by

Article

Experimental Study of LSTM and Transformer Models for Fall
Detection on Smartwatches

Syed Tousiful Haque, Minakshi Debnath, Awatif Yasmin, Tarek Mahmud and Anne Hee Ngu *

Citation: Haque, S.; Debnath, M.;
Yasmin, A.; Mahmud, T.; Ngu, A.
Experimental Study of LSTM and
Transformer Models for Fall Detection
on Smartwatches. Journal Not Specified
2024,1,0. https:// doi.org/

Received:
Revised:
Accepted:
Published:

Copyright: © 2024 by the authors.
Submitted to Journal Not Specified
for possible open access publication
under the terms and conditions
of the Creative Commons Attri-
bution (CC BY) license (https://
creativecommons.org/ licenses/by /

4.0/).

Authors’ address: Syed Tousiful Haque, bgu9@txstate.edu; Minakshi Debnath, stgo0@txstate.edu; Awatif Yasmin,
nuc4@txstate.edu; Tarek Mahmud, tarek_mahmud@txstate.edu; Anne Hee Ngu, angu@txstate.edu,
Department of Computer Science, Texas State University, San Marcos, Texas, USA.

*

Corresponding Author.

Abstract: Falls are the second leading cause of unintentional injury deaths worldwide. While
numerous wearable fall detection devices incorporating AI models have been developed, none of
them are used successfully in a fall detection application running on commodity-based smartwatches
in real time. The system misses some falls and generates an annoying amount of false positives for
practical use. We have investigated and experimented with an LSTM model for fall detection on
a smartwatch. Even though the LSTM model has high accuracy during offline testing, the good
performance of offline LSTM models cannot be translated to the equivalence of real-time performance.
Transformers, on the other hand, can learn long-sequence data and patterns intrinsic to the data due
to their self-attention mechanism. This paper compares three variants of LSTM and two variants of
Transformer models for learning fall patterns. We trained all models using fall and activity data from
three datasets, and the real-time testing of the model was performed using the SmartFall App. Our
findings showed that in the offline training, the CNN-LSTM model was better than the Transformer
model for all the datasets. However, the Transformer is a preferable choice for deployment in real-time
fall detection applications.

Keywords: Fall detection, Deep learning, LSTM, Transformers, Wearables

1. Introduction

Falls are the second leading cause of unintentional injury deaths worldwide. Adults
older than 60, suffer the greatest number of fatal falls [1]. The resultant inactivity caused by
a fall in older adults often leads to social isolation and increased illnesses associated with
inactivity including infections and deep vein thrombosis. Consequently, a large variety of
wearable devices which incorporate fall detection systems have been developed [2-5].

One of the main sensors used in fall detection on a smartwatch is an accelerometer,
which measures the acceleration of an object. Acceleration is the change in velocity over
time, and velocity represents the rate at which an object changes its position. Acceleration
data is commonly used in fall detection because a distinct change in acceleration happens
when a fall occurs. The clustered spikes in Fig. 1 show a unique pattern in the acceleration
data during the time when the fall occurs, which means that falls can be identified in
acceleration data by that pattern. Previously, we have developed a watch-based SmartFall
App using a basic Long Short-Term Memory neural network (LSTM), an recurrent neural
network (RNN) with feedback connections, to detect falls based on the above pattern [6,7].
We have deployed this SmartFall system on a commodity-based Huawei smartwatch which
has been trialed by nine senior participants [8]. Despite the system being welcomed by the
participants in our trials, it still has several limitations, for example, a sudden hand or wrist
movement from some ADLs (Activity of Daily Living) can interfere with the recognition of
fall patterns which resulted in too many false positives for practical use.

Our existing smartwatch-based fall detection system based on the LSTM model is
currently under-performing in real-world testing. As pointed out by [9], there are a few

Version September 19, 2024 submitted to Journal Not Specified

https:/ /www.mdpi.com/journal /notspecified

20

21

2

23

24

25

26

7

28

209

30

31

32

33

34

35

36

a7

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/notspecified

Version September 19, 2024 submitted to Journal Not Specified 20f18

o 20 40 B0 a0 100 120 140

Figure 1. Acceleration from a fall.

inherent challenges in applying deep learning to wearable devices such as smartwatches.

For example, the sensed data could be noisy due to lower precision sensor readings. The
way data are assigned for training may be limiting as well. For example, the LSTM model is
not efficient in processing a long sequence of streaming data. Therefore, input data must be
segmented into windows. If the chosen window size is too small, important signals might
fall outside the range; having the window size too large risks having to process useless
input data that is not relevant to a fall (i.e. background noises). We want to investigate
whether an alternative model called the Transformer model [10] can perform better than
the LSTM fall detection model. One of the primary merits exhibited by the Transformer
architecture in contrast to LSTM is its intrinsic ability to concurrently process data, a
characteristic that effectively mitigates the challenges associated with the processing of long
sequences. This feature significantly enhances the model’s capacity to handle long input
sequences efficiently. Moreover, the self-attention head in the transformer can selectively
focus on different parts of sequential input data, and capture context information that is
important for understanding the meaning of the whole sequence which could outperform
the LSTM model.

We compared three variants of LSTM models with two variants of Transformer models
across three fall datasets. The best LSTM and Transformer model trained offline using the
SmartFallMM dataset (data collected in our lab with a smartwatch as one of the sensors)
is then converted to TensorFlowLite model and deployed on SmartFall App. We are the
first to conduct a real-time evaluation of a TensorflowLite fall detection model using a
real-world SmartFall application. The main contributions of this paper are:

¢ Evaluate the offline trained best variant of Transformer and LSTM models in real-time
on a fall detection application (SmartFall) running on a commodity-based smartwatch
running on WearOS.

* Demonstrate that though CNN-LSTM performs better with F1-score of 86.7% in offline
evaluation, the basic Transformer that has only 82.6% offline F1-score can maintain
better performance in real-time testing making it a more suitable and dependable
model for real-world deployment.

* Demonstrated that both variants of Transformers and LSTMs performed better as the
size of the dataset increases.

* Demonstrated that the Transformer can maintain better recall and generate fewer false
positives in real-time testing. This can be ascribed to its sophisticated capacity or
self-attention to recognize and comprehend the underlying patterns in the data. .

The remainder of this paper is organized as follows. Related works to our research are
described in Section 2. In Section 3, we discuss the architecture of the variants of LSTM and
Transformer models. In Section 4, the methodology for the experiments is discussed. The
computation model is presented in Section 5 while the experimental results are shown and
compared in Section 6. In Section 7, we present our conclusion. Finally, in Section 8, we
discuss future work.

