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In a recent article [Phys. Rev. Lett. 133, 033601 (2024)], the coherence time of degenerate
entangled photon pairs (biphotons) generated via backward spontaneous four-wave mixing in a cold
atomic ensemble was shown to be immune to optical loss and dephasing. This finding is crucial for
practical applications in quantum information processing, quantum communication, and networking,
where loss is inevitable. However, the underlying mechanism for this loss- and dephasing-insensitive
biphoton coherence time was insufficiently studied in the previous article, as quantum noise was
not taken into account. In this work, we employ the Heisenberg-Langevin approach to study this
effect and provide a rigorous theoretical proof of the symmetry-protected biphoton coherence by
taking quantum noise into consideration, as compared to the perturbation theory in the interaction
picture.

I. INTRODUCTION

Entangled photon pairs with ultra-narrow bandwidth
and long coherence time play a crucial role in quantum
information processing [1–3], distributed quantum sensor
networks [4, 5], distributed quantum computing [6] and
long distance quantum communication [7, 8], and have
therefore attracted considerable interest [9–12]. In a tra-
ditional scheme, biphoton can be generated using spon-
taneous parametric down-conversion (SPDC) in a non-
linear crystal [13–17], typically resulting in a biphoton
bandwidth of the order of terahertz and a coherence time
of picoseconds. The coherence time of biphoton can be
extended close to 1 µs by placing the nonlinear crystal in-
side a high-finesse optical cavity [18]. Further increasing
the photon pair coherence time in SPDC requires opti-
mizing material properties, engineering phase-matching
conditions, and incorporating high-finesse optical cavi-
ties with precise fabrication techniques, which remain
challenging. On the other hand, using near-resonant
biphoton generation via spontaneous four-wave mixing
(SFWM) in a cold atomic ensemble [10, 19, 20], long-
coherence-time biphotons can be guaranteed by reducing
the group velocity (Vg) of one photon using electromag-
netically induced transparency (EIT) [21–23]. Narrow-
band biphoton generation with a coherence time of 13.4
µs has been demonstrated in the cold atomic system in
free space [11].
In atomic systems, further increasing biphoton coher-

ence time is primarily limited by the inability to achieve
higher atomic density, as well as atomic loss and de-
phasing. In the normal spontaneous four-wave mixing
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(SFWM) scheme [20], the coherence time is constrained
by the exponentially decaying temporal biphoton wave-
form. This decay profile is due to photon pairs generated
at different regions of the atomic ensemble experiencing
varying levels of loss [20, 24]. However, a recent study on
narrowband biphotons generated via a degenerate four-
wave mixing scheme has shown that coherence time can
be preserved by spatial-temporal symmetry even in the
presence of significant atomic loss and dephasing [24].
These findings overcome one of the crucial limiting fac-
tors, loss, in achieving long-coherence-time photon pairs,
opening up new possibilities for practical quantum ap-
plications, e.g., long-distance entanglement distribution,
even in the presence of realistic challenges like loss and
dephasing.
However, previous explanations relied on the simpli-

fied “cartoon” model and a perturbative calculation in
the interaction picture [24]. The role of quantum noise
induced by loss and dephasing is not discussed. In this
work, we employ the Heisenberg-Langevin approach to
comprehensively study the degenerate backward SFWM
process, where Langevin quantum noise has been rigor-
ously incorporated. This type of quantum noise naturally
emerges from the interaction between the system and its
reservoir in open quantum systems and is modeled us-
ing the input-output formalism. By incorporating the
Langevin quantum noise, we establish a rigorous theo-
retical framework and provide a proof of the symmetry-
protected two-photon coherence in the presence of loss
and dephasing.

II. HEISENBERG PICTURE

We consider backward-wave biphoton generation from
a uniform nonlinear medium of length L, as shown in
Fig. 1(a), with photon 1 propagating in the −z direction
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FIG. 1. Cartoon picture of symmetry-protected two-photon
coherence. (a) Backward-wave degenerate biphoton gen-
eration with an identical loss coefficient ³ for photons 1
and 2, propagating in opposite directions, leads to a two-
photon joint probability (coincidence) amplitude attenuation

e−α(L/2+z)e−α(L/2−z) = e−αL, which is independent of the
photon-pair generation position z. (b) Biphoton coherence is
quantified by measuring the two-photon coincidence ampli-
tude as a function of the relative time delay Ä = t1 − t2 =
2z/Vg, corresponding to the arrival-time difference of photons
1 and 2 at the detectors. The coincidence amplitude exhibits
a rectangular waveform with a coherence time of 2L/Vg.

