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This paper proposes a low-cost, penalty parameter-free, and pressure-robust Stokes solver based on the enriched
Galerkin (EG) method with a discontinuous velocity enrichment function. The EG method employs the interior
penalty discontinuous Galerkin (IPDG) formulation to weakly impose the continuity of the velocity function.
However, despite its advantage of symmetry, the symmetric IPDG formulation requires a lot of computational
effort to choose an optimal penalty parameter and compute different trace terms. To reduce such effort, we
replace the derivatives of the velocity function with its weak derivatives computed by the geometric data
of elements. Therefore, our modified EG (mEG) method is a penalty parameter-free numerical scheme that
has reduced computational complexity and conserves the optimal convergence orders. Moreover, we achieve
pressure robustness for the mEG method by employing a velocity reconstruction operator on the load vector on
the right-hand side of the discrete system. The theoretical results are confirmed through numerical experiments

with two- and three-dimensional examples.

1. Introduction

We consider the Stokes equations in a bounded domain Q c R? for
d =2,3 with simply connected Lipschitz boundary 0Q: Find fluid veloc-
ity u : Q — R? and pressure p : Q — R such that

—vAu+Vp=f inQ, (1.1a)
V-u=0 inQ, (1.1b)
u=0 ono0Q, (1.10)

where v > 0 is a constant fluid viscosity, and f is a given body force.

In the finite element framework, finite-dimensional velocity and
pressure spaces must satisfy the discrete inf-sup stability condition
[1-3] to guarantee the well-posedness of the discrete problem corre-
sponding to (1.1). Various mixed finite element methods (FEMs) have
been developed under the discrete inf-sup condition, such as conform-
ing and non-conforming mixed FEMs [4-6], discontinuous Galerkin
methods [7,8], weak Galerkin methods [9,10], and enriched Galerkin
methods [11,12]. These methods have been widely used for numerical
simulations of the Stokes equations while providing different advan-
tages.
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For the Stokes equations, discontinuous Galerkin (DG) methods have
received attention as advanced numerical methods with a locally con-
servative divergence-free condition and geometric flexibility on meshes.
The interior penalty discontinuous Galerkin (IPDG) method is an ex-
ample of DG methods, and it employs penalties to impose weakly the
continuity of the solutions and boundary conditions. For example, the
penalty formulation has also been adopted in enriched Galerkin meth-
ods for the Poisson equation [13,14] and C? interior penalty methods
for the biharmonic equation [15]. It is well-known that a sufficiently
large penalty parameter is required to ensure stability in the symmetric
IPDG method. However, in numerical simulations, a large penalty pa-
rameter may increase the condition number of the stiffness matrix, lead-
ing to inaccurate simulation results. Also, the papers [16-18] discussed
the mesh-dependent lower bounds for penalty parameters depending
on the angles of mesh elements. Therefore, we pay special attention to
constructing a penalty parameter-free scheme to resolve the difficulty
in choosing proper penalty parameters. Various penalty parameter-free
DG methods have been introduced for second-order elliptic problems
by introducing extra degrees of freedom on edges/faces and auxiliary
variables, e.g., hybrid high-order (HHO) methods [19], hybridizable
discontinuous Galerkin (HDG) methods [20], and weak Galerkin (WG)
methods [21]. By rewriting DG basis functions in the WG framework,
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another penalty parameter-free DG method [22], called a modified WG
method, has been developed without increasing degrees of freedom.
This idea inspires our work.

Our primary goal in this paper is to develop a low-cost and penalty
parameter-free Stokes solver with optimal convergence orders. The en-
riched Galerkin (EG) velocity and pressure spaces have been presented
in [12] for solving the Stokes equations with minimal degrees of free-
dom. The velocity space consists of linear Lagrange polynomials en-
riched by a discontinuous, piecewise linear, and mean-zero vector func-
tion per element, while piecewise constant functions approximate the
pressure. A velocity function v can be expressed as v = vC + vP, where
vC is a continuous linear Lagrange polynomial and v? is a discontin-
uous piecewise linear enrichment function. Compared to the previous
EG method [12] using the IPDG formulation, our modified EG (mEG)
method is developed by replacing the derivatives of the velocity func-
tions with their weak derivatives [23]. The weak derivatives are locally
computed in each element by integration by parts using the interior
function v and the average of v along edges/faces (we will provide de-
tails in Section 3). The weak derivatives for v€ remain the same as Vv©
and V - vC. For the discontinuous components v°, we compute the weak
derivatives as piecewise constant functions by using the geometric data
of each element, e.g., vertices, edges/faces, and area/volume. In the
mEG method, the bilinear forms are simply assembled by the L?-inner
product of the weak derivatives and a parameter-free penalty term. The
other trace terms in the IPDG formulation are not needed. Thus, the
mEG method is penalty parameter-free, and its implementation is guar-
anteed to require reduced computational complexity. In the theoretical
part, the coercivity and continuity of the bilinear form for the diffu-
sion term in (1.1a) hold with no penalty parameter. Since the bilinear
form for the divergence term (1.1b) remains the same as the original EG
method, the discrete inf-sup condition of the mEG method can be inher-
ited from the original one. Through two- and three-dimensional exam-
ples, we compare our modified EG method’s and original EG methods’
numerical performance with different penalty parameters. The numer-
ical results demonstrate that our mEG method shows uniform stability
and outperforms the original one.

Pressure robustness is an essential property of numerical methods
for the Stokes equations in the case of small viscosity v < 1. In this
case, inf-sup stable pairs may not guarantee accurate numerical ve-
locity solutions. In standard mixed FEMs, including the EG method
[12], the velocity error bounds are coupled with a pressure term in-
versely proportional to the viscosity v. Thus, the numerical simulation
for velocity may be destroyed by the factor 1/v. In contrast, pressure-
robust schemes can eliminate the pressure term from the velocity error
bounds in the error estimates, so they guarantee accurate numerical
velocity and pressure simultaneously. In some mixed FEMs, pressure
robustness has been achieved by applying a velocity reconstruction op-
erator [24] to the load vector on the right-hand side (see [25-31] as
examples). More precisely, the exterior force f € (L2(Q))? is decom-
posed as f =n + V3 for some differentiable function 9 and V - n=0.
Then, it follows from integration by parts (V9,V)q =(8,V - ¥)q =0 for a
divergence-free velocity v. Thus, a change of the exterior force f + Vy
results in a solution (u, p + y). In a discretization with 9, on a triangu-
lation 7, we observe

(VO ¥a= 2 [(9 ¥4 Mor — 9, V- ¥p)r| #0,

TeT,
where v, is a weakly divergence-free velocity, implying (8;,V-V;,)r =0
for all T € 7,,. However, the velocity reconstruction operator R map-
ping such velocity functions to an H (div;Q)-conforming finite element
space leads to

(V9 RVa = D [(9, RV, -m)or — (9, V - RV,
TET,

== 9,V-V,)r=0.
TETy,
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To develop a pressure-robust scheme corresponding to the mEG
method, we employ the velocity reconstruction operator [31], mapping
the EG velocity test functions into the first-order Brezzi-Douglas-Marini
space. Therefore, we achieve pressure robustness in the mEG method
without compromising the optimal convergence orders.

