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Clustering and spatial distribution of mitochondria in dendritic trees
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Neuronal dendrites form densely branched tree architectures through which mitochondria must be distributed

to supply the cell’s energetic needs. Dendritic mitochondria circulate across the tree, undergoing fusion and

fission to form clusters of varying sizes. We present a mathematical model for the distribution of such actively

driven interacting particles in a branched geometry, showing that the density and localization of particles is highly

sensitive to the fusion/fission balance and to the tree architecture. Our model demonstrates that “balanced” trees

(wherein cross-sectional area is conserved across junctions and thicker branches support more bushy subtrees)

enable symmetric yet distally enriched particle distributions and promote dispersion into smaller clusters. These

results highlight the importance of tree morphology and radius-dependent fusion in governing the distribution of

neuronal mitochondria.
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I. INTRODUCTION

Extended neuronal cells face the challenging task of spa-

tially distributing organelles such as mitochondria, which

provide a source of energy for neuronal function. Mitochon-

drial structures range from highly interconnected architectures

in yeast cells [1], to largely fragmented populations in axons

[2,3], to networks on the border of percolation in many mam-

malian cell types [4–6]. In dendrites, mitochondria circulate

through the cell, forming a “social” network of variable-size

clusters whose dynamic fusion and fission are thought to

maintain homeostasis by helping deliver newly synthesized

material from the soma [7–9].

Live-cell imaging of dendritic mitochondria in Drosophila

sensory HS neurons has revealed a mixed population of sta-

tionary disjoint clusters and small motile mitochondria that

move processively in anterograde or retrograde directions

[10]. The dendritic arbors themselves form a bifurcating tree

rooted at the cell body, with narrowing branches towards the

distal tips [Fig. 1(a)]. The steady-state distribution of mito-

chondria was found to exhibit two robust features: enrichment

of mitochondrial volume density towards the distal tips and

symmetric volume densities between sister subtrees [10].

The spatial distribution of mitochondria modulates gra-

dients in ATP availability and metabolic efficiency [11,12],

particularly in highly extended neuronal geometries. Defects

in mitochondrial transport, localization, and interaction are

associated with a number of neuropathologies, including

Alzheimer’s and Parkinson’s disease [13–15]. Consequently,
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the mechanisms by which neurons control and establish mi-

tochondrial localization constitute an important problem in

cellular neuroscience. While mitochondrial localization in

some cell types is governed by glucose concentrations [16],

calcium levels [17], or local neuronal activity [18,19], the

distributions observed in Drosophila sensory dendrites were

found to be insensitive to such signals [10]. Instead, the

distributions appeared to be maintained autonomously as a

dynamic steady state of the mitochondrial population, which

turns over on a few-hour timescale.

In past work we developed a simple theoretical model for

mitochondrial distribution in a branched tree structure that in-

corporated bidirectionally moving mitochondrial units which

halt their transport with a radius-dependent rate constant [10].

It was shown that the observed spatial distributions could

only be obtained if the architecture of the dendritic trees

approximately followed specific scaling laws. Morphological

measurements of the arbors showed that HS neuron dendrites

do in fact exhibit the predicted scaling. Namely, branch widths

obey the da Vinci law [20], which preserves cross-sectional

area across a junction (r2
0 = r2

1 + r2
2 , where r0 is the radius

of the parent branch and r1, r2 the radii of the two daugh-

ter branches). In addition, sister branch radii have areas in

proportion to the “bushiness” of the corresponding subtrees

(Bi, total branch length over depth), such that r2
1/r2

2 = B1/B2.

Hereafter, we refer to architectures that obey these two scaling

laws as “balanced trees.”

Crucially, the basic model in Ref. [10] did not account

for the fusion of mitochondria into variable-size clusters. Fu-

sion of mitochondria into extended structures is thought to

protect against cellular stress [21,22] and modulate ATP pro-

duction [23]. Furthermore, fusion and fission dynamics have

been hypothesized to play an important role in mitochondrial

quality control [24,25] and to allow for complementation of

mitochondrial DNA [26,27]. Alterations in the balance of

fusion and fission have been shown to directly regulate the

architecture of mitochondrial networks, both in mathematical
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modeling studies [5,6] and in live cells [1,5]. Because bigger

clusters tend to be immobile [28], the fusion of dendritic

mitochondria into clusters must couple together with their

distribution throughout the arbor. In this work, we develop a

model that incorporates mitochondrial fusion and fission to

explore the interplay of cluster formation and spatial localiza-

tion of mitochondria in treelike domains.

The fusion of mitochondria into larger clusters is analogous

to reversible aggregation and polymerization phenomena,

previously explored in the context of pathogenic protein ag-

gregates [29], filaments [30], and gels [31]. Such systems

have traditionally been studied via kinetic mass-action models

[32–36], which generally assume that fusion, fission, ab-

sorption, and injection of particles occur in an unstructured

homogeneous space and that the system can be treated as

well mixed. Here we consider how the spatial architectures

of dendritic arbors, as well as active transport and geometry-

dependent fusion, modulate the formation of mitochondrial

clusters.

We develop a spatially resolved mass-action model for the

distribution of actively driven clustering particles (represent-

ing mitochondria) on binary trees (representing Drosophila

sensory dendrites). We demonstrate that balanced tree archi-

tectures can give rise to a universal cluster distribution that

is independent of the specific branching pattern. Furthermore,

such structures are shown to allow for the broadest dispersion

of particles into the smallest possible clusters. Our model links

together mitochondrial fusion and spatial localization, thereby

shedding light on the interconnection of regulatory pathways

that have previously been shown to modulate each one of these

processes individually.

II. MODEL DEVELOPMENT

In this work we introduce a model for dendritic mito-

chondria distribution that incorporates fusion and fission of

mitochondria into stationary clusters, processive transport of

mitochondrial units, and a branching geometry for the den-

dritic arbor. The primary aim of this model is to explore

the link between the mitochondrial network structure (i.e.,

cluster sizes) and its spatial distribution. While we follow an

analogous approach to prior work [10], the introduction of

mitochondrial fusion into clusters makes this model funda-

mentally distinct.