and photon 2 in the +z direction. Both photons ex-
perience the same absorption loss, characterized by the
absorption coefficient ³, and slow group velocity Vg j c,
where c is the speed of light in vacuum. A photon pair
can be generated at any point with uniform probability
within the medium. Two single-photon counters are po-
sitioned at the two ends of the medium (z = −L/2 and
z = L/2) to detect generated photon pairs. For paired
photons generated at position z, the relative time differ-
ence for photon 1 arriving at z = −L/2 and photon 2
arriving at z = L/2 is Ä = t1 − t2 = 2z/Vg, registered as
a coincidence count shown in Fig. 1(b), which displays
a symmetric rectangular-shape two-photon joint prob-
ability amplitude function È(Ä) with a coherence time
determined by 2L/Vg [24], which is twice as long as in
the non-degenerate case (photon 1 and 2 have different
frequencies) [20].
The positive-frequency parts of the generated fields are

quantized as

E
(+)
1 (z, t) =

√

2ℏÉ0

cε0A
â1(z, t)e

−i(É0t+k0z),

E
(+)
2 (z, t) =

√

2ℏÉ0

cε0A
â2(z, t)e

−i(É0t−k0z).

(1)

with k0 = É0/c and A being the single-mode cross-section
area. Under the slowly varying envelop approximation,
the two photon fields are governed by the following cou-
pled Heisenberg-Langevin equations:

i

[(
∂
∂z − 1

Vg

∂
∂t

)
, 0

0,
(

∂
∂z + 1

Vg

∂
∂t

)

] [
â1(z, t)

â 2(z, t)

]

= Ĥ0

[
â1(z, t)

â 2(z, t)

]

+ i
√
2³

[
f̂1(z, t)

f̂ 2 (z, t)

]

,

(2)

where the effective Hamiltonian is

Ĥ0 =

[
i³ »
» −i³

]

, (3)

with » being the (real) nonlinear coupling coefficient, and

f̂1,2 and f̂ 1,2 being the Langevin noise (field) operators

[25], which are introduced due to loss.
Interestingly, the operation on the left side of Eq. (2)

i

[(
∂
∂z − 1

Vg

∂
∂t

)
, 0

0,
(

∂
∂z + 1

Vg

∂
∂t

)

]

(4)

is invariant under the following two transformations: (1)
parity-inversion P: z → −z, and (2) time reversal T:
complex conjugation i → −i, and t → −t. The effective
Hamiltonian Ĥ0 in Eq. (3) also follows parity-time (PT)
symmetry [25–27]. In conventional photonic systems,
balanced gain and loss give rise to their PT symmetry
[28–30]. In the backward degenerate biphoton genera-
tion described in this work, the PT symmetry effectively
“turns” the loss of one mode into “gain” to compensate
for the loss in another mode so that the coherence of the
two-photon joint amplitude is protected.
To derive the biphoton joint probability amplitude

function, we take the following Fourier transform:

â1(z, t) =
1√
2Ã

∫

â1(z,ϖ)e−iϖtdϖ

â2(z, t) =
1√
2Ã

∫

â2(z,ϖ)eiϖtdϖ,

(5)

where we define â1(z,ϖ) ≡ â1(z, É0+ϖ) and â2(z,ϖ) ≡
â2(z, É0−ϖ), fulfilling energy conservation É1+É2 = 2É0.
Then Eq. (2) reduces to

i
∂

∂z

[
â1(z,ϖ)

â 2(z,ϖ)

]

= Ĥ

[
â1(z,ϖ)

â 2(z,ϖ)

]

+ i
√
2³

[
f̂1(z,ϖ)

f̂ 2 (z,ϖ)

]

, (6)

where the modified Hamiltonian is

Ĥ =

[
ϖ
Vg

+ i³ »

» − ϖ
Vg

− i³

]

, (7)

and f̂1(z,ϖ) and f̂ 2 (z,ϖ) are the corresponding Fourier
components of the Langevin field operators.
With vacuum state input, the photon and Langevin

field operators satisfy the following correlations:
〈
â m(z,ϖ1)ân(z,ϖ2)

〉
= 0,

〈
âm(z,ϖ1)â

 
n(z,ϖ2)