38

30

40

41

42

43

a4

45

46

47

48

49

50

51

52

53

55

57

58

50

60

61

62

63

65

66

67

68

69

T0

71

72

73

74

75

76

7

Version September 19, 2024 submitted to Journal Not Specified 30f18

2. Related Work 78

The early works in fall detection technologies were concentrated on specially built 7
hardware that a person could wear or install in a specific facility [11]. The fall detection
devices in general try to detect a change in body orientation from upright to lying that «
occurs immediately after a large negative acceleration to signal a fall. Those early wearable e
devices are not well-accepted by older adults because of their obtrusiveness and limited e
mobility. However, modern smartphones and smartwatches now contain more sensors than e
ever before. Data from those devices can be collected more easily and more accurately with &
the increase in the computing power of those devices. Smartphones are also widespread
and widely used daily by people of all ages. There has thus been a dramatic increase in &
the research on wearable-based fall detection and prevention in the last few years. This e
is highlighted in the survey paper [12]. The smartphone-based fall detection solutionsin
general collect accelerometer, gyroscope, and magnetometer data for fall detection. Among
the collected sensor data, the accelerometer is the most widely used. The collected sensor «
data were analyzed using two broad types of algorithms. The first is the threshold-based .
algorithm which is less complex and requires less computation power. The second is the
machine learning-based fall detection solutions. The dynamic of the fall of different people o
cannot be captured in any rule-based or threshold-based systems. For example, falls from
older adults are generally considered as "soft falls" verses "hard falls" when a person falls s
from a bike. Moreover, threshold-based algorithms cannot be generalized to the variability o
of falls and ADLs from people of different heights and weights. o

The Support Vector Machine (SVM) learning algorithm has been used for fall detection o
by scholars in the early days in [13]. These scholars used a trunk-mounted tri-axial sensor (a 10
specialized hardware) to collect and sense data. They were able to achieve 99.14% accuracy 1n
with four features using only high-pass and low-pass accelerometer data. They used a 12
0.1-second sliding window to record minimum and maximum directional acceleration in 10
that period for a feature. 104

Other work in fall detection has focused on using multiple sensors attached to the s
subject. For instance, sensors can be placed on the lapel, trunk, ankle, pocket, and wrist. 10
These systems typically show marvelous results of 100% accuracy but lack convenience, 17
and portability, and are too computationally intense for a smartphone due to more data 1
needing to be collected and processed in real-time. 100

There has been a lot of research work on using Recurrent Neural Networks (RNN) or 10
Convolutional Neural Network (CNN) to detect falls in recent years: in [14], the authors 1
describe an RNN architecture in which an accelerometer signal is fed into two Long 1
Short-Term Memory (LSTM) layers, and the output of these layers is passed through two 1s
feed-forward neural networks. The second of these networks produces a probability that 1.
a fall has occurred. The model is trained and evaluated on the URFD dataset [15], which us
contains accelerometer data taken from a sensor placed on the pelvis, and produces a s
95.71% accuracy. The authors also describe a method to obtain additional training data w7
by performing random rotations on the acceleration signal; training a model with this 1.
additional data gives an increased accuracy of 98.57%. 110

The authors in [16] also proposed an RNN to detect falls using accelerometer data 12
only. The core of their neural network architecture consists of a fully connected layer, 1z
which processes the raw data, followed by two LSTM layers, and ends with another fully 12
connected layer. The normalization and dropout layers are introduced in their architecture 1
for generalization. The authors train and test their model with the SisFall dataset [17], 1
which contains accelerometer data sampled at 200 Hz collected from a sensor attached to 1
the belt buckle. In order to deal with a large imbalance in training data, of which ADL's 1
form the vast majority, the authors define a weighted-cross entropy loss function, based 1
on the frequency of each class in the data set that they use to train their model. In theend, 1
their model attains a 97.16% accuracy on falls and a 94.14% accuracy on ADL's. However, 1
it is unrealistic to expect a commodity-based wearable device to sample at 200 Hz in real 120

Version September 19, 2024 submitted to Journal Not Specified 4 0of 18

time because of battery constraints. Moreover, none of these RNN-based models have been
tested or trialed in real world.

Our earlier work [18] compared traditional machine learning (SVM, Naive Bayes)
techniques with deep learning (DL) model, in particular, the Recurrent Neural Network
(RNN), for fall detection using only acceleration data captured through a commodity-based
Microsoft Band wrist-worn watch, and concluded that DL model has better fall detection
performance. The best model we obtained using RNN on our SmartFall dataset [19]
collected with a Microsoft MSBAND watch has an overall accuracy of 86% in the offline test.
Because of its placement on the wrist, a smartwatch will naturally show more fluctuation
in its measurements than a sensor placed on the pelvis or belt buckle. In addition, data
sensed by a commodity watch is noisier than specialized equipment. The computational
power of a smartwatch is constrained and thus we adopted a basic LSTM model with
only two dense layers. Our LSTM model is one of the few models that have been trialed
in the real world [8]. We have also benchmarked a 1D-CNN against stacked/ensemble
LSTM models in [6] and found the stacked LSTM to perform better. This demonstrated
that despite being constrained with a smaller dataset, a deep-learning-based approach can
learn the fall patterns better than traditional machine learning techniques.

In [20], a hybrid of CNN and LSTM architecture called ConvLSTM is proposed.
ConvLSTM can predict falls with a recall of 96% and a precision of 98.69% using SisFall
dataset with 5-fold cross-validation. The CNN layer acts as a feature extractor and provides
an abstract representation of the input sensor data in feature maps. In other words, the CNN
layer captures the spatial relationship in the data while the LSTM layer captures the long-
term temporal relationship. They demonstrated that ConvLSTM outperformed models
that are solely CNN or LSTM. In [21], a DeepConvLSTM was presented for recognizing
two families of human activities, the periodic motion activities such as walking, bicycling
and gestures such as drinking water from a cup on Skoda and OPPORTUNITY datasets.
The DeepConvLSTM achieved the Fl-score of 93% on the OPPORTUNITY dataset. The
resulting model has large parameters and data is sensed from multiple locations of the
body which makes it impractical for real-world use. DeepConvLSTM has also shown
that for sequential data a combination of recurrent LSTM units and Convolutional Neural
Networks can outperform CNN models.

Transformer has recently achieved a state-of-the-art in natural language processing
(NLP) tasks. The popular ChatGPT tool uses Transformer blocks in its architecture. Trans-
former when used in natural language processing has been shown to outperform older
approaches for sentence classification, which made use of conventional RNNs/LSTMs
[22]. Transformer can efficiently process long sequences, it supports parallel computing
with fast computation. Transformers have gained popularity for fall detection recently. For
example, in [23], they demonstrated that using the accelerometer signals of a waist-worn
Inertial Measurement Unit (IMU) can gain a noticeable gain in accuracy of the model of
95.7% using the SisFall dataset. In the Edge Impluse Studio Project [24], a Fall Detection
model trained with the Transformer model using the SisFall dataset was deployed on a
resource-constrained Arduinio microcontroller with an ADXL345 accelerometer sensor.
The model accuracy for fall is around 88%. None of the trained Transformer models have
been tested in the real world.

In the Patch-Transformer Network [25] for fall detection, the network includes a
convolution layer, a transformer encoding layer, a global average pooling layer, and a linear
classification layer. The convolution layer is used to extract local features. Global features
of falls are learned through the multi-head self-attention mechanism in the transformer
encoding layer. The final classification is provided by the linear layer. The accuracy result
obtained using the SisFall dataset for training is 99.86% with a detection time of 0.004
seconds. They demonstrated that an accurate transformer model with a low number of
training parameters and model complexity can be obtained with three attention heads and
a maximum of six encoding layers. They demonstrated that there is an advantage in adding
a CNN layer to a transformer for better detection in fall patterns.

