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Abstract: In this paper, we develop a new unfitted finite element method for the Stokes interface
problem. In this method, the velocity is approximated using a piecewise linear continuous Galerkin
element enriched by the lowest-order Raviart–Thomas element, while the pressure is approximated
using a piecewise constant element. To construct a stable solver with an optimal convergence rate,
we adopt cut finite element strategies and add ghost penalty terms for both velocity and pressure.
We numerically show that the considered method achieves an optimal convergence rate as well as
preserving the divergence constraint. Several benchmark problems are presented to test its stability,
divergence property, and convergence performance, demonstrating the desired pressure and viscosity
robustness in complex geometries, thereby outperforming other numerical methods.
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1. Introduction

The Stokes equations describe the motion of viscous, incompressible fluids at low Reynolds
numbers. They are fundamental in fluid mechanics and serve as a simplification of the Navier–Stokes
equations, where inertial forces are negligible compared to viscous forces. Stokes equations are
widely used in various applications, including microfluidics, porous media flow, and biomedical
modeling. In many practical scenarios, the fluid domain consists of multiple subdomains with
different material properties, such as fluids with varying viscosities. These problems are referred to as
Stokes interface problems, where the governing equations remain the same in each subdomain, but
the physical properties, such as the viscosity, may change discontinuously across an interface. The
interface conditions impose jump conditions on the stress and velocity due to the difference in the
material properties.
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In this paper, we consider the Stokes interface problem in a bounded, contractible, and open domain
Ω ⊂ Rd (d = 2 or 3 is the dimension) which is divided into two subdomains, Ω− and Ω+, by a smooth
interface Γ, with a polygonal boundary ∂Ω. The governing equations solve the velocity field u and
pressure p in each subdomain,

−∇ · (2µϵ(u)) + ∇p = f, in Ω±, (1.1)
∇ · u = 0, in Ω±. (1.2)

The interface conditions on Γ are to enforce jump conditions on the velocity and stress tensor

[u]Γ = g, on Γ, (1.3)[
(2µϵ(u) − pI) : n

]
Γ

= σ, on Γ. (1.4)

Here, ϵ(u) = 1
2 (∇u + ∇u⊤) represents the strain tensor, µ is the viscosity, and f is the external force

function. We denote the difference in the trace value from two subdomains by [w]Γ = w|Ω− − w|Ω+ .
The functions g and σ specify the interface conditions. In our problem, the viscosity µ is a piecewise
constant, denoted as µ±, taking different values in the subdomains Ω±. Additionally, we assume u+

satisfies the homogeneous Dirichlet boundary condition u+|∂Ω = 0 and the pressure unknown satisfies∫
Ω

pdx = 0. The Stokes interface problem (1.1)–(1.4) is an active area of research in computational
fluid dynamics, with ongoing developments aimed at improving accuracy, stability, and efficiency in
solving interface problems.

However, because of the discontinuities between the interfaces in (1.1)–(1.4), advanced strategies
are needed to handle the computational difficulties. The major numerical challenge is to design a
stable numerical scheme to resolve the potential geometric and solution singularities. Another critical
challenge is to ensure the preservation of mass conservation within the discretization. Therefore, the
traditional finite element methods (FEMs) may struggle with resolving this problem, leading to loss of
accuracy and stability. In the past decades, several kinds of numerical methods have been developed
to address these challenges, including fitted and unfitted FEMs. The fitted mesh approaches [1, 2]
align the computational mesh with the interface to capture discontinuities accurately but require
complex mesh generations. A frequently encountered problem in practical applications of fitted
FEMs is the generation of a high-quality mesh that conforms to the computational domain. If the
domain is complex, the mesh generation problem is highly non-trivial. For instance, the simulation of
flow around an object embedded in a channel typically requires a mesh discretization of the domain
surrounding the object. Furthermore, the mesh must be modified or regenerated each time when the
object is translated, scaled, or rotated, which introduces extra challenges in the practical
non-stationary problems. On the other hand, for unfitted FEMs, these methods allow the interface to
cut through a fixed background mesh, avoiding the need for mesh conforming to the interface and
handling deforming geometries without the need for expensive and complicated remeshing
procedures. Techniques such as the cut finite element method (CutFEM) [3–6], the extended finite
element method [7–9], and the immersed interface methods [10–15] fall into this category. In our
previous work [6], we extended the CutFEM idea to an enriched Galerkin scheme, which
approximated the velocity by a continuous linear Galerkin basis enriched by a special designed
piecewise L2 basis function. However, that scheme only reduced the pressure effects but was not
completely independent of pressure and viscosity values. Besides, some machine learning-based

Electronic Research Archive Volume 33, Issue 4, 2503–2524.



2505

schemes have also been developed, such as the schemes based on the physics-informed neural
networks (PINNs) in [16, 17].

In this paper, we follow the CutFEM to develop a new stable finite element scheme for solving the
interface problem (1.1)–(1.4), in which the fluid surface can cut elements in the computational mesh in
an arbitrary manner. Such CutFEM is especially beneficial for realistic applications, especially when
employing interface tracking techniques, such as arbitrary Lagrangian Eulerian methods. The new
scheme for the Stokes interface problem on an unfitted mesh is constructed as follows: the interface
condition on a surface cutting through a background mesh is imposed using the Nitsche method, while
the stability with respect to small and anisotropic cuts of the bulk elements is ensured by adding local
ghost penalty stabilization terms. This newly developed algorithm is based on the inf-sup stable Stokes
pair CGP1-RT0/DGP0 proposed in [18], where velocity unknowns are approximated by a continuous
piecewise linear continuous element space enriched by the lowest-order Raviart–Thomas (RT) element,
and pressure unknowns are approximated by the piecewise constant function. For the regular Stokes
equation, the algorithm is proved to satisfy the inf-sup stability and is able to provide the optimal rate in
convergence. Furthermore, this stable pair is a parameter-free scheme that ensures pressure robustness
and divergence-free constraints. Building on the advantages of the method described above, we extend
this stable Stokes element pair to investigate the Stokes interface problem.