〉
= ¶mn¶(ϖ1 −ϖ2),

ïâm(z,ϖ1)ân(z,ϖ2)ð =
〈
â m(z,ϖ1)â

 
n(z,ϖ2)

〉
= 0,

〈

f̂ m(z1, ϖ1)f̂n(z2, ϖ2)
〉

= 0,
〈

f̂m(z1, ϖ1)f̂
 
n(z2, ϖ2)

〉

= ¶mn¶(ϖ1 −ϖ2)¶(z1 − z2),
〈

f̂m(z1, ϖ1)f̂n(z2, ϖ2)
〉

=
〈

f̂ m(z1, ϖ1)f̂
 
n(z2, ϖ2)

〉

= 0.

(8)
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From Eq. (6), we obtain solutions for â1(−L/2) and â2(L/2) [25] (here we omit the variable ϖ for simplifica-
tion):

[
â1 (−L/2)
â 2 (L/2)

]

=

[
A B
C D

] [
â1 (L/2)

â 2 (−L/2)

]

+
√
2³

[
−A 0
−C 1

] ∫ L/2

−L/2

[
Ā1 (z) B̄1 (z)
C̄1 (z) D̄1 (z)

] [
f̂1 (z)

f̂ 2 (z)

]

dz, (9)

where A = 1
Ā(L)

, B = − B̄(L)
Ā(L)

, C = C̄(L)
Ā(L)

,

D = D̄(L) − B̄(L)C̄(L)
Ā(L)

, e−iĤL ≡
[
Ā B̄
C̄ D̄

]

and

e−iĤ(L/2−z) ≡
[
Ā1(z) B̄1(z)
C̄1(z) D̄1(z)

]

.

The two-photon Glauber correlation can be computed
by [31]

G2(Ä) = ïâ 2(L/2, t2)â 1(−L/2, t1)â1(−L/2, t1)â2(L/2, t2)ð
= ïâ 2(L/2, t2)â 1(−L/2, t1)ðïâ1(−L/2, t1)â2(L/2, t2)ð
+ ïâ 2(L/2, t2)â1(−L/2, t1)ðïâ 1(−L/2, t1)â2(L/2, t2)ð
+ ïâ 1(−L/2, t1)â1(−L/2, t1)ðïâ 2(L/2, t2)â2(L/2, t2)ð
= |È(Ä)|2 + |È′(Ä)|2 +R1R2,

(10)
where Ä = t1 − t2. Here, we have applied the Gaussian

moment theorem to decompose the fourth fields corre-
lations to the sum of the products of second-order field
correlations (see supplementary material of Ref. [25]).
One can show that, with our solution in Eq. (9), the sec-
ond term in Eq. (10) vanishes, i.e., È′(Ä) = 0. R1 and
R2 are the photon generation rates for field 1 and field
2, respectively, whose products contribute to the con-
stant background accidental coincidence in G(2)(Ä). The
biphoton temporal wave function, or the two-photon joint
probability amplitude, is determined by

È(Ä) = ïâ1(−L/2, t1)â2(L/2, t2)ð

=
1

2Ã

∫∫

dϖ1dϖ2e
−iϖ1t1eiϖ2t2

× ïâ1(−L/2, ϖ1)â2(L/2, ϖ2)ð

=
1

2Ã

∫

dϖe−iϖÄϕ(ϖ),

(11)

where

ϕ(ϖ) = B(ϖ)D∗(ϖ)
︸ ︷︷ ︸

ϕ0(ϖ)

−2³A(ϖ)

∫ L/2

−L/2

B̄1(z,ϖ)
[
D̄∗

1(z,ϖ)− C∗(ϖ)B̄∗
1(z,ϖ)

]
dz

︸ ︷︷ ︸

ϕ1(ϖ)

.
(12)

The terms in Eq. (12) are

ϕ0(ϖ) =
i»¸∗ sinh (L¸)

|¸ cosh(L¸) + ´ sinh(L¸)|2 , (13)

ϕ1(ϖ) =
i2»³|¸|2

[
cosh(L¸)− cosh

(
L¸∗

)]

(¸2 − ¸∗2) |¸ cosh(L¸) + ´ sinh(L¸)|2

+
i2»³´∗

[
¸∗ sinh(L¸)− ¸ sinh

(
L¸∗

)]

(¸2 − ¸∗2) |¸ cosh(L¸) + ´ sinh(L¸)|2 ,
(14)

with ¸ =
√

´2 − »2 and ´ = ³ − iϖ/Vg. For the bipho-
ton generation with small parameter gain, we take the

approximation ¸ =
√

´2 − »2 ≃ ´, which leads to

ϕ(ϖ) ≃ i»e−(´+´∗)L(e´L − e´
∗L)

´ − ´∗

= i»Le−³Lsinc (ϖL/Vg) .

