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A B ST R A CT 

The Andes, with its diverse topography and climate, is a renowned cradle for adaptive radiation, particularly for vertebrate ectotherms such as 
lizards. Yet, the role of temperature in promoting physiological specialization in the Andes remains unclear. Aseasonality in the tropics should 
favour physiological specialization across elevation in lizards, but empirical data are limited and equivocal. Determining how thermal tolerances 
are geographically and phylogenetically structured is therefore a priority, particularly as environments continue to change rapidly. However, 
there is a gap in our knowledge of thermal limits of species from the Andes, one of the planet’s most biodiverse regions. Anoles, a diverse lizard 
group found across thousands of metres of elevation in the Andes, can offer insights into evolutionary adaptations to temperature. This study 
focused on 14 anole species from two clades (Dactyloa and Draconura) that independently diversified along elevational gradients in the Andes. 
We measured critical thermal limits (CTmin and CTmax) and found patterns of thermal tolerance specialization across elevation, both among and 
within species. Patterns of thermal specialization are similar among anole clades, indicating parallel responses to similar environmental pressures. 
Specifically, high-elevation anoles are more cold tolerant and less heat tolerant than their low-elevation counterparts, rendering thermal tolerance 
breadths stable across elevation (thermal specialization). Evolutionary rates of physiological traits were similar, reflecting parallel specialization 
in heat and cold tolerance across elevation. The adaptive radiation of anole lizards reflects physiological specialization across elevation, and the 
endemism such specialization favours, probably catalysed their remarkable diversity in the tropical Andes.

R E S U M E N

Los Andes, con su diversa topografía y clima, son reconocidos por ser cuna de radiación adaptativa, especialmente para ectotermos como las lagartijas. 
Sin embargo, el papel de cómo la temperatura promueve la especialización fisiológica en los Andes sigue siendo incierto. La falta de estacionalidad en 
los trópicos podría favorecer la especialización fisiológica a lo largo de la elevación en lagartijas, pero los datos empíricos son limitados y ambiguos. Por 
esto, determinar cómo las tolerancias térmicas están estructuradas geográfica y filogenéticamente en lagartijas es de vital importancia, especialmente 
cuando el ambiente está en constante cambio. No obstante, existe una brecha en nuestro conocimiento sobre los límites térmicos de las especies 
de los Andes, una de las regiones más biodiversas del planeta. Los Anolis, un grupo diverso de lagartijas que se encuentra a lo largo del gradiente de 
elevación en los Andes, pueden ofrecer información sobre adaptaciones evolutivas a la temperatura. Este estudio se centró en 14 especies de Anolis 
que perteneces a dos clados (Dactyloa y Draconura) que se diversificaron independientemente a lo largo de gradientes altitudinales en los Andes. 
Para estas, medimos los límites térmicos críticos (CTmin y CTmax) y encontramos patrones de especialización en la tolerancia térmica a lo largo de 
la elevación, tanto entre como dentro de las especies. Los patrones de especialización térmica son similares entre los clados de Anolis, lo que indica 
respuestas paralelas a presiones ambientales similares. Específicamente, los Anolis de alta elevación toleran temperaturas más frías y son menos 
tolerantes al calor que sus contrapartes de baja elevación, lo que hace que los rangos de tolerancia térmica sean estables a lo largo de la elevación 
(especialización térmica). Las tasas evolutivas de los rasgos fisiológicos fueron similares, reflejando una especialización paralela en la tolerancia al 
calor y al frío a lo largo de la elevación. La radiación adaptativa de las lagartijas Anolis refleja una especialización fisiológica a lo largo de la elevación, 
y el endemismo que favorece dicha especialización, probablemente catalizó su notable diversidad en los Andes tropicales.
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I N T RO D U CT I O N
The Andes Mountains are a powerful engine for speciation 
and are considered one of the most biodiverse regions on the 
planet ( Jiménez et al. 2009, Clapperton 2011, Hazzi et al. 2018, 
Rahbek et al. 2019, Alencar et al. 2024). The incredible biodiver-
sity reflects, in part, the topographic complexity of the Andes, 
which range from sea level to more than 6000 m asl and host 
a correspondingly wide range of climatic niches (Rahbek et al. 
2019). The pronounced climatic variation of the Andes pro-
vides a clear substrate for adaptive radiation involving physio-
logical specialization to different thermal and rainfall regimes 
(Sheldon 2019). Although adaptive radiation involves multi-
dimensional phenotypic evolution (Schluter 2000, Stroud and 
Losos 2016, Gillespie et al. 2020), it has most often been studied 
with respect to morphology (e.g. Warheit et al. 1999, Mahler 
et al. 2010, Moen et al. 2021, Patton et al. 2021, Ronco et al. 
2021, Viertler et al. 2021, Burress and Muñoz 2022), with com-
paratively fewer physiological studies (e.g. Givnish et al. 2004, 
Givnish and Montgomery 2014, Muñoz et al. 2014, Salazar et al. 
2019, Cicconardi et al. 2023, Alomar et al. 2024, Bodensteiner et 
al. 2024). As such, we know significantly less about the role of 
ecophysiological specialization in adaptive radiation, and even 
less about its role in diversification in the Andes.

