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In this paper, we propose a new deep learning method for the nonlinear Poisson–Boltzmann prob-

lems with applications in computational biology. To tackle the discontinuity of the solution, e.g.,

across protein surfaces, we approximate the solution by a piecewise mesh-free neural network that

can capture the dramatic change in the solution across the interface. The partial differential equa-

tion problem is first reformulated as a least-squares physics-informed neural network (PINN)-type

problem and then discretized to an objective function using mean squared error via sampling. The

solution is obtained by minimizing the designed objective function via standard training algorithms

such as the stochastic gradient descent method. Finally, the effectiveness and efficiency of the neural

network are validated using complex protein interfaces on various manufactured functions with dif-

ferent frequencies.
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1. INTRODUCTION

As one of the commonly used models in molecular biology, the Poisson–Boltzmann equation
(PBE) provides a mathematical framework that is used to describe the distribution of electric
potentials and ion concentrations in solutions containing charged molecules, such as proteins,
nucleic acids, and membranes, immersed in an electrolyte solution. The model combines the
Poisson equation, which relates the electric potential to the charge distribution, with the Boltz-
mann distribution, which describes the statistical distribution of ions based on their electrostatic
interactions and thermal energy. The PBE is a mean-field model that balances biophysic details
and computational efficiency, hence becoming one of the major workhorses in the community
of computational electrostatics; it has remained an active research topic in the past decades.
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The importance of PBE has been well established and is discussed in Briggs and McCam-
mon (1992), Sharp and Honi (1990), and Fogolari et al. (2002). The major challenges from a
mathematical point of view of the PBE include (1) Dirac distribution sources result in a singu-
lar solution; (2) discontinuous dielectric coefficients result in interface singularity; (3) geometric
complexity of molecular domains in three spatial dimensions; (4) nonlinearity. Due to these chal-
lenges, analytical solutions are usually only known for unrealistic structure geometries and/or
for linearizations of the equation. In practical applications with complex biomolecular surfaces,
efficient and accurate numerical methods are demanded to solve the PBE. Computationally, a va-
riety of techniques for numerically solving the PBE, including finite difference methods (FDMs)
(Honig and Nicholls, 1995; Im et al., 1998; Luo et al., 2002; Warwicker and Watson, 1982; Yu
et al., 2007), finite element methods (Baker et al., 2001; Bond et al., 2010; Chen et al., 2007),
boundary integral methods (BIMs) (Boschitsch and Fenley, 2004; Zauhar and Morgan, 1985),
the boundary element method (Zhou et al., 2006), and finite volumemethods (Baker et al., 2001),
have been developed in the past few decades and incorporated into popular molecular simula-
tion software packages, such as DelPhi (Klapper et al., 1986), ZAP (Prabhu et al., 2008), UHBD
(Madura et al., 1995),MEAD (Engels et al., 1995), APBS (Holst et al., 2000), AMBER (Lu et al.,
2002; Luo et al., 2002), and CHARMM (Brooks et al., 1983; Jo et al., 2008). Recently, highly
accurate and efficient numerical schemes of PBE and their applications in molecular biology
have attracted much interest in the computational mathematics community. Novel algorithms,
such as the FDM-based matched interface and boundary (MIB) method (Chen et al., 2011; Geng
et al., 2007; Zhou et al., 2008), the immersed interface method (LeVeque and Li, 1994; Li and
Ito, 2001), and the BIM-based treecode acceleration technique (Geng and Krasny, 2013), are
developed to handle the solute-solvent interface and singular charges of proteins appearing in
the PBE. Regularization methods have been recently investigated, compared, and implemented
with the MIB approach in Li et al. (2021). Other approaches have been investigated, including
the adoption of the Gummel method and discontinuous bubble functions in Kwon et al. (2021b),
potential field reconstruction and enrichment techniques in Borleske and Zhou (2020), coupling
finite and boundary elements for the solute and solvent regions in Bosy et al. (2024), an effi-
cient finite element iterative method in Xie (2024), and goal-oriented adaptive error estimates to
identify the optimal surface mesh in Ramm et al. (2021).