(15)

The biphoton wavefunction in Eq. (11) becomes

È(Ä) =
i

2
»Vg e

−³L Π(Ä ;−L/Vg, L/Vg) , (16)

where Π is a unit rectangular function defined as Π = 1
for Ä ∈ [−L/Vg, L/Vg] and Π = 0 otherwise. Thus we
analytically derive the biphoton wavefunction from the
Heisenberg-Langevin equations, providing a rigorous the-
oretical foundation for the results presented in Ref. [24].
However, under the same approximation, without

Langevin field, we have

ϕ0(ϖ) ≃ i»Le−2³Lsinc (ϖL/Vg + i³L) , (17)

and its Fourier transformation is

È0(Ä) = e−³Le−³VgÄÈ(Ä), (18)

which shows an exponentially decaying waveform with
the presence of loss. Correspondingly, the Langevin field
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contributes to the wave function with

È1(Ä) = (1− e−³Le−³VgÄ ) È(Ä). (19)

Our analysis reveals that, within the Heisenberg-
Langevin framework, the Langevin field operators play
a critical role not only in preserving the commutation re-
lations of the generated biphoton fields during propaga-
tion and evolution, but also in contributing significantly
to the waveform of biphoton joint probability amplitude.
Despite the presence of loss, which acts as a common at-
tenuation factor on the entire waveform, the two-photon
coherence time, determined by the relative group delay
2L/Vg, is preserved.

III. INTERACTION PICTURE

In the above Heisenberg picture, the state remains in
the vacuum while the field operators evolve over time
and space, and the biphoton wavefunction is computed
from the field correlation in Eq. (11). In this section,
we derive the biphoton state and wave function from the
interaction picture, where the two counter-propagating
fields 1 and 2 with symmetric loss are represented by
their complex wave numbers k1 = −(k0 + ϖ1/Vg + i³)
and k2 = k0+ϖ2/Vg+i³. The generated quantized fields
illustrated in Fig. 1 thus can be expressed as:

â1(z, t) =
e³z√
2Ã

∫

dϖ1â1(ϖ1)e
−iϖ1(t+z/Vg),

â2(z, t) =
e−³z

√
2Ã

∫

dϖ2â2(ϖ2)e
−iϖ2(t−z/Vg),

(20)

where the annihilation operators in frequency domain

satisfy the commutation relation [â1(ϖ), â 1(ϖ
′)] =

[â2(ϖ), â 2(ϖ
′)] = ¶(ϖ − ϖ′). The interaction Hamil-

tonian for the SFWM process can be described as [20]

ĤI = −cε0A
2É0

∫ L/2

−L/2

dz »E
(−)
2 (z, t)E

(−)
1 (z, t) +H.c.

= −ℏ»

∫ L/2

−L/2

dz â 2(z, t)â
 
1(z, t) +H.c.

(21)
As shown in Eq. (20), the symmetric loss induced fac-

tors e³z and e−³z cancel in the product â 2(z, t)â
 
1(z, t).

As a result, the interaction Hamiltonian becomes loss-
independent:

ĤI = −ℏ»L

2Ã

∫∫

dϖ1dϖ2e
i(ϖ1+ϖ2)tsinc

[
(ϖ1 −ϖ2)L

2Vg

]

× â 2(ϖ2)â
 
1(ϖ1)

(22)

Using first-order perturbation theory, we obtain the two-
photon state

|Ψð = − i

ℏ

∫ +∞

−∞

dtĤI(t)|0ð

= i»L

∫∫

dϖ1dϖ2 sinc

[
(ϖ1 −ϖ2)L

2Vg

]

