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Abstract—In this letter, we present an active learning-
based control method for discrete-time linear systems
with unknown parameters under denial-of-service (DoS)
attacks. For any DoS duration parameter, using switching
systems theory and adaptive dynamic programming, an
active learning-based control technique is developed. A
critical DoS average dwell-time is learned from online input-
state data, guaranteeing stability of the equilibrium point
of the closed-loop system in the presence of DoS attacks
with average dwell-time greater than or equal to the critical
DoS average dwell-time. The effectiveness of the proposed
methodology is illustrated via a numerical example.

Index Terms—Learning-based control, resiliency, DoS
attacks, output regulation.

I. INTRODUCTION

C
YBER-PHYSICAL systems (CPSs), which integrate

network communication, control, and computing, have

gained attention due to their benefits in energy efficiency,

performance, and convenience. Unlike traditional networked

control systems, CPSs - with both physical and network

components - are more vulnerable to malicious network

attacks [1], [2]. These attacks, which disrupt system function-

ality, can be classified as deception attacks (compromising

data integrity) and denial-of-service (DoS) attacks (disrupting

the availability of services or information exchange) [3], [4].

DoS attacks pose a serious threat due to their simplicity

and the potential to cause communication breakdowns [5].

Thus, ensuring not only stability but also resilience against

DoS attacks is critical. Researchers have studied resilient
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control strategies, with work such as [6] identifying attack

frequency and duration to maintain system stability, alongside

other studies [7], [8], [9] and references therein. However,

these strategies often assume precise knowledge of system

dynamics.

Given the growing complexity of modern systems, accu-

rate modeling has become a challenge. In the era of

big data, data-driven control methods have emerged as

a promising alternative. Reinforcement learning (RL) and

adaptive dynamic programming (ADP) have been used for

optimal adaptive control in stabilization [10] and output

regulation [11]. However, most ADP studies assume ideal

communication channels, ignoring the risks of cyber-attacks.

Recently, the authors in [12] and [13] proposed resilient

RL methods for continuous-time systems under DoS attacks.

Methods adopting data-driven predictive control [14], adaptive

control [15], and ADP [16] have been proposed, but most

of these methodologies cannot adapt to changes during the

duration of DoS attacks. In contrast, this letter addresses the

design problem, proposing an active learning-based controller

methodology for discrete-time systems that adapts to varying

DoS attacks.

In this letter, we tackle the learning-based optimal out-

put regulation problem for linear discrete-time systems with

unknown parameters under DoS attacks. Like in [13], the

system is modeled as a switched system, alternating between

stable closed-loop and unstable open-loop modes depending

on DoS presence. However, a new condition on the DoS

average dwell-time for discrete-time systems is proposed in

this letter. We learn the divergence parameter λ+ directly from

input-state data without knowing the system parameters. λ+

quantifies the divergence of the system during DoS attacks,

while a convergence parameter λ− is selected based on λ+

and the DoS duration parameter T . A formula for choosing

λ− has been proposed in this letter, which differs from [13].

This convergence parameter helps to derive an optimal out-

put regulation controller, ensuring closed-loop stability and

resilience against DoS attacks. We use the policy iteration

(PI) algorithm to learn the optimal controller. Unlike [13], the

data matrix in PI may lack full column rank, which may lead

to algorithmic divergence. This is addressed by reducing the

linearly dependent columns of the data matrix. Additionally,

we learn a lower bound (τDc) for the average dwell time of

DoS attacks, such that for any DoS attacks with an average

dwell time τD ≥ τDc , closed-loop stability is guaranteed. As
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the impact of denial-of-service (DoS) is not taken into account

in our previous work [17], [18], the developed methodologies

are ineffective under DoS attack. This letter introduces a

novel framework for designing resilient active learning-based

optimal control policies adaptable to any duration of the

DoS, an enhancement absent in our prior approaches. To our

knowledge, active learning-based resilient control has not been

explored before.

