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Abstract
This paper presents a pressure-robust enriched Galerkin (EG) method for the Brinkman
equations with minimal degrees of freedom based on EG velocity and pressure spaces. The
velocity space consists of linear Lagrange polynomials enriched by a discontinuous, piece-
wise linear, and mean-zero vector function per element, while piecewise constant functions
approximate the pressure. Since the Brinkman equations can be seen as a combination of
the Stokes and Darcy equations, different conformities of finite element spaces are required
depending on viscous parameters, making it challenging to develop a robust numerical solver
uniformly performing for all viscous parameters. Therefore, we propose a pressure-robust
method by utilizing a velocity reconstruction operator and replacing EG velocity functions
with a reconstructed velocity. The robust method leads to error estimates independent of a
pressure term and shows uniform performance for all viscous parameters, preserving min-
imal degrees of freedom. We prove well-posedness and error estimates for the robust EG
method while comparing it with a standard EG method requiring an impractical mesh con-
dition. We finally confirm theoretical results through numerical experiments with two- and
three-dimensional examples and compare the methods’ performance to support the need for
our robust method.
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1 Introduction

We consider the stationary Brinkman equations in a bounded domain Ω ⊂ R
d for d = 2, 3

with simply connected Lipschitz boundary ∂Ω . The Brinkman equations describe fluid flow
in porous media characterized by interconnected pores that allow for the flow of fluids,
considering both the viscous forces within the fluid and the resistance from the porous media.
The Brinkman equations provide a mathematical framework for studying and modeling
complex phenomena such as groundwater flow, multiphase flow in oil reservoirs, blood flow
in biological tissues, and pollutant transport in porous media. In this paper, for simplicity,
we consider the scaled Brinkman equations for fluid velocity u : Ω → R

d and pressure
p : Ω → R,

−νΔu + u + ∇ p = f in Ω, (1.1a)

∇ · u = 0 in Ω, (1.1b)

u = 0 on ∂Ω, (1.1c)

where ν ∈ [0, 1] is a viscous parameter. Mathematically, the Brinkman equations can be seen
as a combination of the Stokes and Darcy equations. When ν → 1, the Brinkman equations
approach a Stokes regime affected by the viscous forces, so standard mixed formulations
require the H1-conformity for velocity. On the other hand, since the Darcy model becomes
more prominent as ν → 0, finite-dimensional spaces for velocity are forced to satisfy the
H(div)-conformity. This compatibility in velocity spaces makes it challenging to construct
robust numerical solvers for the Brinkman equations in both the Stokes and Darcy regimes.
The numerical tests in [10, 18] show that standard mixed methods with well-known inf-sup
stable Stokes elements, such as MINI and Taylor-Hood elements, produce suboptimal orders
of convergence in the Darcy regime. Moreover, with piecewise constant approximations
for pressure, the standard methods’ velocity errors do not converge in the Darcy regime,
while mesh size decreases. On the other hand, Darcy elements such as Raviart-Thomas and
Brezzi–Douglas–Marini do not work for the Stokes regime because they do not satisfy the
H1-conformity. Therefore, the development of robust numerical solvers for the Brinkman
equations has had considerable attention.

There have been three major categories in developing robust numerical methods for the
Brinkman equations. The first category considers Stokes/Darcy elements and adds stabi-
lization (or penalty) terms or degrees of freedom to impose normal/tangential continuity,
respectively. This approach allows Stokes elements to cover the Darcy regime [3, 21] or
H(div)-conforming finite elements to be extended to the Stokes regime [14–16, 21]. Also,
the stabilizedmethod in [2] coarsens a pressure space and applies a stabilization term on pres-
sure, while the robust method in [18] uses an enlarged velocity space. The second approach
is to introduce another meaningful unknown and define its suitable formulation and finite-
dimensional space, such as velocity gradient [7, 9, 11, 24], vorticity [1, 5, 20], pseudostress
[8], and Lagrangemultipliers at elements’ boundaries [13]. The third direction is the develop-
ment of a velocity reconstruction operator, first introduced in [17], mapping Stokes elements
into an H(div)-conforming space. In a discrete problem for the Brinkman equations, recon-
structed velocity functions replace Stokes elements in the Darcy term and the test function
on the right-hand side. This idea has been adopted for a uniformly robust weak Galerkin
method for the Brinkman equations [19], which inspires our work because of its simplicity
in modification.

The enriched Galerkin (EG) velocity and pressure spaces have been proposed by [22,
23] for solving the Stokes equations with minimal degrees of freedom, keeping local mass
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conservation. The velocity space consists of linear Lagrange polynomials enriched by a
discontinuous, piecewise linear, and mean-zero vector function per element, while piecewise
constant functions approximate the pressure.More precisely, a velocity function v = vC+vD

consists of a continuous linear Lagrange polynomial vC and a discontinuous piecewise linear
enrichment function vD , so interior penalty discontinuous Galerkin (IPDG) formulations are
adopted to remedy the discontinuity of vD . These velocity and pressure spaces satisfy the
inf-sup condition for the Stokes equations, so they are stable Stokes elements.

Our research focuses on developing a robust numericalmethod for theBrinkman equations
using the EG velocity and pressure spaces with minimal degrees of freedom. Since the EG
spaces are stable Stokes elements, simply adding theDarcy term (u, v)Ω to the Stokes discrete
problem in [22] only works for the Brinkman equations in the Stokes regime. However, such
a standard approach fails to produce accurate velocity solutions in the Darcy regime despite
decreasing mesh size before resolving a mesh size condition, h <

√
ν, impractical in the

Darcy regime. Hence, to develop a robust EGmethod, we employ the velocity reconstruction
operator [12] (inspired by [17]) to map the EG velocity to the first-order Brezzi–Douglas–
Marini space, whose consequent action is preserving the continuous component vC and
mapping only the discontinuous component vD to the lowest-order Raviart-Thomas space.
Compared to the Stokes solver in [12] modifying only the right-hand side, we replace the EG
velocities in the Darcy term and on the right-hand side with the reconstructed linear H(div)-
conforming velocity. Therefore, with this simple modification, our resulting EG method
yields pressure-robust error estimates and shows uniform performance from the Stokes to
Darcy regime (including ν = 0) without any restriction in mesh size. Through two- and
three-dimensional examples, we compare the numerical performance of the standard and
robust EG methods with the viscous parameter ν ∈ [0, 1] and mesh size h, emphasizing the
robust EG method’s uniform performance in solving the Brinkman equations. Compared to
the existing numerical solvers for Brinkman-Darcy coupled problems with sharp interface,
our method considers one governing equation in the whole domain using variable viscosity or
permeability without requiring appropriate numerical schemes in different subdomains. The
challenge in the sharp interface setting may need advanced finite element functions/schemes
and different analysis techniques in error estimates. Our robust method can overcome such
difficulties by implementing the Brinkman equations uniformly.

The remaining sections of this paper are structured as follows: Some important notations
and definitions are introduced in Sect. 2. In Sect. 3, we present the standard and robust EG
methods for the Brinkman equations, recalling the EG velocity and pressure spaces [22] and
the velocity reconstruction operator [12]. We prove the well-posedness and error estimates
of the EG methods in Sect. 4, verifying the uniform performance of the robust method from
the Stokes to Darcy regimes. Section5 validates our theoretical results through numerical
experiments in two and three dimensions. Finally, we summarize our contribution in this
paper and discuss related future research in Sect. 6.