In our scheme, the CGP1 basis functions for the velocity and the DGP0 basis functions for the
pressure are used in both subdomains Ω±, while the RT0 basis functions for velocity are used globally
in Ω. That is, we have doubly defined functions in the interface elements for both the CGP0 and
DGP0 basis functions, while the RT0 basis functions are defined with single values. A similar idea
had been used in [15], where a Petrov–Galerkin immersed finite element scheme was used for the
Stokes interface problem. In that work, the immersed spaces P1 and P0 for velocity and pressure
are constructed based on the jump conditions. The velocity space is then enriched with the lowest-
order RT0 element to ensure the inf-sup stability. These immersed functions are used as the trial
function spaces, while the test function spaces are the same as the standard finite element spaces.
However, this scheme does not provide the viscosity robustness. That means that velocity errors are
dependent on viscosity. Thus, numerical pollutions may be produced when simulating the problem
with a small viscosity. Moreover, in previous research [5], it is a challenge to preserve the divergence-
free constraint, even though finite element pairs are divergence-free for the standard Stokes equation.
In contrast, in this paper, instead of modifying the basis functions or using the Petrov–Galerkin scheme,
we incorporate the ghost penalty terms [19] as shown in the CutFEM [6] for the Darcy problem. The
authors in [20] extended a similar idea to investigate the Stokes equation in the fictitious domain.
Moreover, in order to derive a stable inf-sup condition with a well-conditioned system, one may need
to tune the parameters with appropriate values for the Stokes interface problem. Following the idea
in [19], we design an appropriate ghost penalty term for the pressure, which can preserve the desired
robustness and mass conservation properties.

In summary, the advantages of our proposed scheme include: 1) it is a second-order stable numerical
method based on an unfitted mesh, making it well-suited for problems with complex geometries; 2)
it utilizes a symmetric Galerkin formulation, which is advantageous for designing fast and efficient
linear solvers; 3) it is pressure-robust and viscosity-robust, enabling superior performance in practical
computations, especially in cases coupled with varying viscosity values exhibiting high contrast; and 4)
it is able to provide an efficient method with the lowest computational cost and is preferred for practical
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applications with low regularities.
The remainder of the paper is organized as follows: In Section 2, after collecting the necessary

preliminaries on meshing and finite element space definitions, we propose the formulation to
approximate the Stokes interface problem. Next, we investigate the corresponding linear system of
the new scheme and check its inf-sup constant and condition number for the corresponding linear
system in Section 3. Then, several benchmark interface problems are reported in Section 4 to validate
the proposed numerical scheme. Finally, we discuss the concluding remarks and potential future work
in Section 5.

2. Preliminaries and numerical scheme

In this paper, we focus on the smooth interface defined by a level-set function ϕ(x) = 0 such that
Ω+ := {x : ϕ(x) > 0} and Ω− := {x : ϕ(x) < 0}. Let n be the unit outward normal of ∂Ω−. The jump
operator and average operator across the interface Γ are defined as

[w]Γ = w− − w+, {w}Γ =
1
2

(w− + w+),

where w can be either a scalar or vector-valued function.

2.1. Weak formulation

Define the following two function spaces:

V = {v ∈ [H1(Ω+)∪H1(Ω−)]d| v∂Ω = 0},

Q = {q ∈ L2(Ω)|
∫
Ω

qdx = 0}.

We will use the standard notations for Sobolev space. For example, the notation (·, ·)ω for the L2(ω)
inner product on ω and ⟨·, ·⟩e for the L2(e) inner product on edge/face e. The weak formulation is of
the Stokes equations (1.1)–(1.4) to find (u, p) ∈ V × Q such that

a(u, v) + b(v, p) = F(v), ∀v ∈ V
b0(u, q) = 0, ∀q ∈ Q,

where

a(u, v) := aC(u, v) + aΓ(u, v),
b(v, p) := −(p,∇ · v)Ω + ⟨{p}Γ, [v · n]Γ⟩Γ,

b0(v, p) := −(p,∇ · v)Ω,
F(v) := (f, v)Ω + ⟨g, {2µϵ(v) : n}Γ⟩Γ + λ⟨g, [v]Γ⟩Γ + ⟨σ, {v}Γ⟩Γ,

with λ being a stabilization parameter and

aC(u, v) := (2µ−ϵ(u−), ϵ(v−))Ω− + (2µ+ϵ(u+), ϵ(v+))Ω+ ,

aΓ(u, v) := −⟨{2µϵ(u) : n}Γ, [v]Γ⟩Γ − ⟨[u]Γ, {2µϵ(v) : n}Γ⟩Γ + λ⟨[u]Γ, [v]Γ⟩Γ.

Here, we adopt Nitsche’s technique to enforce the interface jump conditions into the variation form.

Electronic Research Archive Volume 33, Issue 4, 2503–2524.



2507

2.2. Finite element mesh and spaces

This section introduces the computational mesh and the finite element spaces that we need in order
to develop our numerical method. Let Th be a uniform triangular mesh (d = 2) or tetrahedral mesh
(d = 3) of the domain Ω, where h > 0 denotes the mesh size. This mesh is assumed to be an unfitted
mesh to the interface Γ. Furthermore, we assume that the interface Γ is a closed, smooth, and simply
connected surface that does not intersect the boundary ∂Ω. Corresponding to the subdomain Ω±, we
define the active meshes T ±

h as following:

T −
h = {T ∈ Th| area(T ∩Ω−) > 0} and Ω−

h = {T ∈ Th| |T ∩Ω−| , ∅},

T +
h = {T ∈ Th| area(T ∩Ω+) > 0} and Ω+

h = {T ∈ Th| |T ∩Ω+| , ∅}.

The subdomains that the active mesh T ±
h covers are denoted by Ω±

h . We define the sets of elements
that have an intersection with Γ by GΓ and denote the subdomain covered by GΓ by ΩΓ

h . The interior
edges/faces of the interface elements T ∩ Γ , ∅,∀T ∈ T ±

h are denoted as F ±
h . For the two-dimensional

interface problem, Figure 1 illustrates the subdomains and active meshes (shown in green color);
Figure 2 illustrates the interface element GΓ (shown in white color) and the edges in F ±

h (shown in
blue color).

Ω
−

Ω
+

Γ

(a). Ω+ ∪Ω− (b). Ω−
h (c). Ω+

h

Figure 1. Subdomains and active meshes.

(a). GΓ (b). F −
h (c). F +

h

Figure 2. Interface elements and edges.
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We make the following assumptions for the CutFEM as in [21]:

• Assumption 1: The triangulation Th is quasi-uniform.
• Assumption 2: The interface Γ either cuts an element T ∈ Th exactly twice and each edge at most

once, or Γ ∩ T̄ coincides with an edge of T .
• Assumption 3: For all elements T ∈ GΓ, there exist elements T such that T− ⊂ Ω− and T+ ⊂ Ω+

and T̄− ∩ T̄ , ∅ and T̄+ ∩ T̄ , ∅.
• Assumption 4: The mesh coincides with the outer boundary ∂Ω.

For any integer k ≥ 0, Pk(D) denotes the set of polynomials defined on D ⊂ Rd whose total degree
is less than or equal to k. Let Ĉh = C−

h ⊕ C+
h with

C±
h = {v ∈ [H1(Ω±

h )]d | v|T ∈ [P1(T )]d, ∀T ∈ T ±
h },

and
Rh = {v ∈ H(div;Ω)| v|∂Ω = 0, v|T ∈ [P0(T )]d ⊕ xP0(T ), ∀T ∈ Th}.

