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Bounds on Cheeger–Gromov invariants and
simplicial complexity of triangulated manifolds

By Geunho Lim at Santa Barbara and Shmuel Weinberger at Chicago

Abstract. We show the existence of linear bounds on Wall �-invariants of PL mani-
folds, employing a new combinatorial concept of G-colored polyhedra. As an application, we
show how the number of h-cobordism classes of manifolds simple homotopy equivalent to
a lens space with V simplices and the fundamental group of Zn grows in V . Furthermore, we
count the number of homotopy lens spaces with bounded geometry in V . Similarly, we give
new linear bounds on Cheeger–Gromov �-invariants of PL manifolds endowed with a faithful
representation also. A key idea is to construct a cobordism with a linear complexity whose
boundary is �1-injectively embedded, using relative hyperbolization. As an application, we
study the complexity theory of high-dimensional lens spaces. Lastly, we show the density of
�-invariants over manifolds homotopy equivalent to a given manifold for certain fundamental
groups. This implies that the structure set is not finitely generated.

1. Introduction and main results

Invariants of the type we consider in this paper originally arose in the context of finite
(quotient groups of) fundamental groups, in work of Browder–Livesay on classifying free invo-
lutions on the sphere [8]. They were related by Hirzebruch [25] to invariants of Atiyah–Bott [3],
which they had used to show that two different lens spaces are not h-cobordant, and later by
Atiyah–Patodi–Singer [4] to �-invariants. For manifolds with a finite fundamental group, these
invariants play a crucial role in augmenting characteristic classes to completely classify all
manifolds within a given simple homotopy type as Wall observed explicitly in the case of
homotopy lens spaces (see [15, 41]).

Cheeger and Gromov [16] introduced a natural L2 analogue of the above invariants for
manifolds with an infinite fundamental group. These invariants, in addition to their original
application in the integrality formula for specific characteristic classes of complete Riemannian
manifolds with bounded curvature and finite volume, have been employed to show that certain
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structure sets of manifolds are infinite [14]. We will see that similar arguments show that these
structure sets are not only infinite but also infinitely generated. Moreover, these invariants (for
the Dirac operator replacing the signature operator) play a crucial role in proving that moduli
spaces of metrics with positive scalar curvature have infinitely many components [36]. Other
applications include three-dimensional topological knot cobordism [19] and the study of the
complexity of 3-manifolds in various senses [10].

Some of these applications make use of an important inequality of Cheeger and Gromov
[17] which holds for smooth Riemannian manifolds of bounded geometry,

�.2/.M / � C.d; inj; K/ � vol.M/;

where d D dim.M /, inj is a lower bound on the injectivity radius, and K is a bound on the
absolute value of the sectional curvature of M . (We will refer to such bounds on a Riemannian
metric as a bound on its geometry.)

Based on this inequality, Gromov [23] conjectured that, for manifolds with bounded
geometry, if they are null-cobordant, then they bound other (bounded geometry) manifolds
with at most a linear increase in volume. Such estimates would provide a topological explana-
tion for the aforementioned inequality. The validity of this conjecture remains unknown, but
some progress has been made in [12].

In this paper, we will consider analogues of these invariants and prove analogous inequal-
ities for PL manifolds, where the volume of the manifold is replaced by the total number of
simplices it contains. Extending these invariants to PL (and even topological) manifolds is
straightforward using a bordism argument presented in [41, Section 13]. Furthermore, these
invariants can be generalized to Witt spaces (as demonstrated in [1, 39]), and our results are
expected to hold in this broader context as well. We intend to pursue this direction in a future
paper. In contrast to the analytical approach employed by Cheeger and Gromov, we rely on
purely geometric arguments.

This inequality is not the natural analogue of the Cheeger–Gromov inequality for the PL
setting. This is because we do not impose any local condition on the geometry. In other words,
the number of neighbors of a vertex can be unbounded in this collection of manifolds. Addi-
tionally, we do not know what the smooth analogue of our inequality is. Perhaps, it involves the
“engulfing radius”, which is the largest r such that metric balls of radius r in M are included
in larger smooth contractible balls.

We will soon discuss the precise statement of our results and some applications. How-
ever, inspired by Gromov’s heuristic reasoning, it is tempting to conjecture that the number of
simplices in PL cobordism (and Witt cobordism) behaves linearly or perhaps almost linearly.
Currently, we have no idea how to prove such a result. A proof has been given in [31] for PL
manifolds of bounded geometry of the analogue of the result in [12], i.e. of almost linearity. The
implied constants involved in this proof depend on the bounds imposed on the local geometry
in an unknown manner.

We now state our main theorem (leaving the definition of the �-invariants to the next
section).

Theorem 1.1. If M is an odd-dimensional PL manifold and one is given a homo-
morphism ˛W�1.M /! G for a finite group G, then j�g.M /j � C.d/ � jGj ��.M / for any
nontrivial element g in G.
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Here, C.d/ is a constant just depending on the dimension, jGj is the order of G, and
�.M / is the number of simplices in a triangulation of M . See the discussion in Section 3 for
the optimality of various aspects of this inequality.

Theorem 1.2. If M is a .4k � 1/-dimensional PL manifold endowed with a faithful
representation of �1, then the Cheeger–Gromov invariant satisfies j�.2/.M /j � C 0.d/ ��.M /.

Since smooth manifolds with bounded geometry metrics have PL triangulations whose
number of simplices is proportional to the volume, see [18], the above inequality does imply
the Cheeger–Gromov inequality. Note that the factor jGj, which is necessary in Theorem 1.1,
is not present in Theorem 1.2. Either theorem can be applied to prove the following theorem.

Theorem 1.3. The number of simplices of the standard lens space LN .1; 1; : : : ; 1/ of
dimension 2d � 1 (with fundamental group ZN ) grows (in N ) like N d�1, i.e. the number of
simplices is bounded above and below by dimensional constants times N d�1.

We remark that the theorems remain true with their given proofs for arbitrary triangula-
tions of manifolds which are not necessarily restricted to PL triangulations. We note that the
proof for Theorem 1.3 when the dimension is 1 mod 4 is slightly indirect as in that case there
is no Cheeger–Gromov invariant.

In dimension 3, the results stated in Theorem 1.3 and Theorem 1.2 were originally
established by Cha [10]. The first author, in a subsequent work [29], improved the estimate
for C 0

3, resulting in a more refined bound. This paper is the result of rethinking some of the
algebra in those papers from a more geometrical perspective, leading to an improved estimate
of 12 for C 0

3. (However, in high dimensions, the constants are much more reasonable.)
In [11], an extension of Theorem 1.2 to other L2 �-invariants will be given by a mix-

ture of the algebraic and geometric ideas in all of these papers. The underlying philosophical
insight is that approaching the geometric arguments from an algebraic perspective enables the
establishment of functoriality, whereas a purely geometric approach would require the inclu-
sion of a complexity measurement for the homomorphism. Theorem 1.1, in the form given
here, actually relies on methods and results of this work. The technique we use for Theo-
rem 1.2 would give some constant for each finite G but not linearity for jGj. We note that the
applications below do not depend on this linearity.

The following is an application of our techniques to try to understand the complexity
of manifolds that are produced by surgery theory. The classification of manifolds homotopy
equivalent to a lens space is one of the high points of Wall’s book [41] – we now estimate how
many simplices are needed to construct those manifolds.

Theorem 1.4. The number of h-cobordism classes of manifolds simple homotopy equiv-
alent to a lens space Ld

N with at most V simplices is bounded above and below by constant mul-
tiples of V Œ.N�1/=2�Cı.N;d/, with constants depending on d , where d is odd, and ı.N; d/ D 0

unless N is even and d is 3 mod 4, and in that case, it is 1.

This is based on the connection between �-invariants and surgery theory established
in [41]. Specifically, we balance our bound on the �-invariants of these manifolds against a con-
struction given in [42]. This technique allows us to construct that many homotopy lens spaces
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with V simplices. The key implication of our findings is that the number of simplices required
for an element of the homotopy structure set of a lens space [41] is approximately equivalent
to its distance from the origin within that set, when viewed as an abelian group.

Counting the manifolds seems more natural than counting h-cobordism classes of these
manifolds. This would require estimates on Reidemeister torsions, which are analogous to the
above inequalities for �-invariants. The idea of [40] suggests that bounding the number of
simplices suffices for this project. However, it is not known how to do this in general. Using
the result of [18] and these ideas, we have the following theorem.

Theorem 1.5. The number of homotopy lens spaces with bounded geometry with fun-
damental group Z=N in dimension d and volume V can be bounded above and below by
constants times V N�d.N /Cı.N;d/.

