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Active Learning-Based Control for Resiliency of
Uncertain Systems Under DoS Attacks
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Kyriakos G. Vamvoudakis

Abstract—In this letter, we present an active learning-
based control method for discrete-time linear systems
with unknown parameters under denial-of-service (DoS)
attacks. For any DoS duration parameter, using switching
systems theory and adaptive dynamic programming, an
active learning-based control technique is developed. A
critical DoS average dwell-time is learned from online input-
state data, guaranteeing stability of the equilibrium point
of the closed-loop system in the presence of DoS attacks
with average dwell-time greater than or equal to the critical
DoS average dwell-time. The effectiveness of the proposed
methodology is illustrated via a numerical example.

Index Terms—Learning-based control,
attacks, output regulation.

resiliency, DoS

[. INTRODUCTION

YBER-PHYSICAL systems (CPSs), which integrate

network communication, control, and computing, have
gained attention due to their benefits in energy efficiency,
performance, and convenience. Unlike traditional networked
control systems, CPSs - with both physical and network
components - are more vulnerable to malicious network
attacks [1], [2]. These attacks, which disrupt system function-
ality, can be classified as deception attacks (compromising
data integrity) and denial-of-service (DoS) attacks (disrupting
the availability of services or information exchange) [3], [4].
DoS attacks pose a serious threat due to their simplicity
and the potential to cause communication breakdowns [5].
Thus, ensuring not only stability but also resilience against
DoS attacks is critical. Researchers have studied resilient
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control strategies, with work such as [6] identifying attack
frequency and duration to maintain system stability, alongside
other studies [7], [8], [9] and references therein. However,
these strategies often assume precise knowledge of system
dynamics.

Given the growing complexity of modern systems, accu-
rate modeling has become a challenge. In the era of
big data, data-driven control methods have emerged as
a promising alternative. Reinforcement learning (RL) and
adaptive dynamic programming (ADP) have been used for
optimal adaptive control in stabilization [10] and output
regulation [11]. However, most ADP studies assume ideal
communication channels, ignoring the risks of cyber-attacks.
Recently, the authors in [12] and [13] proposed resilient
RL methods for continuous-time systems under DoS attacks.
Methods adopting data-driven predictive control [14], adaptive
control [15], and ADP [16] have been proposed, but most
of these methodologies cannot adapt to changes during the
duration of DoS attacks. In contrast, this letter addresses the
design problem, proposing an active learning-based controller
methodology for discrete-time systems that adapts to varying
DoS attacks.

In this letter, we tackle the learning-based optimal out-
put regulation problem for linear discrete-time systems with
unknown parameters under DoS attacks. Like in [13], the
system is modeled as a switched system, alternating between
stable closed-loop and unstable open-loop modes depending
on DoS presence. However, a new condition on the DoS
average dwell-time for discrete-time systems is proposed in
this letter. We learn the divergence parameter A4 directly from
input-state data without knowing the system parameters. A
quantifies the divergence of the system during DoS attacks,
while a convergence parameter A_ is selected based on A
and the DoS duration parameter 7. A formula for choosing
A_ has been proposed in this letter, which differs from [13].
This convergence parameter helps to derive an optimal out-
put regulation controller, ensuring closed-loop stability and
resilience against DoS attacks. We use the policy iteration
(P) algorithm to learn the optimal controller. Unlike [13], the
data matrix in PI may lack full column rank, which may lead
to algorithmic divergence. This is addressed by reducing the
linearly dependent columns of the data matrix. Additionally,
we learn a lower bound (zp,) for the average dwell time of
DoS attacks, such that for any DoS attacks with an average
dwell time tp > tp,, closed-loop stability is guaranteed. As
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the impact of denial-of-service (DoS) is not taken into account
in our previous work [17], [18], the developed methodologies
are ineffective under DoS attack. This letter introduces a
novel framework for designing resilient active learning-based
optimal control policies adaptable to any duration of the
DoS, an enhancement absent in our prior approaches. To our
knowledge, active learning-based resilient control has not been
explored before.

