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substrate and air temperatures across taxa, climates and behaviours (basking and diel
activity).

Results: Heliothermic lizards had the highest body temperatures. Their body tem-
peratures were the most weakly correlated with substrate and air temperatures.
Body temperatures of non-heliothermic diurnal lizards were similar to heliotherms
in relation to air temperature, but similar to nocturnal species in relation to substrate
temperatures. The correlation of body temperature with air and substrate tempera-
tures was stronger in diurnal snakes and non-heliothermic lizards than in heliotherms.
Body-substrate and body-air temperature correlations varied with mean annual tem-
peratures in all diurnal squamates, especially in heliotherms. Thermal relations vary
with behaviour (heliothermy, nocturnality) in cold climates but converge towards the
same relation in warm climates. Non-heliotherms and nocturnal species body temper-
atures are better explained by substrate temperature than by air temperature. Body
temperature distributions become left-skewed in warmer-bodied species, especially
in colder climates.

Main Conclusions: Squamate body temperatures, their frequency distributions and
their relation to environmental temperature, are globally influenced by behavioural
and climatic factors. For all temperatures and climates, heliothermic species' body
temperatures are consistently higher and more stable than in other species, but in re-
gions with warmer climate these differences become less pronounced. A comparable
variation was found in non-heliotherms, but in not nocturnal species whose body tem-

peratures were similar to air and substrate irrespective of the macroclimatic context.

KEYWORDS
air temperature, body temperature distribution, climate, heliotherm, lizard, nocturnal, reptile,

1 | INTRODUCTION

Body temperatures of reptiles and other ectotherms are dependent
on the environment. An individual's body temperature influences
its metabolism (Andrews & Pough, 1985; Sears, 2005; Theisinger
et al., 2017), life history (Cadby et al., 2014; Meiri et al., 2013), be-
haviour (Gunderson & Leal, 2015; Henle, 1992; Ord & Stamps, 2017)
and ecology (Niewiarowski & Waldschmidt, 1992; Pafilis et al., 2007
Van Damme et al., 1989, 1991). Consequently, body temperature
plays a critical role in shaping ectotherm fitness (Angilletta, 2009;
Angilletta et al., 2002; Cadby et al., 2014). Although reptiles cannot
efficiently harness metabolic heat to maintain a constant physiolog-
ically optimal body temperature, this does not mean that they are at
equilibrium with the temperature of their surroundings. Many spe-
cies have strategies to keep their body temperature within suitable
limits (Bauwens et al., 1990; Cowles & Bogert, 1944; Huey, 1982;
Porter & Tracy, 1983; Valdecantos et al., 2013) by behaviourally
regulating their exposure to heat sources, thereby buffering the
detrimental effects of environmental thermal variation (Kearney
etal., 2009; Muioz & Losos, 2018). The factors determining heat ex-
change between the body and its environment are well-understood

snake, substrate temperature, thermal ecology

(Kearney et al., 2013). They include factors such as air and substrate
temperature (Muth, 1977; Porter & Tracy, 1983) as well as body size
and posture (Muth, 1977; Stevenson, 1985), among others (e.g. wind
speed, evaporative cooling, body colour). Solar radiation provides
an additive source of heat beyond the equilibrium of heat exchange
with the surroundings (Bakken et al., 1985; Pianka & Huey, 1978;
Shine & Kearney, 2001), and many species take advantage of this,
basking in the sun to maintain their body temperatures high and
within a narrow range (Cowles & Bogert, 1944; Dreisig, 1984), pre-
sumably near their thermal optima. While individuals may seek or
avoid direct sunlight under different conditions (e.g. during the day,
season and with reproductive status; Huey & Pianka, 1977; Huey
et al., 2003; Otero et al., 2015; Vicenzi et al., 2019), species can be
broadly categorized by behaviour into those that often bask in the
sun (‘heliotherms’), and those that do not. The latter can be further
divided by their activity cycle, into diurnal and nocturnal taxa.
Studies on squamate body temperatures in relation to environ-
mental temperatures are numerous. Some tested thermal traits
under laboratory conditions, such as preferred temperature and
critical temperature limits (e.g. Diele-Viegas et al., 2018; Grigg &
Buckley, 2013; Labra et al., 2009). Many researchers gather field
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measurements of active squamates in their natural habitats. These
field studies are mostly localized and focus on one or a few species,
but a few large-scale data sets were compiled (Brattstrom, 1965;
Meiri et al., 2013; Pianka et al., 2017), and several studies attempted
to synthesize body temperatures across many species in relation to
habitat characteristics or species traits. These studies describe pat-
terns such as a diurnal-nocturnal divide in body temperature (Huey
& Slatkin, 1976; Moreira et al., 2021), higher body temperatures in
thermoregulating taxa (Diele-Viegas et al., 2018), climatic influences
on body temperature (Giacometti et al., 2023; Meiri et al., 2013)
and evolutionary patterns in body temperature (lIbargliengoytia
et al., 2021; Labra et al., 2009; Moreno Azocar et al., 2013). These
and similar meta-analyses only examined mean values for each spe-
cies, which does not allow for detecting patterns in the underlying
distributions and variability (Hertz et al., 1993). This loss of informa-
tion can be ameliorated by using the full data on individual tempera-
ture measurements, taking thermal distributions into account and
enabling examination of each species' variation along the range of
environmental temperature variables in its habitat (Henle, 1992).

