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Clustering and spatial distribution of mitochondria in dendritic trees
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Neuronal dendrites form densely branched tree architectures through which mitochondria must be distributed
to supply the cell’s energetic needs. Dendritic mitochondria circulate across the tree, undergoing fusion and
fission to form clusters of varying sizes. We present a mathematical model for the distribution of such actively
driven interacting particles in a branched geometry, showing that the density and localization of particles is highly
sensitive to the fusion/fission balance and to the tree architecture. Our model demonstrates that “balanced” trees
(wherein cross-sectional area is conserved across junctions and thicker branches support more bushy subtrees)
enable symmetric yet distally enriched particle distributions and promote dispersion into smaller clusters. These
results highlight the importance of tree morphology and radius-dependent fusion in governing the distribution of

neuronal mitochondria.
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I. INTRODUCTION

Extended neuronal cells face the challenging task of spa-
tially distributing organelles such as mitochondria, which
provide a source of energy for neuronal function. Mitochon-
drial structures range from highly interconnected architectures
in yeast cells [1], to largely fragmented populations in axons
[2,3], to networks on the border of percolation in many mam-
malian cell types [4—6]. In dendrites, mitochondria circulate
through the cell, forming a “social” network of variable-size
clusters whose dynamic fusion and fission are thought to
maintain homeostasis by helping deliver newly synthesized
material from the soma [7-9].

Live-cell imaging of dendritic mitochondria in Drosophila
sensory HS neurons has revealed a mixed population of sta-
tionary disjoint clusters and small motile mitochondria that
move processively in anterograde or retrograde directions
[10]. The dendritic arbors themselves form a bifurcating tree
rooted at the cell body, with narrowing branches towards the
distal tips [Fig. 1(a)]. The steady-state distribution of mito-
chondria was found to exhibit two robust features: enrichment
of mitochondrial volume density towards the distal tips and
symmetric volume densities between sister subtrees [10].

The spatial distribution of mitochondria modulates gra-
dients in ATP availability and metabolic efficiency [11,12],
particularly in highly extended neuronal geometries. Defects
in mitochondrial transport, localization, and interaction are
associated with a number of neuropathologies, including
Alzheimer’s and Parkinson’s disease [13—15]. Consequently,
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the mechanisms by which neurons control and establish mi-
tochondrial localization constitute an important problem in
cellular neuroscience. While mitochondrial localization in
some cell types is governed by glucose concentrations [16],
calcium levels [17], or local neuronal activity [18,19], the
distributions observed in Drosophila sensory dendrites were
found to be insensitive to such signals [10]. Instead, the
distributions appeared to be maintained autonomously as a
dynamic steady state of the mitochondrial population, which
turns over on a few-hour timescale.

In past work we developed a simple theoretical model for
mitochondrial distribution in a branched tree structure that in-
corporated bidirectionally moving mitochondrial units which
halt their transport with a radius-dependent rate constant [10].
It was shown that the observed spatial distributions could
only be obtained if the architecture of the dendritic trees
approximately followed specific scaling laws. Morphological
measurements of the arbors showed that HS neuron dendrites
do in fact exhibit the predicted scaling. Namely, branch widths
obey the da Vinci law [20], which preserves cross-sectional
area across a junction (r2 = r? + r3, where ry is the radius
of the parent branch and ry, r, the radii of the two daugh-
ter branches). In addition, sister branch radii have areas in
proportion to the “bushiness” of the corresponding subtrees
(B, total branch length over depth), such that rf / r% = B,/B;.
Hereafter, we refer to architectures that obey these two scaling
laws as “balanced trees.”

Crucially, the basic model in Ref. [10] did not account
for the fusion of mitochondria into variable-size clusters. Fu-
sion of mitochondria into extended structures is thought to
protect against cellular stress [21,22] and modulate ATP pro-
duction [23]. Furthermore, fusion and fission dynamics have
been hypothesized to play an important role in mitochondrial
quality control [24,25] and to allow for complementation of
mitochondrial DNA [26,27]. Alterations in the balance of
fusion and fission have been shown to directly regulate the
architecture of mitochondrial networks, both in mathematical
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modeling studies [5,6] and in live cells [1,5]. Because bigger
clusters tend to be immobile [28], the fusion of dendritic
mitochondria into clusters must couple together with their
distribution throughout the arbor. In this work, we develop a
model that incorporates mitochondrial fusion and fission to
explore the interplay of cluster formation and spatial localiza-
tion of mitochondria in treelike domains.

The fusion of mitochondria into larger clusters is analogous
to reversible aggregation and polymerization phenomena,
previously explored in the context of pathogenic protein ag-
gregates [29], filaments [30], and gels [31]. Such systems
have traditionally been studied via kinetic mass-action models
[32-36], which generally assume that fusion, fission, ab-
sorption, and injection of particles occur in an unstructured
homogeneous space and that the system can be treated as
well mixed. Here we consider how the spatial architectures
of dendritic arbors, as well as active transport and geometry-
dependent fusion, modulate the formation of mitochondrial
clusters.

We develop a spatially resolved mass-action model for the
distribution of actively driven clustering particles (represent-
ing mitochondria) on binary trees (representing Drosophila
sensory dendrites). We demonstrate that balanced tree archi-
tectures can give rise to a universal cluster distribution that
is independent of the specific branching pattern. Furthermore,
such structures are shown to allow for the broadest dispersion
of particles into the smallest possible clusters. Our model links
together mitochondrial fusion and spatial localization, thereby
shedding light on the interconnection of regulatory pathways
that have previously been shown to modulate each one of these
processes individually.