The solution of a partial differential equation (PDE) using neural networks has gained in-
creasing interest in academia and industry. Numerous methods using neural networks have been
developed, including the physics-informed neural network (PINN) (Raissi et al., 2019), the deep
Ritz method (Yu, 2018), the deep Galerkin method (Sirignano and Spiliopoulos, 2018), weak ad-
versarial network (Zang et al., 2020), the deep first-order least-squares (LS) method (Cai et al.,
2020), the hp-variational physical informed neural networks (Kharazmi et al., 2021), and the
neural ordinary differential equation-based network named XNODE (Oliva et al., 2022), to list a
few. Several neural network methods have also been designed to solve PBE. In Liu et al. (2020),
a multiscale deep neural network (DNN) was proposed using the idea of radial scaling in the fre-
quency domain. In Kwon et al. (2021a), a deep residual-based neural network (He et al., 2016)
is used to solve the PBE. In Chen et al. (2024), a Poisson–Boltzmann-based machine learning
model for biomolecular electrostatic analysis is trained with the second-order accurate MIBPB
solver. Various neural network methods have also been invented to solve interface problems
(Dwivedi et al., 2019; He et al., 2022; Wang and Zhang, 2020; Wu and Lu, 2022).

Our previous work in He et al. (2022) used deep learning methods to solve the elliptic inter-
face problems. The second-order elliptic interface problem is rewritten as a least-squares PINN-
type minimization problem. The numerical solutions are represented as DNN network functions
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with parameter sets to be learned through gradient descent optimization algorithms that aim to
minimize the least-squares cost functional. More specifically, we used two separate DNNmodels
in the case of two subdomains to approximate the solution that has large jumps in derivative(s)
across the intersection of subdomains (interface).

This paper continues our previous work and utilizes a piecewise machine learning-based
DNN to solve the nonlinear PBE. The primary motivation is that deep neural algorithms do not
require mesh fitting. It is worth noting that generating a regular mesh for a complex domain
in three-dimensional (3D) space remains one of the bottleneck challenges. Furthermore, unlike
the classical numerical method, no linearization is necessary using the machine learning-based
method since the DNN structure is nonlinear itself.

Specifically, we investigate a deep learning scheme to solve the nonlinear PBE on the com-
plex molecular surface. A molecular surface is defined as the combination of all atomic surfaces
of a molecule’s atoms. In practice, the molecular surface meshes generated by software may
have small angles, redundant vertices, and low-quality elements, thus causing many problems
for traditional numerical solvers. Here, we contribute to overcoming the challenges in the mesh-
ing process and developing numerical schemes. Firstly, the singularity of Dirac delta functions
is tackled by a regularization approach to decompose the solution into regular and singular com-
ponents. Since the singular component can be explicitly constructed, we focus on approximating
the regular components from a nonlinear elliptic interface problem. For the regular problem, the
computational domain is decomposed by a molecular surface into two subdomains, where sepa-
rate DNNs are employed in each subdomain. By incorporating this technique, our network can
effectively represent discontinuous functions across multiple domains.

As the exact integral of the least-squares problem is impossible to compute, we approximate
it by discretizing it to an objective function using mean squared error via sampling points in each
subdomain, on the interface surface, and the boundary. Due to the complexity of the problem,
a large number of sampling points are typically required to achieve a satisfactory solution. Our
approach trains the model using the ADAM-type stochastic gradient descent method. In each
epoch, the objective function of mean square type is computed using a relatively small subset
of data points randomly sampled from a fixed, large dataset. After a fixed number of training
epochs, the subset is randomly reselected to further refine the model. This iterative process of
resampling and retraining continues until a stopping criterion is met. By leveraging a small
number of data points per epoch and periodically resampling, our method significantly reduces
training time while maintaining high accuracy on the large dataset, in contrast to traditional
approaches that rely on large, static datasets.

The remainder of the paper is organized as follows. The notation and regularization of the
nonlinear PBE are discussed in Section 2. Section 3 introduces our deep least-squares method to
solve the interface problem in detail. The numerical results are shown in Section 4 to demonstrate
the efficiency of the proposed method. Finally, we discuss the conclusions and potential future
work in Section 5.

2. THE POISSON BOLTZMANN EQUATION AND ITS REGULARIZATION

This paper employs the standard notations and definitions for the Sobolev spaces Hs(Ω) and
Hs(∂Ω). The standard associated inner products are denoted by (·, ·)s,Ω and (·, ·)s,Γ in Ω ∈ R

d

and on Γ ∈ R
d−1, respectively. The standard induced norms are denoted by ‖ · ‖s,Ω and ‖ · ‖s,Γ.