One aspect of this variation can be seen in the regression be-
tween body temperature (T,) and substrate or air temperature (T,
or T,, respectively). This method was widely used in the past as a
limited measure of thermoregulation (Bauwens et al., 1990; Huey
& Pianka, 1977; Huey & Slatkin, 1976) prior to the common imple-
mentation of methods for measuring operative temperatures (Hertz
et al., 1993). The regression approach, however, is still useful in
providing an ecological context to measurements of body tempera-
ture (Pianka et al., 2017; Pianka & Vitt, 2003), often used together
with operative temperature models (e.g. Kapsalas et al., 2018; Labra
et al., 2009; Ortega et al., 2016; Rock et al., 2002; Valdecantos
et al., 2013). High intercepts and shallow slopes for the relation-
ship between T, and environmental temperature indices (e.g. T,
or T are often taken to indicate that the animals maintain a high
and stable body temperature across a wide range of environmen-
tal temperatures (e.g. Bauwens et al., 1990; Huey & Pianka, 1977,
Ortega et al., 2016; Valdecantos et al., 2013), whereas intercepts
approaching zero with slopes approaching one imply that T, is fully
coupled with, thus closely matches, the environmental variation (e.g.
Kapsalas et al., 2018; Rock et al., 2002; Ruibal & Philibosian, 1970;
but see Heath, 1964). Pianka and Vitt (2003) and Pianka et al. (2017)
further suggested that the slopes and intercepts of these regres-
sions are measures of microhabitat and activity which can be used
to represent a lizard's ecology.

Beyond the statistical relationship between body and environ-
mental temperatures, examining the full temperature data, rather
than just the means, can provide insights into the frequency dis-
tribution of a species' body temperatures. Huey and Pianka (2018)
found that body temperature distributions of diurnal desert lizards
were left-skewed, with a mode near the warmer end of the T, range
with a long ‘tail’ across a wide range of lower temperatures. Left-
skewed body temperature distributions are deemed better for squa-
mate activity due to the similar asymmetry of performance curves,
such that exceeding the optimum temperature leads to a sharper
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drop in performance or fitness than a shift of a similar magnitude to-
wards lower temperatures (Martin & Huey, 2008). This, however, is
probably only true for squamates active at high temperatures, where
the optimum is nearer the maximum, such as the diurnal lizards stud-
ied by Huey and Pianka (2018), and has not been studied in other
groups.

Differences in thermal ecology among species can be driven by
macroclimatic conditions (Rubalcaba et al., 2023). For example, liz-
ards in colder regions thermoregulate more often, to make the most
of the low heat availability and the short season suitable for activity
(Anderson et al., 2022; Caldwell et al., 2017; Gémez Alés et al., 2017;
Gvozdik, 2002). Tropical squamates, on the other hand, may allocate
less time and resources to thermoregulation (Shine & Madsen, 1996),
since the thermal quality of the habitat is high throughout the day
and year, not requiring exploitation of rare thermal opportunities
(Blouin-Demers & Nadeau, 2005). A large-scale study by Meiri
et al. (2013) found almost no correlation between mean body tem-
perature and mean annual air temperature of a species' distribution.
They suggested that in cold regions, lizard activity is restricted to
the hottest hours of the day and only the warmest times of the year,
masking the effects of the generally low temperatures.

To date, however, multi-species studies are still mostly restricted
to a few regions or biomes, and overwhelmingly focus on lizards—es-
pecially diurnal, basking lizards. Therefore, despite these syntheses
and the ample body of literature on individual species, we still lack a
large-scale comparative analysis across taxa and regions. We aimed
to gain a global perspective of how squamate body temperatures
in the field relate to the temperature of their immediate surround-
ings, under the influence of different macroclimatic contexts and
behavioural factors.

2 | METHODS
2.1 | Field measurements

We (all authors of this work) caught active squamates in the field, in
many sites across the world (Figure 1), and measured their body tem-
peratures (T,). We then measured substrate temperatures (T, ) and/
or air temperatures (T,) at the specific location where each individual
was found. The method of measurement varied among groups. Most
of us took cloacal temperatures using either a digital thermocouple
or an analogue thermometer, but in a few cases body temperature
was measured using an infrared thermometer (measuring skin tem-
perature) or temperature-sensitive radio transmitters (see Table S1).
Cloacal temperatures were taken immediately (no more than 1 min)
after the individual was caught. Note that these environmental
temperature data are used here in the absence of measurements of
other thermal properties of the environment. Thus, they do not en-
able to qualify thermal quality and thermoregulatory strategy and
efficiency (Hertz et al., 1993). Protocols were consistent for each
species, and therefore could be corrected for in the statistical mod-
els (see Section 2.3).
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FIGURE 1 Locations of all the body temperature data in our data set (25 countries). The map is in Mollweide equal-area projection and

coloured by mean annual temperatures.

2.2 | Species trait categorization

We filtered the data to include only species with records from at
least 20 individuals per species. To account for phylogenetic non-
independence in the subsequent statistical analyses, we used the
full imputed phylogenetic tree of Tonini et al. (2016). Species absent
from this phylogenetic tree were inserted into it manually when pos-
sible (in place of a sister species or into an existing polytomy) and
otherwise were excluded from the analysis. Since the Tonini et al.
tree contains several polytomies, which are known to affect phylo-
genetic analyses (Molina-Venegas & Rodriguez, 2017), we repeated
all of the analyses using the tree from Zheng and Wiens (2016) which
has 42 fewer species but is fully resolved.

We divided species by diel activity and basking behaviour, ac-
cording to the literature and our own observations. We did not base
the partitioning of species on the temperature measurements to
prevent circularity of the definitions (Vitt et al., 1998). We classi-
fied species according to these behavioural categories, rather than
between thermoregulators versus thermoconformers, because the
latter is unknown for many species, and because discerning between
thermoconformers and actively regulating thigmotherms is difficult
(Doan et al., 2022; Hertz et al., 1993). We categorized species that
are not commonly observed exhibiting basking behaviour as ‘non-
heliothermic’ rather than ‘thigmotherms’, since we classified them by
observable behaviour and not according to the sources of heat gain
and loss, of which we cannot be sure without direct testing. That
is, each researcher or group classified the behaviour of the species
which they contributed to the database, according to the literature

and their own observations and expertise. This classification, while
qualitative and to an extent subjective, was carried out before any
of the analyses to prevent them from being biased by the authors'
hypotheses. Diurnal snakes were placed in a separate category de-
spite basking, since their thermal biology is considered distinct from
that of the more commonly studied lizards (Avery, 1982; Gibson &
Falls, 1979; Whitaker & Shine, 2002). We did not have measure-
ments of enough nocturnal snake species to include them as a sepa-
rate category and grouped them with the nocturnal lizards. Species
were classified into four categories: (1) ‘heliotherms’ (heliothermic
lizards), (2) ‘non-heliotherms’ (diurnal non-heliothermic lizards), (3)
‘diurnal snakes’ and (4) ‘nocturnal species’. We derived the mean an-
nual temperature, as a proxy for the macroclimatic conditions, at the
site where each species was measured (1970-2000 average, data
from BIO1 in WorldClim; Fick & Hijmans, 2017). When we had no
body mass data for a species from measurements of the individuals
used in the temperature measurements, we estimated it from mean
species snout-vent length data (either from the individuals measured
or from Meiri et al., 2021) using allometric equations from Feldman
et al. (2016) and Meiri et al. (2021).