II. MODEL DEVELOPMENT

In this work we introduce a model for dendritic mito-
chondria distribution that incorporates fusion and fission of
mitochondria into stationary clusters, processive transport of
mitochondrial units, and a branching geometry for the den-
dritic arbor. The primary aim of this model is to explore
the link between the mitochondrial network structure (i.e.,
cluster sizes) and its spatial distribution. While we follow an
analogous approach to prior work [10], the introduction of
mitochondrial fusion into clusters makes this model funda-
mentally distinct.

The dendritic arbor is represented as a bifurcating tree
rooted at the cell body, with narrowing branches towards the
distal tips [Fig. 1(a)]. Mitochondria are modeled as a popu-
lation of discrete units that engage in transport, fission, and
fusion [Fig. 1(b)]. Single motile units move processively with
velocity £v (anterograde or retrograde) and reverse at distal
branch tips. New mitochondria are produced at the soma (tree
root) with rate k,. Retrograde mitochondria that return to the
root disappear. When a motile mitochondrion passes the tip of
any mitochondrial cluster, it has a probability of fusion: P, ; =
A/ r}', with r; the radius of the branch j, y a scaling exponent
that governs sensitivity to branch width, and A, a prefactor
setting the overall tendency towards fusion. We assume that all
stops or arrests of motile mitochondria are due to fusion with
stationary clusters. The scaling of the fusion probability with
branch radius is then based on the experimental evidence that
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FIG. 1. Model schematic. (a) Skeleton of a dendritic tree topol-
ogy extracted from Drosophila HS neurons [10], with branch radii set
to obey a balanced tree morphology. Inset: Schematic of anterograde
(green), retrograde (magenta), and stationary (yellow) mitochondria
at the primary trunk. Anterograde mitochondria are produced at
rate k,. (b) Fusion and fission dynamics in the mitochondrial clus-
ter model. Fusion occurs with probability P, during each passage
event; fission at each cluster end occurs at constant rate k. (¢) Sim-
ulation snapshot of mitochondrial clusters with different sizes on
dendritic branches; different colors indicate distinct mitochondrial
clusters.

motile mitochondria tend to stop more at distal areas [10], and
we explore the role of the scaling exponent y in determining
mitochondrial distributions. Fused clusters are assumed to be
always stationary, a simplified reflection of the observation
that larger mitochondria in dendritic process are less likely to
be motile [28].

Clusters can undergo fission with rate k; at each end, re-
leasing a single motile mitochondrial unit while the remainder
of the cluster remains stationary. A stationary single unit
becomes motile again also with rate k;, and is equally likely
to go anterograde or retrograde. Anterograde mitochondria
split at junctions in proportion to the cross-sectional area of
the respective daughter branches, as observed in Drosophila
sensory dendrites [10].

This model can be explicitly represented in agent-based
simulations (see Appendix A for details), which track the
motion of individual mitochondrial units and the spatial ex-
tent of growing clusters [Fig. 1(c); Supplemental video SV1
[371]. To more efficiently explore the behavior of this dynamic
system, we represent it in terms of a spatially resolved mass-
action model, which treats all clusters as pointlike particles
and assumes that the cluster distributions can be described
in terms of continuum concentration fields. The mitochondria
are represented by linear densities p;?; of clusters with size
i located on branch j in state w = {4+, —, s} (corresponding
to anterograde, retrograde, and stationary particles, respec-
tively). The time evolution of the linear densities is given
by the following set of equations, which incorporate all state
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The boundary condition at the primary trunk matches
the flux of anterograde mitochondria to the production rate:
v pffO(O) = k,. At the distal tips, we assume reflective bound-
ary conditions, with anterograde mitochondria flipping to
retrograde motion when they reach the tips, giving lef j ;) =
o1 j(ﬁ ;) for any terminal branches j of length £;. At each
junction between parent branch j and daughter branches k, [
we set boundary conditions to match the incoming and outgo-
ing flux in both directions: p;"}”(€;) = p [ (0) + p{7~(0).
Furthermore, the anterograde flux is assumed to split in pro-
portion to the cross-sectional area of the daughter branches (as
observed in live-cell measurements of dendritic mitochondrial
transport [10]): ;" (0)/ 01", (0) = ri/r}.

We then proceed to solve for the steady-state linear den-
sities of all clusters throughout the branches (details in
Appendix B). At steady state, the mitochondrial densities are
constant on each branch and the anterograde and retrograde
densities are equal (,off ; = py,;) everywhere. For simplicity,
we define the total density of motile mitochondria as py"; =
pff it e The overall steady-state solution of Eq. (1) is
given by:

‘ 1 m
Py = 50‘1(:01,1‘)2
s ,O’ffj m m \i—1 .
Pij= 7(1+0‘jﬂl.j)(0‘jpl.j) S )

where o; = vA, /2kbr}', P10 = 2kp/v is the motile density at
the root of the tree, and motile densities in all other branches
are found by applying the junction boundary conditions. For
da Vinci trees (where r{ = rj’ +r" with o = 2 at each junc-
tion), this gives a simple relationship between the parent and
d.aughter nllotile. densities.: oL = p{'_’j(r,% / rjz-). The linear Flen-
sity of motile mitochondria on each branch can then be written
in closed form:

2
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For trees that do not obey da Vinci scaling (e.g., @ # 2),
the linear density of motile monomers must be computed
recursively at each junction by starting with the primary

trunk density and computing each successive pair of daughter
branch densities as:
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The volume density of clusters of size i in motility state w
on each branch j is defined as c¢f’; = pi’;/ (7rr.12~). The branch
radii thus play several distinct roles in setting mitochondrial
densities: They link linear and volume densities, they deter-
mine the linear density of motile mitochondria in downstream
branches, and they modulate the fusion probability through
the scaling exponent y .