When s = 0, H0(Ω) coincides with L2(Ω). When there is no ambiguity, the subscript Ω in the
designation of norms will be suppressed.
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The nonlinear PBE, which brings together the description of the electrostatic potential u(x)
in a protein-solvent system Ω ∈ R

3 reads

−∇ · (ǫ(x)∇u) + Is sinh u =

Na
∑

i=1

ziδ(x− xi), (1)

with the Dirichlet boundary condition on the boundary of Ω, i.e.,

u(x) = g(x) for all x ∈ ∂Ω. (2)

The classical PBE is developed based on a multiscale approximation strategy, and its biophysical
meaning is sketched as follows:

• In this setup, the whole domain Ω is naturally divided as protein domain Ω+ and solvent
domain Ω−. These two disjoint subdomains are separated by the molecular surface Γ,
i.e., Ω = Ω+ ∪ Ω− and Ω+ ∩ Ω− = Γ.

• The protein is described explicitly, i.e., location (xi) and charge (zi) of each protein atom
are counted and individually contribute to the electrostatics, as shown in the right-hand
side of Eq. (1). For the protein, there are total Na atoms. Specific values of these param-
eters for a targeted protein can be obtained from the Protein Data Bank (PDB).

• For each protein atom, its geometry is represented by a ball with center xi and radius ri.
The protein surface Γ is defined as the outer surface of the union of all such balls. It is
assumed that the union of all atoms forms a simply connected set, which ensures that Γ
separates the domain into two subdomains.

• On the other hand, the solvent’s water molecules and mobile ions are modeled implicitly
or as a continuum for efficiency. As result, the nonlinear term (hyperbolic sine) in Eq. (1)
represents the continuum approximation of water molecules and Boltzmann distribution
approximation of mobile ions corresponding to the electrostatics, with Is being the ionic
strength.

Due to the multiscale physics, the dielectric function ǫ(x) in Eq. (1) is taken as a piecewise
constant function on the two subdomains, i.e.,

ǫ(x) =

{

ǫ+, x ∈ Ω+

ǫ−, x ∈ Ω−
. (3)

As a common setting, low dielectric (ǫ+ = 1) is assumed for protein domain Ω+ and high
dielectric (ǫ− = 80) for solvent domain Ω−. Ionic strength (I+s = 0) is assumed for protein
domain Ω+ and (I−s = 0.5) for solvent domain Ω−. Because of the discontinuity of ǫ(x), the
solution u in Ω is not smooth across the interface Γ and it is subject to the following interface
conditions:

[[u]]|Γ = u+(x)− u−(x) = 0, (4)

[[ǫ∇u · n]]|Γ = ǫ+∇u+ · n− ǫ−∇u− · n = 0, (5)

where superscripts ± represent the restriction of a certain function on the domain Ω± and n is
the unit normal of Γ pointing from Ω+ to Ω−.
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One obvious challenge of numerically solving the model (1) is the singularity of Dirac delta
functions on the right-hand side, which could cause numerical instability. A regularization ap-
proach (Chen, 2016; Chen et al., 2011; Chen and Wei, 2010; Yu et al., 2007; Yu and Wei, 2007)
is usually used to remove this singularity and the computation is then only focused on the regular
part. Let

u = u0 + u∗, (6)

where u0 and u∗ denote the regular and singular parts of u, respectively. More specifically, u−
0

coincides with u− in the solvent domain whereas u∗ is only defined in the protein domain Ω+.
Note that the delta functions δ(x−xi) are located in Ω+; solution u+ can be approached as the
sum of the Green’s function in free space and some correction u+

0 for the bounded domain Ω+,
i.e., u+ = u∗ + u+

0 , and

u∗(x) =















Na
∑

i=1

zi

4πǫ+|x− xi|
, x ∈ Ω+

0, x ∈ Ω−

. (7)

Also note that the ionic strength parameter Is is only defined in the solvent domain Ω−, where
u∗ = 0 as indicated in the above equation. Hence, the original nonlinear term sinh(u) applies
only to u0 in this singularity removal scheme.

We are, therefore, left to solve the following regularized interface problem:

−∇ ·
(

ǫ(x)∇u0(x)
)

+ Is sinh(u0) = 0, x ∈ Ω, (8)

[[u0]]Γ = −u∗, x ∈ Γ, (9)

[[ǫ∇u0 · n]]|Γ = −ǫ+∇u∗ · n, x ∈ Γ, (10)

u0 = g(x), x ∈ ∂Ω. (11)

System (8)–(11) is mathematically well-posed after singularity removal. However, in the prac-
tical problem for biomolecules, the complicated molecular surface Γ poses great challenges in
developing various numerical methods.