The remaining sections of this paper are structured as follows: First,
some important definitions, notations, and trace properties are intro-
duced in Section 2. Section 3 recalls the EG method [12] and proposes
the modified EG (mEG) method without a penalty parameter. In Sec-
tion 4, we prove the well-posedness and error estimates of our mEG
method. A pressure-robust mEG method is presented, and its robust er-
ror estimates are proved in Section 5. In Section 6, we validate our
theoretical results through numerical experiments in two and three di-
mensions. We summarize our contribution in this paper and discuss
related research in Section 7.

2. Preliminaries

To begin with, we introduce some notations and definitions used
throughout this paper. For a bounded Lipschitz domain D € R¢, where
d =2,3, we denote the Sobolev space as H*(D) for a real number s > 0.
Its norm and seminorm are denoted by || - || and | - |; 1, respectively.
The space H' 0(D) coincides with L%(D), and the L2-inner product is
denoted by (-,-)p. When D = Q, the subscript D will be omitted. These
notations are generalized to vector- and tensor-valued Sobolev spaces.
The notation Hé (D) means the space of v € H'(D) such that v =0 on
0D, and Lg(D) means the space of v € L2(D) such that (v, p=0.
The polynomial spaces of degree less than or equal to k are denoted as
P,(D). We also introduce the Hilbert space

H(div,D) := {ve [LXD)]¢ : divve L*(D)}

with the norm
VI3 o) 2= VIG5 + iV VIS .

For discrete schemes, we assume that there exists a shape-regular
triangulation 7;, of Q whose elements T € 7}, are triangles in two di-
mensions and tetrahedrons in three dimensions. Then, &£, denotes the
collection of all edges/faces in 7, and &, = &) U 82, where £} is the
collection of all the interior edges/faces and &€ ;’; is that of the boundary
edges/faces. For each element T € 7, let h; denote the diameter of T,
and ny (or n) denote the outward unit normal vector on 07 . For each
interior edge/face e € £ shared by two adjacent elements Ttand T,

we let n, be the unit normal vector from 7* to T~. For each e € 8}’:, n,
denotes the outward unit normal vector on 0Q.

In a shape-regular triangulation 7;,, the broken Sobolev space is de-
fined as

H'(T;)={ve L*(Q) : vy € H'(T), VT € T},
equipped with the norm

172

2
lollsr, ={ D ol

TEeTy,

When s =0, the L?-inner product on T, is denoted by (-, ')Th . Also, the

L?-inner product on &, is denoted as (-, -) &, and the L%-norm on &, is
defined as

1/2
2
lollyg, = < D ||v||0,e> .
e€eE)

The piecewise polynomial space corresponding to the broken Sobolev
space is defined as

P(T) ={ve L*Q) : v|; € P(T), YT €Ty,).
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In addition, the jump and average of v on e € &, are defined as
onee€é&?, (vt +0v7)/2 one€é&’,

p={ """ RUE
vli= v one€é&,, vi= v one€ég),

where v* is the trace of v|;+ on e € 0T+ N 9T ~. These definitions are
extended to vector- and tensor-valued functions.

We also introduce the trace properties mainly used in this paper. For
any vector function v and scalar function ¢, we have

z (Vo g)or = (VI Mg, {q})e, + (V] -1, [q])eo- 2.1
TeT),

For any function v € H!(T), the following trace inequality holds

loli2, <€ (B el + hrll Vol ;) 2.2)

3. A modified enriched Galerkin method

We consider the weak formulation for the Stokes problem (1.1): Find
(u,p) € [H}(Q)]? x L3(Q) such that

v(Vu,Vv) = (V- v, p)=(f,v), Vve[Hj Q)] (3.1a)

(V-u,q)=0, Vg€ Ly(Q). (3.1b)

In this manuscript, we focus on the homogeneous Dirichlet boundary
condition for simplicity in analysis. The scheme can be extended to
mixed boundary conditions, which will be briefly described in Section 6.

We recall the EG method [12] with its finite-dimensional velocity
and pressure spaces and then introduce weak derivatives to establish
the modified EG method in this section.

3.1. Standard enriched Galerkin method with interior penalty

We first introduce the EG finite dimensional velocity and pressure
spaces. Let us denote the space of continuous components for velocity
as

C,={vC € [Hy @] : ¥ €[P(D)]Y, VT €T,,)}.

The space of discontinuous components for velocity is defined as

D,={vP e L*(Q) : vP|; = c(x —x;), cER, VT €T},

where x; is the barycenter of T € 7,,. Then, the EG finite dimensional
velocity space is defined as

Vh :Ch @Dh,

that is, any function v € V,, consists of unique continuous and discon-
tinuous components, v = v¢ +vP for vC € C;, and v € D,,. At the same
time, the EG pressure space is chosen as

0,={a€ L2 : qly € Py(T), VT €T,,}.

Therefore, the EG method [12] is formulated with the pair of the spaces
V, X0y
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Algorithm 1 Enriched Galerkin (EG) method.
Find (uy, p,) € V,, X Q,, such that

a(u,,v)—b(v,p,) =, v), ¥WeV,, (3.2a)
b(u,,q) =0, Vg € 0, (3.2b)
where
a(w,v) :=v((YW, V) — ({Vw}-n,,[V]),,
= {{VV) -, [Whg, + p(h [WL [V])e, ) (3.32)
b(w.q) :=(V-w.q);, —([W]-n,.{q})s, (3.3b)

Here, p > 0 is a penalty parameter and h, = |e|'/“~D, where |e| is the
length/area of the edge/face e € &,.

In Algorithm 1, the symmetric interior penalty discontinuous
Galerkin (IPDG) formulation is adopted to weakly impose the con-
tinuity of the discontinuous component vP € D,, and it requires a
sufficiently large penalty parameter p to guarantee the well-posedness
of the method (see [12] for details). Other non-symmetric formulations
have also been discussed in [12].

3.2. Modified enriched Galerkin method with weak derivatives

We introduce a weak Galerkin (WG) finite element space for velocity

[9],
Y, = {o={0y,0,} | 0|7 E[P{(T)IY, VT €T, vy, € [P (e)]%, Ve € &)
Then, the EG velocity v €V, can be viewed as a WG function in V,

that is,

=V, vy={v} = {v.{vl}€V,,

and the weak derivatives for v € V;, are locally defined as follows.

Definition 3.1. The weak gradient operator [23] is defined as V wD|T S
[Py(T)]9*¢ when o= {v),v,} €V, satisfying

(V0,07 = (0, R -n)yp, YR E [Py(T)]9.

In a similar manner, the weak gradient for the EG velocity v € V,, is
defined as V ,v|; € [Py(T)]%* such that

(Vo Vo) = ({v},Rn)yp, VR E[Py(T)]9.