This letter is organized as follows. Section II provides the

background information and problem formulation. Section III

provides the learning framework using input-state data in

DoS attacks. Sections IV and V discuss the divergence and

convergence parameters, respectively. Section VI presents

the simulation results. Concluding remarks are discussed in

Section VII.

Notations: R+ denotes the set of nonnegative real numbers,

Z+ denotes the set of nonnegative integers. σA denotes

the complex spectrum of a square matrix A. |.| denotes

the Euclidean norm of a vector x ∈ R
n or the induced

matrix norm for a matrix A ∈ R
m×n. For a real symmetric

matrix A, λm(A) and λM(A) denote the minimum and

maximum eigenvalues of A, respectively. For a quadratic

Lyapunov function V(x) = xTPx, where P ∈ R
m×m is a

real symmetric and positive definite matrix, x ∈ R
m, we

have λm(P)|x|2 ≤ V(x) ≤ λM(P)|x|2. The Moore-Penrose

pseudoinverse of an m × n matrix A is denoted as A†.

The symbol ⊗ indicates the Kronecker product, vec(T) =
[

tT1 , tT2 , . . . , tTm
]T

with ti ∈ R
r being the columns of T ∈

R
r×m. For a symmetric matrix P ∈ R

m×m, vecs(P) =

[p11, 2p12, . . . , 2p1m, p22, 2p23, . . . , 2p(m−1)m, pmm]T ∈

R
m(m+1)

2 , for a column vector v ∈ R
n, vecv(v) =

[v2
1, v1v2, . . . , v1vn, v2

2, v2v3, . . . , vn−1vn, v2
n]T ∈ R

n(n+1)
2 . For

any two sequences of vectors a = {ai}
ks

i=k0
, b = {bi}

ks

i=k0
,

define �a = [vecv(ak0+1) − vecv(ak0
), . . . , vecv(aks) −

vecv(aks−1)]
T, Ja,b = [ak0

⊗ bk0
, . . . , aks ⊗ bks ]

T, Ja =

[vecv(ak0
), . . . , vecv(aks)]

T, �a = [ak0
⊗ak1

, . . . , aks−1
⊗xks ]

T.

In and 0n are the identity and zero matrices of dimension

n × n, respectively.

II. PROBLEM FORMULATION

Consider the following discrete-time cascade system:

xk+1 = Axk + Buk + Dwk, (1)

wk+1 = Ewk, (2)

ek = Cxk + Fwk, (3)

where k ∈ Z+, A ∈ R
n×n, B ∈ R

n and D ∈ R
n×q are unknown

constant matrices, and C ∈ R
1×n, E ∈ R

q×q, F ∈ R
1×q are

known constant matrices, ek ∈ R is the measurement output,

uk ∈ R the control input, xk ∈ R
n is the state, wk ∈ R

q is the

exosystem state. The exosystem (2) generates the reference

signal ydk = −Fwk and the disturbance signal dk = Dwk

(see [19] for more details).

Assumption 1: The pair (A, B) is stabilizable and E has no

eigenvalue with modulus smaller than one.

Assumption 2: rank

[

A − λI B

C 0

]

= n + 1, λ ∈ σE.

Remark 1: Assumptions 1-2 are standard for solving the

linear output regulation problem (LORP) [11], [19].

In the absence of DoS attacks, LORP is formulated by

designing a controller of the form [11], [19]:

uk = −Kxk + Lwk, (4)

where K ∈ R
1×n is the feedback control gain and L ∈ R

1×q

is the feedforward control gain. The feedforward gain L is

obtained as L = U + KX, where X ∈ R
n×q and U ∈ R

1×q

solves the following regulator equations

XE = AX + BU + D, (5)

0 = CX + F. (6)

For any given initial conditions x0 and w0, if the controller

given in (4) solves the LORP, one has limk→∞ ũk = 0

and limk→∞ x̃k = 0, where x̃k = xk − Xwk and ũk =

uk − Uwk are the errors between the actual state/input and

their corresponding steady-state components Xwk and Uwk,

respectively. By solving the LORP problem, we attempt to

solve the problem of asymptotic tracking with disturbance

rejection. The error system of (1) can be obtained as follows

x̃k+1 = Ax̃k + Bũk, ek = Cx̃k. (7)

Since K does not rely on (5)-(6), we can first design K such

that A − BK is Schur (i.e., its eigenvalues are inside the open

unit disk) [11]. To obtain the optimal controller gain K�, the

following optimization problem is solved.

