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Abstract 

An ongoing challenge in macroe v olutionary research is identifying common drivers of diversification amid the complex interplay of many poten- 
tially rele v ant traits, ecological conte xts, and intrinsic characteristics of clades. In this study, we used geometric morphometric and phylogenetic 
comparative methods to evaluate the tempo and mode of morphological e v olution in an adaptive radiation of Malagasy birds, the vangas, and 
their mainland relatives (A ves:V angidae). The Malagasy radiation is more diverse in both skull and foot shape. However, rather than following the 
classic “early burst” of diversification, trait evolution accelerated well after their arrival in Madagascar, likely driven by the evolution of new modes 
of foraging and especially of a few species with highly divergent morphologies. Anatomical regions showed differing evolutionary patterns, and 
the presence of morphological outliers impacted the results of some analyses, particularly of trait integration and modularity. Our results demon- 
strate that the adaptive radiation of Malagasy vangas has evolved exceptional ecomorphological diversity along multiple, independent trait axes, 
mainly driven by a late expansion in niche space due to key innovations. Our findings highlight the evolution of extreme forms as an overlooked 
feature of adaptive radiation warranting further study. 
Keywords: adaptive radiation, geometric morphometrics, trait integration, morphological evolution, birds 

 

 

m
p

 

t
o
m
d
d
p
t
o  

H  

2  

p  

s
l
e
e  

d  

a  

s
b
(  

c
e  

&
2  

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpaf117/8152275 by U

niversity of M
innesota - Tw

in C
ities user on 07 August 202
Introduction 

Adaptive radiations—clades that have undergone an ex- 
ceptional degree of ecological diversification—are emblem- 
atic examples of evolution and offer powerful opportuni- 
ties to help understand the processes that generate ecolog- 
ical and phenotypic diversity ( Givnish & Sytsma, 1997 ; 
Hodges & Derieg, 2009 ; Schluter, 2000 ). Despite sub- 
stantial interest in the study of adaptive radiation, ma- 
jor disagreements remain regarding (1) how these clades 
should be identified and (2) the generalizability and pre- 
dictive power of these patterns as evolutionary models 
( Gavrilets & Losos, 2009 ; Losos & Miles, 2002 ; Moen et 
al., 2021 ; Olson & Arroyo-Santos, 2009 ). Many shared 
general patterns have been proposed for adaptive radi- 
ations, but most are not generalizable across the diver- 
sity of clades usually considered under this framework,
making identification of radiations and their comparative 
study difficult ( Gillespie et al., 2020 ). Also poorly under- 
stood is the degree to which adaptive radiation is pre- 
dictable, in terms of both the external factors and intrin- 
sic features of clades that may promote or inhibit radi- 
ation ( De-Kayne et al., 2024 ; Glor, 2010 ; Kassen, 2009 ; 
Losos & Mahler, 2010 ; Lovette et al., 2002 ; Stroud & 

Losos, 2016 ; Wellborn & Langerhans, 2015 ; Yang, 2001 ).
Although many studies have examined rates of evolutionary 
change in radiations, understanding their predictability will 
require reconciling variable patterns of diversification across 
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ultiple traits, which may be subject to different selective 
ressures. 
One of the most common patterns used to identify adap-

ive radiation is an “early burst”—but an overemphasis 
n this criterion risks obscuring the true complexity of 
acroevolutionary processes by excluding other modes of 
iversification. The early burst has often been considered a 
efining feature because classically, adaptive radiations are 
redicted to undergo rapid early diversification in response 
o some ecological opportunity, followed by declining rates 
f diversification as niche space is filled ( Freckleton &
arvey, 2006 ; Gavrilets & Losos, 2009 ; Martin & Richards,
019 ; Schluter, 2000 ; Simpson, 1944 ). Until recently, the em-
hasis on testing for an early burst resulted in a focus on
peciation rates, while the importance of quantifying eco- 
ogical diversity was often overlooked ( Givnish, 2015 ; Yoder 
t al., 2010 ). More recently, methodological advances have 
nabled a shift toward testing for an early burst using trait
ata and other measures of ecological diversity ( Harmon et
l., 2010 ; Mahler et al., 2010 ; Slater et al., 2010 ). These
tudies have revealed that, while rapid speciation appears to 
e correlated with ecological trait diversification on average 
 Cooney & Thomas, 2021 ; Rabosky et al., 2013 ), these pro-
esses are frequently decoupled in individual clades ( Barreto 
t al., 2023 ; Derryberry et al., 2011 ; Folk et al., 2019 ; Martin
 Richards, 2019 ; Reaney et al., 2020 ; Rowsey et al.,
019 ; Venditti et al., 2011 ). Furthermore, the framework of
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omparing support for a limited set of diversification sce-
arios (e.g., early burst vs. Brownian motion) can lead
o misidentification of other, often more complex models
 Martin et al., 2023 ). Although an early burst can be a strong
ndicator of diversification in response to ecological oppor-
unity, defining adaptive radiation solely by this criterion
as the potential to limit our understanding of how dif-
erent conditions may impact the tempo of diversification
 Astudillo-Clavijo et al., 2015 ; Losos & Mahler, 2010 ). 
Identifying appropriate ecologically relevant traits to tar-

et for a given clade is itself an ongoing challenge. Many
tudies focus on single, univariate measurements such as
ody size, despite conceptual models of adaptive radiation
hat often involve simultaneous and/or sequential divergence
n multiple aspects of adaptive changes ( Slater, 2022 ). The re-
ults from any single trait risk being fundamentally mislead-
ng if diversification has occurred along multiple trait axes.
he appropriate selection of traits for a particular clade, and
ow to consider simultaneous or sequential diversification
f multiple traits, is increasingly being recognized as a crit-
cal component of macroevolutionary research ( Ackerly et
l., 2006 ; Donoghue & Sanderson, 2015 ; Grossnickle et al.,
024 ; Guillerme et al., 2020 ; Mutumi et al., 2023 ; Slater &
riscia, 2019 ). Examining a variety of traits will best repre-
ent the underlying ecological diversity present in different
lades, and this attention to organismal biology and natural
istory knowledge remains essential for drawing robust con-
lusions ( Losos, 2010 ). Different ecologically relevant traits
ay show different patterns of diversification in the same
lade, as in the Malagasy radiation of mantellid frogs, where
volutionary rates of shape but not size or performance-
elated metrics were elevated relative to other anuran clades
 Moen et al., 2021 ). We should expect adaptive radiation
o frequently proceed along multiple axes of diversification,
nd in these cases, understanding the evolutionary dynam-
cs of these traits in concert is central to understanding how
iversity is generated. 
Another major area of evolutionary research concerns un-
erstanding variation in the intrinsic capacity of a clade to
iversify , i.e., its evolvability . Several factors have been pro-
osed to explain why, even when seemingly presented with
imilar ecological opportunity, some clades diversify so spec-
acularly, whereas others do not ( Jablonski, 2022 ; Lovette
t al., 2002 ; Sidlauskas, 2008 ; Wellborn & Langerhans,
015 ). A key characteristic impacting evolvability is the
egree of independence between components of an organ-
sm’s phenotype ( Jablonski, 2022 ; Kirschner & Gerhart,
998 ; Yang, 2001 ). Traits less able to vary independently
f one another are described as more integrated, whereas
odularity refers to the organization of traits into dis-
rete “quasi-independent” regions (modules). Integration 
nd modularity impact evolutionary rates and trajectories
t multiple levels—genetic, developmental, and evolutionary
 Cheverud, 1984 ; Conith et al., 2021 ; Klingenberg, 2008 ;
chluter, 1996 ; Zelditch & Goswami, 2021 ). We focus here
n evolutionary integration as measured by comparing pat-
erns of morphological trait covariation across a clade. 
Theoretical and empirical studies have shown mixed evi-
ence for how integration and modularity may shape adap-
ive radiations. Higher modularity has usually been thought
o promote evolvability, with greater trait independence per-
itting a wider range of phenotypes to evolve ( Dellinger et
l., 2019 ; Felice & Goswami, 2018 ; Larouche et al., 2018 ;
agner & Altenberg, 1996 ; Walter et al., 2018 ; Yang, 2001 ).
owever, other studies suggest that integration can facilitate