Moreover, the weak divergence operator [23] for v € V,, is defined as
V- V| € Po(T) such that
Vv, ={v} - n,q)sr, Vg€ Py(D).

The weak gradient Vv e [PO(T)]dXd is equivalent to the discrete
gradient G?l(v) € [Py(T )]9%¢ introduced in the discontinuous Galerkin
literature [32, Section 4.3]. Moreover, such equivalence holds for any
polynomial degree k. The WG method uses a different bilinear form
from the symmetric IPDG bilinear form.

Remark 3.2. For any EG velocity function v € V,,, the differences be-
tween the weak derivatives and regular derivatives are given as

(3.4a)
(3.4b)

(VV=V,v.R) . =(IVL.{R} 'm,)s, . VR E[P(T,)]™,
(V-v=V,-v.q), =(V]"n..{q}),. Va&Py(Tp).

These identities are simply obtained from the definition of the weak
derivatives and integration by parts. Since the EG velocity consists of
v¢ € C, and v € D,,, it is clear to see from (3.4) that V,,v¢ = VvC,

V- V€ =V - v, and the jumps of v” on e € &/ cause the differences.

In practice, the weak gradient V,,v? is locally determined by
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n:
ﬁ({vD}’ei>dT’
where n; is the j-th component of n and ¢; is the standard unit vector
whose i-th component is 1. Since vP|; = ¢(x — x7) is a linear function,
the above line/surface integral can be simply computed by the one-
point quadrature rule on each edge/face, respectively. Also, the weak
divergence V,, - vP is the trace of V,vP from the definition, which
implies no associated cost in computing the weak divergence.

(Vo¥P) ;= 1<i,j<d,

Therefore, we propose the modified enriched Galerkin method
which is formulated by the weak derivatives for the EG velocity ve V.

Algorithm 2 Modified enriched Galerkin (mEG) method.
Find (u,, p,) € V,, X Q, such that

a,(u,,v)=b,(v.p) =, v), VWeV,, (3.52)
b, (u,,q) =0, Vg€ Q,, (3.5b)

where

a, (W, V) :=v((Vu W,V V)7, + (R WL VD, ). (3.62)

b, (W.q) 1= (Y, W,q);.. (3.6b)

In this case, h, = |e|'/“=D, where |e| is the length/area of the edge/face e € &,,.

Remark 3.3. There is no penalty parameter in the mEG method, while
the EG method in Algorithm 1 requires a sufficiently large penalty pa-
rameter p. Inspired by [23,33], the bilinear form a,(-,-) has a penalty
term but does not contain a penalty parameter to tune. More precisely,
a,,(v,v) directly defines a mesh-dependent norm, which naturally im-
plies the bilinear form’s coercivity without a penalty parameter. We will
show details in Section 4.

In addition, the identity (3.4b) implies that for any we V,, and g €

Qh:

b, (W,q) =b(w,q),

which makes it simple to prove the discrete inf-sup condition. In prac-
tice, this allows us to use the same block matrices corresponding to
b(,-) (or b, (-,-)) for both EG and mEG methods.

3.7)

4. Well-posedness and error analysis

For the EG method [12] in Algorithm 1, the well-posedness and error
estimates have been proved in terms of the energy norm in V,

-1/2

1
Vlle 2= (IVVIZ - + ol 1112, )

To show the discrete inf-sup condition and a priori error estimates for
the mEG method in Algorithm 2, we employ the theoretical results of the
EG method. In this case, the mEG method includes the weak derivatives,
so it requires a mesh-dependent norm corresponding to the bilinear
forma,(,-),

-1/2

1
2
il = (1VuVI2 7, + iz VI, )

Then, the following norm equivalence helps to prove the theoretical

results of the mEG method.

Lemma 4.1. For any v € V,, there are positive constants y, and y* inde-
pendent of h :=maxrey, hr such that

VAV VI <7 lvill- 4.1
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Proof. We start with the relation (3.4a) while choosing R=V,v,

ViVl 7, = (Vao¥s Via¥) 7, = (V9. V¥) 7 = (VLAY ¥E 1o

Then, the first term is simply bounded using the Cauchy-Schwarz in-
equality,

(VV, Vw")fh < ”VV”O,Th ”VwV“O,Th’

and the second term is bounded using the Cauchy-Schwarz inequality
and trace inequality (2.2),

(VI (VoV} - me e < I1A;2

<Clh,

1/2
Vo e (ViV}l eo

1/2
PVl 1V llo 7,

Hence, we arrive at

IVi¥lloz, < ClIvile,

which implies the lower bound in (4.1).
On the other hand, we choose X = Vv in (3.4a) and apply the
Cauchy-Schwarz inequality and (2.2) to obtain

IVVI2, < (V¥ V) + (VL VY] 0, )eo < CIVINT Vil 7,

Therefore, it is clear to see that

IVvllo,z, < Clivill,

which yields the upper bound in (4.1). []

4.1. Well-posedness

In this subsection, with the norm equivalence (4.1), we show the
well-posedness of the mEG method by proving the essential properties
of the bilinear forms. Let I1;, : [H 2@ - V,, be the interpolation op-
erator [34] such that

II,v= va + H}?v,

where va € C,, is the nodal value interpolant of v and H}lz) v €D, satis-
fies (V -H’?v, Dy =(V-(v— va), 1)y for all T € 7;,. The corresponding
interpolation error estimates [34] are as follows:

IV—T0,vl, 7. SCh"|v],, 0<j<m<2, VYe[HX QI (4.2a)

IV =T, vllz < ChIVIl,, v € [HX(Q). (4.2b)
Lemma 4.2. There exists a positive constant C independent of h and v such

that

b, (v,
inf sup 2wl (4.3)
4€Quvev, lIVllliglly

Proof. We first cite the results of discrete inf-sup condition in [12]. For
any g€ Q, C L%(Q), there exist a vector v € [Hé (©)]¢ and a constant
C¢ > 0 independent of 4 and v such that

b(1,v,q)
——— > C¢llqlly-
[ITL, vl ¢
Hence, it follows from (3.7) and (4.1) that
b, (1,v,q)
———— 27Cellgllo- O
T,V entio

It is also straightforward to show the continuity of b,,(:,+) with re-
spect to the norm ||| - ||| using the norm equivalence (4.1).

Lemma 4.3. For any v € V,, and q € Q,, there exists a positive constant
C independent of h satisfying
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b, (v. ) < Cligllollivill 4.9

Proof. It follows from (3.7), (4.1), and the continuity of b(-,-) in [12]
that

b, (v. @)l = [b(v. )| < CligllolIvlle < Cr*llgllolivil. O

In addition, we obtain the coercivity and continuity of a (-, ) with
respect to ||| - |||. (See [23] for details.)

Lemma 4.4. For any v,w € V,, we have the coercivity and continuity re-
sults for a, (-,-):

a,,(v,v) = v[[VlI, (4.5)

|2, (v, W) < vIlIvIllliwll. (4.6)

Thus, we obtain the well-posedness of the mEG method.