This knowledge disparity is evident for anole lizards (genus 
Anolis), a classic example of adaptive radiation (e.g. Losos 2009, 
Muñoz et al. 2023). This group of lizards is characterized by 
the evolution of divergent structural habitat specialists, termed 
ecomorphs, bearing morphological and behavioural specializa-
tions to the specific type of vegetation strata they most often 
utilize (Williams 1972, Losos et al. 1998, Losos 2009, Huie et 
al. 2021). Yet, anoles are also diverse in their ecophysiology and 
have repeatedly specialized to different thermal microhabitats 
(e.g. shaded vs. open habitats), and to different macrohabitats 
across elevational gradients, from sea level up to 3700 m asl 
(Ruibal 1961, Rand 1964, Hertz et al. 2013, Muñoz et al. 2014, 
Gunderson et al. 2018, Salazar et al. 2019, Bodensteiner et al. 
2024). While morphology is relatively well studied in anoles, 
including several Andean species, comparatively less is known 
about the patterns of physiological specialization in this lin-
eage. This study focuses on expanding our understanding of 
ecophysiological evolution in anole lizards, focusing on their di-
verse radiation in the tropical Andes of Colombia.

Critical thermal limits define the acceptable thermal bound-
aries for organismal function, thus influencing species distribu-
tion ranges and vulnerability to temperature changes (Lancaster 
2016, Bennet et al. 2019, Collin et al. 2021, Beauty et al. 2023, 
Bovo et al. 2023). Specifically, the critical thermal minimum 
(CTmin) and maximum (CTmax) represent the lower and upper 
temperatures, respectively, at which an individual loses its loco-
motor ability (Angilletta 2009). Here, we use ‘cold tolerance’ 
and ‘heat tolerance’ to describe the critical thermal minimum 
and maximum, respectively. Ectotherms like anoles rely on am-
bient temperature to regulate their body temperature and carry 
out basic metabolic functions (reviewed in Angilletta 2009). 
Given that the tropics are aseasonal environments, we can pre-
dict that anole species will exhibit thermal specialization across 
elevation: this expectation that tropical lineages are physiologic-
ally specialized across elevation due to low seasonality is known 

as Janzen’s hypothesis ( Janzen 1967, Ghalambor et al. 2006). 
Specifically, we predict that species found at low elevation should 
be more heat tolerant and less cold tolerant than their counter-
parts at high elevation. Under this scenario, heat tolerance and 
cold tolerance should evolve at equal rates across elevation, as 
both features simultaneously specialize to local thermal condi-
tions, and thermal tolerance breadths (the range of temperatures 
separating critical limits) should remain unchanged with eleva-
tion.

Yet, there may be more complexity to this pattern because di-
urnal ectotherms like anoles may thermoregulate to maintain a 
certain body temperature, even in quite thermally different en-
vironments (Muñoz and Losos 2018). Across elevation, such 
thermoregulation should result in a similar physiological re-
sponse among species, even when found in habitats that vary in 
average thermal conditions (Huey et al. 2003, Muñoz and Losos 
2018). In this case, we would expect behavioural buffering to 
limit divergence in heat tolerance across elevation, a phenom-
enon termed the Bogert effect (Bogert 1949, Huey et al. 2003, 
Muñoz 2022). Anoles are inactive at night and nighttime tem-
peratures become progressively lower with elevation, limiting 
behavioural refuges from the cold and favouring physiological 
specialization to low environmental temperatures (Muñoz et 
al. 2014, Muñoz and Bodensteiner 2019). As such, we can pre-
dict that cold tolerance will increase with elevation, regardless 
of whether lizards diurnally thermoregulate or not. In this case, 
we would expect the rate of cold tolerance evolution to outpace 
that of heat tolerance, suggesting that specialization in the Andes 
involves rapid specialization to minimum environmental tem-
peratures more so than to maximum temperatures. Likewise, 
we would expect tolerance breadths to increase with elevation, 
reflecting a relatively inert heat tolerance and decreasing CTmin 
with elevation.

While critical temperature data on ectotherms available in 
the literature have expanded significantly across various taxa in 
recent decades, including reptiles (e.g. Huey et al. 2009, Muñoz 
et al. 2014, Gunderson and Stillman 2015, Piantoni et al. 2015, 
Andrango et al. 2016, Gunderson et al. 2018, Salazar and Miles 
2024), amphibians (e.g. Gunderson and Stillman 2015, von May 
et al. 2017), insects (e.g. Gaston and Chown 1999, Hoffmann 
2010, Stevens et al. 2010, Gunderson and Stillman 2015, Sinclair 
et al. 2016), and aquatic animals (e.g. Díaz et al. 2002, Dülger 
et al. 2012, Gunderson and Stillman 2015, Martinez et al. 2016, 
Sinclair et al. 2016, Yanar et al. 2019), there remains a notable 
gap in information on thermal limits for Andean-dwelling spe-
cies (but see Méndez-Galeano and Calderón-Espinosa 2017, 
Méndez-Galeano et al. 2020, Montoya-Cruz et al. 2024, Pinzón-
Barrera et al. 2024).