he evolution of more disparate phenotypes by maintaining
ey functional relationships and promoting rapid evolution
long paths of least resistance ( Evans et al., 2021 ; Goswami
t al., 2014 ; Griswold, 2006 ; Hedrick et al., 2020 ; Navalón
t al., 2020 ; Schluter, 1996 ). Continued work to uncover
ow integration and modularity shape rates and patterns of
rait evolution is necessary to begin to understand the wide
ariation in evolvability we observe across clades ( Felice et
l., 2018 ; Troyer et al., 2024 ). 
The adaptive radiation of Malagasy vangas is an ideal

ystem in which to explore these questions regarding the
empo and mode of morphological diversification. The 40-
dd species in the family Vangidae are shrike-like birds
idespread in tropical Africa and Asia, but slightly over half
elong to a monophyletic subfamily endemic to Madagas-
ar (Vanginae) ( Clements et al., 2023 ; Reddy et al., 2012 ).
he Malagasy Vanginae have diversified into a spectacular
rray of forms, misleading early taxonomists who initially
lassified them as members of numerous other bird families
 Johansson et al., 2008 ; Reddy et al., 2012 ; Yamagishi et
l., 2001 ). Vangas are understudied relative to other avian
adiations, notably the Galapagos finches and Hawaiian
oneycreepers, and differ significantly from these clades in
any aspects of natural history. Vangas are all insectivores
some incorporating vertebrate prey), and have diversified
rimarily in terms of foraging strategy rather than diet:
ifferent species employ a variety of maneuvers that can
e broadly categorized as gleaning, sallying, and probing,
ith corresponding morphological specializations ( Reddy &
chulenberg, 2022 ; Yamagishi & Eguchi, 1996 ). This niche
artitioning has enabled an exceptional degree of sympatry,
ith about 15 species co-occurring in rainforest communi-
ies ( Wilmé, 1996 ). 
An exceptional feature of the Malagasy vanga radiation is

he presence of a handful of taxa that have evolved especially
ivergent and sometimes unusual morphologies associated
ith specialized foraging strategies. Examples include the
xtremely long, decurved bill of Falculea palliata , specialized
or probing in cavities in search of prey; the massive, deep,
nd strongly hooked bill of the sallying predator Euryc-
ros prevostii ; and modified foot proportions in the terres-
rial Mystacornis crossleyi and nuthatch-like, tree-creeping
ypositta corallirostris ( Johansson et al., 2008 ; Reddy &
chulenberg, 2022 ). The presence of such extremes is a fun-
amental component of the radiation, but also has the po-
ential to disproportionately drive signal or alter the results
f analyses. 
Prior studies that examined diversification of the Mala-

asy vangas found speciation rates largely consistent with
he classic model of an early burst following ecological op-
ortunity ( Jønsson et al., 2012 ; Reddy et al., 2012 ). Using
tandard linear measurements of bill and body, Jønsson et
l. (2012 ) found that relative trait disparity also fit an early
urst, but detected a marginal secondary burst in both rela-
ive disparity and speciation rate corresponding to the origin
f derived “probing” foraging behaviors. 
In this study, we examined patterns of morphological di-

ersification in the Vangidae, focusing on anatomical re-
ions closely tied to foraging behavior: the bill, neurocra-
ium, and feet. The bill is the ecomorphological trait most
requently studied in birds, being closely tied to diet and
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Figure 1. Three-dimensional landmark configurations and linear measurements of pedal bones used in this study. Stationary landmarks are shown as 
larger, darker points, most located at the end of each semilandmark curv e. L eft: (A) dorsolateral and (B) v entral vie w of the upper bill (with points in blue) 
and neurocranium (red). Right: (C) dorsal and (D) ventral view of the lower bill (purple), and (E) linear measurements were taken between each pair of 
points on the pedal bones (orange). 
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foraging behavior ( Cooney et al., 2017 ; Dehling et al., 2016 ; 
Krishnan, 2023 ; Mosleh et al., 2023 ; Pigot et al., 2016 ; 
Zusi, 1993 ), while cranial features reflect variation in mus- 
culature, vision, and neuroanatomy ( Eliason et al., 2021 ; 
Navalón et al., 2020 ; van der Meij & Bout, 2008 ). Avian 
pedal morphology is far less studied, although the diversity 
of hindlimb anatomy in birds has known relationships to lo- 
comotory mode ( Abourachid et al., 2017 ; Dickinson et al.,
2023 ; Falk et al., 2021 ; Miles & Ricklefs, 1984 ). We used a 
range of geometric morphometric and phylogenetic compar- 
ative methods to explore the tempo and mode of morpho- 
logical evolution in vangas and address several fundamen- 
tal questions in the study of adaptive radiation. We took a 
comparative approach, contrasting the radiation of Mala- 
gasy vangas with the rest of the Vangidae, to evaluate the 
degree to which ecological opportunity in Madagascar has 
facilitated exceptional trait diversification. First, we assessed 
whether overall morphological disparity is in fact higher in 
the Malagasy clade than in their mainland relatives. Second,
we asked whether stronger integration or modularity is as- 
sociated with morphological diversification across the fam- 
ily. Third, we examined how rates of evolution have varied 
through time across Vangidae. Throughout, we evaluated 
how including multiple anatomical traits shifts our view of 
diversification patterns and assessed the evidence for corre- 
lated evolution. We also sought to evaluate the role of ex- 
tremely divergent morphologies in driving our analyses of 
trait diversification. 