Theorem 4.5. There exists a unique solution (uy, p,) € V,, X Q), to the mEG
method in Algorithm 2.

Proof. Since V, and Q, are finite dimensional spaces, it suffices to
show that u, =0 and p;, =0 when f = 0. If we choose v =u,, in (3.5a)
and g = p;, in (3.5b) and add the two equations, then we obtain
a,(uy,,u,)=0.

Thus, it follows from (4.5) that |||lu,|l| =0, so u;, = 0. Moreover, the fact
u, =0 in (3.5) implies

b,(v,p,)=0, VveV,.

Therefore, we have ||p, ||, =0 from (4.3), which gives p, =0. []

4.2. Error estimates

We prove error estimates for velocity and pressure with respect to
the mesh-dependent norm ||| - || and the L%-norm, respectively. We
first introduce the local L2-projection P, : H'(Q) — Q, satisfying
(g —Pyq,1)7 =0 for all T € T, and its error estimate,

llg — Pogllo < Chligll;, Vg€ H'(Q).

Furthermore, let us define ®, : [H 2Q)9 - vV, as

“4.7)

O u={Oyu,B,u},

where 0, and ©, are the local Lz-projections onto [P M) forall T €
7, and [P, (e)] forallec & 1> respectively. Then, we have the following
commutative property [9],

V., (©,V) =0, (Vv), (4.8)
where @, is the local L?-projection onto [Py(T)]%*9.

We define error functions used in the error estimates,
xp=u-1Lu, e,=Iu-w, & =p—Pyp, €,=Pyp—p, (49

Then, we derive the main error equations in the following lemma.

Lemma 4.6. For any vV, and q € Q,, we have

a,(e,,v)=b,(v.e,) =1, v)+ L, v)+s(Il,u,v)+b,(v.§,), (4.10a)

bw(eh’ q) = _bw(xh’ q)’ (410b)

where the supplemental bilinear forms are defined as follows:
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L(w,v)=v Z (Vu-n—-0,(Vu)-n,v—{v})r,
TeT,
L v)=v (Vw(l'[hu -0O,u), va)Th ,

s(Tyu, v) = v(h; ' [T,ul, [v])g, .

Proof. For any v € V,,, integration by parts and the definition of @,
imply
(—Au, V)7, == Y (Vu-n,v),r +(Vu, V),

TET,

=— 2 (Vu-n,v—{v})yr + (@h(Vu),Vv)Th .
TeT,

Then, the definition of the weak gradient and the commutative property
(4.8) lead to
(@4(Vu). VV) . = (0,(Vu).V,,v), + (0,(Vu), Vv =V,v)

= (V@) V,,v) . + > (@, (Vu) -0y = (V)7
TeT,

Hence, we obtain

(—Au V)7, = (V,(O4). V), = Y (Vun—0,(Vu) - n,v— {v})r.

TeT,
(Vp, V)7, =b, (v, p),

where the second equation is obtained by the trace identity (2.1), the
continuity of p, and (3.4b). Then, by combining the above two equations
in the equation (1.1a), we have

(Vw(®hu), VWV)Th —b,(v.p)=E v)+1(u,v).

If we add proper terms including IT,u to both sides and subtract
b,,(v, Pyp) from both sides, we get

a,(IIu,v)—=b, (v,Pyp) =&, v)+1(u,v)+ 1, v)+sII,u, v)+b,,(v,&),).

By comparing this equation with (3.5a) in the mEG method, we arrive
at

a,(e,,v)—b,(v.e,) =1, v)+,(u,v)+sIl,u,v)+b,(v.&).

Furthermore, the continuity of u and (3.5b) imply

(V- u,q)5, =b,(u,q)=0=b,u,,q),
so (4.10b) is obtained by subtracting b, (II,u, g) from both sides. []

We provide the upper bounds for the supplementary bilinear forms
in Lemma 4.6.

Lemma 4.7. We assume that w € [H*(Q)]¢ and v € V,,. Then, we have

|1, (w,v)| < Cvhllwll,llivill, (4.11a)
|La(w, v)| < CvallwllllIvill, (4.11b)
s, w, v)| < Cvhllwll,lIvIl, (4.11¢)

where the constant C is independent of h.

Proof. The proof of the bound (4.11a) can be found in [23], so we
focus on showing (4.11b) and (4.11c) here. The definition of the weak
gradient and the properties of the projections II, and ®,, lead to

LW, V)| = v ( (VoW = ©,w), V,,v) |

=v| D ({I,W} — ©,w, V,,v-n),p
TET,
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=v Z {I,w—w}, V, v-n),pr
TET,,

-1/2 1/2
<v Y g (W = WHlor 12}V Vil or
TETy,

S CvAlwlIL IV, ¥llo7,

The third identity holds true because w € [H 2(Q)}¢ is continuous on
dT, and the last inequality is obtained from the trace inequality (2.2)
and (4.2a).

For the stabilization term (4.11c), it follows from the Cauchy-
Schwarz inequality, (2.2), and (4.2a) that

[s(TT,w, V)| = v (A7 [T, w — wl, [V]),
< vl P, w = willog, I1h; *V1llog,

<Cvhlwlllivil. O

Consequently, we obtain the following error estimates.

Theorem 4.8. Let (u, p) € [H,(Q) N HA(Q)]4 x (L3(Q) n H'(Q)) be the
solution to (1.1a)-(1.1c), and (uy,p,) € V;, X Oy, be the discrete solution
from the mEG method. Then, we have the following error estimates

1
it~ w i< (il + ol )

Pop = pallo < Ch (vilully + lIplly) -

Proof. First, we see the error equation (4.10a), for any v € V,, and
qE€Qy,
b, (v,e,) =a,(e,,v) =11, V)= l,(u,v)—sIl,u,v)—=b,(v,&).

Then, it follows from (4.6), (4.11), (4.4), and (4.7) that

b, (v ep)| < C (villen VI + vAllall VIl + 11E, lolvil)
< C (Vlleyll + vhllally + Allplly ) VIl

The inf-sup condition (4.3) implies that

llenllo < C (villeglll + AvIlully + lipll,)) - (4.12)

Moreover, by choosing v =e, and g = ¢, in (4.10) and substituting
(4.10D) into (4.10a), we obtain
a,(e,.e,)=—b,(xy.€,) +1(ue,)+1(ue,)+sl,u,e,)+b,(e,E).
Here, we show an upper bound for the term b,,(x,,€;,). Integration by
parts and the trace identity (2.1) give
by, (X ps€n) =b(X s €4)

= (V : Xh,€;,)7—h —([xpl-m,, {eh}>gh

= Z Xn-mep)or — Ll -me. {en))e,
TET),

={xp)n, [ehDSZ'
Thus, it follows from the Cauchy-Schwarz inequality, (2.2), and (4.2a)
that

b, (X s €l < Xk Hlog, llenlllog, < Chllullzllesllo- (4.13)

Hence, by (4.5), (4.11), (4.4), (4.7), (4.12), and (4.13), we have

2 2 2 2
villenll* < C (vhllull,lle,lll + Allplllllenll + val[all3 + A2 [lallllpl, ) -

We also apply the Young’s inequality with a positive constant k satisfy-
ingk <1/C,
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K 2
vh|a|l,llle,lll L v —|ul]l5 + =||le N
llull>lllel <2K|| Il5 2||| Al
Bl el < (22 117 + 2 fe,i? )
2vk 1 2

2 vhr o hE o
A lall,llplly < (Tllullz + Ellplll .

