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ABSTRACT

The Andes, with its diverse topography and climate, is a renowned cradle for adaptive radiation, particularly for vertebrate ectotherms such as
lizards. Yet, the role of temperature in promoting physiological specialization in the Andes remains unclear. Aseasonality in the tropics should
favour physiological specialization across elevation in lizards, but empirical data are limited and equivocal. Determining how thermal tolerances
are geographically and phylogenetically structured is therefore a priority, particularly as environments continue to change rapidly. However,
there is a gap in our knowledge of thermal limits of species from the Andes, one of the planet’s most biodiverse regions. Anoles, a diverse lizard
group found across thousands of metres of elevation in the Andes, can offer insights into evolutionary adaptations to temperature. This study
focused on 14 anole species from two clades (Dactyloa and Draconura) that independently diversified along elevational gradients in the Andes.
We measured critical thermal limits (CT__and CTmX) and found patterns of thermal tolerance specialization across elevation, both among and
within species. Patterns of thermal specialization are similar among anole clades, indicating parallel responses to similar environmental pressures.
Specifically, high-elevation anoles are more cold tolerant and less heat tolerant than their low-elevation counterparts, rendering thermal tolerance
breadths stable across elevation (thermal specialization). Evolutionary rates of physiological traits were similar, reflecting parallel specialization
in heat and cold tolerance across elevation. The adaptive radiation of anole lizards reflects physiological specialization across elevation, and the
endemism such specialization favours, probably catalysed their remarkable diversity in the tropical Andes.

RESUMEN

Los Andes, con su diversa topografia y clima, son reconocidos por ser cuna de radiacion adaptativa, especialmente para ectotermos como las lagartijas.
Sin embargo, el papel de como la temperatura promueve la especializacion fisioldgica en los Andes sigue siendo incierto. La falta de estacionalidad en
los trépicos podria favorecer la especializacion fisiologica alo largo dela elevacion enlagartijas, pero los datos empiricos son limitados y ambiguos. Por
esto, determinar como las tolerancias térmicas estin estructuradas geografica y filogenéticamente en lagartijas es de vital importancia, especialmente
cuando el ambiente estd en constante cambio. No obstante, existe una brecha en nuestro conocimiento sobre los limites térmicos de las especies
de los Andes, una de las regiones mds biodiversas del planeta. Los Anolis, un grupo diverso de lagartijas que se encuentra a lo largo del gradiente de
elevacion en los Andes, pueden ofrecer informacion sobre adaptaciones evolutivas a la temperatura. Este estudio se centrd en 14 especies de Anolis
que perteneces a dos clados (Dactyloa y Draconura) que se diversificaron independientemente a lo largo de gradientes altitudinales en los Andes.
Para estas, medimos los limites térmicos criticos (CTmin y CTmax) y encontramos patrones de especializacién en la tolerancia térmica a lo largo de
la elevacion, tanto entre como dentro de las especies. Los patrones de especializacion térmica son similares entre los clados de Anolis, lo que indica
respuestas paralelas a presiones ambientales similares. Especificamente, los Anolis de alta elevacion toleran temperaturas mas frias y son menos
tolerantes al calor que sus contrapartes de baja elevacion, lo que hace que los rangos de tolerancia térmica sean estables a lo largo de la elevacion
(especializacién térmica). Las tasas evolutivas de los rasgos fisiolégicos fueron similares, reflejando una especializacién paralela en la tolerancia al
calor y al frio a lo largo de la elevacion. La radiacion adaptativa de las lagartijas Anolis refleja una especializacion fisioldgica a lo largo de la elevacion,
y el endemismo que favorece dicha especializacién, probablemente cataliz6 su notable diversidad en los Andes tropicales.
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INTRODUCTION

The Andes Mountains are a powerful engine for speciation
and are considered one of the most biodiverse regions on the
planet (Jiménez et al. 2009, Clapperton 2011, Hazzi ef al. 2018,
Rahbek et al. 2019, Alencar et al. 2024). The incredible biodiver-
sity reflects, in part, the topographic complexity of the Andes,
which range from sea level to more than 6000 m asl and host
a correspondingly wide range of climatic niches (Rahbek ef al.
2019). The pronounced climatic variation of the Andes pro-
vides a clear substrate for adaptive radiation involving physio-
logical specialization to different thermal and rainfall regimes
(Sheldon 2019). Although adaptive radiation involves multi-
dimensional phenotypic evolution (Schluter 2000, Stroud and
Losos 2016, Gillespie et al. 2020), it has most often been studied
with respect to morphology (e.g. Warheit et al. 1999, Mahler
et al. 2010, Moen et al. 2021, Patton et al. 2021, Ronco et al.
2021, Viertler et al. 2021, Burress and Munoz 2022), with com-
paratively fewer physiological studies (e.g. Givnish et al. 2004,
Givnish and Montgomery 2014, Mufioz et al. 2014, Salazar et al.
2019, Cicconardi et al. 2023, Alomar et al. 2024, Bodensteiner et
al. 2024). As such, we know significantly less about the role of
ecophysiological specialization in adaptive radiation, and even
less about its role in diversification in the Andes.