Methods 

Data collection 

We obtained morphometric data from microCT scans of mu- 
seum specimens, both alcohol-preserved (fluid) whole spec- 
imens and stuffed round skins. These specimen types were 
equired because they preserve the rhamphotheca, the ker- 
tinous sheath that interacts directly with the environment 
 Chhaya et al., 2023 ; Cooney et al., 2017 ; Eliason et al.,
020 ). Fluid specimens were preferred because the entire 
ody is preserved, but to improve our taxonomic sampling,
e included round skins, which contain only partial skele- 
ons (usually the anterodorsal portion of the skull and dis-
al portions of the limbs). Specimen and scan details can be
ound in Supplementary Table S1 , and all CT scans used in
his study are available on MorphoSource. In total, we ob-
ained scans of 75 specimens, with most species represented
y more than one specimen. Our morphometric dataset in- 
luded all genera and 34 of the 41 recognized species of
angidae ( Clements et al., 2023 ; Younger et al., 2019 ),
hough we were only able to obtain foot measurements for
0 species. Body mass was taken from the AVONET dataset
 Tobias et al., 2022 ) except for Schetba (rufa) occidentalis ,
hich was found in Safford and Hawkins (2013) . 
We segmented each scan using 3D Slicer V4.11 ( Fedorov

t al., 2012 ; 3D Slicer, 2020 ), then cleaned and smoothed
ll meshes in Autodesk Meshmixer V3.5 ( Autodesk Inc.,
018 ), and placed landmarks on each module in Stratovan
heckpoint ( Stratovan Corporation, 2018 ). Our landmark 
ataset consists of 214 landmarks, including 13 stationary 
andmarks and 9 curves ( Figure 1 , Supplementary Table S2 ;
ee Supplemental Methods for further details). We placed 
andmarks only on the left side to avoid unnecessarily in-
reasing the dimensionality of the data ( Cardini, 2017 ). For
he hindlimbs, we used 3D Slicer to digitally measure the
engths of 12 bones from one foot of each specimen: the tar-
ometatarsus, first metatarsal, and all but the ultimate (un- 
ual) phalanges of each digit ( Figure 1 , Supplementary Table
2 ). All data and code required to reproduce all of our anal-
ses have been deposited on Dryad. 
All morphometric analyses were performed in R ver- 

ion 4.3.0. Landmarks were aligned using a generalized 

https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf117#supplementary-data
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https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf117#supplementary-data
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rocrustes analysis (GPA) in geomorph version 4.0.7
 Adams et al., 2024 ; Baken et al., 2021 ; Gower, 1975 ; Rohlf
 Slice, 1990 ); semilandmark curves were slid to minimize
ending energy ( Bookstein, 1997 ). We mirrored the left-side-
nly landmarks using the mirrorfill function in paleomorph
ersion 0.1.4 prior to performing the GPA, then deleted
he mirrored landmarks ( Cardini, 2017 ; Lucas & Goswami,
017 ). The lengths of hindlimb bones were transformed into
og-shape variables by dividing by the geometric mean and
hen taking the natural log of that ratio, following, e.g.,
later (2022) and Roberts-Hugghis et al. (2023) . 
We were unable to quantitatively account for the influ-

nce of intraspecific variance or measurement error because
f small sample sizes due to specimen and time limitations.
oth factors can decrease phylogenetic signal and therefore
ncrease support for more complex models, in particular, el-
vated recent trait diversification rates ( Cooper et al., 2016 ;
ilvestro et al., 2015 ). To confirm qualitatively that intraspe-
ific variation is fairly small relative to the magnitude of trait
ivergence across vangas, we visualized variation of all spec-
mens using a principal component analysis (PCA) to ensure
hat conspecifics clustered together ( Supplementary Figure
1 ) and then averaged landmark coordinates by species for
ll subsequent analyses. 
Our morphological dataset was comprised of four

natomical modules, which we used for all analyses: up-
er bill, lower bill, neurocranium, and feet ( Figure 1 ). The
kull modules (bill and neurocranium) are functionally and
tructurally discrete, and are consistent with prior work that
dentified the major modules of the avian skull ( Felice &
oswami, 2018 ), although the lower bill was not included

n that study. We performed a separate GPA on each mod-
le to avoid averaging variance across modules, a particular
oncern when some regions project far from the center of the
hape, as with bird bills ( Cardini, 2019 ; Cardini & Marco,
022 ). 
We used a time-calibrated phylogeny of the Vangidae pro-
uced using reduced-representation genomic data targeting
ltraconserved elements (UCEs; in preparation). In brief, this
nalysis included all described species of the family Vangi-
ae except for 5 species outside of Madagascar (78 taxa
otal). Given the high variability of phylogenetically infor-
ative sites in UCE loci, which can exacerbate divergence
ating analyses, we pruned our dataset to include only the
,000 most informative loci (following Chen et al. 2021 )
nd then randomly subsampled 100 loci to create 10 sub-
ets. For each subset, we ran an entropy estimation script
o identify regions with differential rates of evolution (i.e.,
onserved cores vs. variable flanking regions) and used Par-
itionFinder 2 ( Lanfear et al., 2017 ) to identify sets of loci
ith similar rates that can be combined in our model es-
imates. In BEAST 2.5 ( Bouckaert et al., 2019 ), we con-
ucted analyses of each subset for 100 million generations
sing a fixed topology from our maximum likelihood anal-
ses and calculating branch lengths to estimate divergence
imes using the partition scheme and model settings from the
artitionFinder results. We used calibration estimates from
laramunt and Cracraft (2015) , which used the largest set of
erified fossils to date, to fix the most recent common ances-
or of the root (Vangidae + Platysteridae) as 27.36 Ma (95%
ighest posterior density 22.71–32.09). We compared our
esulting divergence times with those of other recent analy-
 &  
es of passerines ( Oliveros et al., 2019 ) and found them to
e comparable and within the 95% confidence intervals. 

atterns of morphological disparity 

o visualize the major axes of shape variation in vangas,
e performed PCAs on the GPA-aligned landmarks and log-
hape variables using the gm.prcomp function in geomorph .
e used standard, rather than phylogenetic, PCA, as this re-

ults in strictly orthogonal axes, which are required as input
or several downstream analyses ( Polly et al., 2013 ; Revell,
009 ). We performed separate PCAs on each module and on
he combined landmark dataset to assess how overall pat-
erns of variation differed between anatomical regions. 
Initial exploratory analyses identified several Malagasy

axa as extreme outliers in each module (see the Results
ection; Figure 2 , Table 1 ). To visualize the effect of these
utliers on the primary axes of variation, we performed
dditional PCAs in which we initially excluded the outlier
axa. The outliers were then projected into the ordination by
ultiplying their GPA-aligned landmark configurations or
ean-centered log-shape variables by the eigenvectors from
he initial PCA; this is referred to as a post hoc rotation. Most
ubsequent analyses were performed on both the full set of
alagasy vangas and with either one or two outliers ex-

luded to assess the degree to which our results were driven
y the presence of these extreme morphologies. 
To quantify differences in disparity between the Mala-

asy and non-Malagasy vangas and between foraging cate-
ories, we used kernel density hypervolumes, overall dispar-
ty (based on Procrustes variance), and multivariate analysis
f variance (MANOVA; Adams, 2014a ; Blonder et al., 2018 ;
elditch et al., 2012 ). Foraging categories follow Reddy et
l. (2012) . Kernel density hypervolumes have the benefit of
ccounting for the presence of holes in the morphospace,
uch as those created by outliers, but are limited by the hy-
ervolume space becoming sparse as the dimensionality of
he data increases ( Blonder, 2016 ). On the other hand, over-
ll disparity does not account for holes in morphospace but
as the benefit of using the full dimensionality of the dataset.
e also estimated the degree of phylogenetic signal for each
odule, and compared its strength both between clades and
etween modules, to evaluate the degree to which disparity
ould be explained by evolutionary relatedness ( Collyer &
dams, 2018 , 2024 ; Collyer et al., 2022 ). Details of these
nalyses are described in the Supplemental Methods. 