2.3 | Statistical analysis

For each of the species, we calculated mean T,, mean T,

b Mean

T, and T, skewness (using the ‘moments’ package in R; Komsta &
Novomestky, 2015). For each of the species (pooling all sites to-
gether), we performed linear regressions of T, against T , and
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(separately) T, to obtain species-specific intercepts, slopes and R?
values. We further regressed T, as a response variable with both
T, and T, as predictors for the individuals for which we had both
T, and T, measurements. We then obtained partial R? values for
T, and T,. Because body temperature is often strongly influenced
by evolutionary relatedness (Bogert, 1949; Grigg & Buckley, 2013;
Huey & Pianka, 1977; Huey & Slatkin, 1976; Meiri et al., 2013;
Moreira et al., 2021; but see Labra et al., 2009), we compared the
above parameters across species in the four groups (heliotherms,
non-heliotherms, diurnal snakes and nocturnal species) using phy-
logenetic generalized least-square (PGLS) regression in the ‘caper’
R package (Orme et al., 2013) with A values selected by maximum
likelihood. Models were tested for each response variable (Tb mean;
regression slope, intercept and R? T, skewness) using category
(heliotherm, non-heliotherm, snake or nocturnal) and mean annual
temperature as predictors (the model for T, skewness also included
mean T, of each species as a fixed factor). We included species-
specific body mass (log transformed) and the method of T, meas-
urement (see below) as predictors in all models. The height above
the ground where air temperature was measured was initially con-
sidered but we discarded it because it was not significant and had
almost no effect in any model. Body temperature measurement
methods included: cloacal temperatures using digital thermocou-
ples and analogue thermometer (193 species, specific thermometer
models did not differ from each other), skin temperature using an
infrared thermometer (9 species, specific thermometers did not dif-
fer from each other) and using a temperature-sensitive radio trans-

mitter (8 species).

3 | RESULTS
3.1 | Datasummary

We measured the body temperatures of squamates in 25 countries
on 6 continents, including tropical, subtropical, temperate, montane,
Mediterranean, desert and semi-arid biomes (Figure 1) for a total of
22,543 individuals of 260 species. The full data set is provided in
Table S1, and the data descriptors and further explanations neces-
sary to interpret the database are provided in Table 1. We filtered
out inactive individuals, species with n<20 individuals and those
without phylogenetic data, leaving 20,231 individual measurements
belonging to 210 species representing 25 families (20 to 1207 indi-
viduals per species, mean=96.3, median=51.5; Figure S1) for the
analyses. Of these, substrate temperature (T, ) was measured for
14,245 individuals of 176 species. Air temperature (T) was measured
for 19,413 individuals of 198 species. Based on behavioural obser-
vations, we defined 138 diurnal lizard species (13,446 individuals)
as heliothermic and 35 as non-heliothermic (1955 individuals); we
also measured 12 species of diurnal snakes (2695 individuals; note
that 12 species is a comparatively small sample size, limiting our con-
clusions for this group), and 25 nocturnal species (2135 individuals;
Figure 2).
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3.2 | Species-specific mean temperatures

Mean species T, was 28.3°C+2.0°C SE (median=30.1°C) and had
a strong phylogenetic signal (PGLS: Pagel's 1=0.97; 95% ClI: 0.88-
1.00). Species' mean T, ranged from 7.3°C in the nocturnal diplodac-
tylid gecko Woodworthia maculata from New Zealand (the ‘Otago/
Southland’ species of this complex, known for activity in extreme
cold T,; Chukwuka et al., 2023), to 40.1°C in the heliothermic teiid
lizard Cnemidophorus cryptus from the Amazon. Mean species T_
was 26.9°C+2.1°C (median=28.1°C, 1=0.80) ranging from 8.9°C
in W. maculata to 47.7°C in the heliothermic lacertid lizard Meroles
suborbitalis from South Africa. Mean species T, was 25.2°C+1.2°C
(median=26.1°C, 1=0.45) and ranged from 5.6°C in W. maculata to
33.2°C in the non-heliothermic liolaemid lizard Phymaturus tenebro-
sus from Patagonia. Mean annual temperatures at the measurement
site ranged from -1.9°C in the heliothermic Andean Phymaturus an-
tofagastensis to 28.8°C in the nocturnal gekkonid gecko Hemidactylus
triedrus from India.

Mean species T, was lower in nocturnal species than in all other
categories (Figure 3a). Mean T, adjusted for mean T, in the PGLS,
was higher in heliotherms than in non-heliotherms and nocturnal
species (p<0.001). It was moderately correlated with mean T, in
heliotherms and strongly correlated with mean T, in nocturnal and
non-heliotherm species (1=0.50; R>=0.66; Table 2a; Figure 3b).
Mean species T, adjusted for mean T, was lower in nocturnal spe-
cies than in heliotherms (p <0.001) and non-heliotherms (p=0.041).
It was moderately correlated with mean T, in heliotherms, non-
heliotherms and diurnal snakes, and strongly correlated with mean
T, in nocturnal species (1=0.77; R?=0.49; Table 2b; Figure 3c).
Mean species T, was lower in nocturnal species than in all other cat-
egories when adjusting for mean annual temperature in the PGLS
(p<0.001 compared to both heliothermic and non-heliothermic
diurnal lizards, and p=0.036 compared to diurnal snakes). Mean
T, was weakly but significantly positively correlated with mean
annual temperature in heliotherms and diurnal snakes, and moder-
ately correlated with mean annual temperature in nocturnal species
(1=0.92; R?=0.23; Table 2c; Figure 3d). Sensitivity analyses using
the Zheng and Wiens (2016) tree provided qualitatively similar re-
sults (Appendix S1).