This knowledge disparity is evident for anole lizards (genus
Anolis), a classic example of adaptive radiation (e.g. Losos 2009,
Muiioz et al. 2023). This group of lizards is characterized by
the evolution of divergent structural habitat specialists, termed
ecomorphs, bearing morphological and behavioural specializa-
tions to the specific type of vegetation strata they most often
utilize (Williams 1972, Losos et al. 1998, Losos 2009, Huie et
al. 2021). Yet, anoles are also diverse in their ecophysiology and
have repeatedly specialized to different thermal microhabitats
(e.g. shaded vs. open habitats), and to different macrohabitats
across elevational gradients, from sea level up to 3700 m asl
(Ruibal 1961, Rand 1964, Hertz et al. 2013, Munoz et al. 2014,
Gunderson et al. 2018, Salazar et al. 2019, Bodensteiner et al.
2024). While morphology is relatively well studied in anoles,
including several Andean species, comparatively less is known
about the patterns of physiological specialization in this lin-
eage. This study focuses on expanding our understanding of
ecophysiological evolution in anole lizards, focusing on their di-
verse radiation in the tropical Andes of Colombia.

Critical thermal limits define the acceptable thermal bound-
aries for organismal function, thus influencing species distribu-
tion ranges and vulnerability to temperature changes (Lancaster
2016, Bennet et al. 2019, Collin et al. 2021, Beauty et al. 2023,
Bovo et al. 2023). Specifically, the critical thermal minimum
(CTmm) and maximum (CTmax) represent the lower and upper
temperatures, respectively, at which an individual loses its loco-
motor ability (Angilletta 2009). Here, we use ‘cold tolerance’
and ‘heat tolerance’ to describe the critical thermal minimum
and maximum, respectively. Ectotherms like anoles rely on am-
bient temperature to regulate their body temperature and carry
out basic metabolic functions (reviewed in Angilletta 2009).
Given that the tropics are aseasonal environments, we can pre-
dict that anole species will exhibit thermal specialization across
elevation: this expectation that tropical lineages are physiologic-
ally specialized across elevation due to low seasonality is known

as Janzen’s hypothesis (Janzen 1967, Ghalambor et al. 2006).
Specifically, we predict that species found at low elevation should
be more heat tolerant and less cold tolerant than their counter-
parts at high elevation. Under this scenario, heat tolerance and
cold tolerance should evolve at equal rates across elevation, as
both features simultaneously specialize to local thermal condi-
tions, and thermal tolerance breadths (the range of temperatures
separating critical limits) should remain unchanged with eleva-
tion.

Yet, there may be more complexity to this pattern because di-
urnal ectotherms like anoles may thermoregulate to maintain a
certain body temperature, even in quite thermally different en-
vironments (Mufioz and Losos 2018). Across elevation, such
thermoregulation should result in a similar physiological re-
sponse among species, even when found in habitats that vary in
average thermal conditions (Huey et al. 2003, Mufioz and Losos
2018). In this case, we would expect behavioural buffering to
limit divergence in heat tolerance across elevation, a phenom-
enon termed the Bogert effect (Bogert 1949, Huey et al. 2003,
Mufioz 2022). Anoles are inactive at night and nighttime tem-
peratures become progressively lower with elevation, limiting
behavioural refuges from the cold and favouring physiological
specialization to low environmental temperatures (Mufloz et
al. 2014, Mufioz and Bodensteiner 2019). As such, we can pre-
dict that cold tolerance will increase with elevation, regardless
of whether lizards diurnally thermoregulate or not. In this case,
we would expect the rate of cold tolerance evolution to outpace
that of heat tolerance, suggesting that specialization in the Andes
involves rapid specialization to minimum environmental tem-
peratures more so than to maximum temperatures. Likewise,
we would expect tolerance breadths to increase with elevation,
reflecting a relatively inert heat tolerance and decreasing CT
with elevation.

While critical temperature data on ectotherms available in
the literature have expanded significantly across various taxa in
recent decades, including reptiles (e.g. Huey et al. 2009, Mufioz
et al. 2014, Gunderson and Stillman 2015, Piantoni et al. 20185,
Andrango et al. 2016, Gunderson et al. 2018, Salazar and Miles
2024), amphibians (e.g. Gunderson and Stillman 2015, von May
et al. 2017), insects (e.g. Gaston and Chown 1999, Hoffmann
2010, Stevens et al. 2010, Gunderson and Stillman 2015, Sinclair
et al. 2016), and aquatic animals (e.g. Diaz et al. 2002, Diilger
et al. 2012, Gunderson and Stillman 2015, Martinez et al. 2016,
Sinclair et al. 2016, Yanar et al. 2019), there remains a notable
gap in information on thermal limits for Andean-dwelling spe-
cies (but see Méndez-Galeano and Calderén-Espinosa 2017,
Méndez-Galeano et al. 2020, Montoya-Cruz et al. 2024, Pinzén-
Barrera et al. 2024).

