout the pruning cycles in a run of the algorithm. The plot reveals
 780 an important observation: pruning up to 50-60% of the edges does not significantly
 781 affect the spectral properties of the mixing matrix. Moreover, increasing the value of
 782 κ leads to a decrease in communication volume across all graphs, see Fig. 1(d).

783 *Variation of consensus cycle length (τ).* Intuitively, one expects AC to perform
 784 better with shorter cycles since more frequent pruning of the graph can potentially
 785 allow AC to adapt more effectively to varying consensus errors. Fig. 1(e) confirms
 786 this intuition, where we consider $\tau \in \{1, 10, 100\}$ with $\kappa = 0.75$. While a value of
 787 $\tau = 1$ yields optimal performance in terms of communication volume, it necessitates
 788 executing the pruning protocol at every iteration.

789 *Variation of softmax parameter (β).* Fig. 1(f) plots the total communication
 790 volume required to achieve a consensus error of 10^{-10} as a function of the softmax
 791 parameter $\beta \in \{0, 1, 10, 100\}$ with $\tau = 10$ and $\kappa = 0.75$. The total communication
 792 volume is obtained by averaging over 100 independent trials. Fig. 1(f) shows that
 793 higher values of β tend to show a modest improvement in the performance.

794 **4.2. Performance of AC-GT.** This subsection considers the evaluation of the
 795 performance of AC-GT on linear and logistic regression problems.

796 **4.2.1. Linear Regression.** We first consider a linear least-squares regression
 797 problem with synthetic data, formally defined as,

$$798 \min_{x \in \mathbb{R}^d} f(x) := \frac{1}{N} \sum_{i=1}^N (a_i^T x - b_i)^2,$$

800 where $a_i \in \mathbb{R}^d$ denotes the i th feature vector and $b_i \in \mathbb{R}$ denotes the corresponding
 801 label. The data is generated using the technique proposed in [28] with $N = 32000$
 802 and $d = 10$. The network topologies considered are $G(n, p)$, where $n = 32$ and
 803 $p \in \{0.2, 0.5, 0.8\}$. The data is partitioned uniformly in a disjoint manner amongst
 804 the nodes. We tuned the step size parameter in AC-GT using a grid-search over the
 805 range $\alpha \in \{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^0\}$ and present the results for the best step size.
 806 The softmax parameter is set to $\beta = 1$ and the cycle length is set to $\tau = 10$. The
 807 mixing matrix is generated using the Metropolis Hastings rule (cf. (2.1)).

808 Fig. 2 illustrates the performance of AC-GT in terms of two metrics, optimality
 809 error, defined as $f(x_{\text{avg}}) - f(x^*)$, where $x_{\text{avg}} = \frac{1}{n} \sum_{i=1}^n x_i$, and average consensus error
 810 described in Section 4.1, with respect to the total communication volume. The results
 811 suggest that, in terms of optimality error, it is preferable to use a higher value of κ ,
 812 the pruning threshold. This observation is consistent across graph topologies. That
 813 said, there is a slight degradation in the decay of the consensus error as κ increases.
 814 This degradation becomes more noticeable in sparser topologies, as seen in Fig. 2(c).