Problem 1:

min
ũ

∞
∑

k=0

λ2k
−

(

x̃T
k Qx̃k + ũ2

k

)

(8)

s.t x̃k+1 = Ax̃k + Bũk, (9)

where Q = QT 	 0 and λ− ≥ 1.

Defining x̃k,λ− = λk
−x̃k, and ũk,λ− = λk

−ũk, we obtained,

x̃k+1,λ− = λk+1
− x̃k+1 = Ãx̃k,λ− + B̃ũk,λ− , (10)

where Ã = Aλ−, and B̃ = Bλ−. Then, Problem 1 can be

converted to a standard discrete-time linear quadratic regulator

problem as follows.

Problem 2:

min
ũk,λ−

∞
∑

k=0

(

x̃T
k,λ−

Qx̃k,λ− + ũ2
k,λ−

)

s.t. x̃k+1,λ− = Ãx̃k,λ− + B̃ũk,λ− . (11)

The solution to Problem 2 is an optimal feedback controller

of the form

ũ�
k,λ−

= −K�x̃k,λ− . (12)

The following can be obtained from (12),

u�
k = −λ−k

− K�x̃k,λ− + Uwk = −K�xk + L�wk, (13)

where L� = U + K�X, K� = (1 + B̃TP�B̃)−1B̃TP�Ã and P� =

P�T 	 0 solves the following discrete-time algebraic Riccati

equation

ÃTP�Ã − P� + Q − ÃTP�B̃
(

1 + B̃TP�B̃
)−1

B̃TP�Ã = 0.

In this letter, we choose λ− = δλ
1

T−1
+ , where δ > 1 and T is

the DoS duration parameter. Section V gives a justification for
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the choice of λ−. The parameter λ+ > 1 ensures that A
λ+

is

Schur, implying that the Lyapunov equation of the form

AT

λ+
P+

A

λ+
− P+ = −εIn, ε > 0, (14)

has a unique solution P+ = PT
+ 	 0. Section IV illustrates

a data-driven technique to learn λ+ directly from input-state

data when A is unknown.

Next, let {hm}m∈Z+ denote the sequence of off and on

transitions of DoS, where h0 ≥ 0. They are the time instants

at which DoS exhibits a transition from zero (transmissions

are successful) to one (transmissions are not successful). The

mth DoS attack interval of length τm is represented as Jm :=

[hm, hm + τm). For each interval [k1, k2], let 
D(k1, k2) :=
⋃

m∈Z+
Jm

⋂

[k1, k2] and 
N(k1, k2) := [k1, k2] \ 
D(k1, k2)

denote the set of time instants where communication is denied

and allowed, respectively. The following assumptions are now

needed.

Assumption 3 (DoS Frequency): There exist constants

η > 1 and τD > 0 such that ∀k2 > k1 ≥ 0,

n(k1, k2) ≤ η +
k2 − k1

τD

, (15)

where n(k1, k2) denotes the number of DoS off/on transitions

occurring in the interval [k1, k2].

Assumption 4 (DoS Duration): For any k2 > k1 ≥ 0,

|
D(k1, k2)| ≤ ρ +
k2 − k1

T
, (16)

where |
D(k1, k2)| denotes the Lebesgue measure of the set


D(k1, k2), and T > 1, ρ > 0 are chosen arbitrarily.

Remark 2: In Assumption 3, τD is the average dwell-time

between DoS off and on transitions, and η is the chattering

bound. Assumption 4 similarly constrains DoS durations,

ensuring the average communication interruption duration

does not exceed a certain fraction of time, as specified by

1/T . Here, ρ serves as a regularization term, akin to η. These

standard assumptions restrict DoS attacks by their average

frequency and duration [6], [7].

