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This paper proposes a low-cost, penalty parameter-free, and pressure-robust Stokes solver based on the enriched 
Galerkin (EG) method with a discontinuous velocity enrichment function. The EG method employs the interior 
penalty discontinuous Galerkin (IPDG) formulation to weakly impose the continuity of the velocity function. 
However, despite its advantage of symmetry, the symmetric IPDG formulation requires a lot of computational 
effort to choose an optimal penalty parameter and compute different trace terms. To reduce such effort, we 
replace the derivatives of the velocity function with its weak derivatives computed by the geometric data 
of elements. Therefore, our modified EG (mEG) method is a penalty parameter-free numerical scheme that 
has reduced computational complexity and conserves the optimal convergence orders. Moreover, we achieve 
pressure robustness for the mEG method by employing a velocity reconstruction operator on the load vector on 
the right-hand side of the discrete system. The theoretical results are confirmed through numerical experiments 
with two- and three-dimensional examples.
1. Introduction

We consider the Stokes equations in a bounded domain Ω ⊂ ℝ𝑑 for 
𝑑 = 2, 3 with simply connected Lipschitz boundary 𝜕Ω: Find fluid veloc-
ity 𝐮 ∶ Ω →ℝ𝑑 and pressure 𝑝 ∶ Ω →ℝ such that

−𝜈Δ𝐮+∇𝑝 = 𝐟 in Ω, (1.1a)

∇ ⋅ 𝐮 = 0 in Ω, (1.1b)

𝐮 = 𝟎 on 𝜕Ω, (1.1c)

where 𝜈 > 0 is a constant fluid viscosity, and 𝐟 is a given body force.
In the finite element framework, finite-dimensional velocity and 

pressure spaces must satisfy the discrete inf-sup stability condition 
[1–3] to guarantee the well-posedness of the discrete problem corre-
sponding to (1.1). Various mixed finite element methods (FEMs) have 
been developed under the discrete inf-sup condition, such as conform-
ing and non-conforming mixed FEMs [4–6], discontinuous Galerkin 
methods [7,8], weak Galerkin methods [9,10], and enriched Galerkin 
methods [11,12]. These methods have been widely used for numerical 
simulations of the Stokes equations while providing different advan-
tages.

* Corresponding author.
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For the Stokes equations, discontinuous Galerkin (DG) methods have 
received attention as advanced numerical methods with a locally con-
servative divergence-free condition and geometric flexibility on meshes. 
The interior penalty discontinuous Galerkin (IPDG) method is an ex-
ample of DG methods, and it employs penalties to impose weakly the 
continuity of the solutions and boundary conditions. For example, the 
penalty formulation has also been adopted in enriched Galerkin meth-
ods for the Poisson equation [13,14] and 𝐶0 interior penalty methods 
for the biharmonic equation [15]. It is well-known that a sufficiently 
large penalty parameter is required to ensure stability in the symmetric 
IPDG method. However, in numerical simulations, a large penalty pa-
rameter may increase the condition number of the stiffness matrix, lead-
ing to inaccurate simulation results. Also, the papers [16–18] discussed 
the mesh-dependent lower bounds for penalty parameters depending 
on the angles of mesh elements. Therefore, we pay special attention to 
constructing a penalty parameter-free scheme to resolve the difficulty 
in choosing proper penalty parameters. Various penalty parameter-free 
DG methods have been introduced for second-order elliptic problems 
by introducing extra degrees of freedom on edges/faces and auxiliary 
variables, e.g., hybrid high-order (HHO) methods [19], hybridizable 
discontinuous Galerkin (HDG) methods [20], and weak Galerkin (WG) 
methods [21]. By rewriting DG basis functions in the WG framework, 
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another penalty parameter-free DG method [22], called a modified WG 
method, has been developed without increasing degrees of freedom. 
This idea inspires our work.

Our primary goal in this paper is to develop a low-cost and penalty 
parameter-free Stokes solver with optimal convergence orders. The en-
riched Galerkin (EG) velocity and pressure spaces have been presented 
in [12] for solving the Stokes equations with minimal degrees of free-
dom. The velocity space consists of linear Lagrange polynomials en-
riched by a discontinuous, piecewise linear, and mean-zero vector func-
tion per element, while piecewise constant functions approximate the 
pressure. A velocity function 𝐯 can be expressed as 𝐯 = 𝐯𝐶 + 𝐯𝐷 , where 
𝐯𝐶 is a continuous linear Lagrange polynomial and 𝐯𝐷 is a discontin-
uous piecewise linear enrichment function. Compared to the previous 
EG method [12] using the IPDG formulation, our modified EG (mEG) 
method is developed by replacing the derivatives of the velocity func-
tions with their weak derivatives [23]. The weak derivatives are locally 
computed in each element by integration by parts using the interior 
function 𝐯 and the average of 𝐯 along edges/faces (we will provide de-
tails in Section 3). The weak derivatives for 𝐯𝐶 remain the same as ∇𝐯𝐶

and ∇ ⋅𝐯𝐶 . For the discontinuous components 𝐯𝐷, we compute the weak 
derivatives as piecewise constant functions by using the geometric data 
of each element, e.g., vertices, edges/faces, and area/volume. In the 
mEG method, the bilinear forms are simply assembled by the 𝐿2-inner 
product of the weak derivatives and a parameter-free penalty term. The 
other trace terms in the IPDG formulation are not needed. Thus, the 
mEG method is penalty parameter-free, and its implementation is guar-
anteed to require reduced computational complexity. In the theoretical 
part, the coercivity and continuity of the bilinear form for the diffu-
sion term in (1.1a) hold with no penalty parameter. Since the bilinear 
form for the divergence term (1.1b) remains the same as the original EG 
method, the discrete inf-sup condition of the mEG method can be inher-
ited from the original one. Through two- and three-dimensional exam-
ples, we compare our modified EG method’s and original EG methods’ 
numerical performance with different penalty parameters. The numer-
ical results demonstrate that our mEG method shows uniform stability 
and outperforms the original one.

Pressure robustness is an essential property of numerical methods 
for the Stokes equations in the case of small viscosity 𝜈 ≪ 1. In this 
case, inf-sup stable pairs may not guarantee accurate numerical ve-
locity solutions. In standard mixed FEMs, including the EG method 
[12], the velocity error bounds are coupled with a pressure term in-
versely proportional to the viscosity 𝜈. Thus, the numerical simulation 
for velocity may be destroyed by the factor 1∕𝜈. In contrast, pressure-
robust schemes can eliminate the pressure term from the velocity error 
bounds in the error estimates, so they guarantee accurate numerical 
velocity and pressure simultaneously. In some mixed FEMs, pressure 
robustness has been achieved by applying a velocity reconstruction op-
erator [24] to the load vector on the right-hand side (see [25–31] as 
examples). More precisely, the exterior force 𝐟 ∈ (𝐿2(Ω))𝑑 is decom-
posed as 𝐟 = 𝜼 + ∇𝜗 for some differentiable function 𝜗 and ∇ ⋅ 𝜼 = 0. 
Then, it follows from integration by parts (∇𝜗, ̄𝐯)Ω = (𝜗, ∇ ⋅ 𝐯̄)Ω = 0 for a 
divergence-free velocity 𝐯̄. Thus, a change of the exterior force 𝐟 +∇𝜓

results in a solution (𝐮, 𝑝 +𝜓). In a discretization with 𝜗ℎ on a triangu-
lation ℎ, we observe

(∇𝜗ℎ, 𝐯̄ℎ)Ω =
∑

𝑇∈ℎ

[⟨𝜗ℎ, 𝐯̄ℎ ⋅ 𝐧⟩𝜕𝑇 − (𝜗ℎ,∇ ⋅ 𝐯̄ℎ)𝑇
] ≠ 0,

where 𝐯̄ℎ is a weakly divergence-free velocity, implying (𝜗ℎ, ∇ ⋅ 𝐯̄ℎ)𝑇 = 0
for all 𝑇 ∈ ℎ. However, the velocity reconstruction operator  map-

ping such velocity functions to an 𝐻(div; Ω)-conforming finite element 
space leads to

(∇𝜗ℎ,𝐯̄ℎ)Ω =
∑

𝑇∈ℎ

[⟨𝜗ℎ,𝐯̄ℎ ⋅ 𝐧⟩𝜕𝑇 − (𝜗ℎ,∇ ⋅𝐯̄ℎ)𝑇
]
,

= −
∑

𝑇∈
(𝜗ℎ,∇ ⋅ 𝐯̄ℎ)𝑇 = 0.
ℎ
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To develop a pressure-robust scheme corresponding to the mEG 
method, we employ the velocity reconstruction operator [31], mapping 
the EG velocity test functions into the first-order Brezzi-Douglas-Marini 
space. Therefore, we achieve pressure robustness in the mEG method 
without compromising the optimal convergence orders.

The remaining sections of this paper are structured as follows: First, 
some important definitions, notations, and trace properties are intro-
duced in Section 2. Section 3 recalls the EG method [12] and proposes 
the modified EG (mEG) method without a penalty parameter. In Sec-
tion 4, we prove the well-posedness and error estimates of our mEG 
method. A pressure-robust mEG method is presented, and its robust er-
ror estimates are proved in Section 5. In Section 6, we validate our 
theoretical results through numerical experiments in two and three di-
mensions. We summarize our contribution in this paper and discuss 
related research in Section 7.

2. Preliminaries

To begin with, we introduce some notations and definitions used 
throughout this paper. For a bounded Lipschitz domain  ∈ℝ𝑑 , where 
𝑑 = 2, 3, we denote the Sobolev space as 𝐻𝑠() for a real number 𝑠 ≥ 0. 
Its norm and seminorm are denoted by ‖ ⋅ ‖𝑠, and | ⋅ |𝑠,, respectively. 
The space 𝐻0() coincides with 𝐿2(), and the 𝐿2-inner product is 
denoted by (⋅, ⋅). When  =Ω, the subscript  will be omitted. These 
notations are generalized to vector- and tensor-valued Sobolev spaces. 
The notation 𝐻1

0 () means the space of 𝑣 ∈ 𝐻1() such that 𝑣 = 0 on 
𝜕, and 𝐿2

0() means the space of 𝑣 ∈ 𝐿2() such that (𝑣, 1) = 0. 
The polynomial spaces of degree less than or equal to 𝑘 are denoted as 
𝑃𝑘(). We also introduce the Hilbert space

𝐻(div,) ∶= {𝐯 ∈ [𝐿2()]𝑑 ∶ div 𝐯 ∈ 𝐿2()}

with the norm

‖𝐯‖2
𝐻(div,) ∶= ‖𝐯‖20, + ‖div 𝐯‖20,.