We finally obtain

h2
villeyll* <€ <thIIUI|§ + ||pllf> ,
which implies that

1
llewll < € (lullo + <l ).

In addition, together with this velocity error estimate, the estimate
(4.12) implies

llenllo < Ch (Vilull, +lIplly) . O

Finally, we present the total error estimates showing the optimal
rates of convergence in both velocity and pressure.

Theorem 4.9. Under the same assumption of Theorem 4.8, we have the
following error estimates

1
lha = w i < Ch (Il + 1l ).

lp=pullo <Ch (viully + lipll,) -

Proof. The estimates in this theorem are readily proved by the triangle
inequality, the interpolation error estimates (4.2b) and (4.7), and the
norm equivalence (4.1). [

5. A pressure-robust modified enriched Galerkin method

In this section, we derive a pressure-robust scheme associated with
the mEG method (Algorithm 2) by applying the velocity reconstruction
operator [31] to the load vector on the right hand side. The operator
R :V, —» BDM (T, C H(div,Q) is defined by

/(Rv)~nep1 ds=/{v} -n,p; ds, Vp, € Pi(e), Ve &}, (5.1a)
e e

/(Rv) -n,p, ds=0, Vp, € P(e), Yee &, (5.1b)
p

when BDM,(T,) denotes the Brezzi-Douglas-Marini space of index 1
onTy,.

Algorithm 3 Pressure-robust modified enriched Galerkin (PR-mEG)
method.
Find (u,,p,) € V, X Q,, such that

a,(u,,v)—b,(v,p,) =(f, Rv)Th, Vvev,, (5.2a)

b, (u,,q)=0, Vg€ Q,, (5.2b)

where a,(-,-) and b,,(-,-) are the same as (3.6a) and (3.6b), respectively.

Remark 5.1. The mEG method in Algorithm 2 and PR-mEG method in
Algorithm 3 have the same formulation on left hand side that consists
of a,(-,-) and b,,(-,-). The only difference is that a reconstructed test
function is applied to the load vector on the right hand side. This implies
that the well-posedness of the PR-mEG method is guaranteed by that of
the mEG method, and moreover, both of the mEG and PR-mEG methods
produce the same stiffness matrix.
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The error equations corresponding to the PR-mEG method are de-
rived in the following lemma using the same error functions in (4.9).

Lemma 5.2. For any vE€ V, and q € Qj,, we have

a,(e,,v)—b,(v,e) =11, v)+ L, v)+3,v)+sI,u,v), (5.3a)

b, (e,.q)=—b,(x4.9). (5.3b)

where [,(-,-), I5(-,-), and s(-,-) are defined in Lemma 4.6, and another
supplemental bilinear form is defined by

3w, v)=-v(Au,v— Rv)Th

Proof. First of all, we obtain the following identities,

(Vp,Rv)7, = -b(v,Pyp) = b (v, Pyp)

because Rv - n is continuous on d7 and V - Rv is constant in 7. (See
[31] for details.) Moreover, we have

(—Au, RV)Th = (—Au,v)Th + (Au,v — RV)Th .

Then, it follows from (1.1a) and the error equations in Lemma 4.6 that

a,(II,u,v) = b, (v,Pyp) = (£, RV)T,, + 1w, v)+ H(w,v)+5(u,v)
+s(II,u,v).

By subtracting (5.2a) from this equation, we arrive at the equation
(5.3a). The equation (5.3b) is simply derived in the same way as
Lemma 4.6. []

Consequently, the following theorem theoretically shows pressure
robustness of the PR-mEG method.

Theorem 5.3. Let (u, p) € [HOl Q) n H2(Q)1? x (Lg(g) N HY(Q)) be the
solution to (1.1a)-(1.1c), and (uy,p,) € V;, X Q,, be the discrete solution
from the PR-mEG method. Then, we have the following error estimates

ITT,u —w, Il < Chllully,  [Pop = ppllo < Cvhllull,.

Therefore, the total error estimates are as follows:

llu—w,ll < Chllully, llp=pyllg < Ch (vilully +lipll;) -

Proof. To begin with, we observe the error equation (5.3a),

b, (v,ep) =a,(e,, v) =110, v) =, v) = I3(u,v)—sII,u,v).

Here, the bilinear form /;(u,v) is bounded using the Cauchy-Schwarz
inequality,

[13(u, V)| < vl[Aullpllv = Rvllp < vilullollv = Rvllo.

It also follows from the estimate ||[v—Rvl||, in [31] and the norm equiv-
alence (4.1) that

IV —Rvllo < Chllvll,

so we arrive at

[13(0, v)| < Cvhllull,[lIv]. (5.4
Thus, from (4.6), (4.11), and (5.4), we obtain

b, (v, )] < C (Vlllegll + vallully) IVl

Hence, the inf-sup condition (4.3) leads to

llenllo < Cv (llleglll + Allull,) . (5.5)

Similar to the proof of Theorem 4.8, choosing v =e;, and g = ¢, yields
that
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a, (e, e,)=—b, (x, €,)+1 (e, +1(ue,)+15ue,)+sTI,u,ep,).

From (4.13) and (5.5), we get the following intermediate result,

b, (G pr )| < Chllullyllenllo < Cvallully (lllell + Allually) -
Therefore, it follows from (4.5), (4.11), and (5.4) that

2 21112
vile,lll* < Cv (Rllullslllexll + A (lull3) .
The Young’s inequality gives

W K 2
hllal>lllexlll < =—lull5 + =|lle,lll*,
el < 2= 1ull3 + 5 lle,i

so choosing a proper x implies

2 21112
villexlll” < Cvh®|lull;.

Therefore, together with (5.5), we obtain

llexlll < Chllully, llepllo < CvAllull,.

O

6. Numerical experiments

In this section, we present numerical experiments validating our the-
oretical results with two- and three-dimensional examples. The numeri-
cal experiments are implemented by authors’ codes developed based on
iFEM [35]. The numerical methods mentioned in this paper and their
discrete solutions are denoted as follows:

. (uiG, piG): Solution by the EG method [12] in Algorithm 1.
* (¢, pi=C): Solution by the mEG method in Algorithm 2.
* (u;®, pp"): Solution by the PR-mEG method in Algorithm 3.