2 Preliminaries

In this section, we introduce some notations and definitions used in this paper. For a bounded
Lipschitz domain D ∈ R

d , where d = 2, 3, we denote the Sobolev space as Hs(D) for a
real number s ≥ 0. Its norm and seminorm are denoted by ‖ · ‖s,D and | · |s,D, respectively.
The space H0(D) coincides with L2(D), and the L2-inner product is denoted by (·, ·)D .
When D = Ω , the subscript D will be omitted. This notation is generalized to vector- and
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tensor-valued Sobolev spaces. The notation H1
0 (D) means the space of v ∈ H1(D) such

that v = 0 on ∂D, and L2
0(D) means the space of v ∈ L2(D) such that (v, 1)D = 0. The

polynomial spaces of degree less than or equal to k are denoted as Pk(D). We also introduce
the Hilbert space

H(div,D) := {v ∈ [L2(D)]d : div v ∈ L2(D)}
with the norm

‖v‖2H(div,D) := ‖v‖20,D + ‖div v‖20,D.

For discrete setting, we assume that there exists a shape-regular triangulation Th of Ω

whose elements T ∈ Th are triangles in two dimensions and tetrahedrons in three dimensions.
Also, Eh denotes the collection of all edges/faces in Th , and Eh = Eo

h ∪ Eb
h , where E

o
h is the

collection of all the interior edges/faces and Eb
h is that of the boundary edges/faces. For each

element T ∈ Th , let hT denote the diameter of T and nT denote the outward unit normal
vector on ∂T . For each interior edge/face e ∈ Eo

h shared by two adjacent elements T+ and
T−, we let ne be the unit normal vector from T+ to T−. For each e ∈ Eb

h , ne denotes the
outward unit normal vector on ∂Ω . In a triangulation Th , the broken Sobolev space is defined
as

Hs(Th) := {v ∈ L2(Ω) : v|T ∈ Hs(T ), ∀T ∈ Th},
equipped with the norm

‖v‖s,Th :=
⎛
⎝ ∑

T∈Th

‖v‖2s,T
⎞
⎠

1/2

.

When s = 0, the L2-inner product on Th is denoted by (·, ·)Th . Also, the L2-inner product
on Eh is denoted as 〈·, ·〉Eh , and the L2-norm on Eh is defined as

‖v‖0,Eh :=
⎛
⎝∑

e∈Eh
‖v‖20,e

⎞
⎠

1/2

.

The piecewise polynomial space corresponding to the broken Sobolev space is defined as

Pk(Th) = {v ∈ L2(Ω) : v|T ∈ Pk(T ), ∀T ∈ Th}.
In addition, the jump and average of v on e ∈ Eh are defined as

[v] :=
{

v+ − v− on e ∈ Eo
h ,

v on e ∈ Eb
h ,

{v} :=
{

(v+ + v−)/2 on e ∈ Eo
h ,

v on e ∈ Eb
h ,

where v± is the trace of v|T± on e ∈ ∂T+∩∂T−. These definitions are extended to vector- and
tensor-valued functions. We finally introduce the trace inequality that holds for any function
v ∈ H1(T ),

‖v‖20,e ≤ C
(
h−1
T ‖v‖20,T + hT ‖∇v‖20,T

)
. (2.1)

3 Enriched Galerkin Methods for the Brinkman Equations

Wefirst introduce the enrichedGalerkin (EG) finite-dimensional velocity and pressure spaces
[22]. The space of continuous components for velocity is

Ch = {vC ∈ [H1
0 (Ω)]d : vC |T ∈ [P1(T )]d , ∀T ∈ Th}.
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The space of discontinuous components for velocity is defined as

Dh = {vD ∈ L2(Ω) : vD|T = c(x − xT ), c ∈ R, ∀T ∈ Th},
where xT is the barycenter of T ∈ Th . Thus, the EG finite-dimensional velocity space is
defined as

Vh := Ch ⊕ Dh .

We note that any function v ∈ Vh consists of unique continuous and discontinuous compo-
nents, v = vC + vD for vC ∈ Ch and vD ∈ Dh . At the same time, the EG pressure space
is

Qh := {q ∈ L2
0(Ω) : q|T ∈ P0(T ), ∀T ∈ Th}.

Therefore, we formulate a standard EG method for the Brinkman equations with the pair of
the EG spaces Vh × Qh by adding the Darcy term to the Stokes formulation [22].

Algorithm 1 Standard enriched Galerkin (ST-EG) method
Find (uh , ph) ∈ Vh × Qh such that

νa(uh , v) + c(uh , v) − b(v, ph) = (f, v) ∀v ∈ Vh , (3.1a)
b(uh , q) = 0 ∀q ∈ Qh , (3.1b)

where

a(v,w) := (∇v, ∇w)Th − 〈{∇v}ne, [w]〉Eh (3.2a)

− 〈{∇w}ne, [v]〉Eh + ρ〈h−1
e [v], [w]〉Eh ,

c(v,w) := (v,w)Th , (3.2b)

b(w, q) := (∇ · w, q)Th − 〈[w] · ne, {q}〉Eh . (3.2c)

In this case, ρ > 0 is a penalty parameter, and he = |e|1/(d−1), where |e| is the length/area of the edge/face
e ∈ Eh .

Remark 1 Since the enriched functions in Dh contain discontinuity, Algorithm 1 employs
interior penalty discontinuous Galerkin (IPDG) formulations for well-posedness. The sym-
metric, non-symmetric, and incomplete IPDG methods can be applied under suitable
assumptions of ρ, as discussed in [21]. For simplicity, we only consider the symmetric
IPDG formulation because we can easily extend the symmetric method’s results to the other
IPDGmethods. On the other hand, for the cases with small ν (� 1), the ST-EGmethod fails
to produce stable and accurate velocity solutions unless mesh size satisfies the impractical
condition h <

√
ν. For this reason, we will improve it by imposing a velocity reconstruction

operator.

We develop a pressure-robust EG method for the Brinkman equations with any value
of ν ∈ [0, 1]. First, the velocity reconstruction operator [12] is defined as R : Vh →
BDM1(Th) ⊂ H(div,Ω) such that

∫
e
(Rv) · ne p1 ds =

∫
e
{v} · ne p1 ds, ∀p1 ∈ P1(e), ∀e ∈ Eo

h , (3.3a)
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∫
e
(Rv) · ne p1 ds = 0, ∀p1 ∈ P1(e), ∀e ∈ Eb

h , (3.3b)

where BDM1(Th) is the Brezzi–Douglas–Marini space of index 1 on Th . Then, we propose
the pressure-robust EG method as follows.