Andean anoles can be found from sea level to elevations of 
up to 3700 m, varying in the elevational range that they occupy, 
and different lineages have independently diversified across ele-
vation (Moreno-Arias et al. 2021). This replicated diversification 
across elevation renders anoles an ideal system for comparative 
physiological inquiry. In the present study, we focused on 14 spe-
cies from two anole clades, Dactyloa (comprising 138 species) 
and Draconura (comprising 69 species) (Poe et al. 2017), which 
independently diversified in the challenging environmental con-
ditions of the Andean mountains. We investigated how thermal 
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limits and thermal tolerance breadth vary with elevation within 
and among anole species. We compared the evolutionary rates of 
heat tolerance (the critical thermal maximum, CTmax) and cold 
tolerance (the critical thermal minimum, CTmin) within the two 
focal clades of anoles. Our study investigates how thermal vari-
ation across elevation predicts the evolution of two key physio-
logical traits in tropical mainland ectotherms, and how thermal 
physiology has evolved in the Andean radiation of anole lizards.

M ET H O D S

Study sites and species
We collected anole cold tolerance (CTmin) and heat tolerance 
(CTmax) measurements from December 2016 to November 
2017 in five different localities from the Colombian Andes 
(Supporting Information Fig. S1): (i) Anchicayá Hydroelectric 
(3°26ʹ27.12″N, 76°40ʹ0.13″W; 192–639 m); (ii) Bitaco Forest 
Reserve (3°33ʹ9.95″N, 76°35ʹ1.52″W; 1973–2050 m); (iii) 
Parque Nacional Natural (PNN) Tatamá (5°13ʹ47.96″N, 
76°5ʹ1.51″W; 1326–2330 m); (iv) PNN Farallones de Cali 
(3°24ʹ41.65″N, 76°39ʹ5.36″W; 1870–2369 m); and (v) 
Passiflora Reserve (4°55ʹ59.59″N, 74°6ʹ43.19″W; 2818m). We 
captured 367 individuals from 14 species (Fig. S2).

Nine species belong to the Dactyloa clade: Anolis calimae 
(2117–2240 m; N = 4), A. chloris (1341–1488 m; N = 21), 
A. danieli (1776–2330 m; N = 8), A. eulaemus (2042 m; 
N = 1), A. heterodermus (1345–2818 m; N = 9), A. maculigula 
(1389–1438 m; N = 24), A. princeps (527–1408 m; N = 4), 
A. purpurescens (formerly known as A. chocorum; 572–591 m; 
N = 2), and A. ventrimaculatus (1343–2369 m; N = 142). 
Five species belong to the Draconura clade: Anolis antonii 
(1326–2314 m; N = 131), A. granuliceps (586–639 m; N = 2), 
A. lyra (591 m; N = 1), A. maculiventris (256–624 m; N = 16) 
and A. notopholis (192–285 m; N = 2). Two species, Anolis 
antonii and A. ventrimaculatus, were sampled at multiple lo-
calities at different elevations. Anolis antonii was measured at 
PNN Farallones de Cali (N = 30) and PNN Tatamá (N = 101), 
and A. ventrimaculatus was measured at Bitaco Forest Reserve 
(N = 53), PNN Farallones de Cali (N = 53), and PNN Tatamá 
(N = 36). Most of the individuals in this study were found 
<2 m above the ground. Some of the species we measured (A. 
chloris, A. calimae, A. eulaemus, A. heterodermus, A. princeps, and 
A. purpurescens) are commonly found high up in trees; unfortu-
nately, for these we were unable to precisely measure how high in 
the tree they were perched (Supporting Information Table S1).

Measurement of CTmin and CTmax

Lizard capture was mostly done during the night (between 
6 p.m. and 2 a.m.), when anoles are easier to spot. Individuals 
were captured by hand, and for each we also recorded a GPS 
point. Temperature measurements during tolerance trials were 
taken following Muñoz et al. (2014) and Llewelyn et al. (2016) 
with the following modifications. We conducted all the physio-
logical measurements at the field station near to the capture site 
of each individual. To record instant body temperature of larger 
species [snout–vent length (SVL) > 60 mm], a 2-mm thermo-
couple was inserted into the cloaca of adult individuals; for ju-
veniles and adults of smaller species (SVL < 60 mm), a 0.22-mm 

thermocouple was used instead. The thermocouple was secured 
to the base of the tail using medical tape. To measure CTmin and 
CTmax, the anole was placed into a plastic container that was sub-
merged in a cold-water ice bath or a warm-water bath, respect-
ively. Each time the body temperature of the lizard changed one 
degree, the individual was turned, placing it on its back inside the 
container. If the lizard righted itself to its original position, we 
continued with the temperature reduction or increase procedure 
until it was not able to turn itself over, indicating a loss of loco-
motor function. At this point, the temperature was recorded as 
the CTmin or CTmax. At the end of the experiment, the individual 
was slowly returned (1°C every minute) to its initial tempera-
ture by means of a warm-water or cold-water bath. To minimize 
animal stress, only one measurement (either CTmin or CTmax) was 
collected per individual in the morning after they were captured; 
we performed both measurements only for species where we 
found one or two individuals (A. eulaemus, A. granuliceps, A. lyra, 
A. purpurescens, A. notopholis). The morning after thermal trials 
individuals were released at their capture site. Before releasing 
an individual, a mark was made on the belly using a permanent 
marker ink to avoid measuring the same individual twice. From 
CTmin and CTmax we calculated the thermal breadth (Tbr; also 
referred as thermal tolerance range) for each species, such that 
Tbr = CTmax − CTmin.

