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Abstract. We consider network-based decentralized optimization problems, where each node in4
the network possesses a local function and the objective is to collectively attain a consensus solution5
that minimizes the sum of all the local functions. A major challenge in decentralized optimization6
is the reliance on communication which remains a considerable bottleneck in many applications.7
To address this challenge, we propose an adaptive randomized communication-efficient algorithmic8
framework that reduces the volume of communication by periodically tracking the disagreement error9
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Within this framework, we present two algorithms: Adaptive Consensus (AC) to solve the consensus11
problem and Adaptive Consensus based Gradient Tracking (AC-GT) to solve smooth strongly convex12
decentralized optimization problems. We establish strong theoretical convergence guarantees for the13
proposed algorithms and quantify their performance in terms of various algorithmic parameters under14
standard assumptions. Finally, numerical experiments showcase the effectiveness of the framework15
in significantly reducing the information exchange required to achieve a consensus solution.16
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1. Introduction. The problem of network-based decentralized optimization can19

be formally stated as,20

(1.1)
min
xi∈Rd

1

n

n∑
i=1

fi(xi)

s.t. xi = xj , ∀ i, j ∈ [n] := {1, 2, · · · , n},
21

where fi(·) : Rd → R is a component of the objective function located at node i ∈ [n],22

and xi ∈ Rd is a copy of the optimization variable at node i ∈ [n]. A closely related23

yet simplified version of this problem, whose goal is to reach consensus among the24

nodes, i.e., xi = xj for all i ∈ [n], without minimizing an objective function, is referred25

to as the consensus problem [43]. Problems of these types arise in several applications26

including wireless sensor networks [38, 46], power systems design [21, 31], parallel27

computing [8, 15], and robotics [3, 11]. More recently, decentralized optimization28

has experienced renewed interest owing to the abundance of decentralized data and29

privacy-preserving machine learning [23, 44], where fi is a function of the data held30

by node i ∈ [n]. Several classes of decentralized optimization algorithms have been31

proposed to solve (1.1), where the main components consist of local computations32

at every node and information exchange (communication) between nodes in order to33

achieve consensus [8]. The communication requirement in many applications remains34

a major bottleneck in the performance of decentralized optimization methods [27, 32,35

35, 41, 42, 51].36

In this work, we propose and develop a novel approach to reduce the commu-37

nication requirements in decentralized optimization without significantly impacting38

the convergence properties of the underlying algorithm. The core principle of our39
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approach involves judiciously selecting a subset of the edges of the network (instead40

of all the edges) along which communication is performed at each iteration, thereby41

reducing the communication efforts. A key observation motivating this approach is42

that selectively pruning the edges of the network has marginal impact on the spectral43

properties of the mixing matrix associated with any graph topology. This matrix44

plays a crucial role in determining the rate of information diffusion through the net-45

work [51], which subsequently affects the rate of achieving consensus amongst nodes.46

In fact, for many network structures, the spectral properties remain virtually un-47

changed even after selectively pruning up to 50-60% of the edges (see Section 4.1),48

thus retaining a consensus rate akin to that of an unpruned network while reducing49

the communication volume.50

However, to fully leverage the potential of such pruning approaches, one requires51

information about the most influential edges, i.e., the edges that achieve consensus52

with minimal communication cost, information that is typically unknown. For ex-53

ample, the bridge edge that connects two fully connected components in a barbell54

graph [22, Figure 2] has a significantly more influential role in the consensus process55

than other edges. Therefore, it is beneficial to communicate along the bridge edge as56

compared to other edges. Unfortunately, due to the decentralized nature of the net-57

work, nodes cannot a priori determine these influential edges. Moreover, the relative58

influence of different edges in achieving consensus can vary significantly depending on59

the network state and structure, and the application. To overcome this challenge, our60

work proposes a cyclic adaptive randomized procedure that can be implemented in61

a decentralized manner to identify such edges and reduce the communication costs.62

Specifically, we periodically track the disagreement error along edges during the con-63

sensus process to estimate the relative importance of edges in achieving consensus64

and maintain a network with only the most influential edges.65

1.1. Contributions. A concise summary of the contributions is as follows:66

• We propose an adaptive communication-efficient algorithmic framework. Within67

this framework, we introduce two new algorithms: Adaptive Consensus (AC) to68

solve the consensus problem and Adaptive Consensus based Gradient Tracking69

(AC-GT) to solve the decentralized optimization problem1. The novelty in our70

approach lies in the ability to exploit the underlying structure of the network71

to reduce the volume of communication. This is accomplished via an adaptive72

consensus scheme that selects the most influential and effective edges for com-73

munication at each node based on the graph topology. The proposed framework74

has broad applicability and can be integrated with other existing decentralized75

optimization algorithms or adapted to other settings including directed graphs,76

time-varying topologies, and asynchronous updates.77

• We provide theoretical convergence guarantees for smooth strongly convex prob-78

lems for both AC and AC-GT, demonstrating that they retain the linear conver-79

gence properties of their base counterparts, i.e., methods that do not utilize80

the adaptive consensus framework, while requiring reduced communication. The81

analysis utilizes the inhomogeneous matrix product theory to prove linear con-82

vergence by showing that the pruned matrix products remain contractive. In83

contrast to prevalent analytical approaches in decentralized optimization with84

time-varying graphs, the rate constant in our results is obtained using the coeffi-85

cient of ergodicity which effectively highlights the dependence of the convergence86

1For better exposition of the consensus framework, the consensus and decentralized optimization
problems are treated separately even though the former is a simplified version of the latter.
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rate on the network pruning procedure parameters.87

• We illustrate the empirical performance of AC in solving the standard consensus88

problem and of AC-GT in solving linear regression and binary classification logistic89

regression problems. Our numerical results highlight that the proposed methods90

achieve significant communication savings while maintaining solution quality,91

compared to the contemporary state-of-the-art techniques.92

1.2. Literature Review. The proposed idea of exploiting the relative signif-93

icance of edges to improve algorithmic efficiency is not exclusive to decentralized94

optimization and has been studied in other fields that use graphical modeling on net-95

works [17, 18, 30, 50]. In the context of traffic modeling, a converse analogue falls96

under the category of “Braess’s paradox”, which suggests that adding one or more97

roads to a road network can actually slow down the overall traffic flow [17, 50]. An-98

other example, although somewhat tangential, is found in neural networks where the99

“lottery ticket hypothesis” states that within dense, feed-forward networks, there are100

smaller pruned sub-networks that, when trained in isolation, can achieve test accuracy101

comparable to the original network in a similar number of iterations [18, 30].102

Within decentralized optimization, several recent works have proposed communication-103

efficient algorithms that balance the communication and computation costs to achieve104

overall efficiency [4–7, 10, 45, 57]. Our proposed approaches are complementary to and105

can be integrated with these existing works. Furthermore, the proposed framework106

(adaptive consensus) adds to the list of techniques that reduce the communication107

costs. One such approach is gossip communication protocols where nodes selectively108

communicate with neighbors asynchronously [9, 12, 53, 54]. It is worth noting that in109

gossip protocols a convex optimization problem is often solved to optimize the spec-110

tral gap of the expected consensus matrix [9]. Another class of approaches leverage111

quantized communication where only quantized (reduced size) information is commu-112

nicated to reduce the communication costs. However, these techniques typically lack113

convergence guarantees to the solution [8, 48]. Moreover, quantization techniques can114

also be incorporated into our framework to further reduce the communication over-115

head. We emphasize that our approach differs significantly from the aforementioned116

approaches in several ways including the focus on enhancing communication efficiency117

by adaptively modifying the graph structure in a decentralized manner, and achieving118

convergence guarantees to the solution.119

While several classes of algorithms have been proposed for solving decentralized120

optimization, gradient tracking methods have emerged as popular alternatives due to121

their simplicity, optimal theoretical convergence properties and empirical performance122

[4, 13, 26, 34, 49, 56]. We incorporate the proposed communication-efficient technique123

into the gradient tracking algorithmic framework with the goal of reducing the com-124

munication costs while retaining optimal convergence guarantees. Furthermore, we125

note that the setting of time-varying graphs, which also arises in our work, has been126

explored previously in [1, 33, 34, 52], among others.127

1.3. Organization. The paper is organized as follows. In the remainder of this128

section, we define the notation employed in the paper. In Section 2, we describe the129

network model, introduce the Adaptive Consensus (AC) algorithm, and establish con-130

vergence guarantees under standard assumptions. Building upon the adaptive consen-131

sus procedure and gradient tracking algorithms, we propose the Adaptive Consensus132

based Gradient Tracking (AC-GT) algorithm and study its convergence properties in133

Section 3. Section 4 presents numerical results that illustrate the performance of the134

proposed algorithms. Finally, concluding remarks are provided in Section 5.135
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1.4. Notation. We use R to denote the set of real numbers and N to denote136

the set of all strictly positive integers. The ℓ2-inner product between two vectors137

is denoted by ⟨·, ·⟩ and ⊗ denotes the Kronecker product between two matrices. All138

norms, unless otherwise specified, can be assumed to be ℓ2-norms of a vector or matrix139

depending on the argument. Let ⌊x⌋ (⌈x⌉) denote the nearest integer less (greater)140

than or equal to x. We use a|b to denote integer division between any two a, b ∈ N,141

i.e., a|b = ⌊a/b⌋. We use 1n := 1
n1n ⊗ Id ∈ Rnd×d, where 1n ∈ Rn is the column142

vector of all ones and Id ∈ Rd×d is the d × d identity matrix. For any matrix Q143

with eigenvalues −1 < λn ≤ · · · ≤ λ2 < λ1 = 1, the spectral gap is defined as144

σ(Q) := 1 − max{|λn|, |λ2|}. The set A \ B consists of the elements of A which are145

not elements of B. We use x∗ denotes the optimal solution of (1.1). We use the146

column vector xi,k ∈ Rd to denote the value of the objective variable held by node i147

at iteration k. The vector xk ∈ Rnd denotes the column-stacked version of xi,k and148

∇f(xk) denotes the column-stacked gradients, i.e.,149

xk := [x1,k, · · · , xn,k] ∈ Rnd and ∇f(xk) :=
[
∇f1(x1,k), · · · ∇fn(xn,k)] ∈ Rnd,150

where ∇fi : Rd → Rd is the gradient of the local function fi. The following quantities151

are used in the presentation and analysis of the algorithms,152

x̄k :=
1

n

n∑
i=1

xi,k ∈ Rd, x̄k = [x̄k, · · · , x̄k] ∈ Rnd, ∇f(x̄k) :=
1

n

n∑
i=1

∇fi(x̄k) ∈ Rd.153

2. Adaptive Consensus. This section provides a description of the pruning154

protocol which serves as the basic building block for the proposed consensus scheme re-155

ferred to as the Adaptive Consensus algorithm (Algorithm 2.2, ADAPTIVE CONSENSUS156

