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We calculate the singular instanton homology with local coefficients for the simplest n-strand braids in
S1 � S2 for all odd n, describing these homology groups and their module structures in terms of the
coordinate rings of explicit algebraic curves. The calculation is expected to be equivalent to computing the
quantum cohomology ring of a certain Fano variety, namely a moduli space of stable parabolic bundles on
a sphere with n marked points.
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1 Introduction

1.1 Background

A pair .Y;K/, consisting of a closed, oriented 3-manifold and an embedded link, gives rise to a 3-
dimensional orbifold Z D Z.Y;K/ whose underlying topology is that of Y and whose singular locus
consists of the locus K where the orbifold structure has local stabilizers of order 2. The pair .Y;K/, or
the orbifold Z, is admissible if ŒK� has odd pairing with some integer homology class. To an admissible
orbifold Z, there is associated its singular instanton homology (Kronheimer and Mrowka [20]), constructed
from the Morse theory of the Chern–Simons functional on the space of SO.3/ orbifold connections modulo
a determinant-1 gauge group. With rational coefficients, we denote the singular instanton homology
by I.ZIQ/.
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Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/gt.2025.29.1975
http://www.ams.org/mathscinet/search/mscdoc.html?code=57R58, 14H60
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1976 Peter B Kronheimer and Tomasz S Mrowka

A deformation of this instanton homology is described in [21]. It can be viewed as an instanton homology
group with values in a local coefficient system on the space of connections modulo gauge, and it appears
in this paper as I.ZI�/, where � denotes a local system of free rank-1 modules over the ring of Laurent
polynomials

RD QŒ�˙1�:

The variable � should be seen as a deformation parameter, with the specialization � D 1 recovering the
original case of Q coefficients. (See Section 2.2.)

A choice of a 2-dimensional homology class in Z gives rise to an operator ˛, on both I.ZIQ/ and
I.ZI�/. For each choice of basepoint p 2 K, there is also an operator ıp, depending on the connected
component of K on which p lies and a choice of local orientation at p. These operators commute, and
make I.ZIQ/ and I.ZI�/ into modules over the rings QŒ˛; ı1; : : : ; ın� and RŒ˛; ı1; : : : ; ın� respectively,
where n is the number of connected components of K.

In [32], Street completely described the instanton homology I.ZIQ/ and its module structure in the case
that Z is the product

Zn D S1
�S2

n :

Here S2
n denotes the 2-sphere with n orbifold points. An extension of Street’s result to the case of

S1 �†g;n was obtained by Xie and Zhang [36], and an earlier model for both of these calculations is the
work of Muñoz [28; 27] on the case of S1 �†g (where the orbifold locus is empty).

The purpose of this paper is to extend Street’s calculation to the case of instanton homology with local
coefficients � . Alongside Zn, a closely related calculation is for the instanton homology of an orbifold
we call Zn;1. If the n orbifold points in S2

n are arranged symmetrically around a circle, then a rotation h

through 2�=n is an automorphism of S2
n which permutes the orbifold points, and we write Zn;1 for its

mapping torus:
Zn;1 D Mh; h W S2

n ! S2
n :

Since the orbifold locus in Zn;1 is connected, there is only one operator ıD ıp in this case, and I.Zn;1I�/

is a module for an algebra RŒ˛; ı�, where R is again a ring of Laurent polynomials. We can summarize
the main theme of this paper as the solution to the following.

Problem (?) Describe I.ZnI�/ and I.Zn;1I�/ explicitly as modules for the algebras RŒ˛; ı1; : : : ; ın�
and RŒ˛; ı� respectively.

The motivation for studying this question came from a desire to calculate a variant of the singular instanton
homology of torus knots, I \.Tn;qI�/, as studied in our paper [24], and the related knot concordance
invariants of these. In [24], the base ring always had characteristic 2, as necessitated by the construction
there. An alternative formulation allows characteristic 0, and the results of this paper are a main step. We
return to this discussion briefly in Section 7.

Geometry & Topology, Volume 29 (2025)
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1.2 Statement of the result

We shall give a complete answer to .?/, and to give a flavor of the result here, we describe I.Zn;1I�/.
First, there is an involution on the configuration space of connections on both of these orbifolds, defined
by multiplying the holonomy on the S1 factor in S1�S2 by �1 2 SU.2/. This gives rise to an operator �
on instanton homology, and there is therefore a decomposition

I.Zn;1I�/D I.Zn;1I�/
C
˚ I.Zn;1I�/

�

into the eigenspaces of �. As modules, these two are related by changing the variable � 2R to �� . Each
of the two summands is a cyclic module for RŒ˛; ı� and they are therefore characterized by their ideals of
relations, J˙

n;1
in the algebra:

I.Zn;1I�/
C
ŠRŒ˛; ı�=JC

n;1
; I.Zn;1I�/

�
ŠRŒ˛; ı�=J�

n;1:

Over the field C, we can regard JC

n;1
and J�

n;1
as the defining ideals of possibly nonreduced curves

DC
n ;D

�
n � C�

�C �C

with coordinates .�; ˛; ı/. Our final description of these curves is as determinantal varieties: they are
the loci of points where particular m� .mC 1/ matrices SC and S� with entries in RŒ˛; ı� fail to have
full rank. Here m D

1
2
.n � 1/. Equivalently, J˙

n;1 is the ideal generated by the m � m minors of S˙.
Explicitly when n D 11 and m D 5, the matrix S˙ is given by S0 ˙S1, where S0 is the matrix0BBBB@

�˛� ı=2 ˛� 19ı=2 0 0 0 0

0 �˛� 5ı=2 ˛� 15ı=2 0 0 0

0 0 �˛� 9ı=2 ˛� 11ı=2 0 0

0 0 0 �˛� 13ı=2 ˛� 7ı=2 0

0 0 0 0 �˛� 17ı=2 ˛� 3ı=2

1CCCCA
and S1 is the matrix0BBBB@

�7 0 0 0 0

0 �3 0 0 0

0 0 1=� 0 0

0 0 0 1=�5 0

0 0 0 0 1=�9

1CCCCA �

0BBBB@
0 0 0 0 �9 5�4 C 4

0 0 0 �7 3�4 C 2 2�4

0 0 �5 �4 4�4 0

0 �3 ��4 � 2 6�4 0 0

�1 �3�4 � 4 8�4 0 0 0

1CCCCA :
Although the matrices may look elaborate at first glance, they follow a fairly simple pattern that is readily
described for general n. (See Section 6.3.) Note in particular that S0 is a 2-band matrix with entries that
are linear forms in .˛; ı/, while the entries of S1 depend only on � . On setting � D 1 in S0 above, one
recovers generators for the ideal that is identified by Street in [32]. For a general fixed value of � , the
corresponding locus is a subscheme of the .˛; ı/-plane of length m.mC 1/. A picture of the real locus
of D˙

n for n D 7 is given in Figure 1, together with the set of points on D˙
n where � D 0:6.

Geometry & Topology, Volume 29 (2025)
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Figure 1: The blue curve is the projection of the real locus of D˙
n to the .ı; ˛/ plane for n D 7.

The green points are the points where � D 0:6, showing the simultaneous eigenvalues of the
operators ı and ˛ for this value of � . There are 12 of these, only 8 of which are real. The pink
points indicate the subscheme of total length 12 defined by the minors of S0 ˙S1 when � D 1,
which is the case described by Street [32]. Although the real curve looks rather smooth at ˛D˙1,
it has a uni-branch triple point there: in local analytic coordinates, the equation of the curve has
the form y3 D x7.

Remark This description of D˙
n as a determinantal variety means that the corresponding ideal J˙

n;1
is

generated by mC 1 elements, for this is the number of m�m minors. We shall see in fact that each of
these ideals can be generated by just two of the minors.

As in Muñoz [28; 27], Street [32] and Xie and Zhang [36], the starting point for the calculation is an
explicit generating set for the ideal of relations in the ordinary cohomology of a representation variety: in
our case, as in [36], these are the “Mumford relations” in the cohomology of the representation variety
associated to S2

n . (See Earl and Kirwan [8] for example.) We obtain simple explicit formulae for these
relations as products of linear forms in the variables ˛ and ıi . The matrix S0 above arises as a matrix of
syzygies for the Mumford relations. To compute the deforming term S1, it is only necessary to understand
the contributions of moduli spaces of instantons on R�Zn of smallest nonzero action (action 1

4
in the

normalization where the standard instanton on R4 has action 1). The contributions of these moduli spaces
can be understood quite explicitly by a wall-crossing argument. A closely related phenomenon is present
in [27].

Geometry & Topology, Volume 29 (2025)
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1.3 Outline

In Section 2 we recall the definition of singular instanton homology with local coefficients and the
construction of the operators that act on it in general. (Note that from Section 2 onwards, we simply
write I.Z/ for the homology group referred to as I.ZI�/ above, without explicit mention of the local
coefficients.) In Section 3, we introduce Zn and Zn;˙1 and study the ordinary cohomology of the relevant
representation varieties and instanton homologies, enough to show that these can be described as cyclic
modules for the algebra of operators which act on them. This material is quite standard.

In Section 4, we describe the Mumford relations in the ordinary cohomology of the representation variety
of Zn. We derive a very explicit formula for generators of the ideal of relations in these cohomology
groups. The relations in the ordinary cohomology ring of the representation variety of Zn admit a
deformation which yields relations in the instanton homology I.Zn/. The existence of this deformation
is established in Section 5 together with a calculation of the subleading term using a wall-crossing
calculation rather as in [27].

Knowledge of the subleading term turns out to be sufficient to obtain a complete answer, and the description
of I.Zn;1/ (or equivalently I.Zn;�1/) that is outlined earlier in this introduction is derived in Section 6.
Some further remarks are contained in Section 7 at the end of the paper.

Acknowledgements The work of Kronheimer was supported by the National Science Foundation through
NSF grants DMS-1707924 and DMS-2005310. The work of Mrowka was supported by NSF grants
DMS-1808794 and DMS-2105512. Both authors were supported by a Simons Foundation Award #994330
(Simons Collaboration on New structures in low-dimensional topology). This paper was completed while
Mrowka was in residence at the Simons Laufer Mathematical Sciences Institute as a Clay Senior Scholar
and supported by NSF grant DMS-1928930. The authors are grateful to the referee for improvements and
corrections.

2 A version of singular instanton homology

In this section we review the construction of instanton homology with local coefficients, for admissible
bifolds. General references include [20] and [23].

2.1 Bifolds and their Floer homology

For economy of notation, we will typically write simply Z for a pair consisting of a connected, oriented
3-manifold Y and an embedded (unoriented) link K D K.Z/ � Y . Following [20] and [19], we will
regard Z as determining an orbifold (a bifold in the terminology of [22]) whose underlying topological
space is Y and whose singular set is K.Z/. The local stabilizer of the orbifold geometry at points of
K.Z/ is of order 2. When talking of (for example) Riemannian metrics on Z, we will always mean

Geometry & Topology, Volume 29 (2025)
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orbifold Riemannian metrics. A bifold Z is admissible if there is an element of H 1.Y IZ/ which has
nonzero mod-2 pairing with the class ŒK.Z/� 2 H1.Y IZ=2/.

Associated to a 3-dimensional bifold Z, we have a space of bifold connections B.Z/. In this paper, B.Z/
will always consist of the bifold SO.3/ connections with w2 D 0 modulo the determinant-1 gauge group.
In the language of [23, Section 2], this is the space of marked bifold connections in which the marking
region is the complement of the singular set K.Z/ and the bundle has w2 D 0 on the marking region.

Remark The space B.Z/ can be identified with the space of gauge equivalence classes of SU.2/
connections on the complement of the singular set K.Z/ such that the associated SO.3/ bundle extends
to an orbifold SO.3/ bundle on Z with nontrivial monodromy (of order 2) at the singular points. When
interpreted as SU.2/ connections in this way, the limiting holonomy of the SU.2/ connections on small
loops linking the singular locus has order 4. This is the viewpoint adopted, for example, in [17; 18].

Definition 2.1 We write Rep.Z/�B.Z/ for the space of flat bifold connections modulo the determinant-1
gauge group. If Z is admissible, then Rep.Z/ consists only of irreducible connections.

2.2 A local coefficient system

For each component Ki � K.Z/, after choosing a framing, we obtain a map to S1,

hi W B.Z/! S1;

as in [20] and [23, Section 2.2]. Specifically, following [20], given ŒA� 2 B.Z/, we may restrict the
connection ŒA� to the boundary of the framed �-tubular neighborhood of Ki and obtain, in the limit as
�! 0, a flat SO.3/ connection on the torus, whose structure group reduces to SO.2/. The holonomy of
the SO.2/ connection along the longitude defines hi.ŒA�/.

An orientation of Ki is not needed here, because the orientation of the SO.2/ bundle also depends on an
orientation of Ki . (That is, the orientation of Ki is used twice in this construction.) The framing is also
inessential, as a change of framing will change hi by a half-period.

Taking the product over the set of all components of K, we define a single map h W B.Z/! S1 by

h D�ihi :

Over the circle S1, there is a standard local system with fiber the ring of finite Laurent series

(1) RD QŒ�˙1�

such that the monodromy of the local system around the positive generator of S1 is multiplication by � .
Then by pulling back this local system by the map h, we obtain a local system � on B.Z/. We summarize
this construction with a definition.

Definition 2.2 Unless otherwise stated, the notation R will denote the ring QŒ�˙1�, and � will denote
the corresponding local system of free rank-1 R-modules over B.Z/, for any 3-dimensional bifold Z.

Geometry & Topology, Volume 29 (2025)
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If Z is admissible, then by the standard construction (see [20; 21]), we obtain an instanton homology
group for admissible bifolds:

Definition 2.3 Let Z be an admissible bifold of dimension 3. After choosing a Riemannian metric and
perturbation to achieve a Morse–Smale condition for the gradient flow of the Chern–Simons functional
on B.Z/, we obtain an instanton Floer complex CI.ZI�/ of free R-modules whose homology I.ZI�/

is the instanton homology of Z. We will generally write I.Z/ and omit � from the notation, unless the
context demands otherwise. This is a Z=4 graded module.

2.3 Functoriality and operators

We consider 4-dimensional bifolds W as cobordisms between 3-dimensional bifolds. In the context of
this paper, the singular locus †D †.W / of the orbifold W will always be an embedded surface (not
necessarily orientable). In particular, we do not consider foams — singular surfaces — as in [22]. The
Floer homology groups I.Z/ are functorial in the sense that a bifold cobordism W from Z0 to Z1 gives
rise to a map

I.W / W I.Z0/! I.Z1/

compatible with compositions.

The map I.W / is obtained from suitable weighted counts of solutions to the perturbed anti-self-duality
equations on the bifold W , after attaching cylindrical ends. This construction initially gives rise only to
a projective functor, in that the overall sign of I.W / is ambiguous. When †.W / is oriented, the sign
ambiguity can be resolved by choosing a homology orientation for W in the sense of [20]. In the case that
†.W / is not necessarily orientable, an appropriate substitute is the notion of an {-orientation introduced
in [19]. (The sign ambiguity in the nonorientable case will not particularly concern us in this paper.)

Recall that in the present context I.Z/ denotes the instanton homology with coefficients in the local
system � . That being so, the solutions A to the perturbed anti-self-duality equations on W are counted
not just with signs ˙1, but with weights that are units in the ring R. More precisely, if �0 and �1 are
critical points of the perturbed Chern–Simons functional in B.Z0/ and B.Z1/, and if ŒA� is a solution of
the perturbed equations on W with cylindrical ends, asymptotic to �0 and �1, then ŒA� contributes to the
matrix entry of the map I.W / at the chain level with a contribution ˙�.A/, where �.A/ W�.�0/!�.�1/

is given by

(2) �.A/D �
�.A/C

1
2

.†�†/
:

Here � is obtained from a curvature integral on the 2-dimensional singular set † D †.W /, and the
self-intersection number † �† is computed relative to chosen framings of the singular sets K.Z0/ and
K.Z1/. The expression on the right-hand side of (2) is not an element of R itself, because the exponent is
not generally an integer. It is, however, a homomorphism between the rank-1 R-modules �.�0/! �.�1/

in a natural way. For details of this construction see, for example, [20, Section 3.9] and [23]. As explained

Geometry & Topology, Volume 29 (2025)



1982 Peter B Kronheimer and Tomasz S Mrowka

there, the choice of framings is essentially immaterial. Consistent with our notation I.Z/ in which
the local coefficient system � is implied, we will continue to write simply I.W / for the R-module
homomorphism between these instanton homology groups.

As well as the map I.W / above, we have the generalizations obtained by cutting down the moduli spaces
on W by cohomology classes in the configuration space of bifold connections B.W /. Here B.W / is a
space of SO.3/ bifold connections modulo the determinant-1 gauge group, and in the language of [23],
this is the space of marked bifold connections in which the marking region is the complement of the
singular set †.W / and the bundle has w2 D 0 on the marking region.

To describe the relevant cohomology classes more specifically, and to fix conventions, there is a universal
orbifold SO.3/ bundle,

E ! B�.W /�W;

which has an orbifold Pontryagin class,

porb
1 .E/ 2 H 4.B�.W /�W IQ/:

We adopt the convention that our preferred 4-dimensional characteristic class is �
1
4
porb

1
.E/, which

coincides with corb
2
.zE/ in the case that there is a lift to an SU.2/ bundle zE. Given a class 
 in H 2.W IQ/

or H 0.W IQ/, we obtain classes

(3) �
1
4
porb

1 .E/=Œ
 �

in H 2.B�.W /IQ/ or H 4.B�.W /IQ/ respectively.

In addition to the classes (3), if p is a point of the orbifold locus †.W /, then the restriction of E to
B�.W /� fpg has a decomposition

Ep D R˚Vp;

where Vp is a 2-plane bundle. An orientation of Vp depends on a choice of normal orientation to the
orbifold locus at p. Having chosen such an orientation, a class ıp 2 H 2.B�.W /IQ/ is then defined as

(4) ıp D
1
2
e.Vp/:

We can regard ı here as depending on a choice of an element in H0.†.W /IO/, where O is the orientation
bundle of †.W / with rational coefficients.

Combining the classes (3) for 
 2H i.W IQ/ and the classes ıp , we obtain homomorphisms of R-modules

(5) I.W; a/ W I.Z0/! I.Z1/

depending linearly on

(6) a 2 Sym�

�
H2.W IQ/˚H0.W IQ/˚H0.†.W /IO/

�
:

Since I.Z0/ and I.Z1/ are R-modules, we may extend linearly over R to allow also

(7) a 2 Sym�

�
H2.W IQ/˚H0.W IQ/˚H0.†.W /IO/

�
˝R:

Geometry & Topology, Volume 29 (2025)
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The construction of the operators I.W; a/ is suitably functorial. In particular, this means for us that, in
the case that W is a cylinder Œ0; 1��Z, we have

I.W; a1a2/D I.W; a1/I.W; a2/:

We will always be dealing with the case that W is connected, so there is only one class Œw� in H0.W IQ/.
From [16; 20], we note the following relation among the homomorphisms I.W; a/.

Proposition 2.4 Let p a point in †.W / with a chosen orientation of Tp†.W /, representing a class in
H0.†.W /IO/ in the algebra (6). Let w be a point in W, representing a class in H0.W IQ/. Then we
have a relation

I
�
W; .p2

Cw� �2
� ��2/b

�
D 0

for any b in the algebra (6).

Corollary 2.5 The map I.W;p2b/ is independent of the choice of oriented point p 2†.W /.

Remark The relation in Proposition 2.4 reflects (in part) a relation in the cohomology ring of B�.W /,
where we have a 2-dimensional class ıp and a 4-dimensional class �1

4
porb

1
.E/=Œw�. From their construction

as characteristic classes, these satisfy

(8)

The extra terms �2 C ��2 in the proposition arise from instanton bubbling contributions [16].

Proposition 2.4 also tells that the generator corresponding to Œw� 2 H0.W IQ/ is redundant. We obtain
the most general homomorphism I.W; a/ if we only take a in the smaller algebra

(9) Sym�

�
H2.W IQ/˚H0.†.W /IO/

�
:

There is an additional construction we can make if we are given a distinguished class e 2 H2.W IZ/. We
consider the space B.W /e of marked bifold SO.3/ connections on W where the marking region is again
the complement of †.W / and where the marking data has

w2 D PD.e/jW n†.W / mod 2:

After attaching cylindrical ends, the instantons in B.W /e provide us with maps

(10) I.W; a/e W I.Z0/! I.Z1/:

When the singular set †.W / is oriented, the integer lift e in homology, together with the homology-
orientation of W, is used to orient the moduli spaces and determines the overall sign of the map I.W; a/e .
If e � e0 D 2v, so that e and e0 define the same mod 2 class, then (as in [6]) we have

(11) I.W; a/e
0

D .�1/v�vI.W; a/e:

Remark As discussed for example in [19], one can more generally consider the case that e is a relative
class so that @e 2 H1.†.W //, but the more restrictive version here is required because we wish to use
the local coefficient system � , which is otherwise not defined. See also [23, Section 2.2].
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3 Torus braids in S 1 � S 2

3.1 The torus braids

The following examples play an important role for us.