III. LEARNING THE OPTIMAL CONTROLLER

In this section, we propose an online strategy to learn the

optimal controller (13) while the system is under DoS attacks.

We use policy iteration technique [20] to learn the optimal

feedback gain matrix K�, which implements both the policy

evaluation

AT
j PjAj − λ−2

− Pj + λ−2
− Q + λ−2

− KT
j Kj = 0 (17)

and policy improvement

Kj+1 =
(

1 + λ2
−BTPjB

)−1
λ2

−BTPjA, (18)

where Aj = A − BKj. To learn the optimal feedforward gain

matrix L�, we first define the following Sylvester map

SXi = XiE − AXi. (19)

Let X0 = 0 and select X1 such that CX1 + F = 0, and each Xi

for i = 2, 3, . . . , h+1 is selected such that the vectors vec(Xi)

form a basis for the null space of (Iq ⊗ C) with dimension

h = (n − 1)q. Then, X = X1 +
∑h+1

i=2 αiXi gives a general

solution to (6), where αi ∈ R. Then, (5) implies SX = SX1
+

∑h+1
i=2 αiSXi = BU + D. Using SXi , for i = 0, 1, . . . , h + 1,

the pair (X, U) that solves (5)-(6) can be obtained by solving

Problem 3 in [11]. Then L� = U + K�X can be learned. Next,

we demonstrate a procedure for learning K� and L� using

input-state data in two phases.

A. Phase 1: Learning the Optimal Feedback Gain

By defining xk,i = xk−Xiwk, along the trajectories of (1)-(3)

and using (19), the following can be obtained

xk+1,i = Ajxk,i + B
(

uk + Kjxk,i

)

+ �iwk, (20)

where �i = D − SXi . Along the trajectories of (20) and

using (17), the following can be obtained [17], [18]

xT
k+1,iPjxk+1,i − xT

k,iPjxk,i + λ−2
− xT

k,iQjxk,i = 2uT
k �1jxk,i

+ 2
(

Kjxk,i

)T
�1jxk,i −

(

Kjxk,i

)T
�2j

(

Kjxk,i

)

+ uT
k �2juk

+ 2xT
k,i�1ijwk + 2uT

k �2ijwk + wT
k �3ijwk

+
(

λ−2
− − 1

)

xT
k,iPjxk,i, (21)

where Qj = Q+KT
j Kj, �1ij = ATPj�i, �2ij = BTPj�i, �3ij =

�T
i Pj�i, �1j = BTPjA, �2j = BTPjB. By Assumption 4, there

always exists a sequence {ks}
∞
s=0 such that communications are

allowed. Following [17], [18], by collecting online data, the

following linear equation can be obtained from (21)

�1ijθ1ij = −Jxi,xivec
(

Qj

)

, (22)

where �1ij = λ2
−

[

�xi −
(

λ−2
− − 1

)

Jxi ,−2Jxi,u − 2Jxi,xi

(

In ⊗ KT
j

)

, JKjxi − Ju,−2Jw,xi ,−2Jw,u,−Jw

]

,

θ1ij =
[

vecs
(

Pj

)T
, vec

(

�1j

)T
, vecs

(

�2j

)T
, vec

(

�1ij

)T
,

vec
(

�2ij

)T
, vecs

(

�3ij

)T
]T

.

For certain choices of E, the matrix Jw may lack full column

rank. In such cases, the N number of linearly dependent

columns of Jw are reduced to ensure that �̄1ij achieves full

rank [17], where �̄1ij is constructed from J̄w, containing only

the linearly independent columns of Jw. Similarly, let θ̄1ij be

constructed from the reduced vecs(�3ij) denoted as vecs(�3ij).