(AC)). We describe the network model we assume in the paper, discuss the pruning157

protocol, and present the algorithm and its associated convergence guarantees.158

2.1. Network Model. The underlying network is assumed to be modeled by a159

undirected graph G = {V, E}, where V is the set of nodes and E is the set of edges. We160

use the matrix Q = [qij ]i∈[n],j∈[n] to denote the mixing matrix. The mixing matrix161

has the following properties: the entry qij > 0 (assumed to be equal to qji) if there162

is a link between any two nodes i, j ∈ V . We use Ei to denote the set of all edges163

(i, j) such that j ∈ V is a neighbor of i ∈ V , i.e., the set of all j ∈ V with j ̸= i for164

which qij > 0. Note that the neighbors of i for any i ∈ [n] is the set of all j such165

that (i, j) ∈ Ei. Since we assume that the graph is undirected, (i, j) ∈ Ei if and only166

if (j, i) ∈ Ej . We make the following assumption on the network.167

Assumption 2.1 (Graph Connectivity). G = {V, E} is static and connected.168

2.2. Pruning Protocol. The main goal of the pruning protocol is to provide169

a systematic approach for selecting the (subset of) edges within a graph along which170

to communicate in order to achieve consensus with reduced communication efforts.171

To be more precise, given the reference graph G(V, E) and a set of node estimates ai172

for all i ∈ [n], the pruning protocol generates a modified graph G(V, Ē) by selectively173

removing edges from the reference graph. The edges to be pruned are determined by174

a function of the node estimates. The function assigns a probability to each edge in E175

based on its likelihood of being least effective and influential with respect to achieving176

consensus. The pseudo-code for the pruning protocol is given in Algorithm 2.1.177

Algorithm 2.1 has three free (user-defined) parameters (κ̄i, κ
¯i

and β). Broadly178

speaking, κ̄i ∈ [0, 1] represents the fraction of edges to be pruned at node i ∈ [n] and179
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Algorithm 2.1 PRUNING PROTOCOL(G(V, E), ai, (κ̄i, κ
¯i), β).

Inputs: Graph G(V, E); Node estimates ai for all i ∈ [n]; Softmax parameter β ∈ [0,∞]; Threshold-
ing factors (κ̄i, κ

¯i
) ∈ [0, 1]2 for all i ∈ [n].

1: Set Eprune
i := {} for all i ∈ [n].

2: for all i ∈ [n] in parallel do
3: Receive estimates aj from all neighbors j.
4: Compute a dissimilarity measure ∆(ai, aj) for all edges (i, j) ∈ Ei.
5: while |Eprune

i | ≤ ⌊κ̄i × |Ei|⌋ do
6: Draw a sample edge (i, j′) from Ei \ Eprune

i according to:

pi,j ∼ exp(−β∆(ai,aj))∑
(i,j′)∈Ei\E

prune
i

exp(−β∆(ai,aj′ ))
, ((i, j) ∈ Ei \ Eprune

i ).

7: Update set Eprune
i → Eprune

i ∪ (i, j′) for all i ∈ [n].
8: end while
9: end for

10: Set Ēi := Ei, for all i ∈ [n].
11: for all all i ∈ [n] do
12: Send requests to all neighbors j such that (i, j) ∈ Eprune

i to prune edge (j, i) ∈ Ej .
13: Receive request from all neighbors j′ such that (j′, i) ∈ Eprune

j′ to prune edge (i, j′) ∈ Ei.
14: for all (i, j′) such that (i, j′) ∈ Eprune

i do
15: Remove edge (i, j′) from Ēi.
16: end for
17: for all requests (i, j′) such that (i, j′) /∈ Eprune

i do
18: if |Ēi| > ⌈κ

¯i
|Ei|⌉ then

19: Remove edge (i, j′) from Ēi.
20: end if
21: end for
22: end for

23: if Graph=‘Undirected’ then
24: for all (i, j) ∈ Ēi and (j, i) /∈ Ēj do
25: Update set Ēj → Ēj ∪ (j, i).
26: end for
27: end if

Output: G(V, Ē), where Ē := ∪n
i=1Ēi.

κ
¯i

∈ [0, 1] is a lower bound on the minimum number of edges retained at node i. The180

parameter β ∈ [0,∞] determines the level of influence of the dissimilarity measure181

in assigning the pruning probabilities. The role and significance of these parameters182

becomes evident by examining the main steps of the protocol, which we discuss next.183

Selecting Candidate Edges for Pruning. To select the edges to be pruned, each184

node i ∈ [n] constructs a set Eprune
i by iteratively drawing a sample edge from the set185

Ei \ Eprune
i , ⌊κ̄i × |Ei|⌋ times, where κ̄i represents the fraction of the total number of186

edges to be removed at node i during pruning. The probability of selecting an edge187

(i, j) is determined by the softmax of a dissimilarity measure (denoted by ∆(ai, aj))188

between the estimates at i and j. A possible candidate for ∆(ai, aj) is the ℓ1-norm189

difference between ai and aj , i.e., ∥ai − aj∥1. For large values of the parameter β190

(the argument of the softmax) edges exhibiting small dissimilarity (small ∆(ai, aj)),191

where ai and aj are in similar, have an increased likelihood of being pruned.192

More formally, for the kth draw at node i ∈ [n], where 1 ≤ k ≤ ⌊κ̄i|Ei|⌋, the193

probability distribution over the set of edges (i, j) ∈ Ei \ Eprune
i is given by194

pi,j ∼ exp(−β∆(ai,aj))∑
(i,j′)∈Ei/E

prune
i

exp(−β∆(ai,aj′ ))
, for all (i, j) ∈ Ei \ Eprune

i ,195
196

where β ∈ [0,∞] is the softmax parameter that controls the influence of the dissimi-197
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larity measure. Note that β = ∞ represents the greedy case, where each node i ∈ [n]198

selects the top ⌊κ̄i|Ei|⌋ edges with least dissimilarity measure. At the other extreme,199

β = 0 represents the case of random pruning independent of the dissimilarity measure.200

The201

Pruning Mechanism. To perform the actual pruning, each node i ∈ [n] sends a202

request to neighboring nodes j, where (i, j) ∈ Eprune
i , to prune edge (j, i). At the same203

time, node i ∈ [n] receives and catalogues the requests from all its neighboring nodes204

j′ with (j′, i) ∈ Eprune
j′ to prune edges (i, j′). It is worth noting that the request for205

(i, j′) does not necessarily require (i, j′) to be in Eprune
i . Initially, each node creates206

a copy Ēi of the original set of edges Ei. The following steps are then performed in207

order by each node:208

(i) For each (i, j′) such that (i, j′) ∈ Eprune
i , edge (i, j′) is removed from Ēi. This209

covers the ideal case where both nodes i and j′ want to remove the edge (i, j′)210

and (j′, i) from their respective edge sets Ei and Ej′ .211

(ii) If (i, j′) /∈ Eprune
i , then the edge is pruned if |Ēi| > ⌈κ

¯i
|Ei|⌉. So, node i ∈ [n]212

prunes an edge not included in Eprune
i only if the number of edges remaining in213

Ēi is greater than a certain fraction κ
¯i

of |Ei|. An implicit assumption here is214

that κ
¯i

≤ 1− κ̄i so that ⌈κ
¯i
|Ei|⌉ ≤ ⌈(1− κ̄i)|Ei|⌉. It should be noted that for the215

algorithm to be well-defined, pruning requests of this type are processed in the216

order in which they are received.217

The output of Algorithm 2.1 is G(V, Ē), where Ē := ∪iĒi. An important point worth218

noting here is that the resulting set Ēi for i ∈ [n] may contain edges (i, j) for which219

(j, i) /∈ Ēj . To make the pruned graph undirected, there are two possible approaches;220

either node j adds (j, i) to Ēj , or alternatively, node i removes (i, j) from Ēi. These221

approaches can be implemented by performing one additional round of communication222

among the nodes with negligible overhead.223

2.3. Adaptive Consensus. Building upon the pruning protocol presented in224

the previous subsection, we introduce an algorithm to solve the consensus problem225

[37, Section 1], which requires the convergence of all the node estimates to the average226

of their initial estimates. The pseudo-code is provided in Algorithm 2.2.227

Algorithm 2.2 ADAPTIVE CONSENSUS (AC)

Inputs: Graph G(V, E); Cycle length τ ∈ N; Softmax parameter β ∈ [0,∞]; Thresholding factors
(κ̄i, κ

¯i
) ∈ [0, 1]2 for all i ∈ [n]; Initial estimates xi,0 ∈ Rd for all i ∈ [n]; Total number of iterations

T ∈ N.
1: for k = 0, . . . , T do
2: for all i ∈ [n] in parallel do
3: if k ∈ I, then
4: Generate G(V, Ēk|τ ) ∼ PRUNING PROTOCOL(G(V, E), xi,k, (κ̄i, κ

¯i
), β).

5: Get new weights q̄ij [k|τ ] ∼ GENERATE WEIGHTS (G(V, Ēk|τ )).
6: end if
7: Update estimate at node i according to: xi,k+1 =

∑n
j=1 q̄ij [k|τ ]xj,k.

8: end for
9: end for

Output: xi,T for all i ∈ [n].