As above, the active finite element space C±
h is restricted to the active domain Ω±

h . According to the
homogeneous Dirichlet boundary condition, let

Ch = {v = (v−, v+) ∈ Ĉh| v− ∈ C−
h , v

+ ∈ C+
h , and v−|∂Ω = 0}.

Denote Vh = Ch⊕Rh the discrete velocity space. On the other hand, we employ the piecewise constant
space for the pressure. That is, the pressure space is defined by Q̂h = Q−

h ⊕ Q+
h with

Q±
h = {q ∈ L2(Ω±

h ) | q ∈ P0(T ) ∀T ∈ T ±
h }.

Furthermore, after enforcing the mean zero condition, we denote Qh = {q = (q−, q+) ∈ Q̂h|
∫
Ω− q−dx +∫

Ω+ q+dx = 0, where q− ∈ Q−
h , q

+ ∈ Q+
h }.

Remark 2.1. Note that Ω−
h ∩ Ω+

h = ΩΓ
h and therefore the functions in Ch and Qh are double-valued

functions on the cells in GΓ. However, the functions in Rh are single-valued functions in all cells in
Th. Without the functions in Rh, the CGP1-RT0/DGP0 pair is not inf-sup stable for the regular Stokes
equation, which is also true for the Stokes interface problem. As the enrichment/stabilization trick in
solving the Stokes equations, we also use the function in Rh to stabilize our simulation.

Remark 2.2. For any function vh ∈ Vh, there is a unique decomposition such that vh = vC
h + vR

h , where
vC

h = (vC,−
h , v

C,+
h ) ∈ Ch, vC,±

h ∈ C±
h , and vR

h ∈ Rh. We view vC
h as the “continuous” component (though

there may be discontinuity across the interface Γ) of the function vh and vR
h as the RT component of the

solution. It is noted that vR
h belongs to the global H(div;Ω) space.

Next, we define the jump operator, which is used in the ghost penalty terms. Assume that two
adjacent elements T1,T2 ∈ T +

h share the interior edge / face e ∈ F +
h with a fixed normal direction

pointing from T1 to T2. Then the jump operator on edge/face e is defined as

[[v]]e = v|T1 − v|T2 .

The definition can be extended to e ∈ F −
h and scalar-valued functions.
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2.3. Finite element scheme

Now, we consider the new CutFEM in this paper, in which the velocity is approximated using a
piecewise linear continuous Galerkin element enriched by the lowest-order Raviart–Thomas element,
while the pressure is approximated using a piecewise constant element. The detail is: find uh =

uC
h + uR

h ∈ Vh, ph ∈ Qh such that the following equations hold for ∀(vh, qh) ∈ Vh × Qh,

ah(uh, vh) + bh(vh, ph) = F(vh), (2.1)
b0,h(uh, qh) = 0, (2.2)

where

ah(uh, vh) := aC(uC
h , v

C
h ) + aR(uR

h , v
R
h ) + aΓ(uh, vh) + G1(uh, vh),

aR(uh, vh) := ρ

∑
T∈T −

h

µ−

h2 (uh
−, vh

−)T∩Ω− +
∑
T∈T +

h

µ+

h2 (uh
+, vh

+)T∩Ω+

 ,
bh(vh, qh) := b(vh, qh) + G2(vh, qh),

b0,h(vh, qh) := b0(vh, qh) + G2(vh, qh),

with ρ being a stabilization parameter. In fact, in the practical computation, we do not need to tune
the value in ρ and will take ρ = 20 across all the numerical experiments. Here we employ the ghost
penalty terms to control the condition number in the linear system and choose

G1(uh, vh) =
∑
e∈F ±

h

(
he

∫
e

[[∇uh : n]]e[[∇vh : n]]eds +
λΓ
he

∫
e

[[uh]]e · [[vh]]eds
)
,

G2(vh, qh) =
∑
e∈F ±

h

(
he

∫
e

[[∇ · vh]]e[[qh]]eds
)
, (2.3)

where λΓ is a penalty parameter.

Remark 2.3. The comparison of three different aR(·, ·) terms was discussed in [18]. In this paper, we
focus on one choice of aR(·, ·), although the other two terms also work in our CutFEM scheme. It is
well known that CGP1/DGP0 is not an inf-sup stable pair for the incompressible fluid. The enriched
element uR

h ∈RT0 can be viewed as the stabilization technique in the scheme. As discussed in the
reference [18], there are several advantages to this scheme, including preserving the conservation of
mass, the optimal convergence rate, the small size in the linear system, and the ease of implementation
in the static condensation technique. By extending the scheme to the Stokes interface problem, some of
the advantages can be inherited here.

Remark 2.4. We also remark that, for the classical ghost penalty term, the widely used stabilization
term for the pressure is as below

S (ph, qh) =
∑
e∈F ±

h

he

µ±

(∫
e

[[ph]]e[[qh]]eds
)
. (2.4)

However, by using the above pressure ghost penalty, the scheme may violate the mass conservation
property and the viscosity robustness, which are the preferred features. In the numerical examples, we
will compare our algorithm with the one with the above stabilization term to highlight the advantage
in our scheme.
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2.4. Divergence-free property

Theorem 2.5. Let (uh, ph) ∈ Vh × Q̂h be a solution of the CutFEM (2.1) and (2.2). Then the
following holds:

∇ · uh = 0.

Proof. This result can be established as follows: First, ∇ · uh ∈ Q̂h. Then by choosing q = ∇ · uh,
it implies,

0 = b0,h(uh,∇ · uh)

=
∑
T∈T +

h

∥∇ · uh∥
2
T∩Ω+ +

∑
T∈T −

h

∥∇ · uh∥
2
T∩Ω− +

∑
e∈Fh

he

∫
e

[[∇ · uh]]2
eds

≥ ∥∇ · uh∥
2 ≥ 0. (2.5)

Thus, we see that ∇ · uh = 0.

Remark 2.6. However, due to the pressure constraint
∫
Ω− p−

h dx +
∫
Ω+ p+

h dx = 0, our numerical
experiments do not achieve the divergence-free property. Nevertheless, the numerical divergence
values remain globally constant, and the constant decreases as the penalty parameter increases.
Some studies have explored modifying this constraint by imposing an alternative condition on the
velocity component [19, 20]. We also demonstrate that by tuning the parameter λ, the global constant
value for ∇ · uh in (2.1) and (2.2) is approaching 0. However, how to choose the parameter values to
obtain the desired mass conservation is still unknown. We leave such an investigation for future work.

