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Abstract— This paper introduces a learning-based optimal
control strategy enhanced with nonmodel-based state estimation
to manage the complexities of lane-changing maneuvers in
autonomous vehicles. Traditional approaches often depend on
comprehensive system state information, which may not always
be accessible or accurate due to dynamic traffic environments
and sensor limitations. Our methodology dynamically adapts to
these uncertainties and sensor noise by iteratively refining its
control policy based on real-time sensor data and reconstructed
states. We implemented an experimental setup featuring a
scaled vehicle equipped with GPS, IMUs, and cameras, all
processed through an Nvidia Jetson AGX Xavier board. This
approach is pivotal as it addresses the limitations of simulations,
which often fail to capture the complexity of dynamic real-world
conditions. The results from real-world experiments demon-
strate that our learning-based control system achieves smoother
and more consistent lane-changing behavior compared to tradi-
tional direct measurement approaches. This paper underscores
the effectiveness of integrating Adaptive Dynamic Program-
ming (ADP) with state estimation techniques, as demonstrated
through small-scale experiments. These experiments are crucial
as they provide a practical validation platform that simulates
real-world complexities, representing a significant advancement
in the control systems used for autonomous driving.

I. INTRODUCTION

Autonomous driving is often recognized for its potential to
transform transportation systems and decrease the incidence
of traffic accidents attributed to human driving errors [1].
Autonomous vehicles (AV) typically employ an array of
sensors to identify nearby vehicles, pedestrians, and obsta-
cles [2], [3], which informs their movement decisions [4].
Furthermore, mastering lane-following and lane-changing
maneuvers is crucial in autonomous driving, necessitating a
dependable control strategy that is both theoretically sound
and empirically proven [5], [6]. This work employs a small-
scale car model to test lane-changing algorithms, providing
unique insights often unattainable through computer sim-
ulations alone. Unlike full-scale cars, small-scale models
allow for rapid prototyping and testing in controlled envi-
ronments, enabling detailed observation of dynamics that
computer models might overlook [7]. This approach follows
methodologies in other works (see [5], [6]), where small-
scale implementations have successfully predicted behaviors
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in larger systems, offering a cost-effective alternative to full-
scale testing.

Learning-based optimal control is a powerful tool for han-
dling complex tasks in autonomous vehicles [8], especially
for sophisticated maneuvers such as auto lane-changing. This
methodology allows for a practical and adaptive control
system that learns and refines its strategy based on direct
interaction with the environment rather than relying solely
on predefined models [9]. Adaptive Dynamic Programming
(ADP) is a widely used learning-based optimal control,
significantly advancing in optimizing AV lane-changing by
accommodating model inaccuracies and enhancing perfor-
mance in real-time [10]. The authors of [11] presented a
unified framework for data-driven optimal control for which
prior knowledge of model parameters was unnecessary but
required an initial stabilizing control law. However, the initial
admissible control policy is difficult to find in practice.

The authors of [5] explore the data-driven optimal gain-
scheduling control for vehicle-lateral stability via ADP,
showcasing its potential to outperform non-adaptive and
model-based optimal controllers. However, the applications
of ADP in autonomous driving under mixed traffic conditions
generally rely on the exact full-state information [12]. Simi-
larly, the work by [6] introduces an automated lane-changing
control using an ADP approach, illustrating AADP’sutility
in managing the complexities of mixed traffic environments.
However, this approach requires accurate and costly sensors,
and the closed-loop system performance is vulnerable to
unavoidable sensor noise.

State estimation is a virtual sensor technique to solve
the problem caused by lacking direct full-state measurement
[13]. Instead of measuring the entire state vector, states could
be reconstructed based solely on the output from the system
[14]. Recent research in state estimation for autonomous
driving has made significant progress in addressing complex
driving scenarios, such as navigating around intersections
[15] and tracking maneuvering targets under various condi-
tions. Traditional methods, like the widely employed Kalman
Filter [16]. Its nonlinear counterparts—the Extended [17] and
Unscented Kalman Filters [15] —primarily address Gaussian
noise and involve assumptions about system linearity or lack
of stability and robustness guarantees when the system is
strongly nonlinear. Although robust, these techniques can fall
short in handling highly dynamic or non-Gaussian environ-
ments typical in autonomous driving.