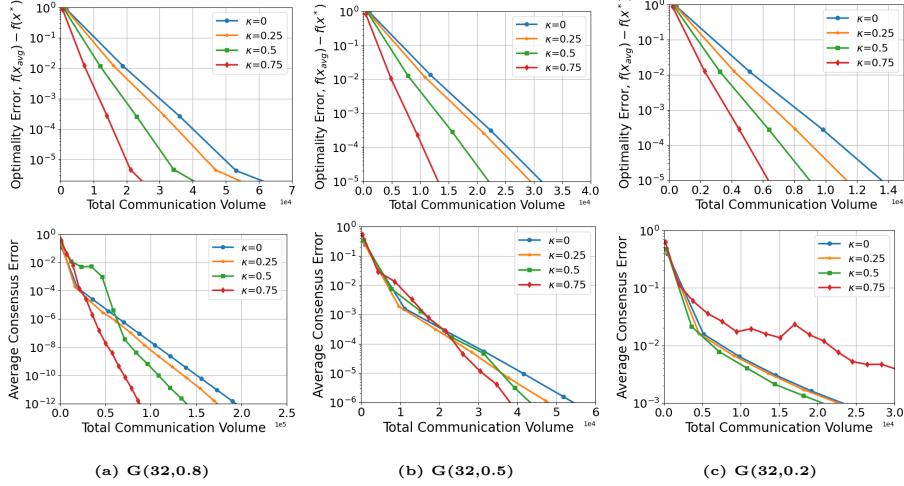


Fig. 2: Performance of AC-GT on linear regression problems for three different graphs, (a) $G(32,0.8)$ (b) $G(32,0.5)$ (c) $G(32,0.2)$. **Top:** Optimality Error versus Total Communication Volume. **Bottom:** Average Consensus Error versus Total Communication Volume.

815 **4.2.2. Logistic Regression.** We consider ℓ_2 -regularized logistic regression prob-■
 816 lems with real datasets of the form,

$$817 \quad \min_{x \in \mathbb{R}^d} f(x) := -\frac{1}{N} \sum_{i=1}^N \{b_i \log \sigma(a_i^T x) + (1 - b_i) \log (1 - \sigma(a_i^T x))\} + \frac{\lambda}{2} \|x\|^2$$

$$818$$

819 where $\{a_i, b_i\}_{i=1}^N$ represent the training samples with label $b_i \in \{0, 1\}$, $\lambda > 0$ is the
 820 regularization parameter and $\sigma(z) = \frac{1}{1+\exp(-z)}$, $\forall z \in \mathbb{R}$ is the sigmoid function.

821 We consider the Statlog [40] and the Mushroom [29] datasets from the UCI repository [2]. The Statlog dataset consists of $N = 690$ samples and $d = 14$ features whereas
 822 the Mushroom dataset consists of $N = 8124$ samples and $d = 22$ features. For these
 823 experiments, we consider $G(n, p)$ with $n = 16$ and $p = 0.5$. The data partition and
 824 the algorithm parameters for AC-GT are set in the same manner as Section 4.2.1. The
 825 step size is tuned using a grid-search over the range $\alpha \in \{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^0\}$
 826 for all the algorithms. The regularization parameter is set to $\lambda = 10^{-4}$. The opti-
 827 mal solution x^* is computed using the L-BFGS algorithm from the SciPy library in
 828 Python and solving the problems to high accuracy.

829 The performance of AC-GT is compared to EXTRA [49] a popular gradient tracking
 830 algorithm (denoted by ‘‘Gradient Tracking’’ in the plots) and the random gossip
 831 algorithm [9]³. In addition to the previous metrics, we also report the optimality
 832 error versus the total number of gradient evaluations of $f(\cdot)$. From the optimality
 833 error plots shown in Figs. 3(a) and (c), it is evident that AC-GT with a parameter
 834 value of $\kappa = 0.9$ exhibits the best performance. Note that the curves of the algorithms
 835 AC-GT and Gradient Tracking are overlapping here. While the optimality error of
 836 random gossip is comparable to AC-GT with $\kappa = 0.5$ in terms of total communication
 837 volume, AC-GT outperforms the former with respect to total gradient evaluations. As

838
 839 ³To solve the semi-definite problem required for implementing the random gossip algorithm from
 840 [9], we utilize the CVXPY library [14].



Fig. 3: Performance of AC-GT on logistic regression problems: **(a)** Optimality Error versus Total Communication Volume **(b)** Consensus Error versus Total Communication Volume **(c)** Optimality Error versus Total number of Gradient Evaluations. **Top:** Statlog Dataset, G(16,0.5). **Bottom:** Mushroom Dataset, G(16,0.5).

839 for the consensus error, there is no notable difference in algorithm performance for
 840 the Statlog dataset. However, for the Mushroom dataset, random gossip and gradient
 841 tracking appear to exhibit inferior performance.