3. Stability test

In this section, we test the properties of the linear system generated by our proposed algorithm.
We report the number of degrees of freedom (DoF), condition number, and inf-sup constant for the
following two sets of Stokes interface problems:

Case 1 : Ω = (−1, 1)2, ϕ(x) = r − 2/3, (3.1)

Case 2 : Ω = (−2, 2)2, ϕ(x) = r − 1 −
5x4y − 10x2y3 + y5

5r5 , (3.2)

where r is in the polar coordinate. The parameters in our simulations are chosen as λ = 1E1/h, λΓ = 10,
and ρ = 20.

We generate a triangular mesh by dividing each dimension into equally spaced N segments. The
coarsest level of meshes is illustrated in Figure 3. As noted in this figure, the background mesh is not
aligned with the interface (red curve). The next level of mesh is generated by uniformly refining the
mesh from the previous level. As can be observed from Figure 3(a), a small cut may be contained in
our numerical test.
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(a). Case 1 with (3.1) (b). Case 2 with (3.2)

Figure 3. Illustrations of the interface (curves in red color) and unfitted meshes (edges in
black color).

First, in Table 1, we compare the degrees of freedom for our scheme (2.1) and (2.2) (denoted as DoF)
with the scheme proposed in [20] (denoted as DoF in [20]). In the previous work [20], only the lowest-
order RT0 was used, but the edge-based basis functions in the interface elements were doubled. In our
numerical scheme, we enrich the global, single-defined RT0 basis functions but double the continuous
Galerkin linear basis function in the interface elements to approximate the velocity. However, these
RT0 basis functions can be eliminated through static condensation (denoted as DoF with SC), and the
resulting linear system is of size related to the continuous Galerkin basis function vC

h . It is noted that
after static condensation, the DoF in the linear system is the fewest. In addition, compared to the use of
pure RT0 functions in the velocity, our proposed scheme provides a natural way to handle the Dirichlet
boundary condition on ∂Ω.

Table 1. DoF comparison for the schemes.

N #Node #Edge #Element DoF DoF with SC DoF in [20]
Interface in Case 1 shown in (3.1)

10 135 362 228 1001 639 731
20 506 1435 930 3665 2230 2653
40 1943 5666 3724 13849 8183 9963
80 7581 22420 14840 53544 31124 38382
160 29960 89237 59278 210688 121451 150768

Interface in Case 2 shown in (3.2)
10 135 362 228 983 621 713
20 506 1435 930 3641 2206 2629
40 1943 5666 3724 13783 8117 9897
80 7581 22420 14840 53427 31007 38265
160 29960 89237 59278 210463 121226 150543

Next, we test the condition number and the inf-sup constant for the linear system for Case 1
with (3.1) on a mesh sequence. We set µ− = µ+ = 1, and the numerical results are illustrated in

Electronic Research Archive Volume 33, Issue 4, 2503–2524.
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Figure 4. As shown in Figure 4(a), the condition number increases at the order O(h−2), which is in
agreement with our expectation. In addition, the inf-sup constant shows a constant behavior and
validates the inf-sup stability for our numerical algorithm.
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Figure 4. Illustrations of condition number and inf-sup constant for circle interface of (3.1).

Last, we test the case with the setting in (3.2). Again, as shown in Figure 5, the condition number
increases at the order O(h−2) for varying values in µ− and µ+. Similarly, as above, the inf-sup constant
is stable with respect to the mesh size h.
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Figure 5. Illustrations of condition number and inf-sup constant for circle interface of (3.2).

4. Convergence order and efficiency tests

In this section, we shall test the algorithm and check the errors measured in the following norms:

∥u − uh∥ :=

∑
T∈Ω+

h

∥u+ − u+
h ∥

2
T∩Ω+ +

∑
T∈Ω−

h

∥u− − u−
h ∥

2
T∩Ω−

1/2

,
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∥∇(u − uh)∥ :=

∑
T∈Ω+

h

∥∇(u+ − u+
h )∥2

T∩Ω+ +
∑
T∈Ω−

h

∥∇(u− − u−
h )∥2

T∩Ω−

1/2

,

∥p − ph∥ :=

∑
T∈Ω+

h

∥p+ − p+
h ∥

2
T∩Ω+ +

∑
T∈Ω−

h

∥p− − p−
h ∥

2
T∩Ω−

1/2

,

∥∇ · uh∥ :=

∑
T∈Ω+

h

∥∇ · u+
h ∥

2
T∩Ω+ +

∑
T∈Ω−

h

∥∇ · u−
h ∥

2
T∩Ω−

1/2

.

In all the following tests, we shall take λ = 1E1/h, λΓ = 10, and ρ = 20 without specification. The
mean zero condition is enforced by adding another equation corresponding to

∫
Ω

phdx = 0 to the
derived linear system and then this non-square linear matrix is solved via the least-squares method.

4.1. 2D: Static drop test

First, we test the algorithm with varying viscosity values. Set the domain to be Ω = (−1, 1)2, the
interface to be a circle centered at the origin with the radius R = 2/3, and the exact solution to be

u = (0, 0)⊤ and p =

{
−9/(4π), if ∥x∥ ≤ R,

1
4−4π/9 , if ∥x∥ > R.

As the linear polynomial for the velocity and the constant approximation for the pressure are
employed in this scheme, the constant velocity and pressure can be resolved. The error profiles and
the convergence results are reported in Table 2, from which we can observe that all numerical
simulations agree well with the exact solutions up to the machine accuracy. This verifies the
effectiveness of the proposed scheme.

Table 2. Example 4.1: Error profiles and convergence results.

N ∥u − uh∥ ∥∇(u − uh)∥ ∥p − ph∥ ∥∇ · uh∥

µ+ = 1, µ− = 1
20 1.34E-16 7.24E-16 8.64E-16 3.12E-18
40 6.60E-17 4.77E-16 1.78E-15 5.13E-19
80 4.09E-17 4.50E-16 1.70E-15 6.15E-19
160 5.26E-17 4.07E-16 8.16E-15 2.30E-19

µ+ = 1E − 3, µ− = 1
20 1.03E-15 9.66E-15 1.40E-15 9.42E-19
40 3.65E-15 3.02E-14 1.32E-15 1.42E-18
80 5.75E-15 5.78E-14 1.10E-15 3.50E-19
160 1.09E-14 1.20E-13 9.25E-15 2.99E-19

µ+ = 1, µ− = 1E − 3
20 4.38E-16 2.62E-15 7.66E-16 5.97E-18
40 1.82E-14 7.37E-14 1.60E-15 1.18E-18
80 1.55E-14 6.34E-14 8.99E-16 1.60E-18
160 3.93E-15 3.20E-14 5.00E-15 5.30E-20
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4.2. 2D test: Discontinuous vortex

Then, with the same domain and interface as that in the previous test, choosing the exact solution as

u = (−y, x)⊤ and p = 5(x2 + y2) +

{
2 if ∥x∥ ≤ R,

0 if ∥x∥ > R,

we shall demonstrate our algorithm by a test with a continuous velocity and discontinuous pressure in
this subsection. We will see that although the exact velocity is a linear polynomial, the linear FEM may
not resolve the velocity due to the interface conditions. However, such a mismatch can be improved by
increasing the value of the penalty parameter λ.