ntegration and modularity 

he degree of integration can be quantified both within and
etween anatomical modules, and these quantities together
elate to modularity, often measured as the ratio of within-
odule to between-module integration. For each analysis,
e calculated the strength of integration or modularity for
ach module or pair of modules, then compared this value
etween clades. We also assessed the impact of anatomical
utliers on observed clade-wide patterns of trait covariation
y removing them from the dataset one at a time as well as
ogether for each analysis. 
We calculated within-module integration as the relative

igenvalue index ( Conaway & Adams, 2022 ; Pavlicev et
l., 2009 ). We calculated integration between modules us-
ng a phylogenetic partial least-squares analysis ( Adams
 Collyer, 2016 ; Adams & Felice, 2014 ; Bookstein et

https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf117#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf117#supplementary-data
https://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpaf117#supplementary-data
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Figure 2. Morphological diversity in vangas. Principal components 1 and 2 from PCAs of generalized Procrustes analysis (GPA)-aligned landmark 
configurations for the skull and log-shape variables for the feet. Top row: (A) whole skull and (B) whole skull post hoc rotation scores, showing 
differences in the primary axes of variance when outliers are excluded. Middle: (C) upper bill and (D) lower bill. Bottom: (E) neurocranium and (F) feet. 
Triangles represent Malagasy vangas, while circles represent non-Malagasy vangas. Points are colored by foraging category, with red for probing, blue 
for sallying, and yellow for gleaning; darker shades are used for the Malagasy vangas. Convex hulls are drawn around each clade, solid (Malagasy) and 
dashed (non-Malagasy). Inset birds represent the extremes of shape; outliers are labeled.Illustrations of birds by Velizar Simeonovski. 

Table 1. Morphological diversity of the Malagasy vs. non-Malagasy vangas by anatomical region. 

Module Outliers Hypervolumes Disparity MANOVAs 

Fold difference Fraction unique a Phylogenetic 
Non- 
phylogenetic 

Upper bill Falculea, Euryceros < 0.002 (10.247) 0.004 0.101 0.773 0.243 
Lower bill Falculea 0.040 (4.862) 0.028 0.073 0.714 0.416 
Neurocranium – 0.048 (2.104) 0.048 0.096 0.678 0.083 
Whole skull Falculea, Euryceros 0.004 (10.758) 0.006 0.045 0.752 0.179 
Skull (post hoc) Falculea 0.012 (8.227) 0.002 – – –
Skull (no outliers) – 0.010 (5.361) < 0.002 0.040 0.158 0.136 
Feet Mystacornis, 

Hypositta 
0.076 (3.933) 0.022 0.149 0.785 0.019 

Feet (post hoc) – 0.202 (2.379) < 0.002 – – –
a Fraction unique for Malagasy; for non-Malagasy vangas, fraction unique did not approach significance except for the foot post hoc rotation scores ( p = 

0.046) 
Note . Significance of differences in morphological diversity between clades (p values), quantified using kernel density hypervolumes from the first three PC 

axes for each module, and disparity and MANOVAs (multivariate analysis of variance) from the full landmark or linear measurement dataset. Outliers are 
identified from PC axes. Fold difference is the magnitude of difference in hypervolume size (magnitude of fold difference reported in parentheses); fraction 
unique is the percentage of hypervolume unique to the subclade. Significant differences are bolded. 
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l., 2003 ) and modularity as the covariance ratio ( Adams,
016 ; Adams & Collyer, 2019 ). Details of all analyses may
e found in the Supplemental Methods. We focused our
nalyses of between-module integration and modularity on
he adjacent pairs of skull modules (upper bill and skull, up-
er and lower bills) but also tested for integration between
ach skull module and the feet. 

volutionary rate analyses 

he complexity of shape variation in vangas meant that a
ultivariate approach was necessary to accurately assess
ates of morphological evolution, and our hypotheses re-
uired evaluating how rates have varied across branches
f the vanga tree. Currently available methods for analyz-
ng high-dimensional trait datasets (e.g., Clavel & Morlon,
020 ; Clavel et al., 2019 ) have not yet been developed for
odels with heterogeneous evolutionary rates, making di-
ensionality reduction necessary. We used BayesTraits v4.0

 Pagel et al., 2022 ; Venditti et al., 2011 ) to assess shifts in
ates of morphological evolution across Vangidae. Follow-
ng common practice ( Evans et al., 2021 ; Felice & Goswami,
018 ), we used as our trait data principal component axes
ummarizing 95% of total shape variation, as the first few
xes will tend to bias results toward detecting an early burst
 Uyeda et al., 2015 ); see Miller et al. (2025) for further dis-
ussion of the benefits and limitations of this type of ap-
roach. PC scores for BayesTraits input were multiplied by
,000 to avoid computational issues that arise from small
umbers in BayesTraits ( Troyer et al., 2024 ). We compared
he fit of a series of local tree transforms using five differ-
nt scaling parameters, termed kappa, lambda, delta, node,
nd branch. Kappa, lambda, and delta transforms rescale
verall relative branch lengths, while node and branch trans-
orms indicate a shift in either the rate or mean value of
he trait for the descendant clade ( Pagel, 1999 ; Pagel et al.,
022 ; see Supplemental Methods for details). For each trans-
orm, we tested the fit of three rate shift placements: (1) at
he root of the Malagasy clade (equivalent to early burst);
2) at the root of the “derived” clade of foraging behav-
ors; and (3) multiple shifts occurring elsewhere on the phy-
ogeny. For the first two, we specified the node at which the
ransform would occur using the LocalTransform command.
or the third, we used a reversible-jump Markov chain
onte Carlo (rjMCMC) approach ( RJLocalTransform op-

ion in BayesTraits) to determine for each transform the lo-
ation and number of shifts that best fit the data. Finally,
e implemented the “Fabric” model ( Pagel et al., 2022 ),
hich uses rjMCMC to simultaneously detect directional
branch transform) and evolutionary rate changes (node
ransform). See Supplemental Methods and Supplementary
able S9 for a complete list of all tested models and model
ettings. 
We used these models to evaluate the tempo and mode of