Andean anoles can be found from sea level to elevations of
up to 3700 m, varying in the elevational range that they occupy,
and different lineages have independently diversified across ele-
vation (Moreno-Arias et al. 2021). This replicated diversification
across elevation renders anoles an ideal system for comparative
physiological inquiry. In the present study, we focused on 14 spe-
cies from two anole clades, Dactyloa (comprising 138 species)
and Draconura (comprising 69 species) (Poe et al. 2017), which
independently diversified in the challenging environmental con-
ditions of the Andean mountains. We investigated how thermal
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limits and thermal tolerance breadth vary with elevation within
and among anole species. We compared the evolutionary rates of
heat tolerance (the critical thermal maximum, CT_ ) and cold
tolerance (the critical thermal minimum, CT ) within the two
focal clades of anoles. Our study investigates how thermal vari-
ation across elevation predicts the evolution of two key physio-
logical traits in tropical mainland ectotherms, and how thermal
physiology has evolved in the Andean radiation of anole lizards.

METHODS

Study sites and species

We collected anole cold tolerance (CTmm) and heat tolerance
(CTmax) measurements from December 2016 to November
2017 in five different localities from the Colombian Andes
(Supporting Information Fig. S1): (i) Anchicay4d Hydroelectric
(3°2627.12”N, 76°4070.13”W; 192-639 m); (ii) Bitaco Forest
Reserve (3°3379.95”N, 76°351.52"W; 1973-2050 m); (iii)
Parque Nacional Natural (PNN) Tatami (5°13747.96"N,
76°5'1.51”W; 1326-2330m); (iv) PNN Farallones de Cali
(3°24'41.65'N, 76°39'S.36’W; 1870-2369m); and (v)
Passiflora Reserve (4°55°59.59”N, 74°6"43.19”W; 2818m). We
captured 367 individuals from 14 species (Fig. S2).

Nine species belong to the Dactyloa clade: Anolis calimae
(2117-2240m; N =4), A. chloris (1341-1488m; N = 21),
A. danieli (1776-2330m; N=38), A. eulaemus (2042 m;
N =1), A. heterodermus (1345-2818 m; N = 9), A. maculigula
(1389-1438 m; N =24), A. princeps (527-1408 m; N = 4),
A. purpurescens (formerly known as A. chocorum; 572-591 m;
N=2), and A. ventrimaculatus (1343-2369m; N = 142).
Five species belong to the Draconura clade: Anolis antonii
(1326-2314m; N = 131), A. granuliceps (586-639 m; N = 2),
A. lyra (591 m; N = 1), A. maculiventris (256-624 m; N = 16)
and A. notopholis (192-285m; N =2). Two species, Anolis
antonii and A. ventrimaculatus, were sampled at multiple lo-
calities at different elevations. Anolis antonii was measured at
PNN Farallones de Cali (N = 30) and PNN Tatama (N = 101),
and A. ventrimaculatus was measured at Bitaco Forest Reserve
(N = 53), PNN Farallones de Cali (N = 53), and PNN Tatama
(N =36). Most of the individuals in this study were found
<2 m above the ground. Some of the species we measured (A.
chloris, A. calimae, A. eulaemus, A. heterodermus, A. princeps, and
A. purpurescens) are commonly found high up in trees; unfortu-
nately, for these we were unable to precisely measure how high in
the tree they were perched (Supporting Information Table S1).

Measurement of CT_andCT

Lizard capture was mostly done during the night (between
6 pm. and 2 a.m.), when anoles are easier to spot. Individuals
were captured by hand, and for each we also recorded a GPS
point. Temperature measurements during tolerance trials were
taken following Mufioz et al. (2014) and Llewelyn et al. (2016)
with the following modifications. We conducted all the physio-
logical measurements at the field station near to the capture site
of each individual. To record instant body temperature of larger
species [snout-vent length (SVL) > 60 mm], a 2-mm thermo-
couple was inserted into the cloaca of adult individuals; for ju-
veniles and adults of smaller species (SVL < 60 mm), a 0.22-mm
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thermocouple was used instead. The thermocouple was secured
to the base of the tail using medical tape. To measure CT___and
CT__, the anole was placed into a plastic container that was sub-
merged in a cold-water ice bath or a warm-water bath, respect-
ively. Each time the body temperature of the lizard changed one
degree, the individual was turned, placing it on its back inside the
container. If the lizard righted itself to its original position, we
continued with the temperature reduction or increase procedure
until it was not able to turn itself over, indicating a loss of loco-
motor function. At this point, the temperature was recorded as
the CT _or CT . At the end of the experiment, the individual
was slowly returned (1°C every minute) to its initial tempera-
ture by means of a warm-water or cold-water bath. To minimize
animal stress, only one measurement (either CT__or CT ) was
collected per individual in the morning after they were captured;
we performed both measurements only for species where we
found one or two individuals (A. eulaemus, A. granuliceps, A. lyra,
A. purpurescens, A. notopholis). The morning after thermal trials
individuals were released at their capture site. Before releasing
an individual, a mark was made on the belly using a permanent
marker ink to avoid measuring the same individual twice. From
CT _and CT__ we calculated the thermal breadth (Tbé also
referred as thermal tolerance range) for each species, such that
T, =CT_-CT_.