3.3 | Body-environment temperature relationships
3.3.1 | Substrate temperatures

The slopes, intercepts and R? values of species' T, against T, re-
gressions (Table S2) had no phylogenetic signal (1=0, both in this
analysis and in the sensitivity analysis using the fully resolved tree
from Zheng & Wiens, 2016). The slope values of T, on T, were not
different from zero in heliothermic lizards but were positive and sig-
nificant in all other categories (PGLS: R%2=0.44; Table 3a; Figure 4a).
Intercepts differed from zero in heliotherms (28.9°C+2.0°C)

and non-heliotherms (20.1°C+3.7°C) but not in diurnal snakes
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TABLE 1 Details and data description for the database (full data in Table S1).

Binomial name, updated to fit the Reptile Database 2022

[Based on the data in rows 4-6]. Helio_liz=heliothermic lizard. Non_helio_liz=non-
heliothermic lizard. Snake_diur=diurnal snakes. Nocturnal=nocturnal lizards and snakes

Diurnal or nocturnal. Cathemeral species were assigned to the time of day they had been

Heliothermic or not. According to the literature and the researcher's [see row 12] personal

Substrate temperature (at the location where T, was taken)
Air temperature (at the location where T, was taken)

Decimal degrees. If exact location could not be provided (e.g. in protected species where
location is not publicly available), rounded to the nearest 0.1 degree

Decimal degrees. If exact location could not be provided (e.g. in protected species where
location is not publicly available), rounded to the nearest 0.1 degree

Initials of the researchers who measured this individual. People working together and using
the same methodology were grouped together

T, device separated into three categories: cloacal probe, skin (infrared) and radio transmitter
Height of the T, measurement device above ground
T, height separated into three categories: <5, 5-15 and >50cm

Was the animal location when caught sunlit, shaded, etc.

Country where the animal was measured (no political statement is intended, in the case of

When the measurement was taken. Exact dates, if known, are in dd/mm/yyyy format

log,, of the mean species mass. Mass was calculated from our data if available, or from
snout-vent length data using the allometric equations from Feldman et al. (2016) and Meiri

Yes/No. Was the animal active, or not (e.g. sleeping, thermoregulating, resting under cover,

Yes/No. Did the data in this row fit the criteria to be used in the T analyses (n > 20 active

Column title Column type Description
Species Factor
Category Factor
Taxon Factor Lizard or snake
Activity Factor
documented
Behaviour Factor
expertise
T, Integer Body temperature
T Integer
T, Integer
Latitude Integer
Longitude Integer
Research group Factor
T, device Text Model of the device
T, _method Factor
T, device Text Model of the device
T, height Text
T, height Factor
Measurement radiation Text
T, device Text Model of the device
Country Factor
disputed territories)
Date Text
Time Text Hour of the measurement, if known
Age Factor Adult, subadult, juvenile or unknown
Sex Factor Male, female or unknown
Locality Text Name of the region or location
Weather Text Weather observations at the time of measurement
Log mean sp mass Integer
et al. (2021)
Notes Text Any further information
Active? Factor
etc.)
T,,p_use Factor
individuals, phylogenetic data present)
T, use Factor

Yes/No. Did the data in this row fit the criteria to be used in the T, analyses (n > 20 active
individuals, phylogenetic data present)

(12.5°C+6.4°C, p=0.052) and nocturnal species (7.2°C+5.7°C,
p=0.210; R*=0.43; Table 3a; Figure 4b). However, heliotherm
slopes became steeper with increasing mean annual temperature
(Figure 5a), and intercepts became lower (Figure 5b), so that in
warmer regions the temperature relations across categories become
gradually convergent. Non-heliotherms' slopes were also positively
influenced by mean annual temperature (p=0.038; Figure 5a), the

effect being similar between them and heliotherms (p=0.400), but
the relationship between the intercepts and mean annual tempera-
ture was not significant (p=0.072). The R? values for T,onT_, were
lowest for heliotherms (0.11), higher for non-heliotherm lizards and
diurnal snakes (0.30 and 0.34 respectively) and highest in nocturnal
species (0.74; Figure 4c; Table 3). The R? values increased with mean
annual temperature for heliotherms (model R?=0.45; Table 3a;
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FIGURE 2 Active body temperatures
(T,) of the 20,231 individuals used in the

Macroecology

and Biogeography
Diurnal

analyses, visualized against substrate Heliotherm Non-heliotherm Snake Nocturnal
temperature (top) and air temperatures
(bottom). The line represents equality
(intercept of 0 and slope of 1). Axis units
5 $e®

are degrees Celsius.
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FIGURE 3 Species-specific mean T, compared between categories (a) and regressed against (b) mean T,

sup (€) mean T, and (d) mean annual

temperature. Significant relationships are marked with solid lines. Heliothermic lizard T, (yellow) is higher than those of non-heliothermic
diurnal lizards (blue), diurnal snakes (red) and nocturnal species (grey) at colder environmental temperatures. Note that non-heliotherm T,
changes with T_, similarly to nocturnal species, but changes with T, similarly to diurnal species.

Figure 5c). All these results are adjusted for the effects of measur-
ing device and body size (see Section 3.4). Repeating these analyses
using the Zheng and Wiens (2016) tree provided qualitatively similar
results (Appendix S1).