Algorithm 2 Pressure-robust enriched Galerkin (PR-EG) method
Find (uh , ph) ∈ Vh × Qh such that

νa(uh , v) + c̃(uh , v) − b(v, ph) = (f,Rv) ∀v ∈ Vh , (3.4a)
b(uh , q) = 0 ∀q ∈ Qh , (3.4b)

where a(v,w) and b(v,w) are defined in (3.2a) and (3.2c), respectively, and

c̃(v,w) := (Rv,Rw)Th . (3.5)

Remark 2 Using the velocity reconstruction operatorR, we force discrete velocity functions
inVh to be H(div)-conforming. We replace the velocity functions in the Darcy bilinear form
(v,w)Th in (3.2b) and on the right-hand side with the reconstructed velocity Rv. Thus, as
ν → 0, the term (Rv,Rw)Th with the H(div)-conforming velocity dominates the PR-EG
formulation in Algorithm 2. This modification leads to stable and accurate velocity and
pressure solutions with any ν ∈ [0, 1], demonstrated by the optimal convergence orders in
error analysis in Sect. 4 and numerical experiments in Sect. 5.

4 Well-Posedness and Error Analysis

In this section, we show well-posedness and error estimates for both ST-EG and PR-EG
methods, focusing more on the PR-EG method’s analysis. The error estimates demonstrate
that:

– ThePR-EGmethod’s velocity and pressure errors decrease in the optimal order of conver-
gence in both the Stokes and Darcy regimes, so we expect stable and accurate numerical
solutions with any ν ≥ 0 as h decreases.

– TheST-EGmethod’s errors converge in the first orderwith h under the condition h <
√

ν

impractical in the Darcy regime, highlighting the need for the PR-EG method.

We first introduce the discrete H1-norm in [22] for all v ∈ [H1
0 (Ω)]d ,

‖v‖2E := ‖∇v‖20,Th
+ ρ‖h−1/2

e [v]‖20,Eh ,
where ρ is a penalty parameter. With this norm, the coercivity and continuity results for the
bilinear form a(·, ·) have been proved in [22]: For a sufficiently large penalty parameter ρ,
there exist positive constants κ1 and κ2 independent of ν and h such that

a(v, v) ≥ κ1‖v‖2E ∀v ∈ Vh, (4.1)

|a(v,w)| ≤ κ2‖v‖E‖w‖E ∀v,w ∈ Vh . (4.2)

Then, we define an energy norm for Brinkman problems involving the discrete H1-norm and
L2-norm,

|||v|||2 := ν‖v‖2E + ‖v‖20.
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The following lemma shows an essential norm equivalence between ||| · ||| and ‖·‖E scaled
by ν and h.

Lemma 1 For given ν and h, we define a positive constant Cne (Norm Equivalence) as

Cne := C
√

ν + h2,

where C is a generic positive constant independent of ν and h. Then, the following norm
equivalence holds: For any v ∈ Vh, we have

√
ν‖v‖E ≤

√
ν + c1h2‖v‖E ≤ |||v||| ≤ Cne‖v‖E , (4.3)

for some small 0 < c1 < 1. Moreover, the constant Cne is bounded as

Cne ≤ C(
√

ν + h) (4.4)

for some generic constant C > 0.

Proof We observe each term in the energy norm

|||v|||2 = ν‖v‖2E + ‖v‖20.
Since v|T is a linear polynomial in the second term, a scaling argument implies

‖v‖0 ≤ Ch‖∇v‖0,Th ≤ Ch‖v‖E .

Thus, we obtain
|||v|||2 ≤ C

(
ν + h2

) ‖v‖2E .

On the other hand, the inverse and trace inequalities lead to

‖v‖2E ≤ Ch−2‖v‖20,
where C contains ρ1. In this case, we assume C > 1 and set c1 := 1/C , so

(ν + c1h
2)‖v‖2E ≤ |||v|||2.

��
Let us introduce the interpolation operator in [23] Πh : [H2(Ω)]d → Vh defined by

Πhw = ΠC
h w + ΠD

h w,

where ΠC
h w ∈ Ch is the nodal value interpolant of w and ΠD

h w ∈ Dh satisfies
(∇ · ΠD

h w, 1)T = (∇ · (w − ΠC
h w), 1)T for all T ∈ Th . The following interpolation error

estimates and stability [23] are used throughout our numerical analysis:

|w − Πhw| j,Th ≤ Chm− j |w|m, 0 ≤ j ≤ m ≤ 2, ∀w ∈ [H2(Ω)]d , (4.5a)

‖w − Πhw‖E ≤ Ch‖w‖2, ∀w ∈ [H2(Ω)]d , (4.5b)

‖Πhw‖E ≤ C |w|1, ∀w ∈ [H1
0 (Ω)]d . (4.5c)

For the pressure, we introduce the local L2-projection P0 : H1(Ω) → Qh such that (q −
P0q, 1)T = 0 for all T ∈ Th . Its interpolation error estimate is given as,

‖q − P0q‖0 ≤ Ch‖q‖1, ∀q ∈ H1(Ω). (4.6)
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The operator R defined in (3.3) has the following interpolation error estimate [12]:

‖v − Rv‖0 ≤ Ch‖h−1/2
e [v]‖0,Eh ≤ Ch‖v‖E , ∀v ∈ Vh, (4.7)

where C is a positive constant independent of ν and h.
The interpolation error estimate (4.7) allows to have a lower bound of |||v||| with another

energy norm

|||v|||2R := ν‖v‖2E + ‖Rv‖20
obtained by replacing ‖v‖0 in |||v||| with ‖Rv‖0.
Lemma 2 For any v ∈ Vh, it holds

|||v|||R ≤ c∗|||v|||, (4.8)

where c∗ is a positive constant independent of ν and h.

Proof It follows from (4.7) and Lemma 1 that

ν‖v‖2E + ‖Rv‖20 ≤ C
(
ν‖v‖2E + c1h

2‖v‖2E + ‖v‖20
) ≤ C |||v|||2.

��

4.1 Well-Posedness of the PR-EGMethod

We first prove the coercivity and continuity results concerning the energy norm ||| · |||R.

Lemma 3 For any v,w ∈ Vh, we have the coercivity and continuity results:

νa(v, v) + c̃(v, v) ≥ K1|||v|||2R, (4.9)

|νa(v,w) + c̃(v,w)| ≤ K2|||v|||R|||w|||R, (4.10)

where K1 = min(κ1, 1) and K2 = max(κ2, 1). The constants κ1 and κ2 are defined in (4.1)
and (4.2), respectively.

Proof If we observe the bilinear forms a(·, ·) and c̃(·, ·) and use the coercivity (4.1), then we
have

νa(v, v) + c̃(v, v) ≥ κ1ν‖v‖2E + ‖Rv‖20
≥ min(κ1, 1)|||v|||2R.

Moreover, it follows from the Cauchy–Schwarz inequality and the continuity (4.2) that

|νa(v,w) + c̃(v,w)| ≤ κ2ν‖v‖E‖w‖E + ‖Rv‖0‖Rw‖0
≤ max(κ2, 1)|||v|||R|||w|||R.

��
Next, we prove the discrete inf-sup condition for the problem (3.4) in Algorithm 2.

Lemma 4 Assume that the penalty parameter ρ1 is sufficiently large. Then, there exists a
positive constant C1 := Cis/(c∗Cne) such that

inf
q∈Qh

sup
v∈Vh

b(v, q)

|||v|||R‖q‖0 ≥ C1, (4.11)

where Cis > 0 (Inf-Sup), independent of ν and h, is the constant for the discrete inf-sup
condition in [22]. The constants Cne and c∗ are defined in Lemmas 1 and 2, respectively.
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Proof We first recall the results of discrete inf-sup condition in [22]: For any q ∈ Qh ⊂
L2
0(Ω), there exist a vector v ∈ [H1

0 (Ω)]d and a constant Cis > 0 independent of h and ν

such that

Cis‖q‖0 ≤ b(Πhv, q)

‖Πhv‖E .