Environmental data
As a proxy for the general thermal conditions experienced by
different lizard species, we extracted three ecologically relevant
temperature variables from the WorldClim database (Fick and
Hijmans 2017) for each of the sample sites of the study [Bio 1
(mean annual temperature), Bio S (maximum annual tempera-
ture), and Bio 6 (minimum annual temperature); Qu and Wiens
(2020)]. These WorldClim layers are resolved to 1 km? and sum-
marize thermal averages, extremes, and ranges. As these three cli-
matic variables were highly correlated (Supporting Information
Tables S2 and S3), we decided to use one variable (Bio 1) for
our analyses. Using mean values from WorldClim data (Fick and
Hijmans 2017) to represent the climatic niche may not reflect
the microhabitat variation that lizards experience, and micro-
and macroclimatic niches can vary in ectotherms (Velasco et al.
2016, 2020, Farallo et al. 2020, Mufoz et al. 2022). Nevertheless,
these macroclimatic features do provide a coarse approxima-
tion for general thermal conditions experienced by lizards and
can serve as a starting point to evaluate the relationship between
thermal physiology and the macroenvironment. In addition, we
also investigated the operative environmental temperatures ex-

perienced by lizards (described below).

Operative environmental temperature ( Te)

We used the R package ‘NicheMapR’ (Kearney and Porter 2017)
to estimate the operative environmental temperatures (Te) at
each site. T is defined as the equilibrium body temperature of a
non-thermoregulating organism in the open, accounting for the
various sources of heat gain and heat loss. We estimated T, where
the anoles were found. By using ‘NicheMapR’ we can model
microclimate by using locations, forest cover level, and other fac-
tors to calculate the microclimatic conditions that an ectotherm
experiences (Kearney and Porter 2017, 2019). We acquired
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macroclimate data for the microclimatic analyses from the ERAS
fifth generation ECMWEF global atmospheric reanalysis of global
climate using the ‘mcera$’ package (Klinges et al. 2022). We ac-
quired microclimatic data through the ‘NicheMapR’ function
micro_eraS, which is integrated with the ‘microclima’ package
(MacLean et al. 2019). The output of micro_eraS$ is used by the
function ectotherm in ‘NicheMapR’ to generate a model of heat
and water exchange. We obtained T, estimates for each Anolis
species at each site by using the default organismal parameters
except for the mean body mass of each species. Because the spe-
cies of Anolis in the data are arboreal, we set the parameter for
climb equal to 1, which indicates that a species is arboreal. We es-
timated the mean monthly T values for the duration of the study
period (December 2016 to November 2017). We only show the
T, mean results in the main text, and we provide the results for
T, minimum and T, maximum in the Supporting Information.

Statistical and phylogenetic analyses
All statistical analyses were conducted using R v.4.3.2 (R Core
Team 2023). Figures were made with the ‘ggplot2’ package
(Wickham 2009). Before we conducted phylogenetic analyses,
we evaluated whether CT_and CT__ differed between sexes
(adult males vs. adult females) and age classes (juveniles vs.
adults). As we did not find variation among the categories, we
combined data for all individuals (Supporting Information S1).

For the phylogenetic analysis, we used the Poe et al. (2017)
phylogeny based on morphological and molecular data (MCC—
maximum clade credibility tree) and species’ averages for each
trait. First, we quantified the amount of phylogenetic signal for
CT ,CT_, and T,, using the X statistic (Pagel 1999) with the
function phylosig in the R package ‘phytools’ (Revell 2012).
We used this statistic to evaluate the phylogenetic dependence
of the trait data. Pagel’s A ranges from 0 to 1, with values closer
to 0 indicating weak phylogenetic signal, meaning that traits
are evolving independent of relatedness, and values closer to 1
indicating greater phylogenetic structuring to the data, following
expectations under a Brownian motion (BM) model of evolu-
tion (Pagel 1999). Less commonly, A can exceed 1, indicating
that traits are more similar than expected under BM (Pagel
1999). Intraspecific comparisons of thermal limits among popu-
lations of Anolis antonii and A. ventrimaculatus were performed
with one-way ANOVA (separate for each species) with the mean
forCT_,CT_,T,,and elevation.

To evaluate the relationship between thermal limits (CT _,
CTmax), breadth (Tbr), elevation (mean elevation for each spe-
cies), and thermal environment (Bio 1, T, mean) among the 14
species we used phylogenetic generalized least squares (PGLS)
analysis using the pgls.SEy function in the package ‘phytools’
(Revell 2012); this function takes into account the standard
error for each species. Before interpreting the PGLS results, we
quantified the phylogenetic signal of the residuals using Pagel’s A
to assess the influence of shared evolutionary history on the re-
sidual variation. Because we have only one T, value per species,
we were not able to run a pgls.SEy, and instead we ran a PGLS
using the pgls function in the package ‘caper’ (Orme 2018). We
compared the model fit using the Akaike Information Criterion
for small samples sizes (AICc; Sugihara 1978, Burnham and
Anderson 2002).

To compare the rate of physiological evolution for CT _and
CT_, first we fitted five different models of evolution—BM,
Ornstein—Uhlenbeck (OU), Early Burst (EB), Delta, and White
Noise (WN)—to each physiological trait, using the fitContinuous
function in the ‘geiger’ package (Harmon ef al. 2008). We com-
pared each model by examining the AICc.

‘We were also interested in whether the relationship between
elevation and thermal physiology varied between clade of anoles
or, instead, whether the effect of elevation was comparable
among clades. To this end we conducted a phylogenetic ana-
lysis of covariance (pPANCOVA; Revell and Harmon 2022) to
evaluate whether the slopes and intercepts of the trait-environ-
ment relationships varied between anole clades (Dactyloa and
Draconura).