Environmental data
As a proxy for the general thermal conditions experienced by 
different lizard species, we extracted three ecologically relevant 
temperature variables from the WorldClim database (Fick and 
Hijmans 2017) for each of the sample sites of the study [Bio 1 
(mean annual temperature), Bio 5 (maximum annual tempera-
ture), and Bio 6 (minimum annual temperature); Qu and Wiens 
(2020)]. These WorldClim layers are resolved to 1 km2 and sum-
marize thermal averages, extremes, and ranges. As these three cli-
matic variables were highly correlated (Supporting Information 
Tables S2 and S3), we decided to use one variable (Bio 1) for 
our analyses. Using mean values from WorldClim data (Fick and 
Hijmans 2017) to represent the climatic niche may not reflect 
the microhabitat variation that lizards experience, and micro- 
and macroclimatic niches can vary in ectotherms (Velasco et al. 
2016, 2020, Farallo et al. 2020, Muñoz et al. 2022). Nevertheless, 
these macroclimatic features do provide a coarse approxima-
tion for general thermal conditions experienced by lizards and 
can serve as a starting point to evaluate the relationship between 
thermal physiology and the macroenvironment. In addition, we 
also investigated the operative environmental temperatures ex-
perienced by lizards (described below).

Operative environmental temperature (Te)
We used the R package ‘NicheMapR’ (Kearney and Porter 2017) 
to estimate the operative environmental temperatures (Te) at 
each site. Te is defined as the equilibrium body temperature of a 
non-thermoregulating organism in the open, accounting for the 
various sources of heat gain and heat loss. We estimated Te where 
the anoles were found. By using ‘NicheMapR’ we can model 
microclimate by using locations, forest cover level, and other fac-
tors to calculate the microclimatic conditions that an ectotherm 
experiences (Kearney and Porter 2017, 2019). We acquired 
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macroclimate data for the microclimatic analyses from the ERA5 
fifth generation ECMWF global atmospheric reanalysis of global 
climate using the ‘mcera5’ package (Klinges et al. 2022). We ac-
quired microclimatic data through the ‘NicheMapR’ function 
micro_era5, which is integrated with the ‘microclima’ package 
(MacLean et al. 2019). The output of micro_era5 is used by the 
function ectotherm in ‘NicheMapR’ to generate a model of heat 
and water exchange. We obtained Te estimates for each Anolis 
species at each site by using the default organismal parameters 
except for the mean body mass of each species. Because the spe-
cies of Anolis in the data are arboreal, we set the parameter for 
climb equal to 1, which indicates that a species is arboreal. We es-
timated the mean monthly Te values for the duration of the study 
period (December 2016 to November 2017). We only show the 
Te mean results in the main text, and we provide the results for 
Te minimum and Te maximum in the Supporting Information.

Statistical and phylogenetic analyses
All statistical analyses were conducted using R v.4.3.2 (R Core 
Team 2023). Figures were made with the ‘ggplot2’ package 
(Wickham 2009). Before we conducted phylogenetic analyses, 
we evaluated whether CTmin and CTmax differed between sexes 
(adult males vs. adult females) and age classes (juveniles vs. 
adults). As we did not find variation among the categories, we 
combined data for all individuals (Supporting Information S1).

For the phylogenetic analysis, we used the Poe et al. (2017) 
phylogeny based on morphological and molecular data (MCC—
maximum clade credibility tree) and species’ averages for each 
trait. First, we quantified the amount of phylogenetic signal for 
CTmin, CTmax, and Tbr, using the λ statistic (Pagel 1999) with the 
function phylosig in the R package ‘phytools’ (Revell 2012). 
We used this statistic to evaluate the phylogenetic dependence 
of the trait data. Pagel’s λ ranges from 0 to 1, with values closer 
to 0 indicating weak phylogenetic signal, meaning that traits 
are evolving independent of relatedness, and values closer to 1 
indicating greater phylogenetic structuring to the data, following 
expectations under a Brownian motion (BM) model of evolu-
tion (Pagel 1999). Less commonly, λ can exceed 1, indicating 
that traits are more similar than expected under BM (Pagel 
1999). Intraspecific comparisons of thermal limits among popu-
lations of Anolis antonii and A. ventrimaculatus were performed 
with one-way ANOVA (separate for each species) with the mean 
for CTmin, CTmax, Tbr, and elevation.

To evaluate the relationship between thermal limits (CTmin, 
CTmax), breadth (Tbr), elevation (mean elevation for each spe-
cies), and thermal environment (Bio 1, Te mean) among the 14 
species we used phylogenetic generalized least squares (PGLS) 
analysis using the pgls.SEy function in the package ‘phytools’ 
(Revell 2012); this function takes into account the standard 
error for each species. Before interpreting the PGLS results, we 
quantified the phylogenetic signal of the residuals using Pagel’s λ 
to assess the influence of shared evolutionary history on the re-
sidual variation. Because we have only one Tbr value per species, 
we were not able to run a pgls.SEy, and instead we ran a PGLS 
using the pgls function in the package ‘caper’ (Orme 2018). We 
compared the model fit using the Akaike Information Criterion 
for small samples sizes (AICc; Sugihara 1978, Burnham and 
Anderson 2002).

To compare the rate of physiological evolution for CTmin and 
CTmax, first we fitted five different models of evolution—BM, 
Ornstein–Uhlenbeck (OU), Early Burst (EB), Delta, and White 
Noise (WN)—to each physiological trait, using the fitContinuous 
function in the ‘geiger’ package (Harmon et al. 2008). We com-
pared each model by examining the AICc.

