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A B S T R A C T

The majority of the past research dealing with lane-changing controller design of autonomous

vehicles (𝐴𝑉 s) is based on the assumption of full knowledge of the model dynamics of the 𝐴𝑉

and the surrounding vehicles. However, in the real world, this is not a very realistic assumption

as accurate dynamic models are difficult to obtain. Also, the dynamic model parameters might

change over time due to various factors. Thus, there is a need for a learning-based lane change

controller design methodology that can learn the optimal control policy in real time using

sensor data. In this paper, we have addressed this need by introducing an optimal learning-

based control methodology that can solve the real-time lane-changing problem of 𝐴𝑉 s, where

the input-state data of the 𝐴𝑉 is utilized to generate a near-optimal lane-changing controller

by approximate/adaptive dynamic programming (ADP) technique. In the case of this type of

complex lane-changing maneuver, the lateral dynamics depend on the longitudinal velocity of

the vehicle. If the longitudinal velocity is assumed constant, a linear parameter invariant model

can be used. However, assuming constant velocity while performing a lane-changing maneuver

is not a realistic assumption. This assumption might increase the risk of accidents, especially in

the case of lane abortion when the surrounding vehicles are not cooperative. Thus, in this paper,

the dynamics of the 𝐴𝑉 are assumed to be a linear parameter-varying system. Thus we have two

challenges for the lane-changing controller design: parameter-varying, and unknown dynamics.

With the help of both gain scheduling and ADP techniques combined, a learning-based control

algorithm that can generate a near-optimal lane-changing controller without having to know

the accurate dynamic model of the 𝐴𝑉 is proposed. The inclusion of a gain scheduling approach

with ADP makes the controller applicable to non-linear and/or parameter-varying 𝐴𝑉 dynamics.

The stability of the learning-based gain scheduling controller has also been rigorously proved.

Moreover, a data-driven lane-changing decision-making algorithm is introduced that can make

the 𝐴𝑉 perform a lane abortion if safety conditions are violated during a lane change. Finally,

the proposed learning-based gain scheduling controller design algorithm and the lane-changing

decision-making methodology are numerically validated using MATLAB, SUMO simulations, and

the NGSIM dataset.
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1. Introduction

Inappropriate lane changes are responsible for one-tenth of all accidents in the U.S. (Chovan et al., 1994), due to human drivers’
naccurate estimation and prediction of the surrounding traffic, illegal maneuver, and inefficient driving skills. Automated lane-
hanging is regarded as a solution to reduce these human errors. Recently, the rapid development of computing, communication,
nd sensing technologies advances automated lane-changing and prompts the development of safer and more reliable lane-changing
ethods. Traditionally, the automated lane-changing task can be decomposed into three modules: decision-making, trajectory
lanning, and controller design (Wang et al., 2019b). The decision-making module determines whether to execute or abort the lane
hange according to the safety constraints, which are obtained by using the state (position, velocity, acceleration) information of the
urrounding vehicles through V2V communication and/or sensing. The trajectory planning module generates the feasible trajectory
or lane-changing, which will be tracked by the control module. There are several challenges to automated lane-changing. Firstly,
he complex interactions between the 𝐴𝑉 and the surrounding vehicles and environment make it hard to guarantee safety during
ane-changing. Secondly, the rapid velocity of the vehicles requires that the lane-changing algorithm should quickly respond to the
riving conditions in real time. Thirdly, an accurate dynamic model of the 𝐴𝑉 and its surrounding environment is hard to get.

Fourthly, the lane change maneuvers require both longitudinal and lateral controller design. Many studies in the literature have
studied the problem of longitudinal control of 𝐴𝑉 , some recent studies are done by Ma et al. (2022), Li (2022), Zhou et al. (2019).

owever, it remains challenging to precisely control the lateral movement of the 𝐴𝑉 , especially in the absence of an accurate
odel (Bevly et al., 2016).

.1. Model-based techniques

Over the past few years, many decision-making and trajectory-planning methodologies have been proposed in the literature. Nils-
on et al. (2016) proposed a utility function-based lane change and merge technique. The utility function considers the discretionary,
nticipatory, and mandatory conditions to judge the desirability of the 𝐴𝑉 to change lanes. Once lane change is deemed desirable, a
afe longitudinal and lateral safety corridor is determined to perform the maneuver. This methodology requires tuning of parameters
or the utility functions that can affect lane change decision-making. Wang et al. (2021a) proposed a real-time dynamic cooperative
ane-changing model for connected and autonomous vehicles (CAVs) with possible accelerations of a preceding vehicle. The lane
hange decision is based on the upper and lower bounds of the acceleration of the preceding and following vehicles in the target lane.
ere, the acceleration bounds are derived using a simple kinematic model of the 𝐴𝑉 that might not be accurate. Luo et al. (2016)
nd Xu et al. (2019) proposed a constrained optimization-based lane-changing methodology. The objective function is minimized
or the longitudinal jerk, lateral jerk, and the total distance of lane change with safety constraints defined as minimum safety
pacing (MSS). Computing the MSS model is complex in the formulation given by Luo et al. (2016), and requires the knowledge

of the dimension of the surrounding vehicles in the formulation given by Xu et al. (2019). A more practical scenario is considered
y Wang et al. (2021b, 2020b) where both human-driven vehicles and CAVs interact for lane change maneuvers where the safety
istances are computed using Gipps’s safe distance and intelligent driver model. Nie et al. (2016) proposed a cooperative lane-
hanging methodology where a decentralized cooperative lane-changing decision-making framework for CAV is composed of state
rediction, candidate decision generation, and coordination with surrounding vehicles.

Once the lane change decision-making is completed, the next task is to move the 𝐴𝑉 to the desired position/gap in the desired
ane. Many trajectory generation and trajectory tracking techniques have been proposed in the past to maneuver the 𝐴𝑉 to the
esired lane while ensuring safety, see Nilsson et al. (2016)–Xu et al. (2012). In Wang et al. (2020b), the authors have implemented
model predictive control (MPC) based trajectory-tracking controller. Nilsson et al. (2016) used quadratic programming (QP) to

ompute the trajectories for lateral and longitudinal maneuvers, where a double integrator model is used for the 𝐴𝑉 dynamics. Wang
t al. (2020b, 2021b) used an improved sine function-based trajectory generation and then used MPC to track the longitudinal and
ateral trajectories that adopt the two-wheel kinematic vehicle model. Luo et al. (2016) used a quintic polynomial to generate the
ongitudinal and lateral trajectories considering safety, comfort, and traffic efficiency. Then a trajectory-tracking sliding mode control
s proposed to track the trajectory. Nilsson et al. (2014) used a hierarchical, two-level architecture for the trajectory generation
nd vehicle control of 𝐴𝑉 . The high-level planner uses QP to generate the trajectory using a low-fidelity point-mass model and
inear collision avoidance constraints and MPC is used in the lower level to execute the trajectory that uses a high-fidelity vehicle
odel. Suh et al. (2018) used a hyperbolic tangent function to generate trajectories and a stochastic MPC with a linear parameter-

arying (LPV) vehicle model is used for vehicle control. Zhang et al. (2021) presents a hierarchical multi-layer trajectory planning
ramework that enables real-time collision avoidance under complex driving conditions. The upper-layer controller generates a
eference quintic polynomial trajectory, while the middle-layer controller generates a QP-based trajectory cluster with different
ime stamps. Zhang et al. (2022) introduces a framework for autonomous emergency avoidance in complex driving situations,
sing driving primitive transitions and motion control. It employs quintic polynomial-based path planning and combines linear
ime-varying MPC with direct yaw-moment control for vehicle stability and path tracking. The scheme’s efficacy is verified through
xtensive Hardware-in-Loop tests.

As evident from the literature, most of the works done to solve the lane change problem of 𝐴𝑉 s are model-based techniques. One
ajor limitation of these model-based approaches is that the performance of the automated lane-changing highly depends on the

ccuracy of the 𝐴𝑉 s’ model, and the inaccurate model may deteriorate the lane-changing. Many of the methodologies mentioned
bove require solving an optimization problem in real-time to generate/track safe trajectories for the 𝐴𝑉 lane change maneuver
2

hich requires high computation effort.
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1.2. Purely data-driven machine learning methods

In recent years, many researchers have used machine learning (ML) techniques for lane change decision-making and policy
earning. Hoel et al. (2019) proposed a framework for decision-making that integrates the principles of planning and learning,
tilizing both Monte Carlo tree search and deep reinforcement learning (DRL). A similar approach is used by Hoel et al. (2018),
here a deep Q-network agent was trained to handle speed and lane change decisions. Mirchevska et al. (2018) proposed a safe

einforcement learning (RL) method for lane change decision-making. Li et al. (2022a) proposed a transformer network-based
ane change decision-making method combined with a DRL architecture for computing safe lane change policies. Xie et al. (2019)
roposed a lane-changing model using deep learning, where the lane-change decision-making uses a deep belief network (DBF) and
he trajectory generation uses a long-short-term memory (LSTM) network. Xu et al. (2017) utilized the LSTM structure to process
urrent monocular camera views and prior vehicle conditions. Their network was subsequently trained to mimic actual driving
ehaviors using a vast video dataset. More relevant works for learning-based lane change decision making can be found in Ye et al.
2019), Nageshrao et al. (2019), Ye et al. (2021), and references therein.

Paxton et al. (2017) integrates Monte Carlo tree search with neural networks to generate safe and responsive motion plans. Min
t al. (2018, 2019) proposed an autonomous driving framework that leverages traditional driver assistance systems (DAS) combined
ith DRL. The DRL agent acts as a supervisor to identify the DAS functions, including lane changes, cruise control, and lane
aintenance, to optimize average speed and maximize overtakes with minimal lane shifts. The trained DRL agent can directly

ranslate both camera imagery and LIDAR information into an action strategy. Kuderer et al. (2015) proposed an inverse
einforcement learning (IRL) method to learn driving styles from demonstrations. Then, the learned model is used to compute
rajectories online during autonomous driving tasks. End-to-end learning for autonomous driving is explored by many researchers
n the literature (see Bojarski et al., 2016 Codevilla et al., 2018, Hecker et al., 2018). The main aim of end-to-end learning is to
irectly optimize the entire driving pipeline from sensor data to control commands as a one machine learning tasks. Folkers et al.
2019) proposed a DRL-based control method for autonomous vehicles. A neural network agent is trained to map its perceived
tate and produce acceleration and steering commands with the goal of attaining a particular target state, taking into account any
dentified obstacles. The trained agent is then tested in simulations and applied to a real research vehicle. Wang et al. (2018)
roposed a Q-learning-based approach to learn a policy for the autonomous vehicle for lane changing. Li et al. (2022c) proposed

DRL algorithms combined with risk assessment functions to find an optimal driving strategy with the minimum expected risk. The
proposed algorithms generate a series of actions to minimize the driving risk and prevent the host vehicle from collisions. More
recent works can be found in the survey papers (Kiran et al., 2021; Farazi et al., 2021; Zhu and Zhao, 2021).

Machine learning (ML) techniques hold substantial promise in the realm of autonomous driving. While these methodologies are
rogressing, there remains room for enhancement to further their efficiency. A notable challenge in ML-based approaches is their
ependency on extensive and varied datasets, a point underscored by several survey papers (Tampuu et al., 2020, Grigorescu et al.,
020, Kiran et al., 2021). Additionally, convergence may not always be attained during training (Tampuu et al., 2020, Neal et al.,
018, Codevilla et al., 2019). Furthermore, designing a task-specific neural network architecture may require a lot of trial-and-error
n ML-based methods owing to their empirical nature (Zhu and Zhao, 2021). Finally, as it can be seen in Wang et al. (2019a), Li
t al. (2022b), Tang et al. (2022), converging to an optimal policy for DRL-based methods takes a long period of training. This alone
ight effect real-time applicability and decision making, specially in a safety-critical scenario. This reliance on empirical methods
rompts a careful consideration of these techniques’ adaptability in diverse operational contexts.