In order to describe the morphology of the branched tree
through which mitochondria move, we define the depth of a
tree or subtree in a recursive manner, as follows. For arbors
where every tip has the same path length from the root, the
depth Dy is equal to this path length. For general architectures,
the depth is defined as

L+ L,

Do=to+——" 2
Li/Dy+ Ly/D,

&)
where £ is the length of the trunk and L;, D; are the total
branch length and the depth of the daughter subtrees. This
expression averages the inverse depth of daughter subtrees,
weighted by their corresponding lengths, as well as adding
on the length of the parent trunk. The bushiness of a subtree
is defined as the total branch length divided by the depth
(Bj = L;/D;). For a balanced tree morphology, where cross-
sectional area is conserved across junctions and sister branch
radii are proportional to the subtree bushiness, the depth is
directly related to the total tree volume according to Vy =
nrgD() (see Appendix C). Thus, the recurrent definition of
depth used here enables an intuitive relation between tree vol-
ume, branch width, and depth to be extended to more complex
branching architectures.

III. RESULTS

A. Mass-action model and agent-based simulations give
matching predictions of cluster distribution

To demonstrate the utility of the mass-action model, we
compare its predictions to agent-based simulations on a small
tree (Fig. 2), with branch length and connectivity extracted
from a portion of an HS dendritic arbor [10], and branch
radii set to obey a balanced tree morphology. We compute the
normalized distribution of cluster sizes (p;) and the volume
density in each branch (c;) according to

o0
pi = Zpi,jfj / ZZPLJ@ ; (6)
J Jj o=l

;= (p'ff,- +Zip;-‘,,-> / (vr3). ™
i=1

where the summations over j correspond to all branches of
the tree and summation over i corresponds to all cluster sizes.
To place the model in a biologically relevant regime, we esti-
mate the volume of a mitochondrial unit as v ~ 0.5 um?, and
select kinetic parameters such that the average mitochondrial
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FIG. 2. Mass-action model and simulations of cluster distributions on a balanced tree structure. (a) Distribution of cluster sizes p; averaged
across the tree for y = 2.1 (cyan) and y = 1.5 (magenta); circles from simulation data and solid lines from Eq. (6). (b) Mitochondrial volume
fraction on each branch (¢; = vc;) is compared for simulations (horizontal axis) and mass-action model (vertical axis) for y = 2.1 (cyan) and
y = 1.5 (magenta). Dashed line indicates equality. [(c) and (d)] Spatial distribution of mitochondrial volume fraction ¢; from (c) the mass-

action model and (d) simulations, using y = 2.1. [(e) and (f)] Analogous plots using y = 1.5. Simulation parameters were k, = 0.01 s

-1 —
» U=

0.6 um/s, trunk radius ro = 1.3 um, with A, = {0.05,0.07} and k, = {0.34 s7',0.32 s7!} selected to give average cluster size (i) = 2 and
overall volume fraction ¢ = 0.2 in the mass-action model. Simulation results are averaged over 100 independent iterations.

volume fraction is ¢ = v Y~ ¢;€;r7/ 3" £;r7 ~ 20% and the
average cluster size is (i) = ) ; ip; &~ 2, based on prior mea-
surements in HS dendritic arbors [10].

The cluster size distribution exhibits an exponentially de-
caying tail, with a close match between simulations and the
mass-action model [Fig. 2(a)]. The distributions are similar
for different values of the scaling exponent y, so long as
the overall fusion rate (A,) is adjusted to maintain the same
average cluster size.

The predicted mitochondrial volume densities in indi-
vidual branches are also similar for the mass-action model
and the simulations [Fig. 2(b)]. Notably, a low value of y
results in more mitochondrial mass in the primary trunk
[Figs. 2(e) and 2(f)], while a higher value yields distal en-
richment of the mitochondrial density [Figs. 2(c) and 2(d)].
This is intuitively expected, as increasing y raises the fu-
sion rate in narrow distal branches relative to the wide
primary trunk.

Unlike the mass-action model, the simulations show a de-
pletion of mitochondrial densities at the terminal tips of the
branches [Fig. 2(d)]. This effect arises from the finite size of
mitochondrial units, which limits further fusion once a long
cluster abuts the tip. For comparison with simulations, the
mass-action model results are corrected to account for finite
mitochondrial size which reduces the effective production rate
of new mitochondria at the root node (see Appendix D for
details). Nevertheless, the mass-action model encompasses

the main features of the cluster size and spatial distributions
in the simulated system.

B. Kinetic parameters and tree structure govern
mitochondrial cluster distribution

We next determine how the total mitochondrial mass and
its distribution into clusters emerges from the interplay of
production, fusion/fission, and transport parameters, as well
as the tree architecture. The kinetic parameters can be com-
bined into a handful of intuitively interpretable dimensionless
groups. The balance between new mitochondrial production
and the time for motile units to traverse the tree is set by
k, = k,Do/v. Given that the rate at which a given mitochon-
drion undergoes fusion events must scale as P,vp (where p is
the linear density of mitochondria along a branch), we define
a dimensionless parameter governing the balance between fu-
sion and fission as: u = Auv/(rgDokb). ‘We note an analogy to
prior models of binding and unbinding particles [38], with IQP
serving as an effective fugacity (equivalent to the exponent of
the chemical potential, driving more particles into the system)
and u serving as an effective association constant (balancing
the preference for clustering versus fragmentation). The cur-
rent model extends these general concepts from equilibrium
statistical mechanics to describe the steady state of a system
of actively driven processive particles.