This letter is organized as follows. Section II provides the
background information and problem formulation. Section III
provides the learning framework using input-state data in
DoS attacks. Sections IV and V discuss the divergence and
convergence parameters, respectively. Section VI presents
the simulation results. Concluding remarks are discussed in
Section VII.

Notations: R denotes the set of nonnegative real numbers,
Zy denotes the set of nonnegative integers. o4 denotes
the complex spectrum of a square matrix A. |.| denotes
the Euclidean norm of a vector x € R” or the induced
matrix norm for a matrix A € R™ ", For a real symmetric
matrix A, A,(A) and Ap(A) denote the minimum and
maximum eigenvalues of A, respectively. For a quadratic
Lyapunov function V(x) = x'Px, where P € R™" is a
real symmetric and positive definite matrix, x € R", we
have )»,,,(P)l)c|2 < Vi) < AM(P)|x|2. The Moore-Penrose
pseudoinverse of an m x n matrix A is denoted as A,
The symbol ® indicates the Kronecker product, vec(T) =

[t?,t%,...,t}l]T with #; € R” being the columns of T €
R™™  For a symmetric matrix P € R™ vecs(P) =
(P11, 2P125 - - 2D1ms P22, 2D23+ - - - s 2D (m—1ym> Pomm] - €

w, for a column vector v € R" vecv(y) =

n(n+1)

[v%,vlvz,...,vlvn,v%,VZV3,...,v,,_lv,,,v,%]T € R 2. For
any two sequences of vectors a = {a,-}f;ko, b = {bi}f;ko,
define ®, = [vecv(ag,+1) — vecv(agy), ..., vecv(ag,) —
veev(ag, DI, Jap = lagy ® brgo .. ar, ® b 1%, Jo =
[vecv(ax,), ...,Vecv(akx)]T, By = [ak,®ak,, ..., ak,_, ®xkx]T.

I, and 0, are the identity and zero matrices of dimension
n X n, respectively.

II. PROBLEM FORMULATION
Consider the following discrete-time cascade system:

Xk+1 = Axg + Buy + Dwy, (D
w1 = Ewg, 2
ex = Cxy + Fwy, 3)

where k € Z4, A € R™", B € R" and D € R"*9 are unknown
constant matrices, and C € R1*" E € R4, F € R1*4 are
known constant matrices, e; € R is the measurement output,
ux € R the control input, x; € R” is the state, wy € R? is the
exosystem state. The exosystem (2) generates the reference
signal ygx = —Fwy and the disturbance signal dy = Dwy

(see [19] for more details).

Assumption 1: The pair (A, B) is stabilizable and E has no
eigenvalue with modulus smaller than one.

A—MB
c 0
Remark 1: Assumptions 1-2 are standard for solving the

linear output regulation problem (LORP) [11], [19].

Assumption 2: rank =n+1, A € 0f.

In the absence of DoS attacks, LORP is formulated by
designing a controller of the form [11], [19]:

ur = —Kxi + Lwy, “4)

where K € R!*" is the feedback control gain and L € R!*¢
is the feedforward control gain. The feedforward gain L is
obtained as L = U + KX, where X € R"4 and U € R!*¢
solves the following regulator equations

XE = AX 4+ BU + D, 5)

0=CX+F. (6)

For any given initial conditions xo and wy, if the controller
given in (4) solves the LORP, one has limg_ocuy = O
and limg_ooXy = 0, where Xy = xx — Xwg and i =

ur — Uwy are the errors between the actual state/input and
their corresponding steady-state components Xwy and Uwy,
respectively. By solving the LORP problem, we attempt to
solve the problem of asymptotic tracking with disturbance
rejection. The error system of (1) can be obtained as follows

Xiy1 = AXp + Biy, ex = Cxy. @)

Since K does not rely on (5)-(6), we can first design K such
that A — BK is Schur (i.e., its eigenvalues are inside the open
unit disk) [11]. To obtain the optimal controller gain K*, the
following optimization problem is solved.

Problem 1:
o0
min >~ A% (F 0% + i} ) ®)
" k=0
s.t Xgq1 = AXx + Bii, 9

where Q = QT > 0 and A_ > 1.
Defining Xx = Ak %, and Uy = 2K i, we obtained,

= A5

X 1,5 X1 = A%p s + Bitgs_, (10)

where A = AA_, and B = BA_. Then, Problem 1 can be
converted to a standard discrete-time linear quadratic regulator
problem as follows.