For discrete schemes, we assume that there exists a shape-regular 
triangulation ℎ of Ω whose elements 𝑇 ∈ ℎ are triangles in two di-
mensions and tetrahedrons in three dimensions. Then, ℎ denotes the 
collection of all edges/faces in ℎ, and ℎ = 𝑜

ℎ
∪ 𝑏

ℎ
, where 𝑜

ℎ
is the 

collection of all the interior edges/faces and 𝑏
ℎ
is that of the boundary 

edges/faces. For each element 𝑇 ∈ ℎ, let ℎ𝑇 denote the diameter of 𝑇 , 
and 𝐧𝑇 (or 𝐧) denote the outward unit normal vector on 𝜕𝑇 . For each 
interior edge/face 𝑒 ∈ 𝑜

ℎ
shared by two adjacent elements 𝑇 + and 𝑇 −, 

we let 𝐧𝑒 be the unit normal vector from 𝑇 + to 𝑇 −. For each 𝑒 ∈ 𝑏
ℎ
, 𝐧𝑒

denotes the outward unit normal vector on 𝜕Ω.
In a shape-regular triangulation ℎ, the broken Sobolev space is de-

fined as

𝐻𝑠(ℎ) = {𝑣 ∈ 𝐿2(Ω) ∶ 𝑣|𝑇 ∈ 𝐻𝑠(𝑇 ), ∀𝑇 ∈ ℎ},

equipped with the norm

‖𝑣‖𝑠,ℎ
=
⎛⎜⎜⎝
∑

𝑇∈ℎ

‖𝑣‖2
𝑠,𝑇

⎞⎟⎟⎠
1∕2

.

When 𝑠 = 0, the 𝐿2-inner product on ℎ is denoted by (⋅, ⋅)ℎ
. Also, the 

𝐿2-inner product on ℎ is denoted as ⟨⋅, ⋅⟩ℎ
, and the 𝐿2-norm on ℎ is 

defined as

‖𝑣‖0,ℎ
=

(∑
𝑒∈ℎ

‖𝑣‖20,𝑒
)1∕2

.

The piecewise polynomial space corresponding to the broken Sobolev 
space is defined as

𝑃𝑘(ℎ) = {𝑣 ∈ 𝐿2(Ω) ∶ 𝑣|𝑇 ∈ 𝑃𝑘(𝑇 ), ∀𝑇 ∈ ℎ}.
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In addition, the jump and average of 𝑣 on 𝑒 ∈ ℎ are defined as

[𝑣] =
{

𝑣+ − 𝑣− on 𝑒 ∈ 𝑜
ℎ
,

𝑣 on 𝑒 ∈ 𝑏
ℎ
,

{𝑣} =
{

(𝑣+ + 𝑣−)∕2 on 𝑒 ∈ 𝑜
ℎ
,

𝑣 on 𝑒 ∈ 𝑏
ℎ
,

where 𝑣± is the trace of 𝑣|𝑇± on 𝑒 ∈ 𝜕𝑇 + ∩ 𝜕𝑇 −. These definitions are 
extended to vector- and tensor-valued functions.

We also introduce the trace properties mainly used in this paper. For 
any vector function 𝐯 and scalar function 𝑞, we have

∑
𝑇∈ℎ

⟨𝐯 ⋅ 𝐧, 𝑞⟩𝜕𝑇 = ⟨[𝐯] ⋅ 𝐧𝑒,{𝑞}⟩ℎ
+ ⟨{𝐯} ⋅ 𝐧𝑒, [𝑞]⟩𝑜

ℎ
. (2.1)

For any function 𝑣 ∈ 𝐻1(𝑇 ), the following trace inequality holds

‖𝑣‖20,𝑒 ≤ 𝐶

(
ℎ−1

𝑇
‖𝑣‖20,𝑇 + ℎ𝑇 ‖∇𝑣‖20,𝑇) . (2.2)

3. A modified enriched Galerkin method

We consider the weak formulation for the Stokes problem (1.1): Find 
(𝐮, 𝑝) ∈ [𝐻1

0 (Ω)]
𝑑 ×𝐿2

0(Ω) such that

𝜈(∇𝐮,∇𝐯) − (∇ ⋅ 𝐯, 𝑝) = (𝐟 ,𝐯), ∀𝐯 ∈ [𝐻1
0 (Ω)]

𝑑 , (3.1a)

(∇ ⋅ 𝐮, 𝑞) = 0, ∀𝑞 ∈ 𝐿2
0(Ω). (3.1b)

In this manuscript, we focus on the homogeneous Dirichlet boundary 
condition for simplicity in analysis. The scheme can be extended to 
mixed boundary conditions, which will be briefly described in Section 6.

We recall the EG method [12] with its finite-dimensional velocity 
and pressure spaces and then introduce weak derivatives to establish 
the modified EG method in this section.

3.1. Standard enriched Galerkin method with interior penalty

We first introduce the EG finite dimensional velocity and pressure 
spaces. Let us denote the space of continuous components for velocity 
as

𝐂ℎ = {𝐯𝐶 ∈ [𝐻1
0 (Ω)]

𝑑 ∶ 𝐯𝐶 |𝑇 ∈ [𝑃1(𝑇 )]𝑑 , ∀𝑇 ∈ ℎ}.

The space of discontinuous components for velocity is defined as

𝐃ℎ = {𝐯𝐷 ∈ 𝐿2(Ω) ∶ 𝐯𝐷|𝑇 = 𝑐(𝐱 − 𝐱𝑇 ), 𝑐 ∈ℝ, ∀𝑇 ∈ ℎ},

where 𝐱𝑇 is the barycenter of 𝑇 ∈ ℎ. Then, the EG finite dimensional 
velocity space is defined as

𝐕ℎ =𝐂ℎ ⊕𝐃ℎ,

that is, any function 𝐯 ∈ 𝐕ℎ consists of unique continuous and discon-
tinuous components, 𝐯 = 𝐯𝐶 +𝐯𝐷 for 𝐯𝐶 ∈𝐂ℎ and 𝐯𝐷 ∈𝐃ℎ. At the same 
time, the EG pressure space is chosen as

𝑄ℎ = {𝑞 ∈ 𝐿2
0(Ω) ∶ 𝑞|𝑇 ∈ 𝑃0(𝑇 ), ∀𝑇 ∈ ℎ}.

Therefore, the EG method [12] is formulated with the pair of the spaces 
𝐕ℎ ×𝑄ℎ.
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Algorithm 1 Enriched Galerkin (EG) method.
Find (𝐮ℎ, 𝑝ℎ) ∈𝐕ℎ ×𝑄ℎ such that

𝐚(𝐮ℎ,𝐯) − 𝐛(𝐯, 𝑝ℎ) = (𝐟 ,𝐯), ∀𝐯 ∈𝐕ℎ, (3.2a)

𝐛(𝐮ℎ, 𝑞) = 0, ∀𝑞 ∈ 𝑄ℎ, (3.2b)

where

𝐚(𝐰,𝐯) ∶= 𝜈
(
(∇𝐰,∇𝐯)ℎ

− ⟨{∇𝐰} ⋅ 𝐧𝑒, [𝐯]⟩ℎ

− ⟨{∇𝐯} ⋅ 𝐧𝑒, [𝐰]⟩ℎ
+ 𝜌⟨ℎ−1

𝑒
[𝐰], [𝐯]⟩ℎ

)
, (3.3a)

𝐛(𝐰, 𝑞) ∶= (∇ ⋅𝐰, 𝑞)ℎ
− ⟨[𝐰] ⋅ 𝐧𝑒,{𝑞}⟩ℎ

. (3.3b)

Here, 𝜌 > 0 is a penalty parameter and ℎ𝑒 = |𝑒|1∕(𝑑−1), where |𝑒| is the 
length/area of the edge/face 𝑒 ∈ ℎ.

In Algorithm 1, the symmetric interior penalty discontinuous 
Galerkin (IPDG) formulation is adopted to weakly impose the con-
tinuity of the discontinuous component 𝐯𝐷 ∈ 𝐃ℎ, and it requires a 
sufficiently large penalty parameter 𝜌 to guarantee the well-posedness 
of the method (see [12] for details). Other non-symmetric formulations 
have also been discussed in [12].

3.2. Modified enriched Galerkin method with weak derivatives

We introduce a weak Galerkin (WG) finite element space for velocity 
[9],

ℎ = {𝝊 = {𝝊0,𝝊𝑏} ∣ 𝝊0|𝑇 ∈ [𝑃1(𝑇 )]𝑑 , ∀𝑇 ∈ ℎ, 𝝊𝑏|𝑒 ∈ [𝑃1(𝑒)]𝑑 , ∀𝑒 ∈ ℎ}.

Then, the EG velocity 𝐯 ∈ 𝐕ℎ can be viewed as a WG function in ℎ, 
that is,

𝝊0 = 𝐯, 𝝊𝑏 = {𝐯} ⇒ {𝐯,{𝐯}} ∈ ℎ,

and the weak derivatives for 𝐯 ∈𝐕ℎ are locally defined as follows.

Definition 3.1. The weak gradient operator [23] is defined as ∇𝑤𝝊
||𝑇 ∈

[𝑃0(𝑇 )]𝑑×𝑑 when 𝝊 = {𝝊0, 𝝊𝑏} ∈ ℎ satisfying

(∇𝑤𝝊,ℵ)𝑇 = ⟨𝝊𝑏,ℵ ⋅ 𝐧⟩𝜕𝑇 , ∀ℵ ∈ [𝑃0(𝑇 )]𝑑×𝑑 .

In a similar manner, the weak gradient for the EG velocity 𝐯 ∈ 𝐕ℎ is 
defined as ∇𝑤𝐯||𝑇 ∈ [𝑃0(𝑇 )]𝑑×𝑑 such that

(∇𝑤𝐯,ℵ)𝑇 = ⟨{𝐯},ℵ ⋅ 𝐧⟩𝜕𝑇 , ∀ℵ ∈ [𝑃0(𝑇 )]𝑑×𝑑 .

Moreover, the weak divergence operator [23] for 𝐯 ∈ 𝐕ℎ is defined as 
∇𝑤 ⋅ 𝐯||𝑇 ∈ 𝑃0(𝑇 ) such that

(∇𝑤 ⋅ 𝐯, 𝑞)𝑇 = ⟨{𝐯} ⋅ 𝐧, 𝑞⟩𝜕𝑇 , ∀𝑞 ∈ 𝑃0(𝑇 ).

The weak gradient ∇𝑤𝐯 ∈ [𝑃0(𝑇 )]𝑑×𝑑 is equivalent to the discrete 
gradient 𝐺0

ℎ
(𝐯) ∈ [𝑃0(𝑇 )]𝑑×𝑑 introduced in the discontinuous Galerkin 

literature [32, Section 4.3]. Moreover, such equivalence holds for any 
polynomial degree 𝑘. The WG method uses a different bilinear form 
from the symmetric IPDG bilinear form.