Definition 3.1 Let � D fp1; : : : ;png be n points arranged symmetrically around the equator of S2.
We write Zn for the bifold whose underlying 3-manifold Y is the product S1 �S2 and whose singular
locus K is the n-component link

Kn D S1
�� � S1

�S2:

Definition 3.2 For any q 2 Z, we define a bifold Zn;q as follows. The 3-manifold Y is again S1 �S2.
If ' 2 R=.2�Z/ denotes an angular coordinate on the equator of S2, and � a coordinate on the S1 factor,
then K D Kn;q will be the link determined by n' D q� .mod 2�/.

The bifold Zn;q is admissible when n is odd. The link Kn;q � S1 �S2 is connected (a knot) when n and
q are coprime. When q D 0, the orbifold Zn;0 coincides with Zn above.

When needed, we orient the singular set Kn � Zn as the boundary of n disks in the product 4-manifold
D2 �S2, and we orient Kn;q similarly using the fact that they have the same infinite cyclic cover.

It is evident from the definitions that the orbifold Zn;q is isomorphic to Zn;�q by an orientation-reversing
map. With a little more thought, one can see that there is also an orientation-preserving isomorphism:

Lemma 3.3 The link Kn;q is isotopic in S1 � S2 to the link Kn;�q . As a consequence , there is an
orientation-preserving isomorphism of bifolds from Zn;q to Zn;�q , preserving the orientation of the
singular set.

Proof Let L be an oriented axis in R3 passing through two points of the equatorial circle in the above
description of Kn;q . Let �t be the rotation of S2 about this axis through angle 2� t , and let 1� �t be the
resulting map S1 �S2 ! S1 �S2. Then the link

Kt D .1� �t /.Kn;�q/� S1
�S2

coincides with Kn;�q when t D 0 and with Kn;q when t D 1
2

.

We aim to give a description of I.Zn/ (the instanton homology with local coefficients) as an R-module,
together with a description of the operators

I.Œ0; 1��Zn; a/ W I.Zn/! I.Zn/ and I.Œ0; 1��Zn; a/
e
W I.Zn/! I.Zn/

arising from classes a by the general construction (5) and (10), where e is the 2-dimensional class in
H2.ZnIQ/.

Geometry & Topology, Volume 29 (2025)
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3.2 The representation variety of S 2
n

Let us assume henceforth that n is odd, so that the orbifold Zn described above is admissible. We may
describe Zn as a product S1 �S2

n , where S2
n is a 2-dimensional bifold of genus 0, and we begin with

some observations about the representation variety Rep.S2
n /, drawn from [3; 35; 32]. Note that we can

identify Rep.S2
n / with the space of flat SU.2/ connections on the complement of the n singular points

such that the monodromy at each puncture has order 4. (See the remark in Section 2.1.)

First, as n is odd, the variety Rep.S2
n / consists entirely of irreducible connections. It is a smooth, compact,

connected manifold of dimension 2n � 6 for n � 3, and is empty for n D 1. We have no need for a
detailed description of their topology, but we record the fact that Rep.S2

3
/ is a single point and Rep.S2

5
/

is diffeomorphic to the blow up of CP2 at 5 points. It will be convenient to make use of the following
result, which the authors believe has the status of folklore. The statement and proof are very minor
adaptations of the main result of [13]. See also [33].

Lemma 3.4 For any odd n, the manifold Rep.S2
n / admits a Morse function with critical points only in

even index.

Proof Following [13], we present a proof by induction on n. So assume the result is true for a particular n,
and consider Rep.S2

nC2
/. Let C � SU.2/ be the subset of elements of order 4, ie the unit sphere of

imaginary quaternions. Let zR � C nC2 be the locus

f.i1; : : : ; inC2/ 2 C nC2
j i1i2 � � � inC2 D 1g;

so that the representation variety Rep.S2
nC1

/ is the quotient of zR by conjugation. For i 2 zR, there is a
unique � 2 Œ0; �� such that

inC1inC2 �

�
ei� 0

0 e�i�

�
and we have a smooth function

h D cos.�/D 1
2

tr.inC1inC2/;

which descends to a smooth function

h W Rep.S2
nC2/! Œ�1; 1�:

We consider separately the loci h�1.1/, h�1.�1/ and h�1..�1; 1//.

If i 2 h�1.1/, then inC1inC2 D 1, and it follows that i1i2 � � � in D 1. So these remaining n points define a
point in Rep.S2

n /. The remaining choice of inC1 exhibits h�1.1/ as a 2-sphere bundle over Rep.S2
n /. As

in [13], we may use the induction hypothesis to show that a perturbation of h has critical points only of
even index near h D 1. The situation at h�1.�1/ is essentially the same: multiplying i1 and inC2 by �1

interchanges these two loci.
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On the locus h�1..�1; 1//, the function h itself is Morse and its critical points can be described as follows.
Let i , j , k in C be the standard unit quaternions with ij k D �1. Given any element of h�1..�1; 1//

we can use the action of conjugation to uniquely put in standard form with inC1 D i and inC2 lying in
the interior of the semicircle 
 which joins i to �i and passes through j . In this standard form, there
is a circle action on h�1..�1; 1// which fixes inC1 and inC2 and rotates the points i1; : : : ; in about the
axis through k. The function � D cos�1.h/ is smooth on this locus and is the moment map of the circle
action. The critical points of h are therefore precisely the fixed points of this circle action. These fixed
points are the points which in standard form have inC1 D i , inC2 D j and im D˙k for all other m. The
constraint i1i2 � � � inC1 D 1 means that im D�k for an even number of indices m in the range 1; : : : ; n.
As a general property of moment maps, because these fixed points are isolated, they are Morse critical
points for h, of even index.

Remark The proof of the lemma above gives a little bit more, for we can easily identify the indices of
the critical points, and hence establish the recursive formula for the Poincaré polynomial of Rep.S2

n /

which is given in [32]. The loci h�1.1/ and h�1.�1/, which are the 2-sphere bundles over Rep.S2
n /

inside Rep.S2
nC2

/, are the minima and maxima of h and together make a contribution

.1C t2/2Pn.t/

to the Poincaré polynomial PnC2 for Rep.S2
nC2

/. Using the symmetries of Rep.S2
nC2

/ obtained by
multiplying an even number of the il by �1, it is easy to see that the remaining critical points in
h�1..�1; 1// all have the same index and that this index is the middle dimension .n�1/. There are 2n�1

of these critical points, so we recover the recursive formula from [32],

(12) PnC2.t/D .1C t2/2Pn.t/C .2t/n�1:

Atiyah and Bott [1] described standard generators for the cohomology ring of representation varieties
of surfaces in the nonorbifold case (a smooth surface of genus g), and there is an extension of those
techniques for the orbifold case, developed in [2]. For the specific case of S2

n , the results are given in [32].

In this description, the generators of the cohomology ring H�.Rep.S2
n IQ// are classes

(13) ˛ 2 H 2.Rep.S2
n /IQ/; ˇ 2 H 4.Rep.S2

n /IQ/; ıp 2 H 2.Rep.S2
n /IQ/ for p 2 �;

which are the restrictions to Rep.S2
n / of classes defined on the space of irreducible bifold connections,

B�.S2
n /, arising from the slant product construction (3). More specifically, the classes ˛ and ˇ arise from

the fundamental 2-dimensional class ŒS2
n � 2 H2.S

2
n / and the point class Œw� 2 H0.S

2
n / respectively, while

ıp is defined as in (4):

(14) ˛ D�
1
4
porb

1 .E/=ŒS2
n �; ˇ D�

1
4
porb

1 .E/=Œw�; ıp D
1
2
e.Vp/:

We will sometimes write
ı1; : : : ; ın

for the classes ıpi
as pi runs through � .
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The classes ˛ and ˇ can also be seen as arising from the Künneth decomposition in H 4.B�.S2
n /�S2

n IQ/,

�
1
4
porb

1 .E/D ˇ� 1C˛� v;

where v is the generator of H 2.S2
n IQ/. The generator ˇ is redundant, because of the relation

ı2
p D�ˇ for all p 2 �;

which is a restatement of (8) in the current situation.

In the rational cohomology ring of B�.S2
n /, there are no further relations: the cohomology ring is the

algebra

(15) H�.B�.S2
n /IQ/D QŒ˛; ı1; : : : ; ın�=hı

2
k � ı2

l ik;l :

We have a surjective homomorphism

(16) ' W H�.B�.S2
n /IQ/! H�.Rep.S2

n /IQ/:

Definition 3.5 We write An for the algebra

An D H�.B�.S2
n /IQ/D QŒ˛; ı1; : : : ; ın�=hı

2
k � ı2

l ik;l ;

and we write
jn � An

for the kernel of the surjective homomorphism '.

Generators for the ideal jn are described in detail in [32], which leads to a complete description of the
cohomology ring,

(17) H�.Rep.S2
n /IQ/D An=jn:

See also Proposition 4.8.

3.3 The representation variety of Zn

The flat bifold connections on Zn are of two sorts, which we call the “plus” and “minus” components,
which can be distinguished by examining the holonomy of the flat connection along the S1 factor in
Zn DS1�S2

n . The representations in the plus component are pulled back from S2
n . The representations in

the minus component are obtained from these by multiplication by a flat real line bundle with holonomy �1

on the S1 factor. Thus we have

(18) Rep.Zn/D Rep.Zn/C[Rep.Zn/� D Rep.S2
n /[Rep.S2

n /:

Because of this, the description (17) of the cohomology ring of Rep.S2
n / leads immediately to a description

of the cohomology of Rep.Zn/. We are also eventually interested in the cohomology of the representation
variety with constant coefficients R rather than Q (because of our interest in instanton homology with
local coefficients �). With this in mind, let

� W H�.Rep.Zn/IR/! H�.Rep.Zn/IR/

Geometry & Topology, Volume 29 (2025)



1988 Peter B Kronheimer and Tomasz S Mrowka

be the map obtained from interchanging the two copies, so that �2 D 1. We write An for the algebra

(19) An DRŒ˛; ı1; : : : ; ın; �� =h�2
� 1; ı2

k � ı2
l ik;l :

That is, we extend the coefficient ring of the algebra (17) from Q to R, and we adjoin the element � with
square 1. This provides us with the following description. In the statement below, we write

1C 2 H 0.Rep.Zn//

for the element Poincaré dual to the fundamental class of the component Rep.Zn/C.

Proposition 3.6 The cohomology of the representation variety Rep.Zn/ with coefficients in R is a cyclic
module for the algebra An with generator the element 1 2 H 0.Rep.Zn/IR/. We have

(20) H�.Rep.Zn/IR/ŠAn=Jn; where Jn D .jn C �jn/˝R;

and jn is the ideal in (17). Using Poincaré duality, the homology H�.Rep.Zn/IR/ can equivalently be
described as a cyclic An-module with generator the class ŒRep.Zn/C�, with the classes ˛ and ık acting
by cap product.

We regard An as a graded algebra with the generators ˛ and ık in grading 1 (not 2) and � in grading 0.
From the grading, An obtains an increasing filtration, which for future reference we record as

(21) A.0/
n �A.1/

n �A.2/
n � � � � �An;

where A.s/
n is the R-submodule generated by elements in grading less than or equal to s.

From the explicit description of the generators of jn given in [32] (for rational coefficients), we can read
off that there are no relations between the generators up to the middle dimension of Rep.Zn/:

Proposition 3.7 For s � .n� 3/=2, we have Jn \A.s/
n D f0g.

3.4 The instanton homology of Zn

The instanton homology I.ZnIQ/ with rational coefficients was described, together with its ring structure,
by Street [32] drawing on work of Boden [3] and Weitsman [35]. We summarize part of these results
here, adapted to the case of I.Zn/ (by which we continue to mean the instanton homology with local
coefficients).

The representation variety Rep.Zn/ is a Morse–Bott critical locus for the Chern–Simons functional.
By Lemma 3.4, there is a Morse function on Rep.Zn/ with critical points only in even index. The
proof of that lemma allows one to construct such a Morse function as a linear combination of traces of
holonomies around loops in Zn. We may use such a Morse function as a holonomy perturbation for the
Chern–Simons functional, so that the critical points of the perturbed Chern–Simons functional correspond
to the critical points of the Morse function on Rep.Zn/. After making such a perturbation, the set of
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critical points forms a natural basis both for the ordinary homology of Rep.Zn/ as a Q-vector space, and
for the instanton homology I.Zn/ as an R-module. We therefore obtain an isomorphism

I.Zn/D H�.Rep.Zn//˝R:

In the Z=4 grading of the instanton homology, the minus component Rep.S2
n /� is shifted by 2 relative to

the plus component. This is established in [32] for rational coefficients, but the argument extends to any
coefficients, including our local coefficient system � . We record this in the following proposition.

Proposition 3.8 As R-modules with Z=4 grading , we have an isomorphism ,

ƒ W I�.Zn/D H�.Rep.S2
n /IR/˚H�.Rep.S2

n /IR/Œ2�

for all odd n � 1. In particular , the instanton homology is a free R-module and is nonzero only in even
degrees mod 4.

The isomorphism ƒ in the above proposition depends on the choice of perturbation (at least a priori),
because the isomorphism goes by identifying both sides with the free R-module generated by the critical
points. The following two propositions add some additional structure. In the statement of the first
proposition below, we write 1C 2 I.Zn/ for the relative invariant of the 4-dimensional orbifold D2 �S2

n

with boundary Zn:
1C D I.D2

�S2
n /:

Proposition 3.9 The instanton homology I.Zn/ is a cyclic module for the filtered algebra An in (19),
with cyclic generator the element 1C.

This proposition (whose proof is given below) prompts the following definition.

Definition 3.10 We write Jn �An for the annihilator of the cyclic module I.Zn/, so that

I.Zn/ŠAn=Jn:

From this description, the instanton homology I.Zn/ inherits an increasing filtration from the filtration
of An:

I.Zn/
.m/

D .A.m/
n CJn/=Jn:

Proposition 3.11 The isomorphism ƒ of Proposition 3.8 respects the filtrations , and the isomorphism on
the associated graded is an isomorphism of An-modules , independent of the choice of perturbations.

We begin the proof of the two propositions above by describing the An-module structure of I.Zn/. Recall
that the An-module structure of H�.Rep.Zn/IR/ arises from operators ˛, ı1; : : : ; ın (acting by cap
product) and �. The instanton homology I.Zn/ carries parallel operators which we now make explicit.
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First, the classes ˛, ˇ and ıp in H�.B�.Zn/IQ/ correspond to operators on the Floer homology I.Zn/

by the general construction (5). We write these operators as

(22) z̨ W I�.Zn/! I��2.Zn/; žW I�.Zn/! I��4.Zn/D I�.Zn/; zıp W I�.Zn/! I��2.Zn/;

where the subscripts denote the mod 4 grading. In the notation of (5), these are the operators

z̨ D I.Œ0; 1��Zn; ŒS
2
n �/;

ž D I.Œ0; 1��Zn; Œw�/ for Œw� 2 H0.Œ0; 1��Zn/;

zıp D I.Œ0; 1��Zn; Œp�/ for Œp� 2 H0.Œ0; 1��Kn/:

Remark According to the results of [16], the operator 2zıp can be realized as the map corresponding to a
cobordism W1 from Z to Z, derived from the product cobordism I �Z by summing a standard torus to
I �K at the point

�
1
2
;p

�
. The local orientation of K is used to fix a homology orientation of the torus.

The counterpart of the operator � is a special case of the construction of I.W; a/e . Specifically, following
Street [32], it is the map (10) in the special case that W is the cylindrical cobordism, the element a is 1,
and e is the class Œfpointg �S2

n �:
z� D I.Œ0; 1��S2

n /
e:

In order for the operators z̨, zıp and z� to make the instanton homology I.Zn/ into a module over the
algebra An, we need to see that they satisfy the relations that are baked into the definition of An. We turn
to this next. The relation in Proposition 2.4 specializes to the following:

Lemma 3.12 With RD QŒ�˙1� as usual , the actions of the operators zıp and ž on the R-module I.Zn/

are related by
zı2
p D� žC �2

C ��2:

In particular , zı2
p is independent of the chosen point p on the singular set of Zn.

The element � in An has square 1 by definition, so we need the following lemma also.

Lemma 3.13 The operator z� WI.Zn/!I.Zn/ has square 1, and under the isomorphism of Proposition 3.8
it corresponds to the interchange of the two summands.

Proof This is proved in [32] for rational coefficients, except that an ambiguity in the orientation of the
moduli spaces left the sign of z�2 unresolved there. (See also the proof of Proposition 3.14 below.) In our
present context we have

z�2
D I.Œ0; 1��S2

n /
e
ı I.Œ0; 1��S2

n /
e
D I.Œ0; 1��S2

n /
2e

D .�1/e�eI.Œ0; 1��S2
n /D 1;

where the second equality is by functoriality and the third equality is from (11).

The relations in Lemmas 3.12 and 3.13 are the same relations satisfied by the elements � and ık in the
algebra An, so we can indeed use these operators to define an An-module structure on I.Zn/ by

(23) ˛ 7! z̨; ıi 7! zıi for i D 1; : : : ; n; � 7! z�:
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Having described the module structure of I.Zn/, the fact that it is a cyclic module generated by 1C

(Proposition 3.9) and the assertions of Proposition 3.11 are both consequences of the fact that, under
the isomorphism of Proposition 3.8, the operators z̨, zıp and z� agree with the operators ˛, ıp and � on
H�.Rep.S2

n // in their leading terms. This is the assertion of the proposition below, which is the final
proposition of this subsection.

Proposition 3.14 Let ƒ be the isomorphism of Proposition 3.8. Then for any � 2 I.Zn/
.m/ and u2A.k/

n ,
we have

(24) ƒ.u�/D uƒ.�/ mod I.Zn/
.mCk�1/;

and ƒ.1C/D 1C.

Proof It is enough to verify (24) in the case that u is one of the generators, ˛, ıp or �. The essential
point is that u� is defined using instantons on the cylinder R�Zn and that the leading term is defined by
(perturbations of) the flat connections, while the nonleading terms are defined by instantons with positive
action.

In more detail, let us write Rep.Zn/ D RC [ R�, as an abbreviation for the components Rep.Zn/˙.
Before any perturbations are made, we have seen that the two components RC[R� are copies of the
representation variety Rep.S2

n / of the orbifold sphere (equation (18)). For each � > 0, let us write

M�.R˙;R˙/

for the moduli space of (unperturbed) instanton trajectories from one component of Rep.Zn/ to another,
with action �.

Lemma 3.15 (i) The moduli spaces M�.RC;RC/ and M�.R�;R�/ are nonempty only for � 2 1
2
Z.

(ii) The moduli spaces M�.RC;R�/ and M�.R�;RC/ are nonempty only for � 2 1
2
ZC

1
4

.

(iii) The formal dimension of the moduli space , in every case , is 8�C .2n� 6/.

Proof The moduli spaces M�.RC;RC/ and M�.R�;R�/ are nonempty when � D 0, consisting then
of constant trajectories on the cylinder and forming a regular moduli space of dimension 2n � 6 (the
dimension of the representation variety). For other values of �, these moduli spaces are related to each
other by gluing in instantons and monopoles, which will change � by multiples of 1

2
while always changing

the formal dimension by 8�; see [17; 20].

The formal dimension and action � for the moduli spaces M�.RC;R�/ and M�.R�;RC/ are the same
as for moduli spaces on the closed bifold S1 �Zn D T 2 �S2

n for a bundle with marking data where
w2.E/ is dual to the class T 2 � fpointg. The action in this case is equal to 1

4
n modulo 1

2
, or in other

words belongs to 1
4
C

1
2
Z since n is odd. (In the language of [17], the monopole number on each of the

n components of the singular set is a half-integer.) The formula for the formal dimension in terms of the
action � is unchanged.
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After perturbation of the Chern–Simons functional, the manifolds RC and R� each become a finite set of
nondegenerate critical points, CC and C�. The action of the perturbed instantons will be close to integer
multiples of 1

4
if the perturbation is small, so for critical points c and c0 and � 2 1

4
Z we continue to write

M�.c; c
0/ for the perturbed moduli spaces. We have the dimension formula

dim M�.c; c
0/D 8�C index.c/� index.c0/;

where index denotes the ordinary Morse index for the Morse function on R˙. Furthermore, the moduli
space is nonempty only if � 2 1

2
Z in the case that c; c0 both belong to CC or to C�, and only if � 2 1

4
C

1
2
Z

otherwise.

Consider now the operator z̨ for example. (The case of zıp is no different.) When � D 0, the moduli space
M0.c; c

0/ between critical points c; c0 2 CC or c; c0 2 C� coincides with a perturbation of the space of
ordinary Morse trajectories between the critical points in R˙. The construction of z̨ means that we can
write it as a sum

(25) z̨ D

X
�2 1

4
Z; ��0

z̨.�/

according to the contributions of the different moduli spaces M� . The matrix entry of z̨.0/ is the evaluation
of the cohomology class ˛ on the Morse trajectory space M0.c; c

0/ between critical points on RC or R�

with index.c/� index.c0/D 2. This is the cap product by the class ˛, under the isomorphism between
Morse homology and singular homology. Thus we have

ƒ.z̨.0/�/D ˛ƒ.�/;

where � is the class corresponding to the critical point c. The dimension formula shows that the remaining
terms ƒ.z̨.�/�/ for positive � correspond to 2-dimensional moduli spaces M�.c; c

00/ where the index
difference index.c/� index.c00/ is 4 or more.