The dendritic arbor is represented as a bifurcating tree

rooted at the cell body, with narrowing branches towards the

distal tips [Fig. 1(a)]. Mitochondria are modeled as a popu-

lation of discrete units that engage in transport, fission, and

fusion [Fig. 1(b)]. Single motile units move processively with

velocity ±v (anterograde or retrograde) and reverse at distal

branch tips. New mitochondria are produced at the soma (tree

root) with rate kp. Retrograde mitochondria that return to the

root disappear. When a motile mitochondrion passes the tip of

any mitochondrial cluster, it has a probability of fusion: Pu, j =

Au/r
γ

j , with r j the radius of the branch j, γ a scaling exponent

that governs sensitivity to branch width, and Au a prefactor

setting the overall tendency towards fusion. We assume that all

stops or arrests of motile mitochondria are due to fusion with

stationary clusters. The scaling of the fusion probability with

branch radius is then based on the experimental evidence that

(a)

(b)

(c)

FIG. 1. Model schematic. (a) Skeleton of a dendritic tree topol-

ogy extracted from Drosophila HS neurons [10], with branch radii set

to obey a balanced tree morphology. Inset: Schematic of anterograde

(green), retrograde (magenta), and stationary (yellow) mitochondria

at the primary trunk. Anterograde mitochondria are produced at

rate kp. (b) Fusion and fission dynamics in the mitochondrial clus-

ter model. Fusion occurs with probability Pu during each passage

event; fission at each cluster end occurs at constant rate kb. (c) Sim-

ulation snapshot of mitochondrial clusters with different sizes on

dendritic branches; different colors indicate distinct mitochondrial

clusters.

motile mitochondria tend to stop more at distal areas [10], and

we explore the role of the scaling exponent γ in determining

mitochondrial distributions. Fused clusters are assumed to be

always stationary, a simplified reflection of the observation

that larger mitochondria in dendritic process are less likely to

be motile [28].

Clusters can undergo fission with rate kb at each end, re-

leasing a single motile mitochondrial unit while the remainder

of the cluster remains stationary. A stationary single unit

becomes motile again also with rate kb and is equally likely

to go anterograde or retrograde. Anterograde mitochondria

split at junctions in proportion to the cross-sectional area of

the respective daughter branches, as observed in Drosophila

sensory dendrites [10].

This model can be explicitly represented in agent-based

simulations (see Appendix A for details), which track the

motion of individual mitochondrial units and the spatial ex-

tent of growing clusters [Fig. 1(c); Supplemental video SV1

[37]]. To more efficiently explore the behavior of this dynamic

system, we represent it in terms of a spatially resolved mass-

action model, which treats all clusters as pointlike particles

and assumes that the cluster distributions can be described

in terms of continuum concentration fields. The mitochondria

are represented by linear densities ρω
i, j of clusters with size

i located on branch j in state ω = {+,−, s} (corresponding

to anterograde, retrograde, and stationary particles, respec-

tively). The time evolution of the linear densities is given

by the following set of equations, which incorporate all state
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transitions:

∂ρs
1, j

∂t
= −2kbρ

s
1, j + 2kbρ

s
2, j − vPu, j (ρ

+
1, j + ρ−

1, j )ρ
s
1, j,

∂ρ±
1, j

∂t
= ∓v

∂ρ±
1, j

∂x
− vPu, jρ

±
1, j

∞
∑

i=1

ρs
i, j − 2vPu, jρ

−
1, jρ

+
1, j

+ kb

∞
∑

i=1

ρs
i, j,

∂ρs
2, j

∂t
= −vPu, j (ρ

+
1, j + ρ−

1, j )ρ
s
2, j + 2vPu, jρ

−
1, jρ

+
1, j + 2kbρ

s
3, j

− 2kbρ
s
2, j + vPu, j (ρ

+
1, j + ρ−

1, j )ρ
s
1, j,

∂ρs
i, j

∂t
= vPu, j (ρ

+
1, j + ρ−

1, j )
(

ρs
i−1, j − ρs

i, j

)

+ 2kbρ
s
i+1, j

− 2kbρ
s
i, j, (for i > 2). (1)

The boundary condition at the primary trunk matches

the flux of anterograde mitochondria to the production rate:

vρ+
1,0(0) = kp. At the distal tips, we assume reflective bound-

ary conditions, with anterograde mitochondria flipping to

retrograde motion when they reach the tips, giving ρ+
1, j (� j ) =

ρ−
1, j (� j ) for any terminal branches j of length � j . At each

junction between parent branch j and daughter branches k, l

we set boundary conditions to match the incoming and outgo-

ing flux in both directions: ρ
+/−

1, j (� j ) = ρ
+/−

1,k
(0) + ρ

+/−

1,l
(0).

Furthermore, the anterograde flux is assumed to split in pro-

portion to the cross-sectional area of the daughter branches (as

observed in live-cell measurements of dendritic mitochondrial

transport [10]): ρ+
1,k

(0)/ρ+
1,l

(0) = r2
k /r2

l .

We then proceed to solve for the steady-state linear den-

sities of all clusters throughout the branches (details in

Appendix B). At steady state, the mitochondrial densities are

constant on each branch and the anterograde and retrograde

densities are equal (ρ+
1, j = ρ−

1, j) everywhere. For simplicity,

we define the total density of motile mitochondria as ρm
1, j =

ρ+
1, j + ρ−

1, j . The overall steady-state solution of Eq. (1) is

given by:

ρs
1, j =

1

2
α j

(

ρm
1, j

)2

ρs
i, j =

ρm
1, j

2

(

1 + α jρ
m
1, j

)(

α jρ
m
1, j

)i−1
; i > 1, (2)

where α j = vAu/2kbr
γ

j , ρm
1,0 = 2kp/v is the motile density at

the root of the tree, and motile densities in all other branches

are found by applying the junction boundary conditions. For

da Vinci trees (where rα
j = rα

k + rα
l with α = 2 at each junc-

tion), this gives a simple relationship between the parent and

daughter motile densities: ρm
1k = ρm

1 j (r
2
k /r2

j ). The linear den-

sity of motile mitochondria on each branch can then be written

in closed form:

ρm
1, j =

2kpr2
j

vr2
0

. (3)

For trees that do not obey da Vinci scaling (e.g., α �= 2),

the linear density of motile monomers must be computed

recursively at each junction by starting with the primary

trunk density and computing each successive pair of daughter

branch densities as:

ρm
1,k = ρm

1, j

r2
k

r2
k

+ r2
l

; ρm
1,l = ρm

1, j

r2
l

r2
k

+ r2
l

. (4)

The volume density of clusters of size i in motility state ω

on each branch j is defined as cω
i, j = ρω

i, j/(πr2
j ). The branch

radii thus play several distinct roles in setting mitochondrial

densities: They link linear and volume densities, they deter-

mine the linear density of motile mitochondria in downstream

branches, and they modulate the fusion probability through

the scaling exponent γ .