Then, (22) can be solved as

θ̄1ij = −�̄
†
1ijJxi,xi vec

(

Qj

)

. (23)

Assumption 5: There exists a s� ∈ Z+ such that for all

s > s�, i = 0, 1, . . . , (n − 1)q + 1, and for any sequence

k0 < k1 < · · · < ks the following holds

rank
([

Jxi Jxi,u Ju Jw,xi Jw,u J̄w

])

=
n(n + 1)

2
+ n

+ 1 + nq + q +
q(q + 1)

2
− N. (24)

Remark 3: Assumption 5, analogous to the persistency of

excitation condition, is fundamental to adaptive control [21]

and learning-based control [10], [11], [22]. It ensures a unique

solution to (23) for all j ∈ Z+, and the sequences {Pj}
∞
j=0

and {Kj}
∞
j=0 from steps 10-14 of Algorithm 1 converge to the

optimal values P� and K� [18].
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Algorithm 1 Active Learning-Based Resilient Control

1: Input constants λ+ > 1, α > 1, δ > 1, T > 1 and ε0 > 0.

2: Compute X0, X1, · · · , Xh+1 and apply any locally essen-

tially bounded input uk on [k0, ks]. For i = 0, 1, · · · , h+1

compute Jxi , Jxi,u, Ju, Jw,xi , Jw,u, Jw such that (24) holds.

3: Set i ← 0 and j ← 0.

4: repeat

5: λ+ ← αλ+

6: if �̄3 is full column rank then

7: Solve P+ from (29)

8: end if

9: until P+ 	 0

10: Choose a stabilizing K0 and set λ− ← δλ
1

T−1
+ .

11: repeat

12: Solve for Pj and Kj+1 = (1 + �2j)
−1�1j from (23)

13: j ← j + 1

14: until |Pk − Pk−1| < ε0

15: Set j� ← j, X0 = 0. Then, �0 = D.

16: For i = 0, obtain B and D by solving (25).

17: repeat

18: i ← i + 1

19: Solve for SXi = D − �i from (25)

20: until i = h + 1

21: Obtain X and U by solving Problem 3 in [11].

22: Return Kj� and Lj� = U + Kj�X.

B. Phase 2: Learning the Optimal Feedforward Gain

Similar to Phase 1, one can formulate (25) to learn the

Sylvester maps by using the input-state data collected from

Phase 1 [18]

�2iθ2i = �xivec(In), (25)

where �2i = [ 1
2
Jxi , Jxi,u, Jw,xi ], θ2i = [vecs(AT +

A)T, vec(B)T, vec(�i)
T]T. Satisfying (24) ensures that (25) has

a unique solution for each i = 0, . . . , h + 1. See Steps 15-22

of Algorithm 1 to learn L� using (25). Then, the following

resilient controller can be obtained for the closed-loop system

uk =

{

−Kj�xk + Lj�wk, if k ∈ 
N(k1, k2),

Uwk, if k ∈ 
D(k1, k2),
(26)

where Kj� and Lj� are obtained using Algorithm 1.

IV. LEARNING THE DIVERGENCE PARAMETER λ+

In this section, we develop a data-driven methodology to

learn the divergence parameter from input-state data. Along

the trajectories of (1), the following is obtained using (14)

xT
k+1P+xk+1 − xT

k P+xk =
(

λ2
+ − 1

)

xT
k P+xk + 2uT

k 
1xk

+ 2xT
k 
3wk + uT

k 
2uk + 2uT
k 
4wk + wT

k 
5wk

− ελ2
+xT

k xk, (27)

where, 
1 = BTP+A, 
2 = BTP+B, 
3 = ATP+D, 
4 =

BTP+D, 
5 = DTP+D. Noting that xk = xk,0 the input-

state data collected in Section III-A can be used to obtain the

following linear equation from (27)

�3θ3 = −εJx,x, (28)

where �3 = 1

λ2
+

[�x − (λ2
+ − 1)Jx,−2Jx,u,−Ju,−2Jw,x,

− 2Jw,u,−Jw], θ3 = [vecs(P+)T, vec(
1)
T, vecs(
2)

T,

vec(
3)
T, vec(
4)

T, vecs(
5)
T]T. Since Jw may not have full

column rank, following the discussion in Section III-A, (28)

can be solved as:

θ̄3 = −ε�̄
†
3 Jx,x, (29)

For clarity, the reduction process is demonstrated in the

following example.