3. MESH-FREE DNN

In this section, let us discuss the mesh-free piecewise DNN structure utilized in our approach
and the loss functional.

3.1 Deep Neural Network Structure

We first discuss the DNN structure used to approximate the solution u(x). A DNN structure is
the composition of multiple linear functions and nonlinear activation functions. Specifically, the
first component of DNN is a linear transformation T ℓ : Rnℓ → R

nℓ+1 , ℓ = 1, · · · , L, defined as
follows,

T
ℓ(xℓ) = W

ℓ
x
ℓ + b

ℓ, for x
ℓ ∈ R

nℓ ,

where W ℓ = (wℓ
i,j) ∈ R

nℓ+1×nℓ and bℓ ∈ R
nℓ+1 are parameters in the DNN. The second

component is an activation function ψ : R → R to be chosen. Typical examples of the activa-
tion functions are tanh, Sigmoid, and ReLU. Application of ψ to a vector x ∈ R

n is defined
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component-wisely, i.e., ψ(x) = (ψ(x1), · · · ,ψ(xn))
⊤. The ℓ-th layer of the DNN can be rep-

resented as the composition of the linear transform T
ℓ and the nonlinear activation function ψ,

i.e.,
N ℓ(xℓ) = ψ

(

T
ℓ(xℓ)

)

, ℓ = 1, · · · , L.
Note N ℓ : Rnℓ 7→ R

nℓ+1 . A L-layer DNN is then defined as the composition of all N ℓ, ℓ =
1, 2, · · · , L. In particular, for an input x ∈ R

n1 , a general L-layer DNN can be represented as
follows,

N (x; Θ) = T
L ◦ NL−1 ◦ · · · ◦ N 2 ◦ N 1(x), (12)

where Θ ∈ R
N stands for all the parameters in the DNN, i.e.,

Θ = {W ℓ, bℓ, ℓ = 1, · · · , L}.

For a fully connected DNN, we have the number of parameters N =
∑L

ℓ=1 nℓ+1(nℓ + 1).
In this paper, we use the DNN structure (12) to approximate the solution u(x). Because of

the nature of our computational domain, we use two different DNNs with parameters Θi, i =
1, 2, to approximate u+

0 and u−
0 , respectively. The architecture of our DNNmodel is summarized

in Fig. 1.

3.2 The Discretization in the DNN Method

For any x ∈ Ω, our goal is to find a Θ∗ ∈ R
N for the DNN network in Eq. (12) such that

uΘ∗(x) ≈ u0(x). To find such Θ∗, we consider minimizing the PINN-type LS objective func-
tion. We note that there are various versions of LS formulations for the interface problem (8)–
(10). In this work, we adopt the simple LS principle proposed in Dissanayake and Phan-Thien
(1994) and propose an LS functional that incorporates the interface conditions (9) and (10) and
the boundary condition (11). The LS functional is defined as follows,

J (v;u∗, g) = losspde + lossbc + lossI, (13)

for all v ∈ H1(Ω), and

losspde = |Ω+|−1‖ −∇ · ǫ∇v + Is sinh (v)‖20,Ω+ + |Ω−|−1‖ −∇ · ǫ∇v + Is sinh (v)‖20,Ω−,

FIG. 1: Architecture of the piecewise DNN model
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lossbc = α|∂Ω|−1‖v − g‖20,∂Ω,

lossI = |Γ|−1(βf‖[[ǫ∇v · ~n]] + ǫ+∇u∗ · ~n‖20,Γ + βj‖[[v]] + u∗‖20,Γ
)

,

where α and (βj , βf ) are hyperparameters controlling the strength of constraints at the domain
boundary and interface, respectively. The corresponding LS solution is then to find u† ∈ H1(Ω),
such that

J (u†;u∗, g) = inf
v∈H1(Ω)

J (v;u∗, gD). (14)

It is easy to see that when the problem (8)–(10) has a strong solution such that −∇ · ǫ∇u0 +
Is sinh u0 ∈ L2(Ω), the solution u† to Eq. (14) is equivalent to the solution u0 to Eqs. (8)–(10).
The DNN approximation to the solution u† is then to find u†

Θ ∈ L2(Ω) such that

J (u†
Θ;u

∗, gD) = inf
vΘ∈VΘ

J (vΘ;u
∗, gD), (15)

where VΘ represents the function class consisting of all neural networks with a fixed architecture,
parameterized by the set of parametersΘ.