We discuss the main steps of the algorithm and how to select the parameters κ̄i228

and κ
¯i
. Algorithm 2.2 has a cyclic structure with cycle length τ ∈ N. The set of229

indices where the pruning protocol is executed is denoted by I := [τ, 2τ, . . . ). For230

any k ∈ I, the iterations t ∈ [k, k + τ) are said to constitute a consensus cycle.231
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Pruning Step. At the start of the k|τ consensus cycle, the pruning protocol is232

executed to obtain the pruned graph G(V, Ēk|τ ), where Ēk|τ := ∪iĒi,k|τ , using the233

current local estimates xi,k for all i ∈ [n]. Subsequently, the mixing matrix, denoted234

by Qk|τ := [qij [k|τ ]]i∈[n],j∈[n], of the pruned graph G(V, Ēk|τ ) is constructed in a de-235

centralized manner. As an example, we can consider the Metropolis-Hastings scheme236

[34], which generates the weights via the following prescribed rule:237

(2.1) qij [k|τ ] :=


1

(1+max{|Ēi,k|τ |,|Ēj,k|τ |})
if (i, j) ∈ Ēk|τ

1−
∑n

p=1 q̄ip[k|τ ] if i = j

0 otherwise,

238

where Ēi,k|τ denotes the (pruned) edge set at node i ∈ [n].239

Pruned Graph based Averaging. For all iterations t ∈ [k, k + τ) with k ∈ I,240

the algorithm performs decentralized averaging using the pruned weights, q̄ij [k|τ ].241

Subsequent to this, the pruning step (Line 4, Algorithm 2.2) is performed again with242

the updated node estimates.243

Remark 2.1. We make the following remarks about Algorithm 2.2.244

• It is worth noting that the ideal choice of values for κ̄i and κi can be problem-245

specific and depends on the network structure. For instance, preserving connec-246

tivity might be crucial in some cases, while in others, optimizing for low com-247

munication overhead may take precedence. Broadly speaking, a higher value of248

κ̄i results in aggressive pruning more suited to graphs with high edge density.249

Conversely, κi acts as a lower bound on the edges to be retained post pruning,250

and a higher value of κi corresponds to a more conservative pruning approach,251

which is beneficial if maintaining connectivity is important. For β, lower values252

lead to increased randomness in edge selection, resembling approaches such as the253

gossip protocol [9], while higher values promote a more deterministic and greedy254

approach to edge selection.255

• If directed edges are permitted in the output of the pruning protocol, the appli-256

cation of the push-sum protocol [25] offers an alternative to simple distributed257

averaging that alleviates the requirement for doubly stochastic mixing matrices.258

2.4. Convergence Analysis. To provide convergence guarantees, we begin by259

writing the key step of AC (Line 7, Algorithm 2.2) in matrix form by employing the260

stacked vector notation,261

(2.2) xk+1 = Qkxk,262

where Qk = Qk ⊗ Id = Qk|τ ⊗ Id ∈ Rnd×nd, where Qk|τ := [qij [k|τ ]]i∈[n],j∈[n] ∈ Rn×n263

denotes the mixing matrix of the pruned graph G(V, Ēk|τ ) for the k|τ cycle. We use264

Q[r : s] ∈ Rnd×nd to denote the product of s − r consecutive matrices indexed by265

{Qk}s−1
k=r, i.e., Q[r : s] := Qs−1 × · · · × Qr, with the convention that Q[s : s] :=266

In ⊗ Id ∈ Rnd×nd. Using the above notation, we can express x(k+1)τ for any k ≥ 0 in267

terms of x0 as follows268

(2.3)
x(k+1)τ = Qτ

k|τxkτ = Q[kτ : (k + 1)τ ]xkτ

= Q[kτ : (k + 1)τ ]× · · · ×Q[0 : τ ]x0.
269

We establish convergence under the following assumption.270
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Assumption 2.2 (τ̄ -Connectivity). There exists a constant τ̄ ∈ N, such that for271

all k ∈ Iτ̄ := {τ̄ , τ̄ + τ, τ̄ + 2τ · · · } ⊂ I, the graph G(V, Ē(k|τ−τ̄+1)) ∪ · · · ∪ G(V, Ēk|τ )272

is connected.273

Remark 2.2. Assumption 2.2 plays a key role in the analysis. In words, it implies274

the existence of a constant τ̄ , such that within τ̄ pruning cycles, the union of the275

resulting undirected (directed) pruned graphs is connected (strongly connected). For276

the special case where the pruned graph is connected for all cycles, τ̄ = 1. It is possible277

to guarantee this assumption by imposing a consensus iteration with the reference278

graph every τ̄ iterations of the algorithm for some finite τ̄ ∈ N. Additionally, it is279

worth noting that it suffices to assume this property only for indices Iτ̄ rather than for280

all k ∈ N. Another important point to note is that the assumption can be replaced by281

a stochastic version which takes into account the utilization of softmax based sampling282

in the pruning protocol. Specifically, the assumption of connectedness can either be283

assumed to hold almost surely or replaced by an assumption that ensures a reduction284

in the consensus error in expectation (with respect to Qk) over a period of τ̄ iterations.285

Remark 2.3. We note that Assumption 2.2 is equivalent to assuming that every286

edge (i, j) ∈ E gets activated every τ̄ iterations for some finite τ̄ > 0. Let Ak denote287

a random subset of the edge set E, composed of the subset of edges updated at time288

k, and let ν(i,j),k :=
∑k

m=0 I{(i, j) ∈ Am}, where I(·) denotes the indicator function,289

representing the number of times (i, j) is activated up until time k. Assumption 2.2290

can be satisfied if the following condition holds:291

(2.4) lim inf
k→∞

ν(i,j),k

k
> 0 ∀ (i, j) ∈ E .292

That is, all edges are updated comparably often. To ensure this, we can mix the softmax293

policy with a uniformly random policy with an arbitrarily small θ. More formally, for294

node i ∈ [n] the probability distribution over the set of edges (i, j) can be written as295

pi,j ∼ (1− θ)
exp(−β∆(ai,aj))∑

(i,j′)∈Ei/E
prune
i

exp(−β∆(ai,aj′ ))
+ θ

|Ei\Eprune
i | , ∀ (i, j) ∈ Ei \ Eprune

i ,296
297

where θ > 0 is an arbitrarily small parameter. Since pi,j ≥ θ
|Ei\Eprune

i | > 0 for any edge298

(i, j), using Borel-Cantelli Lemma, we have that each edge (i, j) is activated infinitely299

often.300

To prove convergence of the algorithm, we need to establish convergence of the301

following product sequence to the 1
n1n1

T
n rank-one matrix, i.e.,302

k∏
j=0

Q[jτ : (j + 1)τ ] → 1
n1n1

T
n , as k → ∞.303

304

To show this, we use the notion of coefficient of ergodicity [47], denoted by ρ(Q) for305

any row-stochastic matrix Q, defined as,306

(2.5) ρ(Q) := 1−min
i1,i2

n∑
j=1

min (qi1j , qi2j) .307

Using the coefficient of ergodicity instead of directly bounding the spectral gap offers308

several advantages, particularly in scenarios involving time-varying topologies. First,309

it allows us to clearly characterize the influence of different graph parameters, such as310
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maximum node degree and diameter, on convergence. This characterization helps us311

establish an explicit relationship between pruning and convergence. Second, it allows312

for extensions to directed graphs (with push-sum protocols) where the condition of313

double stochasticity may not be satisfied.314

There are two key properties of (2.5) that will be useful in establishing conver-315

gence. The first property is that ρ(·) is sub-multiplicative, i.e., for any two matrices316

Q1, Q2,317

(2.6) ρ(Q1Q2) ≤ ρ(Q1)ρ(Q2).318

The second property is that it can serve as an upper bound on the dissimilarity319

between the rows of matrix Q. More formally, we have (cf. [55, Lemma 2], [20,320

Lemma 4])321

(2.7) δ(Q) := max
j

max
i1,i2

|qi1j − qi2j | ≤ ρ(Q),322

for any matrix Q which is ergodic, i.e., it is row stochastic, aperiodic and irreducible323

(cf. [55] or, [24, Chapter 8]).324

Next, we state and prove the main theoretical result of this section.325

Theorem 2.1. Suppose that: (i) Assumptions 2.1 and 2.2 hold, (ii) the matrices326

Qk := [qij [k]]i∈[n],j∈[n] are doubly stochastic for all k ≥ 0, (iii) qii[k] > 0 for all k ≥ 0327

for at least one i ∈ [n], and, (iv) if qij [k] > 0 for any (i, j) ∈ E and k ≥ 0, then328

qij [k] > q for some strictly positive constant q > 0 independent of k and (i, j). Then,329

for any k ≥ 0,330

(2.8) ∥xk − x̄k∥ ≤ min

{
n

3
2 γ

⌊
k

τ̄dG

⌋
, n
(
1− q

2n2

) k
τ̄

}
∥x0 − x̄0∥,331

where γ :=
(
1− qτ̄dG

)
< 1 with q < 1 and dG is the diameter of a graph G(V, E)332

defined as dG := maxu,v∈V{dist(u, v)}, where dist(u, v) denotes the shortest path dis-333

tance between any two vertices u, v ∈ V.334

Proof. We first establish the ergodicity of the product sequence Q[mτ̄ : (m+1)τ̄ ]335

for any m ≥ 0 with τ̄ ∈ N as in Assumption 2.2. The stochasticity of Q[mτ̄ : (m+1)τ̄ ]336

follows from that the fact that the product of stochastic matrices is also stochastic.337

Furthermore, a matrix is considered irreducible if its zero/non-zero structure corre-338

sponds to a connected graph. By Assumption 2.2, the structure of Q[mτ̄ : (m+ 1)τ̄ ]339

also exhibits this property [19, Section 1-C]. Finally, an irreducible matrix is aperiodic340

if it has at least one self-loop which is satisfied by Q[mτ̄ : (m+1)τ̄ ] by condition (ii)341

in the theorem statement [19, Section 1-C].342

Next, we establish a useful upper bound on δ (Q[0 : k + 1]). To do this, we con-343

sider the following decomposition of Q[0 : k + 1]344

Q[0 : k + 1]345

=Q[0 : k̄τ̄ ]× · · · ×Q[mk̄τ̄ : (m+ 1)k̄τ̄ ]× · · · ×Q[(K − 1)k̄τ̄ : Kk̄τ̄ ]︸ ︷︷ ︸
Q[0:Kk̄τ̄ ]

×Q[Kk̄τ̄ : k + 1]346

347

where K := ⌊k/k̄τ̄⌋, k̄ ≥ 1 is a constant to be specified later. Let τ ′ := k̄τ̄ . We bound348

δ (Q[0 : Kτ ′]) by individually bounding ρ (Q[mτ ′ : (m+ 1)τ ′]) in the above product.349
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By (2.5), it follows that,350

(2.9)

ρ (Q[mτ ′ : (m+ 1)τ ′]) = 1−min
i1,i2

∑
j

min (qi1j [mτ ′ : (m+ 1)τ ′], qi2j [mτ ′ : (m+ 1)τ ′]) ,351

where Q[mτ ′ : (m + 1)τ ′] := [qij [mτ ′ : (m + 1)τ ′]]i,j∈[n]. By (2.9), we note that352