volution in a total of five trait datasets: whole skull, whole
kull with post hoc rotation, bill (upper + lower), feet, and
ody mass. Dimensionality reduction to 95% of total vari-
tion resulted in 13 PC axes for the skull dataset, 14 for the
kull with post hoc rotation, 9 for the bill, and 7 for the feet.
or each model, we ran five independent Markov chains and
ompared the fit of each model to a null model of constant
ates using Bayes factors from a stepping-stone sampler; see
upplemental Methods for details. 
As a complementary means of understanding the rate of
rait diversification through time, we performed a disparity-
hrough-time analysis on each trait dataset using the func-
ion dtt in the R package geiger version 2.0.11 ( Harmon et
l., 2003 ; Pennell et al., 2014 ; Slater et al., 2010 ; see Supple-
ental Methods for details). 
We also compared the net rates of morphological evolu-

ion between the Malagasy and non-Malagasy vangas and
etween foraging modes using the compare.evol.rates func-
ion in geomorph ( Adams, 2014b ; Denton & Adams, 2015 ).
his analysis finds the net rate of evolution under a Brow-
ian motion (BM) model and calculates the ratio of rates
or two or more groups. Both permutation- and simulation-
ased methods are available for assessing the significance
f the rate ratio; we evaluated the results of both options
 Adams & Collyer, 2018 ). 

esults 

atterns of morphological disparity 

ur analyses confirmed that Malagasy vangas are much
ore morphologically diverse in the measured traits than
on-Malagasy vangas. PCAs ( Figure 2 ) show that across all
our modules, the Malagasy vangas occupy a far greater to-
al spread of morphospace along the primary axes of vari-
nce. As expected, some species with extreme morphologies
ppear as outliers and drive much of the variation seen on
C1 and PC2 ( Figure 2 ). Falculea (Sickle-billed Vanga) is
ighly divergent in both upper and lower bill shape ( Figure
C, D ), while Euryceros (Helmet Vanga) is an outlier in
pper bill only. In the feet, Mystacornis (Crossley’s Vanga)
nd Hypositta (Nuthatch-Vanga) were outliers, with the dif-
erence between them defining the primary axis of varia-
ion ( Figure 2F ). Mystacornis has a proportionally elongated
arsometatarsus and shortened hallux, whereas the reverse
s true in Hypositta . Although the Malagasy vangas were
ore diverse than the non-Malagasy vangas in neurocranial
hape, no taxa were outliers ( Figure 2E ). The Malagasy van-
as also occupied a greater region of morphospace on sub-
equent PC axes ( Supplementary Figure S2 ). 
PCAs with post hoc rotation of these outliers showed that

hey did substantially alter the loadings of variables on the
rimary axes of variance, changing the general patterns that
merged for the clades as a whole ( Figure 2B , Supplementary
igures S2 and S3 ). Notably, Falculea remained an outlier, al-
eit more on PC2 than PC1, but Euryceros is in the middle of
he space. To evaluate the role these outliers play in driving
he overall disparity of the Malagasy radiation, for each test
f disparity, we compared the Malagasy vangas as a whole,
he Malagasy vangas with outliers removed, the Malagasy
angas using post hoc rotation scores (where relevant), and
he non-Malagasy vangas. 
Malagasy and non-Malagasy vangas differed in dispar-

ty, mean shape, or both for all measured traits ( Table 1 ).
ur analyses of morphospace hypervolumes found that the
alagasy vangas occupied significantly more morphospace

han the non-Malagasy vangas for all skull modules, but not
he feet, and that a significant fraction of the morphospace
as unique to the Malagasy vangas for all trait datasets

 Table 1 , Figures 3 and Supplementary Figure S4 ). Over-
ll disparity was always greater in the Malagasy vangas,
ut differences were only significant for the whole skull
 Table 1 ). MANOVAs indicated that average shape was
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Figure 3. Morphospace h yperv olumes of the skull for Malagasy (blue) and non-Malagasy (orange) vangas. Hypervolumes are for the first three PC axes 
from the whole skull landmark dataset. Large, dark points represent the observed point for each species, and the small points represent the density 
distribution of the h yperv olume. T he tw o largest points with white borders indicate the centroid of each clade. T he inset histogram is the null 
distribution of h yperv olume differences from the permutation test, with a dashed line indicating the observed difference in volume. 
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significantly different between the clades only for the feet 
( Table 1 ); ANOVAs of each pedal bone indicated that 
these differences are spread across the first three digits 
( Supplementary Table S3 ). 

Vangas in the three foraging categories occupy distinct 
regions of morphospace and differ in their degree of over- 
all morphological disparity. In the whole skull and neu- 
rocranium, gleaners and probers do not overlap on the 
first two PC axes, with salliers occupying an intermedi- 
ate position ( Figure 2 ). MANOVAs but not phylogenetic 
MANOVAs found that these differences in overall shape 
were significant for all skull modules, with probers con- 
sistently showing greater disparity than the other foraging 
classes ( Supplementary Table S4 ). For foot shape, gleaners 
dominate the primary PC axes because both outliers are in 
this category ( Figure 2 ). Foraging classes were also signifi- 
cantly different in mean foot shape, though not in dispar- 
ity, but only when analyzed using post hoc rotation scores 
( Supplementary Figure S3 , Supplementary Table S4 ). 

We detected significant phylogenetic signal for most mod- 
ules and subclades, and differences between categories were 
nearly all statistically significant ( Supplementary Table S5 ).
Notably, phylogenetic signal in the non-Malagasy vangas 
as highest in the upper bill, whereas in the Malagasy van-
as, it was highest in the neurocranium, with no significant
ignal in the upper bill except when both outliers were ex-
luded. 

ntegration and modularity 

ithin-block integration (eigenvalue dispersion) was con- 
istently but not significantly higher in the Malagasy vangas 
cross modules ( Supplementary Table S6 ). Removing both 
alculea and Euryceros from the Malagasy dataset always 
ecreased integration in the remaining Malagasy vangas,
sually below that of the non-Malagasy clade. 
The upper bill and neurocranium were more integrated in 