We compare the penalty terms in the EG and mEG methods,

EG : Penalty term of a(uiG,v) - vp(h;l[uiG], VD)e, - 6.1)
mEG : Penalty term of aw(u‘;l‘EG,v) N v(he_l[u‘;l‘EG], [VD)e,- 6.2)

While a sufficiently large penalty parameter p is required for the EG
method with the symmetric formulation, our mEG method is a penalty
parameter-free EG method under the same finite-dimensional velocity
and pressure spaces. In the numerical results of [12], a non-symmetric
formulation has been focused on, which needs a positive penalty param-
eter p > 0 for well-posedness. (p =1 in the numerical results of [12].)
However, our numerical experiments with the symmetric formulation
will show the need for a large parameter p depending on various fac-
tors, especially meshes and example problems.
We recall the error estimates for the mEG method in Section 4:

-1
Iy = wf =l S A (lally + vl )

1Pop — £ Nlo S A (vilully + 1ipll ) » (6.32)
= w=e < A (llall, + v ipll) .
lp = p5"llo S B (vilull, + llplly) » (6.3b)

which means the same rates of convergence as the EG method. More-
over, we developed a pressure-robust numerical scheme corresponding
to the mEG method, and the error estimates for the PR-mEG method
proved in Section 5 are as follows:

Ty = wFl < Al 1Pop = p"llo S vhllully,

lle —wi® < Allully, e = pp¥llo S A (vilall + il ) -

In two- and three-dimensional examples, we demonstrate the well-
posedness and optimal rates of convergence for the mEG method. By
checking the behaviors of the errors with decreasing viscosity v, we con-
firm the error estimates of the PR-mEG method in (6.4), which means

(6.4a)
(6.4b)



S. Lee and L. Mu

Computers and Mathematics with Applications 166 (2024) 51-64
5B (o—m ) | 10° “<EG (cond(4))
EG (|lp — pull)
(e 1) : """ el Lyl

condition number

102 g (Jaz ) | o
>—EG (|lu—uyllg)
...... mEG ([[[u — wyl|)
£ 10
e
8
;.?
3
]
T 10°
107! )
0.5 1 15 2 25 3 0.5 1

p: penalty parameters

1.5
p: penalty parameters

1.5 2
p: penalty parameters

2 2.5 3 0.5 1 2.5 3

Fig. 1. Errors and condition numbers of mEG and EG for 0.5<p <3 (v=1, h=1/16).

Table 1
A mesh refinement study for EG and mEG with varying mesh size A and v = 1.
EG (p=1) EG (p=3) mEG

h flu—wi®ll, Order [lu — ;| Order [[[u—u}™|| Order
1/8 7.394e-1 3.099%e-1 2.749e-1
1/16 6.931e-1 0.09 1.117e-1 1.47 1.024e-1 1.42
1/32 2.440e-1 1.51 4.185e-2 1.42 3.940e-2 1.38
1/64 9.052e-2 1.43 1.670e-2 1.33 1.606e-2 1.29
h lp—p;¢lly  Order  |lp—p;°lly  Order  |lp—p;*ll,  Order
1/8 9.299%-1 6.269e-1 5.815e-1
1/16 2.897e-1 1.68 2.917e-1 1.10 2.733e-1 1.09
1/32 2.319%-1 0.32 1.402e-1 1.06 1.322e-1 1.05
1/64 2.664e-1 -0.20 6.869%e-2 1.03 6.498e-2 1.02

more accurate numerical solutions than the mEG method in the case of
small viscosity v <« 1.

6.1. Two dimensional tests

Let the computational domain be Q = (0, 1)x (0, 1). The velocity field
and pressure are chosen as

X

Then, the body force f is obtained from the Stokes equations in (1.1).

10x2(x = ?y(y = D2y —1)

Z10x(x = D@2x — Dy2(y— 1)? > , p=102x-1)Q2y—-1). (6.5)

6.1.1. Penalty parameter-free test

Homogeneous Dirichlet boundary condition. We consider the ex-
ample velocity and pressure in (6.5) with the homogeneous Dirichlet
boundary condition for velocity. We check the errors and condition
numbers of the stiffness matrices to compare the mEG method with the
EG method with different penalty parameters. To see how the penalty
parameters affect the performance of the EG method, we apply the
penalty term (6.1) and change p from 0.1 to 3. In this test, we choose the
uniform triangular mesh with A =1/16 and the viscosity v = 1. Fig. 1
shows that the EG method seems to yield unstable errors and condition
numbers with penalty parameters less than 2, implying the need of a
sufficiently large parameter for stability. On the other hand, the mEG
method shows relatively stable errors and condition numbers with the
parameter-free penalty term (6.2).

We also perform a mesh refinement study for the mEG method and
the EG method with p =1, 3. In Table 1, the errors of the EG method fail
to converge due to the insufficiently large penalty parameter (p = 1).
When a sufficiently large parameter is applied (p = 3), the EG method
yields the first-order convergence. However, the mEG method produces
the velocity and pressure errors that indicate at least the first-order
convergence, and those errors are smaller than the EG method’s errors.

Moreover, we compare the numerical velocity and pressure of the
EG and mEG methods to see how small parameters affect numerical
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solutions. In Fig. 2, the numerical velocity of the EG method roughly
captures the vortex flow pattern, but some relatively large jumps appear
throughout the numerical velocity solution. However, the mEG method
produces a more stable numerical velocity that captures the pattern bet-
ter than the EG method.

Mixed boundary conditions. We consider the same example func-
tions (6.5) and mixed boundary conditions on the domain Q described
in Fig. 3,

u=0 onl)p,

(vWu—-phn=s only,

where I is the identity tensor on R?. To implement the boundary con-
ditions, we see that the EG velocity in (3.5) satisfies u, = ug + u}? =0
on any e C I'p. Thus, when 0T NI'p # @, the weak gradient for uf is

computed as unf |T € [PO(T)]"X"’ such that

(V,up Ny = 2 ({uf}.Rm),, VR [Py
eCoT\I'p

(6.6)

while applying uf =0 weakly. On the boundary Iy, the weak gradi-
ent for ufl’ is obtained using the same manner in Definition 3.1. The
boundary condition on I'y, changes the right hand side in (3.5a) to
&)+ (s, V)p,, -

Fig. 3 compares the errors of mEG and EG methods and shows a
mesh refinement study for the mEG method with the mixed boundary
conditions. The error comparison implies that the EG method requires a
large penalty parameter to provide the desired accuracy. On the other
hand, we confirm from Fig. 3 that the mEG method yields relatively
smaller errors and guarantees first-order convergence without such a
parameter.

Various meshes. We also conduct the penalty parameter-free test
on various meshes presented in Fig. 4:

» Perturbed mesh: The uniform triangular mesh is randomly per-
turbed, so some very sharp triangles are generated. The veloc-
ity field and pressure in (6.5) are considered. The homogeneous
boundary condition is applied.