ρ (Q[mτ ′ : (m+ 1)τ ′]) is guaranteed to satisfy ρ (Q[mτ ′ : (m+ 1)τ ′]) < 1, if for every353

pair of rows i1 and i2, there exists some j∗ such that qi1j∗ [mτ ′ : (m+1)τ ′], qi2j∗ [mτ ′ :354

(m+ 1)τ ′] > 0, i.e., if there is a path from some j∗ to both i1 and i2. This, in turn,355

is always satisfied if for some k̄ > 0, qij [mτ ′ : (m+ 1)τ ′] > 0 for every i, j ∈ [n], i.e.,356

all the entries are strictly positive.357

To find such a candidate k̄, we make the following observation: Q[mτ̄ : (m+1)τ̄ ]358

is ergodic, so there exists a path from i to j for every i, j ∈ [n]. Setting k̄ = dG in359

the definition of τ ′, we have τ ′ = k̄τ̄ = dG τ̄ . It follows that for the matrix Q[mτ ′ :360

(m + 1)τ ′], qij [mτ ′ : (m + 1)τ ′] > 0 for all i, j ∈ [n] since we can reach any node i361

from any other node j in at most τ ′ = dG τ̄ steps.362

For the remainder of the proof, let τ ′ = dG τ̄ . To lower bound qij [mτ ′ : (m+1)τ ′] >363

0, m ≥ 0, we note that by the definition of q and Assumption 2.2, it follows that364

qij [pτ̄ : (p + 1)τ̄ ] ≥ qτ̄ for any p ≥ 0 and any (i, j) ∈ Epτ̄ ∪ · · · ∪ E(p+1)τ̄−1. Since365

Q[mτ ′ : (m + 1)τ ′] = Q[mτ ′ : mτ ′ + τ̄ ] · · ·Q[mτ ′ + (dG − 1)τ̄ : mτ ′ + dG τ̄ ], for any366

i′, j′ ∈ [n],367

qi′j′ [mτ ′ : (m+ 1)τ ′] ≥ qτ̄dG .(2.10)368369

By (2.9) and (2.10),370

ρ (Q[mτ ′ : (m+ 1)τ ′]) ≤ 1− qτ̄dG .(2.11)371372

Thus, it follows that,373

δ(Q[(0 : Kτ̄ ]) ≤ ρ (Q[0 : Kτ̄ ])374

≤ ρ(Q[0 : τ̄ ] · · ·Q[(K − 1)τ̄ : Kτ̄ ])375

≤ ρ(Q[0 : τ̄ ])× · · · × ρ(Q[(K − 1)τ̄ : Kτ̄ ])376

≤
(
1− qτ̄dG

)K
,(2.12)377378

where the first inequality follows by (2.7), the second inequality by the the sub-379

multiplicative property of ρ(·) (2.6), and the final inequality follows by (2.11). By380

(2.2) and (2.3), it follows that,381

xk = Qk−1xk−1382

= Q[Kτ̄ + 1 : k]Q[(K − 1)τ̄ : Kτ̄ ]× · · · ×Q[0 : τ̄ ]x0383

= Q[Kτ̄ + 1 : k]Q[0 : Kτ̄ ]x0.(2.13)384385

Multiplying both sides of (2.13) by 1n, by the the double stochasticity of Q[Kτ̄+1 : k]386

and Q[0 : Kτ̄ ], it follows that,387

x̄k = x̄0 = 1
n1n1

k
nx0 = 1

n1n1
k
nQ[0 : Kτ̄ ]x0.(2.14)388389

Subtracting (2.14) from (2.13),390

xk − x̄k = Q[Kτ̄ + 1 : k]Q[0 : Kτ̄ ]x0 − 1
n1n1

k
nQ[0 : Kτ̄ ]x0391

= Q[Kτ̄ + 1 : k]
(
Q[0 : Kτ̄ ]− 1

n1n1
k
nQ[0 : Kτ̄ ]

)
(x0 − x̄0),392393
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where the second equality holds due to Q[Kτ̄+1 : k]1 = 1 and the fact that Ax̄0 = x̄0394

for any doubly stochastic matrix A. Taking norms of the above, it follows that,395

∥xk − x̄k∥ ≤ ∥Q[Kτ̄ + 1 : k]∥
∥∥Q[0 : Kτ̄ ]− 1

n1n1
k
nQ[0 : Kτ̄ ]

∥∥ ∥x0 − x̄0∥396

≤
√
n
∥∥Q[0 : Kτ̄ ]− 1

n1n1
k
nQ[0 : Kτ̄ ]

∥∥
1
∥x0 − x̄0∥1(2.15)397398

where the first inequality is due to the Cauchy–Schwarz inequality and the second399

inequality follows due to the facts that ∥A∥ ≤
√
n∥A∥1 for any A ∈ Rn×n and400

∥Q[Kτ̄ + 1 : k]∥ ≤ 1. We have by definition of the ℓ1-norm for matrices,401

∥∥Q[0 : Kτ̄ ]− 1
n1n1

T
nQ[0 : Kτ̄ ]

∥∥
1
= max

1≤j≤n

n∑
i=1

∣∣∣∣∣qij [0 : Kτ̄ ]− 1
n

n∑
i′=1

qi′j [0 : Kτ̄ ]

∣∣∣∣∣402

≤ max
1≤j≤n

n∑
i=1

1
n

n∑
i′=1

∣∣∣qij [0 : Kτ̄ ]− qi′j [0 : Kτ̄ ]
∣∣∣︸ ︷︷ ︸

≤δ(Q̄[0:Kτ̄ ])

403

≤ nδ(Q̄[0 : Kτ̄ ])(2.16)404

≤ n
(
1− qdG τ̄

)K
,(2.17)405406

where the last inequality follows by (2.12).407

We can also bound
∥∥Q[0 : Kτ̄ ]− 1

n1n1
T
n

∥∥
1
using [35, Theorem 3.1], as408

(2.18)
∥∥Q[0 : Kτ̄ ]− 1

n1n1
T
n

∥∥
1
≤

√
n
(
1− q

2n2

) 1
τ̄

.409

Combining (2.15), (2.17) and (2.18) with K = ⌊k/k̄τ̄⌋ gives the required bound.410

We note that the convergence rate in Theorem 2.1 is primarily dependent of411

the diameter of the graph, dG , and the lower bound on the nonzero entries of the412

mixing matrix, q. The form of the convergence rate factor γ confirms the empirical413

observation that compact graphs with shorter diameters generally fare better with414

pruning since multiple information pathways can potentially exist between two nodes.415

The dependence on q can be illustrated by considering the Metropolis-Hastings scheme416

as described in (2.1). Let nGk|τ denote the maximum node degree of graph G(V,Ek|τ ).417

If nmax := maxk∈I nGk|τ , denotes the maximum node degree amongst all the pruned418

graphs (assumed to be connected) obtained during the algorithm, then q = 1
1+nmax

.419

Since nmax can be smaller than the maximum node degree of the underlying reference420

graph, q can potentially be larger for AC.421

Another point to note here is that either term on the right-hand side of the422

minimum in (2.8) can be active. For graphs, where dG is large, the second term is423

active. Conversely, in the case of small dG and large n, the first term is active. As a424

concrete example of the latter case, we can consider a dumbbell graph with dG = 3,425

n ≫ 1, and τ̄ = 1. The first term in (2.8) will be active provided,
(
1− q3

)⌊ t
3⌋ ≤426 (

1− q
2n2

)t
, t ≥ 1.427

Remark 2.4. We make the following additional remarks about Theorem 2.1.428

• It should be noted that the convergence factor γ in (2.8) may be a conservative429

estimate in general. Nevertheless, the analysis provided here remains applicable430

in a broad range of scenarios, even when tighter estimates for specific cases may431

not hold. In particular, the extension of Theorem 2.1 to a directed graph setting,432
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where only column stochasticity is satisfied (as in the push-sum protocol), can433

be derived relatively easily. This is due to the fact that the definition of the434

coefficient of ergodicity and the associated bounds, e.g., (2.7), do not necessitate435

a double-stochasticity assumption on the matrix Qk.436

• The assumptions on the matrix entries of Qk in Theorem 2.1 are typical in er-437

godic matrix literature [24] and multi-agent coordination and optimization prob-438

lems [35]. For undirected graphs, the assumptions are satisfied if the weights are439

generated according to (2.1).440

• To understand (and quantify) the impact of pruning on distributed averaging441

within a simplified context, let us consider a scenario where there is a total442

communication budget of B bits, and each node utilizes D bits to transmit the443

quantized objective variable to its neighboring nodes. The maximum number of444

iterations that can be executed under these settings is given by T = B
2D|E| . Let445

σ(Q) denote the spectral gap of the mixing matrix Q, assumed to be generated446

in accordance to (2.1). Under Assumption 2.1, for xk generated via (2.2) with447

Qk = Q⊗ Id, ∀ k,448

(2.19) ∥xT − x̄T ∥ ≤ (1− σ(Q))T ∥x0 − x̄0∥.449

If we consider the same scenario with a fraction κ < 1 of the edges pruned450

(where the pruned mixing matrix is denoted by Qprune) and assume the pruned451

graph satisfies Assumption 2.1, we have2,452

(2.20) ∥xT prune − x̄T prune∥ ≤ (1− σ(Qprune))
T prune

∥x0 − x̄0∥.453

Since T prune = B
2(1−κ)D|E| =

T
1−κ > T , the upper bound for the consensus error454

with the pruned network, where σ(Qprune) ≈ σ(Q), is potentially tighter since455

(1− σ(Qprune))
T prune

⪅ (1− σ(Q))
T
. In Section 4.1 (Figure 1(c)), we empiri-456

cally observe that σ(Qprune) for small to medium values of κ does not significantly457

deviate from σ(Q), suggesting that there are instances for which the inequality is458

likely to hold.459

3. Adaptive Consensus based Decentralized Optimization. In this sec-460

tion, we describe the proposed Adaptive Consensus based Gradient Tracking algo-461

rithm (Algorithm 3.1, AC-GT) for decentralized optimization. The problem under462

consideration can be expressed as,463

(3.1)
min

x∈Rnd
f(x) :=

1

n

n∑
i=1

fi(xi)

s.t. Qx = x,

464

where f : Rnd → R and Q := Q⊗Id ∈ Rnd×nd. Under Assumption 2.1, the constraint465

is equivalent to the condition that xi = xj , for all i, j ∈ [n], and thus problems (3.1)466

and (1.1) are equivalent. We make the following assumption with regards to the467

component functions (fi).468

Assumption 3.1 (Regularity and convexity of fi). Each fi is L-smooth and469

µ-strongly convex.470

2To keep the presentation clear, we assume T, Tprune ∈ N.
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The general idea of AC-GT is to leverage the adaptive consensus protocol of the471

previous section and combine it with a gradient tracking algorithm [34] in a manner472

that preserves the strong convergence guarantees of the latter while harnessing the473

communication savings of the former. The pseudo-code for the algorithm is provided474

in Algorithm 3.1.475

Algorithm 3.1 ADAPTIVE CONSENSUS BASED GRADIENT TRACKING (AC-GT)

Inputs: Graph G(V, E); Cycle Length τ ∈ N; Softmax parameter β ∈ [0,∞]; Thresholding factors
(κ̄i, κ

¯i
) ∈ [0, 1]2 for all i ∈ [n]; Step size α > 0; Initial iterates xi,0 ∈ Rd, yi,0 = ∇fi(xi,0) for all

i ∈ [n]; Total number of iterations T ∈ N.
1: for k = 0, . . . , T do
2: for all i ∈ [n] in parallel do
3: if k ∈ I, then
4: Generate G(V, Ēk|τ ) ∼ PRUNING PROTOCOL(G(V, E), xi,k, (κ̄i, κ

¯i
), β).