In contrast, our approach integrates state estimation deeply
into the control process, establishing a robust foundation
for real-time autonomous vehicle control without requiring
complete knowledge of system dynamics. It combines input-
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output data with nonmodel-based formulations to estimate
states, indirectly addressing uncertainties and system dynam-
ics through estimation rather than direct sensor readings.

This paper introduces a nonmodel-based control approach
that leverages state estimation techniques and a policy
iteration-based output-feedback algorithm to handle systems
where full-state measurements are unavailable. It utilizes
sensor data to estimate the system state and employs an
iterative process to refine control policies based on the
estimated states. It is built on the theoretical and practical
insights provided by the preceding works [6]. To demonstrate
the empirical advancement of our algorithm, we utilized a
remote control (RC) car and implemented our algorithm on
this platform to conduct laboratory experiments.

The remainder of this paper is organized as follows: Sec-
tion II outlines the design of the data-driven optimal control
with state estimation. Section III details the experimental
setup and evaluates the performance of the learning-based
control algorithm. Section IV concludes with a summary of
our findings and observations.

Notations: ⊗ indicates the Kronecker product,
vec(T ) =

[
tT
1 , t

T
2 , · · · , tT

m
]T with ti ∈ Rr being the columns of

T ∈ Rr×m. For a symmetric matrix P ∈ Rm×m, vecs(P) =
[p11,2p12, · · · ,2p1m, p22,2p23, · · · ,2p(m−1)m, pmm]

T ∈
R(1/2)m(m+1), for a column vector v ∈ Rn, vecv(v) =
[v2

1,v1v2, · · · ,v1vn,v2
2,v2v3, · · · ,vn−1vn,v2

n]
T ∈ R(1/2)n(n+1).

For any two vectors a,b, define Ξa =
[
vecv(ak0+1) −

vecv(ak0), · · · ,vecv(aks) − vecv(aks−1)
]T, Ja,b =[

ak0 ⊗ bk0 , · · · ,aks ⊗ bks

]T, Ja =
[
vecv(ak0), · · · ,vecv(aks)

]T.
In(0n) is the identity (zero) matrix of dimension n×n.

II. LEARNING-BASED CONTROLLER DESIGN

This section presents a methodology for designing a data-
driven optimal controller using only input-output data.

A. Model-based formulation

Consider the following discrete-time linear system:

xk+1 = Axk +Buk, (1)
yk =Cxk. (2)

where xk ∈ Rn is the state, uk ∈ Rm is the control input,
yk ∈Rr is the system output. A ∈Rn×n, B ∈Rn×m, C ∈Rr×n

are constant matrices. Throughout the paper, we assume that
(A,B) is controllable and (A,C) is observable. Also, it is
assumed that the state xk is not measurable. Thus, we seek to
develop a control strategy via output feedback in this paper.
To reduce the state deviations and control effort, we seek to
design a linear optimal control law of the form:

uk =−K⋆xk, (3)

that minimizes the following cost function:

min
u

J =
∞

∑
k=0

(yT
k Qyk +uT

k Ruk), (4)

Algorithm 1 Model-based PI
1: Select an admissible control policy K0 such that A−BK0

is a Schur matrix. Initialize j← 0. Select a sufficiently
small threshold ε̄ > 0.

2: repeat
3: Policy Evaluation (Solve for Pj from):

AT
j PjA j−Pj +CT QC+KT

j RK j = 0. (7)

4: Policy Improvement:

K j+1 = (R+BT PjB)−1BT PjA. (8)

5: j← j+1.
6: until ∥Pj−Pj−1∥< ε̄ .

where Q=QT ≥ 0, R= RT > 0, and (A,
√

QC) is observable.
If A and B are completely known, the solution to the above-
mentioned problem is well known and can be found by solv-
ing the following discrete-time algebraic Riccati equation:

AT PA−P+CT QC−AT PB(R+BT PB)−1BT PA = 0. (5)

By the assumptions mentioned above, Eq. (5) has a unique
solution P∗ = P∗T > 0. The optimal feedback gain K∗ can
be found as follows:

K∗ = (R+BT P∗B)−1BT P∗A. (6)

It should be noted that (5) is nonlinear concerning P,
making direct computation of P challenging, especially in
high-dimensional systems. A model-based policy iteration
(PI) technique to solve (5) was presented in [18] and is
reproduced in Algorithm 1. Note that A j = A− BK j in
Algorithm 1.