It can be shown (see Appendix E) that for any given
tree structure, the linear densities of clusters (mg ;) and of
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FIG. 3. Dependence of mitochondrial mass and cluster size on kinetic parameters and tree architecture from the mass-action model.
(a) Example dendritic arbor from Drosophila HS neuron, with imposed radii following different scaling laws relating mother and daughter

branches: o« = 2, 2 >

3. In all cases sister trunk radii are scaled in proportion to subtree bushiness: r7/r?

= By/B;. (b) Scaled total mitochondrial

mass plotted versus dimensionless parameter ulzp, for different tree morphologies («) and different fusion sensitivity scaling (y). (c) Average
cluster size plotted versus ulzp. (d) Average cluster size plotted as a function of scaled mitochondrial mass. Black lines show canonical result
on linear geometry with y = 2. All other curves are computed on the example tree geometry in (a), with varying scaling laws for the radii.
Purple lines show results for a balanced tree structure and different fusion scaling exponents: y = {0, 2, 3} (dashed, solid, and dotted curves
respectively). Cyan and red curves represent alternate radial scaling laws (¢ = 3/2 and « = 3, respectively), with y = 2. Yellow curves
represent a balanced tree structure with an imposed minimum radius 7y, = 0.1 pm.
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where &; = pY' i/ Pl describes how motile mitochondria are
diluted as they travel downstream, completely determined by
the branch widths of the tree. If the tree structure is fixed, then
the scaled total mitochondrial mass, M7 /12 = t > jmi, i,

is a function of the reduced parameter u/%,, and the fusion sen-
sitivity exponent y [Fig. 3(b)]. Similarly, the average cluster
size [Fig. 3(c)], given by (i)y = (Zj mlgjﬁj)/(zj mo,i€;),
depends only on these two parameters and the tree structure.
Unsurprisingly, increasing mitochondrial production (raising
k,) increases both the size of the clusters formed and the
total mass of mitochondria in the tree, with the latter rising
in a superlinear manner, as expected for aggregating systems
[29,33]. Furthermore, because larger clusters are immobile,
increased fusion of mitochondria (raising u) causes each unit

to spend more time in the tree before returning to the root,
thereby raising the total mass.

For trees that obey the da Vinci law, the splitting of motile
mitochondria in proportion to branch area implies that &; =
(rj/ro )2 Consequently, in the case of y = 2, the volume den-
sity of all cluster sizes is uniform across the tree. The average
cluster size is then given by a universal curve:

o
(i = L) _ W) Z iy 42 ©
g(uk) 2(1 — uk,)

regardless of the tree connectivity (see Supplemental Fig. S1
[37]). The scaled total mitochondrial mass becomes

My _ fukyve [ 1k,
(1 — uk,)?

(10)

where V7 is the total volume of the tree. For the special case
of balanced trees (where branch areas split in proportion to
subtree bushiness), we have Vy = nrgDo and the scaled mass
also becomes independent of the tree branching architecture.
In particular, these universal expressions Eq. (9) and Eq. (10)
[black curves in Figs. 3(b) and 3(c)] give the cluster size
and the scaled mass for particles on a simple linear domain.
They are analogous to the canonical behavior found in classic
well-mixed mass aggregation models which exhibit a phase
transition with increasing fusion or production [29,33]. Both
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the total mass and cluster size diverge asymptotically when
the parameter ulzp approaches a critical value, which for bal-
anced trees is given by (ul%,,)* = (min{rj}/ro)y’z. Thus, when
fusion probabilities scale with cross-sectional area (y = 2),
the critical value is (uk},)* = 1, whereas for steeper fusion
sensitivity (y > 2), this critical value is lower [Figs. 3(b)
and 3(¢)].

We next consider the behavior of the total mass and average
cluster size for alternate tree structures that obey distinct ra-
dial scaling laws. For instance, when the parent and daughter
radii are related by r{ = rj’ +rj' with & = 3/2 (Rall’s law
[39]), the total cross-sectional area is reduced across each
junction. In such trees, the fusion probability increases more
steeply towards the distal tips, inducing the formation of larger
distal clusters. The critical value (u/%,,)* for divergent mass
and cluster size is then much lower, so that comparatively
low production rates can lead to substantial accumulation of
distal mitochondria. When o =3 (Murray’s law [40]) the
corresponding expansion of the cross-sectional area at the
distal zone reduces the fusion probability and leads to smaller
clusters for the same production rate.

In power-law models for tree structure, the cross-sectional
area of the branches decreases exponentially from the primary
trunk to the distal tips. However, there is likely a lower bound
on the minimum radius of dendritic branches due to the me-
chanical limits of fitting at least one microtubule into each
branch. Recent measurements in Drosophila class IV sensory
neurons [41] indicate that the branch radii can be approxi-
mated as obeying a modified da Vinci relation: r% + r% = rg +
rrznin, with minimum radius 7y, &~ 0.1 um. We consider the
effect of incorporating this minimum radius into the model for
mitochondrial cluster formation on the Drosophila HS den-
dritic arbors considered here, which have an average radius of
Frunk & 3 um in the primary trunk [10]. Imposing a balanced
tree architecture yields an average radius of ~0.3 wm in the
distal branches. Consequently, the minimum radius has only
a small effect in widening distal tree branches and reducing
cluster size (Fig. 3).