Remark 3.2. For any EG velocity function 𝐯 ∈ 𝐕ℎ, the differences be-
tween the weak derivatives and regular derivatives are given as(

∇𝐯−∇𝑤𝐯,ℵ
)
ℎ

= ⟨[𝐯],{ℵ} ⋅ 𝐧𝑒⟩ℎ
, ∀ℵ ∈ [𝑃0(ℎ)]𝑑×𝑑 , (3.4a)(

∇ ⋅ 𝐯−∇𝑤 ⋅ 𝐯, 𝑞
)
ℎ

= ⟨[𝐯] ⋅ 𝐧𝑒,{𝑞}⟩ℎ
, ∀𝑞 ∈ 𝑃0(ℎ). (3.4b)

These identities are simply obtained from the definition of the weak 
derivatives and integration by parts. Since the EG velocity consists of 
𝐯𝐶 ∈ 𝐂ℎ and 𝐯𝐷 ∈ 𝐃ℎ, it is clear to see from (3.4) that ∇𝑤𝐯𝐶 = ∇𝐯𝐶 , 
∇𝑤 ⋅ 𝐯𝐶 = ∇ ⋅ 𝐯𝐶 , and the jumps of 𝐯𝐷 on 𝑒 ∈ 𝑜

ℎ
cause the differences. 

In practice, the weak gradient ∇𝑤𝐯𝐷 is locally determined by
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(∇𝑤𝐯𝐷)𝑖,𝑗 =
𝑛𝑗|𝑇 | ⟨{𝐯𝐷}, 𝐞𝑖⟩𝜕𝑇 , 1 ≤ 𝑖, 𝑗 ≤ 𝑑,

where 𝑛𝑗 is the 𝑗-th component of 𝐧 and 𝐞𝑖 is the standard unit vector 
whose 𝑖-th component is 1. Since 𝐯𝐷|𝑇 = 𝑐(𝐱 − 𝐱𝑇 ) is a linear function, 
the above line/surface integral can be simply computed by the one-
point quadrature rule on each edge/face, respectively. Also, the weak 
divergence ∇𝑤 ⋅ 𝐯𝐷 is the trace of ∇𝑤𝐯𝐷 from the definition, which 
implies no associated cost in computing the weak divergence.

Therefore, we propose the modified enriched Galerkin method 
which is formulated by the weak derivatives for the EG velocity 𝐯 ∈ 𝐕ℎ.

Algorithm 2 Modified enriched Galerkin (mEG) method.
Find (𝐮ℎ, 𝑝ℎ) ∈𝐕ℎ ×𝑄ℎ such that

𝐚𝑤(𝐮ℎ,𝐯) − 𝐛𝑤(𝐯, 𝑝ℎ) = (𝐟 ,𝐯), ∀𝐯 ∈𝐕ℎ, (3.5a)

𝐛𝑤(𝐮ℎ, 𝑞) = 0, ∀𝑞 ∈ 𝑄ℎ, (3.5b)

where

𝐚𝑤(𝐰,𝐯) ∶= 𝜈
(
(∇𝑤𝐰,∇𝑤𝐯)ℎ

+ ⟨ℎ−1
𝑒
[𝐰], [𝐯]⟩ℎ

)
, (3.6a)

𝐛𝑤(𝐰, 𝑞) ∶= (∇𝑤 ⋅𝐰, 𝑞)ℎ
. (3.6b)

In this case, ℎ𝑒 = |𝑒|1∕(𝑑−1) , where |𝑒| is the length/area of the edge/face 𝑒 ∈ ℎ.

Remark 3.3. There is no penalty parameter in the mEG method, while 
the EG method in Algorithm 1 requires a sufficiently large penalty pa-
rameter 𝜌. Inspired by [23,33], the bilinear form 𝐚𝑤(⋅, ⋅) has a penalty 
term but does not contain a penalty parameter to tune. More precisely, 
𝐚𝑤(𝐯, 𝐯) directly defines a mesh-dependent norm, which naturally im-
plies the bilinear form’s coercivity without a penalty parameter. We will 
show details in Section 4.

In addition, the identity (3.4b) implies that for any 𝐰 ∈ 𝐕ℎ and 𝑞 ∈
𝑄ℎ,

𝐛𝑤(𝐰, 𝑞) = 𝐛(𝐰, 𝑞), (3.7)

which makes it simple to prove the discrete inf-sup condition. In prac-
tice, this allows us to use the same block matrices corresponding to 
𝐛(⋅, ⋅) (or 𝐛𝑤(⋅, ⋅)) for both EG and mEG methods.

4. Well-posedness and error analysis

For the EGmethod [12] in Algorithm 1, the well-posedness and error 
estimates have been proved in terms of the energy norm in 𝐕ℎ,

‖𝐯‖ ∶=
(‖∇𝐯‖20,ℎ

+ 𝜌‖ℎ
−1∕2
𝑒 [𝐯]‖20,ℎ

) 1
2

.

To show the discrete inf-sup condition and a priori error estimates for 
the mEGmethod in Algorithm 2, we employ the theoretical results of the
EG method. In this case, the mEG method includes the weak derivatives, 
so it requires a mesh-dependent norm corresponding to the bilinear 
form 𝐚𝑤(⋅, ⋅),

⦀𝐯⦀ ∶=
(‖∇𝑤𝐯‖20,ℎ

+ ‖ℎ
−1∕2
𝑒 [𝐯]‖20,ℎ

) 1
2

.

Then, the following norm equivalence helps to prove the theoretical 
results of the mEG method.

Lemma 4.1. For any 𝐯 ∈ 𝐕ℎ, there are positive constants 𝛾∗ and 𝛾∗ inde-
pendent of ℎ ∶= max𝑇∈ℎ

ℎ𝑇 such that

𝛾∗⦀𝐯⦀ ≤ ‖𝐯‖ ≤ 𝛾∗⦀𝐯⦀. (4.1)
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Proof. We start with the relation (3.4a) while choosing ℵ =∇𝑤𝐯,

‖∇𝑤𝐯‖20,ℎ
=
(
∇𝑤𝐯,∇𝑤𝐯

)
ℎ

=
(
∇𝐯,∇𝑤𝐯

)
ℎ

− ⟨[𝐯],{∇𝑤𝐯} ⋅ 𝐧𝑒⟩𝑜
ℎ
.

Then, the first term is simply bounded using the Cauchy-Schwarz in-
equality,(
∇𝐯,∇𝑤𝐯

)
ℎ

≤ ‖∇𝐯‖0,ℎ
‖∇𝑤𝐯‖0,ℎ

,

and the second term is bounded using the Cauchy-Schwarz inequality 
and trace inequality (2.2),

⟨[𝐯],{∇𝑤𝐯} ⋅ 𝐧𝑒⟩𝑜
ℎ
≤ ‖ℎ

−1∕2
𝑒 [𝐯]‖0,𝑜

ℎ
‖ℎ

1∕2
𝑒 {∇𝑤𝐯}‖0,𝑜

ℎ

≤ 𝐶‖ℎ
−1∕2
𝑒 [𝐯]‖0,𝑜

ℎ
‖∇𝑤𝐯‖0,ℎ

.

Hence, we arrive at

‖∇𝑤𝐯‖0,ℎ
≤ 𝐶‖𝐯‖ ,

which implies the lower bound in (4.1).
On the other hand, we choose ℵ = ∇𝐯 in (3.4a) and apply the 

Cauchy-Schwarz inequality and (2.2) to obtain

‖∇𝐯‖20,ℎ
≤ (

∇𝑤𝐯,∇𝐯
)
ℎ

+ ⟨[𝐯],{∇𝐯} ⋅ 𝐧𝑒⟩𝑜
ℎ
≤ 𝐶⦀𝐯⦀‖∇𝐯‖0,ℎ

.

Therefore, it is clear to see that

‖∇𝐯‖0,ℎ
≤ 𝐶⦀𝐯⦀,

which yields the upper bound in (4.1). □

4.1. Well-posedness

In this subsection, with the norm equivalence (4.1), we show the 
well-posedness of the mEG method by proving the essential properties 
of the bilinear forms. Let Πℎ ∶ [𝐻2(Ω)]𝑑 →𝐕ℎ be the interpolation op-
erator [34] such that

Πℎ𝐯 =Π𝐶
ℎ
𝐯+Π𝐷

ℎ
𝐯,

where Π𝐶
ℎ
𝐯 ∈𝐂ℎ is the nodal value interpolant of 𝐯 and Π𝐷

ℎ
𝐯 ∈𝐃ℎ satis-

fies (∇ ⋅Π𝐷
ℎ
𝐯, 1)𝑇 = (∇ ⋅ (𝐯 −Π𝐶

ℎ
𝐯), 1)𝑇 for all 𝑇 ∈ ℎ. The corresponding 

interpolation error estimates [34] are as follows:

|𝐯−Πℎ𝐯|𝑗,ℎ
≤ 𝐶ℎ𝑚−𝑗 |𝐯|𝑚, 0 ≤ 𝑗 ≤ 𝑚 ≤ 2, ∀𝐯 ∈ [𝐻2(Ω)]𝑑 , (4.2a)‖𝐯−Πℎ𝐯‖ ≤ 𝐶ℎ‖𝐯‖2, ∀𝐯 ∈ [𝐻2(Ω)]𝑑 . (4.2b)

Lemma 4.2. There exists a positive constant 𝐶 independent of ℎ and 𝜈 such 
that

inf
𝑞∈𝑄ℎ

sup
𝐯∈𝐕ℎ

𝐛𝑤(𝐯, 𝑞)⦀𝐯⦀‖𝑞‖0 ≥ 𝐶. (4.3)

Proof. We first cite the results of discrete inf-sup condition in [12]. For 
any 𝑞 ∈ 𝑄ℎ ⊂ 𝐿2

0(Ω), there exist a vector 𝐯 ∈ [𝐻1
0 (Ω)]

𝑑 and a constant 
𝐶 > 0 independent of ℎ and 𝜈 such that

𝐛(Πℎ𝐯, 𝑞)‖Πℎ𝐯‖ ≥ 𝐶‖𝑞‖0.
Hence, it follows from (3.7) and (4.1) that
𝐛𝑤(Πℎ𝐯, 𝑞)⦀Πℎ𝐯⦀ ≥ 𝛾∗𝐶‖𝑞‖0. □

It is also straightforward to show the continuity of 𝐛𝑤(⋅, ⋅) with re-
spect to the norm ⦀ ⋅ ⦀ using the norm equivalence (4.1).