We approximate the integrals using the Monte Carlo sampling method. More precisely, for
any function v, we let

1
|Ω±|

‖v‖2Ω± ≈
1

N±
i

N±

i
∑

i=1
|v(x±

i )|
2,

1
|Γ|

‖v‖2Γ ≈
1
NI

NI
∑

j=1
|v(xI

i )|
2,

1
|∂Ω|

‖v‖2∂Ω ≈
1
Nb

Nb
∑

k=1
|v(xb

k)|
2,

(16)

where N±
i is the number of points randomly sampled in the interior of Ω±, NI the number of

points randomly sampled on Γ, Nb the number of points randomly sampled on ∂Ω; {x±
i }

N±

i

i=1 is
the set of points sampled inside Ω±, {xI

i }
NI

j=1 the set of points sampled on Γ, {xb
k}

Nb

k=1 the set
of points sampled on ∂Ω.

The correspondence in Fig. 1 and losses defined above are as follows:

Model 1 PDE loss ≈ |Ω+|−1‖ − ∇ · ǫ∇v + Is sinh (v)‖20,Ω+ ,

Model 2 PDE loss ≈ |Ω−|−1‖ −∇ · ǫ∇v + Is sinh (v)‖20,Ω− ,

Interface loss ≈ lossI, Model 2 BD loss ≈ lossbc.

4. NUMERICAL EXPERIMENTS

This section presents several numerical results of our DNN method for solving the PBEs [Eq.
(1)]. The computational domain Ω is modeled as a box-shaped region representing a protein-
solvent system. The domain Ω is sufficiently large to encompass all the atoms defined by the
molecular surface. Recall that the protein surface Γ separates the domain into two subdomains:
Ω+ (the protein domain, inside the surface) and Ω− (the solvent domain, outside the surface).
The protein surfaces considered in this paper are depicted in Fig. 2, along with their correspond-
ing PDB IDs.

We consider a specific regularized solution,
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ID: 1ajj ID: 1a2s ID: 1a7m ID: 1a63

ID: 1b4l-a ID: 1bbl ID: 1bpi

FIG. 2: Seven randomly chosen protein surfaces in our computation

u0(x) =

{

u+
0 , x ∈ Ω+

u−
0 , x ∈ Ω−

, (17)

where u+
0 = cos(ax) cos(by) cos(cz) and u−

0 = − cos(ax) cos(by) cos(cz), and a, b, c take the
following values:

• Case 1. a = 1, b = 1, c = 1.

• Case 2. a = 1, b = 2, c = 3.

• Case 3. a = 2, b = 3, c = 4.

We rescale the domain Ω by multiplying a factor of 1/50 to make the computational domain
close to [−1, 1]3. The system (8)–(11) can be adjusted as

−∇ ·
(

ǫ(x)∇u0
)

+ Is sinh u0 = f(x), (18)

[[u0]]Γ = u+
0 − u−

0 = 2 cos(ax) cos(by) cos(cz), (19)

[[ǫ∇u0 · ~n]]|Γ = (ǫ+ + ǫ−)∇
(

cos(ax) cos(by) cos(cz)
)

· ~n, (20)

u0|∂Ω = − cos(ax) cos(by) cos(cz), (21)

where f is computed based on the function u0 and the parameters are set as ǫ+ = 1, ǫ− = 80,
I+s = 0, and I−s = 0.5.

In all experiments, the neural network structure is chosen to have six hidden layers and 20
neurons in each layer. In the following tests, the penalty parameters are chosen as α = 100,000,
βf = 100, βj = 100. We begin by generating a large dataset that serves as the total pool for
future random sampling or testing. The DNN model is trained by randomly selecting subsets
of data from this pool. Training begins with an initial subset, and after every 100 epochs, a new
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random subset is drawn from the full dataset. This process is repeated until the stopping criterion
is met. The training employs the ADAM-type stochastic gradient descent method.

By minimizing the objective function over smaller subsets and frequently alternating the
training data, our approach approximates the overall behavior of the full dataset while signif-
icantly reducing training costs, ultimately achieving better results. Unlike traditional methods
that train the model on the entire dataset, our strategy delivers superior performance with more
efficient time utilization.