842 **5. Conclusion.** In this paper, we have developed an adaptive randomized algo-
 843 rithmic framework aimed at enhancing the communication efficiency of decentralized
 844 algorithms. Based on this framework, we have proposed the AC algorithm to solve
 845 the consensus problem and the AC-GT algorithm to solve the decentralized optimiza-
 846 tion problem. The distinguishing feature of the framework is the ability to reduce
 847 the volume of communication by making use of the inherent network structure and
 848 local information. We have established theoretical convergence guarantees and have
 849 analyzed the impact of various algorithmic parameters on the performance of the algo-
 850 rithms. Numerical results on the consensus problem, and linear and logistic regression
 851 problems, demonstrate that proposed algorithms achieve significant communication
 852 savings as compared to existing methodologies.

853 Finally, several interesting extensions of the proposed algorithmic framework can
 854 be considered. From a communication perspective, one could consider directed graphs.
 855 Most of the groundwork for this setting has already been laid out in this work and
 856 as mentioned earlier, the theory can be extended to accommodate push-pull gradi-
 857 ent methods [39], where either row or column stochasticity is satisfied. Additionally,
 858 asynchronous updating within each consensus cycle can also be incorporated to allevi-
 859 ate the constraints imposed by slower (straggler) nodes. Other interesting directions
 860 include nonconvex problems, stochastic local information and inexact communication.

861 **References.**

862 [1] Mahmoud S Assran and Michael G Rabbat. Asynchronous gradient push. *IEEE Trans-*
 863 *actions on Automatic Control*, 66(1):168–183, 2020.
 864 [2] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.
 865 [3] Randal W Beard and Vahram Stepanyan. Information consensus in distributed multiple

866 vehicle coordinated control. In *42nd IEEE International Conference on Decision and*
 867 *Control (IEEE Cat. No. 03CH37475)*, volume 2, pages 2029–2034. IEEE, 2003.

868 [4] Albert S Berahas, Raghu Bollapragada, and Shagun Gupta. Balancing communication
 869 and computation in gradient tracking algorithms for decentralized optimization. *arXiv*
 870 *preprint arXiv:2303.14289*, 2023.

871 [5] Albert S Berahas, Raghu Bollapragada, Nitish Shirish Keskar, and Ermin Wei. Balanc-
 872 ing communication and computation in distributed optimization. *IEEE Transactions*
 873 *on Automatic Control*, 64(8):3141–3155, 2018.

874 [6] Albert S Berahas, Raghu Bollapragada, and Ermin Wei. On the convergence of nested
 875 decentralized gradient methods with multiple consensus and gradient steps. *IEEE*
 876 *Transactions on Signal Processing*, 69:4192–4203, 2021.

877 [7] Albert S Berahas, Charikleia Iakovidou, and Ermin Wei. Nested distributed gradient
 878 methods with adaptive quantized communication. In *2019 IEEE 58th Conference on*
 879 *Decision and Control (CDC)*, pages 1519–1525. IEEE, 2019.

880 [8] Dimitri Bertsekas and John Tsitsiklis. *Parallel and distributed computation: numerical*
 881 *methods*. Athena Scientific, 2015.

882 [9] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
 883 algorithms. *IEEE transactions on information theory*, 52(6):2508–2530, 2006.

884 [10] Annie I Chen and Asuman Ozdaglar. A fast distributed proximal-gradient method.
 885 In *2012 50th Annual Allerton Conference on Communication, Control, and Computing*
 886 (*Allerton*), pages 601–608. IEEE, 2012.

887 [11] Titus Cieslewski, Siddharth Choudhary, and Davide Scaramuzza. Data-efficient decen-
 888 tralized visual slam. In *2018 IEEE international conference on robotics and automation*
 889 (*ICRA*), pages 2466–2473. IEEE, 2018.

890 [12] George Cybenko. Dynamic load balancing for distributed memory multiprocessors.
 891 *Journal of parallel and distributed computing*, 7(2):279–301, 1989.

892 [13] Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization.
 893 *IEEE Transactions on Signal and Information Processing over Networks*, 2(2):120–136,
 894 2016.

895 [14] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language
 896 for convex optimization. *Journal of Machine Learning Research*, 17(83):1–5, 2016.

897 [15] Alexandros G Dimakis, Soummya Kar, José MF Moura, Michael G Rabbat, and Anna
 898 Scaglione. Gossip algorithms for distributed signal processing. *Proceedings of the IEEE*,
 899 98(11):1847–1864, 2010.