he Malagasy vangas, while the upper and lower bills were
ore integrated in the non-Malagasy vangas; however, in 
oth comparisons, removing the outliers reversed this pat- 
ern ( Supplementary Table S7 ). Plotting the scores from the
rst axes of covariance revealed that both Euryceros and 
alculea deviate massively from the dominant patterns of 
ovariance for the rest of the clade ( Figure 4 ). As with eigen-
alue dispersion, few differences were statistically signifi- 
ant. For the upper bill and neurocranium, removing both 
utliers left the remaining Malagasy vangas with no signifi- 
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Figure 4. Skull shape integration in vangas. Scores from the first two pairs of partial least-squares analysis axes testing integration of the upper bill and 
neurocranium (top) and upper and lo w er bills (bottom). These are similar to PCA plots, but show the primary axes of mutually predictive variance for each 
pair of anatomical modules. Partial least-squares analysis components 1 (A, C) and 2 (B, D). Triangles represent Malagasy vangas, while circles represent 
non-Malagasy vangas. The points are colored by foraging category, with red for probing, blue for sallying, and yellow for gleaning; darker shades are 
used for the Malagasy vangas. The positions of anatomical outliers ( Euryceros , blue and Falculea , red) are indicated on each plot. 
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ant integration; including Euryceros appeared necessary to
ake these modules significantly integrated ( Supplementary
able S7 ). The bill was most strongly integrated when both
utliers were removed, and not significantly integrated at all
hen only Falculea was removed, though none of these dif-
erences were significant. The feet were not significantly in-
egrated with any skull module ( Supplementary Table S8 ),
hough they approached significance for the upper bill in the
on-Malagasy vangas ( p = 0.063). 
Modularity was consistently higher in the Malagasy than

he non-Malagasy vangas; this result was highly significant
or the upper and lower bills ( p < 0.001) but not for the
pper bill and neurocranium ( Table 2 ). In both cases, re-
oving Falculea , Euryceros , or both always decreased the
egree of modularity in the remaining Malagasy dataset. Re-
oving Euryceros or both outliers resulted in the remaining
alagasy vangas switching to showing significantly lower
odularity than the non-Malagasy vangas, while remov-

ng Falculea alone had a more variable impact. Examining
he distribution of null covariance ratios from the resam-
ling procedure for each test suggested that wide variation in
he mean and standard error of these distributions between
atasets may explain at least some of the surprising variation
n modularity and significance tests ( Supplementary Figure
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Table 2. Pairwise comparisons of the strength of skull modularity between Malagasy and non-Malagasy vangas. 

Malagasy Non-Malagasy Malagasy (no outliers) Malagasy (no Falculea ) Malagasy (no Euryceros ) 

Upper bill vs. neurocranium 

Z CR (Modularity) −15.523 −7.946 −6.047 −9.812 −5.280 
Malagasy – 0.057 3.641 4.955 12.567 
Non-Malagasy 0.954 – 2.696 3.139 6.778 
Malagasy (no outliers) < 0.001 0.007 – 0.084 4.521 
Malagasy (no Falculea ) < 0.001 0.002 0.933 – 6.932 
Malagasy (no Euryceros ) < 0.001 < 0.001 < 0.001 < 0.001 –

Upper bill vs. lower bill 
Z CR (Modularity) −16.221 −14.223 −10.718 −12.129 −14.109 
Malagasy – 7.600 4.127 6.466 11.696 
Non-Malagasy < 0.001 – 2.746 0.208 12.625 
Malagasy (no outliers) < 0.001 0.006 – 2.336 9.090 
Malagasy (no Falculea ) < 0.001 0.835 0.019 – 10.751 
Malagasy (no Euryceros ) < 0.001 < 0.001 < 0.001 < 0.001 –

Note . Modularity is quantified as the covariance ratio (CR). ZCR is the strength of modularity for each clade, with a more negative Z score indicating 
greater modularity—the Malagasy vangas (with outliers included) are the most modular. Pairwise comparisons of modularity between clades (Malagasy, 
non-Malagasy, and Malagasy with outliers removed), with Z scores above and p- values below the diagonal. Significant differences are bolded. 
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S5 ). Overall, we did not find a consistent relationship be- 
tween the morphological diversity of the Malagasy vangas 
and either integration or modularity; instead, we found that 
the results were broadly sensitive to the presence of anatom- 
ical outliers. 

Rates of trait evolution 

For all traits except body size, our BayesTraits analyses 
found very strong evidence in support of more complex,
rate-variable models over a constant rate of morphologi- 
cal evolution ( Supplementary Table S9 ). The results for all 
three skull/bill datasets were essentially the same: We focus 
here on the full skull without post hoc rotation of outliers,
but results from all three can be found in the Supplementary 
Material. The best-supported model for rates of vanga skull 
evolution was a reversible-jump branch transform where a 
scalar was applied to certain tips, indicating strong direc- 
tional trends in shape in those taxa. Five branch scalars 
were found in greater than 85% of trees from the poste- 
rior, with consistent probabilities and magnitudes across five 
runs ( Figure 5 , Supplementary Table S10 ). Shifts occurred 
in Falculea and Euryceros 100% of the time, with ∼20–
25-fold increases, while smaller shifts usually occurred in 
Xenopirostris and two members of the African genus Pri- 
onops ( Figure 5 , Supplementary Tables S10 and S11 ). The 
best-supported model for foot shape was a reversible-jump 
delta transform ( Supplementary Table S9 ). This model found 
a delta transform of 1.76 at the root of all Vangidae in 100% 

of posterior trees, indicating a family-wide trend of accel- 
erating foot evolution through time ( Supplementary Table 
S10 ). An additional two delta transforms were detected in 
slightly under half of sampled trees: a second increase in 
delta of 1.18 at the ancestor of Hypositta plus the remaining 
Malagasy vangas, followed by a decrease in delta of 0.90 at 
the subsequent node (excluding Hypositta ); this had the ef- 
fect of a massive increase in evolutionary rate for Hypositta 
alone ( Supplementary Figure S6 ). For body mass, we found 
moderate support for a node transform at the origin of the 
“derived” clade (Bayes factor = 2.78), indicating an increase 
in rates of size evolution in this group ( Supplementary Table 
S9 ). 

Our DTT results are largely congruent with our 
BayesTraits analyses, showing that average subclade dispar- 
ty in skull shape does not conform to Brownian motion ex-
ectations in the Malagasy vangas ( Figure 5 ). Subclade dis-
arity stayed within BM expectations until a sharp increase 
bout 12 Ma, at the common ancestor of Euryceros plus its
ister taxa and the probing clade. It then stayed high and
piked about 4 Ma, just before Falculea and Euryceros split
rom their respective sister taxa, then declined sharply to- 
ard the present. Foot shape, in contrast, showed a steady
ecrease in disparity through time consistent with the null 
xpectation of a Brownian model of morphological evolu- 
ion ( Supplementary Figure S7 ). 
The net rate of multivariate trait evolution was 2–4 ×
igher in the Malagasy vangas for each module except the
eurocranium and for the whole skull, but removing the two
utliers eliminated this difference ( Table 3 ). The net evolu-
ionary rate also differed significantly between vangas using 
ifferent foraging behaviors ( Table 3 ). The small but mor-
hologically disparate probing clade consistently had the 
ighest rates of skull evolution, up to 10.7 × that of glean-
rs in the upper bill. However, the statistical significance of
hese differences varied by method. Rate differences were 
ighly significant when tested using phylogenetic simulation 
 Denton & Adams, 2015 ), but not when using a permutation
est ( Supplementary Table S12 ) ( Adams & Collyer, 2018 ).
he difference between the two methods might be a conse-
uence of permutation being more sensitive to the presence
f outliers. 