Example 1: Let �θ = b, where � = [a1, a2, a3, a4, a5] ∈

R
m×5, θ = [x1, x2, x3, x4, x5]T, and b = [b1, b2, . . . , bm]T. If

a5 = α1a3 + α2a4, then �θ = b =⇒ �̄θ̄ = b, where

�̄ = [a1, a2, a3, a4], and θ̄ = [x1, x2, x3 + α1x5, x4 + α2x5]T.

Here, �̄ contains only the linearly independent columns of �,

allowing �̄θ̄ = b to be uniquely solved. Additionally, �̄ =

�M and θ̄ = Sθ , where M =

[

I2 02×2

03×2 M2,2

]

, S =

[

I2 02×3

02×2 S2,2

]

,

M2,2 =

[

I2

01,2

]

, S2,2 =

[

1 0 α1

0 1 α2

]

.

The following lemma shows that the solution to (29) is

unique if the rank condition (24) holds and A
λ+

is Schur.

Lemma 1: For i = 0, suppose that the rank condition (24)

holds and λ+ > 1 is such that A
λ+

is Schur, then �̄3 has full

column rank.

Proof: Select a vector β̄ such that the following holds

�̄3β̄ = −εJx,x, (30)

where β̄ = [vecs(Y1)
T, vec(Y2)

T, vecs(Y3)
T, vec(Y4)

T,

vec(Y5)
T, vecs(Y6)

T
]T with the matrices Y1 = YT

1 ∈ R
n×n,

Y2 ∈ R
1×n, Y3 ∈ R, Y4 ∈ R

n×q, Y5 ∈ R
1×q, Y6 = YT

6 ∈

R
q×q. We need to show that β̄ can be uniquely determined.

From (30), the following equation can be obtained

Jxvecs(�1) + 2Jx,uvec(�2) + Juvecs(�3) + 2Jw,xvec(�4)

+ 2Jw,uvec(�5) + J̄wvecs(�6) = 0, (31)

where �1 = ATY1A − λ2
+Y1 + ελ2

+In, �2 = BTY1A − Y2,

�3 = BTY1B − Y3, �4 = ATY1D − Y4,

�5 = BTY1D − Y5, �6 = DTY1D − Y6.

The rank condition (24) implies that vecs(�1) = 0, vec(�2) =

0, vecs(�3) = 0, vec(�4) = 0, vec(�5) = 0 and vecs(�6) =

0. Thus, we have the following

AT

λ+
Y1

A

λ+
− Y1 = −εIn. (32)

Since A
λ+

is Schur stable, Y1 can be uniquely determined. As

shown in Example 1, one can obtain M2,2 and S2,2 for any

given �3. Based on the linearity of the vecs operator, one

can see that vecs(�6) = S2,2vecs(DTY1D − Y6) = 0 =⇒

vecs(Y6) = vecs(DTY1D). Thus, every element of the β̄ is

uniquely determined due to the uniqueness of Y1. The proof

is thus complete.

The following lemma provides a condition for the stability

of A
λ+

, that is verifiable using only input-state data.

Lemma 2: Suppose the rank condition (24) holds, then A
λ+

is Schur if and only if the following holds

1) The matrix �̄3 is full column rank.
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2) The symmetric matrix P+ obtained by solving (29) is

positive definite.

Proof: (⇒) Let A
λ+

is Schur. Then Property 1) can be

inferred Lemma 1. From Lemma 1 we can further observe

that P+ can be uniquely obtained from (29). Furthermore, P+

satisfying the Lyapunov equation (14) also satisfies (29). This

implies that property 2) holds.

(⇐) Suppose both the properties hold. Then, from (32),

the matrix P+ 	 0 solves the Lyapunov equation (14). This

implies A
λ+

is Schur. The proof is thus complete.

Remark 4: Using Lemmas 1 and 2, λ+ is learned in Steps

4-9 in Algorithm 1.