B. Nonmodel-based formulation

In this section, we illustrate a nonmodel-based approach
for state reconstruction in terms of only uk and yk. The
system parameters A and B are considered unknown, and
the state xk is considered unmeasurable. This work proposes
a policy iteration-based online output-feedback algorithm
to solve the optimal control problem. Using (1)-(2), it is
possible to reconstruct xk using input-output data as follows
[19]

xk = Muũk−1,k−N +Myỹk−1,k−N = Θzk, (9)

where N is the observability index [13],
zk = [ũT

k−1,k−N , ỹT
k−1,k−N ]

T , Θ = [Mu, My],
My = ANO+

N , Mu = CN−MyTN ,
ũk−1,k−N = [uT

k−1, uT
k−2, · · · , uT

k−N ]
T

ỹk−1,k−N = [yT
k−1, yT

k−2, · · · , yT
k−N ]

T

CN =
[
B AB A2B · · · AN−1B

]
,

ON =


CAN−1

...
CA
C

, TN =


0 CB CAB · · · CAN−2B
0 0 CB · · · CAN−3B
...

...
. . . . . .

...
0 · · · · · · 0 CB
0 0 0 0 0

.
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Letting A j = A−BKj, (1) can be rewritten as

xk+1 = A jxk +B(uk +Kjxk), (10)

Using (7), the following can be obtained

xT
k+1Pxk+1− xT

k Pxk =− xT
k CT QCxk− xT

k KT
j RKjxk

+2xT
k AT PjBuk +2xT

k AT PjBKjxk

− xT
k KT

j BT PjBKjxk +uT
k BT PjBuk

(11)

Using (9), the following can be obtained from (11)

zT
k+1P̃zk+1− zT

k P̃zk =− yT
k Qyk− zT

k K̃T
j RK̃jzk

+2zT
k ΓT

1 juk +2zT
k ΓT

1 jK̃ jzk

− zT
k K̃T

j Γ2 jK̃ jzk +uT
k Γ2 juk (12)

where Γ1 j = BT PjAΘ, Γ2 j = BT PjB, P̄j = ΘT PΘ, K̃ j = KjΘ.

Note that (12) does not require the full-state measurements.

By collecting the data for the time sequence k0 < k1 <
· · ·< ks, the following can be obtained from (12)

Ψ jθ j =−Jyvec(Q)− Jzvec(K̃T
j RK̃j), (13)

where Ψ j =

[
Ξz,−2Jz,u−2Jz,z(In⊗ K̃T

j ),JK̃jz− Ju

]
,

θ j =

[
vecs(P̃j)

T ,vec(Γ1 j)
T ,vecs(Γ2 j)

T
]T

.

Assumption 2.1: There exists a s∗ ∈ Z+ such that for all

s > s∗:

rank([Jz,Jz,u,Ju]) =
p1(p1 +1)

2
+ p1m+

m(m+1)

2
, (14)

where p1 = N(m+ r).
Remark 1: Notice that s∗ ≥ p1(p1+1)

2 + p1m+ m(m+1)
2 to

guarantee the feasibility of (14).

Remark 2: Under Assumption 2.1, Ψ j has full column

rank for all j ∈ Z+ [9].

Remark 3: Note that (14) is like the persistency of excita-

tion condition in adaptive control, which is used in previous

ADP algorithms by adding an exploration signal to the input

to satisfy (14) [9].

Algorithm 2 Data-Driven PI

1: Employ uk =−K̃0zk+ηk as the input on the time interval

[k0, ks], where K̃0 is an initial stabilizing control gain and

ηk is the exploration/probing noise.