We were also interested in whether the relationship between 
elevation and thermal physiology varied between clade of anoles 
or, instead, whether the effect of elevation was comparable 
among clades. To this end we conducted a phylogenetic ana-
lysis of covariance (pANCOVA; Revell and Harmon 2022) to 
evaluate whether the slopes and intercepts of the trait–environ-
ment relationships varied between anole clades (Dactyloa and 
Draconura).

We used Adams’ (2013) method to compare the evolu-
tionary rates (σ2) of CTmin and CTmax. Specifically, we performed 
a likelihood-ratio test (LRT) to compare the likelihood of a 
model in which rates for CTmin and CTmax were constrained to be 
equal (i.e. σ2

min = σ2
max). To consider intraspecific measurement 

error, we did incorporate the standard error (corrected) into the 
analysis. We also show the results when we did not incorporate 
standard error (uncorrected). We used the ‘ape’ package in R to 
run the code provided by Adams (2013). Since CTmin and CTmax 
are correlated with elevation and might be correlated with each 
other, we set the TraitCov argument to TRUE to specify that 
both physiological traits may covary.

R E SU LTS
We measured CTmin and CTmax from 350 lizards (173 individuals 
for CTmin and 177 for CTmax; Table 1) from 14 species. These 350 
individuals were 87 adult males (37 for CTmin and 50 for CTmax), 
113 adult females (62 for CTmin and 51 for CTmax), and 123 ju-
veniles (60 for CTmin and 63 for CTmax). Additionally, we found 
27 individuals that we were not able to sex or age (14 for CTmin 
and 13 for CTmax). We found no difference in CTmin and CTmax be-
tween sexes and ages (Supporting Information S1, Fig. S3, Table 
S4), so we used the entire data set to conduct subsequent phylo-
genetic analyses.

Thermal habitat
There was a high correlation between CTmin and CTmax with both 
Bio 1 and elevation (Fig. 1), where CTmin and CTmax increase 
with mean annual temperature, and decrease with elevation. By 
contrast, Tbr showed no relationship with Bio 1 or elevation and 
remained fairly constant across elevation (Fig. 1; Supporting 
Information Fig. S4 for Bio 5 and Bio 6, Tables S5 and S6). We 
found similar results for the correlations between CTmin and 
CTmax with Te (Fig. 1 for Te mean, Fig. S4 for Te minimum and 
Te minimum, Tables S5 and S6), where both CTmin and CTmax in-
crease as Te increases. We ran pgls (pgls.SEy and pgls) analyses for 
all species combined.

Interspecific variation in CTmin, CTmax and Tbr

We found that Pagel’s λ was low (0.00006), suggesting little to no 
phylogenetic structure to the trait data. We determined that the 
residual variation was largely independent of phylogeny, and used 
pgls.SEy for subsequent analysis (Fig. 2; Supporting Information 
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Table S7). The WN model best fit the CTmin, CTmax and Tbr data 
(Table S8); this WN model indicates that the thermal traits 
evolved independently of the phylogeny, which corroborates 
Pagel’s λ result (Table S9; Harmon et al. 2008, Muschick et al. 
2014). Both thermal limits, CTmin and CTmax, decreased with ele-
vation (Fig. 1; Table 2; Tables S5 and S6). We found that these 
relationships were similar, both in slope and in intercept, for spe-
cies in the Dactyloa and Draconura clades (Table S10). We did 
not find differences in the evolutionary rate of the thermal traits 
(Table 3), meaning that CTmin (σ2 = 0.21) and CTmax (σ2 = 0.19) 
evolve at similar rates.

Intraspecific variation in CTmin and CTmax

We found that populations of A. antonii located at different 
elevations have different CTmin values (Fig. 3A), such that the 
higher elevation population is less cold tolerant (higher CTmin) 
(t = 4.51, P < .001, d.f. = 58). We did not detect differences 
in CTmax among populations (t = −1.70, P = .09, d.f. = 63). 
Similarly, for A. ventrimaculatus, we found that the populations 
that are found at high elevation are less cold tolerant (higher 
CTmin), and those found at low elevation are more heat tol-
erant (higher CTmax) (CTmin: F2,54 = 9.03, P < .001 and CTmax: 
F3,72 = 5.2, P = .002; Fig. 3).

D I S C U S S I O N
The topographical complexity of the Andes forged a wide range 
of thermal habitats presenting the opportunity for physiological 
specialization across elevation. As predicted, we found that mon-
tane anoles tolerate lower temperatures better than their low-
elevation counterparts, and that anoles closer to sea level were 
more heat tolerant than those found at high elevation. Similarly, 
numerous studies have found that tolerance to cold is enhanced 
in cooler environments across a wide range of ectotherm taxa 
(e.g. Araújo et al. 2013, Sunday et al. 2014, 2019, von May et al. 