V. SELECTION OF THE CONVERGENCE PARAMETER λ−

The following theorem shows that (26) acts as a resilient

controller under a proper selection of λ− and if the DoS

frequency is small enough.

Theorem 1: Under Assumptions 1-4, for any DoS duration

parameter T > 1 and λ+ > 1, let λ− = δλ
1

T−1
+ , where δ > 1.

Then, the system (1)-(3) in closed-loop with the controller (26)

achieves output regulation if the following condition holds

τD ≥
T

T − 1

log

(
√

λM(Pj�)λM(P+)

λm(Pj�)λm(P+)

)

log
(

δ2
) := τDc . (33)

Proof: Under the action of the controller (26), the

system (1)-(3) evolves as a switched system as follows

x̃k+1 =

{

Aj�x̃k, if k ∈ 
N(k1, k2),

Ax̃k, if k ∈ 
D(k1, k2).
(34)

Consider the following piecewise-quadratic Lyapunov function

Vk =

{

x̃T
k Pj�x̃k := V̄(xk), if k ∈ 
N(k1, k2),

μ1x̃T
k P+x̃k := Ṽ(xk), if k ∈ 
D(k1, k2),

(35)

where μ1 > 0 is to be determined. When k ∈ 
N(k1, k2), the

following can be obtained using (17) and (34)

V̄(x̃k+1) − V̄(x̃k) ≤
(

λ−2
− − 1 − λ−2

− c1

)

V̄(x̃k), (36)

where 0 < c1 = λm(Q)
λM(Pj�)

< 1 (see [23]). When k ∈ 
D(k1, k2),

the following can be obtained using (14) and (34)

Ṽ(x̃k+1) − Ṽ(x̃k) ≤
(

λ2
+ − 1

)

Ṽ(x̃k). (37)

For any l ∈ Z+, let the two intervals [hl+τl, hl+1] and [hl, hl+

τl] be the two intervals where the communication is allowed

and denied, respectively. Then, from (36) and (37), it can be

obtained that the Lyapunov function Vk satisfies the following

Vk ≤

{

ωkVhl+τl
, if k ∈

[

hl + τl, hl+1

]

,

λ2k
+ Vhl

, if k ∈ [hl, hl + τl],
(38)

where, ω = λ−2
− (1 − c1). Due to the fact that V̄(x̃k) and

Ṽ(x̃k) are quadratic with Pj� and P+ being symmetric positive

definite matrices, the following can be obtained

V̄(x̃k) ≤ μ2Ṽ(x̃k), Ṽ(x̃k) ≤ μ2V̄(x̃k), (39)

where μ1 =

√

λM(Pj�)λm(Pj�)

λM(P+)λm(P+)
and μ2 =

√

λM(Pj�)λM(P+)

λm(Pj�)λm(P+)
.

Therefore, at all switching times k, we have that Vk ≤ μ2Vk−1.

Thus, for all k ∈ Z+, the Lyapunov function Vk satisfies the

following

Vk ≤ μ
n(0,k)
2 ω|
N(0,k)|λ

2|
D(0,k)|
+ V0 (40)

Using Assumptions 3-4 and the fact that |
N(0, k)| = k −

|
D(0, k)| ≥ k−ρ− k
T

, the following can be obtained from (40)

Vk ≤ μ
η

2

(

λ2
+

ω

)ρ

(1 − c1)

(

T−1
T

)

k

⎛

⎝μ

1
τD

2

(

1

λ2
−

)
T−1

T

λ
2
T
+

⎞

⎠

k

V0.