Thus, by the upper and lower bounds of |||v||| in (4.3) and (4.8), we obtain

Cis‖q‖0 ≤ Cne
b(Πhv, q)

|||Πhv||| ≤ c∗Cne
b(Πhv, q)

|||Πhv|||R
.

��
Therefore, we obtain the well-posedness of the PR-EG method in Algorithm 2.

Theorem 1 There exists a unique solution (uh, ph) ∈ Vh × Qh to the PR-EG method.

Proof It suffices to show that uh = 0 and ph = 0 when f = 0 because Vh and Qh are
finite-dimensional spaces. Choosing v = uh in (3.4a) and q = ph in (3.4b) and adding the
two equations imply νa(uh,uh) + c̃(uh,uh) = 0. Hence, |||uh |||R = 0 by (4.9), so uh = 0.
If uh = 0 in (3.4), then b(v, ph) = 0 for all v ∈ Vh . Therefore, the inf-sup condition (4.11)
yields ‖ph‖0 = 0, so ph = 0. ��
Remark 3 Most of the results for the well-posedness of the ST-EG method in Algorithm 1
are similar to those of the PR-EG method. Thus, we omit the details here.

4.2 Error Estimates for the PR-EGMethod

Let (u, p) ∈ [H1
0 (Ω) ∩ H2(Ω)]d × [L2

0(Ω) ∩ H1(Ω)] be the solution to (1.1a)–(1.1c). We
define the error functions used in the error estimates

χh := u − Πhu, eh := Πhu − uh, ξh := p − P0 p, εh := P0 p − ph .

First, we derive error equations in the following lemma.

Lemma 5 For any v ∈ Vh and q ∈ Qh, we have

νa(eh, v) + c̃(eh, v) − b(v, εh) = l1(u, v) + l2(u, v) + l3(u, v), (4.12a)

b(eh, q) = −b(χh, q), (4.12b)

where the supplemental bilinear forms are defined as follows:

l1(u, v) := νa(Πhu − u, v),

l2(u, v) := ν(Δu,Rv − v)Th ,

l3(u, v) := (RΠhu − u,Rv)Th .

Proof Since −(Δu, v)Th = a(u, v) for any v ∈ Vh from [22], we have

−ν(Δu,Rv)Th = −ν(Δu, v)Th − ν(Δu,Rv − v)Th

= νa(u, v) − ν(Δu,Rv − v)Th

= νa(Πhu, v) − νa(Πhu − u, v) − ν(Δu,Rv − v)Th .

By the definition of c̃(·, ·), we also have

(u,Rv)Th = c̃(Πhu, v) − (RΠhu − u,Rv)Th .
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SinceRv · nT is continuous on ∂T and ∇ · Rv is constant in T , integration by parts implies

(∇ p,Rv)Th = −b(v,P0 p).

Hence, we obtain the following equation from (1.1a),

νa(Πhu, v) + c̃(Πhu, v) − b(v,P0 p) =
(f,Rv) + l1(u, v) + l2(u, v) + l3(u, v).

If we compare this equation with (3.4a) in the PR-EG method, we arrive at

νa(eh, v) + c̃(eh, v) − b(v, εh) = l1(u, v) + l2(u, v) + l3(u, v).

For the second equation (4.12b), the continuity of u and (3.4b) in the PR-EG method lead
us to

(∇ · u, q)Th = b(u, q) = 0 = b(uh, q).

��
We present estimates for the supplementary bilinear forms defined in Lemma 5.

Lemma 6 Assume that w ∈ [H2(Ω)]d and v ∈ Vh. Then, we have

|l1(w, v)| ≤ C
√

νh‖w‖2|||v|||R, (4.13a)

|l2(w, v)| ≤ C
√

νh‖w‖2|||v|||R, (4.13b)

|l3(w, v)| ≤ Ch‖w‖2|||v|||R, (4.13c)

where C is a generic positive constant independent of ν and h and may vary in each case.

Proof It follows from (4.2) and (4.5b) that

|l1(w, v)| = |νa(Πhw − w, v)|
≤ νκ2‖Πhw − w‖E‖v‖E
≤ Cνh‖w‖2‖v‖E
≤ C

√
νh‖w‖2|||v|||R.

On the other hand, the Cauchy–Schwarz inequality and (4.7) lead to

|l2(w, v)| = ∣∣ν(Δw,Rv − v)Th

∣∣
≤ ν‖w‖2‖Rv − v‖0
≤ Cνh‖w‖2‖v‖E
≤ C

√
νh‖w‖2|||v|||R.

Using the Cauchy–Schwarz inequality, (4.7), (4.5c), (4.5a), and (4.8), we get the following
upper bounds,

|l3(w, v)| = ∣∣(RΠhw − w,Rv)Th

∣∣
≤ ∣∣(RΠhw − Πhw,Rv)Th

∣∣ + ∣∣(Πhw − w,Rv)Th

∣∣
≤ Ch‖Πhw‖E‖Rv‖0 + ‖Πhw − w‖0‖Rv‖0
≤ Ch|w|1|||v|||R.

��
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In addition, we expand the continuity of b(·, ·) in [22] to be relevant to the error equations
(4.12) because χh = u − Πhu /∈ Vh and ξh = p − P0 p /∈ Qh .

Lemma 7 For any v ∈ Vh and q ∈ Qh, we have

|b(v, ξh)| ≤ Ch‖p‖1‖v‖E , (4.14a)

|b(χh, q)| ≤ Ch‖q‖0‖u‖2, (4.14b)

where C is a generic positive constant independent of ν and h and may vary in each case.

Proof First, we use the Cauchy–Schwarz inequality to get

|b(v, ξh)| = |(∇ · v, ξh)Th − 〈[v] · ne, {ξh}〉Eh |
≤ C

(
‖∇v‖0,Th‖ξh‖0 + ‖h−1/2

e [v]‖0,Eh‖h1/2e {ξh}‖0,Eh
)

.

Then, the trace term is bounded by using the trace inequality (2.1) and interpolation error
estimate (4.6),

‖h1/2e {ξh}‖20,Eh ≤ C
(‖ξh‖20 + h2‖∇ξh‖20,Th

) ≤ Ch2‖p‖21
because ∇ξh = ∇(p − P0 p) = ∇ p. Hence, the definition of the discrete H1-norm and
estimate (4.6) imply

|b(v, ξh)| ≤ Ch‖p‖1‖v‖E .

Similarly, it follows from the Cauchy–Schwarz inequality, trace inequality (2.1), and (4.5b)
that

|b(χh, q)| ≤ C
(
‖∇χh‖0,Th‖q‖0 + ‖h−1/2

e [χh]‖0,Eh‖h1/2e {q}‖0,Eh
)

≤ C‖q‖0‖χh‖E ≤ Ch‖q‖0‖u‖2.
��

Therefore, we prove error estimates of the PR-EG method in Algorithm 2.