This theorem differs from the previous in that we consider homotopy lens spaces up
to isomorphism – which necessitates an estimate on the size of the Reidemeister torsion (or
equivalently, the torsion of an h-cobordism between two such manifolds). We also need to
modify our construction of examples (to get the lower bound); what we do is an algebraic
K-theoretic analogue of the surgery theoretic construction used for Theorem 1.4.

Finally, in Section 6, we will prove the following variation on [14]. It is essentially
independent of the rest of the paper.

Theorem 1.6. Suppose M is a closed oriented manifold of dimension 4k C 3, where
k > 0, and �1.M / has finite subgroups of arbitrary large order. Then the values of �.2/.M 0/

as M 0 varies over manifolds homotopy equivalent to M is a dense subset of R. This implies
that the group S.M/ of such manifolds (studied by surgery theory) is not finitely generated.

The condition on the fundamental group �1 in this theorem arises in all known examples
where L2 Betti numbers do not form a discrete subset of R. It seems that if the Farrell–Jones
conjecture is true, then this condition is necessary as well for the density of values of �.2/.
We remark that it is conjectured that all the numbers in this set of real numbers differ from
one another by rational numbers [13]. If this conjecture is true, it opens up the possibility of
making estimates using p-adic heights of �-invariants.

We also remark that the conclusion of this theorem would follow from conjectures in [43].
In fact, it extends beyond the conjectures for certain groups, such as the lamplighter group, or
more generally, finitely presented groups containing it, which consist solely of elements of
order 2 and also contain Zn

2 for all n.
We close by mentioning a drawback of the purely geometric nature of our methods. We

are unable to prove the natural analogue of Theorem 1.1 for Atiyah–Patodi–Singer invariants
of odd-dimensional PL manifolds with representations of their fundamental group. It seems
unbelievable that this could not hold for Atiyah–Patodi–Singer invariants. But our methods
that make essential use of bordism do not gracefully extend to the bordism of manifolds with
flat bundles. This is due to the fact that the relevant bordism group is an infinite-dimensional
vector space rationally. Here, as in [10, 14, 29], we avoid this in the case of �.2/, using the
functoriality of this invariant with respect to inclusions. Unfortunately, we do not yet have an
analogous tool in the Atiyah–Patodi–Singer setting.
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The paper is structured as follows. Section 2 provides a brief overview of the definitions
of the Wall �-invariant and the Cheeger–Gromov L2 �-invariants. In Section 3, we discuss the
geometric concepts of G-colored polyhedra and towers of their coverings. We then employ
these concepts to prove Theorem 1.1. Section 4 is devoted to a quantitative study of relative
hyperbolization, which is essential in proving Theorem 1.2. In Section 5, we apply our results
to the complexity and homotopy structure sets of homotopy lens spaces, providing proofs
for Theorem 1.3 and Theorem 1.4. Finally, in Section 6, we prove Theorem 1.6, which is
independent of the rest of the paper.

Note. In this paper, we assume that manifolds are closed, oriented, and triangulated
unless otherwise noted.

2. Wall �-invariant and Cheeger–Gromov L2 �-invariant

In this section, we provide a brief review of the definitions of the Wall �-invariant and
the Cheeger–Gromov L2 �-invariants.

Atiyah–Singer’s classical G-signature [5, Section 6] is a signature type invariant of odd-
dimensional manifolds with finite fundamental group. This invariant is defined in the represen-
tation rings modulo the regular representations with rational coefficients. For a 2d -manifold
on which G acts, the bilinear form on the middle dimension cohomology of the manifold is
G-invariant. For even d , the operator which recognizes the bilinear form gives the positive
eigenspace and negative eigenspace. So one has two real representations of �C and �� which
are elements of the real representation ring RO.G/. The G-signature is defined as �C � ��.
For odd d , we can change the skew symmetric inner product form into a symmetric Hermitian
one by multiplying by i , and then using the construction given for d even. So one can obtain
a complex representation � of G, and the G-signature is defined by � � �� in the complex rep-
resentation ring R.G/. Recall R.G/ is the ring formally spanned by the isomorphism classes
of complex representations of a group G with C and � corresponding to ˚ and ˝ respectively.
Elements can be detected by their character �g.V / which is, by definition, the trace of g’s
action on V , where g 2 G. For even d (odd d ), the G-signature takes values in R (iR). (For
the trivial group, though, this gives only quadratic forms with signature 0.)

With this background, we can define the �-invariant for any odd-dimensional manifold
endowed with a representation of its fundamental group.

Definition 2.1 (Wall’s classical �-invariant). For a finite group G and a .2k � 1/-mani-
fold M endowed with a representation ˛W�1.M /! G, the �-invariant �.M; ˛/ is defined
by

�.M; ˛/´
1

r
signG. zW /;

where W is a 2k-manifold such that 𝜕W 2k D rM , zW is the induced G-cover of W , ˛ factors
through �1.W /, and signG is the G-signature [5, Section 6] of the induced representation ˛�

on the middle dimension cohomology of the induced G-cover zW of W .
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Remark 2.2. The existence of the manifold W and the well-definedness of the �-in-
variant are established using cobordism theory and the cohomological analogue of the G-index
theorem respectively [5].

Its significance extends to the classification of lens spaces [3], their homotopy ana-
logues [15, 41], and its intimate connection with the �-invariant for the signature operator [4].

In [16, 17], Cheeger and Gromov introduced L2 analogues of the above invariants for
manifolds with an infinite fundamental group. Specifically, they defined L2 �-invariants on
a closed .4k � 1/-dimensional Riemannian manifold M . These invariants are the difference of
the �-invariant of the signature operator of M and the L2 �-invariant of that of the G-cover
of M , which is defined using the von Neumann trace. This analogue is generalized to the case
of foliations in [37]. Cheeger and Gromov also established the Cheeger–Gromov inequality,
which gives universal bounds for the �-invariant. Chang and Weinberger extended the definition
of the Cheeger–Gromov �-invariants to topological manifolds [14].

Definition 2.3 (Chang–Weinberger’s topological definition of Cheeger–Gromov �-invari-
ant). For a .4k � 1/-manifold M , the Cheeger–Gromov �-invariant �.2/ is defined by the
L2-signature defeat,

�
.2/
� .M /´

1

r
.sign.2/

� W� � sign W / 2 R;

where W is a 4k-manifold such that 𝜕W 4k D rM with � D �1.M / injecting into � D �1.W /,
W� is the induced �-cover of W , and sign.2/

� is the L2-signature of the symmetric form induced
by cap product on the middle cohomology [14].

Remark 2.4. The existence of W is a consequence of Thom’s classical work on cobor-
dism and Hausmann [24]. The well-definedness of the �-invariant is obtained from the �-induc-
tion property of Cheeger–Gromov [17] and the usual Novikov additivity argument. For details,
we refer readers to [10, 14, 29].

In [10], Cha established Cheeger–Gromov inequalities for topological manifolds of arbi-
trary dimension, and derived explicit universal linear bounds for 3-manifolds in terms of the
minimal complexity of triangulations. Subsequently, the first author provided more efficient
bounds for 3-manifolds with controlled chain null-homotopies in all dimensions [29].

Besides Cheeger and Gromov’s original application to obtain an integrality result for
Hirzebruch L-classes of complete Riemannian manifolds with bounded curvature and finite
volume, they have found numerous other applications; to show that certain structure sets of
manifolds are infinite [14] (and indeed infinitely generated, as we will remark below), the mod-
uli of metrics of positive scalar curvature have infinitely many components [36], to K-theory
[28], to three-dimensional topological knot cobordism [19], and to complexity of 3-manifolds
(in various senses) [10] among others.

3. G -colored polyhedra and their coverings

In this section, we prove Theorem 1.1 using the geometric concepts of G-colored poly-
hedra and their coverings.
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We begin by observing that, for a .2k � 1/-manifold M endowed with a representation
˛W�1.M /! G, the Wall �-invariant can be obtained from a cobordism W between M over
G and a manifold trivially1) over G, instead of a 2k-manifold bounded by M . This is because
the trivial end does not affect the �-invariant. To obtain a linear bound on the absolute value
of the �-invariant, we note that the rank of the homology of the induced G-cover of W in the
middle dimension k cannot be greater than jGj times the number of k-cells in W . Thus, the
dimension of the vector spaces arising in the definition of the �-invariant and therefore the
absolute value of the �-invariant itself are also linearly bounded by the number of k-cells in W

by Definition 2.1. Therefore, our focus is on an explicit construction of W .
To do this, we use the colored polyhedra and their coverings, which are used to model

chains in the Moore complex of a simplicial classifying space.
We briefly recall the Moore complex of a simplicial classifying space. First, we define

the Moore complex ZX� of a simplicial set X . For details, we refer readers to excellent
references [33, 35].