During training, testing is performed concurrently to monitor the decay of the objective func-
tion. The test points, distinct from the training points but of the same size, are randomly selected
from the total dataset.

The details of the total dataset profiles are summarized in Table 1, while the profiles of the
smaller subsets used in each experiment will be specified individually.

Finally, the relative error for the testing subdataset is computed as

Rel-Error :=





∑N−

i

i=1 |u
−
0 (x

−
i )− u−

0,Θ(x
−
i )|

2 +
∑N+

i

i=1 |u
+
0 (x

+
i )− u+

0,Θ(x
+
i )|

2

∑N−

i

i=1 |u0(x
−
i )|

2 +
∑N+

i

i=1 |u0(x
+
i )|

2





1/2

. (22)

Here, the test points x−
i and x+

i are chosen randomly from the total dataset in the interior and
exterior domain, respectively.

4.1 Case 1 on Various Protein Surfaces

In the first test, the exact solution is selected as in Case 1, and the proposed scheme will be
performed on various protein surfaces, as shown in Fig. 2. The parameters for the subset sizes
are set as N±

i = 500, NI = 1000, Nb = 2400. The stopping criterion is defined as either the
relative error on the test dataset falling below 1% or the training reaching a maximum of 5000
epochs.

First, we apply our algorithm to the protein surface with ID: 1ajj. The convergence results
for the loss functions are shown in Fig. 3(a), while the relative error, computed as in Eq. (22), is
illustrated in Fig. 3(b). Note that the training and testing subsets are updated every 100 epochs.

The solution profiles of u+
0 and u−

0 on the interface are presented in Figs. 4(a) and 4(b),
respectively. Their approximations, produced by the piecewise neural network and denoted as
u+
0,Θ and u−

0,Θ, are provided in Figs. 4(c) and 4(d). Finally, the corresponding pointwise errors
are shown in Figs. 4(e) and 4(f).

The following observations can be made:

TABLE 1: Number of points in total datasets for tested protein profiles

Molecular ID NI Nb N
−

i
N

+

i

1ajj 20,188 72,334 1.3123e+06 4236
1a2s 42,187 1.2139e+05 2.8618e+06 10,115
1a7m 73,580 2.2961e+05 7.3468e+06 21,106
1a63 66,006 1.9999e+05 5.8482e+06 15,792
1b4l 59,390 1.8616e+05 5.4292e+06 17,203
1bpi 60,424 1.0032e+05 2.1383e+06 7139
1bbl 24,499 86,346 1.7202e+06 4485
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FIG. 3: Case 1. Convergence plots of loss functions and relative error for protein ID: 1ajj. (a) Convergences
of errors (Training) and (b) relative error (Test).

• Each term of the loss function decreases as expected, and the stopping criterion is met at
epoch 807; see Fig. 3(a).

• By 807 epochs, the loss values have decreased significantly. For example, the total loss is
reduced from 2.75 × 104 to 4.66, and the interface loss decreases from 4.6630 to 2.3563
× 10−4, demonstrating the effectiveness of our training; see Fig. 3(a).

• For testing, we plot the relative error at each epoch. The relative error decreases signifi-
cantly, following a similar pattern to the training loss, which demonstrates the accuracy of
our numerical solution. Since the test datasets are chosen randomly, this further validates
the accuracy of our numerical solution across the entire domain; see Fig. 3(b).

• Both the training and test convergence curves exhibit oscillations, which may be caused
by the stochastic gradient method and the periodic change of training points over time.

• With the relative error being less than 1%, it is evident that the numerical solution agrees
well with the exact solution in both the interior and exterior subdomains. The solution
also exhibits small errors on the interface, as shown in Fig. 4.

We also conduct the research on other protein surfaces for the function u0 in Case 1, includ-
ing 1a2s (Figs. 5 and 6), 1a7m (Figs. 7 and 8), 1a63 (Figs. 9 and 10), 1b4l (Figs. 11 and 12),
1bpi (Figs. 13 and 14), and 1bbl (Figs. 15 and 16).

Lastly, we report the errors at the last epoch for all tested protein surfaces in Table 2. The
data represent the relative discrete L2-error calculated over the total dataset on the interface Γ,
in the interior Ω−, the exterior Ω+, and on the boundary ∂Ω. These numerical results validate
the effectiveness of our algorithm.