.3. Non-model based learning methods

In consideration of the above discussion, this work attempts to address some of the existing aforementioned challenges for ML-
ased methods. Researchers in the control community have leveraged concepts from reinforcement learning (RL) (Sutton and Barto,
018) and adaptive/approximate dynamic programming (ADP) (refer to Bertsekas, 2012; Bellman, 1966; Lewis et al., 2012; Powell,

2007) to formulate data-driven adaptive optimal control strategies for tackling the stabilization and tracking challenges inherent in
dynamical systems (see Jiang and Jiang, 2012; Vrabie et al., 2009; Vamvoudakis et al., 2020; Chakraborty et al., 2022; Jiang and
Jiang, 2014a,b; Lewis and Vrabie, 2009; Gao and Jiang, 2016; Gao et al., 2019, 2015). In this paper, we adopt a similar approach in
developing an intelligent and safe lane change maneuver algorithm for 𝐴𝑉 s in the mixed traffic scenario by considering the structural
information of the 𝐴𝑉 system. The proposed methodology learns an optimal lane-changing policy with comparatively smaller
number of data samples and lesser learning times. Also, we provide formal guarantees for stability, convergence and uniqueness
of the learned policies. Our learning-based methodology can handle any model uncertainty introduced by the unknown dynamical
parameters and simultaneously optimize the performance of the 𝐴𝑉 lane-changing maneuver by learning from the real-time data.
Also, we introduce a lane-changing decision-making algorithm that does not require solving an optimization problem, parameter
tuning, and/or vehicle dimension information of nearby vehicles. One major advantage of the ADP-based approach, as opposed to
traditional reinforcement learning (Sutton and Barto, 2018), lies in the fact that the closed-loop stability of the dynamical system is
established when the learned control policy is implemented. Meanwhile, the stability/robustness of the 𝐴𝑉 controller characterizes
the convergence of the 𝐴𝑉 ’s dynamics to a desired equilibrium. Our approach could offer a more robust solution for safety-critical
systems like for autonomous driving.

Noting the fact that maintaining a constant velocity during lane change is impractical, and the lateral dynamics of 𝐴𝑉 depend
on the longitudinal velocity, we assume the dynamics of 𝐴𝑉 is LPV instead of linear time-invariant (LTI). Thus, one cannot directly
3

apply the LTI data-driven controller techniques developed by Jiang and Jiang (2012), Gao and Jiang (2016). In this work, we aim
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to extend the results of Jiang and Jiang (2012) for LPV systems. Many authors in the literature have proposed control techniques
for LPV systems, some of them are summarized in Rugh and Shamma (2000), Hoffmann and Werner (2014). Among other methods,
gain scheduling is more suitable for the control of LPV systems if the time-varying parameter varies slowly. The authors of Shamma
(1988), Shamma and Athans (1990) introduced the systematic design and analysis of gain scheduled controllers for LPV systems.
Gain scheduling has gained popularity as a control technique for complex systems like wind turbines (Bianchi et al., 2004), missile
autopilot (Yuan et al., 2016; Shamma and Cloutier, 1993), flight control (Saussié et al., 2011), cloud computing (Saikrishna et al.,
016), Wang et al. (2020a) and more recently for 𝐴𝑉 control (Zhu et al., 2019; Alcala et al., 2018; Kapsalis et al., 2020; Zhang

et al., 2014; Chu et al., 2022). However, these methods are model-based and suffer from similar drawbacks mentioned before. In
this work, we propose a learning-based gain scheduling technique.

A preliminary version of this work can be found in our conference paper (Chakraborty et al., 2022). The difference between
the preliminary work and the present work is that the present work provides a rigorous stability analysis of the learning-based
gain scheduling controller. Also, the present work studies the safety of the 𝐴𝑉 during lane change maneuvers when the proposed
learning-based gain scheduling controller is used and compares it with model-based MPC. Furthermore, the present work conducts
many simulation studies to analyze the effectiveness of the proposed methodology. In order to keep our study simple, we have
considered one 𝐴𝑉 and four surrounding HDVs. This represents a simplified mixed traffic scenario which has been frequently
considered in the transportation literature (see Suo et al., 2024; Jin et al., 2018; Gao et al., 2016). The main contributions of
this paper are summarized as follows:

1. Introduced a learning-based optimal control design technique for lane-changing of 𝐴𝑉 s that:

• Uses only the state and input information.
• Guarantees algorithmic convergence, vehicle stability, and is data efficient.

2. A data-driven lane-changing decision-making algorithm that incorporates the following:

• Compared with the existing literature that requires the generation of trajectory for lane change, our methodology
directly tracks a target point defined in the target lane, thus reducing the computational complexity of lane change.

3. Proposed a learning-based gain-scheduling controller to handle parameter-varying problems for the dynamic model of the
𝐴𝑉 . The stability of the learning-based gain-scheduling controller has been rigorously established.

4. Demonstrated the applicability of the proposed methodology in real-time learning and decision-making by SUMO implemen-
tation (Lopez et al., 2018) and NGSIM dataset (NGSIM, 2016).

The remainder of the paper is organized as follows. The 𝐴𝑉 dynamic model and problem formulation are given in Section 2.
The lane change decision-making algorithm is discussed in Section 3. The learning-based gain scheduling algorithm is developed in
Section 4. The algorithmic details are given in Section 5. Simulation results are given in Section 6. Finally, conclusions are given in
Section 7.

Notations: Throughout this paper, Z+ denotes the set of non-negative integers, C−, denotes the complex left half-plane, ‖.‖
represents the Euclidean norm for vectors, and the induced norm of matrices, 𝜎(𝐖) is the complex spectrum of 𝐖, ⊗ indicates
the Kronecker product and vec(𝐓) =

[

𝑡𝑇1 , 𝑡
𝑇
2 ,… , 𝑡𝑇𝑚

]𝑇 with 𝑡𝑖 ∈ R𝑟 being the columns of 𝐓 ∈ R𝑟×𝑚. For a symmetric matrix
𝐏 ∈ R𝑚×𝑚, vecs(𝐏) = [𝑝11, 2𝑝12,… , 2𝑝1𝑚, 𝑝22, 2𝑝23,… , 2𝑝(𝑚−1)𝑚, 𝑝𝑚𝑚]𝑇 ∈ R(1∕2)𝑚(𝑚+1), for a column vector 𝑣 ∈ R𝑛, vecv(𝑣) =
[𝑣21, 𝑣1𝑣2,… , 𝑣1𝑣𝑛, 𝑣22, 𝑣2𝑣3,… , 𝑣𝑛−1𝑣𝑛, 𝑣2𝑛]

𝑇 ∈ R(1∕2)𝑛(𝑛+1). 𝐈𝑛(𝟎𝑛) is the identity (zero) matrix of dimension 𝑛. A real analytic function is
an infinitely differentiable function such that the Taylor series at any point 𝑥0 in its domain given as 𝑇 (𝑥) = ∑∞

𝑛=0
𝑓𝑛(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 =

𝑓 (𝑥0)+(𝜖), where (𝜖) contains the higher order terms in the expansion, converges to 𝑓 (𝑥) for 𝑥 in a neighborhood of 𝑥0 pointwise.

2. 𝑨𝑽 dynamic model and problem formulation

This section explains the 𝐴𝑉 ’s states and inputs assumed to design the learning-based controller.

2.1. Longitudinal dynamic model

The vehicle’s longitudinal dynamic model is given as follows:

𝐱̇𝑙𝑜 = 𝐀𝑙𝑜𝐱𝑙𝑜 + 𝐁𝑙𝑜𝑢𝑙𝑜, (1)

where, 𝐀𝑙𝑜 =
[

0 1
0 0

]

, 𝐁𝑙𝑜 =
[

0
1
𝑚

]

, 𝑚 = mass of the vehicle, and 𝑢𝑙𝑜(𝑡) is the driven force. The state vector 𝐱𝑙𝑜 = [𝑥1(𝑡), 𝑥2(𝑡)]𝑇 , where

𝑥1(𝑡) = 𝑥𝐴𝑉 (𝑡) denotes the longitudinal position, and 𝑥2(𝑡) = 𝑉𝑥(𝑡) denotes the longitudinal velocity.

2.2. Lateral dynamic model

Definition 2.1. A point (𝑇 , 𝑇 ) that is placed at a safe distance from the leading vehicle is defined as the target point (𝑇𝑃 ).
4
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Fig. 1. Position and orientation error of 𝐴𝑉 .

The lateral dynamic model considered here is based on position and orientation error as shown in Fig. 1. Let (𝑇𝑥, 𝑇𝑦) be the

oordinates of the target point, 𝜓(𝑡) be the orientation of the vehicle, 𝑒1(𝑡) is the distance of the center of gravity (C.G.) of the
vehicle from the center line of the lane, and 𝑒2(𝑡) be the orientation error of the vehicle with respect to the road.

ssumption 2.2. Vehicles travel on a straight road with radius 𝑅 = ∞.

The dynamic model is given as:

𝐱̇𝑙𝑎 = 𝐀𝑙𝑎𝐱𝑙𝑎 + 𝐁𝑙𝑎𝑢𝑙𝑎, (2)

where 𝑢𝑙𝑎(𝑡) denotes the front wheel steering angle, 𝐱𝑙𝑎 = [𝑒1(𝑡), 𝑒̇1(𝑡), 𝑒2(𝑡), 𝑒̇2(𝑡)]𝑇 ,

𝐀𝑙𝑎 =

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0
0 − 2𝐶𝛼𝑓+2𝐶𝛼𝑟

𝑚𝑉𝑥

2𝐶𝛼𝑓+2𝐶𝛼𝑟

𝑚

−2𝐶𝛼𝑓 𝑙𝑓+2𝐶𝛼𝑟𝑙𝑟

𝑚𝑉𝑥

0 0 0 1

0 − 2𝐶𝛼𝑓 𝑙𝑓−2𝐶𝛼𝑟𝑙𝑟

𝐼𝑧𝑉𝑥

2𝐶𝛼𝑓 𝑙𝑓−2𝐶𝛼𝑟𝑙𝑟

𝐼𝑧
−2𝐶𝛼𝑓 𝑙𝑓

2+2𝐶𝛼𝑟𝑙𝑟
2

𝐼𝑧𝑉𝑥

⎤⎥⎥⎥⎥⎥⎦
,𝐁𝑙𝑎 =

⎡⎢⎢⎢⎢⎣
0

2𝐶𝛼𝑓

𝑚

0
2𝐶𝛼𝑓 𝑙𝑓

𝐼𝑧
.

⎤⎥⎥⎥⎥⎦
(3)

n (3), 𝐶𝛼𝑓 is the cornering stiffness of each front tire, 𝐶𝛼𝑟 is the cornering stiffness of each rear tire, 𝑙𝑓 is the front length of the

ehicle from the center of gravity, 𝑙𝑟 is the rear length of the vehicle from the center of gravity, 𝑚 is the mass of the vehicle, 𝐼𝑧
is the z moment of inertia, and 𝑉𝑥 is the longitudinal velocity of the vehicle. More details on the model can be found in Rajamani

2011). The controllability of system (2) is shown in the following lemma.

emma 2.3. System (2) is controllable if and only if 𝑉 2
𝑥
≠ 2𝐶𝛼𝑟(𝑙𝑓+𝑙𝑟)(𝑚𝑙𝑓 𝑙𝑟−𝐼𝑧)

𝑚2𝑙2
𝑓

.

Proof. The controllability matrix of the system is

 = [𝐁𝑙𝑎,𝐀𝑙𝑎𝐁𝑙𝑎,𝐀2
𝑙𝑎
𝐁𝑙𝑎,𝐀3

𝑙𝑎
𝐁𝑙𝑎].

t is checkable by Matlab symbolic toolbox that

det() = 64𝐶4
𝛼𝑓

𝐶2
𝛼𝑟
(𝑙𝑓 + 𝑙𝑟)2[𝑚2𝑙2

𝑓
𝑉 2
𝑥
− 2𝐶𝛼𝑟(𝑙𝑓 + 𝑙𝑟)(𝑚𝑙𝑓 𝑙𝑟 − 𝐼𝑧)]

𝐼4
𝑧
𝑚4𝑉 2

𝑥

.

According to Chen (1999, Theorem 6.1), the system is controllable if and only if det() ≠ 0. Therefore, the lateral dynamics is
ontrollable if and only if

𝑉 2
𝑥
≠ 2𝐶𝛼𝑟(𝑙𝑓 + 𝑙𝑟)(𝑚𝑙𝑓 𝑙𝑟 − 𝐼𝑧)

𝑚2𝑙2
𝑓

.

Since the vehicle travels on a straight road, the desired orientation of the vehicle is considered as 𝜓𝑑𝑒𝑠 = 0. Then from Fig. 1,

he lateral position (𝑌 (𝑡)) and yaw angle (𝜓(𝑡)) can be obtained as:

𝑌 (𝑡) = 𝑇𝑦 − 𝑒1(𝑡),
𝜓(𝑡) = 𝑒2(𝑡).

(4)

emark 2.4. Note that the longitudinal velocity 𝑉𝑥 appears in the lateral dynamics of the 𝐴𝑉 . This makes the lateral model

arameter-varying. Thus, an LTI controller design is not sufficient to stabilize the 𝐴𝑉 lateral dynamics. Thus, we use gain scheduling

o guarantee the stability of the 𝐴𝑉 lateral dynamics. This is discussed in Section 4.
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Fig. 2. A typical lane change scenario. The blue vehicles are human-driven vehicles (HDVs) and the red vehicle is 𝐴𝑉 . (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

2.3. Problem definition

Given that we have the access to the input and state information and the target point (𝑇𝑃 ) in the target lane, the following

problem is addressed in this work:

Problem 2.5. In the absence of the accurate dynamics of the 𝐴𝑉 and utilizing the collected input-state data, design a learning-based

lane-changing algorithm that incorporates the following:

1. a model-free optimal controller for the 𝐴𝑉 ’s lateral maneuver such that 𝑒1(𝑡) → 0 and 𝑒2(𝑡) → 0;
2. a model-free optimal longitudinal controller to keep a safe distance from the preceding vehicle;

3. a lane-changing decision-making algorithm that can ensure safe lane-changing during non-cooperative behavior of surround-

ing vehicles.