Definition 3.1. Let X be a simplicial set. The Moore complex ZX� of X is a chain
complex of the abelian groups ZXn endowed with the boundary maps

𝜕WZXn ! ZXn�1; where n 2 ¹0; 1; 2; : : :º:

The group ZXn is the free abelian group generated by the n-simplices of Xn. The boundary
map 𝜕WZXn ! ZXn�1 is defined by 𝜕´

Pn
iD0.�1/idi , where di is a face map of X .

The Moore complex ZX� of a simplicial set X is not the same as the cellular chain
complex C�.jX j/ of the geometric realization jX j of X . Instead, there is a relation between
ZX� and C�.jX j/. For convenience, write C�.X/´ C�.jX j/. Let D�.X/ be the subgroup of
ZX� generated by degenerate simplices of X .

Theorem 3.2 (Mac Lane [30, p. 236]). For a simplicial set X , there is a short exact
sequence

0 �! D�.X/ �! ZX�

p
�! C�.X/ �! 0;

where the projection p is a chain homotopy equivalence.

One can check
C�.X/ Š

ZX�

D�.X/
:

We can define the simplicial classifying space BG of a discrete group G, giving a stan-
dard functorial simplicial construction of BG.

Definition 3.3. Let G be a group. The simplicial classifying space BG of G is defined
to be a simplicial set with BGn D ¹Œg1; : : : ; gn� j gi 2 Gº, where n 2 ¹0; 1; 2; : : :º, together

1) When we consider M ! e as a G-space, it becomes the space G �M with the product action of G on G,
and G acting trivially on M . We are giving here an equivariant cobordism between some number of copies of zM
(the G-cover of M ) and G �M .
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with face maps di WBGn ! BGn�1 and degeneracy maps si WBGn ! BGnC1 defined by

di Œg1; : : : ; gn� D

8̂<̂
:

Œg2; : : : ; gn�; i D 0;

Œg1; : : : ; gigiC1; : : : ; gn�; 1 � i � n � 1;

Œg1; : : : ; gn�1�; i D n;

si Œg1; : : : ; gn� D Œg1; : : : ; gi ; e; giC1; : : : ; gn�;

where i D 0; 1; 2; : : : ; n.

Applying Definition 3.1 to the simplicial classifying space BG, we obtain the Moore
complex of the simplicial classifying space BG.

Definition 3.4. Let G be a group. The Moore complex ZBG� of the simplicial classify-
ing space BG is a chain complex of free abelian groups ZBGn which is generated by n-tuples
Œg1; : : : ; gn� of group elements g1; : : : ; gn 2 G, together with the boundary map which is
defined as the alternating sum of face maps 𝜕 D

Pn
iD0.�1/idi , where

di Œg1; : : : ; gn� D

8̂<̂
:

Œg2; : : : ; gn�; i D 0;

Œg1; : : : ; gigiC1; : : : ; gn�; 1 � i � n � 1;

Œg1; : : : ; gn�1�; i D n:

We return now and consider how to construct a quantitative controlled 2k-chain in the
Moore complex with an explicit and efficient complexity, whose boundary consists of copies
of the fundamental class ŒM � of M in the classifying space of a finite group. This approach
differs from the Cheeger–Gromov �-invariant case, where any group can be embedded into an
acyclic one that we explained above. In the Cheeger–Gromov situation, the acyclic group can
even be constructed functorially (see [7]), but for finite groups, the 2k-chain we need does not
exist integrally. Our new method gives a construction which requires multiplying our manifold
by some number, but it is controlled by the triangulation of M and the order of G. The method
has the advantage of controlling the complexity of each step in the process. This allows us
to obtain a cobordism W between M over G and a manifold N trivially over G (i.e. a G-
cobordism between zM and G �N ), whose middle k-dimension homology satisfies a linear
bound on its dimension, which is given by the number of k-cells in W .

We now define the concept of colored polyhedra and their covering.

Definition 3.5. Let G be a group. An (abstract) G-colored (directed) n-polyhedron is
an n-dimensional polyhedron satisfying the following properties.

(i) Each edge is directed.

(ii) A group element is assigned to each edge.

(iii) Any path along edges represents a group element. To obtain the group element corre-
sponding to a path, start with the identity element e 2 G and right-multiply the group
element assigned to each edge in the order of the path. If the direction of the edge cor-
responds to the direction of the path, multiply by the assigned group element; otherwise,
multiply by the inverse.
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(iv) Any loop along edges represents a group relation. In other words, any two paths connect-
ing two vertices represent the same group element.

Remark 3.6. By definition, each .n � 1/-face of a G-colored n-polyhedron is also a G-
colored .n � 1/-polyhedron. Furthermore, we can obtain a new n-polyhedron P by identifying
two G-colored n-polyhedra P1 and P2 along the same .n � 1/-face, and this new polyhedron
P is again a G-colored n-polyhedron.

A

a

b
c

c

a

d
b

d

As an example, consider the above G-colored 2-polyhedron, where G is a finite abelian
group and a; b; c; d 2 G. To check if this polyhedron satisfies (iv), it is enough to verify if
a loop starting from any vertex represents a group relation because G is abelian. The clockwise
loop starting from A represents abcc�1a�1d�1b�1d , which is a group relation, indicating
that the polyhedron is G-colored.

We can interpret the n-simplices of the Moore complex ZBG� (see [35]) of the simplicial
classifying space BG (see [33]) as G-colored n-polytopes. To be more precise, let us consider
an oriented n-simplex determined by the vertices h0; h1; : : : ; hn 2 G, which we denote by the
ordered tuple .h0; h1; : : : ; hn/. Let gi D h�1

i�1hi for i D 1; 2; : : : ; n. We orient each edge of
the simplex .h0; h1; : : : ; hn/ joining hi and hj (i < j ) from hi to hj , and associate it with the
group element h�1

i hj (D giC1giC2 � � �gj ). We can then represent this G-colored n-simplex by
Œg1; g2; : : : ; gn�. In fact, Œg1; g2; : : : ; gn� corresponds to the generator of the Moore complex
ZBG�, and the orientation of the n-simplex determines the sign of this generator in ZBG�.

Remark 3.7. Note that alternative notations for the G-colored n-simplex Œg1; : : : ; gn�

may appear in other literature. In particular, one may encounter .g1; : : : ; gn/ or Œg1j � � � jgn�

used interchangeably with Œg1; : : : ; gn�.

By virtue of (iv) in Definition 3.5, a G-colored n-polyhedron can be decomposed into
G-colored n-simplices, taking into account orientation. Moreover, any loop formed by edges
of the simplices represents a group relation. In fact, the decomposition of a G-colored n-poly-
hedron corresponds to an n-chain in ZBG�. For instance, the decomposition of the aforemen-
tioned G-colored 2-polyhedron corresponds to a 2-chain in ZBG2, given by

Œa; b�C Œab; c� � Œab; c� � Œb; a� � Œbd�1; d �C Œd; bd�1�;

where the choice of orientation is implicit.
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A

!a

b
c

c

a

d
b

d

A

a

b
c

c

a

d
b

d

ab abc
ab

b

bd�1

As an abuse of notation, we use the symbol P to refer to both a G-colored n-polyhedron
and its corresponding decomposition or n-chain in ZBG�. Keeping in mind that G-colored
polyhedra represent chains in ZBG�, we can define a concept that is analogous to a cycle in
the chain complex.

Definition 3.8. A G-colored n-polyhedron P is called a cycle if it represents a cycle in
the chain complex ZBG�, i.e. 𝜕P D 0.

Indeed, the G-colored 2-polyhedron P presented earlier is a cycle, as can be easily
verified by computing its boundary,

𝜕.Œa; b�C Œab; c� � Œab; c� � Œb; a� � Œbd�1; d �C Œd; bd�1�/ D 0:

Next, we introduce a G-colored n-polyhedron endowed with a vertex set of group ele-
ments.

Definition 3.9. Let P be a G-colored n-polyhedron. We may assign a group element
to a vertex. This assignment determines the group element at every other vertex of P by right
multiplication of the group elements of the edges, according to the direction of the edges. Then
P is said to be endowed with a vertex set of group elements.

For example, if we assign e to the vertex A in the previous example, then we obtain the
following.

e

a

ab abc

ab

b

bd�1d�1

a

b
c

c

a

d
b

d

Remark 3.10. For a finite group G, there are exactly jGjways to assign group elements
to vertices of a G-colored n-polyhedron.
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Given a G-colored n-polyhedron P D
Pk

iD1 �n
i endowed with a vertex set T , we can

construct a simplicial cylinder between P and E with respect to T (see [29, Section 4.3]),
denoted by Cyl.P; E; T /. Here, �n

i is a signed n-simplex, E D
Pk

iD1 sign.�n
i /Œe; e; : : : ; e� is

a degenerate G-colored n-chain, and sign.�n
i / is the sign of the i -th simplex in P .