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

155

156

157

158

159

160

161

162

163

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

Version September 19, 2024 submitted to Journal Not Specified 50f18

000000

O
@,
O
O
O
O

Input LSTM Dense Batch
(n=3x64/3x128/3x256) Layer Layer Norm
(o=128) (n=128)

Figure 2. Basic LSTM Architecture.

There is no systematic study that compares fall detection models trained using variants 1
of LSTM and Transformer. In [26], the authors compared LSTM with self-attention to 1
Transformer and concluded that LSTM with self-attention gave better model accuracy than 1
Transformer across four public time series datasets (only one of the datasets is related to 1
fall). However, the trained model is not evaluated in real-time on any wearable device. It 1
is reported in [27] that only 7.1% of fall detection projects performed real-world testing 10
on their models. In particular, we are interested in evaluating whether there is a distinct 1
advantage of using a Transformer over LSTM in obtaining better model accuracy and 1
acceptable real-time performance of the model on a wearable device. For fall detection 1
technologies to be adopted by older adults, the trained offline model must be tested and 104
verified in real world. 105

3. Architecture of Models 196

In the literature, there is no consensus on what is the best LSTM or Transformer 1o
architecture for fall detection using only accelerometer data from a wristwatch. Thereis 1
also no universal standard fall dataset that can be used for comparison. We choose to 1
use three variants of the LSTM model. The first one is the basic LSTM model which has 200
been deployed by us successfully in the SmartFall App running on a Huawei watch, the 2
second is a hybrid CNN and LSTM model that has shown good performance by several 2
scholars, and the last one is LSTM with self-attention. The latter has been compared with 20
the Transformer model in [26] and demonstrated better performance over the Transformer. 20
For the Transformer, we adopted a vanilla Transformer used in our SmartFall App and also 25
a ConFormer from [28]. 206

3.1. LSTM 207

The basic LSTM architecture we used contains an input layer, an LSTM layer, a dense 2
layer, a batch normalization, and an output layer. The input layer contains 3 nodes for the 20
raw data; the accelerometer x,y,z vectors are provided with a variable input shape of (W, 3, 2w
64) where W denotes window size, and 3 signifies the x,y,z values of accelerometer data =n
and 64 is the batch size used. It then feeds through a recurrent LSTM layer and a fully 22
connected dense layer. The output is a sigmoid layer that outputs a predicted probability 2
that a fall has occurred. 214

The Binary Cross Entropy (BCE) with ADAM optimizer is used. RNNs are traditionally 2
trained with backpropagation through time (BPTT), so it is necessary to specify how many s
steps n in the past the network should be trained on. This defines the size of the window W 27
of data points that must be fed to the model at each data sample selection. Figure 2 shows 2
the basic LSTM that we have used in our study. 210

Version September 19, 2024 submitted to Journal Not Specified 6 of 18

6}

QQQQQQ

000000
O

—

Output
(@=2)

0101001010
000000
000000

00000

1D CNN Max Pooling Batch LST™M Dense Batch

Input -
(1=3x64/3x128/3x256) with Reln Nom Layer Layer Nom
(128) (128) (€2))

Figure 3. CNN-LSTM Architecture.

)

@
O
@

O
O

O O
000 O||;| ©
000 QOllj1 © .09
C0C O i @ © C
000 O Q 0=
000 @ ~ @ ©

Figure 4. LSTM with self-attention Architecture.

The CNN-LSTM we used integrates two fundamental neural network components: 2
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. 2z
It starts with a 1D convolutional layer with a ReLU activation function, followed by max- 2z
pooling to capture local patterns in the input sequence. This combination is repeated for 2=
increased feature extraction. A subsequent LSTM layer is introduced to capture long-term 2
dependencies in the data. Dense layers with a ReLU activation follow. Batch normalization 2
is applied throughout the model to enhance training stability. The final output layer 2
employs a sigmoid activation function for binary classification. The model is compiled 2
using BCE and an Adam optimizer. Figure 3 shows the CNN-LSTM that we have used in 2
our study. 220

We implemented another variant of the LSTM model called LSTM w/ self-attention, 2x
a self-attention layer is incorporated into the basic LSTM implementation to enhance its 2a
ability to process time series data. Self-attention is a mechanism that allows the model to 2=
weigh the importance of different parts of the input data. It helps the model to focus on the 2
important time points of the input sequence for making predictions. Here, the output of the 2
LSTM layer is passed to a self-attention layer. This means that the sequential output of the s
LSTM is further processed by the attention mechanism. This addition enriches the model’s 23
capacity to identify crucial patterns in data while maintaining its lightweight nature for 2
wearable devices. The model, still trained using backpropagation through time (BPTT), 2
benefits from this advanced feature, offering a more nuanced understanding of temporal 2
dynamics without compromising efficiency. Figure 4 presents the architecture of LSTM 20
with self-attention that we have used. 21

Version September 19, 2024 submitted to Journal Not Specified 7 of 18

Accelerometer Data Model Output Prediction
Fall Mot fall
[0.00119185 0.99880]
[1083252 0303955 -0.36035156] I [0.00119357 0.99880]
[2053711 0135253 -0.50512695] 2 [0.00117768 0.99882]
[0.0011322 0.99886]
[1543457 0449707 -0.26367188] 3 [0.00108165 0.99891]
[1206543 02512207 -0.02368164] 4 [0.00111737 0.99888]
. [0.00119375 0.99880]
: [0.00122334 0.99877]
[1.083252 0303955 036035156] = [0.00127077 0.99872]
[2053711 -0.135253 -0.50512695] m+1 [0.00130469 0.99869] Heuristic: 0.001188685
[1.543457 0449707 -0.26367188] m+2 [0.00130344 0.99869]
[0.00134393 0.99865]
[0.00137787 0.99862]
[0.00143836 0.99856]
[0.00148912 0.99851]
[0.001563582 0.99843]
[0.00160819 0.99839]
[0.00159367 0.99845]
[0.00157433 0.99857]
[0.00154386 0.99861]

Hewnstic: 0.001483859

Figure 5. Prediction scheme for LSTM model

The fall prediction using all three variants of LSTM-based architecture is made on
a sliding window of data that is W data points in length. Each prediction outputs a
probability of fall between 0 and 1. Fig. 5 depicts the prediction schematic. The model
prediction begins once the number of sensor data points acquired is equal to the number
of the configured window size W. Every model prediction thereafter will only require
additional data points which is the step size S. That means the consecutive windows have
a W — § time step overlap. However, before producing a final prediction, we generate a
heuristic value based on the probabilities produced by the average of 20 consecutive model
predictions. This value is derived from experimentation with values ranging from 1 to 20
with 5 increments. In essence, we compute the average value of 20 consecutive probabilities
and compare this with a pre-defined threshold value. During the training and validation of
the model, a threshold of 0.5 yields the optimal results and is used in the SmartFall App. If
the average probability exceeds this threshold, then it is considered a fall prediction. This
helps to prevent isolated positive model predictions from triggering a false positive.