iscussion 

he Malagasy vangas constitute an adaptive radiation, with 
xceptional ecomorphological disparity associated with di- 
ersification of foraging mode. Taking the relatively uncom- 
on approach of comparing the tempo and mode of evolu-
ion in a proposed radiation to that of its relatives ( Burress
 Muñoz, 2022 ; Starr et al., 2024 ), we found higher dis-
arity in the Malagasy vangas than in their relatives across
ll measured traits. This finding is consistent with a clas-
ic model of adaptive radiation in response to ecological 
pportunity, where the Malagasy vangas have diversified 
n traits that allow them to exploit a range of niches usu-
lly filled by other clades on the mainland ( Gillespie et al.,
020 ). Much of this diversification was likely facilitated by
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Figure 5. Rates of skull shape e v olution in vangas. (A) Phylogeny of Vangidae with branches colored by magnitude of mean directional shifts in the 
best-supported model. This model suggests that large directional shifts in individual taxa have collectively generated the exceptional degree of 
morphological diversity observed in the Malagasy vangas. Triangles indicate shifts detected in over 85% of posterior trees, and stars indicate the 
colonization of Madagascar (y ello w) and later the origin of the “derived” subclade (red). (B) Disparity through time plot, with solid line indicating 
observed disparity, dashed line simulated disparity under constant rates, and the shaded area the 95% confidence interval. Average subclade disparity 
w as ele v ated through the div ersification of the deriv ed clade, peaking just bef ore F alculea split from its sister species Artamella . 

Table 3. Differences in the net rate of e v olution f or each anatomical region betw een clades (Malagasy vs. non-Malagasy v angas) and betw een f oraging 
categories (probing, sallying, and gleaning). 

Module Malagasy vs. non-Mal Probe vs. Glean Probe vs. Sally Glean vs. Sally 

Whole skull 2.306 (0.001) 6.711 (0.001) 3.444 (0.001) 1.949 (0.001) 
Skull (outliers excluded) 1.186 (0.160) 1.424 (0.0829) 1.881 (0.013) 1.321 (0.079) 
Upper bill 4.034 (0.001) 10.893 (0.001) 2.953 (0.002) 3.689 (0.001) 
Lower bill 2.760 (0.001) 8.759 (0.001) 6.349 (0.001) 1.380 (0.250) 
Neurocranium 1.135 (0.462) 1.537 (0.108) 1.158 (0.618) 1.328 (0.166) 
Feet 2.008 (0.003) 1.037 (0.919) 2.375 (0.024) 2.290 (0.002) 
Feet (outliers excluded) 1.112 (0.630) 1.824 (0.056) 2.284 (0.021) 1.252(0.373) 

Note . Values are rate difference (fold) and p- values from the simulation procedure. Significant differences are bolded. 
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the evolution of new modes of foraging, as much of the novel 
bill shape variation in the Malagasy vangas is found in the 
subclade in which first sallying, and then probing types of 
foraging maneuvers evolved. However, these foraging cate- 
gories do not account for the foraging substrates used by 
different species, which likely drive locomotor adaptations 
and therefore pedal shape variation. The most unique pedal 
morphologies are in gleaners with different locomotory de- 
mands: the terrestrial Mystacornis and Hypositta , a vertical 
climbing gleaner of trunks and branches. These traits have 
made generally independent contributions to vanga diver- 
sity: Different species display extreme morphologies in bill 
or foot shape, facilitating their specialization to an excep- 
tionally wide range of foraging niches. 

Integration and modularity are heterogeneous 
within the Malagasy vangas 

The results of our analyses of integration and modular- 
ity were complex, suggesting that the interaction between 
integration, modularity, and evolvability in vangas is not 
straightforward. When we excluded anatomical outliers, the 
Malagasy vangas generally had statistically indistinguish- 
able levels of integration and significantly lower modularity 
than the non-Malagasy vangas, suggesting some role for re- 
duced independence at least between skull modules in their 
diversification. However, the presence of a few species with 
highly divergent morphologies among the Malagasy vangas 
had profoundly affected our results. The impacts of exclud- 
ing either of the two bill shape outliers alone or both together 
were highly variable, likely due to their very different mor- 
phologies. Although Falculea has by far the most unique bill 
shape among all vangas, standing out in every one of our 
analyses, that it remained an outlier in the PCA with post 
hoc rotation suggests an overall pattern of trait covariation 
partially reflecting that in the rest of Vangidae. Euryceros , in 
contrast, with its distinctive upper bill only, appears to show 

a unique pattern of trait covariation. Similarly, Mystacornis 
and Hypositta were not outliers in post hoc rotation plots of 
foot shape. Euryceros and Falculea were also outliers on dif- 
ferent axes of the partial least-squares analysis plots, again 
suggesting contrasting modes of bill shape divergence. 

Together, we take these results to suggest that the rapid 
evolution of Falculea’s extremely decurved bill may have 
required increasingly tight integration between the upper 
and lower mandibles, and occurred at least in part along 
existing evolutionary lines of least resistance ( Felice et al.,
2018 ; Schluter, 1996 ). In Euryceros , the evolution of unusu- 
ally decoupled mandibles required a break from the dom- 
inant pattern of covariation, as did the evolution of diver- 
gent foot morphologies. A previous study found higher levels 
of integration between the upper bill and neurocranium in 
the Galapagos finches and Hawaiian honeycreepers than in 
other passerine birds, but no general relationship between 
integration and rates of evolution ( Navalón et al., 2020 ).
They suggested that this relationship is likely to break down 
in older clades due to variation in selective pressures acting 
over many millions of years; our findings in vangas may re- 
flect this, with relatively similar patterns of integration in 
most vangas that can be disrupted by strong divergent se- 
lection. Navalón et al. did not include the lower bill in their 
study, but it would be interesting to compare our results to 
other clades such as the Hawaiian honeycreepers, which also 
nclude several taxa whose upper and lower bills appear un-
sually decoupled. Studies in younger radiations might also 
e better able to address whether shifting patterns of inte- 
ration at genetic, developmental, and/or evolutionary levels 
ay primarily contribute to the evolvability of certain clades 

 Jablonski, 2022 ; Klingenberg, 2008 ). 