In the case of z�, the equality (24) holds exactly. This is the content of Lemma 3.13. In the present context
it can be understood by the same argument as applies to z̨ and zıp , but with the additional observation that
the moduli spaces of positive action contribute zero because of the action of translation on these moduli
spaces.

If we keep track of the difference between RC and R� which is highlighted in part (ii) of Lemma 3.15,
then we can extract a slightly more detailed statement from the proof of the proposition above. Recall
that Jn �An is the annihilator of H�.Rep.Zn//. (See Proposition 3.6.) In the following corollary, we
also write

AC
n �An

for the subalgebra generated over R by ˛ and ı1; : : : ; ın, so that

An DAC
n C �AC

n :
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Corollary 3.16 For any element w 2 Jn \A.m/
n , there exists ! 2 Jn \A.m/

n with

! �w 2A.m�1/
n :

More particularly, if w is a homogeneous element of degree m in the graded algebra An, then ! can be
taken to have the form

! D w.0/Cw.2/Cw.4/C � � �C �
�
w.1/Cw.3/C � � �

�
;

where w.0/ D w and w.i/ 2 A.m�i/
n \AC

n is homogeneous of degree m� i for all i . Furthermore , if
m �

1
2
.n� 1/, then ! is uniquely determined by w.

Proof This follows from the proposition above and Proposition 3.7.

3.5 The instanton homology of Zn;�1

We now examine the bifold Zn;�1; see Definition 3.2. The singular locus K.Zn;�1/ in this case is a knot
in S1 �S2, with winding number n. We still require n to be odd, so that this is an admissible bifold.

Proposition 3.17 The representation variety of Zn;�1 is nondegenerate and consists of 1
4
.n2 � 1/ points.

Proof The orbifold Zn;�1 is a fiber bundle over the circle, with fiber the orbifold sphere S2
n . The

restriction map to the fiber,
Rep.Zn;�1/! Rep.S2

n /;

has image the set of representations in Rep.S2
n / which are invariant under the action h� of the monodromy

of the circle bundle, h W S2
n ! S2

n . The latter is the map which rotates the sphere through 2�=n. The
restriction map is two-to-one, just as it is for Zn, and for the same reason.

The fixed points of h� are representations of the orbifold fundamental group of the quotient †D S2
n=hhi.

This orbifold surface has one orbifold point of order 2 and two orbifold points of order n. For a spherical
orbifold with three singular points, the representation variety consists of isolated points, and this is
essentially the situation considered in [10] (for example). The enumeration of representations, as in [10],
becomes an enumeration of lattice points in a region. (The same conclusion can also be reached by
identifying the representations with stable parabolic bundles on a curve of genus 0 with appropriate
parabolic structure at the orbifold points. See Section 4.1.) In this particular case, the number of
representations of the orbifold fundamental group of S2

n=hhi is 1
8
.n2 � 1/, and Rep.Zn;�1/ therefore

consists of 1
4
.n2 �1/ points. The nondegeneracy of the former leads to the nondegeneracy of the latter.

We can view K.Zn;�1/ as the closure of a braid in S1 � D2 � S1 � S2 whose braid diagram has
n� 1 negative crossings. There is therefore a cobordism W of bifolds, from Zn;�1 to Zn, obtained by
smoothing each of the crossings. We can write W as a composite of n� 1 cobordisms, W1; : : : ;Wn�1,
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Figure 2: The composite cobordism from Zn;�1 to Zn, illustrated for n D 5.

in the order illustrated in Figure 2. The intermediate bifolds each correspond to braids with k “straight”
strands and n�k braided strands: a side-by-side juxtaposition of Zk and Zn�k;�1, which we temporarily
denote by Zk �Zn�k;�1 (with the understanding that Z0 is S1 �S2 with an empty link). So we have

I.Wk/ W I.Zk�1 �Zn�kC1;�1/! I.Zk �Zn�k;�1/ for k D 1; : : : ; n� 1:

(Note that, when k D n� 1, we have Zk �Zn�k;�1 Š Zn.)

Proposition 3.18 For each odd n and each k � n�1, the induced map I.Wk/ is an inclusion of one free
R-module in another , as a direct summand.

Proof The cobordism Wk is one map in a skein exact triangle [23; 19], in which the third instanton
homology group is I.Xn;k/, where Xn;k is a braid as shown in Figure 3. Thus,

(26) : : :
c
! I.Zk�1 �Zn�kC1;�1/! I.Zk �Zn�k;�1/! I.Xn;k/

c
! � � �

is a long exact sequence.

After an isotopy, we have, for k � n� 2,

(27) Xn;k D Zk�1 �Zn�2�kC1;�1:

Figure 3: The third braid Xn;k in the exact triangle, illustrated in the case n D 5 and k D 2. The
shaded region (which is connected in a projection of S1�S2) can be eliminated by a Reidemeister I
move.
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The case k D n� 1 is slightly different: in this case Xn;n�1 is the connected sum of Zn�2 and the bifold
obtained from an unknot in S3. (See Figure 3 again.) From another application of the skein triangle, we
have an exact sequence

� � � ! I.Zn�2/! I.Xn;n�1/! I.Zn�2/! � � � :

The connecting homomorphism I.Zn�2/!I.Zn�2/ has odd degree in the mod 2 grading, while I.Zn�2/

is supported in even gradings only. So the connecting homomorphism is zero and so

rankR I.Xn;n�1/D 2 rankR I.Zn�2/:

For brevity, let us write

f .n; k/D rankR I.Zk �Zn�k;�1/ and x.n; k/D rankR I.Xn�k/:

From the long exact sequence (26), we obtain

f .n; k/� f .n; k � 1/Cx.n; k/

with equality if and only if the connecting homomorphism c has rank zero. We have also seen that

x.n; k/D

�
f .n� 2; k � 1/ if k � n� 2;

2f .n� 2; n� 2/ if k D n� 1:

From these we inductively obtain

(28) f .n; n/�

.n�1/=2X
pD0

� n

p

�
f .n� 2p; 0/:

The quantities f .n� 2p; 0/ are the ranks of the instanton homologies of Zn�2p;�1, which are bounded
above by the number of generators, which in turn can be read off from Proposition 3.17:

(29) f .n� 2p; 0/� 1
4
..n� 2p/2 � 1/:

Combining this with the previous inequality we have

(30) f .n; n/�

.n�1/=2X
pD0

� n

p

�
�

1
4
..n� 2p/2 � 1/:

On the other hand, we know what f .n; n/ is: it is twice P .1/, where P is the Poincaré polynomial of the
representation variety of S2

n , given by the recursive formula (12). From that recursion, we can verify the
closed formula

(31) f .n; n/D 2n�3.n� 1/:

But the sum on the right-hand side of (30) is also 2n�3.n� 1/, as is easily verified by comparing it to
the second derivative of .t C t�1/n at t D 1. It follows that the inequalities above are all equalities. In
particular, from the equality in (30), we learn that I.Zn;�1/ is a free module of rank .n2�1/=4. It follows
that the connecting homomorphisms c in the exact sequences (26) all have rank zero. An inductive
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argument now shows the modules in the exact sequences are all free R-modules and the connecting
homomorphisms are all zero. The proposition follows.

The following corollary summarizes the conclusions of the previous propositions.

Corollary 3.19 The instanton homology I.Zn;�1/ with local coefficients is a free R-module of rank
.n2 � 1/=4, supported in even degrees mod 4. The cobordism W W Zn;�1 ! Zn induces a map I.W / on
instanton homology with local coefficients ,

I.W / W I.Zn;�1/! I.Zn/;

which is an inclusion of this free R-module as a direct summand.

The bifold obtained from Zn;�k by reversing the orientation is Zn;k , and by dualizing the above corollary
we obtain:

Corollary 3.20 The instanton homology I.Zn;1/ with local coefficients is also a free R-module of rank
.n2�1/=4. The cobordism W | WZn !Zn;1 induces a surjective map I.W |/ on these free modules.

On the other hand, we have Lemma 3.3 which identifies Zn;�1 and Zn;1 in an orientation-preserving
manner by an isotopy. So we have another variant of the corollary:

Corollary 3.21 There is a surjective homomorphism of free R-modules from I.Zn/ to I.Zn;�1/ obtained
from a cobordism between the links K.Zn/ and K.Zn;�1/ inside Œ0; 1��S1 �S2.

Like Zn, the bifold Zn;�1 contains a copy S of the orbifold sphere S2
n intersecting the singular locus

in n points. By the general constructions of Section 2.3, this gives rise to operators z̨, zı1; : : : ; zın and z�,
acting on I.Zn;�1/ just as in the case of I.Zn/, making I.Zn;�1/ also an An-module. Note that the
n points of intersection with S all lie on the same component of the singular locus K.Zn;�1/ (which is
now a knot, not a link). The operators zıp are therefore all equal on I.Zn;�1/, and we will sometimes
write this operator as zı.

Proposition 3.22 With the instanton module structure in which ˛; ıi ; � 2 An act by the operators z̨,
zı and z�, the instanton homology I.Zn;�1/ is a cyclic module for the algebra An and can therefore be
described as a quotient ,

I.Zn;�1/ŠAn=Jn;�1:

The ideal Jn;�1 contains the ideal Jn as well as the elements ıi � ıj .

Proof We have seen that there is a cobordism from Zn to Zn;�1 inducing a surjection on instanton
homology (Corollary 3.21). The proposition follows from this and the above remark that the actions of
the zıi are all equal.
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It is helpful here to introduce the smaller algebra

xADAn=hıi � ıj ii;j ;

which we can write simply as

(32) xADRŒ˛; ı; ��=h�2
� 1i;

where ı denotes the image of the ıi in the quotient ring. The algebra xA described this way is independent
of n. The above proposition then can be recast as

(33) I.Zn;�1/Š xA= xJn;�1;

where xJn;�1 is the image of Jn;�1 in xA.

Our main goal in this paper is to identify I.Zn/ and I.Zn;�1/ completely, by describing the ideals
Jn �An and xJn;�1 � xA. In particular, as described in the introduction, we will eventually provide a set
of generators of xJn;�1 in closed form, as minors of an explicit matrix.

4 Relations in ordinary cohomology

4.1 Loci in families of parabolic bundles on S 2
n

Recall from Proposition 3.6 the description of the cohomology ring of the representation variety

Rep.Zn/D Rep.S2
n /[Rep.S2

n /

as a quotient An=Jn, where Jn is an ideal. (The coefficient ring here, as in Proposition 3.6, is R, though at
this point our calculations will involve only Q, so rational coefficients would suffice.) The Betti numbers
of Rep.S2

n / were calculated recursively by Boden [3], and a full presentation of the cohomology ring
(in a more general case) is described in [8]. Generators for the ideal of relations in the specific case of
Rep.S2

n / are given by Street [32]. We shall describe a particular source of such relations, arising from a
mechanism first pointed out by Mumford in the smooth case [1]. (In [8] it is shown that essentially the
same mechanism gives rise to a complete set of relations in the orbifold case.)

As stated earlier, although we have taken SO.3/ connections as our starting point, the representation
variety Rep.S2

n / can be identified with the space of flat SU.2/ connections having monodromy of order 4

at each of the n punctures. In turn, this representation variety can be identified with a moduli space of
stable parabolic bundles by the results of [25]. We adopt the following conventions to make this more
specific in the rank-2 case, following [17; 18].

We consider a compact Riemann surface S equipped with a set of distinguished points � D fp1; : : : ;png,
and a parameter ˛ 2

�
0; 1

2

�
. Given a fixed holomorphic line bundle ‚! S (usually trivial in our case),

we study rank-2 holomorphic bundles E ! S with ƒ2E D ‚, together with a filtration of the rank-2
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fiber at each p 2 � determined by a choice of a one-dimensional subspace (a line) Lp � Ep. The data
.E ;Lp1

; : : : ;Lpn
; ˛/ is a bundle with parabolic structure. Given a line subbundle F � E , the parabolic

degree of F is defined by

(34) par-degF D c1.F/ŒS �C
X

�

˙˛;

where we take C˛ in the sum when F contains Lp at p and �˛ when it does not. The parabolic bundle
is semistable if

par-degF �
1
2

deg‚

for every line subbundle F , and is stable if strict inequality holds. At present we will take ‚ to be trivial
and we are only concerned with the special case ˛D 1

4
. In this case, when n is odd, all semistable bundles

are strictly stable, and the moduli space of stable parabolic bundles is a projective variety of complex
dimension 3g � 3C n. In the case of genus 0, we write M.S2

n / for this projective variety: the moduli
space of stable parabolic bundles, with parabolic structure at the n marked points and ˛ D

1
4

.

With this notation understood, the theorem of [25] identifies the representation variety Rep.S2
n / for odd n

with the moduli space of stable parabolic bundles:

Rep.S2
n /ŠM.S2

n /:

Suppose now that we have a family of parabolic bundles on S2
n parametrized by a space T . This means

that we have a rank-2 bundle,

E ! T �S2;

with ƒ2E Š ˆ�‚ (with ‚ still trivial on S2 at the moment, but ˆ a nontrivial line bundle on the
base T ), together with line subbundles

Lp � EjT�p for p 2 �:

The bundle E is equipped with a holomorphic structure on each ftg � S2, giving rise to parabolic
bundles Et .

In such a family over T , we can consider the locus of those t 2 T where the parabolic bundle Et is
unstable (for ˛ D

1
4

). From the definition at (34), being unstable means the following.

(i) We have a holomorphic line bundle F ! S2, of degree f say, necessarily the bundle O.f /.

(ii) We have a subset �� � , whose cardinality we denote by h.

(iii) There is a nonzero holomorphic map � W F ! Et such that �.F jp/� Lt jp for all p 2 �.

(iv) We have f C
1
4
.2h� n/ > 0.

Altering this slightly, given any � 2 R, we make the following definition.
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Definition 4.1 Let �� � D fp1; : : : ;png be any subset, and write h D j�j for its cardinality. Let � be
an odd multiple of 1

4
satisfying the additional constraint that

(35) h D
1
2
.n� 4�/ .mod 2/:

This being so, there is f 2 Z such that

(36) f C
1
4
.2h� n/D��:

Let F ! S2 be the line bundle O.f /. Given a family of parabolic bundles on S2
n parametrized by T as

above, we define

(37) T
�

�
� T

to be the locus of points t 2T such that there is a nonzero holomorphic map � WF ! Et with �.F jp/�Lt jp

for all p 2 �.

This definition is set up so that the unstable locus is the union[
�I���

1
4

T
�

�
:

The definition of the locus T
�

�
is readily rephrased as the statement that a certain Fredholm operator Pt

(defined below at (41), and determined by the parabolic bundle Et and the choice of � and �) has nonzero
kernel. If we suppose that the resulting map

P W T ! Fred

is transverse to the stratification of the space of Fredholm operators by the dimension of the kernel, then
the locus T

�

�
� T will itself be a stratified space whose Poincaré dual is a cohomology class that one can

calculate using the index theorem for families. With slight abuse of notation, we write (37) as

T
�

�
D T \U

�

�
;

where U
�

�
denotes the locus where the Fredholm operator has kernel. It will also be useful to group

together the different subsets � according to their size h D j�j, so that we write (with a slight further
abuse of notation),

U h
� D

[
j�jDh

U
�

�
and T h

� D T \U h
� :

Again, this locus is nonempty only if h satisfies the parity condition (35).

We now compute the Chern classes of the index of the family of operators P in order to derive a formula
for the class dual to the stratum T

�

�
. Note that if P is a family of complex Fredholm operators of index

�k C 1, then (assuming transversality) the locus where Pt has kernel is dual to

(38) ck.�index.P // 2 H 2k.T /:

(This is the first case of Porteous’s formula in the case of Fredholm maps [29; 15].)
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It is evident from the definition that the locus T
�

�
is unchanged if the family of bundles E is modified by

tensoring with a line bundle pulled back from the base T . Recall that we have written ƒ2E Dˆ�‚,
where ˆ! T is a line bundle and ‚ is taken to be trivial. If ˆ has a square root, we may tensor by
ˆ�1=2 to make c1.E/D 0. Although a square root will not exist in general, the calculation below is not
invalidated by assuming that c1.E/D 0, and we will make this simplification from here on. This means
in particular that c2.E/D�p1.adE/=4. Let us then write

c2.E/D ˇ� 1C y̨ � v 2 H 4.T �S2/;

where v is the unit volume form on S2. From the binomial theorem, we have

(39) c2.E/r D ˇr
� 1C r y̨ˇr�1

� v:

The class y̨ here does not quite correspond to the class ˛ in (14), because the latter was defined using the
orbifold Pontryagin class. The relation between the two is:

(40) y̨ D ˛�
1

2

X
p2�

ıp:

For each p 2 � we also have the line subbundle Lp and the quotient line bundle Qp D .EjT�p/=Lp , and
from these we obtain the cohomology class

ıp D
1
2
.c1.Qp/� c1.Lp//:

The definition is set up so that 2ıp coincides with the Euler class of the oriented rank-2 subbundle of
ad.EjT�p/ determined by Lp.

Fix a holomorphic line bundle F ŠO.f / on S2. We are seeking a nonzero holomorphic map � W F ! Et

such that the composite with the quotient map,

F ! Et
�p
�!Q.t;p/;

vanishes for all p 2 �. That is, � 2�0;0.F�˝ Et / lies in the kernel of the map

(41) Pt W�
0;0.F�

˝ Et /!�0;1.F�
˝ Et /˚

�M
p2�

Q.t;p/

�
given by � 7!

�
x@�;

P
p2� �p ı �.p/

�
. So, for the family of Fredholm operators P that we are interested in,

index.P /D index.x@F�˝E/�
X
p2�

ŒQp �;

where the first part is the ordinary family x@ operators. From the index theorem for families, we have

(42) ch.index.P //D
��

Todd.S2/Y ch.F�
˝E/

�
=ŒS2�

�
�

X
p2�

ch.Qp/:
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To compute the Chern characters that appear on the right-hand side of this formula, we introduce formal
Chern roots ˙� 2 H 2.T �S2IQ/ so that c2.E/D��2. Then we can write

ch.E/D e��
C e�

D 2 cosh.
p
�c2.E//;

and a short calculation using (39) yields

ch.E/D 2 cosh.
p
�ˇ/� v

sinh.
p
�ˇ/p

�ˇ
y̨:

We also have
ch.F�/D 1�f v and ch.Qp/D eıp :

Finally, on the right-hand side of (42) we have Todd.S2/D 1C v. Assembling these and calculating the
slant product by ŒS2�, we find

ch.index.P //D .2� 2f � h/ cosh.
p
�ˇ/�

sinh.
p
�ˇ/p

�ˇ

�
y̨ C

X
p2�

ıp

�
;

where h is the number of elements of �. If we use the equality of (36), and if we substitute ˛ for y̨ using
the relation (40), we obtain:

(43) ch.�index.P //D
�

1
2
n� 2�� 2

�
cosh.

p
�ˇ/C

sinh.
p
�ˇ/p

�ˇ

�
˛C

1

2

X
p2�

ıp �
1

2

X
p 62�

ıp

�
:

If we recall that ı2
p D�ˇ for all p, then we can equivalently write this formula as

(44) ch.�index.P //D
�

1
2
n� 2�� 2

�
cosh.ı1/C

sinh.ı1/
ı1

�
˛C

1

2

X
p2�

ıp �
1

2

X
p 62�

ıp

�
;

or in abbreviated form as

(45) ch.�index.P //D i� cosh.ı1/C
sinh.ı1/
ı1

B�;

where i� and B� are the indicated subexpressions of (44). Note that i� is minus the numerical index of P .

The above formula defines a graded infinite sum of elements of the algebra

An D QŒ˛; ı1; : : : ; ın�=hı
2
i � ı2

j ii;j D H�.B�.S2
n /IQ/

(see Definition 3.5), thus an element of the formal completionbH�
.B�.S2

n /IQ/� H�.B�.S2
n /IQ/:

By the usual formulae expressing elementary symmetric polynomials in terms of power sums, there is a
map

ck W
bH�
.B�.S2

n /IQ/! H 2k.B�.S2
n /IQ/

such that ck.ch.V //D ck.V / for any V , and so we have explicit formulae for

ck.�index.P // 2 H�.B�.S2
n /IQ/;
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given as ck.r/, where r is the right-hand side of (44). The case we are interested in from (38) is the Chern
class ck , where �k C 1 is the numerical index of P . From the constant term in the formula for the Chern
character above, we read

(46) k D
1
2
n� 2�� 1:

So we make the following definition.

Definition 4.2 Given � an odd multiple of 1
4

and given a subset �� � D fp1; : : : ;png of size h, where
h satisfies the parity condition (35), let k be the integer given by (46), and denote by

wk
n;� 2 H�.B�.S2

n /IQ/�An

the element ck.r/, where r is the right-hand side of (44).

To illustrate the general shape of the answers here, we take n D 5. When �D �
1
4

, the value of k is 2.
The parity condition allows the size of � to be 1, 3 or 5, and we have

w2
5;� D

1
2

��
˛C 1

2
.˙ı1 ˙ ı2 ˙ ı3 ˙ ı4 ˙ ı5/

�
2
� ı2

1

�
;

where the sign is C when pi 2 � and � otherwise. When � D
1
4

, the value of k is 1, and the parity
condition allows the size of � to be 0, 2 or 4. We have

w1
5;� D ˛C 1

2
.˙ı1 ˙ ı2 ˙ ı3 ˙ ı4 ˙ ı5/:

Our definition means that, in H�.T IQ/, we have ck.�index P /D '.wk
n;�/, where ' W An ! H�.T IQ/

is the natural map (given, with slight abuse of notation, by ˛ 7! ˛ and ıp 7! ıp).