900 [16] Paul Erdős and Alfréd Rényi. On random graphs. *Publ. math. debrecen*, 6(290-297):18,
 901 1959.

902 [17] Marguerite Frank. The braess paradox. *Mathematical Programming*, 20(1):283–302,
 903 1981.

904 [18] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
 905 trainable neural networks. *arXiv preprint arXiv:1803.03635*, 2018.

906 [19] Christoforos N Hadjicostis and Themistoklis Charalambous. Average consensus in the
 907 presence of delays in directed graph topologies. *IEEE Transactions on Automatic Con-
 908 trol*, 59(3):763–768, 2013.

909 [20] John Hajnal and Maurice S Bartlett. Weak ergodicity in non-homogeneous markov
 910 chains. In *Mathematical Proceedings of the Cambridge Philosophical Society*, volume
 911 54(2), pages 233–246. Cambridge University Press, 1958.

912 [21] Yubin He, Mingyu Yan, Mohammad Shahidehpour, Zhiyi Li, Chuangxin Guo, Lei Wu,
 913 and Yi Ding. Decentralized optimization of multi-area electricity-natural gas flows based
 914 on cone reformulation. *IEEE Transactions on Power Systems*, 33(4):4531–4542, 2017.

915 [22] Mark Herbster and Massimiliano Pontil. Prediction on a graph with a perceptron.
 916 *Advances in neural information processing systems*, 19, 2006.

917 [23] Mingyi Hong, Meisam Razaviyayn, Zhi-Quan Luo, and Jong-Shi Pang. A unified al-
 918 gorithmic framework for block-structured optimization involving big data: With appli-
 919 cations in machine learning and signal processing. *IEEE Signal Processing Magazine*,

920 33(1):57–77, 2015.

921 [24] Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press,

922 2012.

923 [25] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of ag-

924 gregate information. In *44th Annual IEEE Symposium on Foundations of Computer*

925 *Science, 2003. Proceedings.*, pages 482–491. IEEE, 2003.

926 [26] Anastasia Koloskova, Tao Lin, and Sebastian U Stich. An improved analysis of gradient

927 tracking for decentralized machine learning. *Advances in Neural Information Processing*

928 *Systems*, 34:11422–11435, 2021.

929 [27] Guanghui Lan, Soomin Lee, and Yi Zhou. Communication-efficient algorithms for de-

930 centralized and stochastic optimization. *Mathematical Programming*, 180(1):237–284,

931 2020.

932 [28] Melanie L Lenard and Michael Minkoff. Randomly generated test problems for pos-

933 itive definite quadratic programming. *ACM Transactions on Mathematical Software*

934 (*TOMS*), 10(1):86–96, 1984.

935 [29] Gary H Lincoff. *Field guide to North American mushrooms*. Knopf National Audubon

936 Society, 1997.

937 [30] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the

938 lottery ticket hypothesis: Pruning is all you need. In *International Conference on*

939 *Machine Learning*, pages 6682–6691. PMLR, 2020.

940 [31] Daniel K Molzahn, Florian Dörfler, Henrik Sandberg, Steven H Low, Sambuddha

941 Chakrabarti, Ross Baldick, and Javad Lavaei. A survey of distributed optimization

942 and control algorithms for electric power systems. *IEEE Transactions on Smart Grid*,

943 8(6):2941–2962, 2017.

944 [32] Angelia Nedic, Alex Olshevsky, Asuman Ozdaglar, and John N Tsitsiklis. Distributed

945 subgradient methods and quantization effects. In *2008 47th IEEE conference on decision*

946 *and control*, pages 4177–4184. IEEE, 2008.

947 [33] Angelia Nedic, Alex Olshevsky, Asuman Ozdaglar, and John N Tsitsiklis. On distributed

948 averaging algorithms and quantization effects. *IEEE Transactions on automatic control*,

949 54(11):2506–2517, 2009.

950 [34] Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for

951 distributed optimization over time-varying graphs. *SIAM Journal on Optimization*,

952 27(4):2597–2633, 2017.

953 [35] Angelia Nedich. Convergence rate of distributed averaging dynamics and optimization

954 in networks. *Foundations and Trends® in Systems and Control*, 2(1):1–100, 2015.

955 [36] Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course.