2017, Pintanel et al. 2019, Gonzalez et al. 2022). However, our 
finding that species in cooler environments are also less heat tol-
erant than their counterparts in warmer environments contrasts 
with other studies, including on anoles, in which heat tolerance 
remains relatively static across environmental clines (e.g. Muñoz 
et al. 2014, Shah et al. 2017, Qu and Wiens 2020). Such strong 
physiological structuring across altitudinal clines may help ex-
plain why phylogenetic signal is low as close relatives diverge 
in thermal tolerances across environmental boundaries, and 
appear physiologically specialized to their local conditions, as 
evidenced by the fact that thermal tolerance breadth (Tbr) is un-
changed across elevation (Fig. 1). The decrease in both cold and 
heat tolerance with elevation may also explain why rates of CTmin 
and CTmax evolution are indistinguishable. The adaptive radi-
ation of Andean anoles therefore involves specialization in both 
heat and cold tolerance across elevation. Below, we unpack these 
findings in greater detail.

How thermal habitat influences the evolution of critical 
thermal limits

We observed a strong correlation between heat tolerance, cold 
tolerance, and the thermal environment (Fig. 1), suggesting 
that local climatic conditions favour thermal physiological spe-
cialization. Consistent with Janzen’s hypothesis ( Janzen 1967, 
Sheldon et al. 2018), tolerance breadths are stable across eleva-
tion, reflecting local adaptation in both cold and heat tolerance. 
Additionally, we found both clades, Dactyloa and Draconura, 
followed the same pattern of evolution, indicating parallel trends 
of thermal specialization among lineages that independently ra-
diated in the Andes (Fig. 1; Supporting Information Fig. S4; Poe 
et al. 2017).

As both heat and cold tolerance decrease with elevation, we 
observed no differences in the evolutionary rate of these two 
traits. Previous studies on other ectotherm lineages have re-
ported similar findings for CTmin and CTmax (Shah et al. 2017, 

Table 1. Average capture elevation, CTmin, CTmax, and Tbr for each species.

Species Elevation (m) CTmin (°C) CTmax (°C) Tbr (°C)

Dactyloa clade
A. chlorisd 1414 ± 178 12.97 ± 2.28 (18) 31.82 ± 1.07 (14) 18.85
A. danielid 2109 ± 173 13.62 ± 1.47 (7) 30.10 ± 1.29 (5) 16.48
A. eulaemusb 2042 11.50 (1) 23.60 (1) 12.10
A. heterodermusce 2182 ± 358 7.44 ± 2.33 (7) 30.36 ± 4.40 (8) 22.93
A. maculigulad 1409 ± 18 13.10 ± 1.62 (12) 29.58 ± 1.39 (8) 16.48
A. calimaec 2158 ± 53 13.59 ± 0.78 (2) 26.36 ± 3.24 (3) 12.77
A. princepsa 800 ± 425 13.109 ± 4.70 (4) 32.31 ± 6.60 (3) 19.22
A. purpurescensa 582 ± 13 18.97 ± 1.06 (2) 31.97 ± 0.76 (2) 13.00
A. ventrimaculatusbcd 1992 ± 217 11.93 ± 2.52 (45) 27.58 ± 2.99 (62) 15.66
Draconura clade
A. antoniicd 1608 ± 333 13.36 ± 2.29 (60) 27.63 ± 1.99 (59) 14.26
A. granulicepsa 621 ± 37 15.50 ± 0.93 (2) 32.69 (1) 17.19
A. lyraa 591 17.86 (1) 36.50 (1) 18.64
A. maculiventrisa 580 ± 88 17.98 ± 1.90 (10) 31.86 ± 0.79 (8) 13.88
A. notopholisa 239 ± 66 14.43 ± 0.64 (2) 32.41 ± 2.45 (2) 17.98

Mean and standard deviation are shown and the numbers in parentheses indicate sample size. The locality for each species is shown as follows: aAnchicayá Hydroelectric, bBitaco 
Forest Reserve, cPNN Farallones de Cali, dPNN Tatamá, and ePassiflora Forest Reserve.
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von May et al. 2017, Pintanel et al. 2019, Gonzalez et al. 2022, 
Bovo et al. 2023, Bota-Sierra et al. 2022 [CTmax only]). Yet, prior 
work on Caribbean anoles found that heat tolerance does not 
vary across elevation, while cold tolerance does (Muñoz et al. 
2014). Behavioural thermoregulation is a primary mechanism 
underlying this disparity between heat and cold tolerance adap-
tation: whereas behavioural thermoregulation ‘shields’ diurnal 
lizards like anoles from selection on upper thermal limits, behav-
iour is less effective at shielding them from selection on lower 
thermal limits (Muñoz and Bodensteiner 2019, Bodensteiner 
et al. 2021). This lopsided effect of thermal behaviour results in 
stability in heat tolerance across elevation (and a relatively slow 
rate of evolution) and lability in cold tolerance across elevation 
(and a relatively fast rate of evolution) (Muñoz 2022). While 
we did not consider thermal behaviour here, it is probable these 

Andean lizards are thermoconformers, as they tend to occupy 
dense, closed-canopy habitats, where the costs of thermoregu-
lation are high owing to long transit distance between sun and 
shaded patches, meaning that the distance travelled may exceed 
the home range of an individual (Huey 1974). Moreover, these 
anoles tend to move relatively little (Losos 2009), reflecting 
greater predation risk on the South American mainland relative 
to the Caribbean, further limiting thermoregulatory behaviour.