We used Adams’ (2013) method to compare the evolu-
tionary rates (02) of CT__and CT__ . Specifically, we performed
a likelihood-ratio test (LRT) to compare the likelihood of a
model in which rates for CT _and CT__were constrained to be
equal (ie. o> =¢” ).To consider intraspecific measurement
error, we did incorporate the standard error (corrected) into the
analysis. We also show the results when we did not incorporate
standard error (uncorrected). We used the ‘ape’ package in R to
run the code provided by Adams (2013). Since CT _ and CT
are correlated with elevation and might be correlated with each
other, we set the TraitCov argument to TRUE to specify that
both physiological traits may covary.

RESULTS

We measured CT _and CT _ from 350 lizards (173 individuals
for CT__and 177 for CT__; Table 1) from 14 species. These 350
individuals were 87 adult males (37 for CT__and 50 for CT_ ),
113 adult females (62 for CT__and 51 for CT_ ), and 123 ju-
veniles (60 for CT_ and 63 for CT_ ). Additionally, we found
27 individuals that we were not able to sex or age (14 for CT _
and 13 for CT__ ). We found no differencein CT _and CT be—
tween sexes and ages (Supporting Information Sl Fig. S3, "Table
S4), so we used the entire data set to conduct subsequent phylo-
genetic analyses.

Thermal habitat

There was a high correlation between CT _and CT __ with both
Bio 1 and elevation (Fig. 1), where CT _and CT__ increase
with mean annual temperature, and decrease with elevation. By
contrast, T, showed no relationship with Bio 1 or elevation and
remained fairly constant across elevation (Fig. 1; Supporting
Information Fig. $4 for Bio S and Bio 6, Tables S5 and S6). We
found similar results for the correlations between CT and
CT__ with T (Fig. 1 for T mean, Fig. $4 for T, minimum and
T minimum, Tables S§ and S6), where both CT  andCT__ in-
crease as T  increases. We ran pgls (pgls.SEy and pgls) analyses for
all species combined.

Interspecific variationin CT _,CT_and T,
We found that Pagel’s A was low (0.00006), suggesting little to no
phylogenetic structure to the trait data. We determined that the
residual variation was largely independent of phylogeny, and used
pgls.SEy for subsequent analysis (Fig. 2; Supporting Information
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Table 1. Average capture elevation, CT _, CT__,and T, for each species.

Species Elevation (m) CT (°C) CT (°C) T, (°C)
Dactyloa clade

A. chlorist 1414 + 178 12.97 + 2.28 (18) 31.82 + 1.07 (14) 18.85
A. danieli# 2109 % 173 13.62 £ 1.47 (7) 30.10 + 1.29 (5) 16.48
A. eulaemus® 2042 11.50 (1) 23.60 (1) 12.10
A. heterodermus® 2182 + 358 7.44 +2.33(7) 30.36 + 4.40 (8) 2293
A. maculigula® 1409 + 18 13.10 + 1.62 (12) 29.58 + 1.39 (8) 16.48
A. calimae* 2158 + 53 13.59 £ 0.78 (2) 26.36 £ 3.24 (3) 12.77
A. princeps* 800 + 425 13.109 + 4.70 (4) 32.31+6.60 (3) 19.22
A. purpurescens 582+ 13 18.97 + 1.06 (2) 31.97 £ 0.76 (2) 13.00
A. ventrimaculatus®™ 1992 + 217 11.93 +2.52 (45) 27.58 £2.99 (62) 15.66
Draconura clade

A. antonii® 1608 + 333 13.36 + 2.29 (60) 27.63 + 1.99 (59) 14.26
A. granuliceps* 621 £ 37 15.50 £ 0.93 (2) 32.69 (1) 17.19
A lyra® 591 17.86 (1) 36.50 (1) 18.64
A. maculiventris® 580 + 88 17.98 + 1.90 (10) 31.86 £ 0.79 (8) 13.88
A. notopholis® 239 + 66 1443 + 0.64 (2) 3241 2.45 (2) 17.98

Mean and standard deviation are shown and the numbers in parentheses indicate sample size. The locality for each species is shown as follows: “Anchicay4 Hydroelectric, ‘Bitaco

Forest Reserve, PNN Farallones de Cali, /PNN Tatam4, and ‘Passiflora Forest Reserve.

Table S7). The WN model best fit the CT_,CT__and T, data
(Table S8); this WN model indicates that the thermal traits
evolved independently of the phylogeny, which corroborates
Pagel’s A result (Table S9; Harmon et al. 2008, Muschick ef al.
2014). Both thermal limits, CT , and CT_, decreased with ele-
vation (Fig. 1; Table 2; Tables SS and S6). We found that these
relationships were similar, both in slope and in intercept, for spe-
cies in the Dactyloa and Draconura clades (Table S10). We did
not find differences in the evolutionary rate of the thermal traits
(Table 3), meaning that CT _ (0* = 0.21) and CT__(0* = 0.19)

evolve at similar rates.