Corollary 4.3 Let .E;L/! T �S2 be a family of parabolic bundles on S2
n parametrized by T . Let �

and � be given , satisfying the conditions in Definition 4.2, and let T
�

�
� T be the locus defined by (37).

Assume that the corresponding family of Fredholm operators P is transverse to the stratification by the
dimension of the kernel. Then the cohomology class dual to this stratum is given by

PDŒT �

�
�D '.wk

n;�/;

where ' is the natural linear map An ! H�.T IQ/, and k is given in terms of n and � by (46).

Remarks In Definition 4.1, the loci T
�

�
are characterized by the existence of a holomorphic map � WF!E

satisfying additional constraints at the distinguished points �� � . In the language of parabolic bundles,
we can regard F as a line bundle with parabolic structure described by a subsheaf F1 � F such that in a
neighborhood Up of each p 2 � we have

F1jUp
D F jUp

if p 2 �;

F1jUp
D .F ˝OŒ�p�/jUp

if p 62 �:

In these terms, what T
�

�
describes is the existence of a map F ! E of parabolic bundles: ie a map which

respects the filtrations. When regarded as a line bundle with parabolic structure in this way, we shall call
�� � the set of “hits” for F .
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4.2 The Mumford relations

As a consequence of Corollary 4.3, we have the following statement, which is the essential mechanism in
Mumford’s relations. (See the discussion in [1] for the earlier history of such relations.)

Proposition 4.4 Let .E;L/ be a family of parabolic bundles on S2
n parametrized by a space T as in the

previous subsection. Suppose that for every t 2 T the parabolic bundle .Et ;Lt / on S2
n is stable (with

˛ D
1
4

as always). Then for any � and � satisfying the conditions in Definition 4.2, with � < 0, we have

'.wk
n;�/D 0 in H 2k.T IQ/;

where k D
1
2
n � 2� � 1 and ' W H�.B�.S2

n /IQ/ ! H�.T IQ/ is the natural map determined by the
characteristic classes of E and L.

Proof When � < 0, the stratum T
�

�
consists of unstable parabolic bundles, so the hypothesis of the

proposition means that such strata are empty. The transversality condition is then vacuously satisfied and
the result follows from Corollary 4.3.

Proposition 4.5 Let �D�
1
4

and let �� � D fp1; : : : ;png be a subset whose size h satisfies

(47) h D
1
2
.nC 1/ mod 2 and 0 � h � n:

(The first condition is the parity condition (35) for �D�
1
4

.) As in Definition 3.5, let jn be the kernel of
the restriction map to cohomology of the representation variety, H�.Rep.S2

n /IQ/. Then we have

wm
n;� 2 jn

for m D
1
2
.n� 1/. That is , wm

n;� is a relation in the cohomology ring of Rep.S2
n /.

Proof This follows from the previous proposition by specializing to the case �D�
1
4

, because Rep.S2
n /Š

M.S2
n / parametrizes a family of stable parabolic bundles.

Definition 4.6 Let jn � An be again the ideal of relations in the cohomology of Rep.S2
n /. With

m D
1
2
.n� 1/ and �� � a subset whose size h satisfies the parity condition (47), we refer to the relation

wm
n;� 2 jn as a Mumford relation. The collection of all these, as � varies, are the Mumford relations in the

cohomology ring of Rep.S2
n /.

4.3 Explicit formulae

The elements wm
n;� 2 An appearing as the Mumford relations, and more generally the cohomology

classes wk
n;�, have been described using a characterization that does not immediately yield explicit

formulae. In particular, wk
n;� is defined in terms of a Chern class of an index element, while the explicit

formula (44) provides the Chern character in closed form.

As a first step towards a closed formula for wk
n;�, as in [36] for example, and following [37], a formula

for the total Chern class can be derived as the formal series

(48)
1X

kD0

ck.�index.P //D .1Cˇ/i�=2

�
1C ı1

1� ı1

�B�=.2ı1/

;
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where i� and B� are as in (44):

(49) i� D
�

1
2
n� 2�� 2

�
and B� D ˛C

1

2

X
p2�

ıp �
1

2

X
p 62�

ıp:

(See [37] for the interpretation of the right-hand side of this formula.) We can therefore write

(50) wk
n;� D

1

k!

�
dk

dtk

�ˇ̌̌̌
tD0

�
.1C t2ˇ/i�=2

�
1C tı1

1� tı1

�B�=.2ı1/�
:

Note here that i� is minus the numerical index of P , and that in the definition of wk
n;� the integer k is

�index.P /C 1, so we can write

(51) wk
n;� D

1

k!

�
dk

dtk

�ˇ̌̌̌
tD0

�
.1C t2ˇ/.k�1/=2

�
1C tı1

1� tı1

�B�=.2ı1/�
:

The following proposition gives a closed formula for this k th term in the power series.

Proposition 4.7 k!wk
n;� D

k�1Y
jD�kC1

jD�kC1 mod 2

.B� C j ı1/.

Proof Let us write

Ck D k!wk
n;� D

�
dk

dtk

�ˇ̌̌̌
tD0

Gk�1.t/; where Gk�1.t/D .1C t2ˇ/.k�1/=2

�
1C tı

1� tı

�B=.2ı/

;

and we have abbreviated
B D B� and ı D ı1

to streamline the notation.

Let yCk denote the right-hand side in the proposition,

yCk D

k�1Y
jD�kC1

jD�kC1 mod 2

.B C j ı/;

so that what we aim to prove is that Ck and yCk are equal. We shall prove in fact that

(52)
dk

dtk
Gk�1.t/D yCkG�k�1.t/;

which yields the desired equality Ck D yCk on substituting t D 0, since Gl.0/D 1 for all l .

We prove (52) by induction on k: specifically, assuming that (52) holds for k, we prove the result for
k C 2. The seed cases, k D 0; 1, are clear. Note first that yCk satisfies a recurrence relation

(53) yCkC2 D .B2
C .k C 1/2ˇ/ yCk D .B2

� .k C 1/2ı2/ yCk :
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Next we examine the first two derivatives of Gk.t/: by induction on k and using the fact that Gk.t/D

.1C t2ˇ/Gk�2, we obtain the following identity for the first derivative:

(54)
d

dt
Gk.t/D .B � kı2t/Gk�2.t/:

Applying this twice, we obtain an identity for the second derivative:

(55)
d2

dt2
Gk.t/D

�
B2

� kı2
� 2.k � 1/Bı2t C k.k � 1/ı4t2

�
Gk�4.t/:

Using these identities for the first two derivatives, together with the induction hypothesis (52) and the
recurrence relation (53), we compute

dkC2

dtkC2
GkC1.t/

D
dkC2.1�ı2t2/Gk�1.t/

dtkC2

D .1�ı2t2/
dkC2Gk�1.t/

dtkC2
�2.kC2/ı2t

dkC1Gk�1.t/

dtkC1
�.kC2/.kC1/ı2 dkGk�1.t/

dtk

D

�
.1�ı2t2/

d2

dt2
�2.kC2/ı2t

d

dt
�.kC2/.kC1/ı2

�
dkGk�1.t/

dtk

D

�
.1�ı2t2/

d2

dt2
�2.kC2/ı2t

d

dt
�.kC2/.kC1/ı2

�
yCkG�k�1.t/

D
�
.B2

Cı2.kC1/C2.kC2/Bı2tC.kC1/.kC2/ı4t2/�2.kC2/ı2t.BC.kC1/ı2t/

�.kC2/.kC1/ı2.1�ı2t2/
�
yCkG�k�3.t/

D .B2
�.kC1/2ı2/ yCkG�k�3.t/D yCkC2G�k�3.t/;

as required.

4.4 The Mumford relations as generators of the ideal

In [32], a presentation of the cohomology ring of Rep.S2
n / is given by exhibiting a complete set of

generators for the ideal of relations jn � An, all of which have degree m D
1
2
.n� 1/. We now show that

the elements wm
n;� also generate the ideal, by relating them to the generators in [32].

Remark The statement that the elements ws
n;�, for s �m, generate the ideal is a counterpart of Kirwan’s

result [14] in the case of a (nonorbifold) surface of genus g. Kirwan’s result was strengthened by
Kiem [12], who showed that the relations in the middle dimension (ie the case s D m in our context) are
sufficient. The results of [14] were extended to the case of parabolic bundles on surfaces of genus g � 2

with one marked point by Earl and Kirwan [8].
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Proposition 4.8 Fix n � 3 odd , and write n D 2mC 1. Then as � runs through all subsets of � whose
size h D j�j satisfies the parity condition (47), the elements wm

n;� 2 An form a set of generators of the
ideal jn. That is , the elements wm

n;� form a complete set of relations for the cohomology of Rep.S2
n / as a

quotient of the algebra An.

Proof From the results of [32], in the ideal jn, there is an element rm that has degree m and belongs
to the subalgebra QŒ˛; ˇ�� An, where ˇ D�ı2

p . The element rm is unique up to scale. According to
[32, Corollary 1.6.2], the ideal jn is generated by the elements

Rm
� D rm�j�j.˛; ˇ/

Y
p2�

ıp;

where � runs through all subsets of � of size 0 � j�j � m. These elements all have degree m.

As we vary �, we obtain 2n�1 expressions wm
n;�, all of which are elements of jn of degree m. Because m

is the lowest degree in which relations exist, each wm
n;� is a Q-linear combination of the generators Rm

�
.

The number of generators Rm
�

is also 2n�1; so in order to see that the elements wm
n;� generate the ideal jn,

it will be enough if we show that they are linearly independent over Q.

The fact that the elements wm
n;� are linearly independent can be deduced through a direct examination of

the formulae which define it, as follows. Let us specialize the formulae by setting ˇ D 0, in which case
the expression (48) for the total Chern class of �index.P / simplifies to

.1C 2ı1/
B�=.2ı1/

D exp B�

because ı2
1
D 0. The element wm

n;� therefore specializes to Bm
� =m!, or if we further specialize by setting

˛ D 1, to
1

m!

�
1C

X
p

�pıp

�m

;

where �p D 1 for p 2 � and �p D�1 otherwise. We can expand this asX
j�j�m

C�;�

�Y
p2�

ıp

�
;

where the rational coefficient C�;� is given by

C�;� D
1

.m� j�j/!

�Y
p2�

�p

�
:

We wish to see that the matrix C D .C�;�/, which is square of size 2n�1, is nonsingular. To do this, we
compute the dot product of the columns of C corresponding to different subsets �1 and �2. For fixed �
we have

C�;�1
C�;�2

D
1�

m� j�1j
�
!
�
m� j�2j

�
!
�

�
C1 if j�\ .�1 	 �2/cj is even,
�1 if j�\ .�1 	 �2/cj is odd,

where the superscript c denotes the complement and 	 means the symmetric difference. Since �1 and �2
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are distinct subsets of size strictly less than n=2, their symmetric difference is a nonempty proper subset
of � . The number of subsets � of a given parity for which the intersection is even and the number for
which it is odd are therefore equal, and we see thatX

�

C�;�1
C�;�2

D 0:

The columns are therefore orthogonal, showing that the square matrix C is nonsingular, as required.

Remarks An alternative verification of the linear independence of the elements wm
n;�, not depending on

an examination of the formula, will be seen later, in the remarks at the end of Section 5.4.

5 Relations in instanton homology

5.1 Deforming the Mumford relation with instanton terms

The element wm
n;� 2 jn in Proposition 4.5 is a relation in the ordinary cohomology ring H�.Rep.S2

n /IQ/.
Via its description in terms of the multiplicative generators ˛ and ıp, as an explicit element of the ring

QŒ˛; ı1; : : : ; ın�=hı
2
i � ı2

j ii;j ;

we may regard wm
n;� also as an element of the ideal Jn �An of Proposition 3.6, where it is a relation in

the ordinary cohomology ring H�.Rep.Zn/IR/. As � varies over all subsets of � satisfying the parity
condition, the elements wm

n;� 2 Jn form a set of generators of the ideal, as follows immediately from the
corresponding statement for Rep.S2

n / (Proposition 4.8).

The following proposition promotes wm
n;� to a relation between the corresponding operators on the

instanton homology I.Zn/ by adding terms of lower degree. Recall that Jn �An is the annihilator of
I.Zn/ as an An-module.

Proposition 5.1 Let n be odd and let �� � be a subset whose size h satisfies the parity condition (47).
Write m D

1
2
.n� 1/ and let wm

n;� 2 jn � Jn be as in Proposition 4.5, regarded as a relation in the ordinary
cohomology of the representation variety Rep.Zn/. Then there is a unique element W m

� 2 Jn � An in
filtration degree m whose leading term is wm

n;�:

W m
� D wm

n;� .mod A.m�1/
n /:

As � varies over all subsets satisfying the parity condition , these elements W m
� form a set of generators

for the ideal of relations Jn.

Remark Our notation for W m
� does not include n, since n is always related to m in this context by

n D 2mC 1.
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Proof of Proposition 5.1 Corollary 3.16 gives the existence of W m
� 2 Jn with leading term wm

n;�. The
uniqueness assertion is a consequence of Proposition 3.7. The fact that these are a complete set of
generators for the ideal follows from the corresponding statement for the elements wm

n;� 2 Jn together
with the fact that An=Jn and An=Jn are free modules of the same rank, because they are respectively the
ordinary homology of Rep.Zn/ and the instanton homology of Zn (Proposition 3.8).

We aim to give an algorithm for computing W m
� as a deformation of wm

n;�, and our first main step will be
to determine the subleading term. That is, Corollary 3.16 provides the existence of w.1/ with

W m
� D wm

n;� C �w.1/ .mod A.m�2/
n /;

and we wish to determine w.1/.

Proposition 5.2 The subleading term of W m
� is given by ��n�2hwm�1

n;�0 , where �0 is the complement
� n � and h D j�j, so

W m
� D wm

n;� C ��
n�2hwm�1

n;�0 .mod A.m�2/
n /:

The proof of this proposition will require some preparation. To understand how to characterize the
subleading term �w.1/, we draw on the mechanism behind Proposition 3.14 and Corollary 3.16. Let 1C

again be the standard cyclic generator of I.Zn/ from Proposition 3.9, and let 1� D z�1C. Let ƒ be the
R-module isomorphism in Proposition 3.14, and let 1˙ Dƒ.1˙/ 2 H�.Rep.Zn/IR/. Then w.1/ is a
homogeneous polynomial of degree m� 1 in ˛ and the ıp, with coefficients in R, such that

ƒ.wm
n;�1�/�w

m
n;�1� D w.1/1C mod

M
k�2.m�2/

H k.Rep.Zn/IR/:

(The right-hand side is the .m� 2/th step of the increasing filtration of H�.Rep.ZnIR/.)
Recall next we have an expansion of the operator z̨ according to the action � 2

1
4
Z, as in (25) and

Proposition 3.14. There is a similar expansion of each zıp. This gives a �-expansion of any monomial
in z̨ and the zıp , and therefore of the multiplication operator of any u 2An acting on I.Zn/. That is, we
may write

u� D
X

�2
1
4

Z

u�� �:

This description is set up so that if u 2An is in grading k and ƒ.�/ 2 H 2l.Rep.Zn/IR/, then

ƒ.u�� �/ 2 H 2.lCk/�8�.Rep.Zn/IR/:

The description of w.1/ then becomes

(56) w.1/1C Dƒ.wm
n;� �1=4 1�/:

Computation of w.1/ in this form therefore depends directly on understanding the instantons on the
cylinder R�Zn with action 1

4
. We address this calculation in the following subsection, where the proof

of Proposition 5.2 will be completed.
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5.2 Characterizing the subleading term

From the discussion above, we are interested in the moduli space M�.R�Zn/ of anti-self-dual bifold
SU.2/ connections on the cylinder, particularly for � D 1

4
. By attaching a copy of the bifold D2 �S2

n to
each of the two ends, we form from the cylinder a compact bifold

X D S2
�S2

n :

For clarity in distinguishing the two factors here, we will write

X D B �C;

where B is S2 and C is the bifold S2
n . We write M�.X / for the moduli space of anti-self-dual SU.2/

connections on the bifold X , with action �, and we write M e
� .X / for the moduli space corresponding

to w2 D Œe�, where Œe� D fbg � C . The moduli spaces depend, of course, on a choice of conformal
structure on X . The moduli space M�.X / is nonempty only if � 2 1

2
Z, while M e

� .X / is nonempty only
if � 2 1

2
ZC

1
4

. The moduli spaces have formal dimension

d.�/D 8�C 2n� 6:

For any element u 2An of degree d.�/=2 in the variables ˛ and ıi , we can seek to evaluate a Donaldson
polynomial invariant by evaluating the corresponding cohomology class on M�.X / or M e

� .X /. Because
we are working with local coefficients � , our Donaldson invariants should also involve R-valued weights.
By the formula (2), the local system � defines a locally constant function

(57) � W M�.X /!R�;

and so the moduli spaces are a collection of oriented, weighted manifolds.

However, the bifold X has bC

2
D 1, so the appearance of reducibles in one-parameter families means

that the Donaldson invariant depends on a choice of chamber in the space of Riemannian metrics on X .
We consider a product metric in which the area of B is very large compared to the area of C , and we
call this the B-chamber. (This means that the self-dual 2-form for the Riemannian metric on X is nearly
Poincaré dual to a multiple of PDŒC �.) Similarly there is a distinguished chamber, the C -chamber, in
which the area of C is very large compared to B. There is then a well-defined Donaldson invariant qB

� in
the B-chamber,

u 7! qB
� .X Iu/; An !R;

calculated using either the moduli space M�.X / or the moduli space M e
� .X /, depending on whether 4�

is even or odd respectively. Our notation again makes no explicit mention of the local coefficient system,
but the contributions of the various components of the moduli spaces are to be weighted by the locally
constant function (57).

These Donaldson invariants of X are related to the action of u on I.Zn/ by a gluing argument, because
of the description of X as the union of the cylinder Œ�1; 1� � Zn and the two copies of D2 � S2

n .
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More specifically, let 1C 2 I.Zn/ be once more the cyclic generator obtained as the relative invariant of
the manifold D2 �S2

n , and let 1|
C be the element of the instanton cohomology group I�.Zn/ obtained

by regarding D2 �Zn as a manifold with boundary �Zn. Then for � 2 1
2
Z and u 2AC

n , we can write

qB
� .X Iu/D hu�� 1C; 1

|
Ci;

where the pairing on the right is the R-valued pairing between I.Zn/ and I�.Zn/. For �2 1
4
C

1
2
Z, we have

qB
� .X I �u/D hu�� 1C; 1

|
�i:

From this relationship and Poincaré duality, it follows that (56) is equivalent to

(58) qB
1=4.w.0/v/D qB

0 .�w.1/v/

for all v 2An of degree

deg.v/D 1
2
d
�

1
4

�
� deg.w.0//D n� 2�m D m� 1;

where n D 2mC 1 as usual.

The situation is somewhat simplified now because the moduli spaces M0.X / and M e
1=4
.X / are compact.

This is because noncompactness of the moduli space arises only from bubbling, and bubbles decrease � by
multiples of 1

2
. So for � � 1

4
, the Donaldson invariants are simply evaluations on ŒM�.X /� or ŒM e

� .X /� of
ordinary cohomology classes in H�.B�.X /IR/, weighted by the function locally constant (57). We will
write Œ� �M�.X /� and Œ� �M e

� .X /� for these weighted fundamental classes, as elements of the ordinary
homology H�.B�.X /IR/.

Via the relationship between An and H�.B�.Zn/IR/, we have an inclusion

An ,! H�.B�.X /IR/:

The relation (58) can therefore be stated in terms of ordinary pairings, between these cohomology classes
and the fundamental classes of the moduli spaces:

hw.0/v; Œ� �M e
1=4.X /�i D hw.1/v; Œ� �M0.X /�i:

The assertion in Proposition 5.2 concerning the value of the subleading term w.1/ can therefore be restated
as the following proposition.

Proposition 5.3 Let n D 2mC 1 as usual let v 2An be any element of degree m� 1. Let wk
n;� 2An be

the explicit polynomials described in Definition 4.2. Then we have

hwm
n;�v; Œ� �M e

1=4.X /�i D h�n�2j�jwm�1
n;�0 v; Œ� �M0.X /�i;

where the (compact) moduli space M e
1=4
.X / is computed using a metric on X in the B-chamber , and

M0.X / is the moduli space of flat bifold connections , a copy of Rep.S2
n /.

The proof of Proposition 5.3 is given in Section 5.4, after a digression on the wall-crossing behavior of
moduli spaces on X .
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5.3 A wall-crossing argument

The structure of our argument up to this point is closely related to the work of Muñoz [27], in which a key
step is the calculation of the contribution of the first nonflat moduli space (our M e

1=4
.X / in the present

context). In [27], the relevant moduli space was of the form M e
1=2
.S2 �†g/ for a smooth surface †g,

and the key observation is that this moduli space is empty in one chamber (when the area of the S2

factor is small, corresponding to the C -chamber in our notation) and undergoes a single wall-crossing
where the metric passes to the B-chamber. (See [27, Proposition 2].) The description of the wall-crossing
for S2 �†g leads to a description of the moduli space on the B side of the wall as a bundle over the
Jacobian J.†g/ with fiber a complex projective space.