3.3.2 | Airtemperatures

The slopes, intercepts and R? values of species' T, against T regres-
sions (Table S2) had no phylogenetic signal (=0, using both trees).
The slope values were steeper in nocturnal species compared to
both heliotherms (PGLS: p=0.002) and non-heliotherms (p=0.021),
and in diurnal snakes compared to heliotherms (p <0.001; R?2=0.24;
Table 3b; Figure 4d). Intercepts differed from zero in heliotherms
(26.7°C+2.1°C) and non-heliotherms (22.8°C+3.9°C), and were
much lower in diurnal snakes and nocturnal species (1.1 and
2.5°C respectively; neither being significantly different from zero)
compared to both heliotherms (p<0.001) and non-heliotherms
(p<0.005; R?=0.34; Table 3b; Figure 4e). However, both heliotherm

and non-heliotherm intercepts became lower with increasing mean
annual temperature (Figure 5e), and slopes of heliotherms became
steeper (p<0.001; for non-heliotherms, p=0.051, Figure 5d), so
that in warmer regions the temperature relations across categories
become gradually convergent. Heliotherms and non-heliotherms
did not differ from one another in slope (p=0.510) and intercept
(p=0.323), nor in the effect of mean annual temperature on their
slope (p=0.672) and intercept (p=0.972). The R? values were lowest
for heliotherms (0.12; p <0.001) followed by non-heliotherms (0.16;
p=0.038), but increased with mean annual temperature only for he-
liotherms (Figure 5f). For diurnal snakes, R? values were higher than
for heliotherms (p=0.005) and non-heliotherms (p=0.018), but de-
creased with mean annual temperature (p=0.039). The R? values for
nocturnal species (0.81) was higher than for heliotherms (p=0.009)
and non-heliotherms (p=0.034), but not for diurnal snakes (p=0.858;
R%2=0.17; Table 3b; Figure 5f). All these results are adjusted for the
effects of measuring device and body size (see Section 3.4). The
sensitivity analyses using the Zheng and Wiens (2016) tree provided
qualitatively similar results (Appendix S1).
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TABLE 2 Main results of the PGLS analyses comparing mean species T, across the four categories in relation to (a) mean species T_,, (b)

mean species T, and (c) mean annual temperature.

MeanT, x Mean T,
(a) Estimate SE p Estimate SE p
Heliotherm 20.25% 1.57 <0.001 0.384* 0.044 <0.001
Non-heliotherm 7.785¢ 3.28 0.019 0.7648¢ 0.118 <0.001
Diurnal snake 15.524B 5.80 0.008 0.4427B 0.242 0.070
Nocturnal 1.59¢ 2.47 0.521 0.968°¢ 0.093 <0.001
MeanT, x Mean T,
(b) Estimate SE p Estimate SE p
Heliotherm 21.61% 1.59 <0.001 0.319" 0.042 <0.001
Non-heliotherm 15.40% 3.87 <0.001 0.5114 0.146 <0.001
Diurnal snake 11.9478 6.04 0.049 0.599"B 0.233 0.011
Nocturnal 5.988 2.66 0.026 0.866" 0.101 <0.001
MeanT, x Mean annual temp.
(c) Estimate SE p Estimate SE p
Heliotherm 28.214 1.92 <0.001 0.125*8 0.043 0.004
Non-heliotherm 28.86" 2.08 <0.001 -0.0018 0.066 0.984
Diurnal snake 23.674 3.25 <0.001 0.296*¢ 0.129 0.022
Nocturnal 16.07° 293 <0.001 0.545¢ 0.116 <0.001

Note: The left column indicates the model intercept for mean T, (i.e. mean T, for a species in the category when the predictor temperature is zero)
and the right column is its interaction with the predictors. The letters A, B, C indicate significant pairwise differences between categories, whereas
p-values in bold indicate the difference of the estimate from zero. Values are adjusted for method and body mass.

3.3.3 | Partial contributions of substrate and air

The partial R? of T, was lower in heliothermic lizards (0.07) than
in non-heliothermic diurnal lizards (0.18; p=0.007) and nocturnal
species (0.25; p=0.009), but not lower than in diurnal snakes (0.22;
p=0.248; 1=0.86; R?=0.22; Figure 6a). Partial R? of T, was higher
in heliotherms (0.15) than in non-heliotherms (0.09; p=0.035) but
not in diurnal snakes (0.16; p=0.303) and nocturnal species (0.15;
p=0.888; 1=0.03; R2:0.07; Figure 6b).

3.4 | Effect of mass and measurement methods
Inall the T_, models (described in Tables 2b and 3a), the device used

for T, measurements was a significant factor. Infrared thermometers
measured lower T, (n=9; p<0.001), and were associated with re-
gression models with lower intercepts (p=0.001), and steeper slopes
(p=0.038) and R? values (p=0.001). In the T, models (described in
Tables 2c and 3b), species measured with radio transmitters had
lower T, (p=0.029) and species measured by infrared thermometers
had lower regression intercepts (p=0.049). Mass was not significant
in the above models. For the model with both T_, and T, as pre-
dictors, the partial R? of T, (corrected for category) was higher by
0.3 when using infrared thermometers compared to the partial R?
for T, using cloacal temperatures (p <0.001; Figure S2). We found

no difference in the partial R? of T, between species measured
using radio transmitters and cloacal temperatures (p=0.120). The
effect of log mass on the partial R? of T, (0.027 +£0.036) was non-
significant (p=0.461). There was no difference in the partial R? of T,
(corrected for category) between infrared thermometers compared
to cloacal temperatures (p=0.795) but the partial R? of T, was higher
by 0.20 using temperature-sensitive radio transmitters than when
measured with cloacal thermometers (p=0.006; Figure S2). The ef-
fect of log mass on the partial R? of T, (-0.047 +£0.025) was non-
significant (p=0.059).