Problem 2:

oo
min Z(x{ Qs + i L)
r-izo ’

(11)

The solution to Problem 2 is an optimal feedback controller
of the form

st Xeg1a. = AXga_ + Big .

i‘;,x_ = —K"%p_- (12)
The following can be obtained from (12),
uf = —2A"FK* %, 4 Uwg = —K*x + L'wy,  (13)

where L* = U + K*X, K* = (1 + BTP*B)~'BTP*A and P* =
P*T > 0 solves the following discrete-time algebraic Riccati
equation

ATPA—P + Q- A"P*B(1+ B"PB) T BTPrA =0

1
In this letter, we choose A_ = A, ', where § > 1 and T is

the DoS duration parameter. Section V gives a justification for
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the choice of A_. The parameter A > 1 ensures that ,\i is
Schur, implying that the Lyapunov equation of the form
AT A

—P,— — P, = —¢l,, € >0,

14
P (14)

has a unique solution P, = Pi > 0. Section IV illustrates
a data-driven technique to learn Ay directly from input-state
data when A is unknown.

Next, let {hm}mez, denote the sequence of off and on
transitions of DoS, where iy > 0. They are the time instants
at which DoS exhibits a transition from zero (transmissions
are successful) to one (transmissions are not successful). The
m™ DoS attack interval of length 7, is represented as 7, :=
[Am, hy + T). For each interval [k, k2], let Ap(ky, kp) =
Umez, Im (N Tk1, k2] and Ay (ki, ko) = [k, k2] \ Ap(ki, k2)
denote the set of time instants where communication is denied
and allowed, respectively. The following assumptions are now
needed.

Assumption 3 (DoS Frequency): There exist constants
n > 1 and tp > O such that Vk, > k; > 0,

ky — ki

n(ki, k2) <n+ ;
D

(15)

where n(ky, k») denotes the number of DoS off/on transitions
occurring in the interval [k, k>].
Assumption 4 (DoS Duration): For any k > ki > 0,
ko — ki

[Ap(ki, ko)| < p + T

where |Ap(ky, k2)| denotes the Lebesgue measure of the set
Ap(ki,k2), and T > 1, p > 0 are chosen arbitrarily.

Remark 2: In Assumption 3, tp is the average dwell-time
between DoS off and on transitions, and 7 is the chattering
bound. Assumption 4 similarly constrains DoS durations,
ensuring the average communication interruption duration
does not exceed a certain fraction of time, as specified by
1/T. Here, p serves as a regularization term, akin to 1. These
standard assumptions restrict DoS attacks by their average
frequency and duration [6], [7].

(16)

[11. LEARNING THE OPTIMAL CONTROLLER

In this section, we propose an online strategy to learn the
optimal controller (13) while the system is under DoS attacks.
We use policy iteration technique [20] to learn the optimal
feedback gain matrix K*, which implements both the policy
evaluation

ATPA; —272Pj + 220 + 277K K; = 0 (17)
and policy improvement
-1
Kjp1 = (1 + k2_BTPjB) A2BTPA, (18)

where A; = A — BKj. To learn the optimal feedforward gain
matrix L*, we first define the following Sylvester map

Sx, = XiE — AX,. (19)
Let Xy = 0 and select X; such that CX; + F = 0, and each X;
fori=2,3,...,h+1 is selected such that the vectors vec(X;)

form a basis for the null space of (I; ® C) with dimension

h = (n— 1)q. Then, X = X| + Zf‘;}l a;X; gives a general
solution to (6), where «; € R. Then, (5) implies Sy = Sx, +
S w:Sx, = BU + D. Using S, for i = 0,1,...,h+ 1,
the pair (X, U) that solves (5)-(6) can be obtained by solving
Problem 3 in [11]. Then L* = U + K*X can be learned. Next,
we demonstrate a procedure for learning K* and L* using
input-state data in two phases.