The simplicial cylinder Cyl.P; E; T / is a G-colored .nC 1/-chain in ZBG�. Intuitively,
it can be thought of as a prism whose top is P , whose base is E, and whose edges connect
corresponding vertices in P and E are T .

In fact, the previous example can be converted to a simplicial cylinder as modelled below.
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b c

c

a

db

d

e

e e

e

e

ee
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e
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ab

abc

ab
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We now introduce the concept of a covering of a cycle.

Definition 3.11. Let G be a finite group and let P be a (simplex-decomposed) G-colored
n-cycle. Assume that there exists an .n � 1/-simplex B in 𝜕P (so there exists �B in 𝜕P as
well). A covering of P with respect to B is a G-colored n-polyhedron obtained by gluing jGj
copies of P in the following way: �B on the i -th copy of P is glued to B on the .i C 1/-th
copy of P , where i D 1; 2; : : : ; jGj � 1.

Remark 3.12. Note that a covering of a cycle, constructed as described in Defini-
tion 3.11, is again a cycle. Moreover, since the covering is a G-colored n-polyhedron endowed
with a vertex set of group elements, and G is finite, the boundary of the covering containsCB

and�B with the same group element assigned to their vertices. This allows us to geometrically
identifyCB and �B on the boundary of a covering of P .

We can construct a tower of coverings inductively.

Definition 3.13. Let G be a finite group and let P be a simplex-decomposed G-colored
n-cycle. Let˙B1 and˙B2 be .n � 1/-simplices on 𝜕P such that B1 ¤ B2. Let PB1

be a cov-
ering of P with respect to B1 2 𝜕P . A tower of coverings of P with respect to B1 and B2 in
order, denoted by P.B1;B2/, is a G-colored n-polyhedron obtained by gluing .n � 1/-simplices
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of˙B2 of PB1
in the following way. Since there are exactly jGj ways to assign group elements

to the vertex set of P , there are jGj pairs ofCB2 and�B2 with the same group elements at their
vertices. We glue the cancelled pairs ofCB2 and�B2 except only one pair. Inductively, we can
define a tower of coverings of P with respect to B1; B2; : : : ; Bs 2 𝜕P from jGj copies of P .

Remark 3.14. Since we construct a tower of coverings of P in a way to label the
vertices consistently, the tower of coverings is a G-colored n-polyhedron.

Remark 3.15. Since G is a finite group, the vertices of the corresponding pair of sim-
plices CBk and �Bk in 𝜕P.B1;B2/ (k D 1; 2) must have the same group elements for any
choice of vertex sets. See Remark 3.12.

We now present a lemma that plays a crucial role in obtaining a linear bound for the
complexity of u in step (2).

Lemma 3.16. Let G be a finite group and let C D
Pk

iD1 �n
i be an n-cycle in ZBGn.

Then there exists an .nC 1/-chain u whose boundary is Nn;G copies of

C �

kX
iD1

sign.�n
i / � Œe; e; : : : ; e�

and whose simplicial complexity is Nn;G � jC j, where �n
i is a signed n-simplex in ZBGn and

Nn;G is a natural number depending on the dimension n and the order of G.

Proof. Recall that all faces of �n
i (i D 1; 2; : : : ; k) are algebraically paired up because

C is an n-cycle. To construct a set of G-colored n-polytopes that represents C 2 ZBGn, we
begin by picking a signed n-simplex �n

1 . If all of its faces are already paired up algebraically,
we keep �n

1 and move on to the next simplex. Otherwise, we glue �n
1 to another simplex along

the faces that are algebraically paired up. We continue this process, gluing n-simplices to the
polytope, until we cannot pair up any more faces. Since there are finitely many n-simplices,
this process must terminate and gives us a set of G-colored n-polytopes whose union repre-
sents C . We denote this set of G-colored n-polytopes by ¹P1; P2; : : : ; Plº, where l � k. By
construction, each Pj is a cycle for all j 2 ¹1; 2; : : : ; lº.

Since each G-colored n-polytope Pj is a cycle, we can pair up the .n � 1/-simplices in
𝜕Pj asCBk and�Bk , where k D 1; 2; : : : ; j𝜕Pj j=2. We can then recursively construct a tower
of covering polytopes P.B1;B2;:::;Bj𝜕Pj j=2/ of P with respect to B1; B2; : : : ; Bj𝜕Pj j=2, denoted
briefly by Pj .

Put Pj D
Ps

mD1 �
j
m. Then, as noted in Remark 3.10, we can construct an .nC 1/-chain

Cyl.Pj ; Ej ; T / by endowing Pj with a vertex set. We choose Ej to be

sX
mD1

sign.�j
m/Œe; e; : : : ; e�;

and T to be the corresponding vertex set.
We apply [29, Lemma 4.7], which implies that

𝜕Cyl.Pj ; Ej ; T / D Pj �Ej �† Cyl.𝜕Pj ; 𝜕Ej ; 𝜕T /:
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Using Remark 3.12 and Remark 3.15, we note that algebraically paired .n � 1/-simplicesCB

and �B in 𝜕Pj have the same group element for any vertex set. Therefore, the simplicial cylin-
ders ofCB and�B are the same, except for the sign. As a result, † Cyl.𝜕Pj ; 𝜕Ej ; 𝜕T / D 0 for
all j . This means that

Pl
jD1 Cyl.Pj ; Ej ; T / is the desired .nC 1/-chain u, whose boundary

is some copies of

C �

kX
iD1

sign.�n
i / � Œe; e; : : : ; e�:

Put P D
P

j Pj . Using the constructions of Definition 3.11 and Definition 3.13, we obtain
jP j � jGj � jC j. Moreover, according to Remark 3.10, we have juj � .nC 1/ � jGj � jC j.

Now we prove Theorem 1.1.

Proof of Theorem 1.1. Let � be the fundamental group of M . Here, M refers to both
the triangulated .2k � 1/-manifold M and the geometric realization jM j of the simplicial set
induced by the triangulation.

Our proof builds on ideas of [10, 11]. Specifically, we proceed as follows with some
details to be filled in after.

(1) We begin by utilizing the simplicial-cellular approximation of maps to a classifying space
[10, Theorem 3.7]. This yields that a chain map ˛�WC�.M /! ZBG� is induced by the
given representation ˛W�1.M /! G, where ZBG� denotes the Moore complex of the
simplicial classifying space BG. We embed the chain ŒM � 2 C2k.M / representing the
fundamental class of M into ZBG�.

(2) As G is a finite group and ŒM � is a cycle, we may affirm that there exists a 2k-chain
u whose boundary is r˛�.ŒM �/ for some r 2 N. To construct such a chain u explicitly,
we use the colored polyhedra and their covering in the Moore complex ZBG� of the
simplicial classifying space BG introduced above.

(3) We employ a result due to Theorem 3.2 [30, p. 236], which asserts the existence of a
projection map pWZBG� ! C�.BG/. In particular, for any generator of ZBG�, the
image under p is a chain consisting of at most one simplex in the cellular chain complex
C�.BG/. With this in mind, we map the 2k-chain u to its image p.u/ in C�.BG/.

(4) Using the simplicial-cellular approximation of maps to a classifying space [10, Theo-
rem 3.7], we may assume that M is over BG.2k�1/, where BG.2k�1/ is the .2k � 1/-
skeleton of the geometric realization of BG. By combining our 2k-chain u in step (2)
and a high-dimensional analogue of the geometric construction in [10, Proposition 3.10],
we can construct a cobordism W2k�1 between rM over BG.2k�1/ and N2k�2 over
BG.2k�2/, adding 1-handles between algebraically corresponding pairs of .2k � 1/-
simplices in 𝜕p.u/ and p.r˛�.ŒM �//

(5) As a backward-inductive process, we construct a sequence of cobordisms Wi over G

from
Ni ! BG.i/ to Ni�1 ! BG.i�1/;

where Ni is a .2k � 1/-manifold for i D 2k � 2; 2k � 3; : : : ; 2; 1. To do this, we com-
bine our covering of colored polyhedra with a geometric idea from [11].
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(6) Gluing these cobordisms Wi together, we obtain a cobordism W over G from

rM ! BG.2k�1/ to N0 ! BG.0/:

As BG is connected, the map N0 ! BG.0/ is homotopic to a constant map. By modi-
fying the map W ! BG on a collar neighborhood of N0 using a homotopy, we obtain
a desired cobordism W between the given rM and a trivial end N0.