5: Get new weights q̄ij [k|τ ] ∼ GENERATE WEIGHTS (G(V, Ēk|τ )).

6: Generate G(V, Êk|τ ) ∼ PRUNING PROTOCOL(G(V, E), yi,k, (κ̄i, κ
¯i
), β).

7: Get new weights q̂ij [k|τ ] ∼ GENERATE WEIGHTS (G(V, Êk|τ )).
8: end if
9: Update estimate at node i according to: xi,k+1 =

∑n
j=1 q̄ij [k|τ ]

(
xj,k − αyj,k

)
.

10: Update gradient estimate at node i according to: yi,k+1 =
∑n

j=1 q̂ij [k|τ ]yj,k +

∇fi(xi,k+1)−∇fi(xi,k).
11: end for
12: end for

Output: xi,T for all i ∈ [n].

To provide intuition for the algorithm, we review the main steps of the gradient476

tracking algorithm (GTA), as it serves as a foundational component of AC-GT. The477

main iterations of the gradient tracking algorithm can be expressed as,478

xi,k+1 =

n∑
j=1

qij (xj,k − αyj,k) , yi,k+1 =

n∑
j=1

qijyj,k +∇fi(xi,k+1)−∇fi(xi,k),479

480

where α > 0 is a constant referred to as the step size.481

The underlying computational principles of AC-GT are similar to those of GTA.482

However, the communication structure of AC-GT is based on AC. Similar to AC, AC-GT483

operates in a cyclical manner. In the k|τ cycle, if k belongs to the set I, the pruning484

protocol is executed twice. The first instance employs the x estimates to get the485

pruned graph (Qk) and the associated mixing matrix, which are subsequently utilized486

to update the x estimate,487

xk+1 = Qk (xk − αyk) , where Qk = Qk|τ , ∀k ∈ [(k|τ)τ, (k|τ + 1)τ) .(3.2)488489

The second instance of the protocol obtains a different pruned graph (Q̂k) using the490

y estimates. The mixing matrix corresponding to this graph is then used to update491

the y estimate as follows,492

yk+1 = Q̂kyk +∇f(xk+1)−∇f(xk), where Q̂k = Q̂k|τ , ∀k ∈ [(k|τ)τ, (k|τ + 1)τ) .

(3.3)

493494

The pruning protocol is executed twice because the dissimilarity between the y es-495

timates is expected to be different from the dissimilarity between the x estimates.496

AC-GT employs a constant step size α > 0 which depends on both the properties of497

the function and the structure of the pruned network as shown in the next subsection.498
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Remark 3.1. We make a couple of remarks about AC-GT (Algorithm 3.1).499

• For τ = 1 and Qk = Q ⊗ Id for all k ∈ N, where Q is the mixing matrix cor-500

responding to the reference graph, AC-GT reduces to a standard gradient tracking501

algorithm (DIGing) [34].502

• The extension of AC-GT to a directed graph setting is feasible by leveraging the503

push-pull gradient algorithm (Push-DIGing) [39]. Similar to AC, the principles504

and theory of AC-GT for the directed graph setting can be derived from the current505

framework, with appropriate adjustments.506

3.1. Convergence Analysis. We provide theoretical convergence guarantees507

for AC-GT. For simplicity, we assume that Qk = Q̂k for all k ≥ 0 in (3.2) and (3.3)508

and note that one can derive the same results verbatim for the case where Qk ̸= Q̂k,509

with additional notation required. We build up to our main result through a series510

of technical lemmas which we state next. We begin by proving a descent relation for511

the consensus error Ψk, defined as,512

(3.4) Ψk :=

[
xk − x̄k

α(yk − ȳk)

]
∈ R2nd.513

514

Lemma 3.1. Suppose that the matrices Qk, for all k, are doubly stochastic and515

Q̂k = Qk. For Ψk given in (3.4) and τ̂ ∈ N,516

∥Ψk∥2 ≤ ρ′∥Ψk−τ̂∥2 + b
k−1∑

j=k−τ̂

∥Ψj∥2 + c
k−1∑

j=k−τ̂

(f(x̄j)− f(x∗)) , if k ≥ τ̂ ,

(3.5)

517

∥Ψk∥2 ≤ 5(1 + τ̂2)∥Ψ0∥2 + b

k−1∑
j=0

∥Ψj∥2 + c

k−1∑
j=0

(f(x̄j)− f(x∗)) , if 0 < k < τ̂ ,

(3.6)

518

519

where ρ′ := 2(1+ τ̂2)maxτ̂≤j≤t

∥∥Q[j − τ̂ : j]− 1
n1n1

T
n

∥∥2, b := 180α2L2(1+ τ̂2)τ̂ , and520

c := 320nα4L3(1 + τ̂2)τ̂ .521

Proof. We start by considering the expression xk − x̄k. By (3.2) and the double522

stochasticity of Qk,523

xk − x̄k =
(
Qk−1 − 1n1

T
n

n

) (
xk−1 − x̄k−1 − α(yk−1 − ȳk−1)

)
.(3.7)524

525

Using (3.3), a similar expression for yk − ȳk is given as,526

(3.8)

yk − ȳk =
(
Qk−1 − 1n1

T
n

n

) (
yk−1 − ȳk−1

)
−
(
In − 1n1

T
n

n

)
(∇f(xk)−∇f(xk−1)),527

where In := In ⊗ Id ∈ Rnd×nd. The expressions in (3.7) and (3.8) can be compactly528

represented in matrix form as follows,529

Ψk = Jk−1Ψk−1 + αEk−1530

= J[k − τ̂ : k]Ψk−τ̂ + α
τ̂∑

j=1

J[k − j + 1 : k]Ek−j ,(3.9)531

532
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where533

(3.10)

Jk :=

[
Qk − 1n1

T
n

n −
(
Qk − 1n1

T
n

n

)
0 Qk − 1n1

T
n

n

]
,Ek−1 :=

[
0(

In − 1n1
T
n

n

)
(∇f(xk−1)−∇f(xk))

]
534

and J[k − j : k] := Jk−1 · · ·Jk−j , for any j ≤ τ̂ ≤ k. The matrix J[k − j : k] can be535

expressed as,536

J[k − j : k] =

[
Q[k − j : k]− 1n1

T
n

n −j
(
Q[k − j : k]− 1n1

T
n

n

)
0 Q[k − j : k]− 1n1

T
n

n

]
.(3.11)537

538

The above equation can be derived by a straightforward induction argument using539

the facts that540 [
A1 −A1

0 A1

]
×
[
A2 −A2

0 A2

]
=

[
A1A2 −2A1A2

0 A1A2

]
,541

and, for any two doubly stochastic matrices Q and Q′,542 (
Q− 1n1

T
n

n

)(
Q′ − 1n1

T
n

n

)
=
(
QQ′ − 1n1

T
n

n

)
.543

By (3.11), it follows that544

∥J[k − j : k]∥2 ≤ (1 + j2)
∥∥Q[k − j : k]− 1

n1n1
T
n

∥∥2 ,(3.12)545546

and, since
∥∥Q[k − j : k − 1]− n−11n1

T
n

∥∥2 ≤ 4,547

(3.13) ∥J[k − j : k]∥2 ≤ 4(1 + j2) ≤ 4(1 + τ̂2), ∀ j < τ̂ .548

Taking the norm square of (3.9),549

∥Ψk∥2 =

∥∥∥∥∥∥J[k − τ̂ : k]Ψk−τ̂ + α
τ̂∑

j=1

|J[k − j + 1 : k]Ek−j

∥∥∥∥∥∥
2

550

≤
(
1 + 1

4

)
∥J[k − τ̂ : k]Ψk−τ̂∥2 + 5α2

∥∥∥∥∥∥
τ̂∑

j=1

J[k − j + 1 : k]Ek−j

∥∥∥∥∥∥
2

551

≤ 5
4 (1 + τ̂2)

∥∥Q[k − τ̂ : k]− 1
n1n1

T
n

∥∥2 ∥Ψk−τ̂∥2 + 20α2(1 + τ̂2)τ̂
τ̂∑

j=1

∥Ek−j∥2,

(3.14)

552

553

where the first inequality is due to the fact that ∥a+b∥2 ≤ (1+ξ)∥a∥2+(1+ξ−1)∥b∥2554

for any constant ξ > 0, and the second inequality follows by (3.12) with j = τ̂ , (3.13),555

and the fact that
∥∥∥∑τ̂

j=1 aj

∥∥∥2 ≤ τ̂
∑τ̂

j=1 ∥aj∥2. We next bound ∥Ep−1∥ for any p ≥ 1.556

By the definition of Ek (3.10) with k = p,557

(3.15) ∥Ep−1∥2 ≤
∥∥∥(In − 1n1

T
n

n

)
(∇f(xp)−∇f(xp−1))

∥∥∥2 ≤ ∥∇f(xp)−∇f(xp−1))∥2 .558

15

This manuscript is for review purposes only.