A. Phase 1: Learning the Optimal Feedback Gain
By defining x; ; = xx —Xiwx, along the trajectories of (1)-(3)
and using (19), the following can be obtained
Xip1i = A + Buk + Kjxe i) + Tiw, (20)

where Il; = D — Sy;. Along the trajectories of (20) and
using (17), the following can be obtained [17], [18]

XZJr],inxk—H,i - xz,inXk,i + )»szz,,-Qij,i = 2u Ty, i
T T

+ Z(Kjxk,i) [yjxg,i — (Kjxk,i) sz(Kij,i) + uzrzjuk

+ 2xz’i®1ijwk + 2uz®2,'jwk + WZ®31'jWk

+ (A:z — l)x{ipjxk,i,
where Q; = Q+K]TKJ, I =ATP]'HZ', O = BTPJ'H,', O3 =
l'[iTPjHi, Iy = BTPjA, [y = BTPJ-B. By Assumption 4, there
always exists a sequence {ks}:°, such that communications are

allowed. Following [17], [18], by collecting online data, the
following linear equation can be obtained from (21)

W1 = —Jx,.xvee(Qj), (22)
where Wy;; = AZ_[CDX,. - ()CZ - 1)in, 2 — 2,

21

(In ® KJT>, JKjxi - Ju» _2JW,Xl'a _ZJw,u’ _JW]7
T T T T
01ij = [vecs(Pj) ,vec(I‘lj) ,Vecs(I‘gj) ,Vec(@)l,-j) ,

T
Vec(®2i]~)T, Vecs(®3,-j)T] )

For certain choices of E, the matrix J,, may lack full column
rank. In such cases, the N number of linearly dependent
columns of J,, are reduced to ensure that \T!l,;,' achieves full
rank [17], where Wy is constructed from J,, containing only
the linearly independent columns of J,,. Similarly, let 9_1,-1- be
constructed from the reduced vecs(®3;;) denoted as vecs(®3;;).
Then, (22) can be solved as

9_1,']' = _‘I’;rij-]x,',x[VeC(Qj)

Assumption 5: There exists a s* € Z,; such that for all
s > s, i=0,1,...,(n—1)g + 1, and for any sequence

(23)

ko < ki < - < kg the following holds
3 n(n+1)
rank ([T, Ju Ju Jw.s Jwu Tw]) = e
+1
+1+nq+q+—q(q2 Y 4

Remark 3: Assumption 5, analogous to the persistency of
excitation condition, is fundamental to adaptive control [21]
and learning-based control [10], [11], [22]. It ensures a unique
solution to (23) for all j € Z,, and the sequences {Pj}fﬁo
and {Kj}fio from steps 10-14 of Algorithm 1 converge to the
optimal values P* and K* [18].
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Algorithm 1 Active Learning-Based Resilient Control
1: Input constants AL > 1, ¢ > 1,8 > 1, T > 1 and €9 > O.
2: Compute Xp, X1, -+, Xp+1 and apply any locally essen-
tially bounded input uy on [kg, ks]. Fori =0,1,--- , h+1
compute Jy,;, Jx; us Ju, Jw,x;» Jw.u, Jw such that (24) holds.
3: Seti <—0andj < 0.
4: repeat
5: )\.+ < O[)\,+
6: if W3 is full column rank then
7
8
9

Solve P from (29)
end if

:until P, >0
1

10: Choose a stabilizing Ky and set A_ <« BA?.
11: repeat

12: Solve for P; and Kj| = (1 + sz)_ll"lj from (23)
13: j<—j+1

14: until [Py, — Pr_1| < €

15: Set jx < j, Xo = 0. Then, 1o = D

16: For i = 0, obtain B and D by solving (25).

17: repeat

18: i<i+1

19: Solve for Sx; = D — I1; from (25)

20: until i =h + 1

21: Obtain X and U by solving Problem 3 in [11].
22: Return Kj, and Lj, = U + K, X.

