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 The limited availability of real-world time-se-
ries data in clinical settings presents considerable 
obstacles to the development of effective AI models 
for medical diagnosis and preventative health care. 
In addressing this issue, generative AI models, such as 
generative adversarial networks (GANs) [4], [8] and 
variational autoencoders (VAEs) [6], have demon-
strated potential in producing realistic data. None-
theless, current methodologies frequently encounter 
difficulties in reconciling local and global temporal 
correlations, especially within chaotic physiologi-
cal data. This study presents TransConv-DDPM, an 
advanced generative model derived from denois-
ing diffusion probabilistic models (DDPMs) [3] to 
address this gap. This model incorporates multiscale 
convolution modules [7] and a transformer layer [5] 
to proficiently capture intricate temporal patterns in 
time-series data.

The TransConv-DDPM architecture builds on 
a U-Net design with two significant innovations: 
a transformer layer for long-range temporal rela-
tionships and multi-scale convolution modules for 
extracting features at different temporal resolutions. 
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These components work together to handle the com-
plex dynamics of physiological processes, as well as 
to generate realistic, diverse time-series data. The 
model uses the Gaussian diffusion process to gradu-
ally add and eliminate noise from data distributions, 
allowing for the synthesis of high-fidelity sequences. 
Figure 1 illustrates the training and generation pro-
cesses of the TransConv-DDPM model, highlighting 
the diffusion and denoising steps.

Experiments were performed utilizing datasets 
such as the Stick Balancing dataset [2] and the 
SmartFallMM dataset [1]. Quantitative assessments 
demonstrated that TransConv-DDPM surpassed base-
line models, including regular DDPMs and TimeGAN 
[4], across parameters such as dynamic time warp-
ing (DTW), Fréchet inception distance (FID), and 
Correlation Score. An ablation study highlighted the 
combined effectiveness of transformers and mul-
ti-scale convolutions in improving generation qual-
ity. Table 1 summarizes the results of the ablation 
study, highlighting the contributions of transformers 
and multi-scale convolutions.

In the stick-balancing dataset, TransConv-DDPM 
attains a correlation of 0.94, a DTW score of 96, 
and a FID score of 42.4, whereas TimeGAN records 
0.47, 242, and 57.8, respectively. Table 2 com-
pares the performance of TransConv-DDPM and 
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TimeGAN on the Stick Balance dataset. Comparable 
enhancements are noted in the SmartFallMM data-
set, where TransConv-DDPM achieves a correlation 
of 0.87 along with superior DTW and FID scores, 
demonstrating its capacity to produce realistic and 
coherent data. Table 3 provides a performance com-
parison of TransConv-DDPM and TimeGAN on the 
SmartFallMM dataset.

TransConv-DDPM proficiently tackles 
the difficulties of generating intricate time-series 
data through the utilization of transformers and 
multi-scale convolutions. Its performance across 
datasets highlights its potential for mitigating data 
scarcity in clinical and other applications, paving 
the way for more robust AI models in time-series 
analysis.� 
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Model Correlation DTW FID

TransConv 0.87 110 44.8

TimeGan 0.58 208 55.4

Table 3. Performance comparison of TransConv 
and TimeGan on SmartFallMM dataset.

 

Model Correlation DTW FID

TransConv 0.94 96 42.4

TimeGan 0.47 242 57.8

Table 2. Performance comparison of TransConv 
and TimeGan on stick balance dataset.

 

Model Correlation DTW FID

DDON(Baseline) 0.66 221 50.7

DDPL + Transformer 0.80 162 46.8

DDPM + Multi Scale Conv 0.59 99 48.5

DDPM + Transformer + 

Multi Scale Conv

0.94 96 42.4

Table 1. Ablation study results: quantitative 
metrics across different model configurations on 
stick balance dataset.

Figure 1. (a) Training: The diffusion process adds noise to the input accelerometer data for feature 
extraction. (b) Generation: The denoising process reconstructs accelerometer data using a transformer-
enhanced model.
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