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Abstract. Although calculations of QCD thermodynamics from first-principle

lattice simulations are limited to zero net-density due to the fermion sign prob-

lem, several methods have been developed to extend the equation of state

(EoS) to finite values of the B,Q, S chemical potentials. Taylor expansion

around µi = 0 (i = B,Q, S ) enables to cover with confidence the region up

to µi/T < 2.5. Recently, a new method has been developed to compute a 2D

EoS in the (T, µB) plane. It was constructed through a T -expansion scheme

(TExS), based on a resummation of the Taylor expansion, and is trusted up to

densities around µB/T = 3.5. We present here the new 4D-TExS EoS, a gen-

eralization of the TExS to all 3 chemical potentials, expected to offer a larger

coverage than the 4D Taylor expansion EoS. After explaining the basics of the

T -Expansion Scheme and how it is generalized to multiple dimensions, we will

present results for thermodynamic observables as functions of temperature and

both finite baryon and strangeness chemical potentials.

1 Introduction

The exploration of the phase diagram of nuclear matter at finite density, to understand how

matter behaves in extreme conditions, is a very active field of research nowadays [1]. In

order to interpret experimental results and bridge the gap with theory, heavy-ion collision and

neutron star merger simulations require a nuclear EoS as input. With the recent development

of new frameworks taking into account local charge conservation and diffusion, mainly to

study the existence of a critical point in the nuclear phase diagram, or the baryon stopping

for instance, the need for a four-dimensional EoS with independent chemical potentials is

growing. Since lattice QCD simulations are hindered from going to finite density because

of the sign problem [2], one has to use expansion methods to reach this purpose from first-

principle QCD calculations. The most successful attempt so far was achieved through a

Taylor expansion in several conserved-charge chemical potentials [3, 4], which is, however,

limited to µ̂i (≡ µi/T ) ⩽ 2 − 2.5, with i = B,Q, S [5]. We present here the generalization to

several dimensions of a new expansion method developed in Refs. [5, 6].
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2 T -Expansion Scheme

The EoS construction we present is based on the T -expansion scheme (TExS), initially pro-

posed in [5] as a 2-dimensional construction, and extended in [6] through the addition of a

correction to take into account the Stefan-Boltzmann limit at high temperature. Noticing that

limµ̂X→0
χX

1
(T,µ̂X )

µ̂X
= χX

2
(T, 0), one can start from the ansatz [6]:

χX
1

(T, µ̂X)

χ
X
1 (µ̂X)

=
χX

2
(T ′, 0)

χ
X
2 (0)

, (1)

with χX
j

the susceptibilities of conserved charge X, computed on the lattice at µ̂ = 0. The

rescaled temperature T ′ is expanded as T ′ = T


1 + λX
2

(T ) µ̂2
X
+ (O4)



, thus giving to this

expansion scheme a dependence on both T and µ̂X = µ/T , whereas the Taylor expansion

provides only an expansion in µ̂X at constant T [4].

3 4D-TExS - Generalization to 4 dimensions

One can generalize the approach defined in Sec. 2 from a two-dimensional phase space

(T, µ̂B), with one conserved charge X, to a four-dimensional phase space (T, µ̂B, µ̂Q, µ̂S ), with

B the baryon number, Q the electric charge and S the strangeness number. By a simple

change of variables to spherical coordinates, with the following definitions:

µ̂B = µ̂ . cos(θ) µ̂ =



µ̂2
B
+ µ̂2

Q
+ µ̂2

S
,

µ̂Q = µ̂ . sin(θ) cos(ϕ) ⇐⇒ ϕ = arccos


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

µ̂2
Q
+ µ̂2

S



, (2)

µ̂S = µ̂ . sin(θ) sin(ϕ) θ = arccos (µ̂B/µ̂) ,

one maps the system to a (T, µ̂, θ, ϕ) space, hence using the same two-dimensional TExS

approach described in Sec. 2, but now allowing to explore three finite chemical potentials

at the same time by varying the angles θ and ϕ. One needs thus to define the so-called

generalized second-order susceptibility:
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as a linear combination of the second-order charge susceptibilities, where cθ/ϕ ≡ cos(θ/ϕ)

and sθ/ϕ ≡ sin(θ/ϕ). In the same way, one obtains by further derivation the generalized

fourth-order cumulant X
θ,ϕ

4
(T ).