Such a description has an exact parallel in our orbifold context, with the Jacobian J.†g/ in Muñoz’s
situation replaced now by the finite set of bifold line bundles on S2

n of a fixed bifold degree. That is, the
wall-crossing contributes to M e

1=4
.X / a finite number of copies of a complex projective space, where an

explicit understanding of the cohomology classes allows a calculation of the Donaldson invariant. We
now turn to the details of this calculation.

Lemma 5.4 In the C -chamber , the Donaldson invariants qC
� .u/ are zero when � is in 1

4
C

1
2
Z.

Proof The bifold X decomposes into two parts along a copy of B �S1 � B �C , ie an S2 �S1. The
bundle has w2 nonzero on this S2 �S1 when � is in 1

2
ZC

1
4

, so there are no flat connections on B �S1.
A stretching argument therefore shows that the anti-self-dual moduli space is empty when the metric
on X contains a long neck Œ�T;T ��B �S1. A metric with such a long neck lies in the C -chamber, so
the invariant in this chamber is zero.

Lemma 5.5 For the moduli spaces M e
� .X / with � � 1

4
, in a 1-parameter family of product metrics on

X D B �C passing from the C -chamber to the B-chamber , exactly one wall is crossed.

Proof The only nonempty moduli space M e
� .X / with � � 1

4
is the moduli space M e

1=4
.X /, and a wall

is crossed when the Riemannian metric allows the existence of a reducible anti-self-dual connection in
this moduli space. We are therefore looking for a reduction of the bifold adjoint SO.3/ bundle as R˚K,
where K is a bifold 2-plane bundle. Let us write the bifold Euler class eul.K/ as

PD eul.K/D xŒB�CyŒC �:

Here y is an odd integer because eul.K/ŒB� is odd. On the curve C , the bundle K has n bifold points,
and n is odd; so 2x is also an odd integer. For a given Riemannian metric, let us write the class of the
self-dual 2-form as

PDŒ!C�D ŒB�C t ŒC �;

suitably normalized. The condition that the curvature of K is anti-self-dual imposes the constraint that
eul.K/ and Œ!C� are orthogonal, which is to say

y D�tx:

Geometry & Topology, Volume 29 (2025)



2012 Peter B Kronheimer and Tomasz S Mrowka

The action � is �eul.K/2=4 which is �xy=2. Using the orthogonality condition, we write this as
� D tx2=2. With � D 1

4
, our constraints therefore become

(i) tx and 2x are odd integers, and

(ii) tx2 D
1
2

.

These constraints force x D˙
1
2

and t D 2. The orientation of K is indeterminate, and the sign of x can
therefore be taken to be positive. A path of Riemannian metrics passing from the C chamber to the B

chamber is a path in which t begins close to 0 and ends close to C1, and the wall is crossed at t D 2.

The proof the lemma shows that the wall-crossing occurs when there is an orbifold 2-plane bundle K with

PD eul.K/D 1
2
ŒB�� ŒC �:

The degree of K on C D S2
n is thus 1

2
. In terms of an SU.2/ lift on the curve fbg�C then, we can write

the bundle as
F ˚F�1;

where F is a complex line bundle with limiting holonomy ˙i on the linking circles at the n singular points.
We orient K as F�2. The Chern–Weil integral for the first Chern class of the singular connection on F

is �1
4

. As a parabolic bundle on S2
n we can write the underlying rank-2 vector bundle as E D F ˚F�1,

and for each p 2 � the distinguished line Lp � Ep is the summand Fp if the limiting holonomy is �i ,
and F�1

p otherwise. Write � � � for the set where the holonomy is �i . Then

c1.F/ŒC �C 1
4
j�j � 1

4
.n� j�j/D�

1
4
:

This constraint imposes the parity condition j�j D 1
2
.n� 1/ mod 2, which allows 2n�1 possibilities for � .

We summarize this with another lemma.

Lemma 5.6 When the Riemannian metric on X D B �C lies on the wall between the two chambers , the
moduli space M e

� .X / consists of 2n�1 reducible anti-self-dual connections , corresponding to the subsets
� � � whose size j�j has the same parity as 1

2
.n� 1/.

Let A0 denote any one of the reducible connections described in the lemma. The formal dimension of the
moduli space M e

1=4
.X / is 2n� 4. If we write the orbifold adjoint bundle as R˚K now on the whole

of X , then in the deformation theory of A0 we have a contribution of 1 to the dimension of H 0
A0

coming
from the R summand because A0 is reducible, and there is a similar contribution of 1 to the dimension
of H 2

A0
from the R summand because bC

2
D 1. If we assume that the deformation theory is otherwise

unobstructed (an assumption which we will see later is justified for product metrics on B �C , without
the need for perturbing the equations), then it follows that H 1

A0
has dimension 2n� 2 and that this comes

from the K summand of the adjoint bundle. With this in place, the standard model for wall-crossing
describes the moduli space M e

1=4
.X Igt / for a Riemannian metric gt whose conformal parameter t is

2C � for small � as a copy of CPn�2 in a neighborhood of each reducible A0. We therefore have the
following proposition.
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Proposition 5.7 For a product metric on X which lies in the B-chamber and is close to the wall , the
moduli space M e

1=4
.X / consists of 2n�1 copies of CPn�2.

As mentioned earlier, this is a close counterpart to the result [27, Proposition 2], where the corresponding
description of the moduli space of smallest positive action is a bundle of projective spaces over the
Jacobian of a smooth curve.

5.4 A proof of Proposition 5.3

From their definition, wm
n;� and wm�1

n;�0 represent cohomology classes dual to loci U
�

�1=4
and U

�0

1=4
in the

space of bifold connections B�.S2
n /. If we select a fiber

fb0g �S2
n � B �S2

n D X;

then we obtain by restriction corresponding loci in the spaces of bifold connections on X :

U
�

�1=4
.b0/� B�.X /e; U

�0

1=4
.b0/� B�.X /:

In this way we can interpret the equality to be proved in Proposition 5.3 as

(59) hv; Œ� �M e
1=4.X /\U

�

�1=4
.b0/�i D �n�2j�j

hv; Œ� �M0.X /\U
�0

1=4
.b0/�i;

provided that the loci are transverse to the filtration of the space of Fredholm operators by the dimension
of the kernel. The moduli spaces on X should be obtained from metrics in the B-chamber as always.

We can obtain more information about M e
1=4
.X / and the loci on both sides of (59) by interpreting the

moduli space of bifold anti-self-dual connections as a moduli space of stable parabolic bundles on the
pair .X; †/ where † is the singular locus B � � � X . To this end, we adopt the notation and results
of [18] to identify M e

1=4
.X / with the moduli space of parabolic bundles .E ;L/ with � D 1

4
satisfying the

parabolic stability condition with parameter ˛ D
1
4

. Here we can write � as k C l=2 following [17; 18],
where in this case

(60) k D
�
c2.E/� 1

4
c1.E/2

�
ŒX �; l D

�
1
2
c1.E/� c1.L/

�
Œ†�:

(The quantities k and l are the “instanton number” and “monopole number” in the notation of [17].) The
rank-2 bundle E should have c1.E/ŒB� odd, so we take

ƒ2.E/DO.1; 0/;

by which we mean the holomorphic line bundle with degree 1 on B. The moduli space M0.X / is similarly
a moduli space of stable parabolic bundles on X , now with ƒ2.E/DO and � D 0. These bundles are the
pullbacks of the stable parabolic bundles on the curve C D S2

n .

The loci on either side of (59) have the following interpretations. Let F ! C be the parabolic line bundle
whose set of hits is � and whose parabolic degree is par-degF D

1
4

. (See the remarks at the end of
Section 4.1.) The dual parabolic bundle F� has parabolic degree �

1
4

and its set of hits is �0 D � n �.
Given a stable parabolic bundle E on X , let Eb be the parabolic bundle obtained by restriction to fbg�C .
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Lemma 5.8 Let F be the parabolic line bundle described above and F� its dual. Then:

(i) The locus M e
1=4
.X /\U

�

�1=4
.b0/ is the locus of stable parabolic bundles E 2 M e

1=4
.X / such that

there exists a nonzero holomorphic map of parabolic bundles

F ! Eb0
:

(ii) The locus M0.X /\U
�0

1=4
.b0/ is the locus of stable parabolic bundles E 2 M0.X / such that there

exists a nonzero holomorphic map of parabolic bundles

F�
! Eb0

:

Proof These statements follow directly from the definitions.

Going beyond the above lemma, we have the following constructions for the relevant bundles.

Lemma 5.9 (i) The locus M e
1=4
.X /\ U

�

�1=4
.b0/ consists of parabolic bundles E ! X D B � C

which are nonsplit extensions

O.1/�F�
! E ! F

such that the extension class vanishes on fb0g �C .

(ii) The locus M0.X /\ U
�0

1=4
.b0/ is the locus of parabolic bundles E 2 M0.X / which are nonsplit

extensions
F�

! E ! F :
In both cases , all bundles obtained as such extensions are stable in the B-chamber on X .

Proof In (ii), the bundles in M0.X / are pulled from the stable parabolic bundles on C , and the existence
of a nonzero map of parabolic bundles � W F� ! E is the definition of the locus U

�0

1=4
. The map � must

be an inclusion of a parabolic line subbundle, for otherwise this map would destabilize E . So E is an
extension of parabolic line bundles as described. The extension must be nonsplit, for otherwise E is
destabilized by �.

For (i), the first task is to verify that every stable parabolic bundle in M e
1=4
.X / in the B-chamber is a

nonsplit extension

(61) O.1/�G�
! E ! G;

where par-degG D�
1
4

and the set of hits for G is a subset � � � which is arbitrary, except for the parity
constraint (35). There are 2n�1 choices for � , and once � is given, the nonsplit extensions are parametrized
by a projective space, in this case of dimension n�2. In this way we find 2n�1 copies of CPn�2 in M e

1=4
,

and it is straightforward to see that these are disjoint, because a given bundle E cannot be presented as an
extension of this sort in two different ways. The verification that these 2n�1 copies of CPn�2 comprise
the entire moduli space M e

1=4
.X / in the B-chamber is the holomorphic analog of wall-crossing result

described in Proposition 5.7, and it is proved in essentially the same way. This is also the content of
[27, Proposition 2] in the slightly different context of that paper, which serves the same purpose there.
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For an extension such as (61), the restriction to fb0g �C is an extension of parabolic line bundles on C ,

G�
! Eb0

! G;

and because par-deg.F/D par-deg.G/ > par-deg.G�/, there can be a nonzero map F ! Eb0
only if F D G

and the extension class is zero on fb0g �C .

The extensions that arise in (ii) are parametrized by the projective space

(62) P
�
H 1.C I .F�/˝2/

�
;

where the cohomology group is interpreted as the cohomology of a sheaf on a bifold. The extensions that
arise in (i) are parametrized by the subset of the projective space

P
�
H 0.BIO.1//˝H 1.C I .F�/˝2/

�
corresponding to elements vanishing at b0. If Zb0

� H 0.BIO.1// is the one-dimensional space of
sections vanishing at b0, then this is the space

P
�
Zb0

˝H 1.C I .F�/˝2/
�
;

which is canonically identified with (62). Both spaces of extensions are copies of CPm�1.

We have now seen that there is a canonical identification of the two loci,

M e
1=4.X /\U

�

�1=4
.b0/D M0.X /\U

�0

1=4
.b0/;

both of which are projective spaces. Furthermore, for any b¤b0 in B, the restrictions of the corresponding
bundles in these loci to fbg �C agree. Indeed they are the same family of nonsplit extensions of F by
F� on C . The cohomology classes v arising from elements of the algebra An can be regarded as being
pulled back via the restriction to fbg�C , so it follows that the evaluation of such a class v is the same in
the two cases.

Before accounting for the weights arising from the local system � , we therefore have an equality

(63) hv; ŒM e
1=4.X /\U

�

�1=4
.b0/�i D hv; ŒM0.X /\U

�0

1=4
.b0/�i:

However, while M e
1=4
.X / \ U

�

�1=4
.b0/ and M0.X / \ U

�0

1=4
.b0/ are both copies of CPm�1 and are

canonically identified, the (constant) functions

� W M e
1=4.X /\U

�

�1=4
.b0/!R and � W M0.X /\U

�0

1=4
.b0/!R

are different. The next lemma provides these values.

Lemma 5.10 (i) On M0.X /\U
�0

1=4
.b0/, the value of � is 1.

(ii) On M e
1=4
.X /\U

�

�1=4
.b0/, the value of � is �n�2j�j.

Proof The singular set † � X is a collection of spheres with trivial normal bundle, so there is no
self-intersection term in the formula (2), and we simply have

�.A/D ��.A/;
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where �.A/ is a 2-dimensional Chern–Weil integral on †. In the case of M0.X /, the connections are flat
and �.A/D 0. So � D 1 in this case, as stated in the first item of the lemma.

In the case of a closed manifold, the value �.A/ is �2l , where l is the “monopole number” of the
bundle (60). The bundles that contribute to the moduli space M1=4.X /

e \U
�

�1=4
.b0/ are described in

Lemma 5.9. From there we read off that c1.E/Œ†p �D 1 for each of the n components †p �†, so that
c1.E/Œ†� D n. For p 2 �0, the distinguished line subbundle L � Ej†p

coincides with the image of the
subbundle O.1/�F� on †p , which has degree 1. For p 2 �, the distinguished line subbundle L on †p

maps isomorphically to the restriction of F in the extension in Lemma 5.9, so has degree 0. In all then,

c1.L/Œ†�D j�0j:

The formula for the monopole number l in (60) therefore gives .n=2/� j�0j, which is j�j � .n=2/. Since
�.A/D�2l , we have �.A/D n� 2j�j, as the lemma claims.

From the lemma, we see that

Œ� �M e
1=4.X /\U

�

�1=4
.b0/�D �n�2hŒM e

1=4.X /\U
�

�1=4
.b0/�;

while
Œ� �M0.X /\U

�0

1=4
.b0/�D ŒM0.X /\U

�0

1=4
.b0/�:

The equality to be proved in Proposition 5.3 now follows from the unweighted equality (63), and this
completes the proof of the proposition.

Remark In the course of these arguments, we have seen first that M e
1=4
.X / is a disjoint union of

2n�1 copies of CPn�2 and second that the class wm
n;� restricts to be nonzero on exactly one of them,

being dual to a CPm�1 in exactly one of the copies of CPn�1. The components CPn�2 of M e
1=4
.X / are

in one-to-one correspondence with the subsets �� � of the correct parity, so let us write them as CPn�2
� .

If we choose a class v which has nonzero pairing (say 1) with each CPm�1 � CPn�2
� , then we have

hwm
n;� Y v; ŒCPn�2

� �i D

�
1 if �D �;

0 otherwise,
from which it follows that the classes wm

n;� are linearly independent in An. This provides an alternative
verification of the result used in the proof of Proposition 4.8.

5.5 Changing the orientation of the singular set

Recall that in defining the bifold Zn we gave a standard orientation to the n circles comprising the singular
set Kn. Let Z�

n denote the same bifold but with some of the circles of Kn equipped with the opposite
orientation. Let f be the number of search circles. The construction of the operators ıp depends on an
orientation of the singular set at p, so in a straightforward way the corresponding operators ı�p on I.Z�

n /

differ in sign from the operators ıp if we define ı�p using the new orientations. But there is also a more
subtle way in which the module structures differ.
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Both I.Zn/ and I.Z�
n / are An-modules by our constructions. Let us continue to denote by ˛, ıp and �

the operators on I.Zn/, and let us denote by ˛�, ı�p and �� the operators which define the An-module
structure of I.Z�

n /.

Proposition 5.11 There is an identification of the R-modules I.Z�
n / and I.Zn/ which is canonical up to

overall sign-change. Under either one of this canonical pairs of identifications , the operators ˛� etc on
I.Z�

n / are related to the operators on I.Zn/ by:

(i) ˛� D ˛;

(ii) ı�p D˙ıp, according to whether or not the corresponding circles of Kn have the standard orientation
in Z�

n ;

(iii) �� D .�1/f �, where f as above is the number of circles which have the nonstandard orientation.

Proof First let us recall that the SU.2/ instanton moduli spaces Mk.X / for a closed Riemannian
manifold X are orientable and are oriented by a choice of an element from a 2-element set ƒ.X /, which
can be identified with the set of homology orientations of X . In the case of a closed bifold with orientable
singular set, if we regard the moduli space as the space of singular SU.2/ connections Mk;l.X; †/ in the
sense of [17; 18] and [20], then an element of the 2-element orientation set ƒ.X; †/ can be specified by
a choice of homology orientation of X together with an orientation of †. Changing the orientation of †
changes the sign of the element of ƒ.X; †/ by .�1/�=2, where � is the Euler number. (See [18].) To
briefly explain why this is so, the conventions of [18] identify the difference between ƒ.X / and ƒ.X; †/
as the set ƒ.†/ of orientations of the real determinant line of the index of the x@ operator on † coupled to
a line bundle of degree 2l . The index of the x@ operator is 2l ��.†/=2. Changing the orientation of †
changes the index element to its complex conjugate and therefore changes the orientation of the real
determinant line by .�1/2l��=2 D .�1/�=2. A similar formula holds if the orientation of † is changed
only on certain components.

In the case that .X; †/ is a product S1 � .Y;K/, there is a canonical homology orientation for X and the
components of † are tori; so there is a canonical element of ƒ.X; †/ in this case, independent of the
orientation of the components of †.

Continuing with the closed case, we consider next the moduli space Mk;l.X; †/
e corresponding to an

SO.3/ bundle whose w2 has an integer lift e. As usual the gauge group is the determinant-1 gauge group.
In the absence of †, the orientation set ƒ.X /e is still canonically identified with the set of homology
orientations of X , as in [6]. The difference between ƒ.X /e and ƒ.X; †/e is again identified with the
real determinant line of the same x@ operator. The difference now however is that the monopole number l

is in 1
2
CZ on any component of † having odd pairing with e. Changing the orientation of a component

†1 �† therefore changes the orientation element in ƒ.X; †/e by .�1/g.†1/�1 if e has even pairing with
†1 and by .�1/g.†1/ if the pairing is odd. In the special case that .X; †/D S1 � .Y;K/, an orientation
of the moduli spaces M.X; †/e therefore depends on the orientation of the components of the singular
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set if and only if they have odd pairing with e. If the pairings are even, all orientations of moduli spaces
are canonical and do not depend on the orientation of the singular set.

To apply these observations to the instanton homology, we recall the standard approach to orientations
in Floer homology, described for example in [20, Section 3.6]. Let B� denote the space of irreducible
singular SU.2/ connections on the bifold .Y;K/. To each pair of points a; b 2 B� and each path �
joining them, we may associate a 2-element set ƒ�.a; b/ as the set of orientations of the determinant
line of a Fredholm operator P .a; b/, in such a way that ƒ�.a; b/ orients the moduli space of trajectories
if a and b are nondegenerate critical points. If �1 and �2 are two different paths, then ƒ�1

.a; b/ and
ƒ�2

.a; b/ are canonically identified, because their difference can be identified with ƒ.X; †/, where
.X; †/DS1�.Y;K/. We can therefore define ƒ.a; b/ without issue. No orientation of K is needed here.

Given a basepoint � in B�, one may then define ƒ.a/D ƒ.a; �/ for all a. The chain complex for the
singular instanton homology with local coefficients � is thenM

a

.Zƒ.a//˝�a;

where the sum is over perturbed flat connections in a Morse perturbation of the Chern–Simons functional.
Two different choices of basepoints � and � 0 will give rise to complexes which are identified up to an overall
factor of �1: that ambiguity is a choice of element from ƒ.�; � 0/. A canonical choice of basepoint is pos-
sible when K is oriented, as described in [20], making I.Y;K/ well-defined up to canonical isomorphism.
The modules I.Zn/ and I.Z0

n/ are identified only up to overall sign, because the basepoints are different.

The remaining interesting point is the final assertion of the proposition. To determine the sign of the
matrix entries of the endomorphism � between critical points a and b, one uses the canonical orientation
of the product

Zƒ.a; b/e ˝ Zƒ.a/ ˝ Zƒ.b/:

Orienting this product is equivalent to orienting the moduli spaces M.X; †/e for the product .X; †/D
S1 � .Y;K/. We have described above how these moduli spaces are canonically oriented once one has
an orientation of the components of † (which are tori). Here the class e has pairing 1 with each of
the components. So changing the orientation of any component changes the canonical orientation of
M.X; †/e and changes the sign of all the matrix entries of �.

5.6 Passing to Zn;�1

Recall that the algebra xA is defined as the quotient of An in which all the ıi are equal (see equation (32)),
and let wk

n;� 2 An be the elements from Definition 4.2. The image of wk
n;� in xA depends only on the

cardinality of the subset �� � , not otherwise on its elements, and we write this element of xA as

(64) xwk
n;h D wk

n;� Chıi � ıj ii;j 2 xA

when j�j D h. Recall from (33) that we can write I.Zn;�1/ as An=Jn;�1 or as xA= xJn;�1 and that Jn;�1

contains Jn (Proposition 3.22). Propositions 5.1 and 5.2 therefore yield the following version for Zn;�1.
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Proposition 5.12 Write n D 2mC 1, let h be an integer satisfying the conditions (47), and let xwm
n;h

be
defined as above. Then there is an element W m

h
2 xJn;�1 of the filtered algebra xA in filtration degree m

whose leading term is xwm
n;h

. The subleading term of W m
h

is given by ��n�2h xwm�1
n;h0 , where h0 D n� h.