Theorem 2 Let (u, p) ∈ [H1
0 (Ω)∩ H2(Ω)]d ×[L2

0(Ω)∩ H1(Ω)] be the solution to (1.1a)–
(1.1c), and (uh, ph) ∈ Vh × Qh be the discrete solution from the PR-EG method. Then, we
have the following pressure-robust error estimates

|||Πhu − uh |||R ≤ Ch(
√

ν + 1)‖u‖2,
‖P0 p − ph‖0 ≤ Ch(ν + √

ν)‖u‖2 + Ch2‖u‖2.
Proof We start with the error equation (4.12a),

b(v, εh) = νa(eh, v) + c̃(eh, v) − l1(u, v) − l2(u, v) − l3(u, v).

Then, it follows from (4.10) and (4.13) that

b(v, εh) ≤ C
(|||eh |||R + √

νh‖u‖2 + h‖u‖2
) |||v|||R.

From the inf-sup condition (4.11) with (4.4), we obtain

‖εh‖0 ≤ C(
√

ν + h)
(|||eh |||R + √

νh‖u‖2 + h‖u‖2
)
. (4.15)

We also choose v = eh and q = εh in (4.12) and substitute (4.12b) into (4.12a) to get

νa(eh, eh) + c̃(eh, eh) = −b(χh, εh) + l1(u, eh) + l2(u, eh) + l3(u, eh).
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Here, it follows from (4.14b) that

|b(χh, εh)| ≤ Ch‖u‖2‖εh‖0. (4.16)

Therefore, from (4.9), (4.13), and (4.16), we have

|||eh |||2R ≤ C
(
h‖u‖2‖εh‖0 + √

νh‖u‖2|||eh |||R + h‖u‖2|||eh |||R
)
.

We also replace ‖εh‖0 by its upper bound in (4.15) omitting high-order terms,

|||eh |||2R ≤ C
(√

νh‖u‖2|||eh |||R + h‖u‖2|||eh |||R + νh2‖u‖22
)
.

In this case, the Young’s inequality gives

√
νh‖u‖2|||eh |||R ≤ νh2

2α
‖u‖22 + α

2
|||eh |||2R,

h‖u‖2|||eh |||R ≤ h2

2α
‖u‖22 + α

2
|||eh |||2R.

Therefore, it follows from choosing a proper α that

|||eh |||2R ≤ Ch2(ν + 1)‖u‖22,
which implies that

|||eh |||R ≤ Ch(
√

ν + 1)‖u‖2.
If we apply this estimate to (4.15), then we obtain

‖εh‖0 ≤ Ch(ν + √
ν)‖u‖2 + Ch2‖u‖2.

��
Remark 4 We emphasize that the error bounds in Theorem 2 are pressure-robust and have no
detrimental effect from small ν.With ν → 0, the PR-EGmethod’s velocity errors decrease in
the optimal order, and pressure errors do in the second order (superconvergence is expected).
This result implies that the PR-EG method produces stable and accurate solutions to the
Brinkman equations in the Darcy regime.

In addition, we prove total error estimates showing the optimal orders of convergence in
velocity and pressure.

Theorem 3 Under the same assumption of Theorem 2, we have the following error estimates

|||u − uh |||R ≤ Ch(
√

ν + 1)‖u‖2,
‖p − ph‖0 ≤ Ch

(
(ν + √

ν)‖u‖2 + ‖p‖1
)
.

Proof We recall χh = u − Πhu and observe the energy norm,

|||χh |||2R = ν‖χh‖2E + ‖Rχh‖20.
Then, it follows from the triangle inequality, Theorem 3.1 in [6], (4.7), (4.5c), and (4.5a) that

‖Rχh‖0 ≤ ‖Rχh − χh‖0 + ‖χh‖0
≤ ‖Ru − u‖0 + ‖RΠhu − Πhu‖0 + ‖χh‖0
≤ Ch‖u‖1
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Hence, since ‖χh‖E ≤ Ch‖u‖2 from (4.5b), the error bound is

|||χh |||R ≤ Ch
(√

ν + 1
) ‖u‖2.

Furthermore, the pressure error estimate is readily proved by the triangle inequality and
interpolation error estimate (4.6). ��

In conclusion, the proposed PR-EG method solves the Brinkman equations in both the
Stokes and Darcy regimes, having the optimal order of convergence for both velocity and
pressure.

4.3 Error Estimates for the ST-EGMethod

For comparison, we present error estimates of the ST-EG method in Algorithm 1.

Theorem 4 Let (u, p) ∈ [H1
0 (Ω)∩ H2(Ω)]d ×[L2

0(Ω)∩ H1(Ω)] be the solution to (1.1a)–
(1.1c), and (uh, ph) ∈ Vh × Qh be the discrete solution from the ST-EG method. Then, we
have the following error estimates

|||Πhu − uh ||| ≤ C

[
(
√

ν + 1)h‖u‖2 +
(
h + h√

ν + c1h2

)
‖p‖1

]
,

‖P0 p − ph‖0 ≤ C
[
(ν + √

ν)h‖u‖2 + (
√

ν + 1)h‖p‖1
]
.

Proof See Appendix A. ��
Remark 5 Theorem 4 explains that the errors converge in the first order with h under the
condition h <

√
ν easily satisfied in the Stokes regime. However, the velocity error in the

Darcy regime may not decrease with h due to the pressure term in the velocity error bound,
that is, when ν → 0,

h√
ν + c1h2

‖p‖1 → 1√
c1

‖p‖1.

Wewill also confirm these theoretical results through numerical experiments. For this reason,
the ST-EG method in Algorithm 1 may not be effective in solving the Brinkman equations
with small ν, which highlights the need for the PR-EG method in Algorithm 2.

5 Numerical Experiments

This section shows numerical experiments validating our theoretical results with two- and
three-dimensional examples. The numerical methods in this paper and their discrete solutions
are denoted as follows:

– (uSTh , pSTh ): Solution by the ST-EG method in Algorithm 1.
– (uPRh , pPRh ): Solution by the PR-EG method in Algorithm 2.

While considering the scaled Brinkman equations (1.1) with the parameter ν, we recall the
error estimates for the ST-EG method in Theorem 4,

|||Πhu − uSTh ||| � (
√

ν + 1)h‖u‖2 +
(
h + h√

ν + c1h2

)
‖p‖1, (5.1a)
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‖P0 p − pSTh ‖0 � (ν + √
ν)h‖u‖2 + (

√
ν + 1)h‖p‖1, (5.1b)

and the error estimates for the PR-EG method from Theorem 2

|||Πhu − uPRh |||R � (
√

ν + 1)h‖u‖2, (5.2a)

‖P0 p − pPRh ‖0 � (ν + √
ν)h‖u‖2 + h2‖u‖2. (5.2b)

We mainly check the error estimates (5.1) and (5.2) by showing various numerical exper-
iments with ν and h. We also display the difference between the numerical solutions for
ST-EG and PR-EG in the Darcy regime, which shows that the PR-EG method is needed
to obtain stable and accurate velocity solutions. Moreover, we present permeability tests
by applying both EG methods. The permeability tests enhance the motivation of using the
PR-EG method for the case of extreme viscosity or permeability.

We implement the numerical experiments using the authors’ MATLAB codes developed
based on iFEM [4]. The penalty parameter is chosen as ρ = 3 for all the numerical experi-
ments.