Now, for the necessary details, we briefly recall the weight of a chain map introduced
in [10]. For a positive based chain complex over Z, the mass d.u/ of a chain u D

P
˛ n˛e˛

is defined by d.u/´
P

˛jn˛j, which is the L1-norm. Suppose C� and D� are based chain
complexes. For a chain map f WC� ! D�, the mass function df of the chain map is defined
by df .k/´ max¹d.f .c// j c 2 Ci is a basis element; i � kº. In this case, we say the chain
map f is controlled by the mass function df .k/. We can similarly define the weight of a chain
homotopy.

We verify that step (1) does not increase complexity. We embed the chain ŒM � 2 C�.M/

representing the fundamental class of M into ZBG�. As a cellular complex and a simpli-
cial complex, the triangulation of M induces both the cellular chain complex C�.M / and the
Moore complex Z�.M /. Furthermore, there exists a canonical inclusion i WC�.M /! Z�.M/.
According to the simplicial-cellular approximation theorem [10, Theorem 3.7], there exists
a chain map ˛�WZ.M /! ZBG induced by the given representation ˛W�1.M /! G. Abusing
notation, we denote the composition of chain maps

C�.M /
i
�! Z�.M /

˛�
�! ZBG�

by ˛�. So we can embed ŒM � into ZBG�.
In step (2), we construct a 2k-chain u 2 C�.BG/ whose boundary is some copies of

p.˛�.ŒM �// and whose mass linearly depends on the complexity of M with a multiplicative
coefficient depending only on the dimension n D 2k � 1 and jGj. To construct such a chain
u, we apply Lemma 3.16 to an n-cycle C D i.ŒM �/ 2 Zn.M /. Let ˆ.C / 2 ZBGnC1 be the
resulting .nC 1/-chain. Specifically, we have

�.ˆ.C // � Nn;G ��.M / and 𝜕ˆ.C / D Nn;G �

�
C �

X
i

sign.�n
i /Œe; e; : : : ; e�

�
;

where Nn;G D .nC 1/ � jGj.
We show that step (3) does not elevate complexity. According to [30], there exists a pro-

jection map
pWZBG� ! C�.BG/ Š ZBG�=D�.BG/;

where D�.X/ is the subgroup of ZX� generated by degenerate simplices of X . Note the pro-
jection is controlled chain maps by the constant function of 1. In other words, the weight of
composition of chain maps

C�.M /
i
�! Z�.M /

˛�
�! ZBG�

p
�! C�.BG/

is controlled by the constant function of 1. We then project the .nC 1/-chain ˆ.C / to C2k.BG/

using pWZBG� ! C�.BG/, which yields the desired chain u D p.ˆ.i.ŒM �/// 2 C2k.BG/.
By Lemma 3.16, 𝜕u D Nn;G � p.˛�.i�.ŒM �///. Furthermore, we have juj � Nn;G ��.M /.
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Step (4) contributes only a linear bound for the complexity if W . In this step (4), we
construct a cobordism W2k�1 over BG between M ! BG.2k�1/ induced by the given rep-
resentation of �.M /! G and Md�1 ! BG.2k�2/. Consider the jGj copies of M � Œ0; 1�.
Notice that, by our construction of the covering of colored polyhedra, we obtain the 2k-chain u

such that 𝜕u D jGj � ˛�.ŒM �/. For a 2k-cell e2k
˛ of BG, we say the characteristic map is given

by '˛WD
2k
˛ ! BG.2k/, where D2k

˛ is a 2k-disk. One may assume that the center of each 2k-
cell of BG is a regular value of 'WM ! BG.2k/ and a regular value of each attaching map
'˛j𝜕D2k

˛
W 𝜕D2k

˛ ! BG.2k/. Given the 2k-chain u D �
P

˛ n˛e2k
˛ , we first consider the dis-

joint union
F

jGj.M � Œ0; 1�/ t
F

˛ n˛D2k
˛ , together with the projection M � Œ0; 1�!M and

the maps '˛. The relation 𝜕u D jGj � ˛�.ŒM �/ gives that, for the center y of each d -cell of BG,
the points in the preimage of y in

F
jGj M � ¹1º and

F
˛ n˛𝜕DdC1

˛ signed by the local degree
are cancelled in pairs. For each cancelling pair, we can attach a 1-handle joining these to the
disjoint union with a corresponding orientation with respect to M since the attaching 0-sphere
can be framed by pulling back a fixed framing at the regular value y. We denote the resulting
oriented cobordism by W2k�1. Notice that the image of the new boundary M2k�2 is disjoint
from the centers of .2k � 1/-cells in BG.2k�1/. Using a homotopy on a collar neighborhood,
one can obtain that M2k�2 is over BG.2k�2/. The number of 1-handles depends linearly on
the complexity of u and M . Also, c.u/ linearly depends on c.M / as we observed in step (2).
The subdivision obtaining a triangulation of Md�1 results in a complexity which is linearly
dependent on c.M /. This step contributes only a multiplicative coefficient that depends only
on the dimension 2k � 1.

Now we explain step (5) and why it contributes only a linear increase in the com-
plexity of W . From the previous step (4), we have a cobordism W2k�1 over BG between
M !BG.2k�1/ induced by the given representation of �.M /!G and M2k�2!BG.2k�2/.
From the construction, the bottom map is actually M2k�2 ! u.2k�2/ � BG.2k�2/. Since
we explicitly constructed u as a G-colored polyhedron endowed with a vertex set of group
elements, there exists a simplicial cylinder structure from u to E, where E is the correspond-
ing degenerate 2k-chain as described in Remark 3.10. Then, for each i -simplex � , where
i D 2k � 2; 2k � 1; : : : ; 2; 1; 0, in u.2k�2/, there exists an .i C 1/-chain ‰.�/ such that

𝜕‰.�/C‰.𝜕�/ D � � Œe; e; : : : ; e�;

where Œe; e; : : : ; e� is the degenerate i -simplex. By PL-transversality of the simplicial-cellular
map 'WM2k�2 ! u.2k�2/ � BG.2k�2/, we can assume that '�1.c� / is a closed manifold and
'�1.b� / is a manifold with boundary such thatX

�2u.2k�2/

� � '�1.c� / D
X

�2u.2k�2/

𝜕‰.�/ � '�1.c� /C
X

�2u.2k�3/

‰.�/ � 𝜕'�1.b� /;

where c� is the center of � and b� is a wedge sum of edges connecting c� to each center of
.2k � 2/-simplex having � as a face. Then we can simplicially attachX

�2u2k�2

‰.�/ � '�1.c� /C
X

�2u2k�3

‰.�/ � '�1.b� /

endowed with projections

‰.�/ � '�1.c� /! ‰.�/ and ‰.�/ � '�1.b� /! ‰.�/
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for each � and each � to M2k�2 ! u.2k�2/ along withX
�2u.2k�2/

� � '�1.c� /:

Then we can obtain a cobordism W2k�2 over BG between

M2k�2 ! BG.2k�2/ and M2k�3 ! u.2k�3/
� BG.2k�3/:

In this process, the subdivision we used depends on only dimension, the cylinder structure P

depends on only dimension, and the complexity of manifolds '�1.c� / and '�1.b� / linearly
depends on M2k�2 whose complexity linearly depends on the complexity of M . Backward-
inductively, we can obtain a chain of cobordisms Wi over BG between

Mi ! u.i/
� BG.i/ and Mi�1 ! u.i�1/

� BG.i�1/;

where i D 2k � 3; 2k � 4; : : : ; 2; 1; 0. Also, the complexity of each Wi linearly depends on M .
Thus, step (5) contributes only a linear bound for the complexity if W . (See [11] for a fuller
development of this idea.)

Since the complexity of gluing cobordisms is given by addition of their complexity,
step (6) gives only a sum of complexity of every step. We can glue them together using the
cobordisms Wi for i D 2k � 2; 2k � 3; : : : ; 2; 1 to construct a cobordism W over G betweenF

M ! BG.2k�1/ and N0 ! BG.0/. As BG is connected, N0 ! BG.0/ is homotopic to
a constant map. We can modify the map W ! BG on a collar neighborhood of N0 using this
homotopy to obtain a desired bordism over G between

F
M and a trivial end. Since adding

manifolds together only adds complexity to the resulting cobordism, we have

�.W / � C2k�1 �Nn;G ��.M /;

where C2k�1 is a constant depending only on the dimension 2k � 1.
Using the fact that �. zW / � jGj � C2k�1 �Nn;G ��.M /, we can now apply Definition 2.1

to obtain the following:

j�g.M /j D
ˇ̌̌ 1

Nn;G
signG.g; zW /

ˇ̌̌
�

1

Nn;G
rank H2k. zW /

�
1

Nn;G

�
2kC1
kC1

�
k C 1

� jGj � C2k�1 �Nn;G ��.M /

D

�
2k
k

�
k C 1

� jGj � C2k�1 ��.M /:

4. Quantitative relative hyperbolization

In this section, we quantitatively study relative hyperbolization [22] and give the proof of
Theorem 1.2. We remark that these methods also lead to a proof of Theorem 1.1 with a constant
that depends on the group G but does not require the combinatorial work we did on G-colored
polyhedra.