Thus
W m

h D xwm
n;h C ��

n�2h
xwm�1

n;h0 .mod xA.m�2//:

The element W m
h

in xA is the image of W m
� 2 Jn under the quotient map An ! xA.

We have not yet established that xJn;�1 is the image of Jn, so we do not know yet that the elements W m
h

generate the ideal of relations xJn;�1 for I.Zn;�1/. We turn to this next.

Proposition 5.13 When n D 2mC 1, the elements W m
h

for h in the range 0 � h � n with h D
1
2
.nC 1/

mod 2 are a set of generators for the ideal xJn;�1 � xA. In particular , xJn;�1 is the image of Jn in xA.

Proof The quotient xA= xJn;�1 is I.Zn;�1/ which we know to be a free R-module of rank 1
4
.n2 � 1/

by Corollary 3.19. If J 0 � xJn;�1 denotes the ideal generated by the elements W m
h

, then the desired
equality J 0 D xJn;�1 will follow if we can prove that xA=J 0 has the same rank. The leading mth-degree
terms of the elements W m

h
are the elements xwm

n;h
, so let us denote by xJn � xA the ideal generated by these

leading terms. (This is the image in xA of the ideal of relations Jn �An for the ordinary cohomology ring
H�.Rep.Zn/IR/ in (20).) It will therefore suffice to show that A= xJn has rank 1

4
.n2 � 1/, and this is the

content of the lemma below, which completes the proof.

Lemma 5.14 Write n D 2m C 1 again and let xJn � xA be as above , generated by the elements xwm
n;h

.
Then xJn is the mth power h˛; ıim of the ideal h˛; ıi. In particular , the rank of xA= xJn is m.mC 1/, which
is also equal to 1

4
.n2 � 1/.

Remark The quotient of a polynomial algebra in two variables by the mth power of the maximal ideal
at 0 has rank 1

2
m.mC 1/. The extra factor of two in the lemma arises because of the extra generator � in

the algebra xA.

Proof Recall that wm
n;� arises from the formal computation of cm.�index.P //, where P is a family of

Fredholm operators, Definition 4.2. The formula (44) for the Chern character of �index.P / becomes the
following, after passing to the formal completion of the quotient ring xA in which all the ıi are equal:

(65) .m� 1/ cosh.ı/C
sinh.ı/
ı

�
˛C

�
h�

1
2
n
�
ı
�
:

Passing from the Chern character to the mth Chern class, we find that the image of cm.�index.P // in xA
has the form

Vm.Bh; ı/;

where Vm.x;y/ is a homogeneous polynomial of degree m in two variables and Bh D ˛C
�
�hC

1
2
n
�
ı.

Furthermore the coefficient of xm in Vm is 1=m!.

Geometry & Topology, Volume 29 (2025)



2020 Peter B Kronheimer and Tomasz S Mrowka

Thus xJn is generated by the elements Vm.Bh; ı/, for h in the range 0 � h � n with h D
1
2
.n C 1/

mod 2. The assertion of the lemma is equivalent to the statement that the homogeneous polynomials
Vm

�
x C

�
h�

1
2
n
�
y;y

�
in QŒx;y� span the space of homogeneous degree-m polynomials. This in turn is

true because h�
1
2
n runs through mC1 distinct values in Q as h runs through its allowed range. (This is

the same assertion as the statement that any mC 1 distinct translates of a polynomial f .x/ of degree m

are necessarily independent.)

6 Calculation of the ideals

6.1 Hilbert schemes of points in the plane

We present here and in Section 6.2 below some material on Hilbert schemes of points in the plane,
specialized to the particular situation for which we have application. General references are [26] for
Section 6.1 and [9] for Section 6.2.

Let A be the algebra kŒx;y�, with k a field, which we may take to be C. Let An � A be the subspace of
homogeneous polynomials of degree n, and let A.n/ D

L
k�n Ak . Let m�A be the maximal ideal hx;yi,

and consider the mth power mm, which has generators

(66) mm
D hxm;xm�1y; : : : ;ym

i:

The colength of mm (the dimension of the quotient A=mm as a k-vector space) is N D
1
2
m.mC 1/, and

a vector space complement is the linear subspace A.m�1/:

A Dmm
˚A.m�1/:

We can consider mm as defining a point in the Hilbert scheme HN which parametrizes all ideals of
colength N in A. In the Hilbert scheme, there is an open neighborhood U 3mm defined as

(67) U D fI 2HN
j A D I ˚A.m�1/

g:

For I 2 U , there is the projection to the second factor, A ! A.m�1/ with kernel I :

'I W A ! A.m�1/:

It is an elementary matter to check that the restriction of 'I to Am completely determines I , and that I is
in fact generated by

I D ha�'I .a/ j a 2 Ami:

We have in particular a D 'I .a/ mod I for all a 2 Am.

The map 'D'I is constrained by the condition that its kernel is an ideal rather than just a codimension-N
linear subspace in A. To see how, consider elements a; a0 2 Am with

xa D ya0:
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We have a D '.a/ mod I , and therefore xa D x'.a/, and applying ' again

xa D '.x'.a// .mod I/:

Similarly with ya0 so '.y'.a0//D '.x'.a// mod I . However both sides of the last equality lie in the
complementary subspace A.m�1/, so in fact

(68) '.y'.a0//D '.x'.a//:

Conversely, if we are given a linear map  W Am ! A.m�1/ satisfying the constraint (68), then there
exists a unique (well-defined) extension to a linear map ' W A ! A.m�1/ characterized by '.xiyj a/D

'.xiyj'.a//, and the kernel of ' is then an ideal I belonging to U �HN .

To expand on the constraint (68), write

'jAm
D '1 C'2 C � � �C'm;

where 'r W Am ! Am�r , and use the fact that 'jAk
D 1 for k <m to obtain

'.y'1.a
0//Cy'2.a

0/C � � �Cy'm.a
0/D '.x'1.a//Cx'2.a/C � � �Cx'm.a/:

Finally compare terms of like degree to see that

(69) y'rC1.a
0/�x'rC1.a/D�'r .y'1.a

0//C'r .x'1.a//

for all r � 1 and all a; a0 2 Am with ya0 D xa. If we write a0 D xb and a D yb for b 2 Am�1, the
constraint becomes

y'rC1.xb/�x'rC1.yb/D�'r .y'1.xb//C'r .x'1.yb//;

which we can express as

(70) Lr .'rC1/D Qr .'1; 'r /;

where Lr W Hom.Am;Am�r�1/! Hom.Am�1;Am�r / is a linear map and Qr is a bilinear expression.
It is easy to verify that the operator Lr is injective (see below), so the constraints determine 'rC1 once
'r and '1 are known.

We have shown:

Lemma 6.1 Given a k-linear map '1 W Am ! Am�1, there exists at most one linear map ' D '1 C'2 C

� � �C'm, with 'r W Am ! Am�r , such that constraints (69) hold. The ideal I generated by the elements
fa�'.a/ j a 2 Amg then belongs to the open set U �HN. Every ideal in U arises in this way.

The lemma exhibits U as a closed subset of the vector space Homk.Am;Am�1/, which has dimension
m.m C 1/ D 2N . This subset is also invariant under the action by scalars. It will follow that U Š

Homk.Am;Am�1/ if it can be shown that U has dimension 2N . To do this, one can show that U contains
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an ideal I whose zero set consists of N distinct points in the plane k2. Such an ideal can be realized as
the “distraction” of mm. This is the ideal I generated by the elements

uh D

� Y
0�j<h

.x � j /

�� Y
0�l<m�h

.y � l/

�
for h D 0; : : : ;m;

(allowing that one of the products may be empty). Its zero-set is the set of lattice points .j ; l/ in the first
quadrant with j C l <m.

Proposition 6.2 Given a k-linear map '1 W Am ! Am�1 there exists exactly one linear map ' D '1 C

'2C� � �C'm, with 'r WAm !Am�r , such that the ideal I generated by the elements fa�'.a/ j a2Amg

has colength N . The matrix entries of 'r for r � 2 can be expressed as polynomials in the matrix entries
of '1.

The proposition tells us that, at each stage r in the equations (70), the right-hand side Qr .'1; 'r / is in the
image of the linear operator Lr . If we choose a right-inverse Pr for Lr , then we can express the iterative
solution as

(71) 'rC1 D Pr Qr .'1; 'r /:

To give Pr explicitly, let us temporarily make our polynomials inhomogeneous by setting y D 1, so
identifying Am with the polynomials in x of degree at most m, and let us write

uk D 'rC1.x
k/

as a polynomial of degree at most m� r � 1 in x. Then the equations (70) take the form

ukC1 �xuk D vk

for k D 0; : : : ;m� 1, where vk is a given polynomial in x of degree at most m� r and the equations are
to be solved for uk of degree at most m� r � 1. If a solution exists, then

um D vm�1 Cxvm�2 C � � �Cxm�1v0 Cxmu0:

Since all polynomials uk and vk here have degree less than m, this equation determines the coefficients
of u0 as linear combinations of the coefficients of the vk :

u0 D�.x�mvm�1 Cx�mC1vm�2 C � � �Cx�1v0/C;

where the subscript C means to discard the negative powers of x. Having found u0, we can express the
complete solution, if it exists, by the recurrence

ukC1 D truncm�r�1.vk Cxuk/;

where truncm�r�1 is the truncation of the polynomial to the given degree. Whether or not a solution
exists, this process defines uk as a linear function of the v’s, and so defines a right inverse Pr for the
linear map Lr . In this form, the coefficients of Pr are integers, and this allows us to pass to any ring.
These leads to the following version.
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Proposition 6.3 Let R be a Noetherian ring , let A D RŒx;y� and let I � A be an ideal such that

� A=I is a free R-module of rank N D
1
2
m.mC 1/;

� there is an R-module homomorphism ' W Am ! A.m�1/ such that a�'.a/ 2 I for all a 2 Am.

Then I is generated by the elements a�'.a/ for a 2 Am. Furthermore , if we write

' D '1 C'2 C � � �C'm;

with 'r W Am ! Am�r , then 'r for r � 2 is determined by '1 through the iterative solution (71). This
establishes a bijection between ideals I satisfying the above two constraints and module homomorphisms
'1 W Am ! Am�1.

Proof If I satisfies the second condition, the relations aD'.a/mod I show that the map A.m�1/ !A=I

is surjective. The first of the two conditions tells us that these are free R-modules of equal rank, and it
follows that the map is an isomorphism because R is Noetherian. Thus we have a direct sum decomposition
AD I˚A.m�1/. As before, the constraints then lead to the relations (71), which determine 'r for r �2.

6.2 Syzygies

Proposition 6.3, which determines ' entirely in terms of '1, will be applied in Section 6.3 to see that the
generators W m

h
of the ideal xJn;�1 can be determined completely in terms of the leading and subleading

terms. (The subleading terms are already supplied by Proposition 5.12.) This will provide a complete
description of the instanton homology I.Zn;�1/. First, however, we pursue further our discussion of
the Hilbert scheme of points in the plane, to explain that the way in which '1 determines ' can be
packaged by considering the syzygies of the module A=I . This will lead to quite explicit formulae for
the generators.

We return temporarily to the case A D kŒx;y� as above, and we take k D C. Fix m again and write
N D

1
2
m.mC 1/. Let U �HN be as before (67). An ideal I 2 U contains no nonzero polynomials of

degree less than m and is generated by mC 1 elements whose leading terms are a basis for Am. Choose
a basis for Am so as to identify Am D A˚.mC1/, say the monomial basis (66). We then have generators
for I in the form

gi D xm�iyi
�'.xm�iyi/:

Because A has dimension 2, a resolution of A=I has only one more step, and we therefore have a
presentation of the ideal I in the form

(72) 0 ! A˚m S
�! A˚.mC1/ g

�! I ! 0:

Here g D .gi/ is given by the generators (the relations in A=I ) and S is the matrix of syzygies.
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In the special case that I Dmm and gi D xm�iyi the syzygy matrix can be taken to be

(73) S0 D

0BBBBBBB@

�y 0 0 : : : 0

x �y 0 : : : 0

0 x �y : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : �y

0 0 0 : : : x

1CCCCCCCA
:

Lemma 6.4 For a general I 2 U , the syzygy matrix S has the form S D S0 CS1, where S0 is as above
and S1 is a matrix of scalars (polynomials of degree 0).

Proof Write g D g.0/C g.1/C � � � C g.m/, where g.r/ is a vector of homogeneous polynomials of
degree m� r and g.0/ is the basis of monomials of degree m. (So the entries of g.r/ are the polynomials
�'r .x

m�iyi/.) Let
gt

D g.0/C tg.1/C t2g.2/C � � � ;

and let I t be the ideal generated by the entries of gt . Because the colength of I D I1 is the same as
that of I0, this is a flat family, and the syzygy matrix S0 for g0 therefore lifts to a syzygy matrix S t ,
whose entries are polynomials in .x;y; t/ and which coincides with S0 at t D 0. Because the entries of
gt are homogeneous (of degree m) in .t;x;y/, we may assume that S t is also homogeneous. Since S0

has homogeneous degree 1, so too does S t , and it follows that

S t
D S0 C tS1;

where the entries of S1 have degree 0 in .x;y/.

Note that in the above lemma, the matrix S1 is entirely determined by the leading term g.0/ and the
subleading term g.1/ (or equivalently by '1 W Am ! Am�1) via the condition

(74) g.0/ �S1 Cg.1/ �S0 D 0:

Quite concretely, taking g.0/ to be again the standard monomial basis, taking S0 as above, and writing
the subleading terms gi.1/ as

gi.1/D

m�1X
jD0

Gij xm�1�j yj ;

then

(75) S1 D

0BBBBB@
�G1;0 �G2;0 : : : �Gm;0

G0;0 �G1;1 G1;0 �G2;1 : : : Gm�1;0 �Gm;1
:::

:::
: : :

:::

G0;m�2 �G1;m�1 G1;m�2 �G2;m�1 : : : Gm�1;m�2 �Gm;m�1

G0;m�1 G1;m�1 : : : Gm�1;m�1

1CCCCCA :
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Proposition 6.5 Let S D S0 CS1 be the syzygy matrix as above , so that S0 is the matrix of syzygies of
the standard monomial ideal mm and S1 is determined by the subleading terms gi.1/ by (75). Then the
generators g0; : : : ;gm of the ideal I are precisely the m�m minors of the .mC 1/�m matrix S (ie the
determinants of the matrices obtained by deleting a single row of S , with alternating sign).

Proof Let h D .h0; h1; : : : ; hm/ be the minors. We have both h � S D 0 (by standard properties of
determinants) and g �S D 0 (by construction), and it follows that ahD bg for some a and b in A, because
the rank of the kernel of ST is 1. On the other hand, by inspection, the leading term of hi is the same as
that of gi , namely xm�iyi . So h D g.

Finally, we can pass from the case of kŒx;y� to more general coefficients without difficulty. The next
proposition summarizes the situation.

Proposition 6.6 As in Proposition 6.3, let R be a Noetherian ring , let A D RŒx;y� and let I � A be an
ideal such that

� A=I is a free R-module of rank N D
1
2
m.mC 1/;

� there is an R-module homomorphism ' W Am ! A.m�1/ such that a�'.a/ 2 I for all a 2 Am.

Let .g0.0/; : : : ;gm.0// be a basis for Am Š A˚.mC1/ and let

gi D gi.0/�'.gi.0//D gi.0/Cgi.1/Cgi.2/C � � �Cgi.m/;

where gi.j / is homogeneous of degree m � j . Then the elements .g0; : : : ;gm/ are generators of the
ideal I . Furthermore , let S0 be a matrix of syzygies for the leading parts gi.0/, with entries which are
homogeneous of degree 1, and let S1 be the matrix of scalars determined by the subleading parts gi.1/

via equation (74). Then:

(i) The matrix S DS0CS1 is the matrix of syzygies for the generators .g0;g1; : : : ;gm/ of the ideal I .

(ii) If h0; : : : ; hm are the m�m minors of the matrix S , then .h0; h1; : : : ; hm/ is a set of generators
for I .

(iii) If S0 is chosen so that its minors are the leading terms .g0.0/; : : : ;gm.0//, then the generators gi

for I are equal to the minors hi of S .

In this way , the generators g are determined by their leading and subleading terms , g.0/ and g.1/.

Proof We may take it that g.0/ is the standard monomial basis and that S0 is given (73). The matrix S1

is then given by (75) where the terms Gi;j are the coefficients of the subleading terms g.1/. According
to Proposition 6.3, the lower terms in the entries of g are expressible as universal polynomials in the
coefficients of g.1/. On the other hand, the recipe in terms of the minors of S expresses the lower terms
of g as polynomials in the coefficients of g.1/, at least when R is a field k. The polynomials occurring
in the minors have integer coefficients, and must coincide with the polynomials in Proposition 6.3.
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6.3 Equations for the curve Dn

Let RD QŒ�; ��1�. Let R temporarily denote the ring

R DRŒ��=h�2
� 1i:

The algebra xA in (32) is RŒ˛; ı� and the instanton homology I.Zn;�1/ is described as a quotient xA= xJn;�1

in (33). We know that I.Zn;�1/ is a free R-module of rank 1
4
.n2 � 1/D m.mC 1/ from Corollary 3.19,

and it is a free R-module of rank 1
2
m.mC1/. We know that there are elements W m

h
in xJn;�1 of degree m

in .˛; ı/ having the form

(76) W m
h D w.0/h C �w.1/h C � � � D xwm

n;h C � xw
m�1
n;h0 C � � � :

(see Proposition 5.12). The leading and subleading termsw.0/ and �w.1/ are known from Proposition 5.12
and Definition 4.2. We also know that the leading terms w.0/h are a basis for the mth power of the
maximal ideal, h˛; ıim, by Lemma 5.14.

The ideal xJn;�1 �RŒ˛; ı� therefore satisfies the hypotheses of Propositions 6.3 and 6.6. In the notation of
Proposition 6.6, we know '1 explicitly, as it is determined by the subleading terms �w.1/h. We therefore
have the following result as a corollary. In this statement, we write n D 2mC 1 as usual.

Theorem 6.7 Let xJn;�1 be the ideal of relations for the instanton homology I.Zn;�1/ with local
coefficients , and let

W m
h D w.0/h Cw.1/h C � � �Cw.m/h; with 0 � h � n and h D mC 1 mod 2;

be the generators for this ideal , as in (76). There are explicit polynomial formulae which express the
coefficients of all the lower terms w.r/h for r � 2 in terms of the leading and subleading terms

w.0/h D xwm
n;h and w.1/h D � xwm�1

n;n�h

in Proposition 5.12. If the syzygy matrix

S D S0 CS1

is constructed as in Proposition 6.6, as a matrix whose entries are inhomogeneous linear forms in .˛; ı/
with coefficients in R DRŒ��=h�2 � 1i, then the generators W m

h
are the m�m minors of S .

To obtain a final form for the generators, we now need to find an explicit formula for the syzygy matrix S ,
starting from our formulae for w.0/h and w.1/h. In Section 6.2 above, we illustrated the calculation
when the leading terms of the generators were the standard monomial basis in the polynomials in two
variables, so that the term S0 was the standard syzygy matrix (73). The leading terms w.0/h are not
monomials in our case, so we must first write down a suitable matrix of syzygies S0 for these.
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From Proposition 4.7, on setting all ıi equal to ı to pass from the ring Aj to xA, we obtain an expression
for w.0/h D xwm

n;h
as a product of linear factors. It is convenient to remove the combinatorial factor of

1=m! and write
g.0/h D m!w.0/h D m! xwm

n;h;

for which Proposition 4.7 yields the formula

g.0/h D

m�1Y
jD�mC1

jD�mC1 mod 2

�
˛C 1

2
.2h� n� 2j /ı

�
;

D
�
˛C 1

2
.2h� 3/ı

��
˛C 1

2
.2h� 7/ı

�
� � �

�
˛C 1

2
.2h� 4mC 1/ı

�
:

We introduce some abbreviated notation, setting

L.k/D .˛C kı=2/ and P .k; l/D L.k/L.k C 4/L.k C 8/ � � �L.l/:

(The latter notation will be used only when k D l mod 4.) Then we can write

g.0/h D P .2h� 4mC 1; 2h� 3/:

If we compare g.0/h to g.0/hC2, only the first and last factors in this product differ, so we have a relation

�L.2hC 1/g.0/h CL.2h� 4mC 1/g.0/hC2 D 0:

That is, for h0 in the range 0 � h0 � n� 2 with h0 D mC 1 mod 2, we haveX
h

Sh0h
0 g.0/h D 0;

where

(77) Sh0h
0 D

8<:
�L.2h0C 1/ if h D h0;

L.2h0� 4mC 1/ if h D h0C 2;

0 otherwise:

This is therefore the leading part S0 of the required syzygy matrix S D S0 CS1. It is straightforward to
verify that the minors of Sh0h

0
are the terms g.0/h, as required.