apid morphological evolution, but no evidence for 
n early burst 

espite much higher net rates of evolution in the Malagasy
han the non-Malagasy vangas for most ecomorphological 
raits, we did not find any evidence to support an early burst
f morphological evolution coincident with the colonization 
f Madagascar. In the classic early burst model of adaptive
adiation, declining ecological opportunity and therefore di- 
ersification rates through time mean disparity should parti- 
ion between subclades early in the radiation’s history, result- 
ng in a rapid drop in relative subclade disparity ( Harmon
t al., 2003 ; Slater et al., 2010 ). Instead, subclade dispar-
ty for skull shape was initially within the null distribution,
hen increased and stayed well above BM expectations dur- 
ng the diversification of the most morphologically disparate 
allying and probing vangas. These divergent taxa resulted 
n large but unevenly distributed recent increases in rates of
ill shape diversification, with individual species diverging 
ramatically and in different directions rather than any gen- 
ral clade-wide pattern. In contrast, rates of foot shape evo-
ution have generally increased through time across all van- 
as, with a single additional increase in Hypositta . Taken to-
ether, these results show that most of the morphological di-
ersification of the Malagasy vangas occurred after they had 
lready been present in Madagascar for millions of years and
oincident with the evolution of novel foraging behaviors. 
The delayed increase in bill shape diversification, con- 

entrated in a clade in which derived foraging behaviors 
ave evolved, is consistent with the model of a subclade-
pecific key innovation ( Etienne & Haegeman, 2012 ; Slater 
 Pennell, 2014 ). These major categories of foraging behav- 

or do not correspond directly with the diverse specific be-
aviors employed by vangas with specialized bill and foot 
hapes (e.g., probing in leaves vs. tree cavities) but could
ave functioned as general behavioral innovations that ex- 
anded the range of niche space available to the clade,
ermitting greater coexistence and therefore diversification 
 Germain et al., 2024 ). A range of extrinsic or intrinsic fac-
ors could have played a role in the timing of this shift. Ex-
rinsic factors include shifts in climate or competitive dy- 
amics with other clades. One possible intrinsic factor is 
imited genetic diversity due to small founder populations.
ybrid origins are increasingly recognized as common es- 
ecially in young, rapid radiations ( Gillespie et al., 2020 ;
arques et al., 2019 ; Martin & Richards, 2019 ; Seehausen,
004 ; Wogan et al., 2023 ), and future work should test
or the presence of reticulation events, which were recently 
hown to have contributed to species diversification in gem- 
nakes, another Malagasy radiation of similar age ( DeBaun 
t al., 2023 ). 
The niche of the founding population is another intrin- 

ic factor frequently proposed to constrain adaptive radia- 
ion, with certain traits predisposing some lineages to diver- 
ify ( Flohr et al., 2013 ; Jablonski, 2008 ; Miller et al., 2025 ;
goepe et al., 2023 ). In birds, granivory has been proposed
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s a trait that facilitates diversification, largely because the
wo best-studied avian radiations, the Galapagos finches and
awaiian honeycreepers, both evolved high dietary diversity

rom a granivorous ancestor ( Lovette et al., 2002 ; Rundell
 Price, 2009 ). Constraint imposed by insectivorous ances-

ry is therefore another possible explanation for the delay in
ill shape diversification in Vangidae. Despite their diversity
f foraging behaviors, vangas have not evolved the dietary
iversity of other classic avian radiations. This restriction
ight be one explanation for the slower initial diversifica-
ion rate in vangas. A different, though related explanation
s that vangas may belong to a clade with lower baseline
volvability. Passerida, the large clade in which the finches
nd honeycreepers are both nested, shows exceptionally high
ates of both morphological evolution and speciation ( Felice
 Goswami, 2018 ; Imfeld & Barker, 2022 ; Lovette et al.,
002 ; Oliveros et al., 2019 ; V inciguerra & Burns, 2021 ), in-
icating a high propensity for diversification. In contrast, the
angas are in Corvides, which show an increase in speciation
ate at their base ( Oliveros et al., 2019 ) but no correspond-
ng overall increase in rates of skull shape evolution ( Felice
 Goswami, 2018 ). 
Given the extremely divergent morphologies of the “de-

ived” clade of Malagasy vangas, we think it highly unlikely
hat intraspecific variation or measurement error impacted
ur overall conclusions. We did detect the greatest rate shifts
t the tips, but these were specifically in our most obvi-
usly anatomically extreme taxa, and fit into a broader pat-
ern of increased disparity throughout the derived clade de-
ned by foraging mode, and increased net evolutionary rates
n these foraging categories. Also supporting this view, the
ext-highest supported model following the more complex
eversible-jump models was one indicating a single rate shift
t the origin of the derived clade ( Supplementary Table S9 ).

utliers or extreme forms 

he Malagasy vangas offer a very different model of adap-
ive radiation from that of the classic early burst, where in-
tead many individual taxa have diverged dramatically in
ne or more aspects of their morphology to generate most
f the disparity across the group. This presents substantial
hallenges to the quantitative analysis of trait diversity and
volution, as existing conceptual frameworks and empirical
ests for understanding adaptive radiation are not well de-
igned for groups in which divergent and extreme forms are
ssential to understanding the clade as a whole. This is not
 new challenge. For example, Slater et al. (2010) did detect
n early burst of morphological evolution in cetaceans, but
nly after removing young outliers, whereas Rowsey et al.
2019) lost support for an early burst in Philippine rodents
hen outliers were removed. Our confidence in the results
f several analyses was complicated due to both the small
umber of taxa in Vangidae and the large impact of these
utliers. This challenge may be inherent to our statistical ap-
roaches, but nonetheless needs to be accounted for in our
iological interpretations. 

onclusions and future directions 

angas offer an example of an adaptive radiation that has
chieved exceptional ecomorphological diversity, but not
hrough an early burst of trait evolution. Our study demon-
trated the importance of using multiple traits to examine
he complexities of morphological diversification in clades
hat are likely responding to varied selective pressures. We
mphasized the importance of exceptional ecomorphologi-
al diversity as the unifying feature of adaptive radiations,
nd explored the impact of extreme phenotypes in driving
iversification patterns. Our conclusions about integration
nd modularity were highly influenced by inclusion or re-
oval of extreme taxa, indicating that there are idiosyn-
ratic patterns of trait covariation in anatomically disparate
angas. These results suggest that integration patterns may
e generally conserved but can also evolve relatively rapidly
n specific traits under divergent selective pressures. The evo-
ution of novel classes of foraging behavior can be con-
idered a “key innovation” in Malagasy vangas, but this
lone does not explain the higher phenotypic diversity in this
lade, as other related factors such as locomotory mode have
riven diversification in different directions. 
In this study, we took a sister clade approach to evaluat-

ng the diversification of Malagasy vangas. However, a more
omplete understanding of biodiversity patterns and their
auses will require broadening taxonomic scope to compar-
sons across a wider range of taxa, without losing the insights
hat emerge from species-level sampling ( Losos & Miles,
002 ; Moen et al., 2021 ). We highlight the importance of fu-
ure studies to explore the frequency of outliers, i.e., species
xhibiting extremely divergent morphologies, across traits
nd taxonomic scales, and to investigate whether this is a
ore general feature of many adaptive radiations, as some
ther authors have suggested ( Martin & Richards, 2019 ;
owsey et al., 2020 ; Slater & Pennell, 2014 ). A survey of this
henomenon would help evaluate how extreme phenotypes
hould fit into our conceptual frameworks and be accounted
or in analyses of macroevolution. 

upplementary material 

upplementary material is available online at Evolution . 
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