In general, cells can adjust rates of mitochondrial biogen-
esis to control their overall mitochondrial load [42]. Thus, a
fixed mitochondrial mass in the dendrite may be a more rele-
vant control parameter than the production rate. In the regime
where clusters of substantial size are formed ({(i)r = 2), a bal-
anced tree architecture with fusion exponent y = 2 yields the
smallest average cluster sizes for a given total mass [Fig. 3(d)].
A variety of HS dendritic trees with different branch width
scaling laws, o = {3/2, 3}, all give larger clusters for a given
scaled mitochondrial mass (see Supplemental Fig. S1 [37]).
Thus, balanced trees with y ~ 2 form the optimal structure
to disperse the mitochondrial population into many small
clusters, a direct consequence of the spatially uniform distri-
butions that arise in such systems. These results highlight the
importance of dendritic tree morphology in modulating the
clustering and accumulation of actively driven particles.

C. Balanced trees allow for symmetric distributions
with distally enriched large clusters

The spatial accumulation of mitochondria in different re-
gions of the tree can be quantified by comparing clusters in

distal branches versus the primary trunk [Fig. 4(a)]. We define
the distal enrichment in volume density according to:

> distal jPiti 00
alep=\v—>>3 (—) an

( Zdistalj ejrjz' }"3
where the first term gives the total volume density in the set
of distal branches (defined as those with path length from
the root greater than 70% of the maximal value) and the

second term gives the volume density in the primary trunk.
Analogously, the cluster size ratio is defined as:

N D20 D disal ;1015 (Z?il iPi,o)
(0)a/ (D), = = = ) 42)
ppas Zdistaljpiqjgj D i1 Pi0
Focusing on balanced tree morphologies, these two quantities
are plotted in Fig. 4(b) as a function of the fusion scaling
exponent y.

As previously noted, the scaling exponent y = 2 gives
uniform volume densities throughout the tree, so that ¢ /c, =
(iYa/(i)p = 1. Higher values of y enrich the mitochondrial
volume in distal branches while lower values lead to enrich-
ment in the proximal trunk, as also observed in simulations
(Fig. 2). The ratio of distal to proximal cluster sizes also rises
with increasing y, albeit less steeply.

The twofold distal enrichment of volume density observed
in vivo [10] is obtained with fusion sensitivity exponent y* ~
2.1. For this parameter, the average cluster size is expected to
be about 42% larger in distal versus proximal branches. Thus,
enriching the mitochondrial mass in the distal tips of the arbor
also requires increasing the size of clusters in that region.
Notably, this is a concrete experimentally testable prediction
of our model: distal enrichment in mitochondrial density is ex-
pected to be accompanied by larger clusters in the distal zone.
The prediction could be tested by correlating individual mito-
chondrial volumes with their position in the dendritic arbor.

‘We note that the probability of two axially passing particles
coming in direct contact scales as 1/r> when the size of the
particles is small compared to the tube width, but should
exhibit a steeper scaling in narrow tubes comparable to the
particle size [43]. Thus, values of y > 2 are to be expected
for narrow distal branches. Raising the overall fusion prob-
ability [Fig. 4(c)] monotonically amplifies the enrichment of
mitochondria in either the distal or proximal zones, depending
on the value of y.

Finally, we consider the predicted asymmetry of the mi-
tochondrial distribution in sister subtrees. Measurements in
HS neurons have demonstrated that the average mitochondrial
volume density in sister subtrees tends to be equal, even when
the subtree morphologies themselves are asymmetric [10]. We
define an asymmetry metric

1 ChsT1 — Chs2 |
. E ShSTL T ChST2 ) 13
¢ Np ( ) (3

5 \CbSTI + ¢psT2

where b is a junction site, N, is the total number of junctions
in the tree, and c; st1/2 are the average volume densities in
the two subtrees emanating from the junction [Fig. 4(d)]. For
balanced trees, perfectly symmetric distributions are predicted
for y = 2, with the asymmetry levels remaining quite low
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FIG. 4. Spatial distribution of mitochondral clusters. (a) Illustration of distal branches (green) and proximal trunk (magenta) in example
dendritic arbor. Colored strokes show individual mitochondrial clusters from a simulation snapshot with y = 2.5, ul%,, = 0.18; note larger
clusters in the distal zone. (b) Distal-to-proximal ratio in volume density (pink) and average cluster size (green) plotted against fusion scaling
exponent y. Fusion and production parameters (u, Izp) are adjusted to give average cluster size (/)7 = 2 and volume density ¢ = 0.2 for the
full tree. Experimentally observed distal enrichment (dashed line) corresponds to y* = 2.1. (c) Distal enrichment in volume density versus ul%,,
for y = {1.5, 2.1}, with volume density fixed to ¢ = 0.2. (d) Illustration of two sister subtrees, ST; (yellow) and ST, (cyan), at junction b in
a sample dendritic arbor. (e) Root-mean-squared asymmetry (¢) of mitochondrial volume density plotted against scaling exponent y. Curves
are shown for different radii scaling laws: « = 2, 3/2, 3 (pink, cyan, and orange) with sister radii split in proportion to subtree bushiness,
o = 2 with equal sister radii (green), and balanced trees with imposed minimum radius 7, = 0.1 um (yellow). Average cluster size is fixed
to (i)7 = 2, volume density to ¢ ~ 0.2. All results are obtained from the mass-action model, averaged over 10 tree topologies of distinct HS
dendritic arbors (Supplemental Fig. S1 [37]); shadowed areas denote standard deviation.

over a broad range of y values [Fig. 4(e)], extending past the
y* & 2.1 approximation which gives twofold distal enrich-
ment as observed in vivo. Notably, other tree morphologies,
such as a tree that obeys the da Vinci law but has equal
radii between sister branches (green curve), or trees with
alternate scaling exponents « (blue, orange curves), lead to
much higher asymmetry when y > 2. The introduction of a
minimum radius (yellow curve) also increases the asymmetry
of the mitochondrial distribution for intermediate y values.
Overall, we show that a balanced tree morphology, approxi-
mately representative of HS dendrites, allows for a moderate
amount of distal enrichment with a largely symmetric distri-
bution of mitochondria.