B. Phase 2: Learning the Optimal Feedforward Gain
Similar to Phase 1, one can formulate (25) to learn the

Sylvester maps by using the input-state data collected from
Phase 1 [18]

W)i0hi = Ex;vec(ly),

where Wy, = [ s Sxis Jwxils Ooi = [vecs(AT +
AT, vec(B)T, vec(IT; )T]T Satisfying (24) ensures that (25) has
a unique solution for each i =0, ...,k + 1. See Steps 15-22
of Algorithm 1 to learn L* using (25). Then, the following
resilient controller can be obtained for the closed-loop system

e — | T KisXe + Liswi, if k € An(ki, k2),
= Ui, if k € Ap(ki, k2),

where Kj, and L;, are obtained using Algorithm 1.

(25)

(26)

IV. LEARNING THE DIVERGENCE PARAMETER A,

In this section, we develop a data-driven methodology to
learn the divergence parameter from input-state data. Along
the trajectories of (1), the following is obtained using (14)

x{+1P+xk+1 — xZP+xk = (Ai — 1>xZP+xk + 2uZA1xk
+ 2XZA3W1{ + MZAzuk + ZMZA4W1{ + WZA5Wk
(27)

where, A = BTP A, Ay = BTP,B, A3 = ATP,.D, Ay =
BTP.D, As = DTP,.D. Noting that x; = x; the input-
state data collected in Section III-A can be used to obtain the
following linear equation from (27)

w303 = Jx X5

— ek+xkxk,

(28)

- ()"2 1)'])0 - )C us _Jua _2JW,X’

— 2y —Iw], 03 = [vees(P)T, vec(Al)T, vecs(A2) T,
vec(A3)T, vec(Aq)T, vecs(As)T]T. Since J,, may not have full
column rank, following the discussion in Section III-A, (28)
can be solved as:

where W3 = ALZ[QDX
+

By = —eWlJ,.. (29)

For clarity, the reduction process is demonstrated in the
following example.

Example 1: Let VO = b, where ¥V = [ay, a3, a3, a4,a5] €
R™3. 0 = [x1,x2,x3,%4, x5]7, and b = [by, by, ..., by]". If
a5 = «aja3 + aray, then V0 = b — Ul = b, where

= [a1, a2, a3, a4], and 0 = [x1,x2, X3 + 1x5, x4 + 2px5] 7.
Here W contains only the linearly independent columns of W,
allowing WO = b to be uniquely solved. Additionally, ¥ =

5 L 0252 I 0243
WM and 6 = SO, where M = |:03x2 M2,21|’ S= |:02x2 S2,21|’
12 1 0 o]
M“:lol 2] S22= [0 1 azl

The following lemma shows that the solution to (29) is
unique if the rank condition (24) holds and A is Schur.

Lemma 1: For i = 0, suppose that the rank condition (24)
holds and A > 1 is such that ﬁ is Schur, then W3 has full
column rank.

Proof: Select a vector 8 such that the following holds

@35 = _GJx,x» (30)

where ,3 = [vecs(Y)T, vec(Y2)T, vecs(¥3)T, vec(¥4)T,
Vec(Ys)T,W(Yg)T]T with the matrices Y; = YlT e R™",
Y, e R V3 € R, Yy € R, Y5 € RI*Y, Yg =Yg €
R?*9. We need to show that 8 can be uniquely determined.
From (30), the following equation can be obtained
Jevees(S21) + 2Jy,,vec(S22) + Jyvecs(23) + 2J,, xvec($24)
+ 2J,, uvec(Qs) + Jyvees(Qg) = 0,
where Qi = ATY1A —22Y) + 22l 2
Q3 =B"Y\B—Ys, Qu=ATY|D - Y4,
Qs =BYY\D—Ys, Q=D'Y|D— Y.

(31)
=BTY|A - Y,,

The rank condition (24) implies that vecs(€21) = 0, vec(£2;) =
0, vecs(23) = 0, vec(24) = 0, vec(25) = 0 and vecs(2g) =
0. Thus, we have the following

AT A

—Y — =Y = —€l,.

32
waibw (32)

Since )Li is Schur stable, Y] can be uniquely determined. As
shown in Example 1, one can obtain M>; and S>> for any
given W3. Based on the linearity of the vecs operator, one
can see that vecs(Q2g) = Sz,zvecs(DTYlD —Y) =0 =
vecs(Yg) = vecs(DTY D). Thus, every element of the ,3 is
uniquely determined due to the uniqueness of Y;. The proof
is thus complete. |

The following lemma provides a condition for the stability
of ﬁ, that is verifiable using only input-state data.