× ¶(ϖ1 +ϖ2)â
 
2(ϖ2)â

 
1(ϖ1)|0ð

= i»L

∫

dϖ sinc (ϖL/Vg) â
 
2(−ϖ)â 1(ϖ)|0ð,

(23)

where the time integration results in Dirac ¶ function,
∫
ei(ϖ1+ϖ2)tdt = 2Ã¶(ϖ1 + ϖ2), indicating energy con-

servation ϖ1 = −ϖ2 = ϖ.
The two-photon wavefunction, defined as the biphoton

joint probability amplitude [20] is

È(Ä) = ï0|â1(t1,−L/2)â2(t2, L/2)|Ψð

=
i»L

2Ã
e−³L

∫

dϖ sinc (ϖL/Vg) e
−iϖÄ ,

=
i

2
»Vge

−³L Π(Ä ;−L/Vg, L/Vg) ,

(24)

which is the same result as Eq. (16) obtained in the
Heisenberg picture.

IV. COMPARISON OF BIPHOTON

WAVEFUNCTION IN TWO PICTURES

In both the Heisenberg and interaction pictures, the
rectangular-shape biphoton waveform derived in Eqs.
(16) and (24) relies on the small-parametric gain approx-
imation » j |´|. This assumption can break down for
large nonlinear coupling ». With large », the perturba-
tive result from the interaction picture to the first or-
der is no longer an accurate description for photon pair
generation, and the Heisenberg picture method is pre-
ferred. To assess the impact of varying », we perform
Heisenberg picture simulations without approximating

¸ =
√

´2 − »2 and plot the results based on Eq. (12),
comparing them with those obtained using the interac-
tion picture formalism (Eq. (24)).
Under the condition » j ³, and ³L = ³(ϖ = 0)L =

0.51 and Vg = Vg(ϖ = 0) = 2.4× 104 m/s, both pictures
yield a rectangular biphoton waveform, as shown in Fig.
2(a), consistent with the analytic results from Secs. II and
III. As » increases, the Heisenberg picture shows clear
deviations from the rectangular waveform. However, the
interaction picture always produces a rectangular shape,
even when it no longer accurately represents the true
waveform—this discrepancy is visible in Fig. 2(c) and
(e).
In realistic experimental systems, the parameters

»(ϖ), ³(ϖ) and Vg(ϖ) vary with frequency. We numeri-
cally simulate biphoton generation in a cold 87Rb atomic
ensemble [24], and observe that the interaction picture
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with perturbation increasingly deviates from the actual
waveform as » grows, while the Heisenberg picture con-
tinues to capture the correct dynamics. This behavior is
illustrated in Fig. 2(b), (d) and (f).
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FIG. 2. Numerical simulations of degenerate biphoton coin-
cidence in interaction picture (I) and Heisenberg picture (H).
Common parameters: loss ³(ϖ = 0)L = 0.51 and group ve-
locity Vg(ϖ = 0) = 2.4 × 104 m/s. The left column (a, c, e)
shows simulations with constant », ³ and Vg, while the right
column (b, d, f) corresponds to simulations based on realistic
experimental conditions [24] with frequency-dependent »(ϖ),
³(ϖ) and Vg(ϖ). Nonlinear coupling is varied, (a) and (b):
»(ϖ = 0)L = 0.03. (c) and (d): »(ϖ = 0)L = 0.87. (e) and
(f): »(ϖ = 0)L = 1.40.

V. ROLE OF LANGEVIN FIELDS

In the Heisenberg picture, as shown in Sec. II, the
Langevin field operators play a critical role in the wave-
form of biphoton joint probability amplitude. If the con-
tribution from Langevin field operators is not taken into
account, the biphoton wavefunction È0(Ä) exhibits expo-
nential decay due to system loss, as shown in Eq. (18).
The Langevin field compensates for this decay and recov-
ers the two-photon coherence, as revealed by Eq. (16). In
this section, we perform numerical simulations to illus-
trate the critical role of the Langevin field in preserving
the coherence time by varying the loss ³.

Similarly to Sec. IV, we simulate the following two
cases: 1) », ³ and Vg are constants, and 2) they are fre-
quency dependent in realistic SFWM experimental con-
ditions [24]. As shown in Fig. 3, for both cases, È0(Ä)
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FIG. 3. Impact of Langevin term on the biphoton waveform
in the Heisenberg picture. Common parameters: nonlinear
coupling »(ϖ = 0)L = 0.03 and group velocity Vg(ϖ = 0) =
2.4 × 104 m/s. The left column (a, c, e) shows simulations
with constant », ³ and Vg, while the right column (b, d, f)
corresponds to simulations based on realistic SFWM experi-
mental conditions [24] with frequency-dependent »(ϖ), ³(ϖ)
and Vg(ϖ). Loss is varied, (a) and (b): ³(ϖ = 0)L = 0.13. (c)
and (d): ³(ϖ = 0)L = 0.51. (e) and (f): ³(ϖ = 0)L = 1.26.