Letting µ+ and µ− be 1, we first test the divergence ∇ · uh on a coarse mesh (h = 2/N = 2/20) for
different penalty parameters λ = 1E1/h, 1E3/h, 1E6/h. From the results in Figure 6, we can find that
the values of ∇ · uh are nearly a global constant. For example, the divergence values corresponding
to λ = 1E1/h are nearly −8.3E − 4 globally (see Figure 6(a)). As λ increases, the divergence values
will decrease, which will become −9.9E − 6 (see Figure 6(b)) and −9.9E − 9 (see Figure 6(c)) for
λ = 1E3/h and λ = 1E6/h, respectively. These suggest that divergence values are highly dependent
on the penalty parameter λ.

(a). λ = 1E1/h (b). λ = 1E3/h (c). λ = 1E6/h

Figure 6. Example 4.2: Numerical divergence ∇ · uh with µ+ = 1, µ− = 1.

(a). µ+ = 1, µ− = 1 (b). µ+ = 1E − 3, µ− = 1 (c). µ+ = 1, µ− = 1E − 3

Figure 7. Example 4.2: Numerical divergence ∇ · uh with λ = 10/h.
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Table 3. Example 4.2: Error profiles and convergence results for λ = 10/h.

N ∥u − uh∥ Order ∥∇(u − uh)∥ Order ∥p − ph∥ order ∥∇ · uh∥ Order
µ+ = 1, µ− = 1

20 9.16E-04 – 4.52E-03 – 7.41E-01 – 1.66E-03 –
40 2.43E-04 1.91 1.80E-03 1.33 3.56E-01 1.06 4.89E-04 1.77
80 4.51E-05 2.43 6.20E-04 1.54 1.71E-01 1.05 9.14E-05 2.42
160 7.37E-06 2.61 1.82E-04 1.77 8.44E-02 1.02 1.82E-05 2.33

µ+ = 1E − 3, µ− = 1
20 1.39E-03 – 9.22E-03 – 7.41E-01 – 1.83E-03 –
40 3.57E-04 1.96 4.11E-03 1.16 3.56E-01 1.06 5.40E-04 1.76
80 7.21E-05 2.31 1.56E-03 1.40 1.71E-01 1.05 1.02E-04 2.40
160 1.16E-05 2.64 5.29E-04 1.56 8.44E-02 1.02 2.02E-05 2.34

µ+ = 1, µ− = 1E − 3
20 1.31E-03 – 9.88E-03 – 7.41E-01 – 1.79E-03 –
40 4.62E-04 1.50 7.33E-03 4.30E-01 3.56E-01 1.06 5.20E-04 1.79
80 1.07E-04 2.11 2.33E-03 1.65 1.71E-01 1.05 9.70E-05 2.42
160 1.69E-05 2.66 7.67E-04 1.60 8.44E-02 1.02 1.95E-05 2.31

Table 4. Example 4.2: Error profiles and convergence results for λ = 1E3/h.

N ∥u − uh∥ Order ∥∇(u − uh)∥ Order ∥p − ph∥ order ∥∇ · uh∥ Order
µ+ = 1, µ− = 1

20 1.10E-05 – 6.31E-05 – 7.41E-01 – 1.97E-05 –
40 2.94E-06 1.90 2.27E-05 1.48 3.56E-01 1.06 5.85E-06 1.75
80 5.47E-07 2.43 7.64E-06 1.57 1.71E-01 1.05 1.10E-06 2.41
160 8.92E-08 2.62 2.23E-06 1.78 8.44E-02 1.02 2.21E-07 2.32

µ+ = 1E − 3, µ− = 1
20 1.86E-05 – 1.36E-04 – 7.41E-01 – 1.97E-05 –
40 4.02E-06 2.21 4.92E-05 1.47 3.56E-01 1.06 5.85E-06 1.75
80 8.52E-07 2.24 1.89E-05 1.38 1.71E-01 1.05 1.10E-06 2.41
160 3.78E-07 1.17 7.85E-06 1.26 8.44E-02 1.02 2.21E-07 2.32

µ+ = 1, µ− = 1E − 3
20 2.27E-05 – 1.51E-04 – 7.41E-01 – 1.97E-05 –
40 5.77E-06 1.97 8.98E-05 7.50E-01 3.56E-01 1.06 5.85E-06 1.75
80 1.41E-06 2.04 2.89E-05 1.63 1.71E-01 1.05 1.10E-06 2.41
160 4.26E-07 1.72 1.02E-05 1.50 8.44E-02 1.02 2.21E-07 2.32

Next, setting the penalty parameter λ = 10/h and the mesh size h = 2/N = 2/100, we study
the divergence values for varying values in µ+ and µ−. Figure 7(a)–(c) show that the divergence values
are −9.1E−6, −1.0E−5, and −9.8E−6 in the tested cases, which are barely affected by viscosity values.
Then we collect the detailed error profiles and convergence results for different parameter values and
viscosity values in Tables 3 and 4. It is obvious that the optimal convergence orders are observed in
all tests. It is second-order convergent for the velocity in the L2-norm, while it is first-order convergent
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for both the velocity in the H1-norm and the pressure in the L2-norm. In addition, as the values of
λ increase, the errors are significantly reduced with the same factor. However, large values in λ may
introduce challenges in the linear solver. Moreover, from the simulations we can see that the errors are
independent of viscosity values, which validates the viscosity robustness of the proposed scheme.

In contrast, we also investigate the error profiles for employing S (ph, qh) given in Remark 2.4
instead of G2(·, ·). With the same parameter values used in Table 3, the errors reported in Table 5 show
that the scheme with the penalty term S (ph, qh) produces around 100 times higher errors in all tested
norms, although the optimal convergence rates can be observed in the numerical experiment.

Table 5. Example 4.2: Error profiles and convergence results with (2.4) for λ = 1E1/h.