The ability of balanced tree structures to maintain sym-
metric yet distally enriched mitochondrial distributions has
previously been shown for a simpler model that does not
include mitochondrial fusion into clusters but does allow
for a width-dependent halting rate [10]. In that purely
fragmented model, spatially uniform halting rates lead to
uniform distribution of the mitochondria. When halting is
attributed specifically to fusion, then spatially uniform fusion
probabilities (y = 0) result in proximal enrichment of the

mitochondrial mass. Uniform distribution requires instead a
fusion probability that scales inversely with cross-sectional
area [y = 2, Fig. 4(b)]. Furthermore, the presence of fusion
results in very high sensitivity to increasing y values above
this value, as compared to the fragmented case. This effect can
be observed in Fig. 4(c): As the fusion prefactor increases, the
distal enrichment for two different y values rapidly diverges.
These results demonstrate that the ability of mitochondria
to fuse into larger clusters exacerbates the sensitivity of the
mitochondrial spatial distribution to the architecture of the
dendritic arbor.

IV. DISCUSSION

Maintaining homeostasis of mitochondrial clusters in a
neuronal arbor requires a balance of production, transport,
fusion, and fission. The mass action model described here
elucidates the key parameters which set the typical cluster
size and overall mitochondrial accumulation: namely, the
ratio of production and tree traversal rates (lgp) and the
ratio of fusion to fission (x). The tree morphology affects
mitochondrial distributions through both regulating the
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splitting of anterograde mitochondrial flux and modulating
the probability of fusion between passing mitochondria (via
the scaling exponent y). Balanced trees architectures, which
conserve branch area across junctions and split sister subtree
trunk radii in proportion to bushiness, are shown to maintain a
symmetric distribution of mitochondria among subtrees, while
allowing for enrichment at the distal tips. Such enrichment
goes hand-in-hand with larger clusters in the distal region.

The functional role of fusing dendritic mitochondria into
larger clusters is not currently well understood. It is possible
that such fusion can aid the mixing of mitochondrial contents,
permitting the delivery of newly produced mitochondrial ma-
terial from the cell body, and thereby maintaining the overall
health of the population [9]. Alternately, mitochondrial fusion
into larger structures has been proposed to enable complemen-
tation of damaged mitochondrial nucleoids [25], to protect
healthy mitochondria from clearance through mitophagy [44],
or to permit tunneling of ions through “power cables” [7].

Regardless of the specific advantages conveyed by modest
fusion, there is a fundamental spatial constraint that makes
hyperfusion of neuronal mitochondria detrimental to the cell.
Namely, the need to broadly distribute mitochondria across
extensive projections necessitates a finite mitochondrial pop-
ulation to be broken up into smaller clusters that can be
spread throughout the dendritic arbor. In hippocampal den-
drites, for example, it has been shown that ATP gradients form
in dendrites when the spacing between mitochondria exceeds
approximately 30 pum, limiting the energy supply for local
translation [11]. In axons of the mammalian central nervous
system, stationary mitochondria have been shown to distribute
uniformly along the axonal length [45]. Furthermore, a suf-
ficient population of motile mitochondria is necessary for
maintenance and delivery of that fraction of mitochondrial
proteins which is translated in the perinuclear zone [9,46]. Our
results show that limiting the average cluster size is required to
maintain such a motile population. Furthermore, we demon-
strate that the balanced tree architecture previously observed
in Drosophila HS neurons is optimized for dispersing mito-
chondria into the smallest clusters. Future work will explore
the consequences of mitochondrial clustering and spatial dis-
tribution on the mixing of mitochondrial material throughout
the arbor.

In the basic model considered here, mitochondrial trans-
port and fusion is taken to be dependent only on the local
width of the dendritic branch without any more sophisticated
sensing and control mechanisms. The resulting mitochondrial
distributions are found to be highly sensitive to small changes
in domain geometry or in the production and fusion kinetics.
The difficulty of controlling the size of cellular structures
without direct length-sensing feedback mechanisms has previ-
ously been pointed out in the context of cytoskeletal filaments
and flagellar projections [47]. For mitochondria, additional
biochemical mechanisms have been found to regulate trans-
port via the sensitivity of mitochondrial motor adaptors to
local calcium [17] and glucose [16]. Intermitochondrial sig-
naling via ATP gradients has also been proposed to regulate
the mitochondrial distribution in axons [45]. Furthermore,
mitochondrial fusion and fission may be regulated by local
calcium concentrations [48]. It should be noted, however,
that mitochondria in fly sensory dendrites were not found to

respond to synaptic activity or altered calcium levels [10].
In general, additional levels of biochemical control could
interplay with the basic “blind” transport and fusion/fission
dynamics considered here, in a manner dependent on cell type
and activity. By considering the simplest model for mitochon-
drial positioning, this work sheds light on some of the key
physical parameters that can be tuned by the cell to alter the
total volume, cluster architecture, and spatial distribution of
the mitochondrial population that supplies the energetic needs
of the dendritic arbor.
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APPENDIX A: SIMULATIONS OF MITOCHONDRIAL
DYNAMICS IN DENDRITIC TREES

Stochastic simulations of mitochondrial transport, fu-
sion, and fission were implemented on a network of one-
dimensional edges. The network topology was taken from the
dendritic arbor of a Drosophila HS neuron [10] [Fig. 1(a)],
and a distal subtree was extracted for the simulations
(Fig. 2).