Putting these pieces together, habitat structure and preda-
tion may favour thermoconformity in the Andes, which in turn 
favours physiological specialization across elevation and prob-
ably contributed to the anole adaptive radiation in the Andes. 
Under Janzen’s (1967) hypothesis, this physiological specializa-
tion should limit dispersal across elevation, limit gene flow, and 
potentially help catalyse speciation, as has been observed in South 

Figure 1. Relationship between species between Tbr (top), CTmin (middle), and CTmax (bottom) with Bio 1 (mean annual temperature; A, D, 
G), Te (operative environmental temperature; B, E, H), and mean elevation (C, F, I) Anolis antonii—anto, A. calimae—cali, A. chloris—chlr, A. 
danieli—dani, A. granuliceps—gran, A. heterodermus—hetr, A. maculigula—macg, A. maculiventris—macv, A. notopholis—noto, A. princeps—
prin, A. purpurescens—purp, and A. ventrimaculatus—vent. Dashed lines represent the phylogenetic regression for all species. Coloured lines 
indicate the phylogenetic regression for Draconura species in green and Dactyloa species in brown. Each point corresponds to a different 
species of Anolis lizard. Circles indicate Dactyloa species; triangles indicate Draconura species.
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American aquatic insects (Polato et al. 2018). We do note, how-
ever, that there may be some thermoregulation in some Andean 
anole species that may impact patterns of physiological special-
ization. For at least one Andean anole species, A. heterodermus, 
we know that activity changes throughout the day, decreasing as 
the day gets warmer (Méndez-Galeano and Calderón-Espinosa 
2017, Méndez-Galeano et al. 2020). Therefore, the relationship 
between thermal behaviour and physiological specialization 

in Andean anoles awaits deeper exploration. Future studies on 
the thermal physiology of Andean anoles should also inves-
tigate how thermal plasticity might impact patterns of special-
ization in CTmin and CTmax. In some ectotherms, for example, 
limited plasticity has been observed (e.g. Domínguez-Guerrero 
et al. 2019, García-Robledo and Baer 2021). In one Central 
American anole (Anolis apletophallus), by contrast, high levels 
of plasticity have been found at different levels, phenotypic and 

Figure 2. Interspecific divergence of (A) CTmax and (B) CTmin for Andean anoles. Species tree shows the relationship between 11 species for 
CTmax (top) and 12 species for CTmin (bottom). A. antonii—anto, A. calimae—cali, A. chloris—chlr, A. danieli—dani, A. granuliceps—gran, 
A. heterodermus—hetr, A. maculigula—macg, A. maculiventris—macv, A. notopholis—noto, A. princeps—prin, A. purpurescens—purp, A. 
ventrimaculatus—vent. Species are coloured according to their clade (Dactyloa—brown, Draconura—green).
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genetic, at least for heat tolerance (Rosso et al. 2024). More 
generally, the degree of plasticity appears to vary among traits 
and lineages (Gunderson and Stillman 2015), underscoring the 
need for species-specific estimates. Nevertheless, to the extent 
that physiological evolution has contributed to the diversity of 
Andean anoles, thermoconformity may be a potent catalyst for 
their adaptive radiation.

Intraspecific variation in CTmin and CTmax

Contrasting differences in thermal limits were observed among 
populations of A. antonii and A. ventrimaculatus (Fig. 3) in CTmin. 
We found that, for both species, cold tolerance is lower at high-
elevation sites and higher at the low-elevation site, while CTmax for 
A. antonii remains unchanged. In contrast, for A. ventrimaculatus 
(Fig. 3B) CTmax is higher at the low-elevation site and lower at 
high-elevation sites. Despite the counterintuitive nature of these 
patterns, our results suggest that factors beyond elevation may 
contribute to differences in thermal limits between popula-
tions and among species. However, there could be more factors 
playing a role in our findings including microhabitat segregation 
( Jenssen 1970, Hertz 1974, Du et al. 2000, Ramirez-Bautista 
and Benabib 2001, Herczeg et al. 2008, Tang et al. 2013, Muñoz 
et al. 2016), predator and competitor presence (Terborgh and 
Weske 1975, Huey and Kingsolver 1989, Helmuth et al. 2005, 
Jankowski et al. 2013, Salazar et al. 2019, Londoño et al. 2023), 
humidity (Hutchinson 1957, Wake and Lynch 1976), rainfall 

(Wake and Lynch 1976, Salazar and Miles 2024), morphology 
(Wegener et al. 2014), and plastic capacity (Llewelyn et al. 2016, 
Phillips et al. 2016, García-Robledo and Baer 2021, Rosso et al. 
2024). This suggests that biotic and abiotic factors could play a 
role in local adaptation that is not captured in a broader, macro-
evolutionary view across the lineage. Future studies should inte-
grate these factors to understand their role in thermal physiology 
variation among species and populations, including behaviour 
during daytime.

Although climatic stability in tropical regions has historically 
been cited as a key factor in explaining species range limits, par-
ticularly along mountain ranges ( Janzen 1967), the influence 
of climatic heterogeneity on species’ physiological and evolu-
tionary traits in these regions has often been overlooked (Boyle 
et al. 2020, Muñoz 2022). The geomorphological complexity of 
the Andes, spanning various valleys, slopes, and elevations, prob-
ably serves not only as a driver of faunistic diversity (Alencar et 
al. 2024), but also as a determinant of thermal physiology diver-
sity (Velasco et al. 2016). Unfortunately, this geomorphological 
complexity of the Andes cannot be captured by WorldClim or 
NicheMapR data (Sears et al. 2019). To truly understand how 
environmental temperature affects thermal physiology evo-
lution, we should use microclimatic data collected on-site. 
However, using Bio 1 and Te mean we observed the same pattern 
for our three physiological variables (CTmin, Tbr, CTmax) for all 
species in the two clades (Fig. 1). The diverse microclimates cre-
ated by different topographical features impose unique thermal 
challenges among populations, leading to the observed differ-
ences in thermal physiology within species.