In order to describe the morphology of the branched tree

through which mitochondria move, we define the depth of a

tree or subtree in a recursive manner, as follows. For arbors

where every tip has the same path length from the root, the

depth D0 is equal to this path length. For general architectures,

the depth is defined as

D0 = �0 +
L1 + L2

L1/D1 + L2/D2

, (5)

where �0 is the length of the trunk and L j, D j are the total

branch length and the depth of the daughter subtrees. This

expression averages the inverse depth of daughter subtrees,

weighted by their corresponding lengths, as well as adding

on the length of the parent trunk. The bushiness of a subtree

is defined as the total branch length divided by the depth

(B j = L j/D j). For a balanced tree morphology, where cross-

sectional area is conserved across junctions and sister branch

radii are proportional to the subtree bushiness, the depth is

directly related to the total tree volume according to V0 =

πr2
0D0 (see Appendix C). Thus, the recurrent definition of

depth used here enables an intuitive relation between tree vol-

ume, branch width, and depth to be extended to more complex

branching architectures.

III. RESULTS

A. Mass-action model and agent-based simulations give

matching predictions of cluster distribution

To demonstrate the utility of the mass-action model, we

compare its predictions to agent-based simulations on a small

tree (Fig. 2), with branch length and connectivity extracted

from a portion of an HS dendritic arbor [10], and branch

radii set to obey a balanced tree morphology. We compute the

normalized distribution of cluster sizes (pi) and the volume

density in each branch (c j) according to

pi =

⎛

⎝

∑

j

ρi, j� j

⎞

⎠

/

⎛

⎝

∑

j

∞
∑

i=1

ρi, j� j

⎞

⎠, (6)

c j =

(

ρm
1, j +

∞
∑

i=1

iρs
i, j

)/

(

πr2
j

)

, (7)

where the summations over j correspond to all branches of

the tree and summation over i corresponds to all cluster sizes.

To place the model in a biologically relevant regime, we esti-

mate the volume of a mitochondrial unit as ν ≈ 0.5 µm3, and

select kinetic parameters such that the average mitochondrial
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(a) (c) (e)

(b) (d) (f)

FIG. 2. Mass-action model and simulations of cluster distributions on a balanced tree structure. (a) Distribution of cluster sizes pi averaged

across the tree for γ = 2.1 (cyan) and γ = 1.5 (magenta); circles from simulation data and solid lines from Eq. (6). (b) Mitochondrial volume

fraction on each branch (φ j = νc j) is compared for simulations (horizontal axis) and mass-action model (vertical axis) for γ = 2.1 (cyan) and

γ = 1.5 (magenta). Dashed line indicates equality. [(c) and (d)] Spatial distribution of mitochondrial volume fraction φ j from (c) the mass-

action model and (d) simulations, using γ = 2.1. [(e) and (f)] Analogous plots using γ = 1.5. Simulation parameters were kb = 0.01 s−1, v =

0.6 µm/s, trunk radius r0 = 1.3 µm, with Au = {0.05, 0.07} and kp = {0.34 s−1, 0.32 s−1} selected to give average cluster size 〈i〉 = 2 and

overall volume fraction φ = 0.2 in the mass-action model. Simulation results are averaged over 100 independent iterations.

volume fraction is φ = ν
∑

j c j� jr
2
j /

∑

j � jr
2
j ≈ 20% and the

average cluster size is 〈i〉T =
∑

i ipi ≈ 2, based on prior mea-

surements in HS dendritic arbors [10].

The cluster size distribution exhibits an exponentially de-

caying tail, with a close match between simulations and the

mass-action model [Fig. 2(a)]. The distributions are similar

for different values of the scaling exponent γ , so long as

the overall fusion rate (Au) is adjusted to maintain the same

average cluster size.

The predicted mitochondrial volume densities in indi-

vidual branches are also similar for the mass-action model

and the simulations [Fig. 2(b)]. Notably, a low value of γ

results in more mitochondrial mass in the primary trunk

[Figs. 2(e) and 2(f)], while a higher value yields distal en-

richment of the mitochondrial density [Figs. 2(c) and 2(d)].

This is intuitively expected, as increasing γ raises the fu-

sion rate in narrow distal branches relative to the wide

primary trunk.

Unlike the mass-action model, the simulations show a de-

pletion of mitochondrial densities at the terminal tips of the

branches [Fig. 2(d)]. This effect arises from the finite size of

mitochondrial units, which limits further fusion once a long

cluster abuts the tip. For comparison with simulations, the

mass-action model results are corrected to account for finite

mitochondrial size which reduces the effective production rate

of new mitochondria at the root node (see Appendix D for

details). Nevertheless, the mass-action model encompasses

the main features of the cluster size and spatial distributions

in the simulated system.

B. Kinetic parameters and tree structure govern

mitochondrial cluster distribution

We next determine how the total mitochondrial mass and

its distribution into clusters emerges from the interplay of

production, fusion/fission, and transport parameters, as well

as the tree architecture. The kinetic parameters can be com-

bined into a handful of intuitively interpretable dimensionless

groups. The balance between new mitochondrial production

and the time for motile units to traverse the tree is set by

k̂p = kpD0/v. Given that the rate at which a given mitochon-

drion undergoes fusion events must scale as Puvρ (where ρ is

the linear density of mitochondria along a branch), we define

a dimensionless parameter governing the balance between fu-

sion and fission as: u = Auv/(r
γ

0 D0kb). We note an analogy to

prior models of binding and unbinding particles [38], with k̂p

serving as an effective fugacity (equivalent to the exponent of

the chemical potential, driving more particles into the system)

and u serving as an effective association constant (balancing

the preference for clustering versus fragmentation). The cur-

rent model extends these general concepts from equilibrium

statistical mechanics to describe the steady state of a system

of actively driven processive particles.