Intraspecific variation in CT and CT

We found that populations of A. antonii located at different
elevations have different CT _values (Fig. 3A), such that the
higher elevation population is less cold tolerant (higher CT )
(t=4.51, P<.001, d.f. = 58). We did not detect differences
in CT__ among populations (t=-1.70, P =.09, d.f =63).
Similarly, for A. ventrimaculatus, we found that the populations
that are found at high elevation are less cold tolerant (higher
CT_ ), and those found at low elevation are more heat tol-
erant (higher CT ) (CT_: F,,,=9.03, P<.001 and CT_:
F,.,=52,P=.002; Fig.3).

DISCUSSION

The topographical complexity of the Andes forged a wide range
of thermal habitats presenting the opportunity for physiological
specialization across elevation. As predicted, we found that mon-
tane anoles tolerate lower temperatures better than their low-
elevation counterparts, and that anoles closer to sea level were
more heat tolerant than those found at high elevation. Similarly,
numerous studies have found that tolerance to cold is enhanced
in cooler environments across a wide range of ectotherm taxa
(e.g. Aratijo et al. 2013, Sunday et al. 2014, 2019, von May et al.

2017, Pintanel et al. 2019, Gonzalez et al. 2022). However, our
finding that species in cooler environments are also less heat tol-
erant than their counterparts in warmer environments contrasts
with other studies, including on anoles, in which heat tolerance
remains relatively static across environmental clines (e.g. Mufioz
et al. 2014, Shah et al. 2017, Qu and Wiens 2020). Such strong
physiological structuring across altitudinal clines may help ex-
plain why phylogenetic signal is low as close relatives diverge
in thermal tolerances across environmental boundaries, and
appear physiologically specialized to their local conditions, as
evidenced by the fact that thermal tolerance breadth (T, ) is un-
changed across elevation (Fig. 1). The decrease in both cold and
heat tolerance with elevation may also explain why rates of CT
and CT__ evolution are indistinguishable. The adaptive radi-
ation of Andean anoles therefore involves specialization in both
heat and cold tolerance across elevation. Below, we unpack these
findings in greater detail.

How thermal habitat influences the evolution of critical
thermal limits

‘We observed a strong correlation between heat tolerance, cold
tolerance, and the thermal environment (Fig. 1), suggesting
that local climatic conditions favour thermal physiological spe-
cialization. Consistent with Janzen’s hypothesis (Janzen 1967,
Sheldon et al. 2018), tolerance breadths are stable across eleva-
tion, reflecting local adaptation in both cold and heat tolerance.
Additionally, we found both clades, Dactyloa and Draconura,
followed the same pattern of evolution, indicating parallel trends
of thermal specialization among lineages that independently ra-
diated in the Andes (Fig. 1; Supporting Information Fig. $4; Poe
etal 2017).

As both heat and cold tolerance decrease with elevation, we
observed no differences in the evolutionary rate of these two
traits. Previous studies on other ectotherm lineages have re-
ported similar findings for CT__and CT__ (Shah et al. 2017,
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Figure 1. Relationship between species between T (top), CT _ (middle), and CT__ (bottom) with Bio 1 (mean annual temperature; A, D,
G), T (operative environmental temperature; B, E, H), and mean elevation (C, F, I) Anolis antonii—anto, A. calimae—cali, A. chloris—chlr, A.
danieli—dani, A. granuliceps—gran, A. heterodermus— hetr, A. maculigula—macg, A. maculiventris—macv, A. notopholis—noto, A. princeps—
prin, A. purpurescens—purp, and A. ventrimaculatus—vent. Dashed lines represent the phylogenetic regression for all species. Coloured lines
indicate the phylogenetic regression for Draconura species in green and Dactyloa species in brown. Each point corresponds to a different
species of Anolis lizard. Circles indicate Dactyloa species; triangles indicate Draconura species.

von May et al. 2017, Pintanel et al. 2019, Gonzalez et al. 2022,
Bovo et al. 2023, Bota-Sierra et al. 2022 [CT__only]). Yet, prior
work on Caribbean anoles found that heat tolerance does not
vary across elevation, while cold tolerance does (Mufioz et al.
2014). Behavioural thermoregulation is a primary mechanism
underlying this disparity between heat and cold tolerance adap-
tation: whereas behavioural thermoregulation ‘shields’ diurnal
lizards like anoles from selection on upper thermal limits, behav-
iour is less effective at shielding them from selection on lower
thermal limits (Mufioz and Bodensteiner 2019, Bodensteiner
et al. 2021). This lopsided effect of thermal behaviour results in
stability in heat tolerance across elevation (and a relatively slow
rate of evolution) and lability in cold tolerance across elevation
(and a relatively fast rate of evolution) (Mufioz 2022). While
we did not consider thermal behaviour here, it is probable these

Andean lizards are thermoconformers, as they tend to occupy
dense, closed-canopy habitats, where the costs of thermoregu-
lation are high owing to long transit distance between sun and
shaded patches, meaning that the distance travelled may exceed
the home range of an individual (Huey 1974). Moreover, these
anoles tend to move relatively little (Losos 2009), reflecting
greater predation risk on the South American mainland relative
to the Caribbean, further limiting thermoregulatory behaviour.
Putting these pieces together, habitat structure and preda-
tion may favour thermoconformity in the Andes, which in turn
favours physiological specialization across elevation and prob-
ably contributed to the anole adaptive radiation in the Andes.
Under Janzen’s (1967) hypothesis, this physiological specializa-
tion should limit dispersal across elevation, limit gene flow, and
potentially help catalyse speciation, ashasbeen observedin South
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Figure 2. Interspecific divergence of (A) CT__and (B) CT__for Andean anoles. Species tree shows the relationship between 11 species for
CT (top) and 12 species for CT (bottom). A. antonii—anto, A. calimae—cali, A. chloris—chlr, A. danieli—dani, A. granuliceps—gran,
A. heterodermus—hetr, A. maculigula—macg, A. maculiventris—macv, A. notopholis—noto, A. princeps—prin, A. purpurescens—purp, A.
ventrimaculatus—vent. Species are coloured according to their clade (Dactyloa—brown, Draconura—green).