Lemma 4.3. For any 𝐯 ∈ 𝐕ℎ and 𝑞 ∈ 𝑄ℎ, there exists a positive constant 
𝐶 independent of ℎ satisfying
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|𝐛𝑤(𝐯, 𝑞)| ≤ 𝐶‖𝑞‖0⦀𝐯⦀. (4.4)

Proof. It follows from (3.7), (4.1), and the continuity of 𝐛(⋅, ⋅) in [12]
that

|𝐛𝑤(𝐯, 𝑞)| = |𝐛(𝐯, 𝑞)| ≤ 𝐶‖𝑞‖0‖𝐯‖ ≤ 𝐶𝛾∗‖𝑞‖0⦀𝐯⦀. □

In addition, we obtain the coercivity and continuity of 𝐚𝑤(⋅, ⋅) with 
respect to ⦀ ⋅ ⦀. (See [23] for details.)
Lemma 4.4. For any 𝐯, 𝐰 ∈ 𝐕ℎ, we have the coercivity and continuity re-
sults for 𝐚𝑤(⋅, ⋅):

𝐚𝑤(𝐯,𝐯) = 𝜈⦀𝐯⦀2, (4.5)

|𝐚𝑤(𝐯,𝐰)| ≤ 𝜈⦀𝐯⦀⦀𝐰⦀. (4.6)

Thus, we obtain the well-posedness of the mEG method.

Theorem 4.5. There exists a unique solution (𝐮ℎ, 𝑝ℎ) ∈𝐕ℎ×𝑄ℎ to the mEG 
method in Algorithm 2.

Proof. Since 𝐕ℎ and 𝑄ℎ are finite dimensional spaces, it suffices to 
show that 𝐮ℎ = 𝟎 and 𝑝ℎ = 0 when 𝐟 = 𝟎. If we choose 𝐯 = 𝐮ℎ in (3.5a)
and 𝑞 = 𝑝ℎ in (3.5b) and add the two equations, then we obtain

𝐚𝑤(𝐮ℎ,𝐮ℎ) = 0.

Thus, it follows from (4.5) that ⦀𝐮ℎ⦀ = 0, so 𝐮ℎ = 𝟎. Moreover, the fact 
𝐮ℎ = 𝟎 in (3.5) implies

𝐛𝑤(𝐯, 𝑝ℎ) = 0, ∀𝐯 ∈𝐕ℎ.

Therefore, we have ‖𝑝ℎ‖0 = 0 from (4.3), which gives 𝑝ℎ = 0. □

4.2. Error estimates

We prove error estimates for velocity and pressure with respect to 
the mesh-dependent norm ⦀ ⋅ ⦀ and the 𝐿2-norm, respectively. We 
first introduce the local 𝐿2-projection 0 ∶ 𝐻1(Ω) → 𝑄ℎ satisfying 
(𝑞 −0𝑞, 1)𝑇 = 0 for all 𝑇 ∈ ℎ and its error estimate,

‖𝑞 −0𝑞‖0 ≤ 𝐶ℎ‖𝑞‖1, ∀𝑞 ∈ 𝐻1(Ω). (4.7)

Furthermore, let us define Θℎ ∶ [𝐻2(Ω)]𝑑 → ℎ as

Θℎ𝐮 = {Θ0𝐮,Θ𝑏𝐮},

where Θ0 and Θ𝑏 are the local 𝐿2-projections onto [𝑃1(𝑇 )]𝑑 for all 𝑇 ∈
ℎ and [𝑃1(𝑒)]𝑑 for all 𝑒 ∈ ℎ, respectively. Then, we have the following 
commutative property [9],

∇𝑤(Θℎ𝐯) =𝚯ℎ(∇𝐯), (4.8)

where 𝚯ℎ is the local 𝐿2-projection onto [𝑃0(𝑇 )]𝑑×𝑑 .

We define error functions used in the error estimates,

𝝌ℎ = 𝐮−Πℎ𝐮, 𝐞ℎ =Πℎ𝐮− 𝐮ℎ, 𝜉ℎ = 𝑝−0𝑝, 𝜖ℎ = 0𝑝− 𝑝ℎ. (4.9)

Then, we derive the main error equations in the following lemma.

Lemma 4.6. For any 𝐯 ∈𝐕ℎ and 𝑞 ∈ 𝑄ℎ, we have

𝐚𝑤(𝐞ℎ,𝐯) − 𝐛𝑤(𝐯, 𝜖ℎ) = 𝑙1(𝐮,𝐯) + 𝑙2(𝐮,𝐯) + 𝐬(Πℎ𝐮,𝐯) + 𝐛𝑤(𝐯, 𝜉ℎ), (4.10a)

𝐛𝑤(𝐞ℎ, 𝑞) = −𝐛𝑤(𝝌ℎ, 𝑞), (4.10b)

where the supplemental bilinear forms are defined as follows:
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𝑙1(𝐮,𝐯) = 𝜈
∑

𝑇∈ℎ

⟨∇𝐮 ⋅ 𝐧−𝚯ℎ(∇𝐮) ⋅ 𝐧,𝐯− {𝐯}⟩𝜕𝑇 ,

𝑙2(𝐮,𝐯) = 𝜈
(
∇𝑤(Πℎ𝐮−Θℎ𝐮),∇𝑤𝐯

)
ℎ

,

𝐬(Πℎ𝐮,𝐯) = 𝜈⟨ℎ−1
𝑒
[Πℎ𝐮], [𝐯]⟩ℎ

.

Proof. For any 𝐯 ∈ 𝐕ℎ, integration by parts and the definition of 𝚯ℎ

imply

(−Δ𝐮,𝐯)ℎ
= −

∑
𝑇∈ℎ

⟨∇𝐮 ⋅ 𝐧,𝐯⟩𝜕𝑇 + (∇𝐮,∇𝐯)ℎ

= −
∑

𝑇∈ℎ

⟨∇𝐮 ⋅ 𝐧,𝐯− {𝐯}⟩𝜕𝑇 +
(
𝚯ℎ(∇𝐮),∇𝐯

)
ℎ

.

Then, the definition of the weak gradient and the commutative property 
(4.8) lead to(
𝚯ℎ(∇𝐮),∇𝐯

)
ℎ

=
(
𝚯ℎ(∇𝐮),∇𝑤𝐯

)
ℎ

+
(
𝚯ℎ(∇𝐮),∇𝐯−∇𝑤𝐯

)
ℎ

=
(
∇𝑤(Θℎ𝐮),∇𝑤𝐯

)
ℎ

+
∑

𝑇∈ℎ

⟨𝚯ℎ(∇𝐮) ⋅ 𝐧,𝐯− {𝐯}⟩𝜕𝑇 .

Hence, we obtain

(−Δ𝐮,𝐯)ℎ
=
(
∇𝑤(Θℎ𝐮),∇𝑤𝐯

)
ℎ

−
∑

𝑇∈ℎ

⟨∇𝐮 ⋅ 𝐧−𝚯ℎ(∇𝐮) ⋅ 𝐧,𝐯− {𝐯}⟩𝜕𝑇 ,

(∇𝑝,𝐯)ℎ
= 𝐛𝑤(𝐯, 𝑝),

where the second equation is obtained by the trace identity (2.1), the 
continuity of 𝑝, and (3.4b). Then, by combining the above two equations 
in the equation (1.1a), we have(
∇𝑤(Θℎ𝐮),∇𝑤𝐯

)
ℎ

− 𝐛𝑤(𝐯, 𝑝) = (𝐟 ,𝐯) + 𝑙1(𝐮,𝐯).

If we add proper terms including Πℎ𝐮 to both sides and subtract 
𝐛𝑤(𝐯, 𝑃0𝑝) from both sides, we get

𝐚𝑤(Πℎ𝐮,𝐯)−𝐛𝑤(𝐯,0𝑝) = (𝐟 ,𝐯)+ 𝑙1(𝐮,𝐯)+ 𝑙2(𝐮,𝐯)+𝐬(Πℎ𝐮,𝐯)+𝐛𝑤(𝐯, 𝜉ℎ).

By comparing this equation with (3.5a) in the mEG method, we arrive 
at

𝐚𝑤(𝐞ℎ,𝐯) − 𝐛𝑤(𝐯, 𝜖ℎ) = 𝑙1(𝐮,𝐯) + 𝑙2(𝐮,𝐯) + 𝐬(Πℎ𝐮,𝐯) + 𝐛𝑤(𝐯, 𝜉ℎ).

Furthermore, the continuity of 𝐮 and (3.5b) imply

(∇ ⋅ 𝐮, 𝑞)ℎ
= 𝐛𝑤(𝐮, 𝑞) = 0 = 𝐛𝑤(𝐮ℎ, 𝑞),

so (4.10b) is obtained by subtracting 𝐛𝑤(Πℎ𝐮, 𝑞) from both sides. □

We provide the upper bounds for the supplementary bilinear forms 
in Lemma 4.6.

Lemma 4.7. We assume that 𝐰 ∈ [𝐻2(Ω)]𝑑 and 𝐯 ∈𝐕ℎ. Then, we have||𝑙1(𝐰,𝐯)|| ≤ 𝐶𝜈ℎ‖𝐰‖2⦀𝐯⦀, (4.11a)||𝑙2(𝐰,𝐯)|| ≤ 𝐶𝜈ℎ‖𝐰‖2⦀𝐯⦀, (4.11b)||𝐬(Πℎ𝐰,𝐯)|| ≤ 𝐶𝜈ℎ‖𝐰‖2⦀𝐯⦀, (4.11c)

where the constant 𝐶 is independent of ℎ.

Proof. The proof of the bound (4.11a) can be found in [23], so we 
focus on showing (4.11b) and (4.11c) here. The definition of the weak 
gradient and the properties of the projections Πℎ and Θℎ lead to

|𝑙2(𝐰,𝐯)| = 𝜈
|||(∇𝑤(Πℎ𝐰−Θℎ𝐰),∇𝑤𝐯)

)
ℎ

|||
= 𝜈

||||| ∑𝑇∈
⟨{Πℎ𝐰} −Θ𝑏𝐰,∇𝑤𝐯 ⋅ 𝐧⟩𝜕𝑇

|||||
| ℎ |
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= 𝜈

||||||
∑

𝑇∈ℎ

⟨{Πℎ𝐰−𝐰},∇𝑤𝐯 ⋅ 𝐧⟩𝜕𝑇

||||||
≤ 𝜈

∑
𝑇∈ℎ

‖ℎ
−1∕2
𝑇

{Πℎ𝐰−𝐰}‖𝜕𝑇 ‖ℎ
1∕2
𝑇

∇𝑤𝐯‖𝜕𝑇

≤ 𝐶𝜈ℎ‖𝐰‖2‖∇𝑤𝐯‖0,ℎ

The third identity holds true because 𝐰 ∈ [𝐻2(Ω)]𝑑 is continuous on 
𝜕𝑇 , and the last inequality is obtained from the trace inequality (2.2)
and (4.2a).