It can be shown (see Appendix E) that for any given

tree structure, the linear densities of clusters (m0, j) and of
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(a) (b) (c)

(d)

FIG. 3. Dependence of mitochondrial mass and cluster size on kinetic parameters and tree architecture from the mass-action model.

(a) Example dendritic arbor from Drosophila HS neuron, with imposed radii following different scaling laws relating mother and daughter

branches: α = 2, 3

2
, 3. In all cases sister trunk radii are scaled in proportion to subtree bushiness: r2

k /r2
l = Bk/Bl . (b) Scaled total mitochondrial

mass plotted versus dimensionless parameter uk̂p, for different tree morphologies (α) and different fusion sensitivity scaling (γ ). (c) Average

cluster size plotted versus uk̂p. (d) Average cluster size plotted as a function of scaled mitochondrial mass. Black lines show canonical result

on linear geometry with γ = 2. All other curves are computed on the example tree geometry in (a), with varying scaling laws for the radii.

Purple lines show results for a balanced tree structure and different fusion scaling exponents: γ = {0, 2, 3} (dashed, solid, and dotted curves

respectively). Cyan and red curves represent alternate radial scaling laws (α = 3/2 and α = 3, respectively), with γ = 2. Yellow curves

represent a balanced tree structure with an imposed minimum radius rmin = 0.1 µm.

individual units (m1, j) on each branch are given by:

m0, j =

∞
∑

i=1

ρi, j =
ξ j k̂p

D0

g

[

uk̂pξ j

(

r0

r j

)γ ]

,

m1, j =

∞
∑

i=1

iρi, j =
ξ j k̂p

D0

f

[

uk̂pξ j

(

r0

r j

)γ ]

,

g(x) = 1 +
1 + x

(1 − x)
, f (x) = 1 +

1 + x

(1 − x)2
, (8)

where ξ j = ρm
1, j/ρ

m
1,0 describes how motile mitochondria are

diluted as they travel downstream, completely determined by

the branch widths of the tree. If the tree structure is fixed, then

the scaled total mitochondrial mass, MT /k̂p = 1

k̂p

∑

j m1, j� j ,

is a function of the reduced parameter uk̂p and the fusion sen-

sitivity exponent γ [Fig. 3(b)]. Similarly, the average cluster

size [Fig. 3(c)], given by 〈i〉T = (
∑

j m1, j� j )/(
∑

j m0, j� j ),

depends only on these two parameters and the tree structure.

Unsurprisingly, increasing mitochondrial production (raising

k̂p) increases both the size of the clusters formed and the

total mass of mitochondria in the tree, with the latter rising

in a superlinear manner, as expected for aggregating systems

[29,33]. Furthermore, because larger clusters are immobile,

increased fusion of mitochondria (raising u) causes each unit

to spend more time in the tree before returning to the root,

thereby raising the total mass.

For trees that obey the da Vinci law, the splitting of motile

mitochondria in proportion to branch area implies that ξ j =

(r j/r0)2. Consequently, in the case of γ = 2, the volume den-

sity of all cluster sizes is uniform across the tree. The average

cluster size is then given by a universal curve:

〈i〉T =
f (uk̂p)

g(uk̂p)
=

(uk̂p)2 − uk̂p + 2

2(1 − uk̂p)
, (9)

regardless of the tree connectivity (see Supplemental Fig. S1

[37]). The scaled total mitochondrial mass becomes

MT

k̂p

=
f (uk̂p)VT

D0r2
0

=

[

1 +
1 + uk̂p

(1 − uk̂p)2

]

, (10)

where VT is the total volume of the tree. For the special case

of balanced trees (where branch areas split in proportion to

subtree bushiness), we have VT = πr2
0D0 and the scaled mass

also becomes independent of the tree branching architecture.

In particular, these universal expressions Eq. (9) and Eq. (10)

[black curves in Figs. 3(b) and 3(c)] give the cluster size

and the scaled mass for particles on a simple linear domain.

They are analogous to the canonical behavior found in classic

well-mixed mass aggregation models which exhibit a phase

transition with increasing fusion or production [29,33]. Both
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the total mass and cluster size diverge asymptotically when

the parameter uk̂p approaches a critical value, which for bal-

anced trees is given by (uk̂p)∗ = (min{r j}/r0)γ−2. Thus, when

fusion probabilities scale with cross-sectional area (γ = 2),

the critical value is (uk̂p)∗ = 1, whereas for steeper fusion

sensitivity (γ > 2), this critical value is lower [Figs. 3(b)

and 3(c)].

We next consider the behavior of the total mass and average

cluster size for alternate tree structures that obey distinct ra-

dial scaling laws. For instance, when the parent and daughter

radii are related by rα
j = rα

k + rα
l with α = 3/2 (Rall’s law

[39]), the total cross-sectional area is reduced across each

junction. In such trees, the fusion probability increases more

steeply towards the distal tips, inducing the formation of larger

distal clusters. The critical value (uk̂p)∗ for divergent mass

and cluster size is then much lower, so that comparatively

low production rates can lead to substantial accumulation of

distal mitochondria. When α = 3 (Murray’s law [40]) the

corresponding expansion of the cross-sectional area at the

distal zone reduces the fusion probability and leads to smaller

clusters for the same production rate.

In power-law models for tree structure, the cross-sectional

area of the branches decreases exponentially from the primary

trunk to the distal tips. However, there is likely a lower bound

on the minimum radius of dendritic branches due to the me-

chanical limits of fitting at least one microtubule into each

branch. Recent measurements in Drosophila class IV sensory

neurons [41] indicate that the branch radii can be approxi-

mated as obeying a modified da Vinci relation: r2
1 + r2

2 = r2
0 +

r2
min, with minimum radius rmin ≈ 0.1 µm. We consider the

effect of incorporating this minimum radius into the model for

mitochondrial cluster formation on the Drosophila HS den-

dritic arbors considered here, which have an average radius of

rtrunk ≈ 3 µm in the primary trunk [10]. Imposing a balanced

tree architecture yields an average radius of ∼0.3 µm in the

distal branches. Consequently, the minimum radius has only

a small effect in widening distal tree branches and reducing

cluster size (Fig. 3).