Although we discussed how temperature has contributed to 
the colonization and adaptation to the Andes climate, there are 
additional factors that could have affected our results. We have 
few individuals for some of the species we captured and meas-
ured, which may lead to biased estimates of CTmin and CTmax. 
Additionally, we used species from two different clades with few 
representatives from each. Furthermore, we have no knowledge 
of the genetic background of Andean anole species, which could 
alter our understanding of how these species have evolved to 
withstand low temperatures in the Andes. These are several fac-
tors that should be taken into consideration for further studies. 

Table 2. Results from phylogenetic generalized linear regression models for CTmin, CTmax, and Tbr assuming Brownian motion as the 
evolutionary model.

Model Coefficient P-value AIC logLik

CTmin ~ elevation −0.0024 .015 50.00 −22.00
CTmin ~ Bio 1 0.57 .016 50.19 −22.09
CTmin ~ Te average 0.64 .0073 48.41 −21.20
CTmax ~ elevation 0.57 .0077 48.25 −21.13
CTmax ~ Bio 1 0.61 .0047 47.12 −20.56
CTmax ~ Te average 0.72 .0012 44.44 −19.22

Model Coefficient P-value R2 F

Tbr ~ elevation <0.0001 .70 .019 0.16
Tbr ~ Bio 1 −0.18 .66 .026 0.21
Tbr ~ Te average −0.22 .60 .035 0.29

Coefficient, P-value and AIC values are shown for the pgls.SEy results, and the coefficient, P-value, R2 and F-value are shown for the pgls results. Significant results are shown in italics.

Table 3. Evolutionary rate comparison for CTmin and CTmax.

Pairwise 
comparison

Uncorrected 
LRTd.f=1; P

Corrected 
LRTd.f=1; P

CTmin vs CTmax .03; .86 .03; .86
Confidence interval 
for evolutionary rate

Low High

CTmin .15 .28
CTmax .13 .24

Pairwise comparison for evolutionary rates among traits. The results are given for 
two analyses, one in which we did not consider intraspecific measurement of error 
(uncorrected), and another in which we did incorporate the error (corrected). The 
confidence interval for the evolutionary rates for CTmin and CTmax are also shown.
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Nevertheless, this work presents a significant advance forward: 
unlike in the Caribbean, mainland anoles are notoriously cryptic 
and exhibit lower densities (discussed in Losos 2009), which 
has surely contributed to the relative lack of physiological know-
ledge for continental species.

Just as important as the factors that shape the origin of bio-
diversity are those that threaten its loss. For ectotherms like 
anoles, the rapid rise of environmental temperatures presents an 
existential threat, and there is an urgent need to assess vulner-
ability across the animal tree of life (Deutsch et al. 2008, Huey et 
al. 2010, Muñoz and Moritz 2016, Stillman 2019). Even among 
ectotherms, tropical anoles like those studied here are expected 
to be particularly vulnerable, as they are already operating near 
their physiological limits (Huey et al. 2009, Sunday et al. 2014). 
Our data on Andean anoles are consistent with this perspective: 

whether near sea level or several kilometres above it, species are 
physiologically specialized to their local thermal conditions, and 
exhibit relatively narrow tolerance breadths, as predicted for 
tropical lizards (Huey et al. 2009).

The critical question remains whether species will be able to 
keep pace with the rapid rate at which climate change is affecting 
their natural environments. Studies should focus on under-
standing how future temperatures and rainfall patterns will affect 
the activity patterns, energetic balance, and population growth 
rates of Andean anoles to connect physiological variation to 
demographic patterns under rapid global change.

CO N CLU S I O N
Our study on Andean anoles has yielded insights into their 
thermal physiology and adaptation to their environment. When 
compared to low-elevation anoles, those at high elevations dem-
onstrated greater performance capacity at lower temperatures 
but were also less tolerant of higher temperatures. These results 
align with Janzen’s (1967) hypothesis, as thermal breadth re-
mains constant across elevation, reflecting local specialization in 
both heat and cold tolerance. We also observed that the evolu-
tion of cold and heat tolerance occurs at similar rates, and this 
occurred independently in the two anoles clades tested on this 
study, Dactyloa and Draconura. Phylogenetic analysis revealed 
that thermal limits vary among closely related species, indicating 
a departure from niche conservatism and reflecting lability in 
physiological tolerance as species diversified across elevation. 
Ecological and phenotypic divergence among close relatives is a 
canonical signature of adaptive radiation. The intricate geomor-
phological complexity of the Andes emerged as a key driver of 
thermal physiology diversity in the adaptive radiation of main-
land anoles. Understanding the role of physiological diversity in 
diversification could offer valuable insights into how two clades 
from the genus with different evolutionary histories have similar 
evolutionary responses to adaption to mountainous environ-
ments. Future research should aim to elucidate the impact of the 
genetic background on the distribution and diversification of 
montane ectotherms, considering their evolutionary history and 
potential differential effects on lowland and highland species.
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