Square with hole: The computational domain is the unit
square with a hole in the middle. An adaptive mesh is generated
with triangles of different sizes to capture the circle in the middle.
The velocity field and pressure in (6.5) are considered. The homo-
geneous boundary condition is applied on the outer square, but a
non-homogeneous Dirichlet boundary condition occurs on the cir-
cle. For a non-homogeneous Dirichlet boundary condition (u=g
on 0L), the EG velocity satisfies u, = ug + uf =g on any e C 0Q.

We impose ug = g strongly, while applying u}? = 0 weakly as in-
troduced in (6.6).

L-shape: The computational domain is the L-shaped domain. The
velocity field and pressure are chosen as
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Fig. 2. Comparison of the numerical solutions with A =1/16 and v=1.
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Domain with mixed boundary p: penalty parameters 1/h

Fig. 3. The unit square domain with mixed boundary conditions (left), comparison of the mEG and EG methods’ errors for v=1 and ~ = 1/16 (middle), and a mesh

refinement study for mEG with v =1 (right).

u(x, y) = (sin(zx) sin(zy),cos(zx)cos(zy)) and p(x,y)= (x2 +y2)_1/3.

Due to the singularity of the pressure at the center, an adaptive
mesh is generated with triangles of the same shape.

Fig. 4 shows the above meshes, the corresponding mesh qualities,
and the errors of the EG and mEG methods. The mesh quality of a trian-
gle [36] is defined as the ratio of its area to the sum of the squares
of its sides, which implies that the equilateral triangle has the best
mesh quality 1 and sharper triangles are closer to 0. The EG method
still requires large penalty parameters to achieve stable errors. More-
over, such large parameters depend on the meshes. Specifically, in the
Perturbed mesh, some bad-quality triangles cause an unexpected
spike around p =3 in the velocity errors, making choosing a proper
penalty parameter more difficult. In the L-shape with an adaptive
mesh, the EG method’s pressure error tends to increase as p gets larger
after a minimum occurs. However, regardless of a penalty parameter,
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the mEG method seems uniformly stable on all the given meshes. The
mEG method, even for a mesh with bad-quality triangles and adaptive
meshes, has good performance. These numerical results confirm that
the mEG method is a penalty parameter-free scheme.

6.1.2. Pressure-robust test

In this test, we verify the pressure robustness of the PR-mEG method.
We solve the example problem (6.5) with varying v, from 107! to 1079,
to confirm the error behaviors expected in (6.3) and (6.4). The mesh
size is fixed as h = 1/32. Fig. 5 shows the velocity errors |[u — u]||
and pressure errors ||Pyp — p,llo of the mEG and PR-mEG methods. In
Fig. 5, the mEG method produces the velocity errors proportional to v=!
because the second term hv~!||p||; of the error bound (6.3b) becomes
dominant as v gets smaller. Also, since the pressure error ||[Pyp— p‘l‘l‘EG llo
is bounded by a dominant term A||p||,, the error remains the same. On
the other hand, the PR-mEG method produces the same velocity errors
regardless of v, and its pressure errors decrease in proportion to v. These
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Perturbed mesh: its mesh quality and velocity errors with respect to p
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numerical results support our theoretical error estimates related to the
pressure robustness in (6.3) and (6.4).

Furthermore, we perform a mesh refinement study for the mEG and
PR-mEG methods with decreasing mesh size h and fixed v =107°. As
shown in Table 2, both methods’ velocity and pressure errors decrease

60

Error profiles of the mEG and PR-mEG methods with varying v values and a fixed mesh size h =1/32.

in at least the first order of convergence, and the pressure errors look
very similar in magnitude. However, even though the velocity errors
for the mEG method decrease faster, the magnitude of the errors seems
enormous. Thus, obtaining accurate numerical velocity from the mEG
method may not be possible unless A is small enough. On the other
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Table 2
A mesh refinement study for mEG and PR-mEG with
varying mesh size h and v = 107°,

mEG PR-mEG

h flha = w=e| Order |[lu—wu}®|| Order
1/8  2.577e+5 - 9.727e-2 -
1/16 9.097e+4 1.50 4.749e-2 1.03
1/32 3.183e+4 1.52 2.33%-2 1.02
1/64 1.116e+4 1.51 1.159e-2 1.01
h llp—p;=lly, Order |p—p;ll,  Order
1/8 5.736e-1 - 4.802e-1 -
1/16 2.694e-1 1.09 2.404e-1 1.00
1/32 1.310e-1 1.04 1.203e-1 1.00
1/64 6.464e-2 1.02 6.014e-2 1.00

Table 3
Each term computed in EG and mEG and the numbers of calculations with 4 =
1/70 (m: million).

EG a(w,v) # of cals b(w,v) # of cals
T),-terms (Vw, Vv)Th 150 m (V- w,q),h 54 m
&,-terms {Vw}-n,,[v]);, 431m (wl-n.{q})s,  33m
Penalty term p(h; W], [v] e, 17 m -

mEG a,(w,v) # of cals b, (w,v) # of cals
Weak derivatives Vv 10 m V-V 10 m
T,-terms VW,V V)7 397 m VW, 07, 70 m
Penalty term (' W], [v] e, 17 m -

hand, the PR-mEG method yields about a million times smaller velocity
errors than the mEG method, which means that the PR-mEG method
provides a significantly improved numerical velocity for the Stokes
equations with small viscosity.

6.2. Three dimensional tests

We consider a 3D flow in a unit cube Q = (0, 1)*. The velocity field
and pressure are chosen as

sin(zx) cos(xy) — sin(zx) cos(zz)
sin(zy) cos(zz) — sin(zy)cos(zx) |,
sin(zz) cos(zx) — sin(xz z) cos(zy)

u= p = sin(zx) sin(zy) sin(r z).

(6.7)

6.2.1. Low-cost test

In this 3D example, we compare the computational cost of the EG
and mEG methods. Table 3 displays each term that needs to be com-
puted in the two methods. In the EG method, we divide the bilinear
forms into three parts, 7,-terms, &,-terms, and penalty terms. Table 3
also shows how many calculations are involved when assembling the
stiffness matrix with 4 = 1/70. For example, with v = v® + v? implying
[v¢]1=0and [vP]#0 on each e € &, the penalty term is calculated as

PR TWPL IV D), = p(hT X = Xpa ] [X — X 1),

when e € 0T+ N 0T~ for each e € &,, yielding approximately (2 x
2)|&,] ~ 17 million calculations. Many calculations are generated if v€
is involved in assembling the stiffness matrix, such as (VwC, VvC)Th and
{VwC} - n,,[vP ])g,,. This is because there are four barycentric coordi-
nates for each component of vC in T € 7;,. On the other hand, in the
initial step of implementing the mEG method, a small amount of com-
putational cost is required to compute the weak gradient V va . From
Remark 3.2, we recall the weak gradient V,, v? locally determined by

ﬁ“VD}’ei)dT’

vV, vP). . =
STy

1<i,j<3,
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Table 4
A mesh refinement study for EG and mEG with varying mesh size h and v =1
in the 3D case.