2: Compute Ψ j until the rank condition in (14) is satisfied.

Let j = 0.

3: Solve for θ j from (13). Then, K̃ j+1 = (R+Γ2 j)
−1Γ1 j.

4: Let j← j+1 and repeat Step 3 until ‖P̃j− P̃j−1‖≤ ε̄ for

j ≥ 1, where the constant ε0 > 0 is a predefined small

threshold.

Fig. 1. The diagram illustrates the car model’s software architecture,
detailing data processing and flow. The Jetson board is the central hub
for all computational tasks, enabling multiple data processing programs to
operate simultaneously.

III. EXPERIMENTS

A. Hardware Setup[6]

We created a scaled car model for indoor testing of our

lane-changing algorithm. This model performs lane changes

and lane following using sensors like GPS, IMU, and a

camera to collect data. Due to its compact size and efficiency,

the Nvidia Jetson AGX Xavier board handles real-time data

processing. Our setup aims to emulate real-world driving

conditions within a controlled environment. We test the lane-

changing algorithm under various scenarios to observe the

vehicle’s reactions to obstacles. Each experiment is repeated

with slight variations to assess algorithm robustness.

The experimental car model is based on the TRX-4 RC

from Traxxas Inc., known for its strong power output and

precise steering. The TRX-4 chassis includes components

that simulate actual vehicle mechanics and efficiently manage

motor control through PWM signals. The total assembly,

including sensors (0.21 kg), computing hardware (0.27 kg),

batteries (1.1 kg), and accessories (0.53 kg), weighs slightly

over 2.1 kg. Despite the added weight, the TRX-4 maintains

maneuverability, closely replicating real car behavior.

Our car model’s hardware configuration, shown in Fig-

ure 3, includes the Marvelmind Indoor GPS, which uses GPS

and IMU sensors to track the car’s position and orientation

in real-time with an accuracy of ±2 cm. We use two beacons

to enhance GPS data precision and reduce position measure-

ment errors. The Kalman filter is applied to mitigate noise

from the IMU sensor, influenced by the beacons’ frequency

and placement, effectively reducing high-frequency errors.

A wide-angle camera is used for lane detection in our lane-

following algorithm.

The RealSense D435 camera is a critical component in our

self-driving vehicle setup for lane changes. It combines high-

resolution RGB and depth information, making it suitable

for various indoor and outdoor applications in autonomous

driving. With a field of view of 85.2◦ horizontally, 58◦
vertically, and 94◦ diagonally, the RealSense D435 enhances

spatial detection for precise depth perception and maneuver-

ing in complex environments. It captures depth images at

1280× 720 resolution at up to 90 frames per second, pro-

viding real-time environmental updates. The camera’s active
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Fig. 2. Schematic of the obstacle detection and decision-making process
for an autonomous vehicle (AV) during lane-changing maneuvers. The
diagram illustrates the AV (RC Car) in the center lane with dotted red
lines representing the perception range of the RGBD camera. Circles with
checkmarks indicate clear paths, while red marks signify the presence of an
obstacle.

Fig. 3. The car model comes fully outfitted with diverse hardware
components, all battery-powered. Careful consideration has been given to
the placement of each component to guarantee maximum safety, with a
particular focus on achieving optimal weight distribution.

infrared stereo technology improves depth accuracy, which is

essential for reliable operation in low-light conditions, such

as night driving.

Our experimental setup mounts a RealSense D435 camera

on a vehicle to scan its surroundings, combining RGB and

depth data to create a detailed 3D environment map. This

map aids in obstacle detection and lane-change decisions

by detecting and tracking static and dynamic objects like

vehicles, pedestrians, and barriers. The visual and depth

information classifies these entities and assesses their move-

ment, feeding into a path-planning algorithm that deter-

mines the safest and most efficient trajectory. The vehicle

proceeds with lane changes if deemed safe and necessary,

constantly updating based on the environment. This approach

enhances autonomous vehicle technology by enabling intel-

ligent, proactive lane-changing decisions, improving traffic

safety and fluidity.