We normalize the subleading terms just as we did the leading terms, so that

g.1/h D m!w.1/h D m!��n�2h
xwm�1

n;n�h;

from Proposition 5.2. We then have the explicit formulae again from Proposition 4.7 (noting that
j�0j D n� h),

g.1/h D m��n�2h
m�2Y

jD�mC2
jDm mod 2

�
˛C 1

2
.n� 2h� 2j /ı

�
D m��n�2hP .�2hC 5;�2hC 4m� 3/:
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To obtain the other term S1 in the syzygy matrix, we need to solve the following equations for Sh0h
1

:X
h

Sh0h
1 g.0/h C

X
h

Sh0h
0 g.1/h D 0;

where h; h0 D mC 1 mod 2, with 0 � h � n and 0 � h0 � n� 2. Using the formulae for g.0/h, g.1/h

and Sh0h
0

, we write this out as

0 D

X
h

Sh0h
1 P .2h� 4mC 1; 2h� 3/

�m��n�2h0

L.2h0
C 1/P .�2h0

C 5;�2h0
C 4m� 3/

Cm��n�2h0�4L.2h0
� 4mC 1/P .�2h0

C 1;�2h0
C 4m� 7/:

The solution Sh0h
1

consisting of scalars in R is unique, because the terms g.0/h are a basis for the
homogeneous polynomials of degree m in .˛; ı/.

The last two of the three terms above have at least m� 2 common linear factors L.k/, and have m� 1

common factors in two edge cases. The m� 2 factors are the expression

Q.h0/D P .�2h0
C 5;�2h0

C 4m� 7/:

The edge cases are h0 D 0 (which only occurs when m is odd), and h0 D n� 2 (which occurs only when
m is even). In these two edge cases the m� 1 common factors are respectively,

QC D L.1/Q.0/D P .1; 4m� 7/ and Q� D L.�1/Q.n� 2/D P .�4mC 7;�1/:

We seek a solution Sh0h
1

to the above equations in the special form where, for each h0, the coefficients
Sh0h

1
are nonzero only for those values of h for which g.0/h is divisible by Q.h0/ (respectively QC or

Q� in the edge cases). Excluding the edge cases, there are three such values of h, namely

(78) h 2 fn� h0
� 3; n� h0

� 1; n� h0
C 1g; where 0< h0 < n� 2:

In each of the edge cases, there are two such values of h:

(79) h 2

�
fn� 3; n� 1g if h0 D 0;

f1; 3g if h0 D n� 2:

In the nonedge cases, the equations for the nonzero coefficients Sh0h
1

then take the general shape

(80) S
h0; n�h0�3
1

ACS
h0; n�h0�1
1

B CS
h0; n�h0C1
1

C CD D 0;

where A, B and C are the homogeneous quadratic polynomials in .˛; ı/ given by

g.0/h=Q.h
0/; where h 2 fn� h0

� 3; n� h0
� 1; n� h0

C 1g;

and D is a quadratic polynomial

D D
�
S

h0; h0

0
g.1/h0 CS

h0; h0C2
0

g.1/h0C2

�
=Q.h0/:
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Explicitly,

A D L.�2h0
� 3/L.�2h0

C 1/;

B D L.�2h0
C 1/L.�2h0

C 4m� 3/;

C D L.�2h0
C 4m� 3/L.�2h0

C 4mC 1/;

D D m��n�2h0�
�L.2h0

C 1/L.�2h0
C 4m� 3/C ��4L.2h0

� 4mC 1/L.�2h0
C 1/

�
:

The three polynomials A, B and C are independent, and we know there to be a unique solution, which
we can now find by equating coefficients of ˛2, ˛ı and ı2 in (80). The two edge cases are similar. Thus
in the case h0 D 0, the equations for the two unknown coefficients of S1 take the form

(81) S
0; n�3
1

X CS0 n�1
1 Y D Z;

where X , Y and Z are homogeneous linear forms in .˛; ı/, while in the case h0 D n� 2 we have similar
equations

(82) S
n�2; 1
1

X 0
CS

n�2; 3
1

Y 0
D Z0:

Solving the equations (80)–(82) for the coefficients Sh0h
1

leads to the following answer, valid for all h0,
whether or not we are in an edge case. We find

(83) Sh0h
1 D

8̂̂̂<̂
ˆ̂:
��n�4�2h0

.�nC 2C h0/ if h D n� h0� 3;

��n�4�2h0

.m� h0� 1C .m� h0/�4/ if h D n� h0� 1;

��n�2h0

h0 if h D n� h0C 1;

0 otherwise;

for all h0; h in the range 0 � h � n and 0 � h0 � n�2 with the parity constraint h D h0 D mC1 .mod 2/.
So we have obtained the desired closed form for the generators of the ideal xJn;�1 for the instanton
homology I.Zn;�1/:

Theorem 6.8 Let S D S0 CS1 be an m� .mC 1/ with rows indexed by h0 and columns indexed by h

in the range 0 � h � n and 0 � h0 � n� 2 with the parity constraint h D h0 D mC 1 .mod 2/. Let the
entries of S0 be given by (77) and the entries of S1 be given by (83), so that the entries of S belong to
the ring xAD QŒ�; ��1; �; ˛; ı�=h�2 D 1i. Then the normalized generators m!W m

h
of the ideal xJn;�1 are

given by the m�m minors of S .

Remark The matrix the matrix S has mC 1 different m�m minors, and explicitly the generators of
the ideal can be expressed as

m!W m
h D˙ det S Œh�;

where S Œh� is obtained from S by deleting the column indexed by h. (Recall again that the indexing of the
columns is by only those integers h with h D mC 1 mod 2.) The signs alternate as usual. Although there
are mC 1 generators in this description, in fact only two generators suffice, as the following proposition
states.
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Proposition 6.9 The ideal xJn;�1 is generated by the two elements W m
m�1

and W m
mC1

, or equivalently
by the two determinants

G1.n/D det S Œm� 1� and G2.n/D det S ŒmC 1�:

Proof It is sufficient to show that the matrix S Œm�1;mC1� obtained by deleting both columns hDm�1

and h D mC 1 has full rank m� 1. To do this, let us examine the .m� 1/� .m� 1/ matrix T obtained
from S Œm� 1;mC 1� by deleting either the first or last row, according as m is odd or even respectively.
An inspection of the entries of S reveals first that the entries of T on the contra-diagonal are all units
in xA: they are nonzero integers times powers of � . Furthermore, a reordering of the rows and columns
makes T triangular, with these same units on the diagonal. The determinant of T is therefore nonzero,
which shows that S Œm� 1;mC 1� indeed has full rank as desired.

As illustration, when m D 3 (ie n D 7) the two generators G1.7/ and G2.7/ are

1
48

�
8˛3

C 36˛2ıC 22˛ı2
� 21ı3

C 24��3˛2
� 72��3˛ıC 30��3ı2

� .88�2
C 16��2/˛

� .52�2
C 56��2/ı� 24��5

� 96��
�

and

1
48

�
8˛3

� 12˛2ı� 26˛ı2
C 15ı3

C 24���1˛2
C 24���1˛ı� 18���1ı2

� .40�2
C 64��2/˛

C .68�2
� 32��2/ı� 72�� � 48���3

�
:

6.4 Relating different values of n

Theorem 6.8 provides a complete description of the instanton homology of Zn;�1 with local coefficients,
but we have not yet presented a full description for the case of Zn. As preliminary material for this, we
describe how the functoriality of instanton homology can be used to obtain relations between the ideal of
relations in Zn for different values of n.

The fact that the ideal Jn annihilates I.Zn/ leads, via a standard approach, to the interpretation of the
elements of Jn as universal relations that hold for the maps defined by general bifold cobordisms. To spell
this out, let W be a homology-oriented bifold cobordism from Z0 to Z1, both of which are admissible.
We have seen in Section 2.3 that W gives rise to homomorphisms of R-modules

I.W; a/ W I.Z0/! I.Z1/

depending linearly on
a 2 Sym�

�
H2.W IQ/˚H0.†.W /IO/

�
˝R;

where O is the orientation bundle of the singular set †.W / with coefficients Q. Further, given a
distinguished 2-dimensional class e we can use marked connections with nonzero w2 to define maps

I.W; a/e W I.Z0/! I.Z1/:
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Using ıp to denote the generator of the symmetric algebra corresponding the homology class of a point
p 2†.W / with local orientation, let us imitate the definition of An and write

A.W /D
�
Sym�

�
H2.W IQ/˚H0.†.W /IO/

�
˝RŒ��

�
=h�2

� 1; ı2
p � ı2

qip;q

where the indexing in the ideal runs through all pairs of points p; q in †.W /. We obtain a linear map

(84) ‰ WA.W /! Hom.I.Z0/; I.Z1// by a1 C �a2 7! I.W; a1/C I.W; a2/
e:

This construction has been phrased so that, in the special case that W is the product cobordism from Zn

to itself and e is the generator of H2, the algebra A.W / coincides with An as defined above, and the
map ‰ is the action of the algebra An on the module I.Zn/ via the instanton module structure.

Continuing with the case of a general cobordism W, we suppose now that we have an embedded orbifold
sphere S � W meeting the singular set in n orbifold points fp1; : : : ;png. Choose an orientation for S

and define local orientations for the singular set in the neighborhood of the n points of intersection in
such a way that the intersections are all positive. In this way we obtain elements ıpk

2A.W /, where for
the class e in the definition of A.W / we take the fundamental class ŒS �. Let the singular set of W also be
oriented globally, and let the operators ı�pk

be defined using this global orientation of the singular set. We
then have

ı�pk
D �kıpk

;

where �k D˙1 according to whether the orientations agree or not.

Let us suppose that the normal bundle of S is trivial so that the boundary of the tubular neighborhood of
S is a copy of Zn. From the definitions, there is a natural map

i� WAn !A.W /

arising from the inclusion, which we define so that i�.ıpk
/D �kı

�
pk

for all k, while i�.˛/D ŒS �2H2.W /

and i�.�/D .�1/f �, where f is the number of signs �k which are �1.

Proposition 6.10 For an embedded orbifold sphere S � W as above , the ideal Jn lies in the kernel of
the map ‰ defined at (84). That is , for a D a1 C �a2 2 Jn �An, we have

I.W; i�.a1//C .�1/f I.W; i�.a2//
e
D 0:

More generally, if b is another class in A.W / which an be expressed as a polynomial in cycles disjoint
from S , then we have

I.W; i�.a1/b/C .�1/f I.W; i�.a2/b/
e
D 0:

Proof In its structure, this is a standard argument based on the observation that we can factor the
cobordism W as a composite cobordism in which the first factor is the cobordism from Z0 to Z0 qZn.
For the disjoint union, we can construct the instanton homology as a tensor product, and then we apply
functoriality. See [22] and [32], for example, for similar arguments. The details of the signs, in particular
the sign .�1/f come from Proposition 5.11.
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Our application of Proposition 6.10 is equivalent to [32, Corollary 2.6.8]. (A closely related result appears
in [28].) Suppose that

n D n0
C 2f; where f � 0:

Consider an embedding of the orbifold sphere S D S2
n in the trivial cobordism W D Œ0; 1� � Zn0 ,

representing the generator in homology. This means that S meets the singular locus Œ0; 1� � K.Zn0/

geometrically in n0 C 2f points, while the algebraic intersection number is n0. There are therefore
2f signed intersection points that cancel in pairs. Such a sphere S � Œ0; 1�� Zn0 can be constructed
by taking the standard generating sphere S 0 � Zn0 and introducing 2f extra intersection points by
doing f “finger moves” to the sphere S 0. We take these extra intersection points to be the orbifold
points numbered n0 C 1; : : : ; n0 C 2f in S Š S2

n , and we suppose that they all lie on the component
Œ0; 1��Kn0

� Œ0; 1��K.Zn0/. Among these 2f points, there are f of them that have negative intersection
number, and we can take it that these are the points numbered n0Cf C 1; : : : ; n0C 2f in S2

n . There is a
corresponding map

i
n;n0

� WAn !An0 ; where n D n0
C 2f;

and our choice of numbering means that it is given by

i
n;n0

� .˛/D ˛; i
n;n0

� .�/D .�1/f � and i
n;n0

� .ık/D

8<:
ık if 1 � k � n0;

ın0 if n0C 1 � k � n0Cf;

�ın0 if n0Cf C 1 � k � n0C 2f:

Proposition 6.10 now yields the following.

Corollary 6.11 [32, Corollary 2.6.8] When n D n0C 2f and i
n;n0

� WAn !An0 is defined as above , we
have an inclusion of ideals ,

i
n;n0

� Jn � Jn0 :

With a little more work and an examination of the explicit formulae for the leading and subleading terms
of the generators of Jn (Proposition 4.7), we can strengthen the above corollary as follows.

Proposition 6.12 In the situation of Corollary 6.11 above , we have inclusions

.�4
� 1/f Jn0 � i

n;n0

� Jn � Jn0 :

In particular , the ideals i
n;n0

� Jn and Jn0 become equal after tensoring with the field of fractions of the ring
RD QŒ�; ��1�.

Proof It suffices to treat the case f D 1, so n0 D n�2. Let �0 � 1; : : : ; n� 2, and let �1; �2 � f1; : : : ; ng

be respectively the same as �0 and �0 [fn� 1; n� 2g. From the explicit formulae, we see

i
n;n�2
� .wm

n;�1
/D i

n;n�2
� .wm

n;�2
/;

because i
n;n�2
� .B�1

/D i
n;n�2
� .B�2

/. Similarly

i
n;n�2
� .wm�1

n;�0
1
/D i

n;n�2
� .wm�1

n;�0
2
/:
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We therefore have (using the general shape of the subleading term)

i
n;n�2
� .W m

�1
�W m

�2
/D .�1/f �.�n�2h

� �n�2h�4/i
n;n�2
� .wm�1

n;�0
1

/C lower terms

D u.�4
� 1/i

n;n�2
� .wm�1

n;�0
1

/C lower terms;

where u is a unit in QŒ�; ��1�. By the previous corollary, these belong to Jn�2. It is now enough to
show that the elements i

n;n�2
� .wm�1

n;�0
1
/ generate the ideal jn�2 of relations in the ordinary cohomology of

Rep.S2
n�2

/, because the statement about instanton homology will follow as before. From the formulae in
Proposition 4.7, we see that this is the same as showing that the elements wm�1

n�2;�0
0

generate the ideal jn�2,
which has already been established (as the case n� 2) in Proposition 4.8.

The homomorphism i
n;n0

� does not pass to a homomorphism between the quotient rings xA. But we can at
least compose with the quotient map An0 ! xA to get the following immediate corollary. In the statement
of the corollary, we note that the choices of sign in the definition of i

n;n0

� are arbitrary and can be replaced
by a more general phrasing.

Corollary 6.13 Let � 2 f˙1gn be any choice of signs. Write n0 D
P
�i and assume n0 � 1. Consider

the homomorphism x{� WAn ! xA defined by x{�.ıi/D �iı for all i , and x{�.�/D .�1/.n�n0/=2�. Then we
have an inclusions of ideals in xADRŒı; ˛; ��=h�2 � 1i,

.�4
� 1/.n�n0/=2 xJn0;�1 �x{�.Jn/� xJn0;�1:

We refer to the relations between the ideals in Corollaries 6.11 and 6.13 as “finger-move relations”,
because of the interpretation of the sphere S as having been obtained from the standard sphere S 0 � W

by finger moves.

Remark A second application of Proposition 6.10 will be given in the proof of Proposition 7.1 later in
this paper.

6.5 Decomposition of the instanton curve

We are now ready to harness our understanding of I.Zn;�1/ from Theorem 6.8 to obtain a description
of I.Zn/. Write

Vn D Spec QŒ�; ��1; ˛; ı1; : : : ; ın; ��:

The set of complex-valued points Vn.C/ is C� �CnC2, with � a coordinate on the first factor. We can
describe the An-module I.Zn/ geometrically as the coordinate ring of the closed subscheme

Cn � Vn

defined by the vanishing of the elements of the ideal Jn together with the additional relations that define
the algebra An, namely the vanishing of ı2

i � ı2
j and �2 � 1. We can write Cn D Spec.I.Zn//, where

I.Zn/ is considered as a quotient ring of the algebra An. To describe I.Zn/ as an An-module, we can
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therefore use geometrical language to describe the subscheme Cn. Note that the relation �2 D 1 means
that Cn is contained in the union of the two hyperplanes � D 1 and � D�1, so we may write

Cn D CC
n [C�

n :

In a similar way, let us write
xV D Spec QŒ�; ��1; ˛; ı; ��;

so that the instanton homology group I.Zn;�1/ defines, (via its ideal of relations xJn;�1 and the relation
�2 D 1), a subscheme Dn D Spec.I.Zn;�1//, which is a closed subscheme of xV :

(85) Dn D DC
n [D�

n � xV :

We can interpret Corollary 6.13 as describing a relation between the curves Cn for I.Zn/ and Dn for
I.Zn;�1/. First, given any choice of signs � 2 f˙1gn, write n0 D

P
�i

, and suppose henceforth that this
odd integer n0 is positive. Write f D .n� n0/=2. Define a morphism

x{�� W
xV ! Vn

by ıi 7! �iı and � 7! .�1/f �. Write
Vn;� � Vn

for the image of {�� . This is the linear subvariety cut out by the linear conditions �iıi D �jıj . Their union
is the subvariety defined by ı2

i D ı2
j for all i , j ; so we have

Cn �

[
�

Vn;� :

We have an isomorphic copy of the affine scheme Dn0 as the image of Dn0 under the embedding {�� :

(86) {�� .Dn0/� Vn;� :

Proposition 6.14 The subscheme Cn � Vn is the union of the subschemes (86) as � runs through all
choices of sign f˙1gn with n0.�/ > 0:

(87) Cn D

[
�I n0Dn0.�/>0

x{�� .Dn0/:

The curves Dn0 are completely known via their defining equations from Theorem 6.8, so the proposition
above is a complete characterization of the curve Cn for I.Zn/. In the language of the defining ideals,
this proposition is a converse to Corollary 6.13. In other words, we have the following:

Corollary 6.15 In the notation of Corollary 6.13, the defining ideal Jn for I.Zn/ can be characterized as

Jn D fw 2An j x{�.w/ 2 xJn0.�/;�1 for all �g:

Thus I.Zn/ is determined as an An-module by the finger-move constraints , once I.Zn0;�1/ is known for
all odd n0 � n.
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Proof of Proposition 6.14 Let us write C 0 for the union on the right-hand side of (87). The inclusion of
ideals x{�.Jn/� xJn0;�1 in Corollary 6.13 says that the curve Cn contains C 0.

The coordinate ring of the scheme on the left-hand side of (87) is I.Zn/, and if we temporarily write
I 0 for the coordinate ring of the affine scheme C 0, then the inclusion of schemes means that we have a
surjection of rings,

I.Zn/! I 0:

We know that I.Zn/ is a free R-module of finite rank, where RDQŒ�; ��1�. So to prove that the rings are
isomorphic, and to complete the proof of the proposition, it will suffice to prove that these two R-modules
have the same rank, or in geometrical language,

deg Cn D deg C 0;

where deg denotes the degree of the projection to the � coordinate. (The inclusion one way means that
we already have deg Cn � deg C 0.)

To prove this last equality we note that

(88) deg Cn �

X
�I n0.�/>0

deg.Cn \Vn;�/;

with equality if and only if the schemes Cn \Vn;� for different � have no common component of positive
degree. The two-way inclusions of Corollary 6.13 tell us that Cn \Vn;� and i�� .

xCn0/ coincide over the
locus where �4 � 1 is nonzero. In particular,

deg.Cn \Vn;�/D deg.i�� .Dn0//;

and if the schemes on the left have no common component of positive degree for different �, then the
same is true of the schemes on the right. From (88) we therefore obtain

(89) deg Cn �

X
�I n0.�/>0

deg Dn0 ;

with equality if and only if the schemes on the right-hand side of (87) have no common component of
nonzero degree.

In terms of instanton homology, the inequality (88) can be restated as

(90) rankR I.Zn/�
X

�I n0.�/>0

rankR I.Zn0;�1/:

On the other hand we can verify directly that we have equality here:

(91) rankR I.Zn/D
X

�I n0.�/>0

rankR I.Zn0;�1/:

Indeed, the right-hand side can be calculated by Corollary 3.19, and is
.n�1/=2X

f D0

� n

f

�
�

1
4

�
.n� 2f /2 � 1

�
:
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The left-hand side of (91) is twice the rank of the ordinary cohomology of the representation variety
Rep.S2

n / calculated by Boden [3], and can be expressed as

rankR I.Zn/D 2n�3.n� 1/D 1
8
.F 00.1/�F.1//;

where F.t/D .t C t�1/n. Equality with the right-hand side of (91) can be seen easily from the binomial
expansion of F.t/.

It follows that the parts making up the union C 0 on the right-hand side of (87) have no common components
of positive degree, and we therefore have, as required,

deg C 0
D

X
�

deg Dn0.�/ D deg Cn:

Remark In the course of the proof, we have seen that Cn has pure dimension 1, and we refer to it as the
instanton curve for Zn. Although it has no embedded points, we have not shown that the curve Cn is
reduced: it may perhaps have components with multiplicity larger than 1, but the authors have not seen
this arise in calculations.

6.6 Equations for the curve Cn

We now have a geometric description of I.Zn/ as a module, namely as the coordinate ring of an affine
curve Cn. The curve Cn is a union of curves each of which is isomorphic to some Dn0 . However, although
we have an explicit description of the defining relations for the Dn0 , the resulting description of Cn does
not immediately provide explicit generators for the corresponding ideal Jn �An. Instead, it describes
the ideal Jn as an intersection of known ideals (expressed essentially in Corollary 6.15).