The term on the right-hand-side of (3.15) can be bounded as follows559

∥∇f(xp)−∇f(xp−1)∥2560

≤L2∥xp − xp−1∥2561

=L2∥(Qp−1 − In)(xp−1 − x̄p−1)− αQp−1yp−1)∥2562

≤2L2∥(Qp−1 − In) (xp−1 − x̄p−1) ∥2 + 2α2L2∥yp−1∥2563

≤8L2∥xp−1 − x̄p−1∥2 + 4α2L2∥yp−1 − ȳp−1∥2 + 4α2L2∥ȳp−1∥2,(3.16)564565

where we have used Assumption 3.1 to get the first inequality, (3.2) with k = p − 1566

to substitute for xp and the fact that (Qp−1 − In)x̄p−1 = 0 to get the equality, and567

∥Qp−1 − In∥ ≤ 2 to obtain the first term in the last inequality. By Assumption 3.1,568

∥ȳp−1∥2 =n∥ȳp−1∥2569

=n

∥∥∥∥∥ 1n
n∑

i=1

∇fi(xi,p−1)

∥∥∥∥∥
2

570

≤2n

∥∥∥∥∥ 1n
n∑

i=1

∇fi(xi,p−1)−
1

n

n∑
i=1

∇fi(x̄p−1)

∥∥∥∥∥
2

571

+ 2n

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x̄p−1)−
1

n

n∑
i=1

∇fi(x
∗)

∥∥∥∥∥
2

572

≤2L2∥xp−1 − x̄p−1∥2 + 4L

n∑
i=1

(fi(x̄p−1)− fi(x
∗)) .(3.17)573

574

Combining (3.15), (3.16) and (3.17), and using the fact that α < 1/3L, it follows that575

for any p ≥ 1,576

∥Ep−1∥2 ≤∥∇f(xp)−∇f(xp−1)∥2577

≤9L2
(
∥xp−1 − x̄p−1∥2 + α2∥yp−1 − ȳp−1∥2

)
(3.18)578

+ 16α2L3
n∑

i=1

(fi(x̄p−1)− fi(x
∗)) .579

580

Using (3.18) with p = k − j + 1 to bound ∥Ek−j∥, 1 ≤ j ≤ τ̂ in (3.14), we get,581

∥Ψk∥2 ≤2(1 + τ̂2)
∥∥Q[k − τ̂ : k]− 1

n1n1
T
n

∥∥2 ∥Ψk−τ̂∥2

+ 180α2L2(1 + τ̂2)τ̂
τ̂∑

j=1

∥Ψk−j∥2

+ 320nα4L3(1 + τ̂2)τ̂
τ̂∑

j=1

(f(x̄k−j)− f(x∗)) ,

582

which proves (3.5). To prove (3.6), we note that for k < τ̂ , we can write (3.9) as,583

Ψk = Jk−1Ψk−1 + αEk−1 = J[0 : k]Ψ0 + α
k−1∑
j=0

J[k − j : k]Ej .(3.19)584

585

16

This manuscript is for review purposes only.



Taking the norm square of (3.19),586

∥Ψk∥2 ≤
(
1 + 1

4

)
∥J[0 : k]Ψ0∥2 + 5α2

∥∥∥∥∥∥
k−1∑
j=0

J[k − j : k]Ej

∥∥∥∥∥∥
2

587

≤ 5(1 + τ̂2)∥Ψ0∥2 + 20α2(1 + τ̂2)τ̂
k−1∑
j=0

∥Ej∥2,(3.20)588

589

where we have used ∥a+ b∥2 ≤ (1 + ξ)∥a∥2 + (1 + ξ−1)∥b∥2 for any constant ξ > 0 in590

the first inequality and (3.13) to obtain the second inequality. The final result (3.6)591

can be derived using (3.18) with p = j + 1 for 1 ≤ j ≤ k − 1 in (3.20).592

Next, we state an auxiliary lemma whose proof can be found in [48, Lemma 4].593

Lemma 3.2. Suppose the non-negative scalar sequences {at}t≥0 and {et}t≥0 sat-594

isfy the following recursive relation for a fixed τ̂ ∈ N595

at ≤ ρ′at−τ̂ +
b

τ̂

t−1∑
i=t−τ̂

ai + c

t−1∑
i=t−τ̂

ei + r, if t ≥ τ̂ ,(3.21)596

at ≤ ρ′′a0 +
b

τ̂

t−1∑
i=0

ai + c
t−1∑
i=0

ei + r, if t < τ̂ ,(3.22)597

598

where b, c, r , ρ′′ are non-negative constants, b ≤ ρ′/4 and ρ′ ∈ (0, 1/4). Then, for599

any t ∈ N,600

at ≤ 20ρ′′
(
1− 3ρ

4τ̂

)t
a0 + 60c

t−1∑
i=0

(
1− 3ρ

4τ̂

)t−i

ei +
26r

ρ
,(3.23)601

602

where ρ := 1− 2ρ′.603

We are ready to state and prove the main theorem.604

Theorem 3.1. Suppose that: (i) Assumptions 2.1 and 3.1 hold, and, (ii) Qk are605

doubly stochastic matrices and Q̂k = Qk for k ≥ 0. Let xi,k denote the iterates606

generated via the recursions (3.2)-(3.3) and x̄k := n−1
∑n

i=1 xi,k. Then, for all k ≥ 0,607

(3.24)

∥x̄k − x∗∥2

≤
(
1− αµ

4

)k (∥x̄0 − x∗∥2 + 1000L(1+τ̂2)

µn(1−αµ
4 )

(
∥x0 − x̄0∥2 + α2∥y0 − ȳ0∥2

))608

where τ̂ ∈ N with ρ′ := 2(1 + τ̂2)maxτ̂≤t≤k

∥∥Q[t− τ̂ : t]− 1
n1n1

T
n

∥∥2 < 1/4 and609

(3.25) α < min
{
1,

√
ρ′

58Lτ̂2

}
.610

Proof. By (3.2), the optimization error of the average iterates for any t ∈ N is611

∥x̄t+1 − x∗∥2 = ∥x̄t − αȳt − x∗∥2612

=

∥∥∥∥∥x̄t −
α

n

n∑
i=1

∇fi(xi,t)− x∗

∥∥∥∥∥
2

613

= ∥x̄t − x∗∥2 − 2α

n

〈
n∑

i=1

∇fi(xi,t), x̄t − x∗

〉
+ α2

∥∥∥∥∥ 1n
n∑

i=1

∇fi(xi,t)

∥∥∥∥∥
2

,(3.26)614

615

17

This manuscript is for review purposes only.



where ȳt = n−1
∑n

i=1 ∇fi(xi,t). (This can be proven by an induction argument using616

(3.3).) The second term in (3.26) can be bounded as,617 〈
n∑

i=1

∇fi(xi,t), x̄t − x∗

〉
618

=

〈
n∑

i=1

∇fi(xi,t), x̄t − xi,t

〉
+

〈
n∑

i=1

∇fi(xi,t), xi,t − x∗

〉
619

≥
n∑

i=1

[
fi(x̄t)− fi(xi,t)− L

2 ∥x̄t − xi,t∥2 + fi(xi,t)− fi(x
∗) + µ

2 ∥xi,t − x∗∥2
]

620

≥
n∑

i=1

[
fi(x̄t)− fi(x

∗)− L+µ
2 ∥x̄t − xi,t∥2 + µ

4 ∥x̄t − x∗∥2
]
,(3.27)621

622

where Assumption 3.1 is used in the first inequality and the bound ∥x̄t − x∗∥2 ≤623

2∥x̄t − xi,t∥2 + 2∥xi,t − x∗∥2 is used to derive the last inequality. The last term in624

(3.26) can be bounded as,625 ∥∥∥∥∥ 1n
n∑

i=1

∇fi(xi,t)

∥∥∥∥∥
2

626

=

∥∥∥∥∥ 1n
n∑

i=1

∇fi(xi,t)−
1

n

n∑
i=1

∇fi(x̄t) +
1

n

n∑
i=1

∇fi(x̄t)−
1

n

n∑
i=1

∇fi(x
∗)

∥∥∥∥∥
2

627

≤2L2

n

n∑
i=1

∥xi,t − x̄t∥2 +
4L

n

n∑
i=1

(fi(x̄t)− fi(x
∗)),(3.28)628

629

where in the second summation we have used the fact that ∥∇fi(x̄t) −∇fi(x
∗)∥2 ≤630

2L(fi(x̄t) − fi(x
∗)) by Assumption 3.1 [36, Theorem 2.1.5]. Using (3.27) and (3.28)631

in (3.26) along with α < 1/4L, it follows that,632

∥x̄t+1 − x∗∥2 ≤
(
1− αµ

2

)
∥x̄t − x∗∥2 − α

n

(
n∑

i=1

fi(x̄t)− fi(x
∗)

)
633

+
(3L/2 + µ)α

n

n∑
i=1

∥x̄t − xi,t∥2634

≤
(
1− αµ

2

)
∥x̄t − x∗∥2 − α

n

(
n∑

i=1

fi(x̄t)− fi(x
∗)

)
+ 5αL

2n ∥Ψt∥2,(3.29)635

636

where the last inequality follows due to ∥x̄t − xt∥2 ≤ ∥Ψt∥2. Let rt := ∥x̄t − x∗∥2.637

Multiplying both sides of (3.29) by wt+1 = (1− αµ/4)−(t+1), it follows that,638

wt+1rt+1 ≤ wtrt − wt+1α (f(x̄t)− f(x∗)) + wt+1
5αL
2n ∥Ψt∥2,(3.30)639640

where wt+1(1− αµ/2) ≤ wt.641

Next, we express (3.5) (and (3.6)) in the form of (3.21) (and (3.22)) with at =642

∥Ψt∥2, b = 180α2L2(1+ τ̂2)τ̂2, c = 320nα4L3(1+ τ̂2)τ̂ , et = f(x̄t)− f(x∗) and r = 0.643

By Lemma 3.2, it follows that,644

(3.31)

∥Ψt∥2 ≤ 100(1 + τ̂2)
(
1− 3ρ

4τ̂

)t ∥Ψ0∥2 + 19200nα4L3(1 + τ̂2)τ̂2
t−1∑
j=0

(
1− 3ρ

4τ̂

)t−j
ej .645
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Note that the condition on the step size (3.25) ensures that b < ρ′/4. Multiplying646

both sides of (3.31) by wt+1 := (1− αµ/4)−(t+1) and summing from t = 0 to k − 1647

(3.32)

k−1∑
t=0

(
1− αµ

4

)−(t+1) ∥Ψt∥2

≤100(1 + τ̂2)∥Ψ0∥2
k−1∑
t=0

(
1− αµ

4

)−(t+1) (
1− 3ρ

4τ̂

)t
+ 19200nα4L3(1 + τ̂2)τ̂2

k−1∑
t=0

(
1− αµ

4

)−(k+1)
t−1∑
j=0

(
1− 3ρ

4τ̂

)t−j
ej .