American aquatic insects (Polato et al. 2018). We do note, how-
ever, that there may be some thermoregulation in some Andean
anole species that may impact patterns of physiological special-
ization. For at least one Andean anole species, A. heterodermus,
we know that activity changes throughout the day, decreasing as
the day gets warmer (Méndez-Galeano and Calderén-Espinosa
2017, Méndez-Galeano et al. 2020). Therefore, the relationship
between thermal behaviour and physiological specialization

in Andean anoles awaits deeper exploration. Future studies on
the thermal physiology of Andean anoles should also inves-
tigate how thermal plasticity might impact patterns of special-
ization in CT _and CT_ . In some ectotherms, for example,
limited plasticity has been observed (e.g. Dominguez-Guerrero
et al. 2019, Garcia-Robledo and Baer 2021). In one Central
American anole (Anolis apletophallus), by contrast, high levels
of plasticity have been found at different levels, phenotypic and
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Table 2. Results from phylogenetic generalized linear regression models for CT _, CT_,and T, assuming Brownian motion as the

evolutionary model.

Model Coeflicient P-value AIC logLik
CTmm ~ elevation -0.0024 .01S5 50.00 -22.00
CT  ~Biol 0.57 .016 50.19 -22.09
CT . ~T average 0.64 .0073 4841 -21.20
CT, ~ elevation 0.57 .0077 48.25 -21.13
CT _~Biol 0.61 .0047 47.12 -20.56
CTW ~ Te average 0.72 .0012 44.44 -19.22
Model Coeflicient P-value R? F

T,, ~ elevation <0.0001 .70 .019 0.16
T, ~Biol -0.18 .66 .026 0.21
T, ~T, average -0.22 .60 .035 0.29

Coefficient, P-value and AIC values are shown for the pgls.SEy results, and the coefficient, P-value, R* and F-value are shown for the pgls results. Significant results are shown in italics.

Table 3. Evolutionary rate comparison for CT _and CT__.

Pairwise Uncorrected Corrected
comparison LRT, ;P LRT, ;P
CT_ vsCT .03; .86 .03; .86
Confidence interval Low High

for evolutionary rate

CT,. 15 28

CT .13 24

max

Pairwise comparison for evolutionary rates among traits. The results are given for
two analyses, one in which we did not consider intraspecific measurement of error
(uncorrected), and another in which we did incorporate the error (corrected). The
confidence interval for the evolutionary rates for CT _and CT,__ are also shown.

genetic, at least for heat tolerance (Rosso et al. 2024). More
generally, the degree of plasticity appears to vary among traits
and lineages (Gunderson and Stillman 2015), underscoring the
need for species-specific estimates. Nevertheless, to the extent
that physiological evolution has contributed to the diversity of
Andean anoles, thermoconformity may be a potent catalyst for
their adaptive radiation.

Intraspecific variation in CT and CT__

Contrasting differences in thermal limits were observed among
populations of A. antonii and A. ventrimaculatus (Fig. 3) in CT_,.
We found that, for both species, cold tolerance is lower at high-
elevation sites and higher at the low-elevation site, while CT _ for
A. antonii remains unchanged. In contrast, for A. ventrimaculatus
(Fig. 3B) CT__is higher at the low-elevation site and lower at
high-elevation sites. Despite the counterintuitive nature of these
patterns, our results suggest that factors beyond elevation may
contribute to differences in thermal limits between popula-
tions and among species. However, there could be more factors
playing a role in our findings including microhabitat segregation
(Jenssen 1970, Hertz 1974, Du et al. 2000, Ramirez-Bautista
and Benabib 2001, Herczeg et al. 2008, Tang et al. 2013, Mufoz
et al. 2016), predator and competitor presence (Terborgh and
Weske 1975, Huey and Kingsolver 1989, Helmuth et al. 2005,
Jankowski et al. 2013, Salazar et al. 2019, Londoio et al. 2023),
humidity (Hutchinson 1957, Wake and Lynch 1976), rainfall

(Wake and Lynch 1976, Salazar and Miles 2024), morphology
(Wegener et al. 2014 ), and plastic capacity (Llewelyn et al. 2016,
Phillips et al. 2016, Garcia-Robledo and Baer 2021, Rosso e al.
2024). This suggests that biotic and abiotic factors could play a
role in local adaptation that is not captured in a broader, macro-
evolutionary view across the lineage. Future studies should inte-
grate these factors to understand their role in thermal physiology
variation among species and populations, including behaviour
during daytime.