In general, cells can adjust rates of mitochondrial biogen-

esis to control their overall mitochondrial load [42]. Thus, a

fixed mitochondrial mass in the dendrite may be a more rele-

vant control parameter than the production rate. In the regime

where clusters of substantial size are formed (〈i〉T � 2), a bal-

anced tree architecture with fusion exponent γ = 2 yields the

smallest average cluster sizes for a given total mass [Fig. 3(d)].

A variety of HS dendritic trees with different branch width

scaling laws, α = {3/2, 3}, all give larger clusters for a given

scaled mitochondrial mass (see Supplemental Fig. S1 [37]).

Thus, balanced trees with γ ≈ 2 form the optimal structure

to disperse the mitochondrial population into many small

clusters, a direct consequence of the spatially uniform distri-

butions that arise in such systems. These results highlight the

importance of dendritic tree morphology in modulating the

clustering and accumulation of actively driven particles.

C. Balanced trees allow for symmetric distributions

with distally enriched large clusters

The spatial accumulation of mitochondria in different re-

gions of the tree can be quantified by comparing clusters in

distal branches versus the primary trunk [Fig. 4(a)]. We define

the distal enrichment in volume density according to:

cd/cp =

(
∑

distal j ρ j� j
∑

distal j � jr
2
j

)/

(

ρ0

r2
0

)

, (11)

where the first term gives the total volume density in the set

of distal branches (defined as those with path length from

the root greater than 70% of the maximal value) and the

second term gives the volume density in the primary trunk.

Analogously, the cluster size ratio is defined as:

〈i〉d/〈i〉p =

(
∑∞

i=1

∑

distal j iρi, j� j
∑∞

i=1

∑

distal j ρi, j� j

)/

(
∑∞

i=1 iρi,0
∑∞

i=1 ρi,0

)

, (12)

Focusing on balanced tree morphologies, these two quantities

are plotted in Fig. 4(b) as a function of the fusion scaling

exponent γ .

As previously noted, the scaling exponent γ = 2 gives

uniform volume densities throughout the tree, so that cd/cp =

〈i〉d/〈i〉p = 1. Higher values of γ enrich the mitochondrial

volume in distal branches while lower values lead to enrich-

ment in the proximal trunk, as also observed in simulations

(Fig. 2). The ratio of distal to proximal cluster sizes also rises

with increasing γ , albeit less steeply.

The twofold distal enrichment of volume density observed

in vivo [10] is obtained with fusion sensitivity exponent γ ∗ ≈

2.1. For this parameter, the average cluster size is expected to

be about 42% larger in distal versus proximal branches. Thus,

enriching the mitochondrial mass in the distal tips of the arbor

also requires increasing the size of clusters in that region.

Notably, this is a concrete experimentally testable prediction

of our model: distal enrichment in mitochondrial density is ex-

pected to be accompanied by larger clusters in the distal zone.

The prediction could be tested by correlating individual mito-

chondrial volumes with their position in the dendritic arbor.

We note that the probability of two axially passing particles

coming in direct contact scales as 1/r2 when the size of the

particles is small compared to the tube width, but should

exhibit a steeper scaling in narrow tubes comparable to the

particle size [43]. Thus, values of γ > 2 are to be expected

for narrow distal branches. Raising the overall fusion prob-

ability [Fig. 4(c)] monotonically amplifies the enrichment of

mitochondria in either the distal or proximal zones, depending

on the value of γ .

Finally, we consider the predicted asymmetry of the mi-

tochondrial distribution in sister subtrees. Measurements in

HS neurons have demonstrated that the average mitochondrial

volume density in sister subtrees tends to be equal, even when

the subtree morphologies themselves are asymmetric [10]. We

define an asymmetry metric

ζ =

√

√

√

√

1

Nb

∑

b

(

cb,ST1 − cb,ST2

cb,ST1 + cb,ST2

)2

, (13)

where b is a junction site, Nb is the total number of junctions

in the tree, and cb,ST1/2 are the average volume densities in

the two subtrees emanating from the junction [Fig. 4(d)]. For

balanced trees, perfectly symmetric distributions are predicted

for γ = 2, with the asymmetry levels remaining quite low
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(a) (b)

(d) (e)

(c)

FIG. 4. Spatial distribution of mitochondral clusters. (a) Illustration of distal branches (green) and proximal trunk (magenta) in example

dendritic arbor. Colored strokes show individual mitochondrial clusters from a simulation snapshot with γ = 2.5, uk̂p = 0.18; note larger

clusters in the distal zone. (b) Distal-to-proximal ratio in volume density (pink) and average cluster size (green) plotted against fusion scaling

exponent γ . Fusion and production parameters (u, k̂p) are adjusted to give average cluster size 〈i〉T = 2 and volume density φ = 0.2 for the

full tree. Experimentally observed distal enrichment (dashed line) corresponds to γ ∗ = 2.1. (c) Distal enrichment in volume density versus uk̂p

for γ = {1.5, 2.1}, with volume density fixed to φ = 0.2. (d) Illustration of two sister subtrees, ST1 (yellow) and ST2 (cyan), at junction b in

a sample dendritic arbor. (e) Root-mean-squared asymmetry (ζ ) of mitochondrial volume density plotted against scaling exponent γ . Curves

are shown for different radii scaling laws: α = 2, 3/2, 3 (pink, cyan, and orange) with sister radii split in proportion to subtree bushiness,

α = 2 with equal sister radii (green), and balanced trees with imposed minimum radius rmin = 0.1 µm (yellow). Average cluster size is fixed

to 〈i〉T = 2, volume density to φ ∼ 0.2. All results are obtained from the mass-action model, averaged over 10 tree topologies of distinct HS

dendritic arbors (Supplemental Fig. S1 [37]); shadowed areas denote standard deviation.

over a broad range of γ values [Fig. 4(e)], extending past the

γ ∗ ≈ 2.1 approximation which gives twofold distal enrich-

ment as observed in vivo. Notably, other tree morphologies,

such as a tree that obeys the da Vinci law but has equal

radii between sister branches (green curve), or trees with

alternate scaling exponents α (blue, orange curves), lead to

much higher asymmetry when γ > 2. The introduction of a

minimum radius (yellow curve) also increases the asymmetry

of the mitochondrial distribution for intermediate γ values.

Overall, we show that a balanced tree morphology, approxi-

mately representative of HS dendrites, allows for a moderate

amount of distal enrichment with a largely symmetric distri-

bution of mitochondria.