For the stabilization term (4.11c), it follows from the Cauchy-
Schwarz inequality, (2.2), and (4.2a) that

|𝐬(Πℎ𝐰,𝐯)| = 𝜈
|||⟨ℎ−1

𝑒
[Πℎ𝐰−𝐰], [𝐯]⟩ℎ

|||
≤ 𝐶𝜈‖ℎ

−1∕2
𝑒 [Πℎ𝐰−𝐰]‖0,ℎ

‖ℎ
−1∕2
𝑒 [𝐯]‖0,ℎ

≤ 𝐶𝜈ℎ‖𝐰‖2⦀𝐯⦀. □

Consequently, we obtain the following error estimates.

Theorem 4.8. Let (𝐮, 𝑝) ∈ [𝐻1
0 (Ω) ∩ 𝐻2(Ω)]𝑑 × (𝐿2

0(Ω) ∩ 𝐻1(Ω)) be the 
solution to (1.1a)-(1.1c), and (𝐮ℎ, 𝑝ℎ) ∈ 𝐕ℎ × 𝑄ℎ be the discrete solution 
from the mEG method. Then, we have the following error estimates

⦀Πℎ𝐮− 𝐮ℎ⦀ ≤ 𝐶ℎ

(‖𝐮‖2 + 1
𝜈
‖𝑝‖1) ,

‖0𝑝− 𝑝ℎ‖0 ≤ 𝐶ℎ
(
𝜈‖𝐮‖2 + ‖𝑝‖1) .

Proof. First, we see the error equation (4.10a), for any 𝐯 ∈ 𝐕ℎ and 
𝑞 ∈ 𝑄ℎ,

𝐛𝑤(𝐯, 𝜖ℎ) = 𝐚𝑤(𝐞ℎ,𝐯) − 𝑙1(𝐮,𝐯) − 𝑙2(𝐮,𝐯) − 𝐬(Πℎ𝐮,𝐯) − 𝐛𝑤(𝐯, 𝜉ℎ).

Then, it follows from (4.6), (4.11), (4.4), and (4.7) that

|𝐛𝑤(𝐯, 𝜖ℎ)| ≤ 𝐶
(
𝜈⦀𝐞ℎ⦀⦀𝐯⦀+ 𝜈ℎ‖𝐮‖2⦀𝐯⦀+ ‖𝜉ℎ‖0⦀𝐯⦀)

≤ 𝐶
(
𝜈⦀𝐞ℎ⦀+ 𝜈ℎ‖𝐮‖2 + ℎ‖𝑝‖1)⦀𝐯⦀.

The inf-sup condition (4.3) implies that

‖𝜖ℎ‖0 ≤ 𝐶
(
𝜈⦀𝐞ℎ⦀+ ℎ(𝜈‖𝐮‖2 + ‖𝑝‖1)) . (4.12)

Moreover, by choosing 𝐯 = 𝐞ℎ and 𝑞 = 𝜖ℎ in (4.10) and substituting 
(4.10b) into (4.10a), we obtain

𝐚𝑤(𝐞ℎ, 𝐞ℎ) = −𝐛𝑤(𝝌ℎ, 𝜖ℎ) + 𝑙1(𝐮, 𝐞ℎ) + 𝑙2(𝐮, 𝐞ℎ) + 𝐬(Πℎ𝐮, 𝐞ℎ) + 𝐛𝑤(𝐞ℎ, 𝜉ℎ).

Here, we show an upper bound for the term 𝐛𝑤(𝝌ℎ, 𝜖ℎ). Integration by 
parts and the trace identity (2.1) give

𝐛𝑤(𝝌ℎ, 𝜖ℎ) = 𝐛(𝝌ℎ, 𝜖ℎ)

=
(
∇ ⋅ 𝝌ℎ, 𝜖ℎ

)
ℎ

− ⟨[𝝌ℎ] ⋅ 𝐧𝑒,{𝜖ℎ}⟩ℎ

=
∑

𝑇∈ℎ

⟨𝝌ℎ ⋅ 𝐧, 𝜖ℎ⟩𝜕𝑇 − ⟨[𝝌ℎ] ⋅ 𝐧𝑒,{𝜖ℎ}⟩ℎ

= ⟨{𝝌ℎ} ⋅ 𝐧𝑒, [𝜖ℎ]⟩𝑜
ℎ
.

Thus, it follows from the Cauchy-Schwarz inequality, (2.2), and (4.2a)
that

|𝐛𝑤(𝝌ℎ, 𝜖ℎ)| ≤ ‖{𝝌ℎ}‖0,ℎ
‖[𝜖ℎ]‖0,ℎ

≤ 𝐶ℎ‖𝐮‖2‖𝜖ℎ‖0. (4.13)

Hence, by (4.5), (4.11), (4.4), (4.7), (4.12), and (4.13), we have

𝜈⦀𝐞ℎ⦀2 ≤ 𝐶
(
𝜈ℎ‖𝐮‖2⦀𝐞ℎ⦀+ ℎ‖𝑝‖1⦀𝐞ℎ⦀+ 𝜈ℎ2‖𝐮‖22 + ℎ2‖𝐮‖2‖𝑝‖1) .

We also apply the Young’s inequality with a positive constant 𝜅 satisfy-
ing 𝜅 < 1∕𝐶 ,
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𝜈ℎ‖𝐮‖2⦀𝐞ℎ⦀ ≤ 𝜈

(
ℎ2

2𝜅
‖𝐮‖22 + 𝜅

2
⦀𝐞ℎ⦀2

)
,

ℎ‖𝑝‖1⦀𝐞ℎ⦀ ≤
(

ℎ2

2𝜈𝜅
‖𝑝‖21 + 𝜈𝜅

2
⦀𝐞ℎ⦀2

)
,

ℎ2‖𝐮‖2‖𝑝‖1 ≤(
𝜈ℎ2

2
‖𝐮‖22 + ℎ2

2𝜈
‖𝑝‖21) .

We finally obtain

𝜈⦀𝐞ℎ⦀2 ≤ 𝐶

(
𝜈ℎ2‖𝐮‖22 + ℎ2

𝜈
‖𝑝‖21) ,

which implies that

⦀𝐞ℎ⦀ ≤ 𝐶ℎ

(‖𝐮‖2 + 1
𝜈
‖𝑝‖1) .

In addition, together with this velocity error estimate, the estimate 
(4.12) implies

‖𝜖ℎ‖0 ≤ 𝐶ℎ
(
𝜈‖𝐮‖2 + ‖𝑝‖1) . □

Finally, we present the total error estimates showing the optimal 
rates of convergence in both velocity and pressure.

Theorem 4.9. Under the same assumption of Theorem 4.8, we have the 
following error estimates

⦀𝐮− 𝐮ℎ⦀ ≤ 𝐶ℎ

(‖𝐮‖2 + 1
𝜈
‖𝑝‖1) ,‖𝑝− 𝑝ℎ‖0 ≤ 𝐶ℎ

(
𝜈‖𝐮‖2 + ‖𝑝‖1) .

Proof. The estimates in this theorem are readily proved by the triangle 
inequality, the interpolation error estimates (4.2b) and (4.7), and the 
norm equivalence (4.1). □

5. A pressure-robust modified enriched Galerkin method

In this section, we derive a pressure-robust scheme associated with 
the mEG method (Algorithm 2) by applying the velocity reconstruction 
operator [31] to the load vector on the right hand side. The operator 
 ∶𝐕ℎ →𝐷𝑀1(ℎ) ⊂ 𝐻(div, Ω) is defined by

∫
𝑒

(𝐯) ⋅ 𝐧𝑒𝑝1 𝑑𝑠 = ∫
𝑒

{𝐯} ⋅ 𝐧𝑒𝑝1 𝑑𝑠, ∀𝑝1 ∈ 𝑃1(𝑒), ∀𝑒 ∈ 𝑜
ℎ
, (5.1a)

∫
𝑒

(𝐯) ⋅ 𝐧𝑒𝑝1 𝑑𝑠 = 0, ∀𝑝1 ∈ 𝑃1(𝑒), ∀𝑒 ∈ 𝑏
ℎ
, (5.1b)

when 𝐷𝑀1(ℎ) denotes the Brezzi-Douglas-Marini space of index 1 
on ℎ.

Algorithm 3 Pressure-robust modified enriched Galerkin (PR-mEG) 
method.

Find (𝐮ℎ, 𝑝ℎ) ∈𝐕ℎ ×𝑄ℎ such that

𝐚𝑤(𝐮ℎ,𝐯) − 𝐛𝑤(𝐯, 𝑝ℎ) = (𝐟 ,𝐯)ℎ
, ∀𝐯∈𝐕ℎ, (5.2a)

𝐛𝑤(𝐮ℎ, 𝑞) = 0, ∀𝑞 ∈ 𝑄ℎ, (5.2b)

where 𝐚𝑤(⋅, ⋅) and 𝐛𝑤(⋅, ⋅) are the same as (3.6a) and (3.6b), respectively.

Remark 5.1. The mEG method in Algorithm 2 and PR-mEG method in 
Algorithm 3 have the same formulation on left hand side that consists 
of 𝐚𝑤(⋅, ⋅) and 𝐛𝑤(⋅, ⋅). The only difference is that a reconstructed test 
function is applied to the load vector on the right hand side. This implies 
that the well-posedness of the PR-mEG method is guaranteed by that of 
the mEG method, and moreover, both of the mEG and PR-mEG methods 
produce the same stiffness matrix.
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The error equations corresponding to the PR-mEG method are de-
rived in the following lemma using the same error functions in (4.9).

Lemma 5.2. For any 𝐯 ∈𝐕ℎ and 𝑞 ∈ 𝑄ℎ, we have

𝐚𝑤(𝐞ℎ,𝐯) − 𝐛𝑤(𝐯, 𝜖ℎ) = 𝑙1(𝐮,𝐯) + 𝑙2(𝐮,𝐯) + 𝑙3(𝐮,𝐯) + 𝐬(Πℎ𝐮,𝐯), (5.3a)

𝐛𝑤(𝐞ℎ, 𝑞) = −𝐛𝑤(𝝌ℎ, 𝑞), (5.3b)

where 𝑙1(⋅, ⋅), 𝑙2(⋅, ⋅), and 𝐬(⋅, ⋅) are defined in Lemma 4.6, and another 
supplemental bilinear form is defined by

𝑙3(𝐮,𝐯) = −𝜈 (Δ𝐮,𝐯−𝐯)ℎ

Proof. First of all, we obtain the following identities,

(∇𝑝,𝐯)ℎ
= −𝐛(𝐯,0𝑝) = −𝐛𝑤(𝐯,0𝑝)

because 𝐯 ⋅ 𝐧 is continuous on 𝜕𝑇 and ∇ ⋅𝐯 is constant in 𝑇 . (See 
[31] for details.) Moreover, we have

(−Δ𝐮,𝐯)ℎ
= (−Δ𝐮,𝐯)ℎ

+ (Δ𝐮,𝐯−𝐯)ℎ
.