Since 0 < 1 − c1 < 1, we need that

μ

1
τD

2

(

1

λ2
−

)
T−1

T

λ
2
T
+ ≤ 1. (41)

By taking log on both sides of (41) and choosing λ− =

δλ
1

T−1
+ , one can obtain (33). Thus, (40) implies the following

∀τD ≥ τDc

Vk ≤ μ
η

2

(

λ2
+

ω

)ρ

(1 − c1)

(

T−1
T

)

k
V0. (42)

Using (42), the following holds ∀τD > τDc and λ− = δλ
1

T−1
+

|x̃k| ≤ c2(1 − c1)

(

T−1
2T

)

k
|x̃0|, (43)

|ek| ≤ |C|c2(1 − c1)

(

T−1
2T

)

k
|x̃0|, (44)

where c2 =

√

μ
η

2

(

λ2
+

ω

)ρ
max{λM(Pj�),μ1λM(P+)}

min{λm(Pj�),μ1λm(P+)}
. Thus, we have

limk→∞(xk − Xwk) = 0 and limk→∞ ek = 0, which implies

output regulation. The proof is thus complete.

Algorithm 1 summarizes the proposed active learning-based

resilient control methodology.

VI. SIMULATION RESULTS

In this section, we show the efficacy of the proposed

methodology by considering a numerical example. The system

matrices are given as follows

A =

[

1 0.1

0.2 0.8

]

, B =

[

1

0

]

, D =

[

0 0

0 0.1

]

, C =
[

1 0
]

,

E =

[

cos(0.1) −sin(0.1)

sin(0.1) cos(0.1)

]

, F =
[

−2 0
]

.

The initial conditions are x0 = [0.5 0]T, w0 = [0.5 0.5]T,

and Q is an identity matrix. The proposed methodology is

tested with two DoS parameter sets: DoS1 := {ρ = 0.35,

τD = 3, T = 2, η = 1.1} (applied for k ∈ [0, 599]) and

DoS2 := {ρ = 0.35, τD = 3, T = 20, η = 1.1} (applied

for k ∈ [600, 1200]). Input-state data are collected for k ∈

[0, 100] using sinusoidal exploration signals. Algorithm 1 uses

ε0 = 0.1 and δ = 1.1, yielding λ+ = 2.2. For DoS1,

λ− = 2.42 is chosen, and the learned controller is applied

after k = 100. When the attack changes at k = 600, λ− =

1.1466 is used to relearn the resilient controller for DoS2.

The controller gains are compared in Table I and Fig. 1(b).

From (33), the critical dwell-times are τDc = 33.4827 for

DoS1 and τDc = 10.0376 for DoS2. While τD ≥ τDc is
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TABLE I
COMPARISON OF CONTROLLER GAIN VALUES

Fig. 1. (a) Tracking and disturbance rejection under DoS attacks,
(b) Convergence of Kj to K �.

sufficient to ensure stability, the system handles frequent DoS

attacks with τD = 3. Fig. 1(a) shows the evolutions of

the reference and output trajectories under the application

of different controllers, with the DoS attacks represented

as shaded areas. It can be seen that the proposed active

controller provides superior performance compared to other

controllers. We compared our methodology with an indirect

approach based on system identification, using the dynamic

mode decomposition method to identify system matrices.

Conventional system identification techniques assume data is

collected at regular intervals and require additional preprocess-

ing to handle missing data. However, in the advent of DoS

attacks, missing data is inevitable and may lead to inaccurate

estimation of the system matrices. We have used interpolation

technique to approximate the missing data points. As shown

in the SysID+Control plot in Fig. 1(a), the performance of

this indirect approach is less favorable than anticipated. In

contrast, the proposed direct approach methodology guarantees

convergence and uniqueness by utilizing online data collected

over any sequence of time steps k0 < k1 < · · · < ks as long as

the rank condition in (24) is satisfied. The learned controller

can track the reference signal even in the presence of varying

DoS attacks.

VII. CONCLUSION

We have proposed an active learning-based controller design

for discrete-time, linear, uncertain systems under DoS attacks.

Leveraging switching systems theory and adaptive dynamic

programming, the controller ensures closed-loop stability by

learning an optimal control policy and a critical average

dwell-time. Stability and resilience are guaranteed when the

DoS average dwell-time exceeds the critical value. Divergence

and convergence parameters, estimated from online input-

state data, were central to learning the resilient controller.

Numerical simulations demonstrate the effectiveness of the

proposed methodology.
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