. Lane change decision making

In Fig. 2, 𝐴𝑉 denotes the autonomous vehicle, 𝐿𝐶 denotes the lead vehicle in the current lane, 𝐹𝐶 denotes the following vehicle

n the current lane, 𝐿𝑇 denotes the lead vehicle in the target lane, 𝐹𝑇 denotes the following vehicle in the target lane, and

𝑆𝑖 (𝑡) = 𝐿 + ℎ𝑣𝑖 (𝑡) + 𝑑 +𝑤, 𝑖 ∈ {𝐿𝑇 , 𝐹𝑇 , 𝐿𝐶, 𝐹𝐶}, (5)

is the safety distance, where ℎ is the headway time, 𝐿 is the length of vehicle, 𝑣𝑖 is the velocity of the 𝑖th vehicle, 𝑑 is the standstill

istance, and 𝑤 is the width of the 𝐴𝑉 , and 𝑡 is the time step. The width 𝑤 is added to 𝑆𝑖 (𝑡) to ensure safety when the 𝐴𝑉 travels

diagonal distance. In this work, the lane-changing decision-making is proposed for a single lane change maneuver. As shown in

ig. 2, five vehicles are involved in a lane change maneuver. The 𝐴𝑉 performs a maneuver to change the lane and places itself in

he target point (𝑇𝑃 ) with coordinates (𝑇𝑥, 𝑇𝑦). Let, 𝑥𝐴𝑉 (𝑡), 𝑥𝐿𝑇 (𝑡), 𝑥𝐹𝑇 (𝑡), 𝑥𝐿𝐶 (𝑡), 𝑥𝐹𝐶 (𝑡) be the longitudinal positions of the vehicles
involved in the lane-changing process. Then, the following conditions must hold true for a safe lane change.

𝑥𝐴𝑉 (𝑡) ≤ 𝑥𝐿𝐶 (𝑡) − 𝑆𝐿𝐶 (𝑡), (6)

𝑥𝐴𝑉 (𝑡) ≥ 𝑥𝐹𝐶 (𝑡) + 𝑆𝐹𝐶 (𝑡), (7)

𝑥𝐴𝑉 (𝑡) ≤ 𝑥𝐿𝑇 (𝑡) − 𝑆𝐿𝑇 (𝑡), (8)

𝑥𝐴𝑉 (𝑡) ≥ 𝑥𝐹𝑇 (𝑡) + 𝑆𝐹𝑇 (𝑡). (9)

Thus, if the inequalities in (6)–(9) are satisfied, a safe lane change maneuver is possible. The safe distances 𝑆𝑖 (𝑡) are evaluated
continuously.

The lane change algorithm starts by collecting the position data of the vehicles. Then, the safety inequalities in (6)–(9) are

checked. If all the inequalities satisfy and the 𝐴𝑉 is not in the target lane, the lane change is initiated by setting the target point

at a safe distance from the 𝐿𝑇 . At all times during the lane change maneuver the safety inequalities are checked. If the safety is

checked to be true, then the 𝐴𝑉 continues to change lane until it has reached the target lane. If the safety is checked to be false,

the target point is changed to the current lane to abort lane changing and is placed at a safe distance from 𝐿𝐶 and the process

starts over again by checking the inequalities in (6)–(9). During lane change, the 𝑥-coordinate of the target point is computed as

𝑇𝑥(𝑡) = 𝑥𝐿𝑇 (𝑡) − 𝑆𝐿𝑇 (𝑡) and the 𝑦-coordinate (𝑇𝑦) is set as the coordinate of the center line of the target lane. During lane abortion,

the 𝑥-coordinate of the target point is computed as 𝑇𝑥(𝑡) = 𝑥𝐿𝐶 (𝑡) − 𝑆𝐿𝐶 (𝑡) and the 𝑦-coordinate (𝑇𝑦) is set as the coordinate of the

center line of the current lane.

Assumption 3.1. The surrounding vehicles are human-driven vehicles (HDVs) that are non-cooperative with the 𝐴𝑉 except for

lane-change abortion when the vehicles in the current lane are assumed to yield to the 𝐴𝑉 .
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4. Learning-based gain scheduling

4.1. Preliminary results

The gain scheduling technique designs controllers as follows: at a good number of operating points obtain the linear time-
nvariant approximations of the system; design linear time-invariant controllers for each linear time-invariant approximations of the
ystem at the selected operating points that guarantees stability and certain performance objectives; link these controllers together
n order to obtain a single controller for the entire range of the system operation (Shahruz and Behtash, 1992).

Consider the following LPV system:

𝐱̇ = 𝐀(𝛼)𝐱(𝑡) + 𝐁(𝛼)𝐮(𝑡), (10)

𝛼 = 𝛼(𝑡), (11)

where, 𝐱(𝑡) ∈ R𝑛 is the state vector, 𝐮(𝑡) ∈ R𝑚 is the input, 𝐀(𝛼) ∈ R𝑛×𝑛, and 𝐁(𝛼) ∈ R𝑛×𝑚 are the state and input matrices respectively
that are considered unknown. For all 𝑡 ≥ 0 the parameter 𝛼 = 𝛼(𝑡) ∈ [𝛼0, 𝛼𝑛] =∶ 𝐼 ⊂ R. For what follows, we make the following
ssumptions:

ssumption 4.1. For all 𝛼 ∈ 𝐼 , the matrix 𝐁(𝛼) is full column rank.

ssumption 4.2. The elements of the system matrices 𝐀(𝛼) and 𝐁(𝛼) are analytic functions of 𝛼.

Assumption 4.3. The parameter 𝛼 is a continuous and bounded function of time, differentiable almost everywhere with bounded
derivative, and is measured for all time 𝑡 ≥ 0.

Assumption 4.4. All states are available for feedback, and the system in (10) is stabilizable for all 𝛼 ∈ 𝐼 .

In this section, we assume no knowledge of the system matrices 𝐀(𝛼), and 𝐁(𝛼), and try to design a feedback control law of the
form:

𝐮(𝑡) = −𝐊(𝛼)𝐱(𝑡), (12)

𝛼 = 𝛼(𝑡), (13)

where, 𝐊(𝛼) ∈ R𝑚×𝑛 is the state feedback gain matrix. To design the state feedback control law in (12), we first select finite number
of fixed 𝛼𝑙 ∈ 𝐼 . Let 𝐊(𝛼𝑙) and 𝐊(𝛼𝑙+1), respectively, denote the gain matrices computed at the adjacent points 𝛼𝑙 and 𝛼𝑙+1 in 𝐼 . At
each 𝛼 ∈ [𝛼𝑙 , 𝛼𝑙+1], the gain 𝐊(𝛼) in (12) is obtained as the linear interpolation between 𝐊(𝛼𝑙) and 𝐊(𝛼𝑙+1) given as (Shahruz and
Behtash (1992)):

𝐊(𝛼) = 𝐊(𝛼𝑙) +
𝐊(𝛼𝑙+1) −𝐊(𝛼𝑙)

𝛼𝑙+1 − 𝛼𝑙
(𝛼 − 𝛼𝑙). (14)

The gain matrices are computed such that the following are satisfied:

• For each 𝛼𝑙 the state feedback gain matrix 𝐊(𝛼𝑙) is computed such that the closed-loop stability of the frozen system
𝐀𝑐 (𝛼𝑙) = 𝐀(𝛼𝑙) − 𝐁(𝛼𝑙)𝐊(𝛼𝑙) along with a minimum cost of operating the system is guaranteed.

• At each 𝛼 ∈ [𝛼𝑙 , 𝛼𝑙+1], the gain 𝐊(𝛼) obtained using (14) guarantees the stability of the closed-loop system.

Note that, in this work 𝛼(𝑡) = 𝑉𝑥(𝑡) = 𝑥2(𝑡), and 𝛼̇(𝑡) = 𝑉̇𝑥(𝑡) = 𝑢𝑙𝑜∕𝑚 which is the longitudinal acceleration. Next, we present a
learning-based control methodology to obtain the optimal control gain 𝐊(𝛼𝑙) for fixed 𝛼𝑙 ∈ 𝐼 . In order to reduce the state deviations
and control effort, we seek to design a linear optimal control law of the form given in (12) for a fixed 𝛼𝑙 ∈ 𝐼 that can minimize the
following cost function:

min
𝐮

𝐽 = ∫

∞

0
(𝐱𝑇𝐐𝐱 + 𝐮𝑇𝐑𝐮)𝑑𝜏, (15)

here, 𝐐 = 𝐐𝑇 ≥ 0, 𝐑 = 𝐑𝑇 > 0, with (𝐀(𝛼𝑙),𝐐1∕2) being observable.
If 𝐀(𝛼𝑙), 𝐁(𝛼𝑙) are completely known, the solution to the above mentioned problem is well known and the optimal gain matrix

∗(𝛼𝑙) ∈ R𝑚×𝑛 can be found as follows:

𝐀(𝛼𝑙)𝑇𝐏(𝛼𝑙) + 𝐏(𝛼𝑙)𝐀(𝛼𝑙) +𝐐 − 𝐏(𝛼𝑙)𝐁(𝛼𝑙)𝐑−1𝐁(𝛼𝑙)𝑇𝐏(𝛼𝑙) = 𝟎, (16)

𝐊∗(𝛼𝑙) = 𝐑−1𝐁(𝛼𝑙)𝑇𝐏(𝛼𝑙)∗, (17)

where (16) is the well-known algebraic Riccati equation and 𝐏(𝛼𝑙)∗ = 𝐏(𝛼𝑙)∗𝑇 > 0 is the unique solution of (16). Since, the Riccati
equation is non-linear in 𝐏(𝛼𝑙), it is difficult to solve for large dimensional systems. In the literature, many efficient iterative
approaches have been proposed to solve (16). One such approach is given by Kleinman (1968), and is reproduced below for the
7

sake of completeness:
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Theorem 4.5. Let 𝐊0(𝛼𝑙) be any stabilizing feedback gain matrix, and 𝐏𝑘(𝛼𝑙) is the symmetric positive definite solution of the Lyapunov
q. (18), then for 𝑘 = 0, 1, 2,…, we have

• Policy evaluation step:
(𝐀(𝛼𝑙) − 𝐁(𝛼𝑙)𝐊𝑘(𝛼𝑙))𝑇𝐏𝑘(𝛼𝑙) + 𝐏𝑘(𝛼𝑙)(𝐀(𝛼𝑙) − 𝐁(𝛼𝑙)𝐊𝑘(𝛼𝑙)) +𝐐 +𝐊𝑘(𝛼𝑙)𝑇𝐑𝐊𝑘(𝛼𝑙) = 𝟎, (18)

• Policy update step: Update the gain matrix as
𝐊𝑘+1(𝛼𝑙) = 𝐑−1𝐁(𝛼𝑙)𝑇𝐏𝑘(𝛼𝑙), (19)

hen, the following properties hold:

1. 𝐀(𝛼𝑙) − 𝐁(𝛼𝑙)𝐊𝑘(𝛼𝑙) is stable,
2. 𝐏∗(𝛼𝑙) ≤ 𝐏𝑘+1(𝛼𝑙) ≤ 𝐏𝑘(𝛼𝑙),
3. lim𝑘→∞ 𝐊𝑘(𝛼𝑙) = 𝐊∗(𝛼𝑙), lim𝑘→∞ 𝐏𝑘(𝛼𝑙) = 𝐏∗(𝛼𝑙).

Note that (18) is linear in 𝐏𝑘(𝛼𝑙). Thus, one can iteratively solve (18) and update 𝐊𝑘+1(𝛼𝑙) = 𝐑−1𝐁(𝛼𝑙)𝑇𝐏𝑘(𝛼𝑙) to numerically
approximate the solution to (16). But, this assumes the complete knowledge of the system matrices 𝐀(𝛼𝑙) and 𝐁(𝛼𝑙).