The ability of balanced tree structures to maintain sym-

metric yet distally enriched mitochondrial distributions has

previously been shown for a simpler model that does not

include mitochondrial fusion into clusters but does allow

for a width-dependent halting rate [10]. In that purely

fragmented model, spatially uniform halting rates lead to

uniform distribution of the mitochondria. When halting is

attributed specifically to fusion, then spatially uniform fusion

probabilities (γ = 0) result in proximal enrichment of the

mitochondrial mass. Uniform distribution requires instead a

fusion probability that scales inversely with cross-sectional

area [γ = 2, Fig. 4(b)]. Furthermore, the presence of fusion

results in very high sensitivity to increasing γ values above

this value, as compared to the fragmented case. This effect can

be observed in Fig. 4(c): As the fusion prefactor increases, the

distal enrichment for two different γ values rapidly diverges.

These results demonstrate that the ability of mitochondria

to fuse into larger clusters exacerbates the sensitivity of the

mitochondrial spatial distribution to the architecture of the

dendritic arbor.

IV. DISCUSSION

Maintaining homeostasis of mitochondrial clusters in a

neuronal arbor requires a balance of production, transport,

fusion, and fission. The mass action model described here

elucidates the key parameters which set the typical cluster

size and overall mitochondrial accumulation: namely, the

ratio of production and tree traversal rates (k̂p) and the

ratio of fusion to fission (u). The tree morphology affects

mitochondrial distributions through both regulating the
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splitting of anterograde mitochondrial flux and modulating

the probability of fusion between passing mitochondria (via

the scaling exponent γ ). Balanced trees architectures, which

conserve branch area across junctions and split sister subtree

trunk radii in proportion to bushiness, are shown to maintain a

symmetric distribution of mitochondria among subtrees, while

allowing for enrichment at the distal tips. Such enrichment

goes hand-in-hand with larger clusters in the distal region.

The functional role of fusing dendritic mitochondria into

larger clusters is not currently well understood. It is possible

that such fusion can aid the mixing of mitochondrial contents,

permitting the delivery of newly produced mitochondrial ma-

terial from the cell body, and thereby maintaining the overall

health of the population [9]. Alternately, mitochondrial fusion

into larger structures has been proposed to enable complemen-

tation of damaged mitochondrial nucleoids [25], to protect

healthy mitochondria from clearance through mitophagy [44],

or to permit tunneling of ions through “power cables” [7].

Regardless of the specific advantages conveyed by modest

fusion, there is a fundamental spatial constraint that makes

hyperfusion of neuronal mitochondria detrimental to the cell.

Namely, the need to broadly distribute mitochondria across

extensive projections necessitates a finite mitochondrial pop-

ulation to be broken up into smaller clusters that can be

spread throughout the dendritic arbor. In hippocampal den-

drites, for example, it has been shown that ATP gradients form

in dendrites when the spacing between mitochondria exceeds

approximately 30 µm, limiting the energy supply for local

translation [11]. In axons of the mammalian central nervous

system, stationary mitochondria have been shown to distribute

uniformly along the axonal length [45]. Furthermore, a suf-

ficient population of motile mitochondria is necessary for

maintenance and delivery of that fraction of mitochondrial

proteins which is translated in the perinuclear zone [9,46]. Our

results show that limiting the average cluster size is required to

maintain such a motile population. Furthermore, we demon-

strate that the balanced tree architecture previously observed

in Drosophila HS neurons is optimized for dispersing mito-

chondria into the smallest clusters. Future work will explore

the consequences of mitochondrial clustering and spatial dis-

tribution on the mixing of mitochondrial material throughout

the arbor.

In the basic model considered here, mitochondrial trans-

port and fusion is taken to be dependent only on the local

width of the dendritic branch without any more sophisticated

sensing and control mechanisms. The resulting mitochondrial

distributions are found to be highly sensitive to small changes

in domain geometry or in the production and fusion kinetics.

The difficulty of controlling the size of cellular structures

without direct length-sensing feedback mechanisms has previ-

ously been pointed out in the context of cytoskeletal filaments

and flagellar projections [47]. For mitochondria, additional

biochemical mechanisms have been found to regulate trans-

port via the sensitivity of mitochondrial motor adaptors to

local calcium [17] and glucose [16]. Intermitochondrial sig-

naling via ATP gradients has also been proposed to regulate

the mitochondrial distribution in axons [45]. Furthermore,

mitochondrial fusion and fission may be regulated by local

calcium concentrations [48]. It should be noted, however,

that mitochondria in fly sensory dendrites were not found to

respond to synaptic activity or altered calcium levels [10].

In general, additional levels of biochemical control could

interplay with the basic “blind” transport and fusion/fission

dynamics considered here, in a manner dependent on cell type

and activity. By considering the simplest model for mitochon-

drial positioning, this work sheds light on some of the key

physical parameters that can be tuned by the cell to alter the

total volume, cluster architecture, and spatial distribution of

the mitochondrial population that supplies the energetic needs

of the dendritic arbor.
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APPENDIX A: SIMULATIONS OF MITOCHONDRIAL

DYNAMICS IN DENDRITIC TREES

Stochastic simulations of mitochondrial transport, fu-

sion, and fission were implemented on a network of one-

dimensional edges. The network topology was taken from the

dendritic arbor of a Drosophila HS neuron [10] [Fig. 1(a)],

and a distal subtree was extracted for the simulations

(Fig. 2).

The simulations were implemented in Fortran 90. For each

run, 275 single mitochondrial units (corresponding to a mi-

tochondrial volume fraction of φ = 0.2) were placed on the

subtree, with the number initialized on each branch propor-

tional to the branch volume (v j = π l jr
2
j ). Each mitochondrion

was treated as a linear segment of length 
x = 0.5 µm. Each

mitochondrion was initialized in a motile state, walking either

in the anterograde (away from the root) or retrograde (towards

the root) direction. At every time step 
t = 0.01s, motile

mitochondria moved a distance of ±v
t along the branch,

with the speed set to v = 0.6 µm/s. Whenever an anterograde

mitochondrion hit a terminal tip, it reversed and becomes

retrograde until it reached the root, where it disappeared.

Anterograde mitochondria split at junctions in proportion to

daughter branch area πr2
j . Aside from fusion, there was no

interaction or exclusion between passing mitochondria.