Although climatic stability in tropical regions has historically
been cited as a key factor in explaining species range limits, par-
ticularly along mountain ranges (Janzen 1967), the influence
of climatic heterogeneity on species’ physiological and evolu-
tionary traits in these regions has often been overlooked (Boyle
et al. 2020, Muiioz 2022). The geomorphological complexity of
the Andes, spanning various valleys, slopes, and elevations, prob-
ably serves not only as a driver of faunistic diversity (Alencar et
al. 2024), but also as a determinant of thermal physiology diver-
sity (Velasco et al. 2016). Unfortunately, this geomorphological
complexity of the Andes cannot be captured by WorldClim or
NicheMapR data (Sears et al. 2019). To truly understand how
environmental temperature affects thermal physiology evo-
lution, we should use microclimatic data collected on-site.
However, using Bio 1 and T, mean we observed the same pattern
for our three physiological variables (CT_, T,, CT_ ) for all
species in the two clades (Fig. 1). The diverse microclimates cre-
ated by different topographical features impose unique thermal
challenges among populations, leading to the observed differ-
ences in thermal physiology within species.

Although we discussed how temperature has contributed to
the colonization and adaptation to the Andes climate, there are
additional factors that could have affected our results. We have
few individuals for some of the species we captured and meas-
ured, which may lead to biased estimates of CT _ and CT_ .
Additionally, we used species from two different clades with few
representatives from each. Furthermore, we have no knowledge
of the genetic background of Andean anole species, which could
alter our understanding of how these species have evolved to
withstand low temperatures in the Andes. These are several fac-
tors that should be taken into consideration for further studies.

Gz0z 1snbny /0 uo 1sanb Aq £68/26//070882Y/ | //o[0IB/UBSUUII0AS/WO02 dNO"dIWSPEI.//:SANY WO} POPEOJUMO(]



39|  A. antonii
_35] -
8 317 o
0 57 =~=
% 23]
é._)‘ ] a b
g.. 19 ® @
=
11
-
PNN Tatama PNN Farallones
Populations
(B) | ) B8 CTmax
39| A. ventrimaculatus @ CTmin
] a b b
6 35
< 3] EbE _2_'
% 27
= 23] '
5
g 19] b
O 15]
=
11
7] Lo
PNN Tatama Bitaco PNN Farallones
Populations
Figure 3. CT__and CT _comparison among populations of (A) A.
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Nevertheless, this work presents a significant advance forward:
unlike in the Caribbean, mainland anoles are notoriously cryptic
and exhibit lower densities (discussed in Losos 2009), which
has surely contributed to the relative lack of physiological know-
ledge for continental species.

Just as important as the factors that shape the origin of bio-
diversity are those that threaten its loss. For ectotherms like
anoles, the rapid rise of environmental temperatures presents an
existential threat, and there is an urgent need to assess vulner-
ability across the animal tree of life (Deutsch et al. 2008, Huey et
al. 2010, Mufioz and Moritz 2016, Stillman 2019). Even among
ectotherms, tropical anoles like those studied here are expected
to be particularly vulnerable, as they are already operating near
their physiological limits (Huey et al. 2009, Sunday et al. 2014).
Our data on Andean anoles are consistent with this perspective:

PHYSIOLOGICAL DIVERSITY OF ANDEAN ANOLES « 9

whether near sea level or several kilometres above it, species are
physiologically specialized to their local thermal conditions, and
exhibit relatively narrow tolerance breadths, as predicted for
tropical lizards (Huey et al. 2009).

The critical question remains whether species will be able to
keep pace with the rapid rate at which climate change is affecting
their natural environments. Studies should focus on under-
standing how future temperatures and rainfall patterns will affect
the activity patterns, energetic balance, and population growth
rates of Andean anoles to connect physiological variation to
demographic patterns under rapid global change.

CONCLUSION

Our study on Andean anoles has yielded insights into their
thermal physiology and adaptation to their environment. When
compared to low-elevation anoles, those at high elevations dem-
onstrated greater performance capacity at lower temperatures
but were also less tolerant of higher temperatures. These results
align with Janzen’s (1967) hypothesis, as thermal breadth re-
mains constant across elevation, reﬂecting local specialization in
both heat and cold tolerance. We also observed that the evolu-
tion of cold and heat tolerance occurs at similar rates, and this
occurred independently in the two anoles clades tested on this
study, Dactyloa and Draconura. Phylogenetic analysis revealed
that thermal limits vary among closely related species, indicating
a departure from niche conservatism and reflecting lability in
physiological tolerance as species diversified across elevation.
Ecological and phenotypic divergence among close relatives is a
canonical signature of adaptive radiation. The intricate geomor-
phological complexity of the Andes emerged as a key driver of
thermal physiology diversity in the adaptive radiation of main-
land anoles. Understanding the role of physiological diversity in
diversification could offer valuable insights into how two clades
from the genus with different evolutionary histories have similar
evolutionary responses to adaption to mountainous environ-
ments. Future research should aim to elucidate the impact of the
genetic background on the distribution and diversification of
montane ectotherms, considering their evolutionary history and
potential differential effects on lowland and highland species.

SUPPLEMENTARY DATA

Supplementary data are available at Evolutionary Journal of the
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