The simulations were implemented in Fortran 90. For each
run, 275 single mitochondrial units (corresponding to a mi-
tochondrial volume fraction of ¢ = 0.2) were placed on the
subtree, with the number initialized on each branch propor-
tional to the branch volume (v; = 7l jrjz-). Each mitochondrion
was treated as a linear segment of length Ax = 0.5 um. Each
mitochondrion was initialized in a motile state, walking either
in the anterograde (away from the root) or retrograde (towards
the root) direction. At every time step Ar = 0.01s, motile
mitochondria moved a distance of £vAr along the branch,
with the speed set to v = 0.6 um/s. Whenever an anterograde
mitochondrion hit a terminal tip, it reversed and becomes
retrograde until it reached the root, where it disappeared.
Anterograde mitochondria split at junctions in proportion to
daughter branch area nrjz». Aside from fusion, there was no
interaction or exclusion between passing mitochondria.

The simulations were done for two different fusion
exponents y = {2.1, 1.5}, favoring the presence of high mi-
tochondrial volume density at the distal zone (y = 2.1) and
primary trunk (y = 1.5). In each case, new mitochondria
were produced at the primary trunk with constant rates k, =
{0.34 s7!,0.32 s7'}. When a motile mitochondrion passed
the tip of any mitochondrial cluster (or another motile mi-
tochondrion) fusion was allowed to occur with probability:
P, ;= Au/r}’, with A, = {0.05, 0.07} in the two different sim-
ulations. All clusters containing more than one unit were
assumed to remain stationary.

For both fusion exponents, any cluster with size i > 1
could undergo fission and release a single motile unit, with
fission rate k, = 0.01 s~! from either end. Fission always
produced one stationary unit or cluster plus one motile unit. A
stationary mitochondrion of size i = 1 could become motile
again with the same rate k, in each direction. To achieve
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the steady state configuration, the simulations were run
for 108 steps.

APPENDIX B: STEADY-STATE SOLUTION

Here we solve Eq. (1) in the main text via recursive meth-
ods Reflection of motile units at terminal tips implies that
,0l =0y - in the distal branches, and this equality propagates
through boundary conditions at all junctions. Therefore, we
can write the total linear density of motile monomers as p{'; =
o+ pr; =2p ;. The steady-state equations can then be
re-expressed as:

apj , , ‘
attl = —2kopi ; + 2kopy ; — VPujPY 1 ; =0, (Bla)
8,0{" m \2
7’12 vP,”pUZ,O,, M/plj)
20500, =0 @1
i=1
2
903 (1))
_at’j = qujpljp2]+vPMJ 2 +2kb’03j
= 2kpp ; + VP ;PTP) =0, (Ble)
00} ;
Bt’j = 0Pl (pi1,; = 1) + 2kopisr ;= 2kopi; = 0.
(B1d)

Solving Eq. (Blc) gives an expression for p3 ; as:

pm
”) ol (B2)

p3j =P+ (pé,j AT

where we define «; = vP, ;/(2ky) = vAu/(ZkbrV) Solving
Eq. (BId) for pj, ; and propagating downward recursively
gives a general expression for the linear density of all clusters
of size i > 2:

i—2

] ’OT” m \k
piy=ryt (pij — AL T]> > (o) - (B3)

k=1

Assuming |o;p;";| < 1, we can explicitly sum the partial geo-
metric series to get:

R . w5 P
=1 _a.om ijp,{fl,- P —ajpy i\ P+ BN

m \i—1 s s 'Ofl
- (ajpl,j) (:02,j —P1;— Tj>i| (B4)

For a finite total mitochondrial load, the density must vanish
at large cluster sizes: lim; o p; ; = 0. This implies that the
intercept in Eq. (B4) must be zero:

S
Pij

s m ) plln
P = iy (:01 it 21) (BS)
Solving Eq. (B1a) then gives:

pé,j :pi‘,j‘i‘ajp??jpij- (B6)

Together, Egs. (B4), (B5), and (B6) give the full solution
for the steady-state density of stationary clusters as a function
of the motile density: Equation (2) in the main text.

The motile density in each branch is found by applying the
boundary condition at the root (p}"y = 2k,/v) and the conti-
nuity and anterograde splitting conditions at each junction:

2
mo_ mogom ’Oink_r_k B7
P1j=PLk TPLL  —m =2 B7

1.1 I

APPENDIX C: DEFINITION OF TREE DEPTH

The depth of a subtree starting with parent branch j is
defined recursively, as in Eq. (5) in main text, via the following
relation:

D=+t 1

Li/Di + Li/D;’

where L; is the total branch length in the daughter subtree
stemming from branch k, and Dy, is the depth of that subtree.
We note that for a subtree consisting of a single branch, or one
where all branch tips are the same path length from the root,
the depth is equal to that path length. For more complicated
tree structures, this recursive definition involves an average of
inverse depth for the daughter subtrees, weighted by the total
branch length in that tree.

For balanced tree structures, this definition of depth is
closely related to the volume of the entire tree. Balanced trees
are defined as preserving area across junctions: rjz =r}+r},
as well as splitting sister branch areas in proportion to the
bushiness of the supported subtrees: r,f / "12 = By /B;. For such
trees, the ratio of daughter (k) to parent(j) branch area is
given by:

r? Li./D
—k2=—k/ k| (C2)
7 Li/Di+ Li/Dy

Suppose that the total tree volume for the subtree stem-
ming from branch k is given by V; —nrka This is
trivially true for a subtree composed of a single branch,
where Dj = ¢;. We then proceed by induction to show
that this relation holds for all balanced tree structures.
For a parent branch j with daughters k,l, we can use
Eq. (C2) to simplify the volume of the subtree beginning
from j:

Vi =il + Vi + Vi = wrjt; + wriDy + mr D,

2 2

B Y T
=nri\¢;+ 5D+ 5Dy ),

J J 2 2

Ty Ty

, L L
= 7Trj Ej + + )
Ly/Dy+Li/D;  Li/Dy+ Li/D;
= nr?Dj. (C3)

Thus, the volume of the entire tree can also be expressed as
Vo = r2Dy. This simple relationship motivates our recursive
definition for the tree depth. The depth is defined based on
branch lengths only, matches the trivial definition for simple
trees where all tips are at the same distance from the root, and
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has an intuitively clear relationship with the tree volume and
trunk width for an area-preserving balanced tree.