The vehicle uses the Nvidia Jetson AGX Xavier for

computational tasks and sensor data gathering, employing

UDP packets to capture relevant data while ignoring the

rest. Sensors continuously send data to the Jetson device,

ensuring completeness and integrity. PWM signals control

the vehicle’s steering and acceleration, with an external

PWM generator required to supply the necessary power for

the TRX-4’s Steering mechanism.

The car model includes a wireless joystick for manual

control, enhancing experimental flexibility. We use the Log-

itech G29 Driving Force Racing Wheel, designed for car

simulations with several programmable buttons for com-

mands, including starting autonomous driving and reversing.

This setup eliminates the need for a keyboard, making

experiments more user-friendly.

At the heart of our car model lies the Nvidia Jetson

Fig. 4. This figure illustrates the basic framework of autonomous driving
algorithms, each structured to activate its output to the motor solely under
certain predefined scenarios.

AGX Xavier Board, a sophisticated, compact computing

module. Sensors are directly hooked to the Jetson board

to reduce sensor latency and improve scalability through

serial connections. The integration process on the Jetson

board is illustrated in Fig. 1, where three separate pro-

grams operate concurrently. Among these, the Motor-Servo-

Controller program manages all motor activities, including

acceleration and servo motors. It operates based on sev-

eral parameters, such as steering angle, speed, and driving

mode, all communicated via UDP packets. The Motor-Servo-

Controller exclusively handles the processing of these param-

eters without interacting with the Lane-Changing or Lane-

Following programs. Designed in C++, the Motor-Servo-

Controller ensures smooth operation with drivers compatible

with the PCA9685 module.

The Lane-Changing and Lane-Following programs feature

algorithms that set the vehicle’s steering angle and velocity,

as outlined in prior research [20]. Inputs from dedicated

sensors are fed into each program via serial connections,

acting as algorithm parameters. Following data processing,

the results—steering angle, speed, and the type of driv-

ing—are sent to the Motor-Servo-Controller using specific

port numbers over the local network. The driving mode

serves to distinguish between data sent from each program.

For example, outputs from the Lane-Changing program are

labeled with a driving mode of 1, whereas Lane-Following

outputs are assigned a mode of 2. This labeling enables the

motor-servo-controller to recognize the originating program

based on the indicated driving mode.

Fig. 3 illustrates the car model featured in our experiments,

with dimensions of 50cm in width, 24cm in length, and 26cm

in height. To enhance safety, the steering angle, which can

reach up to ±35 degrees, is limited to 30 degrees to avoid any

contact between the wheels and the car’s body. The vehicle’s

motor, capable of a maximum output of 46W, enables speeds

of up to 15km/h. Performance remains stable until the battery

charge declines to below 80%.

In our car model, the lane-changing algorithm collects

data over the first 100 seconds, with each time-step being

0.083 seconds, to calculate a near-optimal K̄ value. Once
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Fig. 5. The initial diagram depicts the optimal motion trajectory for our
experiments. Our main aim is to attain consistent positioning within the
designated lane. Therefore, our key focus lies on critical measurements: x1,
denoting the minimal distance between the target vehicle and the designated
lane, and x2, representing the orientation angle of the target vehicle. This
diagram showcases two distinct scenarios during lane-changing: Change
Lane to Left and Stop, arranged from top to bottom.

a lane change is completed, the vehicle smoothly switches

to the lane-following algorithm to maintain steady progress.

This process ensures that the data flow within the experiment

matches the schematic shown in Fig. 4.

B. Software

We designed a nonmodel-based control algorithm using

input-output data to reconstruct the system’s unmeasurable

state, avoiding the need for system parameters A and B. This

online output-feedback algorithm, refined through policy

iteration techniques, relies solely on observed outputs and

control inputs. It adapts to system dynamics by continu-

ously updating the controller with new data. The algorithm

optimizes a cost function that balances performance and

control effort, ensuring efficiency and robustness for real-

world applications like autonomous driving.