Now, consider the modified system equation as follows:

𝐱̇ = 𝐀𝑘(𝛼𝑙)𝐱 + 𝐁(𝛼𝑙)(𝐊𝑘(𝛼𝑙)𝐱 + 𝐮), (20)

where 𝐀𝑘(𝛼𝑙) = 𝐀(𝛼𝑙) − 𝐁(𝛼𝑙)𝐊𝑘(𝛼𝑙). Then, along the solutions of (20) using (18) and (19), we have:

𝐱(𝑡 + 𝛿𝑡)𝑇𝐏𝑘(𝛼𝑙)𝐱(𝑡 + 𝛿𝑡) − 𝐱(𝑡)𝑇𝐏𝑘(𝛼𝑙)𝐱(𝑡)

= ∫

𝑡+𝛿𝑡

𝑡

[

𝐱𝑇 (𝐀𝑘(𝛼𝑙)𝑇𝐏𝑘(𝛼𝑙) + 𝐏𝑘(𝛼𝑙)𝐀𝑘(𝛼𝑙))𝐱 + 2(𝐮 +𝐊𝑘(𝛼𝑙)𝐱)𝑇𝐁(𝛼𝑙)𝑇𝐏𝑘(𝛼𝑙)𝐱
]

𝑑𝜏,

= 2∫

𝑡+𝛿𝑡

𝑡
(𝐮 +𝐊𝑘(𝛼𝑙)𝐱)𝑇𝐑𝐊𝑘+1(𝛼𝑙)𝐱 𝑑𝜏 − ∫

𝑡+𝛿𝑡

𝑡
𝐱𝑇𝐐𝑘(𝛼𝑙)𝐱 𝑑𝜏, (21)

where, 𝐐𝑘(𝛼𝑙) = 𝐐+𝐊𝑘(𝛼𝑙)𝑇𝐑𝐊𝑘(𝛼𝑙). It must be noted that the last equation of (21) is independent of the system matrices 𝐀(𝛼𝑙) and
𝐁(𝛼𝑙).

Lemma 4.6. Consider the matrices 𝐗, 𝐘, and 𝐙 with compatible dimensions. Then the vectorization of the matrix product is given as:

vec(𝐗𝐘𝐙) =
(

𝐙𝑇 ⊗ 𝐗
)

vec
(

𝐘
)

. (22)

Using Lemma 4.6, the terms in (21) can be written as follows:

𝐱𝑇𝐏𝑘(𝛼𝑙)𝐱 =
(

𝐱𝑇 ⊗ 𝐱𝑇
)

vec
(

𝐏𝑘(𝛼𝑙)
)

, (23)

𝐱𝑇𝐐𝑘(𝛼𝑙)𝐱 =
(

𝐱𝑇 ⊗ 𝐱𝑇
)

vec
(

𝐐𝑘(𝛼𝑙)
)

, (24)

(

𝐮 +𝐊𝑘(𝛼𝑙)𝐱
)𝑇𝐑𝐊𝑘+1(𝛼𝑙)𝐱 =

[

(

𝐱𝑇 ⊗ 𝐱𝑇
)(

𝐈𝑛 ⊗𝐊𝑘(𝛼𝑙)𝑇𝐑
)

+
(

𝐱𝑇 ⊗ 𝐮𝑇
)(

𝐈𝑛 ⊗ 𝐑
)

]

vec(𝐊𝑘+1(𝛼𝑙)). (25)

For any positive integer 𝑙, define 𝜟𝑥𝑥 ∈ R𝑙×
1
2 𝑛(𝑛+1), 𝐈𝑥𝑥 ∈ R𝑙×𝑛2 , and 𝐈𝑥𝑢 ∈ R𝑙×𝑚𝑛 as follows for 0 ≤ 𝑡0 < 𝑡1 < 𝑡2 <⋯ < 𝑡𝑙:

𝜟𝑥𝑥 =
[

vecv(𝐱(𝑡1)) − vecv(𝐱(𝑡0)), vecv(𝐱(𝑡2)) − vecv(𝐱(𝑡1)),… , vecv(𝐱(𝑡𝑙)) − vecv(𝐱(𝑡𝑙−1))
]𝑇
, (26)

𝐈𝑥𝑥 =
[

∫

𝑡1

𝑡0
𝐱⊗ 𝐱 𝑑𝜏,∫

𝑡2

𝑡1
𝐱⊗ 𝐱 𝑑𝜏,… ,∫

𝑡𝑙

𝑡𝑙−1
𝐱⊗ 𝐱 𝑑𝜏

]𝑇
, (27)

𝐈𝑥𝑢 =
[

∫

𝑡1

𝑡0
𝐱⊗ 𝐮 𝑑𝜏,∫

𝑡2

𝑡1
𝐱⊗ 𝐮 𝑑𝜏,… ,∫

𝑡𝑙

𝑡𝑙−1
𝐱⊗ 𝐮 𝑑𝜏

]𝑇
. (28)

Using (23)–(28), (21) can be written as follows:

𝜞 𝑘

[

vecs(𝐏𝑘(𝛼𝑙))
vec(𝐊𝑘+1(𝛼𝑙))

]

= 𝜳 𝑘, (29)

where, 𝜞 𝑘 ∈ R𝑙×(
1
2 𝑛(𝑛+1)+𝑚𝑛), and 𝜳 𝑘 ∈ R𝑙 are defined as follows:

𝜞 𝑘 =
[

𝜟𝑥𝑥, − 2𝐈𝑥𝑥
(

𝐈𝑛 ⊗𝐊𝑘(𝛼𝑙)𝑇𝐑
)

− 2𝐈𝑥𝑢
(

𝐈𝑛 ⊗ 𝐑
)

]

, (30)

𝜳 𝑘 = −𝐈𝑥𝑥vec(𝐐𝑘(𝛼𝑙)). (31)

Thus, given an initial stabilizing control input 𝐮 = −𝐊0(𝛼𝑙)𝐱, the trajectories of the system can be recorded online in 𝜟𝑥𝑥, 𝐈𝑥𝑥, 𝐈𝑥𝑢,
which construct the data matrices 𝜞 and 𝜳 .
8

𝑘 𝑘
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Assumption 4.7. There exists a sufficiently large integer 𝑙0 > 0, such that for all 𝑙 ≥ 𝑙0, the following holds:

rank(
[

𝐈𝑥𝑥, 𝐈𝑥𝑢
]

) =
𝑛(𝑛 + 1)

2
+ 𝑚𝑛 (32)

emark 4.8. Assumption 4.7 introduced above is inspired from the persistent excitation (PE) condition in adaptive control, which
s necessary for the convergence of Algorithm 1.

emark 4.9. It must be noted that, one only needs to collect data for learning the optimal controller till Assumption 4.7 is satisfied.

heorem 4.10. Under Assumption 4.7, there is a unique pair of matrices
(

𝐏𝑘(𝛼𝑙),𝐊𝑘+1(𝛼𝑙)
)

, with 𝐏𝑘(𝛼𝑙) = 𝐏𝑘(𝛼𝑙)𝑇 ∀𝑘 ∈ Z+, that solves
29).

roof. see Jiang and Jiang (2017, 2012).

heorem 4.11. Given an initial stabilizing gain 𝐊0(𝛼𝑙) ∈ R𝑚×𝑛, and under Assumption 4.7, the sequences {𝐏𝑘(𝛼𝑙)}∞𝑘=0 and {𝐊𝑘(𝛼𝑙)}∞𝑘=0
btained by solving (29) converge to the optimal values 𝐏∗(𝛼𝑙) and 𝐊∗(𝛼𝑙), respectively.

roof. see Jiang and Jiang (2017, 2012).

lgorithm 1.

1. With a stabilizing control policy 𝐊0(𝛼𝑙), employ 𝐮 = −𝐊0(𝛼𝑙)𝐱+ 𝐞 as the input on the time interval [𝑡0, 𝑡𝑙], where 𝐞 is the exploration
signal. Compute 𝜟𝑥𝑥, 𝐈𝑥𝑥, 𝐈𝑥𝑢 until Assumption 4.7 is satisfied. Let 𝑘 = 0.

2. Solve 𝐏𝑘(𝛼𝑙) and 𝐊𝑘+1(𝛼𝑙) from (29).
3. Let 𝑘 ← 𝑘 + 1, and repeat Step 2 until ‖𝐏𝑘(𝛼𝑙) − 𝐏𝑘−1(𝛼𝑙)‖ ≤ 𝜖0 for 𝑘 ≥ 1, where the constant 𝜖0 > 0 is a predefined small constant.
4. Use 𝐮 = −𝐊𝑘(𝛼𝑙)𝐱 as the approximated optimal control policy.

emark 4.12. In Algorithm 1, the exploration signal 𝐞 is added to the initial stabilizing controller for data collection, such that
he collected data set is persistently exciting to satisfy the full-rank condition in Assumption 4.7.

Hereafter, we denote the approximated optimal control gain 𝐊𝑘(𝛼𝑙) as 𝐊̂∗(𝛼𝑙). We have established a learning-based optimal
ontrol framework for fixed 𝛼𝑙 ∈ 𝐼 . The optimality and convergence guarantees of the optimal learning-based controller for a fixed
𝑙 ∈ 𝐼 are given by Theorems 4.10 and 4.11. It remains to show that the closed-loop system 𝐀𝑐 (𝛼) = 𝐀(𝛼) − 𝐁(𝛼)𝐊(𝛼) is stable for
he control gain 𝐊(𝛼) obtained using (14) for any fixed 𝛼 ∈ [𝛼𝑙 , 𝛼𝑙+1]. This is discussed in the next subsection.

4.2. Stability analysis of LPV systems with learning-based gain scheduling controller

Since, we can design an optimal learning-based controller for a fixed 𝛼𝑙 ∈ 𝐼 , we call the spectrum 𝜎(𝐀𝑐 (𝛼𝑙)) optimal, where
𝐀𝑐 (𝛼𝑙) = 𝐀(𝛼𝑙) − 𝐁(𝛼𝑙)𝐊̂∗(𝛼𝑙). Suppose 𝜆𝑗𝑜 ∈ 𝜎(𝐀𝑐 (𝛼𝑙)) is an eigenvalue in the optimal spectrum 𝜎(𝐀𝑐(𝛼𝑙)), and let 𝜆𝑗 ∈ 𝜎(𝐀𝑐(𝛼)) be an
eigenvalue in the spectrum 𝜎(𝐀𝑐(𝛼)), where, 𝑗 = 1, 2,… , 𝑛. In this subsection, we discuss how close 𝛼𝑙 and 𝛼𝑙+1 must be such that for
each fixed 𝛼 ∈ [𝛼𝑙 , 𝛼𝑙+1], 𝜆𝑗 is in a small neighborhood 𝑗 (𝜖) of 𝜎(𝐀𝑐(𝛼𝑙)), i.e, 𝜆𝑗 ∈ 𝑗 (𝜖) ∶= {𝑠 ∈ C− ∶ |𝑠 − 𝜆𝑗𝑜| < 𝜖 < 1}, 𝑗 = 1,… , 𝑛.
The results in this section are based on the theory of eigenvalue perturbation (Lancaster and Tismenetsky, 1985; Horn and Johnson,
2012), and implicit function theorem (Markushevich, 2005).

Theorem 4.13 (Implicit Function Theorem (Markushevich, 2005, Chapter 3).) Let 𝐹 (𝑧,𝑤) be a function of two variables which is analytic
in a neighborhood of the point (𝑧0, 𝑤0), and suppose the following conditions hold:

• 𝐹 (𝑧0, 𝑤0) = 0,
• 𝜕𝐹 (𝑧,𝑤)

𝜕𝑤

|

|

|

|(𝑧0 ,𝑤0)
≠ 0.

hen there are neighborhoods  (𝑧0) and  (𝑤0) such that the equation 𝐹 (𝑧,𝑤) = 0 has a unique root 𝑤 = 𝑤(𝑧) in  (𝑤0) for any given
∈  (𝑧0). Moreover, the function 𝑤(𝑧) is single-valued and analytic on  (𝑧0), and satisfies the condition 𝑤(𝑧0) = 𝑤0.

The result of Theorem 4.14 is crucial to show 𝜆𝑗 ∈ 𝑗 (𝜖) ∶= {𝑠 ∈ C− ∶ |𝑠 − 𝜆𝑗𝑜| < 𝜖 < 1} for a sufficiently small 𝜖.

Theorem 4.14. Let 𝜖 denote the length of the gain-scheduling interval. Then for any 𝛼 ∈ [𝛼𝑙 , 𝛼𝑙+1], we have 𝛼 = 𝛼𝑙 + 𝑐𝜖, where 0 ≤ 𝑐 ≤ 1.
Then, under Assumptions 4.2 and 4.4, there exists a sufficient small 𝜖, such that the following relations hold.

𝐏̂∗(𝛼) = 𝐏̂∗(𝛼𝑙) + (𝜖), (33)

and

̂ ∗ ̂ ∗
9

𝐊 (𝛼) = 𝐊 (𝛼𝑙) + (𝜖), (34)
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where 𝐏̂∗(𝛼) and 𝐏̂∗(𝛼𝑙) are the approximate optimal solutions of the Riccati equation computed at 𝛼 and 𝛼𝑙, respectively. 𝐊̂∗(𝛼) and 𝐊̂∗(𝛼𝑙)
re the approximate optimal control gains computed at 𝛼 and 𝛼𝑙, respectively.

roof. See Appendix A.

Next, using Theorem 4.14 we show that 𝜆𝑗 ∈ 𝑗 (𝜖) ∶= {𝑠 ∈ C− ∶ |𝑠 − 𝜆𝑗𝑜| < 𝜖 < 1} for a sufficiently small 𝜖. Consider the
following Theorem.