N ∥u − uh∥ Order ∥∇(u − uh)∥ Order ∥p − ph∥ order ∥∇ · uh∥ Order
µ+ = 1, µ− = 1

20 3.35E-02 – 4.05E-01 – 7.33E-01 – 5.52E-01 –
40 6.48E-03 2.37 1.56E-01 1.38 3.52E-01 1.06 2.13E-01 1.38
80 1.10E-03 2.56 5.43E-02 1.52 1.71E-01 1.05 7.41E-02 1.52
160 1.88E-04 2.55 1.95E-02 1.48 8.43E-02 1.02 2.66E-02 1.48

µ+ = 1E − 3, µ− = 1
20 3.76E-02 – 4.38E-01 – 7.01E-01 – 4.99E-01 –
40 1.21E-02 1.63 2.31E-01 9.23E-01 3.44E-01 1.03 2.04E-01 1.29
80 2.70E-03 2.16 9.20E-02 1.33 1.69E-01 1.03 7.28E-02 1.49
160 4.89E-04 2.47 3.55E-02 1.38 8.38E-02 1.01 2.61E-02 1.48

µ+ = 1, µ− = 1E − 3
20 4.12E-02 – 4.19E-01 – 6.78E-01 – 3.68E-01 –
40 8.39E-03 2.30 1.75E-01 1.26 3.37E-01 1.01 1.43E-01 1.36
80 2.05E-03 2.03 7.62E-02 1.20 1.67E-01 1.01 5.76E-02 1.32
160 3.96E-04 2.38 2.97E-02 1.36 8.35E-02 1.00 2.18E-02 1.40

(a). µ− = µ+ = 1 (b). µ− = 1, µ+ = 1e − 3 (c). µ− = 1e − 3, µ+ = 1

Figure 8. Example 4.2: Comparison of divergence values for the penalty term (2.4).
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(a). µ− = µ+ = 1 (b). µ− = 1, µ+ = 1e − 3 (c). µ− = 1e − 3, µ+ = 1

Figure 9. Example 4.2: Comparison of divergence values for the penalty term (2.3).

Finally, we further compare the divergence values ∇ ·uh for these two penalty terms. With the same
parameters, the piecewise divergence for each cell is plotted in Figures 8 and 9, from which we can
clearly observe the differences between two schemes. Using the classical penalty term, the divergence
is far away from zero for elements around the interface (see Figure 8). In addition, the divergence
values show the dominance in the regions with a smaller viscosity. However, for the proposed scheme,
three constant patterns are observed in the tests (see Figure 9), which show the value −8E − 4 in all
tests. These validate the divergence-preserving feature in our scheme.

4.3. 2D test: Flower interface

In this subsection, with Ω = (−2, 2)2 and the level set function as

ϕ(x) := r − 1 −
5x4y − 10x2y3 + y5

5r5 ,

we test our algorithm with the following exact solutions, which have discontinuities in both the velocity
and pressure

u =

{
[−y, x]⊤, in Ω−

[− sin(πx) cos(πy), cos(πx) sin(πy)]⊤, in Ω+
, p =

{
x3 + 10, in Ω−

x3, in Ω+
.

The error profiles and the convergence results are reported in Table 6, where the desired convergence
orders for the velocity and pressure are achieved and a slight discrepancy for the errors corresponding
to different viscosity values is observed. These are similar to that in Subsection 4.2, which again
validates the correctness and the viscosity robustness of the proposed scheme.

Furthermore, we plot the numerical solutions, errors, and ∇ · uh in Figure 10. One can observe that
the larger velocity errors are around the interface; however, the divergence ∇ · uh is nearly a constant
with a value of −6.7E − 7 globally. Similar results are obtained when increasing the viscosity values
(see Figure 11). The divergence remains a constant pattern in this case as well.
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Table 6. Example 4.3: Error profiles and convergence results.

N ∥u − uh∥ Order ∥∇(u − uh)∥ Order ∥p − ph∥ Order
µ+ = 1, µ− = 1

40 3.78E-01 – 2.42E+00 – 1.07E+00 –
80 9.91E-02 1.93E+00 1.21E+00 1.01E+00 4.97E-01 1.11E+00
160 2.50E-02 1.99E+00 6.01E-01 1.00E+00 2.38E-01 1.06E+00
320 6.26E-03 2.00E+00 3.00E-01 1.00E+00 1.15E-01 1.05E+00

µ+ = 1E − 3, µ− = 1
40 6.97E-01 – 3.42E+00 – 1.03E+00 –
80 1.22E-01 2.52E+00 1.35E+00 1.34E+00 4.68E-01 1.14E+00
160 2.99E-02 2.02E+00 6.46E-01 1.06E+00 2.26E-01 1.05E+00
320 7.35E-03 2.03E+00 3.13E-01 1.05E+00 1.12E-01 1.02E+00

µ+ = 1, µ− = 1E − 3
40 6.29E-01 – 4.02E+00 – 8.80E-01 –
80 1.70E-01 1.89E+00 1.59E+00 1.34E+00 4.35E-01 1.02E+00
160 4.08E-02 2.06E+00 6.83E-01 1.22E+00 2.17E-01 9.99E-01
320 9.47E-03 2.11E+00 3.18E-01 1.10E+00 1.09E-01 9.95E-01

(a). |uh| (b). |u − uh| (c). Contour of uh

(d). ph (e). |p − ph| (f). ∇ · uh

Figure 10. Example 4.3: Numerical solutions, errors, and ∇ · uh with µ− = 1E − 3, µ+ = 1.
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(a). |u − uh| (b). |p − ph| (c). ∇ · uh

Figure 11. Example 4.3: Errors and ∇ · uh with µ− = 1, µ+ = 1.

4.4. 2D test: Gear interface

Let Ω = (−2, 2)2 and the exact solution be

u =

{
[10, 10]⊤, in Ω−

[− sin(πx) cos(πy), cos(πx) sin(πy)]⊤, in Ω+
, p =

{
x3 + 10, in Ω−

x3, in Ω+
.

In this subsection, we will test the proposed scheme on the problem with a gear interface. Setting
the interface to ϕ(x) = r − 0.05 cos(20θ) − 1.5 with (r, θ) denoting the polar coordinate, we list the
convergence profiles in Table 7. Obviously, optimal convergence rates can be observed in this case. In
addition, we present the numerical solutions in Figure 12 with h = 1/40, which agree well with the
exact solutions. All of these confirm that our scheme can perform very well on this kind of irregular
interface problem, too.

(a). |uh| (b). |u − uh| (c). Contour of uh

(d). ph (e). |p − ph| (f). ∇ · uh

Figure 12. Example 4.4: Numerical solutions, errors and ∇ · uh with µ− = 1, µ+ = 1.
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Table 7. Example 4.4: Error profiles and convergence results with µ+ = 1, µ− = 1.