3.2. Transformer

We implemented the transformer architecture described in [10] that has an encoder-
decoder structure. We chose the encoder part for fall detection since it has been shown in
[29] that the transformer can achieve high accuracy for human activity recognition. This
architecture as shown in Fig. 6 has four encoder layers and four attention-heads in each
layer to balance the model size and performance metrics when deployed on power and
computation-constrained wearable devices. The original transformer also has a decoder
part that generates a new sequence in machine translation. We don’t need any decoder
layers for fall detection as we don’t need to re-construct any new sequences. The attention
mechanism is essential in the transformer model, with multiple attention heads seeking
different relevance definitions or correlations [29]. Multi-head attention(MHA) involves
mapping queries and key-value pairs to an output. In a single attention head, scaled dot
products of queries(Q) and keys(K) are calculated, followed by softmax normalization,
which yields weights that are multiplied by values (V), as shown in equation 1. The output
from multiple attention heads is then concatenated and projected to get the final output as
shown in equation 2. The Multi-Head attention is followed by Layer Normalization and a
skip connection with input before the Multi-Attention.

Layer normalization is a technique used in the Transformer architecture to normalize
the activation of each layer independently, stabilizing training by addressing issues like
vanishing gradients and internal co-variate shift. It improves gradient flow, accelerates
convergence, and reduces sensitivity to hyperparameters. This contributes to the model’s
effective training and enhanced performance. The last layer of the Transformer encoder is
the feed-forward network/module (FEN). It independently processes each position in the

242

243

244

245

246

247

248

249

250

Version September 19, 2024 submitted to Journal Not Specified 8of 18

OUTPUT
T
[MLP |
~
[[Add&Nom \
|
—
[
v h
S)
=
= [Add&]Nm‘m]‘_\
Multi-Head
Attention
FY
|\ /
INPUT

Figure 6. Transformer Architecture

input sequence using equation 3. This step enhances the model’s ability to capture complex
relationships within the data. The output of the last encoder layer is fed into an MLP layer
consisting of three linear layers with 8, 16, and 1 neurons, respectively, to classify falls and
ADLs. The sigmoid function was used as an activation function of the output layer to yield
a probability between 0 and 1.

Attention(Q,K,V) = softmax (Q—KT)V 1)

’ Vi
MHA (Q, K, V) = Concat(head, . .., heady) - W° 2)
FEN(x) = max(0,xW; + b;)W, + b, (3)

The ConvTransformer as shown in Fig. 7 was inspired by [28]. The encoder layer of
it has a sandwich-like structure where two half-feed forward Network(FFN) sandwich
between the Multi-Headed Self-Attention module and the Convolution module. The
sandwich-like architecture was inspired by Macaron-Net[30]. Starting from scratch, the
convolution module combines a ReLU activation with a pointwise convolution. Then, there
is only one 1-dimensional depthwise convolution layer used with swish activation. To
make training deep models easier, batch normalization is added right after the depthwise
convolution process. The sandwich-like structure and convolution module differentiate
ConFormer and basic Transformer. We refer to this architecture as ConvTransformer in this

paper.

4. Methodology
4.1. Dataset

We evaluated variants of LSTM and Transformer on three datasets: UniMib [31],
K-fall [32], and SmartFallMM (https:/ /anonymous.4open.science/r/smartfallmm-4588,
data collected in our lab). Fall is a rare event and it is very labor-intensive to collect large
amounts of fall data. The largest public dataset we found that has the practical sampling
rate for wearable devices, types of falls, and ADLs is the K-fall dataset.

UniMib is a human activity recognition dataset of acceleration data collected from a
smartphone. The data was collected from 30 subjects with ages ranging from 18 to 60 years.

https://anonymous.4open.science/r/smartfallmm-4588

Version September 19, 2024 submitted to Journal Not Specified 90of 18

OUTPUT

MLP
1 -

LayerNorm

Ve \ [PR—

Pointwise
Conv

Swish
Activation

—
ion
e

E
Convolut a2
Modul '

«—

BatchNorm

Encoder

Multi-Head
Attention Relu

Activation |

Pointwise
Conv
—

INPUT

Figure 7. ConvTransformer Architecture

The participants performed 9 types of activities of daily life (ADLs) and 8 types of falls. s
The data was collected at a sampling rate of 50Hz. The participant puts phones in the left s
and right pockets of trousers and hand clapping is used to signal the beginning and end of a7
a fall. We processed this dataset and have all the nine types of ADLs labeled as “NonFall”. s
We only retained the common five fall types that we used in our SmartFallMM fall dataset 10
for ease of comparison. The final number of falls is 710 and ADL:s is 486. 310

The K-fall dataset is built for pre-fall, fall, and post-fall detection. 21 types of activities
of daily life and 15 types of simulated falls were performed by 32 young and healthy
participants. A nine-axis inertial sensor was attached to the participant’s lower back to a2
collect the accelerometer, gyroscopes, and magnetometer data. We did not filter out any s
type of falls so that a reasonably large dataset can be used. In total, K-fall has 5075 motion s
files including 2729 ADLs and 2346 fall. 316

SmartFallMM is a multimodal dataset focused on falls and ADLs data, gathered a7
from 16 student participants (11 male and 5 female) with a median age of 23 and 26 older s
participants (12 male, 14 female) with a median age of 65.5. Our multimodal data collection a1
is approved by IRB 7846 at Texas State University and is the first multi-modal dataset that o
has both older and younger adults” data. We only asked student participants to perform =
falls on an air mattress. All participants must sign consent forms before their data canbe =2
collected. Two modalities are collected using four types of devices. We collected skeleton s
data using Azure Kinect cameras, time-series data such as accelerometer, and gyroscope
using three inertial sensors (i.e. Meta Sensor, Huawei Smartwatch, and Nexus phone). Meta s
Sensor was developed by MBIENTLAB in San Francisco (mbientlab.com). The participant s
wears the Huawei watch on the left wrist and puts the Nexus smartphone on the right hip =
inside a harness. A wrist meta sensor is placed on the right wrist of the participant and the =
hip meta sensor is placed on the left hip of the participant (clips on the belt). This setup

mbientlab.com

Version September 19, 2024 submitted to Journal Not Specified 100f 18

Table 1. Summary of the datasets used

| SmartFalllMM | UniMib | K-fall
#ADLs | 560 | 710 | 2729
#Fall | 400 | 486 | 2346
Subjects | 16 | 30 | 32
Sampling Frequency | 32Hz | 50Hz | 100Hz
Type of devices | Kinect cameras, phone, watch, meta sensors | phone | 9 axis IMU
Device placement | Left and right wrists and hips | Left and right pockets of pants | Lower back

allows us to collect data from four important joints of the human body when a person
moves. Figure 8 shows the positions and the type of sensors used for the data collection.

Phone SmartWatch

@

Motion Capture Camera

@"

Meta
Sensors

Figure 8. Sensors placement on the participants

For the training and comparative purposes of LSTM and Transformer models for fall
detection, we used only the accelerometer data captured at 32Hz from the Huawei watch
worn on the left wrist of the 16 student participants because it has both fall and ADL data.
We do not and cannot collect fall data from older adults. Five types of falls and eight types
of ADL activities are collected. The subset of the SmartFallMM dataset we used has a total
of 560 ADLs and 400 Falls. Table 1 gives a summary of the three datasets used for our
experiments.