Theorem 4.15. Under Assumptions 4.2 and 4.4, for sufficiently small 𝜖 the following holds:

𝜆𝑗 = 𝜆𝑗𝑜 + (𝜖), 𝑗 = 1, 2,… , 𝑛. (35)

Proof. see Appendix B.

Thus, it can be said that if 𝜖 is sufficiently small, 𝜎(𝐀𝑐 (𝛼)) is in a small neighborhood of 𝜎(𝐀𝑐 (𝛼𝑙)) for any 𝛼 ∈ [𝛼𝑙 , 𝛼𝑙+1].
Having answered the question of stability for fixed 𝛼 ∈ [𝛼𝑙 , 𝛼𝑙+1], the next question arises on the stability of the LPV system (10).

From the results on slow-varying systems (Shamma, 1988, Vidyasagar, 2002), we have that if the rate of change of 𝛼 is sufficiently
small, then the stability of the LPV system (10) under the control action (12) can be deduced from the stability of the corresponding
frozen systems. We try to obtain an upper bound on 𝛼̄ ∶= sup𝑡≥0 |𝛼̇(𝑡)|, such that the stability of closed-loop frozen systems implies
the stability of (10) under the control law (12). Let 𝐽 be the set of all frozen points 𝛼𝑖 such that 𝛼𝑖 < 𝛼𝑗 , 𝑖 < 𝑗. Lemma 4.16 gives a
bound on the rate of change of the closed-loop LPV system, such that the stability of the closed-loop LPV system can be deduced
from that of the corresponding frozen systems.

Lemma 4.16 (Shamma (1988)). Consider the following closed-loop LPV system:

𝐱̇ = 𝐀𝑐 (𝛼(𝑡))𝐱, 𝐱(0) = 𝐱0 (36)

From Theorem 4.15, we have that at a fixed time 𝜏 ≥ 0, 𝜎(𝐀𝑐(𝛼(𝜏))) ⊂ C−. Thus, there exist constants 𝜁 ≥ 1, 𝛾 ≥ 0, 𝜂 ∈ (0, 𝛾] such that for
all 𝑡 ≥ 0 and 𝜏 ≥ 0 the followings holds:

‖𝑒𝐀𝑐 (𝜏)𝑡‖2 ≤ 𝜁𝑒−𝛾𝑡, (37)

‖𝐀̇𝑐 (𝛼(𝑡))‖2 ≤
(𝛾 − 𝜂)2

4𝜁 ln(𝜁 )
. (38)

Then for all 𝑡 ≥ 0 and any 𝐱0 ∈ R𝑛,

‖𝐱(𝑡)‖2 ≤ 𝜁𝑒−𝜂𝑡‖𝐱0‖2. (39)

Next, using Lemma 4.16, an upper bound on the rate of change of 𝛼 was obtained in Shahruz and Behtash (1992) which is
reproduced in Theorem 4.17.

Theorem 4.17. Consider the LPV system given in (10), and the control law (12). Let for any point 𝛼 ∉ 𝐽 , the control gain 𝐊(𝛼) be
computed using (14). Then, under Assumptions 4.2 and 4.3, if

𝛼̄ ∶= sup
𝑡≥0

|𝛼̇(𝑡)| ≤ (𝛾 − 𝜂)2

4𝛽𝜁 ln𝜁
, (40)

where,

𝛽 ∶=
√

𝑛
(

max
𝛼∈𝐼

‖

‖

‖

‖

𝜕𝐀(𝛼)
𝜕𝛼

‖

‖

‖

‖∞
+ max

𝛼∈𝐼

‖

‖

‖

‖

𝜕𝐁(𝛼)
𝜕𝛼

‖

‖

‖

‖∞
max
1≤𝑖≤𝑚

max
𝛼𝑙∈𝐽

𝑛
∑

𝑗=1
|𝑘𝑖𝑗 (𝛼𝑙)| +

max
𝛼∈𝐼

‖𝐁(𝛼)‖∞ max
1≤𝑖≤𝑚

max
𝛼𝑙∈𝐽

𝑛
∑

𝑗=1

|

|

|

|

𝑘𝑖𝑗 (𝛼𝑙+1) − 𝑘𝑖𝑗 (𝛼𝑙)
𝛼𝑙+1 − 𝛼𝑙

|

|

|

|

)

,

∈ (0, 𝛾] and 𝑘𝑖𝑗 is the 𝑖𝑗th component of 𝐊̂∗(𝛼𝑖), then the system (10) with the control law (12) is uniformly exponentially stable.

. Algorithmic details

In this section, we outline the details of the algorithmic implementation of the proposed methodology for the lane changing
10

roblem of 𝐴𝑉 .
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Fig. 3. Proposed learning-based gain scheduling algorithm.

5.1. Algorithmic details for learning optimal controller for lateral dynamics

The algorithm illustrated in Fig. 3 contains three principal modules: (1) Decision Making Module, (2) Data Storing Module, and

3) Learning Module. We collect input-state data from the 𝐴𝑉 sensing unit.

• Decision Making Module: The collected input-state data is passed to the lane change decision making module. Using the

collected data, this module conducts a safety check by evaluating the safety inequalities in (6)–(9). Based on the safety check,

a lane change decision is made. If the safety conditions are satisfied and the 𝐴𝑉 is not in the target lane, the lane change is

initiated by setting the target point at a safe distance from the 𝐿𝑇 . In an unsafe scenario, the target point is changed to the

current lane to abort lane changing and is placed at a safe distance from 𝐿𝐶. This module is evaluated at all times to ensure

safe operation of the 𝐴𝑉 . For more details please see Section 3.

• Data Storing Module: As it is difficult for the 𝐴𝑉 to maintain a constant velocity on the road, we define a tolerance

value 𝜖1 such that when the longitudinal velocity of the 𝐴𝑉 (i.e. 𝑉 𝐴𝑉
𝑥

) is close to one of the operating points 𝑉 𝑖
𝑥
, i.e. when||𝑉 𝐴𝑉

𝑥
− 𝑉 𝑖

𝑥
|| ≤ 𝜖1, we assume 𝑉 𝐴𝑉

𝑥
= 𝑉 𝑖

𝑥
and store the collected data for learning the optimal controller for 𝑉 𝑖

𝑥
in the database.

As the longitudinal velocity of 𝐴𝑉 can vary, we store data for a particular 𝑉 𝑖
𝑥
only when ||𝑉 𝐴𝑉

𝑥
− 𝑉 𝑖

𝑥
|| ≤ 𝜖1.

• Learning Module: Once we collect enough data, say 𝑚 samples for a particular velocity 𝑉 𝑖
𝑥
, we pass the collected data from

the database to the learning module. For convenience we denote 𝐊(𝛼𝑖) as 𝐊𝑖. As discussed in Section 4, for each operating point

𝑉 𝑖
𝑥
, an initial stabilizing gain 𝐊𝑖

0 along with an exploration signal 𝐞 was used to collect data for learning. The flag learned𝑉
𝑖
𝑥
is

used to avoid repeated learning for the same 𝑉 𝑖
𝑥
. Once, a learned gain 𝐊̂𝑖∗ is obtained for a 𝑉 𝑖

𝑥
, we change 𝐊𝑖

0 with 𝐊̂𝑖∗ and use

the interpolated gain given in (14) to obtain the control signal whenever 𝑉 𝐴𝑉
𝑥

∈ [𝑉 𝑖
𝑥
, 𝑉

𝑗
𝑥 ). Each step of the learning process is

clearly depicted in the learning module in Fig. 3. Details on the theoretical analysis of this module can be found in Section 4.

.2. Algorithmic details for learning optimal controller for longitudinal dynamics

The longitudinal dynamics is non-parameter varying and there is no need for gain scheduling. In this case, the data storing and

earning module in Fig. 3 coincide with the work done by Jiang and Jiang (2012) and the decision making module remains as in

Fig. 3.



S. Chakraborty et al.

𝑉

m

𝐐
c

6

W

g

Table 1

Sensitivity of converged gains due to change in 𝜖1.

𝜖1 = 0.08 𝜖1 = 0.1 𝜖1 = 0.3 𝜖1 = 0.5 𝜖1 = 0.7 𝜖1 = 1

𝑒1 0.4031 0.4031 0.4031 ⋆ ⋆ ⋆

𝑒2 1.0061 0.3887 1.5722 3.9523 2.1630 ⋆

𝑒3 0.1068 0.0168 2.7288 2.4247 3.9705 6.4967

𝑒4 0.0796 0.2790 1.1321 2.1374 2.9564 4.9480

𝑒5 0.3984 0.0260 1.0809 2.4079 5.0798 4.6419

𝑒6 0.0443 0.1550 1.0343 2.7822 3.1806 4.8999

Fig. 4. Intersecting intervals for the scheduling points 𝑉 3
𝑥
= 21 and 𝑉 4

𝑥
= 21.5.

6. Results and discussions

We obtain each 𝐊(𝛼𝑖) by means of the proposed learning-based control technique which guarantees the stability for each of the
fixed 𝛼𝑖’s. To guarantee the stability of the overall system, we need that 𝑉𝑥(𝑡) is slowly varying (Shahruz and Behtash, 1992). Since,
̇
𝑥(𝑡) = 𝑢𝑙𝑜∕𝑚, and 𝑢𝑙𝑜 = −𝐊𝑙𝑜𝐱𝑙𝑜, one needs to design 𝐊𝑙𝑜 such that vehicle acceleration has a small magnitude. We have generated

the results by implementing the proposed technique of learning-based gain scheduling and lane change decision-making in the

software packages MATLAB (MathWorks Inc., 2021) and Simulation of Urban MObility (SUMO). SUMO is an open source, portable,

microscopic and continuous multi-modal traffic simulation package designed to handle large networks (Lopez et al., 2018). The

SUMO simulation time started at 𝑡0 = 0 s and terminated at 𝑡𝑓 = 80 s. Data from SUMO environment is collected at every 0.01 s. In

simulation, the standstill distance 𝑑 is 2 m; the length of the vehicle 𝐿 is 2.5 m; the width of the vehicle 𝑤 is 1 m. We have generated

the results by assuming the distance between 𝐹𝑇 and 𝐿𝑇 remains constant for a cooperative scenario and varying the headway time

(ℎ) from 0.5 s to 1 s. For non-cooperative scenario we have varied the distance between 𝐹𝑇 and 𝐿𝑇 and studied the lane change

aneuvers by varying the headway time (ℎ) from 0.5 s to 1 s. We use the following weight matrices for the lateral controller design

= diag([20, 50, 2000, 3000]) = diag([𝑞1, 𝑞2, 𝑞3, 𝑞4]), and 𝐑 = 1. We learn optimal controllers when the 𝐴𝑉 longitudinal velocity

hanges by half an unit, i.e., 𝜖 = 0.5.

.1. Sensitivity analysis for 𝜖1

In reality it is difficult for the 𝐴𝑉 to maintain a constant velocity on the road. Thus, in order to collect data for learning an

optimal control gain for a scheduling point 𝑉 𝑖
𝑥
, we use the parameter 𝜖1 to define the data collection interval for a scheduling

point 𝑉 𝑖
𝑥
. Whenever the condition ||𝑉 𝐴𝑉

𝑥
− 𝑉 𝑖

𝑥
|| ≤ 𝜖1 is satisfied, we start collecting data to learn the optimal controller gain for

a scheduling point 𝑉 𝑖
𝑥
. Thus, the parameter 𝜖1 plays a crucial role in determining the convergence of the learning algorithm for a

scheduling point 𝑉 𝑖
𝑥
. In this section, we conduct empirical sensitivity analysis of 𝜖1 in terms of convergence of the learning algorithm.

e have selected multiple values of 𝜖1, i.e. 𝜖1 = [0.03, 0.05, 0.08, 0.1, 0.3, 0.5, 0.7, 1], and for each value of 𝜖1 we learn the approximate
optimal control gain 𝐊̂𝑖∗ for each scheduling point 𝑉 𝑖

𝑥
. Then, we compute the error 𝑒𝑖 = ‖𝐊̂𝑖∗ −𝐊𝑖∗‖, where 𝐊𝑖∗ is the optimal control

ain. We have used 100 data samples to learn the optimal controller and observed that for 𝜖1 < 0.08 the interval ||𝑉 𝐴𝑉
𝑥

− 𝑉 𝑖
𝑥
|| ≤ 𝜖1

is inadequate for collecting sufficient data to learn the optimal controller. Also, it was observed that for values of 𝜖1 ≥ 0.3, the
intervals ||𝑉 𝐴𝑉

𝑥
− 𝑉 𝑖

𝑥
|| ≤ 𝜖1 intersect (see Fig. 4). When the actual velocity of the vehicle 𝑉 𝐴𝑉

𝑥
falls in this intersection, one can choose

to learn the control gain for any of the scheduling point who shares this interval. However, while checking sequentially, only the

next scheduling point is chosen. This leads to missed learning for some scheduling points. Also, as the intervals are made larger by

choosing large values of 𝜖1, the actual velocity of the vehicle may lie away from the scheduling point. In this case, the collected data

may not represent the dynamics of the vehicle for the scheduling point, which leads to noise in the collected data and the learned

gains may be far away from the optimal gains. This is evident from Table 1 for all 𝜖1 ≥ 0.3, which shows the errors 𝑒𝑖 computed for
different values of 𝜖1, where the missing values are denoted as ⋆. Based on this analysis, we propose a thumb rule for selecting 𝜖1
given as 𝜖1 ≤ 𝜖∕2. In this work, we choose 𝜖1 = 0.1.