956 *Lecture notes*, 3(4):5, 1998.

957 [37] Alex Olshevsky and John N Tsitsiklis. Convergence speed in distributed consensus and

958 averaging. *SIAM journal on control and optimization*, 48(1):33–55, 2009.

959 [38] Joel B Predd, Sanjeev R Kulkarni, and H Vincent Poor. A collaborative training algo-

960 rithm for distributed learning. *IEEE Transactions on Information Theory*, 55(4):1856–

961 1871, 2009.

962 [39] Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedić. Push–pull gradient methods for dis-

963 tributed optimization in networks. *IEEE Transactions on Automatic Control*, 66(1):1–

964 16, 2020.

965 [40] J. Ross Quinlan. Simplifying decision trees. *International journal of man-machine*

966 *studies*, 27(3):221–234, 1987.

967 [41] Michael G Rabbat and Robert D Nowak. Quantized incremental algorithms for distrib-

968 uted optimization. *IEEE Journal on Selected Areas in Communications*, 23(4):798–808,

969 2005.

970 [42] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, and Ramtin Pedarsani. An

971 exact quantized decentralized gradient descent algorithm. *IEEE Transactions on Signal*

972 *Processing*, 67(19):4934–4947, 2019.

973 [43] Wei Ren, Randal W Beard, and Ella M Atkins. A survey of consensus problems in

974 multi-agent coordination. In *Proceedings of the 2005, American Control Conference, 2005.*, pages 1859–1864. IEEE, 2005.

975 [44] Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data
976 optimization. *Mathematical Programming*, 156(1):433–484, 2016.

977 [45] Ali H Sayed. Diffusion adaptation over networks. In *Academic Press Library in Signal
978 Processing*, volume 3, pages 323–453. Elsevier, 2014.

979 [46] Ioannis D Schizas, Alejandro Ribeiro, and Georgios B Giannakis. Consensus in ad hoc
980 wsns with noisy links—part i: Distributed estimation of deterministic signals. *IEEE
981 Transactions on Signal Processing*, 56(1):350–364, 2007.

982 [47] Eugene Seneta. Coefficients of ergodicity: structure and applications. *Advances in
983 applied probability*, 11(3):576–590, 1979.

984 [48] Suhail M. Shah and Raghu Bollapragada. A stochastic gradient tracking algo-
985 rithm for decentralized optimization with inexact communication. *arXiv preprint
986 arXiv:2307.14942*, 2020.

987 [49] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for
988 decentralized consensus optimization. *SIAM Journal on Optimization*, 25(2):944–966,
989 2015.

990 [50] Richard Steinberg and Willard I Zangwill. The prevalence of braess' paradox. *Trans-
991 portation Science*, 17(3):301–318, 1983.

992 [51] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous de-
993 terministic and stochastic gradient optimization algorithms. *IEEE Transactions on
994 Automatic Control*, 31(9):803–812, 1986.

995 [52] John N Tsitsiklis. Problems in decentralized decision making and computation. Tech-
996 nical report, Massachusetts Inst of Tech Cambridge Lab for Information and Decision
997 Systems, 1984.

998 [53] Deniz Ustebay, Boris N Oreshkin, Mark J Coates, and Michael G Rabbat. Greedy gossip
1000 with eavesdropping. *IEEE Transactions on Signal Processing*, 58(7):3765–3776, 2010.

1001 [54] Ashwin Verma, Marcos M Vasconcelos, Urbashi Mitra, and Behrouz Touri. Maximal
1002 dissent: a state-dependent way to agree in distributed convex optimization. *IEEE
1003 Transactions on Control of Network Systems*, 2023.

1004 [55] Jacob Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices. *Proceed-
1005 ings of the American Mathematical Society*, 14(5):733–737, 1963.

1006 [56] Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed
1007 gradient methods for multi-agent optimization under uncoordinated constant stepsizes.
1008 In *2015 54th IEEE Conference on Decision and Control (CDC)*, pages 2055–2060. IEEE,
1009 2015.

1010 [57] Yuchen Zhang and Lin Xiao. Communication-efficient distributed optimization of self-
1011 concordant empirical loss. *Large-Scale and Distributed Optimization*, pages 289–341,
1012 2018.