Then, it follows from (1.1a) and the error equations in Lemma 4.6 that

𝐚𝑤(Πℎ𝐮,𝐯) − 𝐛𝑤(𝐯,0𝑝) = (𝐟 ,𝐯)ℎ
+ 𝑙1(𝐮,𝐯) + 𝑙2(𝐮,𝐯) + 𝑙3(𝐮,𝐯)

+ 𝐬(Πℎ𝐮,𝐯).

By subtracting (5.2a) from this equation, we arrive at the equation 
(5.3a). The equation (5.3b) is simply derived in the same way as 
Lemma 4.6. □

Consequently, the following theorem theoretically shows pressure 
robustness of the PR-mEG method.

Theorem 5.3. Let (𝐮, 𝑝) ∈ [𝐻1
0 (Ω) ∩ 𝐻2(Ω)]𝑑 × (𝐿2

0(Ω) ∩ 𝐻1(Ω)) be the 
solution to (1.1a)-(1.1c), and (𝐮ℎ, 𝑝ℎ) ∈ 𝐕ℎ × 𝑄ℎ be the discrete solution 
from the PR-mEG method. Then, we have the following error estimates

⦀Πℎ𝐮− 𝐮ℎ⦀ ≤ 𝐶ℎ‖𝐮‖2, ‖0𝑝− 𝑝ℎ‖0 ≤ 𝐶𝜈ℎ‖𝐮‖2.
Therefore, the total error estimates are as follows:

⦀𝐮− 𝐮ℎ⦀ ≤ 𝐶ℎ‖𝐮‖2, ‖𝑝− 𝑝ℎ‖0 ≤ 𝐶ℎ
(
𝜈‖𝐮‖2 + ‖𝑝‖1) .

Proof. To begin with, we observe the error equation (5.3a),

𝐛𝑤(𝐯, 𝜖ℎ) = 𝐚𝑤(𝐞ℎ,𝐯) − 𝑙1(𝐮,𝐯) − 𝑙2(𝐮,𝐯) − 𝑙3(𝐮,𝐯) − 𝐬(Πℎ𝐮,𝐯).

Here, the bilinear form 𝑙3(𝐮, 𝐯) is bounded using the Cauchy-Schwarz 
inequality,

|𝑙3(𝐮,𝐯)| ≤ 𝜈‖Δ𝐮‖0‖𝐯−𝐯‖0 ≤ 𝜈‖𝐮‖2‖𝐯−𝐯‖0.
It also follows from the estimate ‖𝐯 −𝐯‖0 in [31] and the norm equiv-
alence (4.1) that

‖𝐯−𝐯‖0 ≤ 𝐶ℎ⦀𝐯⦀,

so we arrive at

|𝑙3(𝐮,𝐯)| ≤ 𝐶𝜈ℎ‖𝐮‖2⦀𝐯⦀. (5.4)

Thus, from (4.6), (4.11), and (5.4), we obtain

|𝐛𝑤(𝐯, 𝜖ℎ)| ≤ 𝐶
(
𝜈⦀𝐞ℎ⦀+ 𝜈ℎ‖𝐮‖2)⦀𝐯⦀.

Hence, the inf-sup condition (4.3) leads to

‖𝜖ℎ‖0 ≤ 𝐶𝜈
(⦀𝐞ℎ⦀+ ℎ‖𝐮‖2) . (5.5)

Similar to the proof of Theorem 4.8, choosing 𝐯 = 𝐞ℎ and 𝑞 = 𝜖ℎ yields 
that
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𝐚𝑤(𝐞ℎ, 𝐞ℎ) = −𝐛𝑤(𝝌ℎ, 𝜖ℎ) + 𝑙1(𝐮, 𝐞ℎ) + 𝑙2(𝐮, 𝐞ℎ) + 𝑙3(𝐮, 𝐞ℎ) + 𝐬(Πℎ𝐮, 𝐞ℎ).

From (4.13) and (5.5), we get the following intermediate result,

|𝐛𝑤(𝝌ℎ, 𝜖ℎ)| ≤ 𝐶ℎ‖𝐮‖2‖𝜖ℎ‖0 ≤ 𝐶𝜈ℎ‖𝐮‖2 (⦀𝐞ℎ⦀+ ℎ‖𝐮‖2) .

Therefore, it follows from (4.5), (4.11), and (5.4) that

𝜈⦀𝐞ℎ⦀2 ≤ 𝐶𝜈
(
ℎ‖𝐮‖2⦀𝐞ℎ⦀+ ℎ2‖𝐮‖22) .

The Young’s inequality gives

ℎ‖𝐮‖2⦀𝐞ℎ⦀ ≤ ℎ2

2𝜅
‖𝐮‖22 + 𝜅

2
⦀𝐞ℎ⦀2,

so choosing a proper 𝜅 implies

𝜈⦀𝐞ℎ⦀2 ≤ 𝐶𝜈ℎ2‖𝐮‖22.
Therefore, together with (5.5), we obtain

⦀𝐞ℎ⦀ ≤ 𝐶ℎ‖𝐮‖2, ‖𝜖ℎ‖0 ≤ 𝐶𝜈ℎ‖𝐮‖2. □

6. Numerical experiments

In this section, we present numerical experiments validating our the-
oretical results with two- and three-dimensional examples. The numeri-
cal experiments are implemented by authors’ codes developed based on 
iFEM [35]. The numerical methods mentioned in this paper and their 
discrete solutions are denoted as follows:

• (𝐮EG
ℎ

, 𝑝EG
ℎ
): Solution by the EG method [12] in Algorithm 1.

• (𝐮mEG
ℎ

, 𝑝mEG
ℎ

): Solution by the mEG method in Algorithm 2.

• (𝐮PR
ℎ

, 𝑝PR
ℎ
): Solution by the PR-mEG method in Algorithm 3.

We compare the penalty terms in the EG and mEG methods,

EG ∶ Penalty term of 𝐚(𝐮EG
ℎ

,𝐯) → 𝜈𝜌⟨ℎ−1
𝑒
[𝐮EG

ℎ
], [𝐯]⟩ℎ

, (6.1)

mEG ∶ Penalty term of 𝐚𝑤(𝐮mEGℎ
,𝐯) → 𝜈⟨ℎ−1

𝑒
[𝐮mEG

ℎ
], [𝐯]⟩ℎ

. (6.2)

While a sufficiently large penalty parameter 𝜌 is required for the EG
method with the symmetric formulation, our mEG method is a penalty 
parameter-free EG method under the same finite-dimensional velocity 
and pressure spaces. In the numerical results of [12], a non-symmetric 
formulation has been focused on, which needs a positive penalty param-
eter 𝜌 > 0 for well-posedness. (𝜌 = 1 in the numerical results of [12].) 
However, our numerical experiments with the symmetric formulation 
will show the need for a large parameter 𝜌 depending on various fac-
tors, especially meshes and example problems.

We recall the error estimates for the mEG method in Section 4:

⦀Πℎ𝐮− 𝐮mEG
ℎ

⦀ ≲ ℎ
(‖𝐮‖2 + 𝜈−1‖𝑝‖1) ,‖0𝑝− 𝑝mEG

ℎ
‖0 ≲ ℎ

(
𝜈‖𝐮‖2 + ‖𝑝‖1) , (6.3a)⦀𝐮− 𝐮mEG

ℎ
⦀ ≲ ℎ

(‖𝐮‖2 + 𝜈−1‖𝑝‖1) ,‖𝑝− 𝑝mEG
ℎ

‖0 ≲ ℎ
(
𝜈‖𝐮‖2 + ‖𝑝‖1) , (6.3b)

which means the same rates of convergence as the EG method. More-
over, we developed a pressure-robust numerical scheme corresponding 
to the mEG method, and the error estimates for the PR-mEG method 
proved in Section 5 are as follows:

⦀Πℎ𝐮− 𝐮PR
ℎ
⦀ ≲ ℎ‖𝐮‖2, ‖0𝑝− 𝑝PR

ℎ
‖0 ≲ 𝜈ℎ‖𝐮‖2, (6.4a)⦀𝐮− 𝐮PR

ℎ
⦀ ≲ ℎ‖𝐮‖2, ‖𝑝− 𝑝PR

ℎ
‖0 ≲ ℎ

(
𝜈‖𝐮‖2 + ‖𝑝‖1) . (6.4b)

In two- and three-dimensional examples, we demonstrate the well-
posedness and optimal rates of convergence for the mEG method. By 
checking the behaviors of the errors with decreasing viscosity 𝜈, we con-
firm the error estimates of the PR-mEG method in (6.4), which means 
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Fig. 1. Errors and condition numbers of mEG and EG for 0.5 ≤ 𝜌 ≤ 3 (𝜈 = 1, ℎ = 1∕16).
Table 1

A mesh refinement study for EG and mEG with varying mesh size ℎ and 𝜈 = 1.

EG (𝜌 = 1) EG (𝜌 = 3) mEG

ℎ ‖𝐮− 𝐮EG
ℎ
‖ Order ‖𝐮− 𝐮EG

ℎ
‖ Order ⦀𝐮− 𝐮mEG

ℎ
⦀ Order

1∕8 7.394e-1 - 3.099e-1 - 2.749e-1 -

1∕16 6.931e-1 0.09 1.117e-1 1.47 1.024e-1 1.42

1∕32 2.440e-1 1.51 4.185e-2 1.42 3.940e-2 1.38

1∕64 9.052e-2 1.43 1.670e-2 1.33 1.606e-2 1.29

ℎ ‖𝑝− 𝑝EG
ℎ
‖0 Order ‖𝑝− 𝑝EG

ℎ
‖0 Order ‖𝑝− 𝑝mEG

ℎ
‖0 Order

1∕8 9.299e-1 - 6.269e-1 - 5.815e-1 -

1∕16 2.897e-1 1.68 2.917e-1 1.10 2.733e-1 1.09

1∕32 2.319e-1 0.32 1.402e-1 1.06 1.322e-1 1.05

1∕64 2.664e-1 -0.20 6.869e-2 1.03 6.498e-2 1.02

more accurate numerical solutions than the mEG method in the case of 
small viscosity 𝜈 ≪ 1.

6.1. Two dimensional tests

Let the computational domain be Ω = (0, 1) ×(0, 1). The velocity field 
and pressure are chosen as

𝐮 =
(

10𝑥2(𝑥− 1)2𝑦(𝑦− 1)(2𝑦− 1)
−10𝑥(𝑥− 1)(2𝑥− 1)𝑦2(𝑦− 1)2

)
, 𝑝 = 10(2𝑥− 1)(2𝑦− 1). (6.5)

Then, the body force 𝐟 is obtained from the Stokes equations in (1.1).