6.2. Learning-based controller

This section discusses the effectiveness of the proposed gain scheduling based learning-based controller and the lane change

decision-making algorithm by implementing them in SUMO. We assume that the 𝐴𝑉 learns in a cooperative scenario where the

neighboring vehicles of the 𝐴𝑉 are cooperative with the 𝐴𝑉 while the 𝐴𝑉 starts changing the lane. By keeping the distance between

𝐹𝑇 and 𝐿𝑇 constant, we have tested the proposed methodology by varying ℎ from 0.5 s to 1 s. We have observed that the 𝐴𝑉 could

change the lane for all the considered ℎ. The desired orientation of the vehicle is 𝜓 = 0◦. For the purpose of learning with an
𝑑𝑒𝑠
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Fig. 5. (a) Velocities of the vehicles, (b) Convergence of 𝐊𝑖 to 𝐊𝑖∗, 𝑖 = 1, 2, 3, 4, 5, 6.

initial control gain 𝐊0, we apply the control input 𝐮 = −𝐊0𝐱𝑙𝑎 + 𝐞, where 𝐞 is the exploration signal which is obtained using the
summations of sinusoidal signals with randomly distributed frequencies. Note that the noise 𝐞 is deterministic (Jiang and Jiang,
2017). The choice of the 𝐐 and 𝐑 matrices is done considering the passenger and driver comfort, and low fuel use. The diagonal

entries 𝑞1, 𝑞2 will penalize (𝑒1(𝑡), 𝑒̇1(𝑡)) of 𝐴𝑉 , and 𝑞3, 𝑞4 will penalize (𝑒2(𝑡), 𝑒̇2(𝑡)) which will ensure passenger and driver comfort.
ncreasing 𝑞1, 𝑞2 will make the controller more aggressive, which might increase fuel consumption. Choosing 𝐑 = 1, we have found
hat the control input to the 𝐴𝑉 , i.e., the steering angle of the 𝐴𝑉 , can be computed such that the driver comfort is assured.

As the 𝐴𝑉 longitudinal velocity changes, we learn optimal controllers for 𝑉 1
𝑥
= 20 m/s, 𝑉 2

𝑥
= 20.5 m/s, 𝑉 3

𝑥
= 21 m/s, 𝑉 4

𝑥

= 21.5 m/s, 𝑉 5
𝑥
= 22 m/s, and 𝑉 6

𝑥
= 22.5 m/s. We use the algorithm presented in Fig. 3 to perform gain scheduling-based

learning using these initial stabilizing control gains: 𝐊1
0 = [0.535, 0.023, 88.546, 92.441], 𝐊2

0 = [0.535, 0.025, 88.879, 92.443],
3
0 = [0.535, 0.026, 89.214, 92.445], 𝐊4

0 = [0.535, 0.027, 89.549, 92.446], 𝐊5
0 = [0.535, 0.028, 89.883, 92.448], 𝐊6

0 = [0.535, 0.029, 90.218,
2.449]. The tolerance 𝜖1 is set as 0.1. To demonstrate the learning process and application of the learned gains we perform the

ane-changing two times.

Fig. 5(a) shows the velocity of the vehicles that are obtained from the SUMO environment. Each of the intervals ||𝑉 𝐴𝑉
𝑥

− 𝑉 𝑖
𝑥
|| ≤

1, 𝑖 = 1,… , 6, comprises of 100 data points. Thus, with a sampling rate of 0.01 s, we collect data for 1 s for learning for every 𝑉 𝑖
𝑥
.

fter the learned optimal controller gains are obtained for every 𝑉 𝑖
𝑥
, the initial gains are replaced with the learned gains and the

control policy for lane change maneuver is computed using the learned gains and the interpolation formula presented in (14). It

as found that the lane changing time reduced with the application of the learned optimal gains for the lane change maneuver,

here the initial lane change time is ≈ 4.5 s and with the application of the learned optimal gains, the lane change time is obtained
s ≈ 3 s. In this work, the lane change start time is defined as the time when the 𝐴𝑉 decides to do a lane change maneuver and

he lane change end time is defined as the time when the 𝐴𝑉 ’s back bumper crosses the lane marking.

Fig. 5(b) shows the convergence of the optimal gains. The 𝜖0 in Algorithm 1 is set as 10−4. It is clearly seen from Fig. 5(b) that the

ains converge to the optimal gains with just 7 iterations. Thus, it can be said that for the proposed algorithm, 100 samples or in other

ords 1 s data is enough for the learning algorithm to converge. The converged gains are: 𝐊̂1∗ = [4.472, 1.404, 149.405, 53.70705747],
̂ 2∗ = [4.476, 1.481, 151.177, 53.626], 𝐊̂3∗ = [4.478, 1.490, 154.118, 53.627], 𝐊̂4∗ = [4.423, 1.498, 156.357, 53.618], 𝐊̂5∗ =
4.489, 1.517, 159.150, 53.601], 𝐊̂6∗ = [4.472, 1.533, 161.463, 53.588]. The optimal gains are: 𝐊1∗ = [4.472 1.444 149.006 53.665],
2∗ = [4.472, 1.463, 151.564, 53.649], 𝐊3∗ = [4.472, 1.483, 154.105, 53.632], 𝐊4∗ = [4.472, 1.503, 156.627, 53.615], 𝐊5∗ =
4.472, 1.523, 159.132, 53.597], 𝐊6∗ = [4.472, 1.543, 161.618, 53.579].
Fig. 6 shows the safe distance of the 𝐴𝑉 from the surrounding vehicles. It can be observed at 𝑡=0 s, the 𝐴𝑉 was not at a safe

istance from 𝐹𝑇 , thus the 𝐴𝑉 does not start a lane change maneuver. At 𝑡 ≈ 5 s, the safety conditions for lane-changing (6)–(9)
atisfy for all the surrounding vehicles and the 𝐴𝑉 starts the first lane change maneuver. For the second lane change maneuver, the

ehicles are already at safe distance, thus the 𝐴𝑉 can safely start the lane change maneuver.

Fig. 7(a) shows the states of the lateral system. It can be seen that the states converge to zero with the application of the

earned optimal controllers obtained using the proposed methodology. It was mentioned above that the gain scheduled controller can

uarantee overall system stability if the feedback law 𝐊𝑙𝑜 for the longitudinal motion can be obtained such that vehicle acceleration

as a small magnitude. Here, we have obtained the 𝐊̂∗
𝑙𝑜
= [4.4721, 110.3821] using 𝐐𝑙𝑜 = diag ([1, 1]), 𝐑𝑙𝑜 = 0.05. The choice of 𝐐𝑙𝑜

nd 𝐑𝑙𝑜 must be such that the acceleration has a small magnitude. Since, the 𝐴𝑉 longitudinal model is non-parameter varying, 𝐊̂∗
𝑙𝑜

an be learned using the techniques discussed by Jiang and Jiang (2012). Fig. 7(b) shows the longitudinal acceleration profile of

he 𝐴𝑉 . It can be seen that the acceleration magnitude is low.
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Fig. 6. Distance of 𝐴𝑉 from surrounding vehicles.

Fig. 7. (a) Error states, (b) Acceleration of 𝐴𝑉 .

6.3. Non-cooperative scenario

In a non-cooperative scenario, the 𝐹𝑇 is not cooperative with the 𝐴𝑉 while the 𝐴𝑉 starts changing the lane. By running the

SUMO simulations for different values of ℎ, it was observed that the 𝐴𝑉 was able to change lane for all ℎ ≤ 0.6 s. The scenarios are
resented as screenshots for ℎ = 0.5 s in Fig. 8, for ℎ = 0.6 s in Fig. 9, for ℎ = 0.65 s in Fig. 10. It can be seen that the 𝐴𝑉 was able

o change the lane for ℎ = 0.5 s and ℎ = 0.6 s.
For demonstrating the lane abortion scenario clearly, the case of ℎ = 0.6 s is elaborately explained next. Fig. 11(a) shows lane

bortion, and the velocities of the vehicles are shown in Fig. 11(b). The lane change starts at 48.16 s. From Fig. 11(b), it can be seen

hat the 𝐹𝑇 starts accelerating more than the 𝐴𝑉 . At around 50.03 s, 𝐹𝑇 comes close to the 𝐴𝑉 and thus to maintain safety, the

𝑉 starts aborting the lane change and maneuvers back to the current lane at 53.3 s. Again, at 54.2 s when the safety conditions
re satisfied, the 𝐴𝑉 starts maneuvering to the target lane. It must be noted that the plots in Fig. 11(a) are normalized for the sake

f clarity in understanding. For the cases where ℎ ≥ 0.65 s, the 𝐴𝑉 could not change the lane as the safety conditions did not satisfy

or the simulation duration (see Fig. 10).

6.4. Comparison with fixed-gain controller

In order to evaluate if lane change could be possible with a constant gain instead of gain scheduling, we did SUMO simulations

where the 𝐴𝑉 was made to change lane using constant gains. The results are given in Table 2, Figs. 12(a) and 12(b). The headway

ime is 0.5 s, and the lane change velocity is in the range of 21.5 m/s to 23 m/s. We have performed five simulations, where we

ade the 𝐴𝑉 change lane using controller gains (𝐊𝑉𝑥
) learned for each 𝑉𝑥 ∈ {12 m∕s, 15 m∕s, 17 m∕s, 20 m∕s, 23 m∕s}. Fig. 12(a)

shows the trajectories obtained using gain scheduling and constant gains. It can be seen that when the 𝐴𝑉 changes lane with 𝐊12,

here is a small overshoot in the 𝐴𝑉 trajectory. This overshoot decreases as we make the 𝐴𝑉 change lane with the controller gain

hat is trained close to the actual lane change velocity. Also, as we make the 𝐴𝑉 change lane with the controller gain that is trained

lose to the actual lane change velocity, the 𝐴𝑉 trajectories converge to the trajectory obtained using gain scheduling (𝐺𝑆). A

imilar observation is seen with the convergence of 𝐴𝑉 lateral states (see Fig. 12(b)). Table 2 shows the cost obtained using the

∫ 𝑡𝑓 (𝐱𝑇𝐐𝐱 + 𝐮𝑇𝐑𝐮)𝑑𝑡. It can
roposed gain scheduling controller and the constant gain controllers. The cost is computed using 𝐽 =
𝑡0
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Fig. 8. SUMO screenshots for non-cooperative scenario with ℎ=0.5 s: (a) 𝑡 = 46.5 s, (b) 𝑡 = 47.8 s, (c) 𝑡 = 53.8 s.

Fig. 9. SUMO screenshots for non-cooperative scenario with ℎ=0.6 s: (a) 𝑡 = 48.16 s, (b) 𝑡 = 50.03 s, (c) 𝑡 = 53.3 s (d) 𝑡 = 54.2 s, (e) 𝑡 = 70.1 s.

Fig. 10. SUMO screenshots for non-cooperative scenario with ℎ=0.65 s: (a) 𝑡 = 48.7 s, (b) 𝑡 = 50 s, (c) 𝑡 = 67.06 s.

be seen that the proposed gain scheduling controller gives the least cost. This suggests that the gain scheduling controller is optimal

when compared to the constant gain controllers.

Remark 6.1. As we schedule the controller gains that are learned for the velocities close to the actual 𝐴𝑉 velocity, the performance

s seen to be improved. This observation suggests the importance of gain scheduling. The interpolation formula in (14) is used to

chieve smooth transition from the present controller gain to the next. Instead, one can directly switch the controller gains with

espect to the scheduling variable. But switching, might cause system instability and thus gain scheduling using the interpolation

ormula in (14) is more preferable.
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Fig. 11. (a) Lane abortion of 𝐴𝑉 , (b) Velocities during lane abortion.

Fig. 12. (a) 𝐴𝑉 trajectories obtained using gain scheduling and constant gains, (b) error state 𝑒1 obtained using gain scheduling and constant gains.

Table 2

Comparison with constant gain.