Following and geometrizing an idea of [10, 29], the main theorem follows directly from
the Cheeger–Gromov Atiyah–Patodi–Singer theorem (or alternatively from the topological
definition of �-invariant given in [14]) and the following.
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Lemma 4.1. Given a PL n-manifold M , there is a cobordism W from M to M , and
a quotient group � of �1.W /, so that (1) one component of M has �1 mapping trivially to � ,
(2) the other component is mapped injectively, and (3) the number of simplices in W is linearly
bounded by the number of simplices in M .

Recall that �
.2/
� .M / is the difference between the L2-signature of the �-cover of W and

its ordinary signature, as defined in Definition 2.3. Since the number of simplices in W clearly
bounds the signatures, it also bounds �

.2/
� .M /.

Our approach to construct the cobordism W is based on the relative hyperbolization tech-
nique of Davis, Januszkiewicz, and Weinberger [22]. The construction of W involves replacing
each simplex in the barycentric subdivision of a cone CM with a �1-injective hyperbolized
“simplex”, followed by the removal of a singularity at the cone point.

We begin by recalling key definitions and the Williams construction [44], which is essen-
tial in our construction of hyperbolized n-simplices [22]. Let �n denote the standard n-simplex.

Definition 4.2. Let X be a topological space and let f WX ! �n be a continuous map.
We say that the pair .X; f / is a space over the n-simplex.

Definition 4.3. If L is an abstract simplicial complex and gWL! �n is a nondegener-
ate simplicial map, then the pair .L; g/ is called a simplicial complex over �n. Let both pairs
.L1; g1/ and .L2; g2/ be simplicial complexes over �n. We call a nondegenerate simplicial
map gWL1 ! L2 a map over �n, provided that the following diagram commutes:

L1 L2

�n:

 

!g1

 

!
g

 !

g2

We denote the category of simplicial complexes over �n and maps over �n by K.�n/.

Remark 4.4. The barycentric subdivision can be understood as a functor from the cat-
egory of simplicial complexes and nondegenerate simplicial maps to K.�n/. For an arbitrary
abstract simplicial complex over �n of dimension n, one can define a degree map

d WL! ¹0; 1; 2; : : : ; nº

that assigns to each simplex its dimension. As the poset of nonempty subsets of ¹0; 1; 2; : : : ; nº

describes �n, the pair .L0; d / naturally becomes a simplicial complex over �n where L0 is the
barycentric subdivision of L. Furthermore, for a nondegenerate simplicial map gWK ! L of
n-dimensional complexes, g0WK 0 ! L0 is a map over �n.

We are now prepared to introduce the Williams construction. In essence, this procedure
entails substituting each simplex in a given simplicial complex L with a distinctive “sim-
plex” X .

Definition 4.5 (Williams construction). Let .X; f / be a space over �n and let .L; g/

be a simplicial complex over �n. We define the fibered product X z4 L as the subspace of
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X � jLj consisting of all pairs .x; y/ such that f .x/ D g.y/. Here, jLj denotes the geometric
realization of L. We use fL and p to denote the natural projections

X z4 L jLj

X �n:

 

!
fL

 ! p  ! g

 

!
f

Suppose L is an n-dimensional simplicial complex. Then we define X 4 L as X z4 L0, where
L0 denotes the barycentric subdivision of L, which is a simplicial complex over �n as discussed
in Remark 4.4.

Remark 4.6. It is known that X z4 �WK.�n/! Top is a functor from the category
of simplicial complexes over �n to the category of topological spaces [21]. By Remark 4.4,
X 4�WK.�n/! Top is also functorial.

We define a hyperbolized “simplex” .X; f /, which will be used to replace each simplex
in a simplicial complex L for the purpose of hyperbolizing L.

Definition 4.7 (Hyperbolized n-simplex). Let .X; f / be a space over �n, where X

is a compact n-dimensional PL manifold with boundary and f WX ! �n is piecewise linear
such that the boundary operation is preserved under f �1. That is, 𝜕.X˛/ D X𝜕˛, where ˛ is
any k-dimensional face of �n and X˛ is f �1.˛/, which is a k-dimensional PL submanifold
of 𝜕X . We say that .X; f / is a hyperbolized n-simplex, provided that X is a geodesic space
of curvature less than or equal to 0 and the subspace XJ is totally geodesic for any connected
subcomplex J of �n.

Remark 4.8. For the application to a weak version of Theorem 1.1 (i.e. without any
estimate on how constants depend on G), one can use cobordisms of multiples of G-labelled
simplices to (the same multiple of) simplices that are trivially labelled. (Such cobordisms can
be inferred from cobordism theory and do not need to be explicitly constructed.)

Remark 4.9. We construct hyperbolized n-simplices .Xn; f / in every dimension n

using Gromov’s construction, following an inductive procedure. We start by taking X1 to
be the interval �1 together with the canonical map f WX1 ! �1. Define a hyperbolized n-
sphere Y n to be Xn 4 .𝜕�nC1/, using the Williams construction. Consider an isometric reflec-
tion r on �nC1. Then there is a half-space A � �nC1 such that �nC1 D A t B t r.A/,
where B D A \ r.A/. Now we define XnC1 ´ Y n � Œ0; 1�=� with the equivalence relation
which is given by r.a/ � ¹1º � r.a/ � ¹0º, where a 2 A. (Then the boundary of XnC1 isS

iD0;1 A � ¹iº=�, which is homeomorphic to Y n.) Since �nC1 is the cone on 𝜕�n, we
can extend the nature map 𝜕XnC1 D Y n ! 𝜕�nC1 to f WXnC1 ! �nC1, choosing a col-
lared neighborhood of 𝜕XnC1 in XnC1. Then, by construction, .XnC1; f / is a hyperbolized
n-simplex. Notice that each face of the hyperbolized n-simplex is the hyperbolized .n � 1/-
simplices. For details, we refer readers to [21, Section 4]. This construction explicitly gives the
number of n-simplices in a triangulation of Xn, which is

z.n/´ 3n�1
� nŠ � .n � 1/Š2 � .n � 2/Š2 � � � .3Š/2

� 2Š:
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� � �

Figure 1. The hyperbolization process is to fiber-wisely replace an abstract simplex in a barycentric
subdivision of a simplicial complex by a hyperbolized simplex. This picture describes
H.�/DX24 � DX2 z4 � 0, where � is an abstract 2-simplex. The hyperbolic 2-simplex
is colored orange, while the barycentric subdivision of � is colored gray.

By replacing each simplex in a simplicial complex with a hyperbolized simplex, we
obtain a hyperbolization. In this paper, we use the hyperbolized simplices constructed in Re-
mark 4.9.

Definition 4.10 (Hyperbolization). Given an n-dimensional simplicial complex K, and
a hyperbolized n-simplex .Xn; f / constructed as in Remark 4.9, the hyperbolization of K is
defined as H.K/ D Xn 4K.

We define the concept of relative hyperbolization.

Definition 4.11 (Relative hyperbolization). Let K be a simplicial complex and further
let L D

F
Li be a subcomplex of K, where ¹Liº be the set of path components of L. By

attaching a cone CLi to K on each Li , we obtain the simplicial complex K [ CL. We denote
the cone point corresponding to Li by li . By hyperbolizing K [ CL, we obtain H.K [ CL/.
The link of li in H.K [ CL/, denoted by lki , can be identified with a subdivision of Li .

We define the relative hyperbolization of K with respect to L as the space J.K; L/

obtained by removing a small open conical neighborhood of each li from H.K [ CL/. Since
the boundary of such a neighborhood is lki (D Li ), we have found a subspace of J.K; L/

which comprises a copy of L.

We now show Lemma 4.1.

Proof of Lemma 4.1. Let M be a PL manifold M . Consider M � Œ0; 1�. Let L0 and
L1 be the boundary components M � ¹0º and M � ¹1º respectively. Denote L D L0 t L1.
Now consider a hyperbolization H.M � Œ0; 1� [ CL/. Let W be the relative hyperbolization
J.M � Œ0; 1�; L/. Since we obtain W by removing small open conical neighborhoods of l0
and l1, which are cone points of M � ¹0º and M � ¹1º respectively, the corresponding bound-
aries lk0 and lk1 are homeomorphic to M � ¹0º and M � ¹1º respectively. Now, let � be
�1.W [ C lk1/.
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Since the universal cover zH.M � Œ0; 1�; CL/ of H.M � Œ0; 1�; CL/ is a CAT.0/ space
(see [21, Proposition 4c.2]), there is a deformation retraction of zH.M � Œ0; 1�; CL/ � zli onto
zLi for each i D 0; 1 which is given by a geodesic contraction (see [22, Lemma 2.2]). Notice
that the restriction of the deformation retraction to zW D zJ .M � Œ0; 1�; L/ is a �1-injective
map. Hence �1.lki /! �1.W / is injective for each i D 0; 1.