APPENDIX D: CORRECTION FOR FINITE
MITOCHONDRIAL LENGTH

When comparing mean-field results to simulations (Fig. 2),
we include an additional correction to account for the finite
length of mitochondria (Ax = 0.5 um in simulations). Specif-
ically, whenever a new mitochondrion is produced, it extends
a distance Ax into the primary trunk and has a chance to fuse
into existing clusters immediately. The overall rate at which
produced mitochondria disappear due to immediate fusion at
the root is vP, o pffomoqux, where my g is the total linear den-
sity of all clusters at the root, and ,offo Ax describes the number
of anterograde mitochondria at the root. Consequently, we
adjust the boundary condition at the tree root such that the
rate of new mitochondria produced (k) is equal to the rate at
which such new mitochondria move into the primary branch
(v,oio) plus the rate at which they vanish due to immediate
fusion:

kp = U)Oi':() + UPu,OpromO,oAx. (D1)

We use this alternate boundary condition to solve for the
motile mitochondria in the primary trunk (010 = 2,01*0).
Putting together Egs. (8) and (D1), gives a quadratic expfes—
sion for this motile density:

v m 2 v m
{Olokbe - TO](PLO) + {5 + Otokp}pl,o —k, =0,
(D2)

where «g = vP, ¢/2k,. The solution of Eq. (D2) is then used
as the motile density in the primary trunk, with all other motile
densities obtained through Eq. (4).

When Ax is much smaller than the branch lengths of the
tree, this reduces to the standard solution for point particles
as given in the main text. For simplicity, we use the point-
particle model without finite-length correction throughout the
main text, other than in the simulation comparison in Fig. 2.

APPENDIX E: MOMENTS AND AVERAGES
OF THE DISTRIBUTION

The overall linear density of mitochondrial clusters on
branch j is given by summing Eq. (2) over all cluster sizes:

o0
m S
mo,j = pj; + 2 Pijs

m

_ ety (L aet)
2 2(1 = a;p}"))

Similarly, the linear density of individual mitochondrial units
is given by the next moment of the distribution:

(ED)

o0
m . S
myj = p;+ § 1P j»

_ P 4 pi;(1 +0‘jp'17fé)’ E2)
2 2(1 —a;pt"))

We define the dilution factor §; = P i/ P, which depends
only on the tree structure (spec1ﬁcally, on the radii of all
branches upstream of j). Additionally, we deﬁne the two

. . L. s k,D,
dimensionless quantities k, = 2=, where D

is the depth of the tree. This yields the followmg express1ons.

J=&ipy = &2k, /v) = 2§k, /Dy,
a;pl; = vAu/ (2kor) x 2k, /Do = Ejukyry /7. (E3)

Equations (E1), (E2), and (E3) yield Eq. (8) in the main text.
The above moments of the mitochondrial cluster distribution
can be used to compute total mass, volume density, and aver-
age cluster size in different tree regions.

The total mitochondrial mass in tree T is given by

My =3 miit;, (E4)

jeT

where £; is the length of the jth branch. The average cluster
size is defined as the ratio of the total mitochondrial mass
divided by the total number of clusters in the tree:

:MT/Zmo,ij. (ES)

jer

The mitochondrial volume density in a a given branch is
givenby c; =my ;/ (nr ). The average mitochondrial volume
density over a tree or subtree (T) is defined as the total mass
divided by the tree volume:

Mr

2
ZjeT mljr;

cr =My /Vr = (E6)

APPENDIX F: CANONICAL SOLUTION
FOR y =2 ON BALANCED TREES

We next consider the mitochondrial distribution on spe-
cialized tree structures. A tree obeys da Vinci’s law if the
cross-sectional area is conserved across all junctions (rf =
rt 4 r?, for parent branch j and daughter branches k, ). For
such trees, Eq. (3) implies that &§; = rlz- / rg. If we further as-
sume that the fusion sensitivity exponent is set to y = 2, the
moments of the mitochondrial distribution [Eq. (8)] can be
simplified to

rikp
mO,j - 2D0g[ukp]
o6 (F1)
ij = %f[ukp]

As a result, the average cluster size [Eq. (ES)] is given by

fluky]

(ul%,,)2 — ulgp +2
g[ul%,,] '

L F2
2(1 — uk,) 2

(i) T.daVinci =

Thus, for da Vinci trees, the average cluster size is indepen-
dent of the tree topology or the specific choice of branch radii.
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A balanced tree structure is one that both obeys da Vinci’s
law and splits sister branches such that cross-sectional area is
proportional to the bushiness of the two subtrees which they
support (r,f / rl2 = By /By at each junction, where By, = Ly /Dy
is the length divided by the depth of the subtree stemming
from branch k). The relation of depth and volume in balanced
trees [Eq. (C3)] allows a simple universal expression for the
total mitochondrial mass in a balanced tree (when y = 2).

Combining Eqs. (E4), (F1), and (C3) yields
> iT ]2'£j

MT,balanced = /Epf[u]%p]—,
Vo

= kyfluk,] = 121,[1 + M} (F3)

(1 — uk,)?
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