Technique Cost (𝐽 )

Gain scheduling 4.1510e+04
𝐾12 4.6470e+04
𝐾15 4.4074e+04
𝐾17 4.3033e+04
𝐾20 4.2063e+04
𝐾23 4.1543e+04

6.5. Comparison with model-based MPC

Model predictive control (MPC) is also an optimal control technique. MPC tries to find the optimal control input at each time step

y minimizing the cost function 𝐽 =
∑𝑁𝑝

𝑖=0(𝐱
𝑇
𝑖
𝐐𝐱𝑖 +𝐮𝑇

𝑖
𝐑𝐮𝑖) + 𝐱𝑇

𝑁
𝐐𝑁𝐱𝑁 , where 𝐱𝑇𝑁𝐐𝑁𝐱𝑁 is the terminal cost, and 𝑁𝑝 is the prediction

orizon. Designing a proper 𝐐𝑁 is essential for stability of the MPC controller. Also, one needs to properly select the prediction

horizon 𝑁𝑝 to attain a balance between accuracy and computation cost. In the literature, MPC controller is used to track a trajectory

generated by the trajectory planning module for lane change. Here, we test if the MPC can be used as a lane-changing controller

when a lane change reference trajectory is not available. We have implemented the model-based MPC controller for lane change

for 𝑁𝑝 ∈ {20, 70, 100, 150, 200, 300, 500} and compared the results with the proposed learning-based gain scheduling technique in a
non cooperative scenario with ℎ=0.5 s. The plots obtained from SUMO simulations are given in Figs. 13(a) and 13(b). It can be

seen that the MPC controller does not achieve satisfactory performance with small prediction horizon. As the prediction horizon is
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Fig. 13. (a) 𝐴𝑉 trajectories obtained using gain scheduling and MPC, (b) error state 𝑒1 obtained using gain scheduling and MPC.

Fig. 14. SUMO screenshots obtained for MPC controller in a non-cooperative scenario with ℎ=0.5 s, 𝑁𝑝=100: (a) 𝑡 = 47 s, (b) 𝑡 = 47 s, (c) 𝑡 = 49.5 s (d) 𝑡 = 54 s.

Fig. 15. SUMO screenshots obtained for MPC controller in a non-cooperative scenario with ℎ=0.5 s, 𝑁𝑝=300: (a) 𝑡 = 46.8 s, (b) 𝑡 = 48.4 s, (c) 𝑡 = 53.5 s.

increased, the performance is similar to the proposed learning-based gain scheduling technique. It was observed that for 𝑁𝑝 < 150
the 𝐴𝑉 could not perform a successful lane change in a non-cooperative scenario. The SUMO simulation screenshots are given in

Figs. 14 and 15. It can be seen that when 𝑁𝑝 = 100, the 𝐴𝑉 could not change the lane as the MPC controller could not produce

dequate control input (steering angle). Whereas, when 𝑁𝑝 = 300, the 𝐴𝑉 could successfully change the lane and the performance

is similar to the proposed learning-based gain scheduling controller.

It must be noted that, increasing the prediction horizon increases the computation time of MPC. The MPC used in this work is

model-based and thus there is no learning time and thus to compare with the learning-based gain scheduling technique, we calculate

the computation time of the MPC controller as shown in Table 3. In Table 3, the computation start time is the time when the 𝐴𝑉

decides to do a lane change maneuver, and the computation end time is the time when the 𝐴𝑉 reaches the mid point of the target

lane. Note that the learning-based gain scheduling technique uses exploration noise. Hence, the learning time might vary each time

the algorithm given in Fig. 3 is executed. Thus, we execute the algorithm given in Fig. 3, 100 times to get a distribution of the

learning times for different control gains. The histogram for learning times for each 𝐊̂𝑖∗ is given in Fig. 16 and the histogram of

total learning times is given in Fig. 17. Comparing the total computation time of MPC in Table 3 and the total learning time for
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Table 3

Computation time of MPC.

𝑁𝑝 Computation Time steps Average computation Total computation

start, end time time per step time

150 39.86 s, 48.76 s 900 0.0011 s 0.99 s

200 39.86 s, 47.15 s 730 0.0013 s 0.95 s

300 39.86 s, 46.12 s 630 0.002 s 1.26 s

500 39.86 s, 45.82 s 600 0.0034 s 2 s

Fig. 16. Histogram of learning time for each 𝐊̂𝑖∗.

Fig. 17. Histogram of total learning time in 100 runs obtained by adding the learning time for each 𝐊̂𝑖∗ of the proposed gain scheduling algorithm.

the proposed technique in Fig. 17, it can be said that the proposed learning-based gain scheduling technique is computationally

fficient when compared to MPC.

emark 6.2. It must be noted that if the 𝜖 is reduced further, we need to learn more number of controller gains due to increased

number of scheduling points. This would increase the total learning time. However, note that the lane change performance of the

𝐴𝑉 is found to be satisfactory by learning controllers whenever the 𝐴𝑉 longitudinal velocity changes by half an unit, i.e., 𝜖 = 0.5.
lso, it must be noted that once the control gains are learned, we do not need to re-learn them unless the weight matrices 𝐐 and 𝐑
re changed. Thus, the computation burden is for one-time learning for the proposed technique. However, in case of MPC whenever
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the 𝐴𝑉 changes lane an optimization problem need to be solved to compute the steering angle at each time step of the lane change
uration.

emark 6.3. If 𝐊∗
𝑙𝑜 is very conservative such that the 𝐴𝑉 response in tracking the x-coordinate of the target point (𝑇𝑥) is sluggish,

one can change 𝐊∗
𝑙𝑜 to a more aggressive gain for target tracking. This must only be done when the states of the lateral dynamics

are negligible. In other words, when the 𝐴𝑉 has already reached 𝑇𝑦, and there is no dependence on the lateral dynamics, one can
switch to an aggressive 𝐊∗

𝑙𝑜 for better tracking of 𝑇𝑥.

Remark 6.4. This paper proposes an integrated learning-based method to the 𝐴𝑉 lane change problem. Any prior information
of the system parameters is not assumed. We only assume the knowledge of the state vector and the control input, and derive a
model-free optimal controller with guaranteed stability. It must be noted that many methodologies in the literature either do not
guarantee optimal control of the 𝐴𝑉 s or require to solve an optimization problem at every time step. The proposed methodology in
this work learns only at specific time intervals with a smaller number of data points whenever the 𝐴𝑉 longitudinal velocity changes
by half an unit, i.e., 𝜖 = 0.5. Also, due to the fast convergence, our proposed methodology is suitable for real-time applications.

lthough, we assume that we receive data from a linear model, the gain scheduling based learning-based controller design adds to
he versatility of the proposed methodology that makes it applicable to non-linear systems and/or parameter-varying systems.

.6. Evaluation of safety of lane change maneuver

In this section, we perform a comparative study between the proposed gain scheduling controller and the MPC for the lane-
hanging risks when both controllers are used for a lane-changing maneuver in a non-cooperative scenario. To evaluate the safety,
e use the lane change risk index (LCRI) proposed by the Park et al. (2018). Park et al. (2018) uses stopping sight distance (SSD)

and stopping distance index (SDI) to compute two risk indicators: risk exposure level (REL) and risk severity level (RSL). SDI is a
discrete measure used to determine whether a given car-following event is safe by comparing SSDs for the preceding vehicle and the
following vehicle. The REL indicates how long a subject vehicle is exposed to a hazardous situation that could potentially lead to a
crash while making a lane change. Meanwhile, RSL represents the severity of the crash that would occur if a subject vehicle does
not make the appropriate evasive maneuver. Then, a fault tree analysis (FTA), which is a well-known technique for risk analysis, is
adopted to integrate the REL and the RSL. As a result, a new index to estimate the probability of failing to make a safe lane change,
which is referred to as the lane change risk index (LCRI), is proposed.

The SSD is computed as:

𝑆𝑆𝐷𝑖(𝑡) =
𝑉𝑖(𝑡)2

254 × (𝑓 ± 𝑔)
+ 𝑡𝑟 × 𝑉𝑖(𝑡) × 0.278, (41)

where 𝑉𝑖(𝑡) is the vehicle speed in kph, 𝑓 is the coefficient of friction, typically for a poor, wet pavement, 𝑔 is the grade, decimal,
𝑡𝑟 is the perception–reaction time (2.5 s), 𝑖 ∈ {𝐿𝑇 , 𝐹𝑇 ,𝐴𝑉 ,𝐿𝐶, 𝐹𝐶}. Once, the SSDs are computed, one can compute the SDIs as
follows:

𝑆𝐷𝐼𝑖,𝑗 (𝑡) =

{

safe, 𝑖𝑓𝑆𝑖,𝑗 (𝑡) + 𝑆𝑆𝐷𝑖(𝑡) − 𝑆𝑆𝐷𝑗 (𝑡) − 𝑙𝑖 > 0
unsafe, otherwise,

(42)

where, 𝑆𝐷𝐼𝑖,𝑗 (𝑡) is the stopping distance index for the front vehicle 𝑖 and the following vehicle 𝑗, 𝑆𝑖,𝑗 (𝑡) is the front spacing between
the front vehicle 𝑖 and the following vehicle 𝑗, 𝑆𝑆𝐷𝑖(𝑡) is the stopping sight distance for the front vehicle, 𝑆𝑆𝐷𝑗 (𝑡) is the stopping
sight distance for the following vehicle, 𝑙𝑖 is the length of the front vehicle. Note that for the group of vehicles {𝐴𝑉 ,𝐿𝑇 ,𝐿𝐶},
𝑖 ∈ {𝐿𝑇 ,𝐿𝐶}, 𝑗 = 𝐴𝑉 , and for the group of vehicles {𝐴𝑉 , 𝐹𝑇 , 𝐹𝐶}, 𝑖 = 𝐴𝑉 , 𝑗 ∈ {𝐿𝐹 ,𝐿𝐶}.

Then, using SDI, REL and RSL are computed as follows:

𝑅𝐸𝐿𝑖,𝑗 =
𝑈𝐿𝐶𝐷
𝑇𝐿𝐶𝐷

, (43)

where 𝑈𝐿𝐶𝐷 is the unsafe lane change distance, 𝑇𝐿𝐶𝐷 is the total lane change distance.

𝑅𝑆𝐿𝑖,𝑗 =
max(−𝑆𝐷𝐼𝑖,𝑗 (𝑡))

𝑆𝐷𝐼𝑐𝑟𝑖
, (44)

where, 𝑆𝐷𝐼𝑐𝑟𝑖 is obtained when a crash occurs while the subject vehicle is traveling at the highest speed. Next, using fault tree
nalysis one can obtain the crash probabilities as Park et al. (2018):

𝜙𝑘 = 𝑅𝐸𝐿𝑖,𝑗 × 𝑅𝑆𝐿𝑖,𝑗 , (45)

where, 𝑘 = 1, 2, 3, 4. Next, the probability of lane change failure for the 𝐴𝑉 can be obtained as:

𝜙𝐴𝑉 = 1 −
4
∏

𝑘=1
(1 − 𝜙𝑘). (46)

he SDI for the 𝐴𝑉 and 𝐹𝑇 for the proposed gain scheduling controller and MPC are shown in Fig. 18(a) and Fig. 18(b) respectively.
19

s we want to determine the safety of 𝐴𝑉 from the non cooperative vehicle 𝐹𝑇 , we have not considered the SDI of other vehicles. In
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Fig. 18. (a) SDI for gain scheduling obtained for 𝐴𝑉 and 𝐹𝑇 , (b) SDI for MPC obtained for 𝐴𝑉 and 𝐹𝑇 .

Fig. 19. Comparison of safe distances maintained by 𝐴𝑉 and vehicle 43 from surrounding vehicles.

this work, 𝑆𝐷𝐼𝑐𝑟𝑖 is set to 40 m considering the spacing between two interacting vehicles is 0 m and that the speed of the following

vehicle is 100 kph.

After computation, we have obtained the LCRI for the case of gain scheduling as 𝜙𝐴𝑉 =0.05, and for the case of MPC as 𝜙𝐴𝑉 =0.5

with 150 steps as prediction horizon. Also, note that the proposed learning-based gain scheduling technique needs only 100 samples

to learn the scheduling gains. In a similar manner, we have computed LCRI for MPC for 𝑁𝑝 = 200, 300, 500 and observed that as
the prediction horizon is increased, the LCRI for MPC is improved. However, note that increasing 𝑁𝑝 increases the computation

ime. In comparison, the proposed methodology provides better safety in a non-cooperative scenario with lower computation cost,

hich is essential in safety-critical scenarios. Thus, it can be said that the proposed gain scheduling technique is safer and also

omputationally efficient.

.7. Performance evaluation using NGSIM data

This section presents the simulation results using SUMO and the vehicle trajectories data obtained from NGSIM (NGSIM, 2016)

ataset, which is a program funded by the U.S. Federal Highway Administration. We have tested our method for the US101 highway

ataset. The US101 dataset consists a total of 45 min of data divided into fifteen minutes periods: 7:50am–8:05am, 8:05am–8:20am,

nd 8:20am–8:35am. We have collected the trajectories of vehicles 30, 43, 47, 50, 54 from the 8:20am–8:35am dataset of US101

ataset, where vehicle 43 performs a lane change from lane 1 to lane 2. From the dataset, we can define 50 as 𝐹𝐶, 47 as 𝐿𝐶,

54 as 𝐹𝑇 , 30 as 𝐿𝑇 . To compare the proposed controller, we replace vehicle 43 with 𝐴𝑉 equipped with the proposed controller.