N ∥u − uh∥ Order ∥∇(u − uh)∥ Order ∥p − ph∥ Order
20 3.20E-01 – 2.03 – 1.23 –
40 8.49E-02 1.91 1.01 1.01 5.62E-01 1.13
80 2.13E-02 1.99 5.01E-01 1.02 2.52E-01 1.15
160 5.35E-03 2.00 2.50E-01 1.00 1.19E-01 1.09

4.5. 2D test: Star interface

With the same domain and exact solutions as that in Subsection 4.4, we further test the proposed
scheme on the problem with a star interface defined as ϕ(x) = r − 0.4 cos(8θ) − 1.5. Table 8 reports
the error profiles with this irregular interface. The velocity errors in the L2- and H1-norm converge
at the order O(h2) and O(h), respectively. And the pressure error in the L2-norm converges at the order
O(h). Moreover, the numerical solutions, errors, and numerical divergence are plotted in Figure 13
(h = 1/40), which confirms the well-performed numerical solutions for the velocity and pressure.
Again, the numerical divergence shows the global constant behavior with a value around −2.4E − 6.

(a). |uh| (b). |u − uh| (c). Contour of uh

(d). ph (e). |p − ph| (f). ∇ · uh

Figure 13. Example 4.5: Numerical solutions, errors and ∇ · uh with µ− = 1, µ+ = 1.

Table 8. Example 4.5: Error profiles and convergence results with µ+ = 1, µ− = 1.

N ∥u − uh∥ Order ∥∇(u − uh)∥ Order ∥p − ph∥ Order
20 8.64E+00 – 3.37E+01 – 2.44E+02 –
40 8.45E-02 6.68E+00 1.01E+00 5.06E+00 5.89E-01 8.69E+00
80 2.15E-02 1.97E+00 5.04E-01 1.01E+00 2.66E-01 1.15E+00
160 5.39E-03 2.00E+00 2.49E-01 1.02E+00 1.23E-01 1.12E+00

Electronic Research Archive Volume 33, Issue 4, 2503–2524.



2521

4.6. 3D problem

We consider a 3D interface problem in this subsection. Let Ω = (0, 1)3 and the level set function
ϕ(x) = x̂4+ ŷ4+ ẑ4− (x̂2+ ŷ2+ ẑ2) (see Figure 14(a)), where x̂ = 4(x−0.5), ŷ = 4(y−0.5), ẑ = 4(z−0.5).
The exact solution is chosen as

u =

{
[sin(x) cos(y) cos(2z), cos(x) sin(y) cos(2z),− cos(x) cos(y) sin(2z)]⊤, x ∈ Ω−

[sin(x) cos(y) cos(2z), cos(x) sin(y) cos(2z),− cos(x) cos(y) sin(2z)]⊤, x ∈ Ω+
,

p =

{
x, x ∈ Ω−

x + 2, x ∈ Ω+
.

(a). Interface (b). |∇ · uh|

Figure 14. Example 4.6: Interface, two slices of ∇ · uh and streamlines of uh in 3D.

Table 9. Example 4.6: Error profiles and convergence results.

N ∥u − uh∥ Order ∥∇(u − uh)∥ Order ∥p − ph∥ Order ∥∇ · uh∥ Order
µ+ = 1, µ− = 1

8 2.33E-03 – 1.35E-01 – 1.55E-01 – 2.28E-04 –
16 6.84E-04 1.77 7.22E-02 0.90 7.80E-02 0.99 2.32E-05 3.30
32 1.71E-04 2.00 3.61E-02 1.00 3.90E-02 1.00 2.90E-06 3.00

µ+ = 1, µ− = 1E − 3
8 2.93E-03 – 1.39E-01 – 1.14E-01 – 2.74E-04 –
16 9.95E-04 1.56 7.56E-02 0.87 3.74E-02 1.61 1.95E-05 3.81
32 2.49E-04 2.00 3.78E-02 1.00 1.87E-02 1.00 2.44E-06 3.00

µ+ = 1E − 3, µ− = 1
8 9.33E-03 – 1.86E-01 – 5.17E-02 – 3.69E-04 –
16 2.46E-03 1.92 8.67E-02 1.10 2.51E-02 1.04 4.61E-05 3.00
32 6.15E-04 2.00 4.33E-02 1.00 1.26E-02 1.00 5.76E-06 3.00

In this test, the velocity is a continuous function with homogeneous interface condition [u]Γ = 0,
while the pressure is a piecewise discontinuous linear function. With a tetrahedral partition, we plot
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two slices of ∇ · uh and streamlines of uh in Figure 14(b). The color bar shows the global constant
behavior in ∇ · uh and thus validates conservation in our proposed scheme. In addition, the error
profiles corresponding to various viscosity values are reported in Table 9. For all contrast values in µ−

and µ+, we can observe the optimal convergence rate. All of these confirm that the proposed scheme
works well for the Stokes interface problem in 3D, too.

5. Concluding remarks

In this paper, we propose a new CutFEM solver for the Stokes interface problem. The velocity
variable is approximated using a piecewise continuous Galerkin linear finite element enriched with the
lowest-order Raviart–Thomas element, while the pressure variable is approximated using a piecewise
constant finite element. The developed scheme provides a stable and accurate approximation of the
problem with an optimal convergence rate. Furthermore, by tuning the parameter values, one can
achieve a good approximation that preserves the mass conservation. We demonstrate the effectiveness
of the proposed scheme through several numerical tests. In future work, we will extend our scheme to
the stochastic problem [22], the time-dependent Stokes problem with a moving interface [14, 23], and
the coupled problems [24, 25].

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The work of K. Wang is partially supported by the Natural Science Foundation of Chongqing (No.
CSTB2024NSCQ-MSX0221). The work of L. Mu is partially supported by the National Science
Foundation under the grant DMS-2309557.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1. M. A. Olshanskii, A. Reusken, Analysis of a Stokes interface problem, Numer. Math., 103 (2006),
129–149. https://doi.org/10.1007/s00211-005-0646-x

2. L. Yang, Q. Zhai, R. Zhang, The weak Galerkin finite element method for Stokes
interface problems with curved interface, Appl. Numer. Math., 208 (2025), 98–122.
https://doi.org/10.1016/j.apnum.2024.10.004

3. S. Claus, P. Kerfriden, A CutFEM method for two-phase flow problems, Comput. Methods Appl.
Mech. Eng., 348 (2019), 185–206. https://doi.org/10.1016/j.cma.2019.01.009

4. T. Frachon, S. Zahedi, A cut finite element method for incompressible two-phase Navier-Stokes
flows, J. Comput. Phys., 384 (2019), 77–98. https://doi.org/10.1016/j.jcp.2019.01.028

Electronic Research Archive Volume 33, Issue 4, 2503–2524.

https://dx.doi.org/https://doi.org/10.1007/s00211-005-0646-x
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2024.10.004
https://dx.doi.org/https://doi.org/10.1016/j.cma.2019.01.009
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.01.028