4.2. Input Data Processing

We used the sliding window technique to divide the input data into a series of over-
lapping windows. The Algorithm 1 shows the technique used for the sliding window. The
window size W in the equation below indicates how many data points the model sees at
each prediction and the step parameter dictates how far the window moves down during
each iteration of sample selection. We utilized a step size of 10 which allows ten new data
points to be added to every new window created. We have experimented with different
step sizes ranging from one to 50 and found that using a step size of 10, captures more
meaningful information when defining training instances. We experimented with different
window sizes of 64, 128, and 256 in our study.

5. The Computational Model
5.1. Hyperparameters

We train the models using TensorFlow on Dell Precision 7820 Tower with 256 GB
RAM and one GeForce GTX 1080 GPU. We try to keep similar hyper-parameters for both
variants of models as much as possible. However, due to the salient differences in their

330

331

340

350

351

352

353

Version September 19, 2024 submitted to Journal Not Specified 110f 18

Algorithm 1 Sliding Window Algorithm

: Input: Input dataframe df, window size W, step size step

: Output: Output dataset of all windows windows

: Initialize an empty array windows

: fori <— 0: step :length of activity do
Set currentWindow as the subarray of df from indexitoi+ W —1
Append currentWindow to windows

end for

N W o W N e

Table 2. Hyper Parameters

Names Models
Transformer* LSTM*
Learning Rate .001 .001
Epochs 100 100
Batch Size 64 64
Optimizer Adam Adam
Loss Function BCE BCE
Encoder 4 -
MHA Heads 4 -
MHA Dim 128 -
MLP Dimension 16 128

architecture, some differences are unavoidable. The best hyperparameters used for the
variants of Transformer and LSTM are listed in Table 2.

5.2. Training and Evaluation

As our dataset is not very large, we employed a Leave-One-Out strategy, wherein the
entire set of activities associated with a particular individual is reserved exclusively for
testing. This strategic maneuver ensures that the model remains entirely unexposed to any
data emanating from a given participant during the training phase. By adopting such an
approach, we effectively mitigate the risk of data leakage, thereby having a more reliable
and robust assessment of model generalization on unseen data.

5.3. Evaluation Metric

To evaluate and compare the performance of Transformer and LSTM, we look at F1
score, Precision, Recall and Accuracy. These metrics are defined as:

Precision = i
" TP+ FP
TP
Recall = —————
= TPIIN

2 x Recall * Precision

F1_Score = Recall + Precision
Accuracy = e
Y= TP¥TIN+FP+EN

True Positive(TP) occurs when the model correctly predicts a positive instance, such as accu-
rately detecting a fall. True Negative (TN) is when the model correctly predicts a negative
instance(ADL for our case). False Positive is the case when the model erroneously predicts
a negative data sample as positive and False Negative is the opposite case. While Precision
assesses the accuracy of positive prediction, Recall quantifies the correct identification of

354

355

356

357

358

350

366

367

360

3T

kTh Y

rz

373

Version September 19, 2024 submitted to Journal Not Specified 12 0f 18

SmartFall App
Fell
clicked

FALL DETECTION

OFF

clicked notified Yes

Fall oo/ ID YOU FALL?

timer

| - Timer | HELP IS ON THE
() AcTIvATE VES up WAY
L ——

&

Figure 9. User Interface of SmartFall App for Real-time Evaluation

real positives. F1-Score is a harmonic mean of precision and recall to provide a balanced
measure of model performance.

5.4. Model Evaluation Method

The experiment explores two forms of model evaluation. The traditional offline
machine learning model evaluation and the real-time evaluation with the SmartFall App
which is a fall detection application developed in our lab. In the offline model evaluation
phase, a model is trained on a training dataset, tested on a validation set to get the best
hyper-parameters, and used the best-validated model on the test data.

We selected only the two best Transformer and LSTM models trained on the Smart-
FallMM dataset for real-time evaluation. The model trained with a window size of 128
has the highest F1 score for both the Transformer and LSTM and was chosen for real-time
evaluation. The models trained with UniMib and K-fall cannot be used for real-time testing
by the SmartFall App [33] because the data were not collected using a smartwatch at a
wrist position.

Fig. 9 shows the phone and watch’s Ul of the SmartFall application. After pairing
the phone and the watch, as soon as the user presses "activate” on the phone’s UlI, the
sensor on the watch will sense the accelerometer data from the watch continuously. Model
predictions (i.e., predictions produced by the neural architecture) begin once the number of
sensor data points acquired is equal to the defined window size.

We recruited three student participants for the real-time evaluation of LSTM and
Transformer models at our lab. Our real-time evaluation of the model is also covered under
the IRB 7846 at Texas State University. We asked each student participant to sign a consent
form. The consent form gives the student participant the information on why this research
study is being done and describes what they will need to do to participate as well as any
known risks, inconveniences, or discomforts that they may have while participating. Each
student participant is asked to wear the watch on the left wrist and perform the five types
of falls on a 12-inch high queen-size air mattress. The same participant is also asked to
perform eight prescribed lists of ADLs.

Version September 19, 2024 submitted to Journal Not Specified 130f 18

Table 3. Offline Evaluation with three datasets

Dataset Window Metrics Transformers LST™M
Size Transformers | ConvTransformers | LSTM | CNN-LSTM | LSTM w /self-Attn
Precision 84.9 64.1 64.8 74.7 71.3
64 Recall 65.8 72.3 77.2 89.4 82.1
F1-Score 74.0 67.9 71.2 81.3 76.3
Precision 88.9 74.4 76.5 83.2 76.5
SmartFallMM 128 Recall 77.0 83.1 83.2 92.5 82.9
F1-Score 82.6 78.5 79.7 87.6 79.6
Precision 78.3 72.9 64.3 83.5 75.2
256 Recall 84.0 89.0 76.8 79.2 79.6
F1-Score 81.1 80.8 70.1 81.3 77.3
Precision 79.1 78.4 84.1 94.4 85.0
64 Recall 75.5 80.5 89.1 93.6 89.3
F1-Score 77.2 79.4 86.1 93.7 87.1
Precision 84.8 85.6 71.3 83.1 85.8
UniMib 128 Recall 77.2 87.7 88.4 91.2 93.5
F1-Score 80.8 86.6 79.1 87.5 89.4
Precision 70.1 79.0 61.3 85.4 81.1
256 Recall 83.9 85.0 81.2 96.1 86.1
F1-Score 76.4 81.9 70.2 90.3 83.6
Precision 82.6 72.5 82.4 83.5 78.8
64 Recall 84.9 86.3 78.7 81.5 83.9
F1-Score 83.8 78.8 80.1 82.2 80.1
Precision 84.8 81.1 89.1 85.4 81.0
K-fall 128 Recall 86.8 89.0 85.6 89.1 89.2
F1-Score 85.8 84.9 87.3 87.4 84.3
Precision 88.5 93.4 95.3 93.1 91.5
256 Recall 93.5 95.7 89.6 96.3 93.1
F1-Score 90.9 94.0 92.2 95.5 92.3
6. Results

6.1. Results of Traditional Offline Model Evaluation

Table 3 showed the performance of five different machine learning models across
three datasets: SmartFallMM, UniMib, and K-fall, with varying window sizes of 64, 128,
and 256. The performance metrics used for comparison were precision, recall, and Fl-score.