The simulations were done for two different fusion

exponents γ = {2.1, 1.5}, favoring the presence of high mi-

tochondrial volume density at the distal zone (γ = 2.1) and

primary trunk (γ = 1.5). In each case, new mitochondria

were produced at the primary trunk with constant rates kp =

{0.34 s−1, 0.32 s−1}. When a motile mitochondrion passed

the tip of any mitochondrial cluster (or another motile mi-

tochondrion) fusion was allowed to occur with probability:

Pu, j = Au/r
γ

j , with Au = {0.05, 0.07} in the two different sim-

ulations. All clusters containing more than one unit were

assumed to remain stationary.

For both fusion exponents, any cluster with size i > 1

could undergo fission and release a single motile unit, with

fission rate kb = 0.01 s−1 from either end. Fission always

produced one stationary unit or cluster plus one motile unit. A

stationary mitochondrion of size i = 1 could become motile

again with the same rate kb in each direction. To achieve
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the steady state configuration, the simulations were run

for 108 steps.

APPENDIX B: STEADY-STATE SOLUTION

Here we solve Eq. (1) in the main text via recursive meth-

ods. Reflection of motile units at terminal tips implies that

ρ+
1, j = ρ−

1, j in the distal branches, and this equality propagates

through boundary conditions at all junctions. Therefore, we

can write the total linear density of motile monomers as ρm
1, j =

ρ+
1, j + ρ−

1, j = 2ρ+
1, j . The steady-state equations can then be

re-expressed as:

∂ρs
1, j

∂t
= −2kbρ

s
1, j + 2kbρ

s
2, j − vPu, jρ

m
1, jρ

s
1, j = 0, (B1a)

∂ρm
1, j

∂t
= −vPu, jρ

m
1, j

∞
∑

i=1

ρs
i, j − vPu, j

(

ρm
1, j

)2

+2kb

∞
∑

i=1

ρs
i, j = 0, (B1b)

∂ρs
2, j

∂t
= −vPu, jρ

m
1, jρ

s
2, j + vPu, j

(

ρm
1, j

)2

2
+ 2kbρ

s
3, j

− 2kbρ
s
2, j + vPu, jρ

m
1, jρ

s
1, j = 0, (B1c)

∂ρs
i, j

∂t
= vPu, jρ

m
1, j

(

ρs
i−1, j − ρs

i, j

)

+ 2kbρ
s
i+1, j − 2kbρ

s
i, j = 0.

(B1d)

Solving Eq. (B1c) gives an expression for ρs
3, j as:

ρs
3, j = ρs

2, j +

(

ρs
2, j − ρs

1, j −
ρm

1, j

2

)

α jρ
m
1, j, (B2)

where we define α j = vPu, j/(2kb) = vAu/(2kbr
γ

j ). Solving

Eq. (B1d) for ρs
i+1, j and propagating downward recursively

gives a general expression for the linear density of all clusters

of size i > 2:

ρs
i, j = ρs

2, j +

(

ρs
2, j − ρs

1, j −
ρm

1, j

2

) i−2
∑

k=1

(

α jρ
m
1, j

)k
. (B3)

Assuming |α jρ
m
i, j | < 1, we can explicitly sum the partial geo-

metric series to get:

ρs
i, j =

1

1 − α jρ
m
i, j

[

ρs
2, j − α jρ

m
1, j

(

ρs
1, j +

ρm
1, j

2

)

−
(

α jρ
m
1, j

)i−1

(

ρs
2, j − ρs

1, j −
ρm

1, j

2

)]

. (B4)

For a finite total mitochondrial load, the density must vanish

at large cluster sizes: limi→∞ ρs
i, j = 0. This implies that the

intercept in Eq. (B4) must be zero:

ρs
2, j = α jρ

m
1, j

(

ρs
1, j +

ρm
1, j

2

)

. (B5)

Solving Eq. (B1a) then gives:

ρs
2, j = ρs

1, j + α jρ
m
1, jρ

s
1, j . (B6)

Together, Eqs. (B4), (B5), and (B6) give the full solution

for the steady-state density of stationary clusters as a function

of the motile density: Equation (2) in the main text.

The motile density in each branch is found by applying the

boundary condition at the root (ρm
1,0 = 2kp/v) and the conti-

nuity and anterograde splitting conditions at each junction:

ρm
1, j = ρm

1,k + ρm
1,l ,

ρm
1,k

ρm
1,l

=
r2

k

r2
l

. (B7)

APPENDIX C: DEFINITION OF TREE DEPTH

The depth of a subtree starting with parent branch j is

defined recursively, as in Eq. (5) in main text, via the following

relation:

D j = � j +
Lk + Ll

Lk/Dk + Ll/Dl

, (C1)

where Lk is the total branch length in the daughter subtree

stemming from branch k, and Dk is the depth of that subtree.

We note that for a subtree consisting of a single branch, or one

where all branch tips are the same path length from the root,

the depth is equal to that path length. For more complicated

tree structures, this recursive definition involves an average of

inverse depth for the daughter subtrees, weighted by the total

branch length in that tree.

For balanced tree structures, this definition of depth is

closely related to the volume of the entire tree. Balanced trees

are defined as preserving area across junctions: r2
j = r2

k + r2
l ,

as well as splitting sister branch areas in proportion to the

bushiness of the supported subtrees: r2
k /r2

l = Bk/Bl . For such

trees, the ratio of daughter (k) to parent( j) branch area is

given by:

r2
k

r2
j

=
Lk/Dk

Lk/Dk + Ll/Dl

. (C2)

Suppose that the total tree volume for the subtree stem-

ming from branch k is given by Vk = πr2
k Dk . This is

trivially true for a subtree composed of a single branch,

where Dk = �k . We then proceed by induction to show

that this relation holds for all balanced tree structures.

For a parent branch j with daughters k, l , we can use

Eq. (C2) to simplify the volume of the subtree beginning

from j:

Vj = πr2
j � j + Vk + Vl = πr2

j � j + πr2
k Dk + πr2

l Dl ,

= πr2
j

(

� j +
r2

k

r2
j

Dk +
r2

l

r2
j

Dl

)

,

= πr2
j

(

� j +
Lk

Lk/Dk + Ll/Dl

+
Ll

Lk/Dk + Ll/Dl

)

,

= πr2
j D j . (C3)

Thus, the volume of the entire tree can also be expressed as

V0 = r2
0D0. This simple relationship motivates our recursive

definition for the tree depth. The depth is defined based on

branch lengths only, matches the trivial definition for simple

trees where all tips are at the same distance from the root, and
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has an intuitively clear relationship with the tree volume and

trunk width for an area-preserving balanced tree.