6.1.1. Penalty parameter-free test
Homogeneous Dirichlet boundary condition.We consider the ex-

ample velocity and pressure in (6.5) with the homogeneous Dirichlet 
boundary condition for velocity. We check the errors and condition 
numbers of the stiffness matrices to compare the mEG method with the
EG method with different penalty parameters. To see how the penalty 
parameters affect the performance of the EG method, we apply the 
penalty term (6.1) and change 𝜌 from 0.1 to 3. In this test, we choose the 
uniform triangular mesh with ℎ = 1∕16 and the viscosity 𝜈 = 1. Fig. 1
shows that the EG method seems to yield unstable errors and condition 
numbers with penalty parameters less than 2, implying the need of a 
sufficiently large parameter for stability. On the other hand, the mEG
method shows relatively stable errors and condition numbers with the 
parameter-free penalty term (6.2).

We also perform a mesh refinement study for the mEG method and 
the EG method with 𝜌 = 1, 3. In Table 1, the errors of the EG method fail 
to converge due to the insufficiently large penalty parameter (𝜌 = 1). 
When a sufficiently large parameter is applied (𝜌 = 3), the EG method 
yields the first-order convergence. However, the mEG method produces 
the velocity and pressure errors that indicate at least the first-order 
convergence, and those errors are smaller than the EG method’s errors.

Moreover, we compare the numerical velocity and pressure of the
EG and mEG methods to see how small parameters affect numerical 
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solutions. In Fig. 2, the numerical velocity of the EG method roughly 
captures the vortex flow pattern, but some relatively large jumps appear 
throughout the numerical velocity solution. However, the mEG method 
produces a more stable numerical velocity that captures the pattern bet-
ter than the EG method.

Mixed boundary conditions. We consider the same example func-
tions (6.5) and mixed boundary conditions on the domain Ω described 
in Fig. 3,

𝐮 = 𝟎 on Γ𝐷,

(𝜈∇𝐮− 𝑝𝐈)𝐧 = 𝐬 on Γ𝑁,

where 𝐈 is the identity tensor on ℝ𝑑 . To implement the boundary con-
ditions, we see that the EG velocity in (3.5) satisfies 𝐮ℎ = 𝐮𝐶

ℎ
+ 𝐮𝐷

ℎ
= 𝟎

on any 𝑒 ⊂ Γ𝐷 . Thus, when 𝜕𝑇 ∩ Γ𝐷 ≠ ∅, the weak gradient for 𝐮𝐷
ℎ
is 

computed as ∇𝑤𝐮𝐷
ℎ

|||𝑇 ∈ [𝑃0(𝑇 )]𝑑×𝑑 such that

(∇𝑤𝐮𝐷
ℎ

,ℵ)𝑇 =
∑

𝑒⊂𝜕𝑇 ⧵Γ𝐷

⟨{𝐮𝐷
ℎ
},ℵ ⋅ 𝐧⟩𝑒, ∀ℵ ∈ [𝑃0(𝑇 )]𝑑×𝑑 (6.6)

while applying 𝐮𝐷
ℎ
= 𝟎 weakly. On the boundary Γ𝑁 , the weak gradi-

ent for 𝐮𝐷
ℎ
is obtained using the same manner in Definition 3.1. The 

boundary condition on Γ𝑁 changes the right hand side in (3.5a) to 
(𝐟 , 𝐯) + ⟨𝐬, 𝐯⟩Γ𝑁

.

Fig. 3 compares the errors of mEG and EG methods and shows a 
mesh refinement study for the mEG method with the mixed boundary 
conditions. The error comparison implies that the EG method requires a 
large penalty parameter to provide the desired accuracy. On the other 
hand, we confirm from Fig. 3 that the mEG method yields relatively 
smaller errors and guarantees first-order convergence without such a 
parameter.

Various meshes. We also conduct the penalty parameter-free test 
on various meshes presented in Fig. 4:

• Perturbed mesh: The uniform triangular mesh is randomly per-
turbed, so some very sharp triangles are generated. The veloc-
ity field and pressure in (6.5) are considered. The homogeneous 
boundary condition is applied.

• Square with hole: The computational domain is the unit 
square with a hole in the middle. An adaptive mesh is generated 
with triangles of different sizes to capture the circle in the middle. 
The velocity field and pressure in (6.5) are considered. The homo-
geneous boundary condition is applied on the outer square, but a 
non-homogeneous Dirichlet boundary condition occurs on the cir-
cle. For a non-homogeneous Dirichlet boundary condition (𝐮 = 𝐠
on 𝜕Ω), the EG velocity satisfies 𝐮ℎ = 𝐮𝐶

ℎ
+ 𝐮𝐷

ℎ
= 𝐠 on any 𝑒 ⊂ 𝜕Ω. 

We impose 𝐮𝐶
ℎ
= 𝐠 strongly, while applying 𝐮𝐷

ℎ
= 𝟎 weakly as in-

troduced in (6.6).
• L-shape: The computational domain is the L-shaped domain. The 
velocity field and pressure are chosen as
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Fig. 2. Comparison of the numerical solutions with ℎ = 1∕16 and 𝜈 = 1.

Fig. 3. The unit square domain with mixed boundary conditions (left), comparison of the mEG and EG methods’ errors for 𝜈 = 1 and ℎ = 1∕16 (middle), and a mesh 
refinement study for mEG with 𝜈 = 1 (right).
𝐮(𝑥, 𝑦) = (sin(𝜋𝑥) sin(𝜋𝑦), cos(𝜋𝑥) cos(𝜋𝑦)) and 𝑝(𝑥, 𝑦) = (𝑥2+𝑦2)−1∕3.

Due to the singularity of the pressure at the center, an adaptive 
mesh is generated with triangles of the same shape.

Fig. 4 shows the above meshes, the corresponding mesh qualities, 
and the errors of the EG and mEG methods. The mesh quality of a trian-
gle [36] is defined as the ratio of its area to the sum of the squares 
of its sides, which implies that the equilateral triangle has the best 
mesh quality 1 and sharper triangles are closer to 0. The EG method 
still requires large penalty parameters to achieve stable errors. More-
over, such large parameters depend on the meshes. Specifically, in the
Perturbed mesh, some bad-quality triangles cause an unexpected 
spike around 𝜌 = 3 in the velocity errors, making choosing a proper 
penalty parameter more difficult. In the L-shape with an adaptive 
mesh, the EG method’s pressure error tends to increase as 𝜌 gets larger 
after a minimum occurs. However, regardless of a penalty parameter, 
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the mEG method seems uniformly stable on all the given meshes. The
mEG method, even for a mesh with bad-quality triangles and adaptive 
meshes, has good performance. These numerical results confirm that 
the mEG method is a penalty parameter-free scheme.

6.1.2. Pressure-robust test
In this test, we verify the pressure robustness of the PR-mEGmethod. 

We solve the example problem (6.5) with varying 𝜈, from 10−1 to 10−6, 
to confirm the error behaviors expected in (6.3) and (6.4). The mesh 
size is fixed as ℎ = 1∕32. Fig. 5 shows the velocity errors ⦀𝐮 − 𝐮ℎ⦀
and pressure errors ‖0𝑝 − 𝑝ℎ‖0 of the mEG and PR-mEG methods. In 
Fig. 5, the mEG method produces the velocity errors proportional to 𝜈−1
because the second term ℎ𝜈−1‖𝑝‖1 of the error bound (6.3b) becomes 
dominant as 𝜈 gets smaller. Also, since the pressure error ‖0𝑝 −𝑝mEG

ℎ
‖0

is bounded by a dominant term ℎ‖𝑝‖1, the error remains the same. On 
the other hand, the PR-mEG method produces the same velocity errors 
regardless of 𝜈, and its pressure errors decrease in proportion to 𝜈. These 
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Fig. 4. Comparison of EG and mEG on various meshes (𝜈 = 1).

Fig. 5. Error profiles of the mEG and PR-mEG methods with varying 𝜈 values and a fixed mesh size ℎ = 1∕32.
numerical results support our theoretical error estimates related to the 
pressure robustness in (6.3) and (6.4).

Furthermore, we perform a mesh refinement study for the mEG and

PR-mEG methods with decreasing mesh size ℎ and fixed 𝜈 = 10−6. As 
shown in Table 2, both methods’ velocity and pressure errors decrease 
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in at least the first order of convergence, and the pressure errors look 
very similar in magnitude. However, even though the velocity errors 
for the mEG method decrease faster, the magnitude of the errors seems 
enormous. Thus, obtaining accurate numerical velocity from the mEG

method may not be possible unless ℎ is small enough. On the other 
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Table 2

A mesh refinement study for mEG and PR-mEG with 
varying mesh size ℎ and 𝜈 = 10−6.

mEG PR-mEG

ℎ ⦀𝐮− 𝐮mEG
ℎ

⦀ Order ⦀𝐮− 𝐮PR
ℎ
⦀ Order

1∕8 2.577e+5 - 9.727e-2 -

1∕16 9.097e+4 1.50 4.749e-2 1.03

1∕32 3.183e+4 1.52 2.339e-2 1.02

1∕64 1.116e+4 1.51 1.159e-2 1.01

ℎ ‖𝑝− 𝑝mEG
ℎ

‖0 Order ‖𝑝− 𝑝PR
ℎ
‖0 Order

1∕8 5.736e-1 - 4.802e-1 -

1∕16 2.694e-1 1.09 2.404e-1 1.00

1∕32 1.310e-1 1.04 1.203e-1 1.00

1∕64 6.464e-2 1.02 6.014e-2 1.00

Table 3

Each term computed in EG and mEG and the numbers of calculations with ℎ =
1∕70 (m: million).
EG 𝐚(𝐰,𝐯) # of cals 𝐛(𝐰,𝐯) # of cals

ℎ-terms (∇𝐰,∇𝐯)ℎ
150 m (∇ ⋅𝐰, 𝑞)ℎ

54 m

ℎ-terms ⟨{∇𝐰} ⋅ 𝐧𝑒, [𝐯]⟩ℎ
431 m ⟨[𝐰] ⋅ 𝐧𝑒,{𝑞}⟩ℎ

33 m

Penalty term 𝜌⟨ℎ−1
𝑒
[𝐰], [𝐯]⟩ℎ

17 m - -

mEG 𝐚𝑤(𝐰,𝐯) # of cals 𝐛𝑤(𝐰,𝐯) # of cals

Weak derivatives ∇𝑤𝐯 10 m ∇𝑤 ⋅ 𝐯 10 m

ℎ-terms (∇𝑤𝐰,∇𝑤𝐯)ℎ
397 m (∇𝑤 ⋅𝐰, 𝑞)ℎ

70 m

Penalty term ⟨ℎ−1
𝑒
[𝐰], [𝐯]⟩ℎ

17 m - -

hand, the PR-mEG method yields about a million times smaller velocity 
errors than the mEG method, which means that the PR-mEG method 
provides a significantly improved numerical velocity for the Stokes 
equations with small viscosity.