As shown in Table 3, on the SmartFallMM dataset, the models demonstrated varied
performance across different window sizes. The basic Transformer model exhibited an
increase of 8.6% in Fl-score with the window size increasing from 64 to 128. The basic
Transformer model has the highest F1-score of 82.6% with a window size of 128,

The basic LSTM showed a relatively lower Fl-score across all window sizes, indicating
that simple recurrent structures might not be sufficient for the complexity of the task. The
CNN-LSTM performed at higher Fl-scores. The best-performing variant of the LSTM
model is CNN-LSTM with a score of 87.6% at the window size of 128. A 7.2% improvement
in Fl-score for the LSTM with attention for windows size of 256, compared to the basic
LSTM, indicates that self-attention effectively captures relationships between different
timesteps.

Results on the UniMib dataset were less consistent. The basic Transformer model
improved by 3.6% going from a window size of 64 to 128. The ConvTransformer showed
its highest F1-score of 86.6% at the mid-window size of 128, suggesting a balance between
input sequence length and the influence of spatial model capability. The LSTM models,
particularly the CNN-LSTM and LSTM with self-attention, again demonstrated strong
performance, with the CNN-LSTM performing at the highest Fl-score (93.7%) with the

422

423

Version September 19, 2024 submitted to Journal Not Specified 140f 18

Table 4. Realtime evaluation with SmartFallMM

| Metrics | Transformer | CNN-LSTM

Precision 65.7 53.1

.. Recall 100 100
Participant1 | gy e 78.7 69.2
Accuracy 80.0 66.1

Precision 73.5 55.5

.. Recall 100 100
Participant2 | gy o ore 843 70.9
Accuracy 86.1 69.2

Precision 52.0 504

.. Recall 100 88.0
Participant 3 | gy o ire 68.4 70.6
Accuracy 64.6 76.9

Precision 63.7 56.0

A Recall 100 96.0
verage Fl-score 77.1 70.2
Accuracy 76.9 70.7

smallest window size of 64. This might suggest that when the dataset is small, the influence s
of the convolutional layer is stronger. a2

For the K-fall dataset, the trend shifted with the ConvTransformer achieving the s
highest F1-score of 94.0% at the largest window size of 256, surpassing the basic Transformer
model by 4% at that window size. Moreover, the recall and precision are both above the 90%. s
A similar trend is observed in all the variants of LSTM models. The better performance of sz
models with a larger window size in K-fall can be attributed to the higher sampling rate of 4.
K-fall data. K-fall has a sampling rate of 100Hz which is double that of UniMib with 50Hz :a
and SmartFallMM with 32Hz. As the K-fall had more data points per second, a bigger s
window size can accommodate the whole duration of the fall sequence better. a3

K-fall is the largest dataset we used and our experimental results thus indicate that s
there is a definite increase in Fl-score by training with a bigger dataset across all the variants s
of transformer and LSTM. The model trained with the bigger dataset, also presented the s
most balanced and consistently high precision and recall. For the offline test, the CNN- 4
LSTM which can learn both the spatial and temporal nature of the data performs better than s
both the basic Transformer and ConvTransformer. We believe this might be because the 4
transformers don’t have any inductive bias for temporal information and ConvTransformer 4o
only has bias for spatial information. a1

6.2. Results of Real-time Evaluation a2

For the real-time evaluation of the models, we choose the best-performing offline s
model of transformer and LSTM trained using SmartFallMM dataset with a window size of s
128 as shown in Table 3. We use the terms Transformer and basic Transformer synonymously s
here for ease of reference. The performance of each model for three young adults is shown s
in Table 4. Each participants performed each activity five times. The outcome is recorded as s
"Yes" if a true positive is detected. The Transformer model consistently outperformed the s
CNN-LSTM model for all three participants. For the Participants 1 and 2, the Transformer s
outperforms CNN-LSTM across all evaluation metrics. Although, for Participant 3, the 4
CNN-LSTM performs better in terms of Fl-score by 2.2% , it misses some falls. In addition, =
the average Fl-score (77.1%) of the Transformer in real-world test is closer to the Fl-score s
(82.6%) of the Transformer model trained offline. However, that is not the case for the CNN- s
LSTM model which has an offline Fl-score of 87.6% but only achieved a 70.2% Fl-score in s
a real-world test. This indicates that only the Transformer model can transfer the offline s
model result to the real world. 456

Version September 19, 2024 submitted to Journal Not Specified 150f18

Table 5. Real Time Evaluation Using SmartFall App.

| Transformer | CNN-LSTM

| Trial1 Trial2 Trial 3 Trial4 Trial5 | Trial1 Trial2 Trial3 Trial4 Trial5

Front Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Back Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Participant 1 Left Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Right Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Rotate Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Front Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Back Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Participant 2 Left Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Right Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Rotate Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Front Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Back Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Participant 3 Left Fall Yes Yes Yes Yes Yes Yes No No Yes Yes
Right Fall Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Rotate Fall Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

To analyze the model’s performance in more detail, we examined the individual fall s
activities” detection outcomes, as displayed in Table 5. By examining the table, it becomes 45
evident that certain falls are readily identifiable, as both models exhibit comparable accuracy s
in these cases. The main difference between the Transformer and LSTM is imminent in case 40
of detecting the Left and Right falls. For instance, both models detected Front, Back, and s
Rotate falls. For all 3 participants, the Transformer does not miss any of the falls. Whereas,
CNN-LSTM missed one Left fall and two Right falls for Participant 3. 463

The three participants also performed eight ADL activities with a repetition of five of s
each activity which amounts to 40 activities in total for each participant. For the Transformer, s
the number of false positives for Participant 1 is 13/40, Participant 2 is 9/40 and Participant s
3 is 23/40. For the CNN-LSTM model, the false positives for Participant 1 is 11/40, s
Participant 2 is 20/40 and Participant 3 is 15/40. This again indicates that the Transformer s
can classify ADLs better than CNN-LSTM which is reflected in the lower precision scores s
of CNN-LSTM across the three participants. 470

The low F1-score obtained when evaluating the CNN-LSTM model in real-time sce-
narios indicates that the model struggles to effectively apply its learned capabilities to s
the real world. Though a CNN-LSTM model with a high 87.6% Fl-score was deployed 4
on the SmartFall App for real-time evaluation, none of the three participants achieved s
F1-score close to that. The highest achieved Fl-score is 70.9% by Participant 1. In contrast,a
Transformer model can maintain almost the same high level of F1-score in real-time circum- 7
stances. This suggests that the Transformer model inherits the capability of successfully .«
putting into practice what it has learned and adapted to the dynamic nature of the real-time
environment, demonstrating its robustness and reliability for deploying to edge devices. 7

7. Conclusions 280

We assessed the performance of five deep learning models” performance on three
fall datasets and evaluated the real-time performance of the best model trained with s
SmartFallMM data from the variants of LSTM and the Transformer using our SmartFall s
App. The real-time evaluation confirm that the Transformer outperforms LSTM in dynamic s
real-world scenarios. To the best of our knowledge, we are the first to perform comparative s
studies involving real-time testing of deep learning-based fall detection models on a s
smartwatch. The only other real-world test of a fall detection App on a smartwatch is with s
a model using a threshold-based algorithm [34] that achieved a recall of 77%. This means a s
threshold algorithm missed 23% of falls in the real-world test while a deep learning-based ss
model has almost 100% recall based on our real-world evaluation. The real-world testis s
performed using Huawei watch, but our system is not restricted to the Huawei brand of s

Version September 19, 2024 submitted to Journal Not Specified 16 of 18

watch. We have used TicWatch in other real world evaluation studies. Any smartwatch
that runs WearOS can be used.