APPENDIX D: CORRECTION FOR FINITE

MITOCHONDRIAL LENGTH

When comparing mean-field results to simulations (Fig. 2),

we include an additional correction to account for the finite

length of mitochondria (
x = 0.5 µm in simulations). Specif-

ically, whenever a new mitochondrion is produced, it extends

a distance 
x into the primary trunk and has a chance to fuse

into existing clusters immediately. The overall rate at which

produced mitochondria disappear due to immediate fusion at

the root is vPu,0ρ
+
1,0m0,0
x, where m0,0 is the total linear den-

sity of all clusters at the root, and ρ+
1,0
x describes the number

of anterograde mitochondria at the root. Consequently, we

adjust the boundary condition at the tree root such that the

rate of new mitochondria produced (kp) is equal to the rate at

which such new mitochondria move into the primary branch

(vρ+
1,0) plus the rate at which they vanish due to immediate

fusion:

kp = vρ+
1,0 + vPu,0ρ

+
1,0m0,0
x. (D1)

We use this alternate boundary condition to solve for the

motile mitochondria in the primary trunk (ρm
1,0 = 2ρ+

1,0).

Putting together Eqs. (8) and (D1), gives a quadratic expres-

sion for this motile density:
{

α0kb
x −
vα0

2

}

(

ρm
1,0

)2
+

{

v

2
+ α0kp

}

ρm
1,0 − kp = 0,

(D2)

where α0 = vPu,0/2kb. The solution of Eq. (D2) is then used

as the motile density in the primary trunk, with all other motile

densities obtained through Eq. (4).

When 
x is much smaller than the branch lengths of the

tree, this reduces to the standard solution for point particles

as given in the main text. For simplicity, we use the point-

particle model without finite-length correction throughout the

main text, other than in the simulation comparison in Fig. 2.

APPENDIX E: MOMENTS AND AVERAGES

OF THE DISTRIBUTION

The overall linear density of mitochondrial clusters on

branch j is given by summing Eq. (2) over all cluster sizes:

m0, j = ρm
1, j +

∞
∑

i=1

ρs
i, j,

=
ρm

1, j

2
+

ρm
1, j

(

1 + α jρ
m
1, j

)

2
(

1 − α jρ
m
1, j

) . (E1)

Similarly, the linear density of individual mitochondrial units

is given by the next moment of the distribution:

m1, j = ρm
1, j +

∞
∑

i=1

iρs
i, j,

=
ρm

1, j

2
+

ρm
1, j

(

1 + α jρ
m
1, j

)

2
(

1 − α jρ
m
1, j

)2
, (E2)

We define the dilution factor ξ j = ρm
1, j/ρ

m
1,0, which depends

only on the tree structure (specifically, on the radii of all

branches upstream of j). Additionally, we define the two

dimensionless quantities k̂p =
kpD0

v
, and u = Auv

r
γ

0 D0kb
, where D0

is the depth of the tree. This yields the following expressions:

ρm
1, j = ξ jρ

m
1,0 = ξ j (2kp/v) = 2ξ j k̂p/D0,

α jρ
m
1, j = vAu/

(

2kbr
γ

j

)

× 2ξ j k̂p/D0 = ξ juk̂pr
γ

0

/

r
γ

j . (E3)

Equations (E1), (E2), and (E3) yield Eq. (8) in the main text.

The above moments of the mitochondrial cluster distribution

can be used to compute total mass, volume density, and aver-

age cluster size in different tree regions.

The total mitochondrial mass in tree T is given by

MT =
∑

j∈T

m1, j� j, (E4)

where � j is the length of the jth branch. The average cluster

size is defined as the ratio of the total mitochondrial mass

divided by the total number of clusters in the tree:

〈i〉T = MT /
∑

j∈T

m0, j� j . (E5)

The mitochondrial volume density in a a given branch is

given by c j = m1, j/(πr2
j ). The average mitochondrial volume

density over a tree or subtree (T) is defined as the total mass

divided by the tree volume:

cT = MT /VT =
MT

∑

j∈T π� jr
2
j

. (E6)

APPENDIX F: CANONICAL SOLUTION

FOR γ = 2 ON BALANCED TREES

We next consider the mitochondrial distribution on spe-

cialized tree structures. A tree obeys da Vinci’s law if the

cross-sectional area is conserved across all junctions (r2
j =

r2
k + r2

l , for parent branch j and daughter branches k, l). For

such trees, Eq. (3) implies that ξ j = r2
j /r2

0 . If we further as-

sume that the fusion sensitivity exponent is set to γ = 2, the

moments of the mitochondrial distribution [Eq. (8)] can be

simplified to

m0, j =
r2

j k̂p

r2
0D0

g[uk̂p],

m1, j =
r2

j k̂p

r2
0D0

f [uk̂p].

(F1)

As a result, the average cluster size [Eq. (E5)] is given by

〈i〉T,daVinci =
f [uk̂p]

g[uk̂p]
=

(uk̂p)2 − uk̂p + 2

2(1 − uk̂p)
. (F2)

Thus, for da Vinci trees, the average cluster size is indepen-

dent of the tree topology or the specific choice of branch radii.
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A balanced tree structure is one that both obeys da Vinci’s

law and splits sister branches such that cross-sectional area is

proportional to the bushiness of the two subtrees which they

support (r2
k /r2

l = Bk/Bl at each junction, where Bk = Lk/Dk

is the length divided by the depth of the subtree stemming

from branch k). The relation of depth and volume in balanced

trees [Eq. (C3)] allows a simple universal expression for the

total mitochondrial mass in a balanced tree (when γ = 2).

Combining Eqs. (E4), (F1), and (C3) yields

MT,balanced = k̂p f [uk̂p]

∑

j r2
j � j

V0

,

= k̂p f [uk̂p] = k̂p

[

1 +
1 + uk̂p

(1 − uk̂p)2

]

. (F3)
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