3.5 | The shape of body temperature distributions

Squamate body temperature distributions were negative (left-
skewed) on average (mean: -0.39+0.04, median: -0.38; cal-
culated using Komsta & Novomestky, 2015). Skewness was
negatively correlated with mean T, and positively correlated
with mean annual temperatures. Thus, distributions were more
left-skewed for species with higher body temperatures, es-
pecially in colder climates (skewness=0.931-0.056x mean
T,+0.027 x mean annual temperature; p<0.001; 1=0.14;
R?=0.17; Figure 7). Behavioural category (p=0.263), body mass
(p=0.821) and measurement method (p=0.171) were not signifi-
cantly associated with skewness.
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FIGURE 4 Kernel density estimates (smoothed histogram) for the slope (a), intercept (b) and R? (c) of the species-specific regressions T,
against T, and the slope (d), intercept (e) and R? (f) of the species-specific regressions T, against T . Heliotherms and non-heliotherms show
differences in the T, models but similarities in the T, models. Heliotherms and nocturnal species are very distinct in all parameters, whereas
non-heliotherms and diurnal snakes are very similar in all parameters.
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FIGURE 5 The slope (a), intercept (b) and R? (c) of the species-specific regressions T, against T_,, and the slope (d), intercept (e) and R? (f)
of the species-specific regressions T, against T, shown against the mean annual temperature of the sites, with which significant interactions
are marked with solid lines. Each point is one species. Heliotherms' and non-heliotherms' regression parameters similarly change with mean
annual temperature; thus, the different categories gradually converge as mean annual temperature increases. Heliothermic lizards are shown
in yellow, non-heliothermic diurnal lizards in blue, diurnal snakes in red and nocturnal species in black.

4 | DISCUSSION behavioural and methodological factors, providing further sup-

port that body temperature is a phylogenetically conserved trait
Mean body temperature per species had a very strong phyloge- (Bogert, 1949; Grigg & Buckley, 2013; Huey & Pianka, 1977; Huey
netic signal, which remained high when accounting for the climatic, & Slatkin, 1976; Moreira et al., 2021; Moreno Azocar et al., 2013).
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FIGURE 6 Partial 32 of Ty, @and T, 100]@

(b) as predictors of T, in the combined

model adjusted for mean annual

temperature, measurement method and

body mass. Heliotherm partial R? is lower o 0.751

than non-heliotherm and nocturnal for E’

T, > but higher than non-heliotherms ‘S

for T,. Substrate temperatures are ?‘t 050

much more strongly correlated with T

body temperatures in nocturnal and '(E“

non-heliothermic species but not in o
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FIGURE 7 Species-specific mean (a)

skewness of T, distribution plotted
against the species' (a) mean T, and (b)
mean annual temperature (in °C). Mean T, 1
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However, unlike species means, the regression analyses for T, in
relation to T_, and T, were phylogenetically independent, but
well explained by behavioural and climatic factors (see below).
This may be because, while mean T, reflects the interplay of pre-
ferred and available temperatures (physiological and geographic
factors, which may vary from clade to clade), the dependence of
T, on ambient temperature (for a given behavioural category) re-
flects biophysical constraints, and is thus less disposed to vary

phylogenetically.

4.1 | Body temperature across
behavioural categories

The temperature increment gained via radiation (Bakken et al., 1985;
Pianka & Huey, 1978; Shine & Kearney, 2001) provides an additional
source of heat beyond the equilibrium of conduction and convec-
tion with the air and substrate. Heliothermic lizards can achieve
higher body temperatures at low ambient temperatures, due to
heat from solar exposure (Christian, 1998; Ortega et al., 2016;
Valdecantos et al., 2013). This may explain why mean T, in diurnal
heliotherms in our data set was only slightly lower under cold com-
pared to warm conditions (Figure 3b,c), and their regressions mostly

20 30 40 0 10 20 30

Mean annual temperature

had high intercepts with shallow slopes approaching zero (Figure 4).
By shuttling in and out of shade, heliotherms can also be active at
higher T_, than is reached by the other groups without overheat-
ing. The extra heat source for these species can allow them to be
active for longer in the season and grant fitness benefits (Otero
et al., 2015), including higher locomotion and digestive efficiency
(Huey & Kingsolver, 1989), buffering of embryos or eggs from the
cold (Cadby et al., 2014) and better feeding opportunities (Angilletta
et al., 2002). The benefits of exposure to radiation (for vitamin D
synthesis; Ferguson et al., 2005) may exceed, and sometimes over-
ride, thermoregulatory needs (Conley & Lattanzio, 2022).

Mean body temperatures of non-heliothermic diurnal lizards
were lower than those of heliotherms but similar to those of noc-
turnal species and diurnal snakes at similar substrate temperatures.
The parameters of T, on T_,, regressions of diurnal non-heliotherms
differed from those of heliotherms but resembled those of nocturnal
species and diurnal snakes (i.e. steep slopes, low intercepts, high R?).
In contrast, their mean T, at different air temperatures were simi-
lar to those of heliotherms and higher than those of nocturnal spe-
cies, and their T, on T, regressions differed from those of nocturnal
species but were similar to those of heliotherms (i.e. shallow slopes,
high intercepts, low R?). Some of the behaviourally non-heliothermic
species may be engaging in thigmothermic thermoregulation (by
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conduction with the substrates). The high correlation with the sub-
strate but not the air temperatures raises the possibility that they
use warm substrate to heat themselves above cold air. This perhaps
explains why when including both temperature indices as predictors
of non-heliotherm T, the effect was dominated by T (Figure 6),
and why non-heliotherms only occurred across a narrow range of
T, (Figure 3b; Harvey & Weatherhead, 2010).