Now consider W [ C lk1 obtained by attaching the cone C lk1 of lk1 to the bottom
boundary lk1 of W . Then � D �1.W [ C lk1/ is a quotient group of �1.W /, i.e. �1.lk1/! �

is the zero map. We show �1.lk0/! � is injective. For a contradiction, assume that there
are nontrivial elements Œ˛� 2 �1.lk0/ and Œˇ� 2 �1.lk1/ such that Œ˛� D Œˇ� in �1.W /. By the
construction of W , this means that there are nontrivial elements Œ˛0� 2 �1.H.M � ¹0º// and
Œˇ0� 2 �1.H.M � ¹1º// such that Œ˛0� D Œˇ0� in �1.H.M � Œ0; 1�//. In other words, there is
a cylinder N in H.M � Œ0; 1�/ between ˛0 and ˇ0. Since the canonical projection

pWH.M � Œ0; 1�/!M � Œ0; 1�

is continuous, p.N / is a cylinder in M � Œ0; 1� between the two loops p.˛0/ in M � ¹0º and
p.ˇ0/ in M � ¹1º. Recall that the hyperbolization replaces each k-simplex in the given trian-
gulation of M � Œ0; 1� with the hyperbolized k-simplex in Remark 4.9 for k D 1; 2; : : : ; nC 1

(see [21, Section 4]). Specially, 1-simplices in M are remained in H.M / in the hyperbolization.
By the canonical projection in the Gromov’s construction, we obtain

N � H.p.N // � H.M � Œ0; 1�/:

Since H.p.N // is homeomorphic to a two-punctured g-torus where ˛0 and ˇ0 represent the
two non-homotopic loops of the punctured parts, it is a contradiction to the fact that Œ˛0� D Œˇ0�

in �1.H.M � Œ0; 1�//. Then �1.lk0/! � is injective.
We then obtain a cobordism W between two boundary components lk0 and lk1 which

are homeomorphic to M , and a commutative diagram below:

�1.lk0/

�1.W / � D �1.W [ C lk1/;

�1.lk1/

 
-

!

i0�

 -

!

iW �ıi0�

 

!
iW �

 
-

!i1�

 

!

�0

where i0�, i1�, and iW � are induced maps from

M � ¹0; 1º ,! W ,! H.M � Œ0; 1�/ [ C.M � ¹1º/:

We give the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 4.1, 𝜕W DM � ¹0º tM � ¹1º over � . Then the L2

signature defect of W is �
.2/
� .M � ¹0º/ � �

.2/
� .M � ¹1º/. Since M � ¹1º is �1-trivially over � ,

we have �
.2/
� .M � ¹1º/ D 0. Since the signatures of W are bounded by the rank of its middle
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dimension homology, �
.2/
� .M � ¹0º/ is bounded by twice the number of the middle dimension

simplices of W . One can obtain W as a subcomplex of H.SM /, where SM is the suspen-
sion of M . Then the number of 4k-simplices of H.SM / is 2 � z.4k/ � .4k C 1/Š ��.M /,
where �.M / is the number of .4k � 1/-simplex of M and z.x/ is the function introduced
in Remark 4.9. By bounding the number of 2k-simplices of W , we obtain

j�
.2/
� .M /j �

2

2k C 1
�

�
4k C 1

2k C 1

�
� 2 � z.4k/ � .4k C 1/Š ��.M /:

We end this section by noting that one can extend the definition of the Cheeger–Gromov
invariant regarding an arbitrary representation of �1.M / instead of the injection of �1.M /

into � . The first author of this paper and Cha will independently show that there exist universal
linear bounds on the generalized Cheeger–Gromov invariants in a future paper [11].

5. Complexity and homotopy structures of homotopy lens spaces

In this section, we prove Theorem 1.3, Theorem 1.4, and Theorem 1.5. As an application
of our results, we can use the new bounds for �-invariants of high-dimensional manifolds
to study the complexity theory of manifolds, particularly for lens spaces and homotopy lens
spaces. The complexity of a 3-manifold is defined as the smallest number of 3-simplices
required to represent the manifold as a quotient space of simplices. While this definition is
natural and clear, computing the complexity is not easy. For instance, it is well known that
there are only finitely many 3-manifolds whose complexity is less than or equal to a given
natural number. However, classifying 3-manifolds based on complexity remains a challeng-
ing problem. Matveev [32] extensively studied the complexity of 3-manifolds. Lackenby and
Purcell [27] demonstrated its relationship to other key topological and geometric quantities
from the geometry of the mapping class group and Teichmüller space. Costantino [20] intro-
duced the 4-dimensional analogue of Matveev’s complexity of 3-manifolds, using Turaev shad-
ows. However, studying the complexity of high-dimensional manifolds remains a mysterious
topic, and there are only a few examples. Our main results on high-dimensional manifolds pro-
vide a new application in the complexity theory of high-dimensional lens spaces and homotopy
lens spaces.

Our first application confirms the high-dimensional analogue of the conjecture by Mat-
veev [32] and Jaco, Rubinstein, and Tillmann [26] for specific high-dimensional lens spaces,
up to a bounded multiplicative error which depends only on the dimension. Matveev [32] and
Jaco, Rubinstein, and Tillmann [26] independently conjectured that the complexity of L3.N I 1/

is N � 3. In [26], they proved the upper bound and the case for even N . However, the lower
bound remained a challenging open problem. Cha [10] provided a lower bound for L3.N I 1/

by employing the linear upper bounds for �-invariants. In [27], Lackenby and Purcell obtained
this result for general L3.pI q/ in terms of continued fractions, using the geometry of the
mapping class group. Theorem 1.3 extends the conjecture for high-dimensional lens spaces
and confirms its analogue for general L2d�1.N I 1; 1; : : : ; 1/, providing new examples for the
complexity theory of high-dimensional lens spaces.

Now we give a proof of Theorem 1.3: the number of simplices of the standard lens space
LN .1; 1; : : : ; 1/ of dimension 2d � 1 (with fundamental group ZN ) grows (in N ) like N d�1,
i.e. the number of simplices is bounded above and below by dimensional constants times N d�1.
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Proof of Theorem 1.3. For the upper bound, we use an inductive construction. Any ZN -
quotient of S1 is S1. One can obtain L2.dC1/�1.N I 1; 1; : : : ; 1/ as a ZN -quotient of the join
of the universal cover of L2d�1.N I 1; 1; : : : ; 1/ and an N -gon. Thus, we can inductively obtain
the upper bound.

For the lower bound, we first consider the case that d is even. Atiyah and Bott [3, Theo-
rem 6.27] computed their �-invariant for general lens spaces in terms of G-signatures. For the
regular representation ˛ of �1.L2d�1.N I 1; 1; : : : ; 1// D ZN , the theorem gives the following:

�˛.L2d�1.N I 1; 1; : : : ; 1// D

N�1X
kD1

cotd
��k

N

�
:

For N � 4, � 1

�
N
�d

< �˛.L2d�1.N I 1; 1; : : : ; 1//:

Combining this with Theorem 1.1, we obtain

C �N d�1 < �.M/;

where C is a constant that depends on the dimension 2d � 1.
For a given odd d , we obtain the lower bound by the above construction of

L2.dC1/�1.N I 1; 1; : : : ; 1/

as a ZN -quotient of the join of the universal cover of L2d�1.N I 1; 1; : : : ; 1/ and an N -gon.

Another application of our bounds for the Wall �-invariants is to show that the number of
simplices needed for an element of the homotopy structure set of a lens space [41, Section 14E]
is approximately the same as its distance from the origin in that set, thought of as an abelian
group. This is based on the connection between �-invariants and surgery, with a trick from [42]
being used to construct that many homotopy lens spaces with V simplices, and the inequality
in this paper to give an upper bound on the �-invariants of such manifolds.

A consequence of surgery theory (the Rothenberg sequence; see [35, Section 17]) and the
h-cobordism theorem is that the h-cobordism classes of manifolds homotopy equivalent to M

and the manifolds simple homotopy equivalent to M are essentially the same, up to mod 2
torsion phenomena2) which are finite whenever the Whitehead group of the fundamental group
is finitely generated, and in particular, for finite fundamental group.