This leads to rewrite the main identity from Eq. (1) using X
θ,ϕ

1
and X

θ,ϕ

2
, where the ex-

panded temperature is written T ′ θ,ϕ(T, µ̂) = T


1 + λ
θ,ϕ

2
(T ) × µ̂2

B
+ ...


. The second-order ex-

pansion coefficient is expressed as:
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4 Results and thermodynamics

In this section, we show as a proof of concept some preliminary results obtained for an ex-

pansion along a trajectory with (θ, ϕ) = (90◦, 135◦), where µB = −µS . All the lattice QCD

data used in our construction have been computed by the Wuppertal-Budapest collaboration,

and have been matched with hadron resonance gas (HRG) calculation for T < 130 MeV [7].

Figure 1. Left panel: T ′ expansion coefficient λ
θ,ϕ

2
as a function of T , for θ = 135° and ϕ = 90°. We

display in blue the range calculated with HRG data, and in red the range from lattice QCD calculations.

Right panel: generalized charge density X1 as a function of T , for different values of µ̂ from 0 to 3.5.

We start the construction of the EoS by calculating the generalized second-order and

fourth-order susceptibilities for a given direction (θ, ϕ) in the phase diagram. From there,

one obtains the expansion parameter λ
θ,ϕ

2
as a function of T , shown on the left panel of Fig.1

for the chosen direction. Note that, for consistency, we stop the expansion of T ′ at second

order, since the λ
θ,ϕ

4
coefficient relies on sixth-order susceptibilities which have not all been

computed yet for mixed-charges B, Q, S . The generalized charged density X
θ,ϕ

1
, thus obtained

using Eq. (1), is shown on the right panel of Fig.1 for different values of µ̂. From there,

one can compute pressure by integrating X
θ,ϕ

1
using P θ,ϕ(T, µ̂) = P(T, 0) +

∫ µ̂

0
X
θ,ϕ

1
(T, µ̂′)dµ̂′,

with the zero-density pressure P(T, 0) obtained from lattice simulations. One can obtain

entropy density directly from pressure as well, using sθ,ϕ(T, µ̂) = s(T, 0)+
[

∂P θ,ϕ(T, µ̂)/∂T
]

µ̂
.

Both quantities are displayed in Fig.2 as functions of T , for different values of µ̂. Although

pressure looks smooth up to µ̂ = 3.5, one can observe that the entropy density starts to display

oscillations as a function of T from µ̂ = 2.5. Even though it remains an increasing function

of temperature, as physically expected, these oscillations are most likely due to a problem in

the way lattice susceptibilities used to construct the EoS are fitted.

Figure 2. Pressure (left panel) and entropy density (right panel) as a function of T , for θ = 135° and

ϕ = 90°. Different colors correspond to different values of µ̂ used, ranging from 0 to 3.5.
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5 Summary & Outlook

We present a formalism to construct a four-dimensional EoS based on a generalization of the

T -expansion scheme introduced in Refs. [5, 6], by means of a change of coordinates. This

new expansion method, which consist of a resummation of the Taylor expansion, has been

used to compute an equation of state at finite (T, µB, µS ), for which thermodynamics quantities

has been shown. Although this expansion scheme has been shown to be trusted up to µ̂B = 3.5

when other chemical potentials are 0 [5], the values it can reach in other direction is still left

to be determined. In the future, we will make calculation to finite chemical potentials for all

three conserved charges B, Q and S . We will work on the modeling of the susceptibilities, as

we need to ensure a smooth merging between HRG and lattice QCD regimes. At the same

time, we will work as well on extending the range of the susceptiblities by extrapolating them

to higher temperature, using lattice QCD data as a guidance and by ensuring a convergence

to their respective Stefan-Boltzmann limits at T → ∞. Finally, it is worth mentioning that all

the work presented here being preliminary, no proper error estimate has been performed yet.
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