5.1 Two Dimensional Tests

Let the computational domain be Ω = (0, 1) × (0, 1). The velocity field and pressure are
chosen as

u =
(

10x2(x − 1)2y(y − 1)(2y − 1)
−10x(x − 1)(2x − 1)y2(y − 1)2

)
, p = 10(2x − 1)(2y − 1).

Then, the body force f and the Dirichlet boundary condition are obtained from (1.1) using
the exact solutions.

5.1.1 Robustness and Accuracy Test with � > 0

We compare the ST-EG and PR-EG methods to see robustness and check their accuracy
based on the error estimates (5.1) and (5.2). First, we interpret the ST-EGmethod’s velocity
error estimate (5.1a) depending on the relation between coefficient ν and mesh size h. The
first-order convergence of the energy norm with h is guaranteed when ν � h2, but it is
hard to tell any order of convergence when ν < h2 due to the term h/

√
ν + c1h2. On the

other hand, the velocity error estimate for the PR-EG method (5.2a) means the first-order
convergence in h regardless of ν.

In Fig. 1, we check the discrete H1-error for the velocity scaled by ν,
√

ν‖u− uh‖E . It is
a common component of the energy norm |||u − uh ||| and |||u − uh |||R. The ST-EG method
tends to produce errors increasing with O(h−1/2) when h >

√
ν, while the errors decrease

withO(h3/2)when h <
√

ν. This result supports the error estimates (5.1a) (superconvergence
may happen because we solve the problem on structured meshes) and means that a tiny mesh
size is required for accurate solutions with small ν. However, the PR-EG method’s errors
uniformly show the first-order convergence, O(h), regardless of ν. This result supports the
error estimates (5.2a), so the PR-EGmethod guarantees stable and accurate solutions in both
the Stokes and Darcy regimes.

We fix ν = 10−6 and compare the velocity errors and solutions of the ST-EG and PR-EG
methods. Table 1 displays the energy errors and their major components, the discrete H1-
errors scaled by ν and L2-errors. For the ST-EG method, the energy errors decrease in the
half-order convergence because the L2-errors are dominant and decrease in the same order.
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Fig. 1 Convergence history of velocity errors with h when different ν is given

Table 1 A mesh refinement study for the velocity errors of ST-EG and PR-EG with h when ν = 10−6

h ST-EG

|||u − uSTh ||| Order
√

ν‖u − uSTh ‖E Order ‖u − uSTh ‖0 Order

1/4 2.926e+0 – 7.457e−2 – 2.925e+0 –

1/8 2.120e+0 0.47 1.117e−1 −0.58 2.117e+0 0.47

1/16 1.476e+0 0.52 1.572e−1 −0.49 1.467e+0 0.53

1/32 1.037e+0 0.51 2.188e−1 −0.48 1.014e+0 0.53

1/64 7.576e−1 0.45 3.010e−1 −0.46 6.952e−1 0.55

h PR-EG

|||u − uPRh |||R Order
√

ν‖u − uPRh ‖E Order ‖u − uPRh ‖0 Order

1/4 1.265e−2 – 2.608e−4 – 1.265e−2 –

1/8 2.493e−3 2.34 1.072e−4 1.28 2.491e−3 2.34

1/16 5.267e−4 2.24 4.894e−5 1.13 5.244e−4 2.25

1/32 1.209e−4 2.12 2.364e−5 1.05 1.186e−4 2.14

1/64 3.035e−5 1.99 1.164e−5 1.02 2.803e−5 2.08

However, the H1-errors keep increasing because h �< √
ν = 10−3, so the H1-errors will

become dominant and deteriorate the order of convergence of the energy errors. On the other
hand, using the PR-EG method, we expect from (5.2a) that the energy errors and major
components converge in at least the first order of h. Indeed, Table 1 shows that the H1-errors
decrease in the first order with h, while the L2-errors reduce in the second order. Since the
energy error involve both H1- and L2-errors, the energy errors decrease in the second order
because of the dominant L2-errors but eventually converge in the first order coming from the
H1-errors.

In Fig. 2, thePR-EGmethod produces accurate velocity solutions clearly showing a vortex
flow pattern when ν = 10−6 and h = 1/64. In contrast, the numerical velocity from the
ST-EG method includes significant oscillations around the boundary of the domain.
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Fig. 2 Numerical solutions of ST-EG and PR-EG when ν = 10−6 and h = 1/64

Table 2 A mesh refinement study
for the pressure errors of ST-EG
and PR-EG with h when
ν = 10−6

h ST-EG

‖P0 p − pSTh ‖0 Order ‖p − pSTh ‖0 Order

1/4 9.664e−1 – 1.358e+0 –

1/8 4.273e−1 1.18 6.428e−1 1.08

1/16 2.125e−1 1.01 3.209e−1 1.00

1/32 1.109e−1 0.94 1.636e−1 0.97

1/64 5.864e−2 0.92 8.399e−2 0.96

h PR-EG

‖P0 p − pPRh ‖0 Order ‖p − pPRh ‖0 Order

1/4 3.899e−4 – 9.547e−1 –

1/8 6.010e−5 2.70 4.802e−1 0.99

1/16 7.703e−6 2.96 2.404e−1 1.00

1/32 8.865e−7 3.12 1.203e−1 1.00

1/64 1.060e−7 3.06 6.014e−2 1.00
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Table 3 A mesh refinement study for the velocity and pressure errors of the ST-EG and PR-EG with h when
ν = 0

h ST-EG

‖u − uSTh ‖E Order ‖u − uSTh ‖0 Order ‖P0 p − pSTh ‖0 Order

1/4 7.244e+0 – 2.940e−1 – 5.550e−2 –

1/8 1.217e+1 −0.75 2.316e−1 0.34 2.369e−2 1.23

1/16 1.785e+1 −0.55 1.659e−1 0.48 1.030e−2 1.20

1/32 2.523e+1 −0.50 1.165e−1 0.51 5.077e−3 1.02

1/64 3.548e+1 −0.49 8.174e−2 0.51 2.540e−3 1.00

h PR-EG

‖u − uPRh ‖E Order ‖u − uPRh ‖0 Order ‖P0 p − pPRh ‖0 Order

1/4 1.735e+0 – 8.896e−2 – 1.724e−2 –

1/8 6.491e−1 1.42 1.696e−2 2.39 4.817e−3 1.84

1/16 2.866e−1 1.18 3.693e−3 2.20 1.220e−3 1.98

1/32 1.371e−1 1.06 8.671e−4 2.09 3.048e−4 2.00

1/64 6.750e−2 1.02 2.107e−4 2.04 7.607e−5 2.00

Moreover, the pressure error estimates (5.1b) and (5.2b) tell us that the convergence order
for the pressure errors is at least O(h) in both methods. However, the PR-EG method can
produce superconvergent pressure errors because the term h2‖p‖1 is dominant when ν is
small. In Table 2, the pressure errors of the PR-EG method, ‖P0 p − pPRh ‖0, decrease in
at least O(h2), which means superconvergence compared to the interpolation error estimate
(4.6). On the other hand, the ST-EGmethod still yields pressure errors converging in the first
order with h. Since the interpolation error is dominant in the total pressure errors ‖p− ph‖0,
the errors in Table 2 have the first-order convergence with h in both methods. Therefore, the
numerical results support the pressure error estimates (5.1b) and (5.2b).