4.2 Test with Different Exact Solutions

In this section, we present the results for the protein surface with ID 1ajj using different manu-
factured solutions. The numerical performance is compared to the exact solution across Cases 1,
2, and 3. Similar results are observed for other protein surfaces, which are omitted for brevity.

In contrast to Case 1, the solutions in Cases 2 and 3 involve higher frequency, and thus more
sampling points are required to accurately resolve the exact solution. As a result, we enlarge
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(a) (b)

(c) (d)

(e) (f)
FIG. 4: Case 1. Plots for protein ID: 1ajj. (a) True solution u+

0 (Γ), (b) true solution u
−

0 (Γ), (c) numerical
solution u+

0,Θ(Γ), (d) numerical solution u
−

0,Θ(Γ), (e) error on u
+
0,Θ(Γ), and (f) error on u−

0,Θ(Γ).
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FIG. 5: Case 1. Convergence plots of loss functions and relative error for protein ID: 1a2s. (a) Conver-
gences of errors (Training) and (b) relative error (Test).
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(a) (b)
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(e) (f)
FIG. 6: Case 1. Plots for protein ID: 1a2s. (a) True solution u+

0 (Γ), (b) true solution u
−

0 (Γ), (c) numerical
solution u+

0,Θ(Γ), (d) numerical solution u
−

0,Θ(Γ), (e) error on u
+
0,Θ(Γ), and (f) error on u−

0,Θ(Γ).
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FIG. 7: Case 1. Convergence plots of loss functions and relative error for protein ID: 1a7m. (a) Conver-
gences of errors (Training), and (b) relative error (Test).
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FIG. 8: Case 1. Plots for protein ID: 1a7m. (a) True solution u+

0 (Γ), (b) true solution u
−

0 (Γ), (c) numerical
solution u+

0,Θ(Γ), (d) numerical solution u
−

0,Θ(Γ), (e) error on u
+
0,Θ(Γ), and (f) error on u−

0,Θ(Γ).
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FIG. 9: Case 1. Convergence plots of loss functions and relative error for protein ID: 1a63. (a) Conver-
gences of errors (Training), and (b) relative error (Test).
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FIG. 10:Case 1. Plots for protein ID: 1a63. (a) True solution u+

0 (Γ), (b) true solution u
−

0 (Γ), (c) numerical
solution u+

0,Θ(Γ), (d) numerical solution u
−

0,Θ(Γ), (e) error on u
+
0,Θ(Γ), and (f) error on u−

0,Θ(Γ).
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FIG. 11: Case 1. Convergence plots of loss functions and relative error for protein ID: 1b4l. (a) Conver-
gences of errors (Training), and (b) relative error (Test).
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FIG. 12: Case 1. Plots for protein ID: 1b4l. (a) True solution u+

0 (Γ), (b) true solution u
−

0 (Γ), (c) numerical
solution u+

0,Θ(Γ), (d) numerical solution u
−

0,Θ(Γ), (e) error on u
+
0,Θ(Γ), and (f) error on u−

0,Θ(Γ).
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FIG. 13: Case 1. Convergence plots of loss functions and relative error for protein ID: 1bpi. (a) Conver-
gences of errors (Training), and (b) relative error (Test).
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(e) (f)
FIG. 14: Case 1. Plots for protein ID: 1bpi. (a) True solution u+

0 (Γ), (b) true solution u
−

0 (Γ), (c) numerical
solution u+

0,Θ(Γ), (d) numerical solution u
−

0,Θ(Γ), (e) error on u
+
0,Θ(Γ), and (f) error on u−

0,Θ(Γ).
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FIG. 15: Case 1. Convergence plots of loss functions and relative error for protein ID: 1bbl. (a) Conver-
gences of errors (Training), and (b) relative error (Test).
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FIG. 16: Case 1. Plots for protein ID: 1bbl. (a) True solution u+

0 (Γ), (b) true solution u
−

0 (Γ), (c) numerical
solution u+

0,Θ(Γ), (d) numerical solution u
−

0,Θ(Γ), (e) error on u
+
0,Θ(Γ), and (f) error on u−

0,Θ(Γ).