648

By (3.25), we have α ≤
√
ρ′

Lτ̂2 ≤ 1
2Lτ̂2 ≤ ρ

Lτ̂ ≤ 3ρ
2µτ̂ , where the second inequality is due649

to
√
ρ′ ≤ 1/2, the third inequality follows by τ̂ ≥ 1 and ρ = 1−2ρ′ ≥ 1/2 for ρ′ < 1/4,650

and the last inequality is due to the fact that µ < L. Thus, it follows that651

(3.33) αµ
2 ≤ 3ρ

4τ̂ =⇒ αµ
2 (1− αµ

8 ) ≤ 3ρ
4τ̂ =⇒ 1− 3ρ

4τ̂ ≤ (1− αµ
4 )2.652

We use (3.33) to bound the two summations on the right-hand-side of (3.32) as follows653

(3.34)

k−1∑
t=0

(
1− αµ

4

)−(t+1) (
1− 3ρ

4τ̂

)t ≤ k−1∑
t=0

(
1− αµ

4

)t−1 ≤ 4w1

αµ ,654

and655

k−1∑
t=0

(
1− αµ

4

)−(t+1)
t−1∑
j=0

(
1− 3ρ

4τ̂

)t−j
ej656

=
k−1∑
t=0

t−1∑
j=0

(
1− αµ

4

)−(t+1)+j+1 (
1− 3ρ

4τ̂

)t−j
wj+1ej657

=

k−1∑
t=0

t−1∑
j=0

(
1−3ρ/4τ̂
1−αµ/4

)t−j

wj+1ej658

≤
k−1∑
t=0

t−1∑
j=0

(
1− αµ

4

)t−j
wj+1ej659

≤
k−1∑
t=0

(
1− αµ

4

)t k−1∑
t=0

wt+1et ≤ 4
αµ

k−1∑
t=0

wt+1et,(3.35)660

661

where the second inequality is due to (3.33) and the relation
∑k−1

t=0

∑t−1
j=0 at−jbj ≤662 ∑k−1

t=0 at
∑k−1

t=0 bt for any two non-negative scalar sequences at, bt, t ∈ N. By (3.34),663

(3.35) and (3.32), it follows that,664

(3.36)

k−1∑
t=0

wt+1∥Ψt∥2

≤ 400w1(1+τ̂2)
µα ∥Ψ0∥2 + 76800nα3L3(1+τ̂2)τ̂

µ

k−1∑
t=0

wt+1 (f(x̄t)− f(x∗)) .

665

19

This manuscript is for review purposes only.



Finally, summing (3.30) from t = 0 to k − 1, and dividing by wt, it follows that,666

rk ≤ 1
wk

(
w0r0 +

1000w1(1+τ̂2)L
nµ ∥Ψ0∥2667

+
(

192000α4L4(1+τ̂2)τ̂
µ − α

) k−1∑
t=0

wt+1 (f(x̄t)− f(x∗))

)
,668

669

where we have used (3.36) to bound
∑

t wt+1∥Ψt∥2. To prove (3.24), we note that670

w−1
k = (1−αµ)k by definition, and the last term in the above inequality is non-positive671

since α3 ≤ 1
2×307200L3τ̂3 .672

Broadly, Theorem 3.1 establishes the decay of the optimization error for a gradi-673

ent tracking method with time inhomgeneous weight matrices. The convergence rate674

of the algorithm remains linear even when using time-varying matrices, and the form675

of the convergence factor remains remarkably consistent. However, it is worth men-676

tioning that this convergence factor can potentially be smaller due to the possibility of677

using smaller step sizes, which depend on the value of τ̂ . In this context, the constant678

τ̂ determines the effect of the network on the step size via (3.25). More precisely, τ̂679

is a constant chosen to ensure that (1 + τ̂2)
∥∥Q[k − τ̂ : k]− 1

n11
T
∥∥2 is less than one.680

This implies that for better connected graphs, i.e., smaller
∥∥Q[k − τ̂ : k]− 1

n11
T
∥∥2, τ̂681

can be smaller so that α can be larger (cf. (3.25)). For time-inhomogeneous matrices682

satisfying Assumption 2.2, we can establish precise upper bounds on the value of τ̂683

using the coefficient of ergodicity (cf. Corollary 3.1). We note that our final conver-684

gence bound has a better dependency in terms of the condition number by a factor685

of
√

L
µ as compared to [34]. We believe the reason for this improvement is due to the686

utilization of small-gain theorem in [33] compared to our more standard approach of687

bounding the spectral norm of the associated matrices (cf. Lemma 3.1).688

Remark 3.2. For fixed graphs, one can recover the optimal convergence rate of689

the DIGing algorithm [34], up to logarithmic factors, from Theorem 3.1. For GTA, we690

have Qk = Q⊗ Id, for all k ≥ 0. Then, for τ̂ < k, if τ̂ > O
(

1
σ(Q) log

1
σ(Q)

)
,691

ρ′ = 2(1 + τ̂2)

∥∥∥∥Q[k − τ̂ : k]− 1

n
1n1

T
n

∥∥∥∥2 ≤ 2(1 + τ̂2)
k−1∏

j=k−τ̂

∥∥∥∥Q− 1

n
1n1

T
n

∥∥∥∥2692

≤ 4τ̂2(1− σ(Q))2τ̂ < 1/4.693694

which implies α = Õ(σ
2(Q)
L ), where Õ(·) hides logarithmic factors. Thus, from Theo-695

rem 3.1 we have ∥x̄T − x∗∥2 ≤ ϵ, if T ≥ Õ
(

L
µσ2(Q) log

1
ϵ

)
.696

We have the following corollary to Theorem 3.1.697

Corollary 3.1. Suppose that: (i) Assumptions 2.1, 2.2 and 3.1 hold, (ii) the698

matrices Qk := [qij [k]]i∈[n],j∈[n] are doubly stochastic and Q̂k = Qk for all k ≥ 0, (iii)699

qii[k] > 0 for all k ≥ 0 for at least one i ∈ [n], and, (iv) if qij [k] > 0 for any (i, j) ∈ E700

and k ≥ 0, then qij [k] > q for some strictly positive constant q > 0 independent of k701

and (i, j). Let τη := ητ̄dG, where τ̄ is defined in Assumption 2.2 and η ∈ N satisfies702

(3.37) η ≥
⌈
max{ln 16n3τ̄2d2

G ,16 ln 4/γ}
γ

⌉
703
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where γ := qdG τ̄ . Then, if α = O
(

1
Lτ2

η

)
, (3.24) is satisfied for x̄k generated via the704

recursions (3.2)-(3.3).705

Proof. To prove the corollary, we need to show that there exists a constant η ∈ N706

such that for τη = ητ̄dG , we have ρ′ := 2(1 + τ2η )
∥∥Q[j − τη : j]− 1

n1n1
T
n

∥∥ < 1/4 for707

any τη ≤ j ≤ t to ensure the results of Theorem 3.1 hold with τ̂ = τη. It follows that708

δ(Q[(j − τη : j]) ≤ ρ (Q[(j − τη : j])709

≤ ρ(Q[j − ητ̄dG : j − (η − 1)τ̄ dG ]) · · · ρ(Q[(j − τ̄ dG : j]))710

≤ (1− γ)
η
,711712

where γ := qτ̄dG , and the first, second and third inequalities are due to (2.7), (2.6)713

and (2.11), respectively. Following the same logic as in (2.16), it follows that,714 ∥∥Q[j − τη : j]− 1
n1n1

T
n

∥∥
1
≤ nδ(Q[j − τη : j]) ≤ n (1− γ)

η ≤ n exp(−γη).(3.38)715716

Consequently, this implies,717

2(1 + τ2η )
∥∥Q[j − τη : j]− 1

n1n1
T
n

∥∥2 ≤ 2(1 + τ2η )n
∥∥Q[j − τη : j]− 1

n1n1
T
n

∥∥2
1

718

≤ 2n3(1 + η2τ̄2d2G) exp(−2γη)719

≤ 4n3τ̄2d2G︸ ︷︷ ︸
:=A

η2 exp(−2γη),(3.39)720

721

where the second inequality is due to (3.38) and the last inequality follows since722

ητ̄dG ≥ 1. We next prove the following claim for any scalars η,A ≥ 1 and 0 < γ < 1:723

η2 exp(−2γη) < 1
4A if η >

⌈
max

{
ln 4A,16 ln 4/γ

γ

}⌉
.(3.40)724

725

To prove the claim, we note that the assumed inequality implies
(
1− ln η

γη

)
η > ln 4A

2γ .726

Let η̃ ∈ R be such that 0 < ln η̃/γη̃ < 1/4. Then, for any η > η̃,727

(3.41) η ≥ 2 ln 4A
3γ .728

To prove the existence of a η̃ satisfying ln η̃/η̃ ≤ γ/4 := ϵ, we consider η̃ = 4 ln 1/ϵ
ϵ , ϵ <729

1
4 . For such a η̃, we have, ln η̃/η̃ = ϵ

ln 4
ϵ+ln ln 1

ϵ

4 ln 1/ϵ < ϵ. Combining (3.41) with A =730

4n3τ̄2d2G and η ≥ η̃ = 16 ln
(
4/γ
)
/γ gives the lower bound on η in (3.40). Fi-731

nally, by (3.40), (3.39) can be bounded as, 2(1 + τ2η )
∥∥Q[j − τη : j]− 1

n1n1
T
n

∥∥2 ≤732

Aη2 exp(−2γη) < 1
4 , which completes the proof.733

The exact convergence rate of AC-GT can be derived from Corollary 3.1. By (3.24),734

the number of iterations required to reach ϵ-accuracy, denoted by T , is of the order of735

O
(

Lτ2
η

µ log 1
ϵ

)
since α = O

(
1

Lτ2
η

)
. Using (3.37) to bound η in τη = ητ̄dG , it follows736

T = O
(

Lη2τ̄2d2
G

µ log 1
ϵ

)
= Õ

((
τ̄2d2

G
γ2

)
L
µ log 1

ϵ

)
.737

738

where Õ(·) hides logarithmic factors. Compared to the iteration complexity of GTA739

(see Remark 3.2) under the connected graph assumption, we note that the number740

of iterations can potentially increase by a factor of Õ
(

τ̄2d2
G

γ2

)
. This is expected given741

the weaker assumptions made, i.e., the underlying graph is static and connected.742

Despite the increased iteration complexity, one can potentially have savings in overall743

communication volume for AC-GT (cf. Section 4.2) analogous to those for AC (cf.744

Remark 2.4).745

21

This manuscript is for review purposes only.