Our findings showed that in the offline training, the CNN-LSTM model was better
than the basic Transformer model for all the datasets and all the windows in F1 scores. This
is due to the joint spatial and temporal inductive bias on the CNN-LSTM. In Transformers,
due to the lack of inductive biases, it needs a lot of data to gain optimal performance.
This is observable in the K-fall dataset, as Transformer achieved an Fl-score of 94.0% for
256 window size. The transformer might need an even larger dataset to outperform the
CNN-LSTM.

For the real-world test, CNN-LSTM produces a higher number of false positives
than Transformers showing that Transformers can learn complex patterns better due to
exploring the relationships in data via the attention heads. The drop in F1-score is 5.5% for
Transformer in the real-time test which is much smaller than CNN-LSTM'’s 17.4% which
makes the Transformer a more reliable model.

When running the trained model on an edge device like an Android phone, there is a
need to convert the trained TensorFlow model to a TensorFlow Lite version. As TensorFlow
Lite is a compressed version of the original model, there will be a reduction in model
accuracy. This is confirmed by the fact that the F1 scores from all three participants were
lower in the real-time test across both types of models.

Based on our experiments comparing the Transformer and LSTM, our findings suggest
that the Transformer may be a preferable choice for deployment in real-time fall detection
applications. This comparison could offer valuable insights to future researchers aiming to
transition their offline deep learning models into real-world testing. In scenarios like fall
detection, it’s crucial to consider the feasibility of implementing such models in practical
applications, making this a significant consideration. This study also demonstrated that
models trained from data collected from a wrist position performed worse than data
collected from the hips and lower back. This indicates the challenges of using only the
wrist data for fall detection.

The metric we used for comparison is restricted to model accuracy such as precision,
recall, and F1-Score. The power consumption and inference time are not within the scope
of this study. Interested readers can refer to our recent paper “An Empirical Study on Al-
Powered Edge Computing Architectures for Real-Time IoT Applications” in [33] regarding
the impact of software architecture on the power consumption, inference latency, and
model accuracy.

8. Future Work

Although the transformer model outperforms CNN-LSTM in terms of our assessment
scores in the real-world test, the studied model has been trained so far on only a small-scale
dataset and there are still far too many false positives. To the best of our knowledge,
a larger dataset than SmartfallMM collected using a smartwatch as the sensor is not
publicly available at the moment. Since Transformers are known to perform well with
bigger datasets, one of our immediate future goals is to increase the size of our dataset by
leveraging techniques such as data augmentation, generative models, or extracting from
videos of people falling to augment our dataset [35]

Our real-world test is conducted with three participants. To further validate our
conclusion that the Transformer is preferable for real-world deployment, we will recruit
10 more participants to validate the rate of true positives and false positives of the model
this year. Our longer-term goal is to leverage SmartFallMM, the multimodal dataset we
collected for multi-modal learning and to create a fall detection model that can leverage
this dataset consisting of skeleton and accelerometer data during training and can make
inferences only using accelerometer data from the wrist via the knowledge distillation
method.

510

511

512

513

514

515

516

517

518

519

Version September 19, 2024 submitted to Journal Not Specified 17 of 18

FallMM dataset.

References

1. Falls, World Health Organization howpublished=www.who.int/news-room /fact-sheets/detail /fall, note = Accessed: 13 June
2023.

2. Tacconi, C.; Mellone, 5.; Chiari, L. Smartphone-based applications for investigating falls and mobility. In Proceedings of the 2011
5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, May 2011,
pp. 258-261. https://doi.org/10.4108 /icst.pervasivehealth.2011.246060.

3. Chen, L;Li, R;; Zhang, H ; Tian, L.; Chen, N. Intelligent fall detection method based on accelerometer data from a wrist-worn
smart watch. Measurement 2019, 140, 215 — 226. https:/ /doi.org/https://doi.org/10.1016/j.measurement.2019.03.079.

4. Medical Life Alert Systems. http://www.lifealert.com.

5. Mobilehelp Smart. https:/ /www.mobilehelp.com /pages/smart. Accessed: 2019-11-18.

6. Mauldin, T.R.; Ngu, A.H.; Metsis, V.; Canby, M.E. Ensemble Deep Learning on Wearables Using Small Datasets. ACM Trans.
Comput. Healthcare 2021, 2. https://doi.org/10.1145/3428666.

7. Mauldin, T.R.; Canby, M.E.; Metsis, V.; Ngu, A.H.; Rivera, C.C. SmartFall: A Smartwatch-Based Fall Detection System Using
Deep Learning. Sensors 2018, 18.

8. Ngu, A.H.; Metsis, V.; Coyne, 5.; Srinivas, P.; Mahmud, T.; Chee, K.H. Personalized Watch-Based Fall Detection Using a Collabora-
tive Edge-Cloud Framework. International Journal of Neural Systems 2022, 32, 2250048, [https: / /doi.org/10.1142/50129065722500484].
PMID: 35972790, https: / /doi.org,/10.1142/50129065722500484.

9. Guan, Y; Pl6tz, T. Ensembles of Deep LSTM Learners for Activity Recognition Using Wearables. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 2017, 1, 11:1-11:28. https://doi.org/10.1145/3090076.

10. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need.
In Proceedings of the Advances in Neural Information Processing Systems; Guyon, L; Luxburg, U.V,; Bengio, S.; Wallach, H.;
Fergus, R.; Vishwanathan, S.; Garnett, R., Eds. Curran Associates, Inc., 2017, Vol. 30.

11. Nahian, M.].A.; Raju, M.H,; Tasnim, Z.; Mahmud, M.; Ahad, M.A.R.; Kaiser, M.S. Contactless fall detection for the elderly.
Contactless Human Activity Analysis 2021, pp. 203-235.

12. Habib, M.A; Mohktar, M.S.; Kamaruzzaman, S.B.; Lim, K.S.; Pin, TM.; Ibrahim, E Smartphone-based solutions for fall detection
and prevention: challenges and open issues. Sensors 2014, 14, 7181-7208.

13. Liu, S.H.; Cheng, W.C. Fall Detection with the Support Vector Machine during Scripted and Continuous Unscripted Activities.
Sensors 2012, 12, 12301. https://doi.org/10.3390/s120912301.

14. Theodoridis, T.; Solachidis, V.; Vretos, N.; Daras, . Human fall detection from acceleration measurements using a Recurrent
Neural Network. In Precision Medicine Powered by pHealth and Connected Health; Springer, 2018; pp. 145-149.