To practically compute the intersection of the ideals in this particular context, we can leverage what we
know about Jn. From Propositions 5.1 and 5.2, we know the ideal Jn is generated by elements W m

�

which can be written in the form

(92) W m
� D w.0/C �w.1/Cw.2/C �w.3/C � � � ;

where w.i/ is a homogeneous polynomial of degree m� i in .˛; ı1; : : : ; ın/, and furthermore

w.0/D wm
n;� and w.1/D wm�1

n;n��:

Furthermore, the element W m
� is the unique element of the ideal having leading term w.0/. The lower

terms in W m
� are therefore uniquely characterized by the linear constraints of Corollary 6.15, namely that

x{�.W
m

� / belongs to the known ideal xJn0.�/;�1, for all �. Solving this large linear system provides the
generators.

There is an alternative way to package the calculation of W m
� , which does not explicitly pass through a

determination of the ideals xJn;�1, albeit the same ingredients are used. To set this up, the terms in (92)
which are as yet unknown are the terms which belong to a lower part of the increasing filtration of An,
and with this in mind we write

Lm
� D w.2/C �w.3/C � � � ;
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so that

(93) W m
h D w.0/C �w.1/CLm

� ; where Lm
� 2A.m�2/

n :

There is some symmetry that can be usefully exploited. The braid group B� for the n-element subset
� � S2 acts on I.Zn/ because of its interpretation as a mapping class group. This action factors through
the symmetric group S� , as one can see from the description of I.Zn/ as a cyclic module for the
algebra An. Indeed, given a permutation � 2S� , we obtain an automorphism �� WAn !An permuting the
generators ıp and preserving the ideal Jn �An, so establishing the automorphism �� W I.Zn/! I.Zn/.
From this, we can see that

��.W
m

� /D W m
�.�/:

In particular, the element W m
� 2An is invariant under the action of group of permutations S� �S�0 � S� .

The lower terms Lm
� therefore have the same symmetry. Furthermore, it will be enough if we determine

Lm
� for just one subset �� � of each cardinality h satisfying the parity condition (35). Note also that the

expression Lm
� is empty unless m is at least 2 (ie n is at least 5).

The proposed recursive procedure for identifying the lower terms Lm
� is to again use Corollary 6.11,

which gives us the finger-move relation

(94) i
n;n�2
� .W m

� / 2 Jn�2:

We would like to see that, if the ideal Jn�2 is already known, then the constraint (94) will be sufficient
to determine the lower terms. In line with the remarks above, since either � or �0 can be assumed to
have at least mC 1 elements (ie more than half), we will assume that the indices fm;mC 1; : : : ; ng all
belong either to � or to �0. In particular this means that W m

� and its lower terms Lm
� are invariant under

the symmetric group SmC1 acting by permutation of the variables fım; ımC1; : : : ; ıng. (These indices
include the three indices fn� 2; n� 1; ng, which are involved in the definition of the finger move in;n�2.)

Lemma 6.16 Write n D 2mC 1 and let L 2 A.m�2/
n be an element that is symmetric in the variables

ımC1; : : : ; ın�1; ın (ie more than half of the variables). Suppose L satisfies

(95) i
n;n�2
� .L/ 2 Jn�2:

Then L D 0.

Proof Let �k be the k th symmetric polynomial in ımC1; : : : ; ın, and let � 0
k

be the symmetric polynomial
in ımC1; : : : ; ın�2, regarded as elements of An and An�2 respectively. From Proposition 3.7, we know
that Jn�2 \Am�2

n�2
D 0, so the hypothesis i

n;n�2
� .L/ 2 Jn�2 actually means that i

n;n�2
� .L/ is zero. We

compute what i
n;n�2
� does to �k , and we find

i
n;n�2
� .�k/D

8<:
� 0

k
if k D 0; 1;

� 0
k
Cˇ� 0

k�2
if 2 � k � m� 1;

ˇ� 0
k�2

if k D m;mC 1;

where ˇ D�ı2
p (independent of p).

Geometry & Topology, Volume 29 (2025)



2038 Peter B Kronheimer and Tomasz S Mrowka

Because L has degree at most m� 2, we can write it as

L D

m�2X
kD0

Pk�k ;

where each Pk is an expression in Am, ie involving only ı1; : : : ; ım. Thus

i
n;n�2
� .L/D

m�2X
kD0

.Pk CˇPkC2/�
0.k/;

where we set Pj D 0 for j > m � 2. The injectivity of i
n;n�2
� is now clear from the upper triangular

nature of this linear transformation, because the symmetric functions � 0.k/ are nonzero in this range.

The lemma tells us that the finger-move constraint can be used to determine the lower terms Lm
� uniquely.

So we obtain a procedure which determines the ideals Jn recursively for all odd n, as follows.

(i) In the base case n D 1, the ideal J1 is h1i.

(ii) For general n � 3 (and n odd as always), assume that the ideal Jn0 is already known for n0 < n.

(iii) Write m D
1
2
.n � 1/. According to Propositions 5.1 and 5.2, for each � satisfying the parity

condition (47), there exists an element W m
� 2 Jn which can be written in the form (93):

W m
h D w.0/C �w.1/Cw.2/C �w.3/C � � � D w.0/C �w.1/CLm

� ; where Lm
� 2A.m�2/

n :

The first terms w.0/C�w.1/ are known because w.0/ is the Mumford relation and Proposition 5.2
provides the term w.1/.

(iv) According to Lemma 6.16, the unknown terms Lm
� in W m

� are uniquely determined by the finger-
move relations (94), which impose linear conditions on the coefficients of Lm

� . Solving these linear
equations determines Lm

� and hence determines W m
� 2An.

(v) As � runs through the subsets satisfying (47), the elements W m
� generate the ideal Jn � An

according to Proposition 5.1. So we have a known set of generators for Jn. This determines Jn

and completes the inductive step.

7 Further remarks

7.1 Singularities of the instanton curve

When the local coefficient system � is replaced by constant coefficients Q, we obtain a description of the
instanton homology I.ZnIQ/ which was earlier completely determined by Street [32]. Those results
therefore provide a description of the scheme-theoretic intersection of the curve Cn with the hyperplane
� D 1. It is shown in [32] that the simultaneous eigenvalues of the pair of operators .˛; ı/ on I.ZnIQ/

are of the form .�; ı/, where � runs through the odd integers in the range j�j< n. The multiplicities of
the eigenspaces are also computed.
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We can apply these results to learn that the curve Dn corresponding to I.Zn;�1I�/ intersects the plane
� D 1 in the points x� with coordinates

.�; ˛; ı; �/D .1; �; 0;˙1/;

where � runs through the same odd integers, and the sign of � is .�1/.�C1/=2. We also learn that the
intersection multiplicity at x� is �� D

1
2
.n� j�j/.

Knowing the intersection multiplicity puts an upper bound on the order of a possible singular point of the
curve at x�. In particular, it means that Dn is smooth at the points x� for the two extreme values of �,
namely �D˙.n� 2/, because the intersection multiplicity is 1 at those points.

A little experimentation suggests that equality holds at all the points x� where Dn meets � D 1: that is,

(96) ord.Dn;x�/D �� D
1
2
.n� j�j/:

With the understanding that these results have been verified only experimentally for modest values of n,
one can describe the singularity of Dn at x� in greater detail. First of all, we have seen that the ideal
xJn;�1 which defines Dn has just two generators G1.n/ and G2.n/ (Proposition 6.9), and it follows that the

singularity of Dn at x� is a local complete intersection. Indeed, each of DC
n and D�

n is cut out as a global
complete intersection inside the variety defined by � D˙1 and � ¤ 0. Experiment also indicates that the
surfaces defined by the vanishing of G1.n/ and G2.n/ are both smooth at x�. Indeed, the ˛-derivative
of both is nonzero. By the implicit function theorem, the zero-sets of G1.n/ and G2.n/ are therefore
described in a local analytic neighborhood of x� by

˛ D �Cfn;�;1.ı; �/ and ˛ D �Cfn;�;2.ı; �/

for two analytic functions fn;�;1 and fn;�;2. At the singular points (that is, when j�j < n � 2), the
derivatives of both fn;�;1 and fn;�;2 vanish at .ı; �/D .0; 1/. The singular germ .Dn;x�/ is therefore
analytically isomorphic to the germ of the analytic plane singularity

gn;�.ı; �/D 0; gn;� D fn;�;1 �fn;�;2;

at .ı; �/D .0; 1/.

In computations up to nD 31, the function gn;� vanishes to order �� at .0; 1/, verifying that �� is indeed
the order of the singular point. Furthermore we find

gn;�.ı; �/D const:
�
ı˙ 2.� � 1/

���
CO.ı; � � 1/��C1;

where the sign depends on � and �. This means that the tangent cone to the singular point is the line
ı˙ 2.� � 1/D 0, with multiplicity ��.

The highest-order singular points on the curve are the points x� with �D˙1, where the order of the
singularity is m D

1
2
.n� 1/. At these points, the analytic form of the singularity is xm D ymC1, where

x D ı˙ 2.� � 1/. In particular the singularity is unibranch. The authors have not determined (even
experimentally) whether the singularity is unibranch at other singular points. Note, however, that the entire
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curves D˙
n are reducible when n is composite (as discussed below) and it follows that the singularities

are not unibranch when � and n have a common factor.

One further experimental observation is that the local form of the surface Gi.n/ D 0, given by ˛ D

�C fn;�;i.ı; �/ at x�, appears to approach a smooth limit as n increases with � fixed. Indeed, after
scaling by �, we find that the limit is independent of � also. That is, there is a convergent power series
F.ı; �/, independent of n, � and i D 1; 2, such that

�Cfn;�;i.ı; �/! �F.ı; �/:

The difference vanishes at .0; 1/ to order .ı; � � 1/O.n/. Up to terms of degree 5, the series F is

F.ı; 1C �/D 1� 1
16
ı2 C

31
4
ı� C 1

4
�2 �

31
8
ı�2 �

1
4
�3 �

5
1024

ı4 C
31

128
ı3� C 5

128
ı2�2 C

31
32
ı�3

C
15
64
�4 �

31
256
ı3�2 �

5
128
ı2�3 C

31
64
ı�4 �

7
32
�5 C � � � :

7.2 Reducibility when n is composite

The curves DC
n and D�

n arising as Spec.I.Zn;�1// are irreducible when n is prime in all cases that
the authors have calculated. It seems to be an interesting conjecture whether this holds in general. For
composite n, however, the curves DC

n and D�
n are reducible, as the following result implies.

Proposition 7.1 If n0 divides the odd integer n, then the curves DC
n and D�

n contain  .DC
n0 / and  .D�

n0/

respectively, where  is the map on the ambient space xV given by

 .�; ��1; ı; ˛; �/D .�; ��1; ı; .n=n0/˛; �/:

Proof This is an application of the general principal described by Proposition 6.10. In the context of that
proposition, take W to be the product cobordism Œ0; 1��Zn0 . Write l D n=n0. We can embed a sphere
S ,! W representing l times the generator of H2.W / and meeting the singular set in ln0 points, all with
the same orientation. The relevant map ‰ in Proposition 6.10 is then the homomorphism of algebras

‰l WAn !An0

which is given (with our standardly named generators, and suitably numbering the intersection points) by

‰l.˛/D l˛; ‰l.ık/D ı.k mod n0/:

The conclusion of Proposition 6.10 is that we have an inclusion of ideals ‰l.Jn/� Jn0 .

Passing to the quotient rings xA in which all the ık are equal, and using the fact that xJn;�1 is the image of
Jn in the quotient ring (Proposition 5.13), we obtain an inclusion of ideals  l. xJn;�1/ � xJn0;�1 when
nD ln0, where  l is algebra homomorphism the with  l.˛/D l˛ and  l.ı/D ı. Proposition 7.1 is just a
restatement of this inclusion of ideals, in the geometrical language of the subschemes that they define.
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7.3 Interpretation as the quantum cohomology ring

For every odd n, the representation variety M D Rep.S2
n / is naturally a smooth symplectic manifold,

by a standard construction [11]. If n points in CP1 are chosen, then M becomes also a smooth complex-
algebraic variety of dimension n� 3, as a consequence of its interpretation as a moduli space of stable
parabolic bundles. With the symplectic form, it is a Kähler manifold, and the cohomology class of
the Kähler form is a negative multiple of the canonical class. The latter assertion is the statement of
“monotonicity” for the symplectic structure. It can be deduced as a particularly simple case from [20], for
example, or it can be deduced from the fact that there is only one class in H 2 which is invariant under
the “flip” symmetries [32]. This is therefore a Fano variety. (A concrete description is discussed in [4].)

The quantum cohomology ring of such a Fano variety is defined using a deformation of the usual triple
intersection product. Given cycles A, B, C , the quantum intersection product is a scalar which is a
weighted count of isolated pseudoholomorphic curves u W CP1 ! M , with the constraint that u maps
three marked points to A, B and C . For our purposes, the weight will be of the form � Œu��T for a suitable
2-dimensional cohomology class T D 2

P
ıi . This leads to a quantum cohomology ring QH.M / which

is a module over the ring of Laurent polynomials R. In the spirit of results from [27] and [7], one should
expect that the � D 1 component of I.Zn/ is isomorphic to QH.M / as an algebra.

The special case n D 5 in particular is discussed in [31], where the symplectic manifold M is the blow-up
of CP2 at five points, and the quantum cup-product is computed. Also relevant from [30; 31] is Seidel’s
long exact sequence [31, Proposition 3.5]. In the special case that M is CP2 # 5 xCP

2
, this long exact

sequence essentially recovers the skein exact sequence in the proof of Proposition 3.18, involving the
orbifold X5;4 from Figure 3, restricted to the C1 eigenspace of �. The orbifold X5;4 plays the role of
H�.S

2Iƒ/ in [31, Proposition 3.5]. Seidel’s exact sequence is generalized by Wehrheim and Woodward
in [34, Theorem 6.12], motivated by the application to skein triangles, and the generalization is relevant
to the case of the skein triangle involving Xn;n�1 for larger n.

7.4 General local coefficients

As an alternative to the local coefficient system � for I.Zn/, there is a larger local coefficient system �n

that can be used. Rather than being a system of rank-1 modules over R D QŒ��1; � �, the ground ring
for �n is the ring of finite Laurent series in n distinct variables �1; : : : ; �n attached to the n components
of the singular set of Zn:

Rn D QŒ�1; �
�1
1 ; : : : ; �n; �

�1
n �:

The instanton homology I.ZnI�n/ is then a module over the ring

RnŒı1; : : : ; ın; ˛; ��:

It is no longer true that ı2
i D ı2

j ; instead we have

ı2
i � �2

i � ��2
i D ı2

j � �2
j � ��2

j for all i; j:
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It should be possible to compute I.ZnI�n/ by adapting the ideas of this paper. As the simplest example,
our two generators for the relations in I.Z3;�1/, where all ıi and all �i are equal, were

˛C 3
2
ıC ��3 and ˛� 1

2
ıC ���1:

For I.Z3I�3/ the corresponding relations are

˛C 1
2
.ı1 C ı2 C ı3/C ��1�2�3 and ˛C 1

2
.ı1 � ı2 � ı3/C ��1�

�1
2 ��1

3 ;

together with cyclic rotations of the second one. The instanton homology I.Z3I�3/ is a free R3-module
of rank 2.

There is an additional symmetry present when using �n, which comes from the flip relation. So the ideal
of generators is invariant under the symmetry which changes the sign of ıi and ıj for any two distinct
indices while changing �i and �j to ��1

i and ��1
j . In the example of I.Z3I�3/ there are four generators

corresponding to the four subsets � � f1; 2; 3g of even parity, and the corresponding relations are all
obtained from the first one (corresponding to � D ¿) by applying flips. For larger n, the leading and
subleading terms follow the same pattern. So the adaptation of Proposition 5.2 to the case of �n has the
same leading term while the factor of �n�2h in front of the subleading term is replaced byY

i 62�

�i

Y
i2�

��1
i :

7.5 Instanton homology for torus knots

As mentioned in the introduction, a motivation for this paper comes from wishing to calculate variants
of framed instanton homology for torus knots. In [24], concordance invariants of knots were defined
using a version of framed instanton homology I ]. In that paper, for a knot K � Y , the framed instanton
homology is defined using the connected sum .Y;K/ # .S3; ‚/, where ‚ is a theta-graph in S3. A local
coefficient system is used in [24], where the ground ring is the Laurent polynomials in three variables �i

corresponding to the three edges of ‚. Because of the phenomenon of bubbling in codimension 2 which
arises from the vertices of ‚, it was necessary in [24] to use a ring of characteristic 2.

It is possible instead to work in characteristic zero by abandoning the pair .S3; ‚/ and using the pair
Z3 instead (as described just above). The local coefficient system comes from �3. Because I.Z3I�3/

has rank 2, one should take just the C1 eigenspace of � to obtain a rank-1 module. Thus one can define
I ].ZI�3/ for general bifolds Z as being I.Z # Z3I�3/C. The connected sum is of the 3-manifolds, not
a connected sum of pairs. But a connected sum of pairs can be used instead to define a reduced version
I \.ZI�3/.

A variant of the connected sum theorem from [5] allows one to pass to I \.Zn;�1I�3/ starting from the
calculation of I.Zn;�1/ in this paper. Using the surgery exact triangle for instanton homology, one can
therefore take the calculation of I.Zn;�1/ as a first step towards understanding the reduced instanton
homology with local coefficients for torus knots in S3. The authors hope to return to this in a future paper.

Geometry & Topology, Volume 29 (2025)
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7.6 Universal relations

The relations in the instanton homology of Zn and Zn;�1 give rise to universal relations for general
admissible bifolds .Y;K/ containing spheres. The following is an illustration.

Proposition 7.2 Let .Y;K/ be a bifold and suppose that the singular set K is a knot meeting an embedded
sphere S � Y transversely with odd geometric intersection number n and algebraic intersection number n0.
Orient the sphere and K so that 0< n0 � n. Let ˛ be the operator on I.Y;K/ corresponding the sphere S

and let ı be the operator arising from a point on K. Let �� be the involution on I.Y;K/ arising from S ,
and let � D .�1/.n�n0/=2��. Let � denote the automorphism of the algebra xAn determined by �W � 7! ��.
Then the elements of the ideal

�.�4
� 1/.n�n0/=2 xJn0;�1 �RŒı; ˛; ��=h�2

� 1i

annihilate I.Y;K/.

Proof Let ı1; : : : ; ın be the operators corresponding the intersection points of K with S , all oriented
with the normal orientation to S . From an application of the general principle of Proposition 6.10, the
instanton homology I.Y;K/ is annihilated by the ideal Jn in the algebra An. On the other hand, because
K is a knot, all the operators ıi are equal up to sign, so the action of the algebra An factors through the
quotient xA D RŒı; ˛; ��=h�2 � 1i in which we set ıi D ˙ı according to the sign of the corresponding
intersection point of K with S . From Corollaries 6.11 and 6.13 the image of Jn in the quotient contains
the ideal described in the proposition.

As a simplest example, if K is a knot in Y D S1 �S2 which has geometric intersection 3 and algebraic
intersection 1 with S2, then I.Y;K/ is a torsion R-module annihilated by �4 � 1. In general, the
proposition provides a lower bound on the geometric intersection number of K and S2.

Corollary 7.3 Let Y contain an oriented 2-sphere S , and let K � Y be a knot having odd algebraic
intersection number n0 > 0 with S . Then a lower bound for the transverse geometric intersection number
K \S for any knot isotopic to K is n0C 2f , where

f D minfF � 0 j .�4
� 1/F Gi.n

0/ annihilates I.Y;K/ for i D 1; 2g:

Here G1.n
0/ and G2.n

0/ are the two generators in Proposition 6.9.

In light of the results from [36] concerning higher-genus orbifolds, it is possible that the bound n0C 2f

defined in the corollary is not particularly strong. It may be that n0C 2f is a lower bound for ng C 2g,
where ng is the geometric intersection number with a surface Sg of genus g homologous to S . It is easy
to visualize examples where n1 C 2 is much smaller than n0, for example.

In the case that n D n0 in Proposition 7.2 (ie when algebraic and geometric intersection numbers are
equal), the xA-module I.Y;K/ is annihilated by the defining ideal of the curve Dn. This means that we
can interpret I.Y;K/ as a coherent sheaf on Dn.

Geometry & Topology, Volume 29 (2025)
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Y

Z

�

Y

Z

�

Figure 4: The real loci defined by the vanishing of the generators G1.n/, left, and G2.n/, right,
for n D 7 in the coordinates .�;Y;Z/. Only the part with � D 1 is shown. The part with � D�1

is obtained by changing the sign of Y and Z. These are smooth affine cubic surfaces.

7.7 The degrees of the relations

The two generators G1.n/, G2.n/ for the ideal of relations for I.Zn;�1/ both have total degree mD
1
2
.n�1/

in .˛; ı/ but larger degree in � . However, a substitution simplifies the polynomials a little: if we substitute

Z D �˛ and Y D �ı

then, after clearing unnecessary powers of � from the denominator, we obtain a polynomial in Z, Y

and �4. Writing � D �4, the total degree of the generators Gi.n/ in .�;Z;Y / is m. The real loci defined
by the vanishing of these two polynomials in .�;Y;Z/ are shown in Figure 4 for n D 7.
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