(a) (c) (e)

(b) (d) (f)

Fig. 1: (a)-(b) Total communication volume/rounds required to achieve a consensus error of
10−10. (c) Variation of spectral gap with respect to pruning threshold, κ ∈ {0.1, 0.2, . . . , 0.9}.
(d)-(f) Total communication volume required to achieve a consensus error of 10−10 for
different κ ∈ {0.1, 0.2, . . . , 0.9}, τ ∈ {1, 101, 102} and β ∈ {0, 1, 101, 102}, respectively.

4. Numerical Experiments. In this section, we illustrate the empirical per-746

formance of AC and AC-GT via two sets of experiments. The first set of experiments747

demonstrates the benefits of AC compared to the distributed averaging algorithm in748

achieving consensus and illustrates the effect of the parameters of the pruning pro-749

tocol on the performance of AC. The second set of experiments show the merits of750

AC-GT compared to popular methods on a linear regression problem with synthetic751

data [28], and a logistic regression problem with real datasets [29, 40] from the UCI752

repository [2]. All methods are implemented in Python, with a dedicated CPU core753

functioning as a node.754

4.1. Performance of AC. We first showcase the effectiveness of AC in achieving755

consensus, where the goal is for all nodes to attain the average value of the initial esti-756

mates of the nodes [9, Section 1]. The network topologies (graphs) are generated ran-757

domly using the Erdös-Rényi graph model [16] and are represented as G(n, p), where758

n represents the number of nodes, and p ∈ {0.2, 0.4, 0.6, 0.8} denotes the probability759

with which each possible edge is independently included in the pruned graph. The per-760

formance metric used is the average consensus error, defined as 1
|E|
∑

(i,j)∈E ∥xi−xj∥,761

where E represents the set of all edges and xi ∈ Rd for all i ∈ [n] with d = 10. The762

total communication volume is measured as the total number of vectors exchanged763

amongst all the nodes in the network. The initial values {xi,0}i∈[n] at each node are764

generated following a standard normal distribution.765

Comparison to distributed averaging. Figs. 1(a)-(b) compare the performance766

of AC to distributed averaging [43]. The latter can be considered a specific case of AC767

with κ̄ = 0 and τ = ∞. For the pruning protocol part of AC, we have set κ̄i = κ = 0.75768

for all i ∈ [n] and choose κ
¯i

to ensure that |Ei| ≥ 1, so that each node has at least769
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one neighbor. The softmax parameter is set to β = 1 and the cycle length is set to770

τ = 10. The mixing matrix is generated using the Metropolis Hastings rule (cf. (2.1)).771

Fig. 1(a) shows a significant reduction in the total communication volume required772

to reach a consensus error of 10−10 as compared to distributed averaging across all773

graph topologies. Fig. 1(b) demonstrates that the number of communication rounds774

for AC undergoes only a modest increase as compared to distributed averaging.775

Variation of pruning threshold (κ). In Fig. 1(c), we plot the average spectral776

gap of the mixing matrices as a function of κ ∈ {0.1, 0.2, . . . , 0.9}. The average777

spectral gap is defined as the average of the spectral gaps of all the weight matrices778

obtained throughout the pruning cycles in a run of the algorithm. The plot reveals779

an important observation: pruning up to 50-60% of the edges does not significantly780

affect the spectral properties of the mixing matrix. Moreover, increasing the value of781

κ leads to a decrease in communication volume across all graphs, see Fig. 1(d).782

Variation of consensus cycle length (τ). Intuitively, one expects AC to perform783

better with shorter cycles since more frequent pruning of the graph can potentially784

allow AC to adapt more effectively to varying consensus errors. Fig. 1(e) confirms785

this intuition, where we consider τ ∈ {1, 10, 100} with κ = 0.75. While a value of786

τ = 1 yields optimal performance in terms of communication volume, it necessitates787

executing the pruning protocol at every iteration.788

Variation of softmax parameter (β). Fig. 1(f) plots the total communication789

volume required to achieve a consensus error of 10−10 as a function of the softmax790

parameter β ∈ {0, 1, 10, 100} with τ = 10 and κ = 0.75. The total communication791

volume is obtained by averaging over 100 independent trials. Fig. 1(f) shows that792

higher values of β tend to show a modest improvement in the performance.793

4.2. Performance of AC-GT. This subsection considers the evaluation of the794

performance of AC-GT on linear and logistic regression problems.795

4.2.1. Linear Regression. We first consider a linear least-squares regression796

problem with synthetic data, formally defined as,797

min
x∈Rd

f(x) := 1
N

N∑
i=1

(aTi x− bi)
2,798

799

where ai ∈ Rd denotes the ith feature vector and bi ∈ R denotes the corresponding800

label. The data is generated using the technique proposed in [28] with N = 32000801

and d = 10. The network topologies considered are G(n, p), where n = 32 and802

p ∈ {0.2, 0.5, 0.8}. The data is partitioned uniformly in a disjoint manner amongst803

the nodes. We tuned the step size parameter in AC-GT using a grid-search over the804

range α ∈ {10−4, 10−3, 10−2, 10−1, 100} and present the results for the best step size.805

The softmax parameter is set to β = 1 and the cycle length is set to τ = 10. The806

mixing matrix is generated using the Metropolis Hastings rule (cf. (2.1)).807

Fig. 2 illustrates the performance of AC-GT in terms of two metrics, optimality808

error, defined as f(xavg)−f(x∗), where xavg = 1
n

∑n
i=1 xi, and average consensus error809

described in Section 4.1, with respect to the total communication volume. The results810

suggest that, in terms of optimality error, it is preferable to use a higher value of κ,811

the pruning threshold. This observation is consistent across graph topologies. That812

said, there is a slight degradation in the decay of the consensus error as κ increases.813

This degradation becomes more noticeable in sparser topologies, as seen in Fig. 2(c).814
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(a) G(32,0.8) (b) G(32,0.5) (c) G(32,0.2)

Fig. 2: Performance of AC-GT on linear regression problems for three different graphs, (a)
G(32,0.8) (b) G(32,0.5) (c) G(32,0.2). Top: Optimality Error versus Total Communication
Volume. Bottom: Average Consensus Error versus Total Communication Volume.

4.2.2. Logistic Regression. We consider ℓ2-regularized logistic regression prob-815

lems with real datasets of the form,816

min
x∈Rd

f(x) := − 1
N

N∑
i=1

{
bi log σ(a

T
i x) + (1− bi) log

(
1− σ(aTi x)

)}
+ λ

2 ∥x∥
2

817

818

where {ai, bi}Ni=1 represent the training samples with label bi ∈ {0, 1}, λ > 0 is the819

regularization parameter and σ(z) = 1
1+exp(−z) , ∀z ∈ R is the sigmoid function.820

We consider the Statlog [40] and the Mushroom [29] datasets from the UCI reposi-821

tory [2]. The Statlog dataset consists of N = 690 samples and d = 14 features whereas822

the Mushroom dataset consists of N = 8124 samples and d = 22 features. For these823

experiments, we consider G(n, p) with n = 16 and p = 0.5. The data partition and824

the algorithm parameters for AC-GT are set in the same manner as Section 4.2.1. The825

step size is tuned using a grid-search over the range α ∈ {10−4, 10−3, 10−3, 10−1, 100}826

for all the algorithms. The regularization parameter is set to λ = 10−4. The opti-827

mal solution x∗ is computed using the L-BFGS algorithm from the SciPy library in828

Python and solving the problems to high accuracy.829

The performance of AC-GT is compared to EXTRA [49] a popular gradient track-830

ing algorithm (denoted by “Gradient Tracking” in the plots) and the random gossip831

algorithm [9]3. In addition to the previous metrics, we also report the optimality832

error versus the total number of gradient evaluations of f(·). From the optimality833

error plots shown in Figs. 3(a) and (c), it is evident that AC-GT with a parameter834

value of κ = 0.9 exhibits the best performance. Note that the curves of the algorithms835

AC-GT and Gradient Tracking are overlapping here. While the optimality error of836

random gossip is comparable to AC-GT with κ = 0.5 in terms of total communication837

volume, AC-GT outperforms the former with respect to total gradient evaluations. As838

3To solve the semi-definite problem required for implementing the random gossip algorithm from
[9], we utilize the CVXPY library [14].
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(a) (b) (c)

Fig. 3: Performance of AC-GT on logistic regression problems: (a) Optimality Error
versus Total Communication Volume (b) Consensus Error versus Total Communi-
cation Volume (c) Optimality Error versus Total number of Gradient Evaluations.
Top: Statlog Dataset, G(16,0.5). Bottom: Mushroom Dataset, G(16,0.5).

for the consensus error, there is no notable difference in algorithm performance for839

the Statlog dataset. However, for the Mushroom dataset, random gossip and gradient840

tracking appear to exhibit inferior performance.841

5. Conclusion. In this paper, we have developed an adaptive randomized algo-842

rithmic framework aimed at enhancing the communication efficiency of decentralized843

algorithms. Based on this framework, we have proposed the AC algorithm to solve844

the consensus problem and the AC-GT algorithm to solve the decentralized optimiza-845

tion problem. The distinguishing feature of the framework is the ability to reduce846

the volume of communication by making use of the inherent network structure and847

local information. We have established theoretical convergence guarantees and have848

analyzed the impact of various algorithmic parameters on the performance of the algo-849

rithms. Numerical results on the consensus problem, and linear and logisitc regression850

problems, demonstrate that proposed algorithms achieve significant communication851

savings as compared to existing methodologies.852

Finally, several interesting extensions of the proposed algorithmic framework can853

be considered. From a communication perspective, one could consider directed graphs.854

Most of the groundwork for this setting has already been laid out in this work and855

as mentioned earlier, the theory can be extended to accommodate push-pull gradi-856

ent methods [39], where either row or column stochasticity is satisfied. Additionally,857

asynchronous updating within each consensus cycle can also be incorporated to allevi-858

ate the constraints imposed by slower (straggler) nodes. Other interesting directions859

include nonconvex problems, stochastic local information and inexact communication.860
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