– biphoton wavefunction without taking Langevin field
into consideration, shows reduced coherence time as loss
increases (red dashed lines). However, this effect is com-
pensated for by È1(Ä) – Langevin field contribution to
the biphoton wavefunction (blue dashed lines). There-
fore, the ovreall coherence in biphoton wavefunction È(Ä)
is preserved, as depicted by black solid lines.
Regardless of the loss, the Langevin field consistently

compensates for the loss-induced decoherence, acting as
a “restoring force” that counteracts the effects of loss
and preserves the symmetry and correlation properties of
the generated photon pairs. However, this compensation
comes at the cost of a reduced biphoton generation rate
and signal-to-noise ratio, quantified by |È(Ä)|2/(R1R2),
where R1 and R2 denote the photon generation rates of
photon 1 and photon 2, respectively.

VI. CONCLUSION

In summary, we have established a rigorous theoretical
framework for symmetry-protected coherence in degen-
erate backward biphoton generation, analyzed in both
the Heisenberg and interaction pictures. In the regime
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of small parametric coupling », both approaches yield
the same analytical expression for a rectangular-shaped
biphoton temporal wavefunction, whose coherence time,
2L/Vg, is preserved against loss and dephasing by space-
time symmetry, and depends only on the length of the
medium and the group velocity. The Langevin field plays
a significant role in biphoton coherence time preservation,
which acts as a “restoring force” that counteracts the ef-
fects of loss and preserves the waveform of the generated
photon pairs.
In the regime of strong parametric coupling, the

Heisenberg-Langevin formalism remains valid and cap-
tures the effects of multiphoton processes, which lead to
deviations from the ideal rectangular waveform. In con-
trast, the first-order perturbation theory in the interac-
tion picture becomes inadequate for describing the multi-
photon state, as it neglects higher-order contributions
arising from multiple photon-pair generation. To accu-
rately model higher-order processes in four-wave mix-
ing, one might consider extending perturbation theory
to higher orders using the Dyson series (a Taylor expan-
sion). However, this approach becomes inadequate in the

strong-pump, non-perturbative regime [32–34]. In such
cases, alternative methods like the Magnus expansion,
used in Ref. [35], can better capture the higher-order
effects. Nevertheless, the application of the Magnus ex-
pansion is beyond the scope of this article.

In the backward degenerate biphoton generation,
Parity-Time symmetry is inherent in the system Hamil-
tonian (Eq. (3)), due to the backward propagation of field
1, which effectively turns the “loss” into “gain” to com-
pensate for the loss in field 2. However, the underlying
physics explaining how this symmetry may result in a
coherence-protected biphoton wave function has yet to
be fully explored.
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X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-x. Liu,
Metrology with pt-symmetric cavities: Enhanced sensi-
tivity near the pt-phase transition, Phys. Rev. Lett. 117,
110802 (2016).

[31] R. J. Glauber, Nobel lecture: One hundred years of light
quanta, Rev. Mod. Phys. 78, 1267 (2006).

[32] N. Quesada and J. E. Sipe, Effects of time ordering
in quantum nonlinear optics, Phys. Rev. A 90, 063840
(2014).

[33] N. Quesada and J. E. Sipe, Time-ordering effects in the
generation of entangled photons using nonlinear optical
processes, Phys. Rev. Lett. 114, 093903 (2015).

[34] G. Thekkadath, M. Houde, D. England, P. Bustard,
F. Bouchard, N. Quesada, and B. Sussman, Gain-induced
group delay in spontaneous parametric down-conversion,
Phys. Rev. Lett. 133, 203601 (2024).

[35] S. Blanes, F. Casas, J. Oteo, and J. Ros, The magnus
expansion and some of its applications, Physics Reports
470, 151 (2009).


	Theory of Symmetry-Protected Two-Photon Coherence
	Abstract
	Introduction
	Heisenberg Picture
	Interaction Picture
	Comparison of biphoton wavefunction in two pictures
	Role of Langevin fields
	Conclusion
	Acknowledgments
	References