C. Experimental Results

TABLE I

INITIAL AND TRAINED K̄ COMPARISON

K0 K1 K2 K3 K4 K5

K̄0 −0.057 0.187 −0.182 3.016 0.276 −10.646

K̄∗ −0.050 −.051 −0.0011 5.015 0.018 −10.761

We conducted three experiments to evaluate our new

learning-based optimal control algorithm. This method uses a

data-driven approach, as detailed in Algorithm 2, leveraging

both real-time state xk and the steering angle input δk.

The safety of lane transitions for the RC car is maintained

by optimizing the steering feedback gain K through the

ADP algorithm [6]. The initial setting for the feedback gain

is K̄0 = [−0.057,0.187,−0.182,3.016,0.276,−10.646], with

identity matrices serving as weights Q and penalties for

control effort R. The exploration noise ηηηk enhances the

optimization of δk. We constructed a two-lane road for these

tests, measuring 4.5,m in length and 0.3,m in lane width.

The experimental setup, depicted in Fig. 5, features an RC

car and three other vehicles: the current lane leader (LC),

the target lane leader (LT), and the target lane follower (FT),

which act as potential hazards. Safe distances from each of

these vehicles are marked as SFT (t), SLT (t), and SLC(t). The

Fig. 6. Both training and testing experiments were conducted in the same
environment. The state vector of the RC car, represented by the variables
x1 and x2, measures the lateral displacement from the target lane and the
orientation error in units of cm and radians, respectively. The gray line in
the graph shows the raw data collected from each experiment, while the red
line represents the average values across the 10 experiments. Additionally,
the graph of K versus Trial presents the values of K following the training
phase in each experiment.

state vector x = [x1,x2] of the RC car indicates the lateral

displacement from the target lane and orientation error.

D. Analysis and Discussion

The graph in Fig. 6 shows that the control gain vector K,

including components K1 to K6, remains stable across trials,

with slight variations due to sensor noise, demonstrating the

robustness of our method. The RC car consistently achieved

smoother lane changes using the learned control gains K̄,

confirming its ability to effectively learn and apply the

optimal control strategy iteratively.

Testing in two scenarios showed the RC car’s capability

to adapt to changing conditions by maintaining its path,

executing lane changes, or stopping as needed. These re-

sults highlight the effectiveness of the control algorithms in

various traffic situations.

1) Scenario 1: Lane change to empty lane: If the depth

at the center is less than (1m), indicating an obstacle in

the vehicle path, and the depth on the left exceeds (1.5m),

indicating a clear adjacent lane, the system activates a lane

change. A UDP signal is sent to the vehicle’s control system

to commence a safe lane change maneuver.

2) Scenario 2: Emergency Stop: Fig. 8 presents data from

a complex scenario in the final test. Initially, the RC car

encounters an obstruction in its current lane, prompting a

lane change to the target lane, as indicated by the spike

in (x1). However, after the lane change, the RC car finds

obstructions and decides to stop. This decision is highlighted

by the sharp decrease in (x1) and the stabilization in the

target point graph, where the target lane signal drops to −1,

signaling the stop command.
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Fig. 7. The graph displays the outcome of scenario 1, illustrating the
necessary lane change.

Fig. 8. The graph displays the outcome of scenario 2, illustrating the
emergency stop.

IV. CONCLUSION

We presented a learning-based control system with
nonmodel-based state estimation for autonomous lane-
changing. This system adapts to uncertainties and sen-
sor noise, enhancing precision and stability in complex
traffic. Using a scaled vehicle equipped with GPS, IMU,
and cameras processed by an Nvidia Jetson AGX Xavier
board, we demonstrated the robustness of our approach.
This small-scale model offers a flexible, safe, and cost-
efficient method for testing in varied conditions, which are
hard to simulate, particularly regarding sensor integration and
latency issues. Our results show that the RC car exhibited
smoother and more consistent lane-changing behavior than
traditional methods, with better vehicle dynamics handling
and reduced noise-induced errors. Future work will expand
testing environments and refine algorithms, using a broader
range of sensory data to improve decision-making accuracy.
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