2523

5. H. Liu, M. Neilan, M. Olshanskii, A CutFEM divergence-free discretization for
the Stokes problem, ESAIM Math. Model. Numer. Anal., 57 (2023), 143–165.
https://doi.org/10.1051/m2an/2022072

6. K. Wang, L. Mu, An enriched cut finite element method for Stokes interface equations, Math.
Comput. Simul., 218 (2024), 644–665. https://doi.org/10.1016/j.matcom.2023.12.016

7. L. Cattaneo, L. Formaggia, G. F. Iori, A. Scotti, P. Zunino, Stabilized extended finite elements for
the approximation of saddle point problems with unfitted interface, Calcolo, 52 (2015), 123–152.
https://doi.org/10.1007/s10092-014-0109-9

8. X. He, F. Song, W. Deng, A stabilized nonconforming Nitsche’s extended finite element method
for Stokes interface problems, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 2849–2871.
https://doi.org/10.3934/dcdsb.2021163

9. N. Wang, J. Chen, A nonconforming Nitsche’s extended finite element method for Stokes interface
problems, J. Sci. Comput., 81 (2019), 342–374. https://doi.org/10.1007/s10915-019-01019-9

10. S. Adjerid, N. Chaabane, T. Lin, An immersed discontinuous finite element method for
Stokes interface problems, Comput. Methods Appl. Mech. Eng., 293 (2015), 170–190.
https://doi.org/10.1016/j.cma.2015.04.006

11. X. Chen, Z. Li, J. R. Clvarez, A direct IIM approach for two-phase Stokes equations
with discontinuous viscosity on staggered grids, Comput. Fluids, 172 (2018), 549–563.
https://doi.org/10.1016/j.compfluid.2018.03.038

12. Y. Chen, X. Zhang, A P2 − P1 partially penalized immersed finite element method for Stokes
interface problems, Int. J. Numer. Anal. Model., 18 (2021), 120–141.

13. S. Hou, P. Song, L. Wang, H. Zhao, A weak formulation for solving elliptic
interface problems without body fitted grid, J. Comput. Phys., 249 (2013), 80–95.
https://doi.org/10.1016/j.jcp.2013.04.025

14. J. Wang, Z. Zhang, Q. Zhuang, An immersed Crouzeix-Raviart finite element method for Navier-
Stokes equations with moving interfaces, Int. J. Numer. Anal. Model., 19 (2022), 563–586.

15. N. Zhu, H. Rui, A divergence-free Petrov-Galerkin immersed finite element method for Stokes
interface problem, J. Sci. Comput., 100 (2024), 4. https://doi.org/10.1007/s10915-024-02547-9

16. H. Fan, Z. Tan, Novel and general discontinuity-removing PINNs for elliptic interface problems,
J. Comput. Phys., 529 (2025), 113861. https://doi.org/10.1016/j.jcp.2025.113861

17. Y. H. Tseng, M. C. Lai, A discontinuity and cusp capturing PINN for Stokes interface problems
with discontinuous viscosity and singular forces, Ann. Appl. Math., 39 (2023), 385–405.

18. X. Li, H. Rui, A low-order divergence-free H (div)-conforming finite element method for Stokes
flows, IMA J. Numer. Anal., 42 (2022), 3711–3734. https://doi.org/10.1093/imanum/drab080

19. T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, A divergence preserving cut finite
element method for Darcy flow, SIAM J. Sci. Comput., 46 (2024), A1793–A1820.
https://doi.org/10.1137/22M149702X

20. T. Frachon, E. Nilsson, S. Zahedi, Divergence-free cut finite element methods for Stokes flow, BIT
Numer. Math., 64 (2024), 39. https://doi.org/10.1007/s10543-024-01040-x

Electronic Research Archive Volume 33, Issue 4, 2503–2524.

https://dx.doi.org/https://doi.org/10.1051/m2an/2022072
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2023.12.016
https://dx.doi.org/https://doi.org/10.1007/s10092-014-0109-9
https://dx.doi.org/https://doi.org/10.3934/dcdsb.2021163
https://dx.doi.org/https://doi.org/10.1007/s10915-019-01019-9
https://dx.doi.org/https://doi.org/10.1016/j.cma.2015.04.006
https://dx.doi.org/https://doi.org/10.1016/j.compfluid.2018.03.038
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2013.04.025
https://dx.doi.org/https://doi.org/10.1007/s10915-024-02547-9
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2025.113861
https://dx.doi.org/https://doi.org/10.1093/imanum/drab080
https://dx.doi.org/https://doi.org/10.1137/22M149702X
https://dx.doi.org/https://doi.org/10.1007/s10543-024-01040-x


2524

21. P. Hansbo, M. G. Larson, S. Zahedi, A cut finite element method for a Stokes interface problem,
Appl. Numer. Math., 85 (2014), 90–114. https://doi.org/10.1016/j.apnum.2014.06.009

22. Y. Sun, W. Zhao, W. Zhao, Error estimates of finite element methods for the nonlinear
backward stochastic Stokes equations, CSIAM Trans. Appl. Math., 6 (2025), 31–62.
https://doi.org/10.4208/csiam-am.SO-2024-0021

23. I. Voulis, A. Reusken, A time dependent Stokes interface problem: Well-posedness and space-
time finite element discretization, ESAIM Math. Model. Numer. Anal., 52 (2018), 2187–2213.
https://doi.org/10.1051/m2an/2018053

24. Q. Wang, P. Huang, Y. He, The Navier-Stokes-ω/Navier-Stokes-ωmodel for fluid-fluid interaction
using an unconditionally stable finite element scheme, Int. J. Numer. Anal. Model., 22 (2025),
178–201. https://doi.org/10.4208/ijnam2025-1009

25. L. Yang, W. Mu, H. Peng, X. Wang, The weak Galerkin finite element method
for the dual-porosity-Stokes model, Int. J. Numer. Anal. Model., 21 (2024), 587–608.
https://doi.org/10.4208/ijnam2024-1023

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 33, Issue 4, 2503–2524.

https://dx.doi.org/https://doi.org/10.1016/j.apnum.2014.06.009
https://dx.doi.org/https://doi.org/10.4208/csiam-am.SO-2024-0021
https://dx.doi.org/https://doi.org/10.1051/m2an/2018053
https://dx.doi.org/https://doi.org/10.4208/ijnam2025-1009
https://dx.doi.org/https://doi.org/10.4208/ijnam2024-1023
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries and numerical scheme
	Weak formulation
	Finite element mesh and spaces
	Finite element scheme
	Divergence-free property

	Stability test
	Convergence order and efficiency tests
	2D: Static drop test
	2D test: Discontinuous vortex
	2D test: Flower interface
	2D test: Gear interface
	2D test: Star interface
	3D problem

	Concluding remarks