5.1.2 Performance in Darcy Regime (� = 0)

We numerically solve the Brinkman equations with ν = 0 (equivalent to Darcy flow) using
the ST-EG and PR-EG methods. We consider the same domain Ω = (0, 1) × (0, 1) and
choose different velocity field and pressure

u =
(
sin(πx) sin(π y)
cos(πx) cos(π y)

)
, p = sin(πx) cos(π y),

with a non-homogeneous Dirichlet boundary condition. In Table 3, the ST-EG method’s
velocity errors do not converge in the optimal convergence orders, while its pressure errors
decrease in the first-order convergence, as expected in (5.1b). Some velocity errors are even
increasing. From (5.1a), we can expect that the velocity errors will never converge in the
optimal convergence order because it never holds h <

√
ν. However, the PR-EG method

guarantees the optimal convergence orders presented in (5.2a). ThePR-EGmethod’s pressure
errors decrease in the second-order convergence as expected in (5.2b) with ν = 0. This result
demonstrates that the PR-EG method performs well with Darcy flow, producing stable and
accurate velocity solutions and implying superconvergence of pressure errors.

123



39 Page 18 of 25 Journal of Scientific Computing (2024) 99 :39

Fig. 3 Permeability map; blue
regions mean K = 1 and red
regions mean K = 10−6

5.1.3 Application to a Heterogeneous Porous Medium

In this test, we consider the original Brinkman equations

−μΔu + μ

K
u + ∇ p = f in Ω, (5.3a)

∇ · u = 0 in Ω, (5.3b)

with viscosity μ = 10−6 and permeability K given as the permeability map in Fig. 3.
The permeability map indicates that fluid tends to flow following the blue regions, so the

magnitude of numerical velocity will be more significant in the blue regions than in the red
ones. The blue and red regions imply:

– Blue regions: μ = 10−6 and K = 1 in (5.3a) ⇒ ν = 1 in (1.1a) with scaled pressure
and body force.

– Red regions: μ = K = 10−6 in (5.3a) ⇒ ν = 10−6 in (1.1a).

We set the velocity on the boundary of the domain as u = 〈1, 0〉 and body force as f = 〈1, 1〉.
We mainly compare the magnitude of the numerical velocity obtained from the two meth-

ods in Fig. 4.We clearly see that the PR-EGmethod’s velocity is more stable than the ST-EG
method’s velocity containing nonnegligible noises (or oscillations) around the boundary. This
result tells that the PR-EG method is necessary for stable and accurate velocity solutions to
the Brinkman equations with extreme viscosity and permeability.

5.2 Three Dimensional Tests

We consider a three-dimensional flow in a unit cube Ω = (0, 1)3. The velocity field and
pressure are chosen as

u =
⎛
⎝
sin(πx) cos(π y) − sin(πx) cos(π z)
sin(π y) cos(π z) − sin(π y) cos(πx)
sin(π z) cos(πx) − sin(π z) cos(π y)

⎞
⎠ , p = sin(πx) sin(π y) sin(π z).

The body force f and the Dirichlet boundary condition are given in the same manner as the
two-dimensional example.
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Fig. 4 Numerical velocity solutions of ST-EG and PR-EG on the permeability map

5.2.1 Robustness and Accuracy Test

In the two-dimensional tests, we checked that the condition h <
√

ν was required to guarantee
the optimal order of convergence for the ST-EG method, while the PR-EG method showed
a uniform performance in convergence independent of ν. We obtained the same result as in
Fig. 1 from this three-dimensional test.

Table 4 displays the velocity solutions’ energy errors and influential components, com-
paring the PR-EGmethod with ST-EGwhen ν = 10−6. The ST-EGmethod’s energy errors
tend to decrease because the dominant L2-errors decrease, but the H1-errors scaled by ν

increase. These H1-errors may make the energy errors nondecreasing until h <
√

ν = 10−3.
However, the PR-EG method guarantees at least first-order convergence for all the velocity
errors, showing much smaller errors than the ST-EGmethod. This numerical result supports
the velocity error estimates in (5.1a) and (5.2a), and we expect more accurate solutions from
the PR-EG method when ν is small.

In addition, we compare numerical velocity solutions of the ST-EG and PR-EGmethods
when ν = 10−6 and h = 1/16 in Fig. 5. The velocity solutions of both methods seem
to capture a three-dimensional vortex flow expected from the exact velocity. However, the
velocity of the ST-EGmethod contains noises around the right-top and left-bottom corners,
where the streamlines do not form a circular motion.

In Table 5, as expected in (5.1b), the ST-EGmethod’s pressure errors decrease in at least
first-order. On the other hand, the PR-EGmethod’s pressure errors, ‖P0 p− pURh ‖0, decrease
much faster, showing superconvergence. This phenomenon is expected by the pressure esti-

123



39 Page 20 of 25 Journal of Scientific Computing (2024) 99 :39

Table 4 A mesh refinement study for the velocity errors of the ST-EG and PR-EG with h when ν = 10−6

h ST-EG

|||u − uSTh ||| Order
√

ν‖u − uSTh ‖E Order ‖u − uSTh ‖0 Order

1/4 1.086e+1 – 3.669e−1 – 1.085e+1 –

1/8 8.553e+0 0.35 5.814e−1 −0.66 8.533e+0 0.35

1/16 6.202e+0 0.46 8.389e−1 −0.53 6.145e+0 0.47

1/32 4.418e+0 0.49 1.165e+0 −0.47 4.262e+0 0.53

h PR-EG

|||u − uPRh |||R Order
√

ν‖u − uPRh ‖E Order ‖u − uPRh ‖0 Order

1/4 3.738e−1 – 2.684e−3 – 1.828e−1 -

1/8 8.797e−2 2.09 1.346e−3 1.00 3.026e−2 2.59

1/16 2.079e−2 2.08 6.600e−4 1.03 6.203e−3 2.29

1/32 5.101e−3 2.03 3.256e−4 1.02 1.441e−3 2.11

Fig. 5 Numerical velocity solutions of ST-EG and PR-EG when ν = 10−6 and h = 1/16

mate (5.2b) when ν is small. Moreover, the orders of convergence of the total pressure errors,
‖p − ph‖0, for both methods are approximately one due to the interpolation error.

5.2.2 Application to Different Permeability Regions

We apply piecewise constant permeability to the original Brinkman equations (5.3) in the
cube domain Ω = (0, 1)3,

K (x) =
{
10−6 if |x| ≤ (0.25)2,
1 otherwise.

The other conditions are given as; viscosity μ = 10−6, boundary condition u = 〈1, 0, 0〉,
and body force f = 〈1, 1, 1〉.
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Table 5 A mesh refinement study
for the pressure errors of the
ST-EG and PR-EG with h when
ν = 10−6

h ST-EG

‖P0 p − pSTh ‖0 Order ‖p − pSTh ‖0 Order

1/4 1.564e+0 – 3.357e+0 –

1/8 5.599e−1 1.48 1.613e+0 1.06

1/16 1.781e−1 1.65 7.804e−1 1.05

1/32 5.717e−2 1.64 3.846e−1 1.02

h PR-EG

‖P0 p − pPRh ‖0 Order ‖p − pPRh ‖0 Order

1/4 1.109e−1 – 2.973e+0 –

1/8 1.241e−2 3.16 1.513e+0 0.98

1/16 1.344e−3 3.21 7.598e−1 0.99

1/32 1.609e−4 3.06 3.804e−1 1.00

Fig. 6 Numerical velocity solutions of ST-EG and PR-EG when h = 1/16

We expect the fluid flow to be faster out of the ball with large permeability, and it tends
to avoid the ball and be affected by the boundary velocity. The streamlines and colored
magnitude of the PR-EG method’s velocity in Fig. 6 exactly show such an expectation on
the fluid flow, while the ST-EG method fails to provide a reliable velocity solution.