6.2. Three dimensional tests

We consider a 3D flow in a unit cube Ω = (0, 1)3. The velocity field 
and pressure are chosen as

𝐮 =
⎛⎜⎜⎝
sin(𝜋𝑥) cos(𝜋𝑦) − sin(𝜋𝑥) cos(𝜋𝑧)
sin(𝜋𝑦) cos(𝜋𝑧) − sin(𝜋𝑦) cos(𝜋𝑥)
sin(𝜋𝑧) cos(𝜋𝑥) − sin(𝜋𝑧) cos(𝜋𝑦)

⎞⎟⎟⎠ , 𝑝 = sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑧).

(6.7)

6.2.1. Low-cost test
In this 3D example, we compare the computational cost of the EG

and mEG methods. Table 3 displays each term that needs to be com-
puted in the two methods. In the EG method, we divide the bilinear 
forms into three parts, ℎ-terms, ℎ-terms, and penalty terms. Table 3
also shows how many calculations are involved when assembling the 
stiffness matrix with ℎ = 1∕70. For example, with 𝐯 = 𝐯𝐶 + 𝐯𝐷 implying 
[𝐯𝐶 ] = 0 and [𝐯𝐷] ≠ 0 on each 𝑒 ∈ ℎ, the penalty term is calculated as

𝜌⟨ℎ−1
𝑒
[𝐰𝐷], [𝐯𝐷]⟩ℎ

= 𝜌⟨ℎ−1
𝑒
[𝐱 − 𝐱𝑇± ], [𝐱 − 𝐱𝑇± ]⟩ℎ

when 𝑒 ∈ 𝜕𝑇 + ∩ 𝜕𝑇 − for each 𝑒 ∈ ℎ, yielding approximately (2 ×
2)|ℎ| ≈ 17 million calculations. Many calculations are generated if 𝐯𝐶

is involved in assembling the stiffness matrix, such as (∇𝐰𝐶, ∇𝐯𝐶 )ℎ
and ⟨{∇𝐰𝐶} ⋅ 𝐧𝑒, [𝐯𝐷]⟩ℎ

. This is because there are four barycentric coordi-
nates for each component of 𝐯𝐶 in 𝑇 ∈ ℎ. On the other hand, in the 
initial step of implementing the mEG method, a small amount of com-
putational cost is required to compute the weak gradient ∇𝑤𝐯𝐷 . From 
Remark 3.2, we recall the weak gradient ∇𝑤𝐯𝐷 locally determined by

(∇𝑤𝐯𝐷)𝑖,𝑗 =
𝑛𝑗 ⟨{𝐯𝐷}, 𝐞𝑖⟩𝜕𝑇 , 1 ≤ 𝑖, 𝑗 ≤ 3,
|𝑇 |

61
Table 4

A mesh refinement study for EG and mEG with varying mesh size ℎ and 𝜈 = 1
in the 3D case.

EG (𝜌 = 2) EG (𝜌 = 10) mEG

ℎ ‖𝐮− 𝐮EG
ℎ
‖ Order ‖𝐮− 𝐮EG

ℎ
‖ Order ⦀𝐮− 𝐮mEG

ℎ
⦀ Order

1∕4 2.518e+0 - 3.719e+0 - 2.284e+0 -

1∕8 1.228e+0 1.04 1.827e+0 1.03 1.121e+0 1.03

1∕16 6.052e-1 1.02 9.048e-1 1.01 5.552e-1 1.01

1∕32 3.007e-1 1.01 4.501e-1 1.01 2.764e-1 1.01

ℎ ‖𝑝− 𝑝EG
ℎ
‖0 Order ‖𝑝− 𝑝EG

ℎ
‖0 Order ‖𝑝− 𝑝mEG

ℎ
‖0 Order

1∕4 8.819e-1 - 8.377e+0 - 1.349e+0 -

1∕8 3.611e-1 1.29 3.600e+0 1.22 6.098e-1 1.15

1∕16 1.688e-1 1.10 1.670e+0 1.11 3.011e-1 1.02

1∕32 8.411e-2 1.00 8.312e-1 1.01 1.504e-1 1.00

where 𝑛𝑗 is the 𝑗-th component of 𝐧 and 𝐞𝑖 is the standard unit vec-
tor whose 𝑖-th component is 1. The surface integral is calculated by the 
one-point quadrature rule on each face because 𝐯𝐷|𝑇 is a linear vec-
tor function. Since each 𝑇 ∈ ℎ has four adjacent elements, five basis 
functions of 𝐯𝐷 (in 𝑇 and adjacent elements) imply a nonzero weak 
gradient in each 𝑇 . Thus, as shown in Table 3, (∇𝑤𝐰, ∇𝑤𝐯) yields more 
calculations than (∇𝐰, ∇𝐯).

Fig. 6 shows the comparison of |ℎ| and |ℎ|, the numbers of calcu-
lations, and the elapsed time to assemble the stiffness matrix. Since |ℎ|
is almost twice as many as |ℎ| and the EG method requires a lot of cal-
culations on 𝑒 ∈ ℎ, the total number of calculations in the EG method 
is larger than that in mEG method. When assembling the stiffness ma-
trix, we use the vectorization technique introduced in iFEM [35] and 
a MATLAB built-in function ‘sparse’ [37] to avoid large for loops (see 
[38] for details). The function ‘sparse’ uses inputs i, j, and v, where i is 
the information of rows, j is the information of columns, and v consists 
of the components of a matrix. Most of the elapsed time is spent call-
ing the function ‘sparse’, and the computational cost of ‘sparse’ depends 
on the number of calculations, i.e. the size of i. Thus, in Fig. 6, we 
see the similarity between the number of calculations and the elapsed 
time. In Fig. 6, the graph of the elapsed time shows that the compu-
tational cost in computing weak derivatives is low. Also, it requires a 
lower computational cost to assemble the stiffness matrix of the mEG
method. On the other hand, the computation of the ℎ-terms tends to 
require more time than ℎ-terms because the jump and average on the 
boundary are treated separately. For this reason, we conclude that the
mEG method has an advantage in assembling the stiffness matrix of the 
Stokes equations compared to the EG method.

6.2.2. Penalty parameter-free test
We compute the velocity and pressure errors and condition numbers 

in the EG method with different penalty parameters and compare them 
with the mEG method’s results. Fig. 7 clearly shows the need for a large 
penalty parameter for the EG method and the dependency of its errors 
on the parameters. On the other hand, the mEG method produces sta-
ble errors and condition numbers without such a large parameter. For 
comparison, we display velocity error plots and velocity errors of the
EG (𝜌 = 1, 2) and mEG methods in Fig. 8. The EG method with 𝜌 = 1
yields non-negligible velocity errors over the whole domain, but a large 
penalty parameter 𝜌 = 2 stabilizes such errors, implying a reliable nu-
merical velocity solution. On the other hand, the mEG method’s velocity 
error profile looks better than the EG method without tuning a penalty 
parameter.

In addition, we focus on the effect of large penalty parameters on 
the errors and condition numbers. In Fig. 7, the condition numbers of 
the EG method tend to increase with the parameters 𝜌, which causes 
increased velocity and pressure errors. To perform a quantitative com-
parison, we choose 𝜌 = 10 and 𝜌 = 2 based on the results in Fig. 7 and 
report the pressure and velocity errors of the two cases in Table 4. The 
pressure errors of the EG method with 𝜌 = 10 are ten times bigger than 
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Fig. 6. Comparison of |ℎ| and |ℎ| (left), the number of calculations involved in assembling the stiffness matrix (middle), and the elapsed time to assemble the 
stiffness matrix (right).

Fig. 7. Errors and condition numbers of mEG and EG for 0.5 ≤ 𝜌 ≤ 3 (𝜈 = 1, ℎ = 1∕4) in the 3D case.

Fig. 8. Velocity error plots and velocity errors of EG and mEG when ℎ = 1∕8 and 𝜈 = 1.
those with 𝜌 = 2, even though their pressure errors decrease in the same 
order. Thus, in practice, a penalty parameter 𝜌 cannot be chosen too 
large due to this accuracy issue. It may also be challenging to select 
a proper 𝜌 because it varies with meshes. On the other hand, for the
mEG method, the convergence orders of the velocity and pressure errors 
are at least first-order, and the mEG method yields smaller velocity er-
rors than the EG method with 𝜌 = 2. Therefore, with the mEG method, 
we can always achieve reliable performance without tuning a penalty 
parameter, making the simulation lower-cost.
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6.2.3. Pressure-robust test
To verify pressure robustness in the three-dimensional example 

(6.7), we consider the pattern of the error behaviors obtained from the
mEG and PR-mEG methods when 𝜈 varies with ℎ = 1∕16. Fig. 9 shows 
the same error behaviors as those in the two-dimensional pressure-
robust test. For the mEG method, the velocity errors are inversely pro-
portional to 𝜈 while the pressure errors tend to stay constant. On the 
other hand, for the PR-mEG method, the velocity errors seem indepen-
dent of 𝜈, and the pressure errors decrease in proportion to 𝜈.
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Fig. 9. Error profiles of the mEG and PR-mEG methods with varying 𝜈 values and a fixed mesh size ℎ = 1∕16 in the 3D case.

Fig. 10. Streamlines and magnitudes of the 3D numerical velocity when ℎ = 1∕8 and 𝜈 = 10−6.
Furthermore, Fig. 10 shows the streamlines of the numerical velocity 
solutions of the mEG and PR-mEG methods when ℎ = 1∕8 and 𝜈 = 10−6. 
In this case, the velocity error of the mEG method is 1.014e+4, while 
that of the PR-mEG method is 1.122e+0. As shown in Fig. 10, the nu-
merical velocity of the PR-mEG method well captures the 3D vortex 
flow, while that of the mEG method cannot do so.

7. Conclusion

This paper proposes a low-cost, penalty parameter-free, and pressure-
robust Stokes solver based on the EG method operating with minimal 
degrees of freedom. The weak derivatives, computed by the geomet-
ric data of elements, allowed the EG method to be free of penalty 
parameters and some IPDG trace terms. With reduced computational 
complexity, the modified EG method preserved the minimal degrees 
of freedom and the optimal orders of convergence in the EG method. 
Such features in parameter-free schemes can be used to resolve the 
computational difficulties in tuning penalty parameters of DG schemes 
for heterogeneous coefficients, anisotropic problems, moving meshes, 
and time-dependent problems. Furthermore, the simple modification on 
the right-hand side achieved pressure robustness for the modified EG 
method. We also confirmed the improved theoretical results through 
numerical tests with two- and three-dimensional examples. The idea 
of using weak derivatives can be applied to enhance other numeri-
cal schemes employing the symmetric IPDG formulation. Extending 
the concept to numerical methods for the biharmonic equation will be 
one of our future research directions. We expect that the weak deriva-
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tives corresponding to the biharmonic equation provide significant 
computational advantages in numerically solving application problems 
involving the biharmonic equation.
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