Lemma 2: Suppose the rank condition (24) holds, then %

is Schur if and only if the following holds
1) The matrix W3 is full column rank.
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2) The symmetric matrix P4 obtained by solving (29) is

positive definite.

Proof: (=) Let ﬁ is Schur. Then Property 1) can be
inferred Lemma 1. From Lemma 1 we can further observe
that P4 can be uniquely obtained from (29). Furthermore, P
satisfying the Lyapunov equation (14) also satisfies (29). This
implies that property 2) holds.

(<) Suppose both the properties hold. Then, from (32),
the matrix P4 > O solves the Lyapunov equation (14). This
implies )Li is Schur. The proof is thus complete. |

Remark 4: Using Lemmas 1 and 2, A4 is learned in Steps
4-9 in Algorithm 1.

V. SELECTION OF THE CONVERGENCE PARAMETER A_

The following theorem shows that (26) acts as a resilient
controller under a proper selection of A_ and if the DoS
frequency is small enough.

Theorem 1: Under Assumptions 1-4, for any DoS duration

parameter 7 > 1 and Ay > 1, let A_ = SA?, where 6 > 1.
Then, the system (1)-(3) in closed-loop with the controller (26)
achieves output regulation if the following condition holds

Im (P ) Am (Py)
7 log (\/ 3on (Pjn) o (P1) ) _
—1 log(82) '

Proof: Under the action of the controller (26), the
system (1)-(3) evolves as a switched system as follows

- [ AuE if ke An(k, k),
M=V A%y, if ke Ap(ky, ko).

Consider the following piecewise-quadratic Lyapunov function
Ve _ {sc{Pj*xk =V, if ke Ayk, k).
T VAP = V), if k € Ap(k, k),

where @y > 0 is to be determined. When k € Ay(ky, k), the
following can be obtained using (17) and (34)

D > T = p,- (33)

(34)

(35)

VG = V@ < (32— 1-37%) V@), (6)

where 0 < ¢| = ﬁ;’ka,.f) <1 (see [23]). When k € Ap(ki, ka),

the following can be obtained using (14) and (34)
VGan) = Vo < (W2 = 1) Vo).
For any [ € Z_, let the two intervals [h;+ 17, hj41] and [hy, b+
77] be the two intervals where the communication is allowed
and denied, respectively. Then, from (36) and (37), it can be
obtained that the Lyapunov function Vj satisfies the following

(37

k .
O Vi gy, if k€ [hr + 11, hig ],
<
Vie= {xi_kvh,, if k € [, b+ 7, G8)
where, v = A:Z(l — ¢1). Due to the fact that V(%) and

V(%) are quadratic with Pj, and P being symmetric positive
definite matrices, the following can be obtained

V&) < V@), V) < V@), (39)
_ )LM(P'*))\m(P'r) )LM(P'x))tM(PJr)
where pr = /5@ 5,@ and ke 5B P

Therefore, at all switching times k, we have that Vi < uoVi_1.

Thus, for all k € Z,, the Lyapunov function Vj satisfies the
following

0.0, |AN(O001, 2140 O D1y

Ve < il (40)

Using Assumptions 3-4 and the fact that |Ay(0, k)] = k —
|[Ap(0, k)| > k— p—%, the following can be obtained from (40)

-1

k
22\’ -1 2/1\ T 2
ﬁ) (1—01)< )x " <A_2> AT V.

VkSMZ(

Since 0 < 1 — ¢1 < 1, we need that

(41)

By taking log on both sides of (41) and choosing A_ =
1
811", one can obtain (33). Thus, (40) implies the following

Vip > D,
32\’ (=)
Vi < @(—*) (1 —en( ™y, (42)
w
1
Using (42), the following holds Vtp > tp, and A_ = 8)»1’1

-1

el < eal — e o), (43)
T—1

(44)

)k .

lex| < [Clea(1 —C1)< 7 X0l
P

_ oA\ max{ar(Pr). i v (P1))

where c; = \/ “2<ﬁ> T o (P 27 (P

limg— oo (xx — Xwg) = 0 and limg_, » e = 0, which implies

output regulation. The proof is thus complete. |

Algorithm 1 summarizes the proposed active learning-based
resilient control methodology.