The proposed algorithm is used to learn optimal controllers for 𝑉 1
𝑥
= 7.1 m/s, 𝑉 2

𝑥
= 7.9 m/s, 𝑉 3

𝑥
= 8.7 m/s, 𝑉 4

𝑥
= 9.5 m/s, 𝑉 5

𝑥

= 10.3 m/s, and 𝑉 6
𝑥
= 11.1 m/s. These scheduling points are selected based on the lane changing velocities of vehicle 43. For

SUMO simulation, we let the 𝐴𝑉 start with the same initial condition as vehicle 43. The distances of 𝐴𝑉 and vehicle 43 from

the surrounding vehicles are shown in Fig. 19. It can be seen that both 𝐴𝑉 and vehicle 43 can maintain safe distances from the

surrounding vehicles. Figs. 20(a) and 20(b) compares the trajectories and the velocity profiles of the 𝐴𝑉 and vehicle 43, respectively.

The results show a similar trend in trajectory and velocity profiles with comparatively smoother profiles generated by the 𝐴𝑉 . Thus,

the proposed algorithm may lead to better passenger comfort and less fuel usage. It is desired to have a smoother lateral acceleration

profile and minimize lateral jerk during lane changing (see Luo et al., 2016). The lateral acceleration and jerk profiles for 𝐴𝑉 and

ehicle 43 are shown in Figs. 20(c) and 20(d), respectively. It can be seen that the 𝐴𝑉 produced smoother lateral accelerations and

lesser lateral jerks as compared to vehicle 43. Therefore, the 𝐴𝑉 equipped with the proposed controller may lead to a comfortable

and safe transportation experience.
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Fig. 20. Performance evaluation of the proposed methodology using NGSIM Data: (a) Trajectories of 𝐴𝑉 and vehicle 43, (b) Velocities of 𝐴𝑉 and vehicle 43,

c) Lateral accelerations of 𝐴𝑉 and vehicle 43, (d) Lateral jerks of 𝐴𝑉 and vehicle 43.

7. Conclusions

In this study, we have introduced a novel approach for addressing the lane-changing challenge in autonomous vehicles (𝐴𝑉 s).

This innovative methodology makes use of the online information of the state obtained from vehicular sensors and control input

to iteratively solve the algebraic Riccati equation online using approximate/adaptive dynamic programming framework, assuming

no knowledge of the system parameters. It was observed that the vehicle lateral dynamics depend on the longitudinal velocity,

which leads to a parameter varying 𝐴𝑉 lateral dynamics. Assuming constant longitudinal velocity might lead to conservative lane

change maneuvers, which might increase the risk of accidents, especially during lane abortion maneuvers in a non-cooperative

scenario. This study extends the applicability of learning-based optimal control to nonlinear and/or parameter-varying systems by

proposing a gain-scheduling-based learning-based control technique. We have conducted rigorous theoretical analysis, demonstrating

that the stability of the proposed learning-based gain-scheduling controller is guaranteed when scheduling points are selected in close

proximity. Additionally, we have implemented a lane-change decision-making algorithm to ensure safe and efficient lane changes,

including the ability to abort lane changes in non-cooperative scenarios. Empirical results indicate a reduction in lane-change time

when utilizing optimal controller gains compared to non-optimal counterparts. Safety assessments were performed using the lane

change risk index for both the proposed learning-based gain-scheduling controller and model-based model predictive control (MPC).

Our findings suggest that the proposed controller offers enhanced safety with reduced computational effort when compared to

MPC, which is necessary for safety-critical applications like lane changing. The effectiveness of our methodology has been validated

through extensive simulations conducted using MATLAB, SUMO and NGSIM dataset, reaffirming its practical viability and potential

for application in autonomous driving systems.

In future work, we aim to study a multi-agent framework, encompassing scenarios where multiple 𝐴𝑉 s engage in lane-

changing maneuvers within mixed traffic environments. This investigation will encompass the exploration of direct communication

possibilities among 𝐴𝑉 s, as well as a comprehensive analysis of potential challenges arising from the presence of potentially

misleading communication signals. Also, we plan to study the interaction between 𝐴𝑉 s and nearby human-driven vehicles in

situations where direct communication is unattainable, yet their behavior remains estimable through other means. Furthermore,
we plan to validate our proposed methodologies with more results using real-world datasets. This will contribute to a deeper
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understanding of the complex interactions within mixed traffic scenarios, advancing our knowledge of autonomous driving systems’
performance and safety in real-world conditions.
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ppendix A. Proof of Theorem 4.14

roof. Since the elements of 𝐀(𝛼) and 𝐁(𝛼) are analytic functions of 𝛼, for small 𝜖, we have 𝐀(𝛼) = 𝐀(𝛼𝑙)+(𝜖), and 𝐁(𝛼) = 𝐁(𝛼𝑙)+(𝜖).
hus, for any 𝛼 the Lyapunov equation (18) can be written as the following:

𝐀𝑘(𝛼)𝑇𝐏𝑘(𝛼) + 𝐏𝑘(𝛼)𝐀𝑘(𝛼) +𝐐 +𝐊𝑘(𝛼)𝑇𝐑𝐊𝑘(𝛼) = 𝟎, (A.1)

where, 𝐀𝑘(𝛼) = 𝐀(𝛼) − 𝐁(𝛼)𝐊𝑘(𝛼). Let, 𝐊𝑘+1(𝜖,𝐏𝑘(𝛼)) ∶= 𝐊𝑘+1(𝛼) = 𝐑−1𝐁(𝛼𝑙)𝑇𝐏𝑘(𝛼) + (𝜖). Then, one can obtain 𝐀𝑘(𝛼) = 𝐀(𝛼𝑙) −
𝐁(𝛼𝑙)𝐊𝑘(𝛼) + (𝜖). Next, define the following function:

𝐅𝑘(𝜖,𝐏𝑘(𝛼)) = 𝐀𝑘(𝛼)𝑇𝐏𝑘(𝛼) + 𝐏𝑘(𝛼)𝐀𝑘(𝛼) +𝐐 +𝐊𝑘(𝜖,𝐏𝑘−1(𝛼))𝑇𝐑𝐊𝑘(𝜖,𝐏𝑘−1(𝛼)). (A.2)

Let 𝑘 = 1 and note that at the point (𝜖 = 0, 𝐏1(𝛼𝑙)), we have 𝛼 = 𝛼𝑙 and the following:

𝐅1(0,𝐏1(𝛼𝑙)) = 𝐀1(𝛼𝑙)𝑇𝐏1(𝛼𝑙) + 𝐏1(𝛼𝑙)𝐀1(𝛼𝑙) +𝐐 +𝐊1(𝛼𝑙)𝑇𝐑𝐊1(𝛼𝑙). (A.3)

Note that 𝐊1(𝛼𝑙) is the known initial stabilizing controller gain that is used to start the iteration for the model-free learning (see
Section 4.1). Thus, 𝐅(0,𝐏1(𝛼𝑙)) = 0 has a unique solution 𝐏1(𝛼𝑙) as 𝐀1(𝛼𝑙) is stable. Also, we have that:

𝐊2(0,𝐏1(𝛼𝑙)) = 𝐑−1𝐁(𝛼𝑙)𝑇𝐏1(𝛼𝑙). (A.4)

Now,

𝐅1(𝜖,𝐏1(𝛼)) = 𝐀1(𝛼)𝑇𝐏1(𝛼) + 𝐏1(𝛼)𝐀1(𝛼) +𝐐 +𝐊1(𝛼)𝑇𝐑𝐊1(𝛼), (A.5)

where 𝐊1(𝛼) = 𝐊1(𝛼𝑙) +
𝐊1(𝛼𝑙+1)−𝐊1(𝛼𝑙 )

𝛼𝑙+1−𝛼𝑙
(𝛼 − 𝛼𝑙). Note that 𝐊1(𝛼𝑙+1) is also a known initial stabilizing controller gain for the scheduling

point 𝛼𝑙+1. Using Lemma 4.6 for (A.5) and taking the derivative with respect to vec(𝐏1(𝛼)) at the point (𝜖 = 0, 𝐏1(𝛼𝑙)), we have the
following:

𝜕vec(𝐅1(𝜖,𝐏1(𝛼)))
𝜕vec(𝐏1(𝛼))

|

|

|

|(0,𝐏1(𝛼𝑙 ))
= 𝐈⊗ 𝐀1(𝛼𝑙)𝑇 + 𝐀1(𝛼𝑙)𝑇 ⊗ 𝐈 (A.6)

Since 𝐀1(𝛼𝑙) is stable, all its eigenvalues have strictly negative real parts. Therefore, det(𝐈⊗ 𝐀1(𝛼𝑙)𝑇 + 𝐀1(𝛼𝑙)𝑇 ⊗ 𝐈) ≠ 0. Thus, for a
small 𝜖, by using the implicit function theorem there exists an unique solution for 𝐏1(𝛼) with 𝐅1(𝜖,𝐏1(𝛼)) = 0 that is analytic in 𝜖.
Hence we have the following:

𝐏1(𝛼) = 𝐏1(𝛼𝑙) + (𝜖) (A.7)

𝐊2(𝜖,𝐏1(𝛼)) = 𝐊2(0,𝐏1(𝛼𝑙)) + (𝜖), (A.8)

where 𝐊2(0,𝐏1(𝛼𝑙)) = 𝐑−1𝐁(𝛼𝑙)𝑇𝐏1(𝛼𝑙). For 𝑘 = 2 at the point (𝜖 = 0, 𝐏2(𝛼𝑙)), we have the following:

𝐅2(0,𝐏2(𝛼𝑙)) = 𝐀2(𝛼𝑙)𝑇𝐏2(𝛼𝑙) + 𝐏2(𝛼𝑙)𝐀2(𝛼𝑙) +𝐐 +𝐊2(0,𝐏1(𝛼𝑙))𝑇𝐑𝐊2(0,𝐏1(𝛼𝑙)). (A.9)

Then, 𝐅2(0,𝐏2(𝛼𝑙)) = 0 has an unique solution 𝐏2(𝛼𝑙). And thus,

𝐊3(0,𝐏2(𝛼𝑙)) = 𝐑−1𝐁(𝛼𝑙)𝑇𝐏2(𝛼𝑙) (A.10)

Now,

𝐅 (𝜖,𝐏 (𝛼)) = 𝐀 (𝛼)𝑇𝐏 (𝛼) + 𝐏 (𝛼)𝐀 (𝛼) +𝐐 +𝐊 (𝛼)𝑇𝐑𝐊 (𝛼). (A.11)
22

2 2 2 2 2 2 2 2
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From (A.8), 𝐊2(𝛼) = 𝐊2(𝛼𝑙) + (𝜖). Thus, following the similar steps for the 𝑘 = 1 case, by using the implicit function theorem, one
can obtain an unique solution for 𝐏2(𝛼) with 𝐅2(𝜖,𝐏2(𝛼)) = 0 that is analytic in 𝜖. Hence, we have the following:

𝐏2(𝛼) = 𝐏2(𝛼𝑙) + (𝜖) (A.12)

𝐊3(𝜖,𝐏2(𝛼)) = 𝐊3(0,𝐏2(𝛼𝑙)) + (𝜖), (A.13)

where 𝐊3(0,𝐏2(𝛼𝑙)) = 𝐑−1𝐁(𝛼𝑙)𝑇𝐏2(𝛼𝑙).
Repeating the above analysis for 𝑘 = 3, 4,…, the statement of the theorem is proved.

Appendix B. Proof of Theorem 4.15

Proof. From Theorem 4.14, we have:

𝐊̂∗(𝛼𝑙+1) = 𝐊̂∗(𝛼𝑙) + (𝜖), (B.1)

Thus, (14) implies that:

𝐊(𝛼) = 𝐊̂∗(𝛼𝑙) + (𝜖), (B.2)

for all 𝛼 ∈ [𝛼𝑙 , 𝛼𝑙+1]. Also, the elements of 𝐀(𝛼) and 𝐁(𝛼) are analytic functions of 𝛼, hence for small 𝜖 we have, 𝐀(𝛼) = 𝐀(𝛼𝑙) +(𝜖),
and 𝐁(𝛼) = 𝐁(𝛼𝑙) + (𝜖) for all 𝛼 ∈ [𝛼𝑙 , 𝛼𝑙+1]. Thus,

𝐀𝑐(𝛼) = 𝐀(𝛼) − 𝐁(𝛼)𝐊(𝛼) = 𝐀𝑐 (𝛼𝑙) + (𝜖) (B.3)

Thus, using the results on the analytic perturbation of eigenvalues (Lancaster and Tismenetsky, 1985), the statement of the theorem
holds.
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