EG(p=2) EG (p=10) mEG

h lu—uj¢lle  Order [u-ui€l, Order [lu—u}®]| Order
1/4  2.518e+0 3.719e+0 2.284e+0 -

1/8  1.228e+0  1.04  1.827e+0  1.03  1.121e+0 1.03
1/16 6.052e-1 1.02 9.048e-1 1.01 5.552e-1 1.01
1/32 3.007e-1 1.01 4.501e-1 1.01 2.764e-1 1.01
h lp=plly  Order  llp—pj°lly,  Order  |lp—pp™lly  Order
1/4 8.819%-1 8.377e+0 1.349e+0 -

1/8  3.6llel 1.29  3.600e+0  1.22  6.098e-1 1.15
1/16 1.688e-1 1.10 1.670e+0 1.11 3.011e-1 1.02
1/32 8.411e-2 1.00 8.312e-1 1.01 1.504e-1 1.00

where n; is the j-th component of n and e; is the standard unit vec-

tor whose i-th component is 1. The surface integral is calculated by the
one-point quadrature rule on each face because v”|; is a linear vec-
tor function. Since each T € 7, has four adjacent elements, five basis
functions of vP (in T and adjacent elements) imply a nonzero weak
gradient in each T'. Thus, as shown in Table 3, (V,w, V, v) yields more
calculations than (Vw, Vv).

Fig. 6 shows the comparison of |7}| and |&,|, the numbers of calcu-
lations, and the elapsed time to assemble the stiffness matrix. Since |&£,|
is almost twice as many as |7} | and the EG method requires a lot of cal-
culations on e € £, the total number of calculations in the EG method
is larger than that in mEG method. When assembling the stiffness ma-
trix, we use the vectorization technique introduced in iFEM [35] and
a MATLAB built-in function ‘sparse’ [37] to avoid large for loops (see
[38] for details). The function ‘sparse’ uses inputs i, j, and v, where i is
the information of rows, 7 is the information of columns, and v consists
of the components of a matrix. Most of the elapsed time is spent call-
ing the function ‘sparse’, and the computational cost of ‘sparse’ depends
on the number of calculations, i.e. the size of i. Thus, in Fig. 6, we
see the similarity between the number of calculations and the elapsed
time. In Fig. 6, the graph of the elapsed time shows that the compu-
tational cost in computing weak derivatives is low. Also, it requires a
lower computational cost to assemble the stiffness matrix of the mEG
method. On the other hand, the computation of the &,-terms tends to
require more time than 7},-terms because the jump and average on the
boundary are treated separately. For this reason, we conclude that the
mEG method has an advantage in assembling the stiffness matrix of the
Stokes equations compared to the EG method.

6.2.2. Penalty parameter-free test

We compute the velocity and pressure errors and condition numbers
in the EG method with different penalty parameters and compare them
with the mEG method’s results. Fig. 7 clearly shows the need for a large
penalty parameter for the EG method and the dependency of its errors
on the parameters. On the other hand, the mEG method produces sta-
ble errors and condition numbers without such a large parameter. For
comparison, we display velocity error plots and velocity errors of the
EG (p = 1,2) and mEG methods in Fig. 8. The EG method with p =1
yields non-negligible velocity errors over the whole domain, but a large
penalty parameter p = 2 stabilizes such errors, implying a reliable nu-
merical velocity solution. On the other hand, the mEG method’s velocity
error profile looks better than the EG method without tuning a penalty
parameter.

In addition, we focus on the effect of large penalty parameters on
the errors and condition numbers. In Fig. 7, the condition numbers of
the EG method tend to increase with the parameters p, which causes
increased velocity and pressure errors. To perform a quantitative com-
parison, we choose p =10 and p =2 based on the results in Fig. 7 and
report the pressure and velocity errors of the two cases in Table 4. The
pressure errors of the EG method with p = 10 are ten times bigger than
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Fig. 6. Comparison of |7;,| and |&,| (left), the number of calculations involved in assembling the stiffness matrix (middle), and the elapsed time to assemble the

stiffness matrix (right).
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Fig. 7. Errors and condition numbers of mEG and EG for 0.5 < p <3 (v=1, h=1/4) in the 3D case.
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Fig. 8. Velocity error plots and velocity errors of EG and mEG when h=1/8 and v=1.

those with p =2, even though their pressure errors decrease in the same
order. Thus, in practice, a penalty parameter p cannot be chosen too
large due to this accuracy issue. It may also be challenging to select
a proper p because it varies with meshes. On the other hand, for the
mEG method, the convergence orders of the velocity and pressure errors
are at least first-order, and the mEG method yields smaller velocity er-
rors than the EG method with p = 2. Therefore, with the mEG method,
we can always achieve reliable performance without tuning a penalty
parameter, making the simulation lower-cost.
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6.2.3. Pressure-robust test

To verify pressure robustness in the three-dimensional example
(6.7), we consider the pattern of the error behaviors obtained from the
mEG and PR-mEG methods when v varies with 4 =1/16. Fig. 9 shows
the same error behaviors as those in the two-dimensional pressure-
robust test. For the mEG method, the velocity errors are inversely pro-
portional to v while the pressure errors tend to stay constant. On the
other hand, for the PR-mEG method, the velocity errors seem indepen-
dent of v, and the pressure errors decrease in proportion to v.
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Fig. 9. Error profiles of the mEG and PR-mEG methods with varying v values and a fixed mesh size 4 =1/16 in the 3D case.
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Fig. 10. Streamlines and magnitudes of the 3D numerical velocity when 2 =1/8 and v = 107°.

Furthermore, Fig. 10 shows the streamlines of the numerical velocity
solutions of the mEG and PR-mEG methods when 4 =1/8 and v= 1079,
In this case, the velocity error of the mEG method is 1.014e+4, while
that of the PR-mEG method is 1.122e+40. As shown in Fig. 10, the nu-
merical velocity of the PR-mEG method well captures the 3D vortex
flow, while that of the mEG method cannot do so.

7. Conclusion

This paper proposes a low-cost, penalty parameter-free, and pressure-
robust Stokes solver based on the EG method operating with minimal
degrees of freedom. The weak derivatives, computed by the geomet-
ric data of elements, allowed the EG method to be free of penalty
parameters and some IPDG trace terms. With reduced computational
complexity, the modified EG method preserved the minimal degrees
of freedom and the optimal orders of convergence in the EG method.
Such features in parameter-free schemes can be used to resolve the
computational difficulties in tuning penalty parameters of DG schemes
for heterogeneous coefficients, anisotropic problems, moving meshes,
and time-dependent problems. Furthermore, the simple modification on
the right-hand side achieved pressure robustness for the modified EG
method. We also confirmed the improved theoretical results through
numerical tests with two- and three-dimensional examples. The idea
of using weak derivatives can be applied to enhance other numeri-
cal schemes employing the symmetric IPDG formulation. Extending
the concept to numerical methods for the biharmonic equation will be
one of our future research directions. We expect that the weak deriva-
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tives corresponding to the biharmonic equation provide significant
computational advantages in numerically solving application problems
involving the biharmonic equation.
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