15. Kwolek, B.; Kepski, M. Human fall detection on embedded platform using depth maps and wireless accelerometer. Computer
methods and programs in biomedicine 2014, 117, 489-501.

16. Musci, M.; De Martini, D.; Blago, N.; Facchinetti, T.; Piastra, M. Online Fall Detection using Recurrent Neural Networks. arXiv
preprint arXiv:1804.04976 2018.

17. Sucerquia, A.; Lépez,].D.; Vargas-Bonilla, J.E SisFall: A fall and movement dataset. Sensors 2017, 17, 198.

18. Khojasteh, S.B.; Villar,].R.; Chira, C.; Gonzélez, V.M.; de la Cal, E. Improving Fall Detection Using an On-Wrist Wearable
Accelerometer. Sensors (14248220) 2018, 18, N.PAG.

19. Fall data collected using Microsoft Band Smartwatch. http://www.cs.txstate.edu/~hn12/data/SmartFallDataSet. Accessed:
2019-04-18.

20. Yu, X.;Qiu, H; Xiong, S. A Novel Hybrid Deep Neural Network to Predict Pre-impact Fall for Older People Based on Wearable
Inertial Sensors. Frontiers in Bioengineering and Biotechnology 2020, 8. https:/ /doi.org/10.3389/ fbioe.2020.00063.

21. Ordéfiez, EJ.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity
Recognition. Sensors 2016, 16. https: //doi.org/10.3390/s16010115.

22. Vaswani, A; Shazeer, N.; Parmar, N.; Uszkoreit,].; Jones, L.; Gomez, A.N.; Kaiser, £..; Polosukhin, I. Attention is all you need. In
Proceedings of the NIPS, 2017.

23. Mohammed Sharook, K.; Premkumar, A.; Aishwaryaa, R.; Amrutha,].M.; Deepthi, L.R. Fall Detection Using Transformer Model.
In Proceedings of the ICT Infrastructure and Computing; Tuba, M.; Akashe, S.; Joshi, A., Eds., Singapore, 2023; pp. 29-37.

24. Fall Detection Using A Transformer. https://www.edgeimpulse.com/blog/save-yourself-a-trip-fall-detect-using-a- transformer-
model, note= Accessed: 2023-08-14.

25. Wang, S.; Wu,]J. Patch-Transformer Network: A Wearable-Sensor-Based Fall Detection Method. Sensors 2023, 23. https:

Acknowledgment

We thank the National Science Foundation for funding the research under the NSF-
SCH (21223749). We also thank the summer 2023 REU students Jamee Labberaton and
Vasilisa Ignatova for conducting an initial study on this subject and for labeling the Small-

/ /doi.org/10.3390/s23146360.

553

555

556

557

558

550

561

562

568

560

570

571

572

573

574

575

576

577

578

579

www.who.int/news-room/fact-sheets/detail/fall
https://doi.org/10.4108/icst.pervasivehealth.2011.246060
https://doi.org/https://doi.org/10.1016/j.measurement.2019.03.079
http://www.lifealert.com
https://www.mobilehelp.com/pages/smart
https://doi.org/10.1145/3428666
http://arxiv.org/abs/https://doi.org/10.1142/S0129065722500484
https://doi.org/10.1142/S0129065722500484
https://doi.org/10.1145/3090076
https://doi.org/10.3390/s120912301
http://www.cs.txstate.edu/~hn12/data/SmartFallDataSet
https://doi.org/10.3389/fbioe.2020.00063
https://doi.org/10.3390/s16010115
https://www.edgeimpulse.com/blog/save-yourself-a-trip-fall-detect-using-a-transformer-model
https://www.edgeimpulse.com/blog/save-yourself-a-trip-fall-detect-using-a-transformer-model
https://www.edgeimpulse.com/blog/save-yourself-a-trip-fall-detect-using-a-transformer-model
https://doi.org/10.3390/s23146360
https://doi.org/10.3390/s23146360
https://doi.org/10.3390/s23146360

Version September 19, 2024 submitted to Journal Not Specified 18 of 18

26.

27.

28.

29.

30.

31.

32

33.

34.

35.

Katrompas, A.; Ntakouris, T.; Metsis, V. Recurrence and self-attention vs the transformer for time-series classification: a
comparative study. In Proceedings of the International Conference on Artificial Intelligence in Medicine. Springer, 2022, pp.
99-109.

Chaudhuri, S.; Thompson, H.; Demiris, G. Fall Detection Devices and their use with Older Adults: A Systematic Review. Journal
of Geriatric Physival Therapy 2014, 37, 178-196.

Gulati, A.; Qin, J.; Chiu, C.C.; Parmar, N.; Zhang, Y.; Yu, J.; Han, W.; Wang, S.; Zhang, Z.; Wu, Y; et al. Conformer: Convolution-
augmented Transformer for Speech Recognition 2020.

Maray, N.; Ngu, A.H.; Ni, J.; Debnath, M.; Wang, L. Transfer Learning on Small Datasets for Improved Fall Detection. Sensors
2023, 23. https://doi.org/10.3390/s23031105.

Lu, Y;Li, Z.; He, D.; Sun, Z.; Dong, B.; Qin, T.; Wang, L.; Liu, T.Y. Understanding and improving transformer from a multi-particle
dynamic system point of view. arXiv preprint arXiv:1906.02762 2019.

Micucci, D.; Mobilio, M.; Napoletano, P. UniMiB SHAR: A Dataset for Human Activity Recognition Using Acceleration Data
from Smartphones. Applied Sciences 2017, 7. https://doi.org/10.3390/app7101101.

Yu, X;; Jang, J.; Xiong, S. A large-scale open motion dataset (KFall) and benchmark algorithms for detecting pre-impact fall of the
elderly using wearable inertial sensors. Frontiers in Aging Neuroscience 2021, 13, 692865.

Yasmin, A.; Mahmud, T.; Debnath, M.; Ngu, A. An Empirical Study on Al-Powered Edge Computing Architectures for Real-Time
IoT Applications. In Proceedings of the IEEE Computers, Software, and Applications Conference (COMPSAC 2024), 2023.
Brew, B.; Faux, 5.G.; Blanchard, E. Effectiveness of a Smartwatch App in Detecting Induced Falls: Observational Study. JMIR
Form Res 2022, 6, €30121. https:/ /doi.org/10.2196/30121.

DATABRARY - VIDEOS OF FALLS IN LONG TERM CARE. https:https: / /www.sfu.ca/ipml/research/data-sharing. html.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/ or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

500

600

601

602

610

611

612

613

614

615

616

617

618

619

620

621

https://doi.org/10.3390/s23031105
https://doi.org/10.3390/app7101101
https://doi.org/10.2196/30121
https:https://www.sfu.ca/ipml/research/data-sharing.html

	Introduction
	Related Work
	Architecture of Models
	LSTM
	Transformer

	Methodology
	Dataset
	Input Data Processing

	The Computational Model
	Hyperparameters
	Training and Evaluation
	Evaluation Metric
	Model Evaluation Method

	Results
	Results of Traditional Offline Model Evaluation
	Results of Real-time Evaluation

	Conclusions
	Future Work
	References