While the trends for diurnal lizards generally complied with long-
held predictions and expectations from decades of research, diur-
nal snakes presented an intriguing divergence from these patterns.
Snake body temperatures were low compared to heliothermic lizards
in nearly all analyses, and the relationship between body tempera-
ture and both substrate and air temperatures had steeper slopes and
lower intercepts. Diurnal snakes clustered around a small range of

mean T, and T,

b POssibly due to snakes having narrower thermal

preferences (e.g. Harvey & Weatherhead, 2010) which they are able
to maintain behaviourally. Due to their elongated, limbless bodies,
much of the snake surface area is always in contact with the sub-
strate, with which they can (depending on the substrate) exchange
heat to achieve very efficient thermoregulation (Blouin-Demers
& Weatherhead, 2001; Leliévre et al., 2010). This type of thigmo-
thermic thermoregulation might explain the strong relationship

between T, and T for snakes (Figure 4). Basking snakes may thus

sub
absorb heat by conduction from the sun-warmed substrate no less
than from the sun directly. Paradoxically, however, snake T, against
T, regressions had low R? values. The thermal biology of snakes is
not as well-studied as that of lizards, but snakes are considered to
generally have lower and more variable Tb (Avery, 1982; Whitaker
& Shine, 2002). However, we cannot rule out some sampling bias—
for example, we measured very few hot-climate snake species (see
Section 4.5) and did not capture the full range of snake thermal strat-
egies, which may vary widely between species (Leliévre et al., 2010).
Nocturnal species had consistently lower T, compared to helio-
therms, both in terms of species means (see Huey & Slatkin, 1976;
Moreira et al., 2021; Pianka & Huey, 1978), and lower regression in-
tercepts and steeper slopes (Pianka & Vitt, 2003). Both T_ and T,
explained more of the observed variance in body temperatures of
nocturnal species than the other groups, suggesting they have fewer
thermal opportunities to elevate their body temperature (but see
Bertoia et al., 2021; Dial, 1978; Grimm-Seyfarth et al., 2018).

4.2 | Body temperature across climates

Mean annual temperature at the location of temperature measure-
ment was positively but weakly correlated with mean T, (see also
Meiri et al., 2013) for all but the diurnal non-heliotherms for which
it had no effect (Figure 3d). Furthermore, in warmer climates the
regression slopes of T, on T_, and T, were steeper, intercepts lower
and R? values higher in the diurnal lizards, especially heliotherms
(Figure 5). The dependence of the regression parameters on mean
annual temperature was very similar between heliotherms and

non-heliotherms (but mostly absent in diurnal snakes and nocturnal

species). In cold climates, squamates need to reach performance-
enabling body temperatures, and hence need to be able to be warmer
than their environment (Anderson et al., 2022; Besson & Cree, 2010;
Caldwell et al., 2017; Gémez Alés et al., 2017; Moreno Azocar
et al., 2013). This may explain the seemingly opposite trend found by
non-phylogenetic studies (Huey et al., 2009), in which mean T, actu-
ally increased with latitude. Our phylogenetic analysis suggests that
this reflects the presence of more non-basking (therefore low T,, see
Section 4.1) species in the tropics. The shift to weaker statistical re-
lationship of T, to T, and T, in diurnal lizards at colder climates,
may stem from the increased need for thermoregulation in cold re-
gions by increased basking (known to occur even in otherwise non-
heliothermic species; Hertz & Huey, 1981). This pressure is released
in warmer, stable climate (Shine & Madsen, 1996), leading to con-
vergent thermal relationships between the behavioural categories in
the tropics. Although nocturnal species' mean T, was strongly cor-
related with mean annual temperature, the correlations—between
T, and T_,, as well as between T, and T,—did not change across cli-
mate. Even though some nocturnal species can warm themselves
on warm surfaces by cryptic thermoregulation (Bertoia et al., 2021,
Dial, 1978; Grimm-Seyfarth et al., 2018) or activity early at night
(Bustard, 1967; Kearney & Predavec, 2000), it is clearly not enough
to keep their T, high and stable for long in cold environments. The
constraint on nocturnal species, of being active at the colder part of
the daily cycle, may have led to adaptations enabling activity at low
environmental temperatures, despite the implication of much lower
T, than a diurnal species would have. The critical thermal minimum
is evolutionary labile and is lower in cold environments (Anderson
et al., 2022; Moreno Azocar et al., 2013). Cold-climate species often
have additional physiological adaptations such as lower preferred T,
(Labraetal., 2009; Rubalcaba et al., 2023), wider performance curves
(Anderson et al., 2022; Bonino et al., 2015; Cruz et al., 2011; but see
van Berkum, 1988) and higher metabolic rates (Dubiner et al., 2023;
Hare et al., 2010). These adaptations can partially compensate for
low T,, but limit the environments where nocturnal species can live
(Medina et al., 2011; Vidan et al., 2017). Similarly, we found that noc-
turnal species were active at the lowest T_, and T, (Figure 3b,c) but

did not reach the coldest regions (Figure 3d).

4.3 | The shape of temperature frequency
distributions

Most body temperature distributions were left-skewed (Figure 7) as
found for desert lizards by Huey and Pianka (2018). Thus, T, dur-
ing activity is more frequently closer to the maximum than to the
minimum temperature limit (i.e. closer to CT__ than to CT_. ). The
difference in skewness between species is to a large degree ex-
plained simply by mean T,, independently of behavioural category
or methodology. Temperature distributions of species with higher
mean body temperatures were more left skewed, presumably re-
flecting the fact that the upper thermal limits are similar across
species while the lower limits vary more widely (Aradjo et al., 2013;
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Moreno Azocar et al., 2013). Coupled with the similar left skew of
performance curves (Tomlinson, 2019), this distribution leads to a
greater portion of activity (integrated over time) to coincide with the
thermal optimum for activity (Martin & Huey, 2008). Distributions
were more left-skewed at lower mean annual temperatures, either
because of individuals active at colder, sub-optimal temperatures
in the ‘left tail’, or because of a higher need for thermoregulatory
behaviour in these species (Section 4.2) requiring more careful align-

ment with the optimal curves.

4.4 | Methodological differences

Cloacal thermometers were much more widely used in our study
and generally measured higher temperatures than infrared ther-
mometers. Infrared thermometers were shown to be accurate
by some (Chukwuka et al., 2019) and others found them biased
(Carretero, 2012), and their suitability may vary across species
and conditions. Infrared thermometers measure skin rather than
body core temperatures, and the skin is more subjected to direct
heat exchange with the substrate than are body core tempera-
tures. Furthermore, in small animals, infrared thermometers may
be partly measuring the temperature of the background substrate.
Alternatively, animals measured using cloacal thermometers, that
needed to be caught by hand, may have warmed up in the act of
trying to escape or (though we tried to avoid it) were warmed by the
researcher's hands. In snakes, whose bodies are elongate, cloacal T,
may even differ from the temperature of the head and heart at the
front. Future studies across a range of conditions and body sizes are
needed to better explain the differences we found.