The manifolds simple homotopy equivalent to a lens spaces, are determined by the �g

invariants for g ¤ e (note that �g and �g�1 are essentially equivalent). For g an element of
order 2, there is such an invariant in dimensions 3 mod 4, but not 1 mod 4. (In 1 mod 4,
the bounding manifold will have a skew symmetric invariant inner product, but there are no
interesting invariants of these for automorphisms of order 2.)

As a result, one has, for N odd, Œ.N � 1/=2� invariants of these manifolds. For N even,
there are Œ.N � 1/=2� such invariants in all odd dimensions and 1 extra in dimension 3 mod 4.
This can be summarized as Œ.N � 1/=2�C ı.N; d/, where ı.N; d/ D 0 unless N is even and
d is 3 mod 4, in which case it is 1.

2) There is a map Ss.L/! Sh.L/ with kernel and cokernel elementary abelian 2-groups.
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Now we give a proof of Theorem 1.4: the number of h-cobordism classes of manifolds
simple homotopy equivalent to a lens space Ld

N with at most V simplices is bounded between
two constant multiples (depending on d ) times V .N�1/=2Cı.N;d/, where ı.N; d/ D 0 unless
N is even and d is 3 mod 4, and in that case, it is 1.

Proof of Theorem 1.4. Let M be a lens spaces Ld
N . We use the Wall realization

L2d .Z=N /! S.M/

(see [41, Theorem 5.8]), which identifies all elements in L2d .Z=N / as obstructions to surgery
problems in S.M/, to obtain a Z.N�1/=2 number of such manifolds, detected by the �G invar-
iant. This L-group is finitely generated. Pick a codimension one submanifold X of M so that
�1.X/! �1.M / is an isomorphism. Then one can lift the map L2d .Z=N /! S.M/ through
L2d .Z=N /! S.X � Œ0; 1� rel 𝜕/! S.M/. One cuts along X and glues in between the two
sides the Wall realization mapping to X � Œ0; 1� rel 𝜕 (see [42]). The constant for the lower
bound is the reciprocal of the largest number of simplices in any of the Wall realizations for any
of the generators with a negative additive constant for the number of simplices in a triangulation
of M in which N is a subcomplex. In this construction, the codimension one submanifold X

we use is the boundary of a regular neighborhood of a lower-dimensional lens space. If d D 3,
then the submanifold X has dimension 4. In that case, one might have to do connected sum of
some S2 � S2 to achieve the Wall realization. (See [9].)

For the upper bound, Theorem 1.1 plays a key role. As in the above discussion, we have
Œ.N � 1/=2�C ı.N; d/ invariants where ı.N; d/ D 0 unless N is even and d is 3 mod 4, in
which case it is 1. Since we showed the upper bound of �-invariant �g linearly depends on
the complexity of the given homotopy lens space in Theorem 1.1, the number of h-cobordism
classes of manifolds homotopy equivalent to a lens space L2d�1

N with V simplices is bounded
above by V .N�1/=2Cı.N;d/ (in V ) with a multiplicative coefficient which depends only on
dimension.

The difference between homotopy equivalence and simple homotopy equivalence is gov-
erned by the Whitehead group. For a finite group G, the Whitehead group Wh.G/ is finitely
generated and detected by taking the determinants of real representations. In other words, a rep-
resentation gives a map ZG to GLn.C/, and one can take the absolute value of the determinant
of a matrix representing an element of the Whitehead group. An element of Wh.G/ is of finite
order if these determinants have determinant 1 for all the (finitely many) irreducible represen-
tations of G. (For details, we refer readers to [6].) However, when a sum of representations
is rational, then the determinant will be root of unity. In other words, this abelian group has
rank equal to the number of irreducible real representation minus the number of rational rep-
resentations. The rational representations are in a one-to-one correspondence with the divisors
of N , the number of which we call d.N /. For N D 2k C 1, this rank is k C 1 � d.N /, and for
N D 2k, this is k C 1 � d.N /.

Combining the torsion and the �-invariants, the number of invariants we have for homo-
topy lens spaces, for N D 2k C 1, is thus k C k C 1 � d.N / D N � d.N /. For N D 2k, we
obtain k � 1C ı C k C 1 � d.N / D N � d.N /C ı.

Now we show Theorem 1.5: the number of homotopy lens spaces with bounded geometry
with fundamental group Z=N in dimension d and volume V can be bounded above and below
by constants times V N�d.N /Cı.N;d/.
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Proof of Theorem 1.5. There are only finitely many homotopy types of d -dimensional
lens spaces with fundamental group Z=N , so we are not harmed by lumping them all together.
The upper bounds follow from our bounds on � and torsions. The lower bounds follow from
two analogous constructions.

For realizing the torsions, we note that, in the above notation, the subgroup of the White-
head group 2Wh.Z=N / (which is a free abelian group of the same rank as Wh.Z=N /) is
realized by h-cobordisms of N to itself (see [34]). As before, cutting and pasting along the
boundary of a regular neighborhood of the 2-skeleton give a construction of the right number
of simple homotopy types.

To get the estimate on the torsion, we use the Reidemeister torsion which detects the
Whitehead torsion, modulo elements of finite order [34].

Proposition 5.1. The Reidemeister torsion of a simplicial complex of bounded geometry
with S simplices is exp.O.S//.

This follows from the definition of the Reidemeister torsion as (see [38])

Exp.†.�l/qC1
� q � log.det.�q///:

The logarithm of this gives an additive injection (as one varies over irreducible flat bundles) of
Wh.Z=N / into RŒN=2� (whose image is a lattice). Since the complex has bounded geometry,
the determinants of the relevant Laplacians trivially grow like exp.S/, giving the result.

The constructions do not interfere with each other, so we obtain the full number of
manifolds desired.

6. Density of Cheeger–Gromov L2 �-invariants over structure sets

We end this paper by presenting the proof of Theorem 1.6: suppose M is a closed oriented
manifold of dimension 4k C 3, where k > 0, and � D �1.M / has finite subgroups of arbitrary
large order. Then the values of �.2/.M 0/ as M 0 varies over manifolds homotopy equivalent
to M is a dense subset of R. This implies that the group S.M/ of such manifolds (studied by
surgery theory) is not finitely generated.

This section can be viewed as essentially independent of the rest of the paper.

Proof of Theorem 1.6. The proof is a variant of the theorem of [14] and uses the surgery
exact sequence and some related maps regarding an arbitrary finite subgroup G of � ,

L0.G/

H0.M IL/ L0.�/ S.M /

R R:

 !

 

!

 

!

 !  !

 

!
D

The map L0.�/ to R assigns to a symmetric quadratic form over Z� the difference between its
L2 signature and its ordinary signature since the L2 signature is natural with respect to inclu-
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sion and there is also an ordinary signature obtained by mapping a group to the trivial group,
and then just taking the signature. The composite with the map H0.M IL/! L0.�/ is trivial
by Atiyah’s theorem, which generalizes the multiplicativity property of ordinary signature for
finite coverings to infinite ones [2]. The map L0.�/! S.M/ is the Wall realization, and the
commutativity of the square is simply the fact that .�.2/.M 0/ � �.2/.M // � .�.M 0/ � �.M //

is the same as difference of signatures arising in the normal cobordism between M 0 and M .
Now, Wall [41, Theorem 13A.4] showed that the transfer map L0.G/! L0.e/ is surjective
if G is finite group. It is jGj times the L2 signature when G is finite. This factor gives rise to
denominators in the �-invariant.

Since the composite with the inclusion L0.e/! L0.G/! L0.e/ is multiplication by
jGj, we can find an element which has signature 0, and whose G-fold cover has signature 8. (In
L-theory, the image of trivial group L in Z is the multiples of 8 because the quadratic forms
that arise in L-theory always have even entries on the diagonal, which forces the signature to be
a multiple of 8 as the generator of L0.e/ is the E8 quadratic form.) This element gives a real-
ization of the element 8=jGj and all its multiples. As, by hypothesis, �1.M / has subgroups of
arbitrarily large order, this image is dense.

For each G, the image of L0.G/! L0.�/! S.M/ is a subgroup, and as jGj increases,
this set of subgroups is evidently not stabilizing (as their images in R are not), so S.M/ cannot
be a finitely generated group.

Remark 6.1. We have shown that, for such a group, the L-groups L0.ZG/ and L0.RG/

are infinitely generated (even modulo torsion). The same argument applies to K0.C �G/, which
can be used to prove an analogue of our theorem for metrics of positive scalar curvature on
appropriate spin manifolds. In other words, the concordance classes of metrics of positive scalar
curvature on a spin manifold have an abelian group structure (see [43, Section 4]). We can get
a lower bound on this group by a similar method, using an L2 �-invariant associated to the
Dirac operator.

Acknowledgement. We would like to thank Jae Choon Cha and Fedya Manin for very
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