Thus, we have

VI. SIMULATION RESULTS

In this section, we show the efficacy of the proposed
methodology by considering a numerical example. The system
matrices are given as follows

101 1 0 0
Az[o.z 0.8}’32[0]’D:[0 0.1}’(?:[1 o]

| cos(0.1)  —sin(0.1) _
_[sin(O.l) cos(O.l)i|’F_[_2 0].

The initial conditions are xo = [0.5 0]T, wo = [0.5 0.5]T,
and Q is an identity matrix. The proposed methodology is
tested with two DoS parameter sets: DoS; = {p = 0.35,
o =3, T =2, n = 1.1} (applied for k € [0,599]) and
DoS; = {p =035 tp =3, T =20, n = 1.1} (applied
for k € [600, 1200]). Input-state data are collected for k €
[0, 100] using sinusoidal exploration signals. Algorithm 1 uses
€0 = 0.1 and § = 1.1, yielding A+ = 2.2. For DoSy,
A_ = 2.42 is chosen, and the learned controller is applied
after k = 100. When the attack changes at k = 600, A_ =
1.1466 is used to relearn the resilient controller for DoS,.
The controller gains are compared in Table I and Fig. 1(b).
From (33), the critical dwell-times are tp, = 33.4827 for
DoS; and tp, = 10.0376 for DoS,. While 7p > tp, is
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TABLE |
COMPARISON OF CONTROLLER GAIN VALUES

DOS; DOS,

Controller | 1 2
K* ‘ 1.5165 2.2484 K*
Ks ‘ 1.5168  2.2494 Ky
L* ‘ 6.0679  2.4609 L*
Ls | 60697 24621 Ly

Controller | 1 2

‘ 0.81648  0.40568
‘ 0.81653  0.40581
‘ 2.0562 0.17888
‘ 2.0565 0.17904

-¢- for DoS,
7hh & for DoSs

4 \
<o e
3 \
N N
\\.‘ \n~

Il A1 1 0 n i e ]
0 200 400 600 800 1000 1200 1 2 3 4 5 6 7
Time step Iteration munber (j)

() (b)

Fig. 1. (a) Tracking and disturbance rejection under DoS attacks,
(b) Convergence of Kj to K*.

sufficient to ensure stability, the system handles frequent DoS
attacks with tp = 3. Fig. 1(a) shows the evolutions of
the reference and output trajectories under the application
of different controllers, with the DoS attacks represented
as shaded areas. It can be seen that the proposed active
controller provides superior performance compared to other
controllers. We compared our methodology with an indirect
approach based on system identification, using the dynamic
mode decomposition method to identify system matrices.
Conventional system identification techniques assume data is
collected at regular intervals and require additional preprocess-
ing to handle missing data. However, in the advent of DoS
attacks, missing data is inevitable and may lead to inaccurate
estimation of the system matrices. We have used interpolation
technique to approximate the missing data points. As shown
in the SysID+Control plot in Fig. 1(a), the performance of
this indirect approach is less favorable than anticipated. In
contrast, the proposed direct approach methodology guarantees
convergence and uniqueness by utilizing online data collected
over any sequence of time steps ko < k; < --- < k; as long as
the rank condition in (24) is satisfied. The learned controller
can track the reference signal even in the presence of varying
DoS attacks.

VII. CONCLUSION

We have proposed an active learning-based controller design
for discrete-time, linear, uncertain systems under DoS attacks.
Leveraging switching systems theory and adaptive dynamic
programming, the controller ensures closed-loop stability by
learning an optimal control policy and a critical average
dwell-time. Stability and resilience are guaranteed when the
DoS average dwell-time exceeds the critical value. Divergence
and convergence parameters, estimated from online input-
state data, were central to learning the resilient controller.

Numerical simulations demonstrate the effectiveness of the
proposed methodology.
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