6 Conclusion

In this paper, we proposed a pressure-robust numerical method for the Brinkman equations
with minimal degrees of freedom based on the EG piecewise linear velocity and constant
pressure spaces [22]. To derive the robust method, we used the velocity reconstruction oper-
ator [12] mapping the EG velocity to the first-order Brezzi–Douglas–Marini space. Then,
we replaced the EG velocity in the Darcy term and the test function on the right-hand side
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with the reconstructed velocity. With this simple modification, the robust EGmethod showed
uniform performance in both the Stokes and Darcy regimes compared to the standard EG
method requiring the mesh restriction h <

√
ν that is impractical in the Darcy regime. We

also validated the error estimates and performance of the standard and robust EG methods
through several numerical tests with two- and three-dimensional examples.

Our efficient and robust EG method for the Brinkman equations can be extended to
various Stokes-Darcymodeling problems, such as coupledmodelswith an interface and time-
dependentmodels. Also, the proposedEGmethod can be extended for nonlinearmodels, such
as nonlinearBrinkmanmodels for non-Newtonian fluid and unsteadyBrinkman-Forchheimer
models.
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Appendix A: Proof of Theorem 4

We recall the error functions

χh := u − Πhu, eh := Πhu − uh, ξh := p − P0 p, εh := P0 p − ph

and derive error equations.

Lemma 8 For any v ∈ Vh and q ∈ Qh, we have

νa(eh, v) + c(eh, v) − b(v, εh) = l1(u, v) + l4(u, v) + b(v, ξh),

b(eh, q) = −b(χh, q),

where l1(u, v) is defined in Lemma 5, and the other supplement bilinear form is defined as
follows:

l4(u, v) := (Πhu − u, v)Th .

Proof We have −(Δu, v)Th = a(u, v) for any v ∈ Vh from [22], which implies that

−ν(Δu, v)Th = νa(Πhu, v) − νa(Πhu − u, v).

The definition of c(·, ·) also gives

(u, v)Th = c(Πhu, v) − (Πhu − u, v)Th ,

and integration by parts and continuity of p lead to

(∇ p, v)Th =
∑
T∈Th

〈p, v · nT 〉∂T − (p,∇ · v)T = −b(v, p).

Thus, the equation (1.1a) imposes

νa(Πhu, v) + c(Πhu, v) − b(v, p) = (f, v) + l1(u, v) + l4(u, v).
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By comparing this equation with (3.1a) in the ST-EG method, we arrive at

νa(eh, v) + c(eh, v) − b(v, εh) = l1(u, v) + l4(u, v) + b(v, ξh).

Moreover, it follows from the continuity of u and (3.1b) that

(∇ · u, q)Th = b(u, q) = 0 = b(uh, q),

which implies the second equation. ��
In what follows, we prove an estimate for the supplemental bilinear form in Lemma 8.

Lemma 9 Assume that w ∈ [H2(Ω)]d and v ∈ Vh. Then, we have

|l4(w, v)| ≤ Ch2‖w‖2|||v|||
where C is a generic positive constant independent of ν and h.

Proof Using the Cauchy–Schwarz inequality and (4.5a), we get the following upper bounds

|l4(w, v)| = ∣∣(Πhw − w, v)Th

∣∣
≤ ‖Πhw − w‖0‖v‖0
≤ Ch2|w|2|||v|||.

��

Proof of Theorem 4

Proof We apply (4.10), (4.8), (4.14a), (4.13), (4.3), and Lemma 9 to the first error equation
in Lemma 8,

b(v, εh) = νa(eh, v) + c(eh, v) − l1(u, v) − l4(u, v) − b(v, ξh)

≤ C

(
|||eh ||| + √

νh‖u‖2 + h2‖u‖2 + h√
ν + c1h2

‖p‖1
)

|||v|||.

Thus, the results in Lemma 4 with (4.4) imply

‖εh‖0 ≤ C(
√

ν + h)

(
|||eh ||| + √

νh‖u‖2 + h2‖u‖2 + h√
ν + c1h2

‖p‖1
)

.

We choose v = eh and q = εh and substitute b(eh, εh) with −b(χh, εh) to obtain

νa(eh, eh) + c(eh, eh) = −b(χh, εh) + l1(u, eh) + l4(u, eh) + b(eh, ξh).

In this case, we estimate the term b(χh, εh) using (4.14b),

|b(χh, εh)| ≤ Ch‖u‖2‖εh‖0.
The term b(eh, ξh) is estimated by using (4.14a) and (4.3),

|b(eh, ξh)| ≤ Ch‖p‖1‖eh‖E ≤ C
h√

ν + c1h2
‖p‖1|||eh |||.

Hence, it follows from (4.9), (4.13), Lemma 9, and the above results that
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|||eh |||2 ≤ C

(
h‖u‖2‖εh‖0 + √

νh‖u‖2|||eh |||

+h2‖u‖2|||eh ||| + h√
ν + c1h2

‖p‖1|||eh |||
)

.

Then, by using the bound of ‖εh‖0 and omitting high-order terms (h3 or h4), we obtain an
upper bound

h‖u‖2‖εh‖0 ≤ C
(
(
√

ν + h)h‖u‖2|||eh ||| + νh2‖u‖22 + h2‖u‖2‖p‖1
)

because
√

ν +h ≤ (
√
2/c1)

√
ν + c1h2. If we apply the Young’s inequality to each term with

a positive constant α, we have

√
νh‖u‖2|||eh ||| ≤ νh2

2α
‖u‖22 + α

2
|||eh |||2,

h2‖u‖2|||eh ||| ≤ h4

2α
‖u‖22 + α

2
|||eh |||2,

h2‖u‖2‖p‖1 ≤ h2

2α
‖u‖22 + αh2

2
‖p‖21,

h√
ν + c1h2

‖p‖1|||eh ||| ≤ h2

2α(ν + c1h2)
‖p‖21 + α

2
|||eh |||2.

Therefore, a proper α implies

|||eh |||2 ≤ C

[
(ν + 1)h2‖u‖22 +

(
h2 + h2

ν + c1h2

)
‖p‖21

]
,

so we finally get

|||eh ||| ≤ C

[
(
√

ν + 1)h‖u‖2 +
(
h + h√

ν + c1h2

)
‖p‖1

]
.

On the other hand, we observe intermediate estimates and omit high-order terms (h2 or h3),
so we show the pressure error estimate,

‖εh‖0 ≤ C
[
(
√

ν + h)|||eh ||| + νh‖u‖2 + h‖p‖1
]
.

Thus, we bound |||eh ||| with the velocity error estimate, so we finally obtain

‖εh‖0 ≤ C
[
(ν + √

ν)h‖u‖2 + (
√

ν + 1)h‖p‖1
]
,

when omitting h2-terms. ��
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