TABLE 2: Case 1. Relative error for different protein surface

ID Rel-Error on Γ Rel-Error inΩ
− Rel-Error inΩ

+ Rel-Error on ∂Ω

1ajj 6.9458e–03 7.1164e–03 1.4358e–02 4.3751e–02
1a2s 9.2936e–03 6.2110e–03 2.2096e–02 1.8781e–01
1a7m 9.8668e–03 7.2240e–03 2.4976e–02 8.3051e–02
1a63 8.4063e–03 6.9132e–03 2.2616e–02 7.2910e–02
1b4l 5.7055e–03 5.6519e–03 2.5829e–02 9.8939e–02
1bpi 7.1478e–03 5.6880e–03 1.7951e–02 6.1308e–02
1bbl 5.6032e–03 5.8930e–03 1.8938e–02 6.9235e–02

the training dataset by increasing the number of sampling points. For the problem in Case 1,
we use NI = 1000, Nb = 2400, N−

i = N+ = 500; for Case 2, we set NI = 1500, Nb =
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3500, N−
i = N+ = 500; and for Case 3, we choose NI = 2500, Nb = 5000, N−

i = 1000,
N+ = 500. The stopping criteria for Case 2 is set the same as Case 1, i.e., either the relative
error falling below 1% or reaching a maximum of 5000 epochs. For Case 3, the maximal epoch
number is adjusted to 20,000.

The convergence profiles for Cases 2 and 3 are shown in Figs. 17 and 18, respectively. As
expected, more severe oscillations are observed as the frequency of the solutions increases. Nev-
ertheless, the numerical solution is able to converge to the true solution with additional epochs.

The numerical solutions and errors on the protein surface are presented in Figs. 19 and 20.
Once again, we observe strong agreement between the true solutions and the approximations,
both inside and outside the interfaces.

Finally, theL2 relative errors at the final epoch on the total dataset are summarized in Table 3.

5. CONCLUSIONS

The PBE is a crucial model for studying electrostatics in molecular biology. Mathematically, it is
a nonlinear elliptic PDE with discontinuous coefficients and delta singularities. Additionally, the
PBE involves complex interface and interface conditions due to the multiscale modeling strate-
gies employed for the protein-solvent system. With the advent of machine learning algorithms,
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FIG. 17: Case 2. Convergence plots of loss functions and the relative error for protein ID: 1ajj. (a) Conver-
gences of errors (Training), and (b) relative error (Test).
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FIG. 18: Case 3. Convergence plot for protein ID: 1ajj. (a) Convergences of errors (Training), and (b)
relative error (Test).
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(a) (b)

(c) (d)
FIG. 19: Case 2. Convergence plots of loss functions and the relative error for protein ID: 1ajj. (a) Numer-
ical solution u+

0,Θ(Γ), (b) numerical solution u−

0,Θ(Γ), (c) error on u
+
0,Θ(Γ), and (d) error on u−

0,Θ(Γ).

(a) (b)

(c) (d)

FIG. 20:Case 3. Plots for protein ID: 1ajj. (a) Numerical solution u+
0,Θ(Γ), (b) numerical solution u

−

0,Θ(Γ),
(c) error on u+

0,Θ(Γ), and (d) error on u−

0,Θ(Γ).
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TABLE 3: Relative error for all tested cases on protein ID: 1ajj

Epochs Rel-Err on Γ Rel-Err in Ω
− Rel-Err inΩ

+ Rel-Err on ∂Ω−

Case 1 807 6.9458e–03 7.1164e–03 1.4358e–02 4.3751e–02
Case 2 4744 3.8763e–03 3.2960e–03 2.7126e–02 6.0950e–02
Case 3 20,000 6.1436e–03 3.3356e–03 2.9388e–02 6.8934e–02

the challenges of nonlinearity, singularity, and, most notably, the intricate geometry of the inter-
face in solving the PBE numerically can be effectively addressed using neural network methods.

In this paper, we proposed a deep learning approach to compute numerical solutions for the
PBE with biologically meaningful interfaces.

Future research can explore several directions. First, the fixed penalty constants for individ-
ual loss terms may be suboptimal; investigating adaptive weights for these losses could enhance
training accuracy. Second, both the sampling and training strategies can be improved. Adap-
tive sampling, focusing on regions with higher loss while reducing sampling in regions with
lower loss may increase training efficiency. For training, exploring optimizers like Levenberg–
Marquardt could potentially yield better accuracy. Finally, as the spatial position of biological
interfaces may depend on time in practice, extending the current framework to handle moving
interface problems is a natural direction for future work.
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