4.5 | Sampling biases

Some regions harbouring much of the world's squamate diversity,
including most of Africa, Asia and the Pacific islands, are strongly
underrepresented in our data set. Nocturnal species are also less
represented: of our 210 species, 185 species (88%) are diurnal, de-
spite ~40% of squamate species being nocturnal, cathemeral or cre-
puscular (Shai Meiri, unpublished data for >8200 species). Tropical
snakes are only represented in our data by three species, out of
the 2655 snake species restricted to the tropics (about 65% of the
world's snakes). Thus, our conclusions regarding nocturnal species,
and even more so regarding snakes, should be considered prelimi-
nary. Sampling biases against these taxa and regions are lamentably

common shortfalls in the study of reptile thermal ecology.

4.6 | Additional caveats

The practice of assessing reptile thermoregulation using field data
on body and environmental temperatures alone (as we do here)
has been criticized (Dreisig, 1984; Heath, 1964; Hertz et al., 1993;
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Huey, 1982), mostly due to the incompleteness of air temperatures
as a proxy for micro-niche temperature in small animals. Our usage
of T, (most reptiles sprawl near the substrate) and body mass in ad-
dition to T, addresses this in part by accounting for additional com-
ponents of the thermal environment. That said, the important need
for a null model to claim thermoregulation from body-environment
relationships has been clear since Heath (1964) demonstrated ‘be-
havioural thermoregulation’ in a ‘population’ of beer cans. Thus, re-
search has largely moved to accompany instantaneous temperature
measurements from the field with thermal preference experiments
in the laboratory, and the measurement of operative temperatures in
animal models over extended times (Shine & Kearney, 2001). Hertz
et al. (1993) even went as far as writing that instantaneous field
measurements answer an ‘inappropriate question’. We acknowledge
the importance of these concepts and experiments. Our major focus
here was on comparing thermal relations across taxa, behavioural
groups and climates, rather than attempting to infer thermoregula-
tory efficiency, accuracy or precision from the temperature relations
themselves. We believe our study design to be robust and our results
to be meaningful—even without data on operative temperatures.
Measuring instantaneous body and environmental temperatures in
the field is straightforward, comparatively inexpensive and provides
a wide range of data and large sample sizes across many species.
Downstream, this results in a powerful design that can be used to
study some of the most essential questions regarding thermal biol-
ogy. It should not, however, replace the use of more nuanced, and
potentially more accurate, use of operative temperature studies and
controlled experiments for the direct study of thermoregulation.
We heartily encourage our database to also be used together with
thermoregulatory information (e.g. modelling the operative temper-
atures, or factoring in preferred temperatures) as a potential syn-
thesis of macroecological patterns and biophysical thermal ecology.

While a distinction between diurnal and nocturnal species is easy
to make (the few cathemeral species in our data set were allocated
to the time of day in which measurements were conducted), distin-
guishing heliotherms from non-heliotherms is sometimes difficult
and potentially inaccurate. Species that are often seen basking in
direct sunlight were classified as heliotherms. Those that are almost
always active under shelter, and virtually never in direct sunlight,
were classified as non-heliotherms. We classified less clear-cut cases
in this continuum to the best of our ability, according to our knowl-
edge and observations of their behaviour, but we acknowledge that
the classification is imperfect. Therefore the ‘non-heliotherm’ cate-
gory should be treated with more caution than the other, less ambig-
uous ones. Future validation, refinement and further interpretation
of the patterns presented here, would perhaps benefit from a less
subjective categorization of basking strategy (e.g. including habitat
traits; Giacometti et al., 2023) and better coverage of squamate life-
styles, habitat types and diversity. Another potential bias in our re-
sults could be that squamates were rarely measured at their activity
limits. Not many reptiles are active in the field when it is too warm or
cold, so we often only study them during peak activity seasons and
hours (ours as well as theirs), underrepresenting off-peak times and
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cryptic activity in shelters. Hot days and nights may also be under-
represented because animals are quicker and, therefore, harder to
catch (though reduced shyness at high T, may compensate for this;
Rand, 1964). This bias is reflected in the occasionally low T, values
of species we did observe at higher temperatures. Obviously, addi-
tional factors not considered herein are known or suspected to influ-
ence reptile thermal behaviour and body-environment temperature
relationships. Factors such as reproductive status (gravid females
are often thought to prefer higher temperatures and bask more
often: Blazquez, 1995; Schwarzkopf & Shine, 1991; Werner, 1990;
but see Beuchat & Ellner, 1987), and reproductive mode (females of
viviparous species may have more stable body temperatures; Cruz
et al., 2022; Shine, 2004) are worth considering. Moreover, there
may be seasonal changes in thermoregulatory behaviour, thermal
tolerance or body temperature (Giacometti et al., 2023; Henle, 1992;
Huey & Pianka, 1977), as well as differences related to biomes and
substrates. Squamates inhabiting substrates with different thermal
properties (trees and rocks of different types, the ground or the
subterranean medium, water) are likely to differ in the amount of
heat exchanged with the substrate (Sagonas et al., 2017). These
properties all lead to testable hypotheses, which can potentially be

explored using our data.

5 | CONCLUDING REMARKS

Compiling a database of unprecedented magnitude of squamate
body temperatures and their environmental correlates allowed us
to test hypotheses regarding the thermal characteristics of life in
different regions, and of different taxa and behaviour. Overall, the
results presented here further our ability to understand how body
temperature varies among species and in face of the challenges and
opportunities posed by their environments. Moreover, the extensive
database we have put together holds much potential for testing a
wide variety of questions beyond the scope of the present study,
and we encourage its use together with previous compilations of

reptile body or environment temperatures and thermal traits.
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