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Learning Volt-VAR Droop Curves to Optimally
Coordinate Photovoltaic (PV) Smart Inverters

Daniel Glover

Abstract—Learning-based solutions for power systems opera-
tional tasks are earning more consideration as potential candidates
to help overcome challenges brought upon by the aggressive inte-
gration of inverter-based resources (IBRs) in active distribution
networks (ADNs). Despite achieving high evaluation accuracies,
machine learning (ML) methods are not yet accepted at utility-scale
primarily due to safety concerns and limited interpretability. This
presents an opportunity for ML approaches which can satisfy both
performance and regulatory requirements. In an effort to improve
these shortcomings, this work proposes a robust Deep Reinforce-
ment Learning (DRL) based model-free adaptive volt-VAR control
(VVC) dispatch framework of solar photovoltaic (PV) smart in-
verters (SIs) for system-wide voltage regulation and loss reduction.
The framework utilizes reward shaping with a barrier function
(BF) filter to embed physical boundaries for Category B-type SIs
specified by the IEEE 1547-2018 standard into the constrained
Markov Decision Process (CMDP) formulation. Results carried out
on the IEEE 123 bus test system show that the proposed method
converges to a robust discrete policy offline, producing QV-droop
curves compliant with IEEE 1547-2018, which outperform the
baseline benchmark during overloaded conditions.

Index Terms—Deep reinforcement learning, volt-VAR, distri-
buted energy resource, smart inverter, voltage regulation.

NOMENCLATURE
Bpen,i Barrier function violation penalty.
Dypeni Barrier function breakpoint distance penalty.
DY 5r.i DER QV-droop curve.
D5 5ris47cars  DER QV-droop IEEE 1547-2018.
DYk, DER QV-droop voltage breakpoint con-
’ straints.
DLrd s DER QV-droop curve infraction.
Effoy DER Efficiency curve.
Inort Norton equivalent current source.
KB or, DER QV-droop curve gain.
Kq,,. 7 QV-droop curve gain absorbing reactive

power.
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Kq,,, QV-droop curve gain injecting reactive
power.
Ppc Solar array active power (kW pu).
PpEeR,i DER Active power (kW pu).
Pyt R.i DER Watt priority active power (kW pu).
ngtgfli DER Nameplate real power (kW pu).
Pp; Active power demand (kW pu).
Pyen Active power generation (kW pu).
Pioss Active power losses (kW pu).
Pypp Maximum power-point tracking (pu).
- DER Max available reactive power (kVAR
pu).
QDER,i DER Reactive power (kVAR pu).
“DUE“%’Z- DER Available reactive power (kVAR pu).
%"é% i DER Reactive power limit (kVAR pu).
@p,i Reactive power demand (kVAR pu).
S g%&‘ﬂ DER Nameplate apparent power (kVA pu).
View Voltage deviation from V;..; (V pu).
Vier Grid reference voltage (V pu).

I. INTRODUCTION

HIS work is an extension of [1], focusing on improving
T reinforcement learning techniques for autonomous cen-
tralized Volt-VAR control (VVC) grid operations through in-
formative reward design. Distributed energy resource (DER)
integration across all domains of the power grid continues to
accelerate as environmental policies and carbon-free emissions
goals remain at the forefront of the energy agenda worldwide. In
the U.S., the Energy Information Administration (EIA) reports
that nearly 11.2G'W,,. of solar photovoltaics (PV) was installed
in 2023 H1, up nearly 44% from the previous year. The percent-
age of electric capacity additions from solar PV is expected to
grow in the U.S. from approximately 31GW,. in 2023 (56%),
to nearly 41GW,,. in 2024 (62%) [2]. Meanwhile, surging DER
installations at the distribution level are causing more concern
for operators due to the wide range of capacities, locations, and
the vast sizes of unbalanced multi-phase networks [3].

Active distribution networks (ADNs) are no longer operat-
ing as unidirectional, passive delivery systems, but are now
managing bi-directional power and information flows among
a massive network of interconnected devices. Higher penetra-
tions of inverter-based resources (IBRs) have introduced faster
timescale dynamics and various uncertainties, reducing the accu-
racy of solutions using deterministic models [4]. The coinciding
Big Data boom and deployment of cloud-based data storage,
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TABLE I
REVIEW OF SMART INVERTER VOLT-VAR ADAPTIVE DROOP CONTROL METHODS FOR PHOTOVOLTAIC SYSTEMS

Source  Formulation Technique Method Description Drawbacks

[9] Multi-objective Robust optimization LVDI Multiple SIs & timescales Scalability

[10] Two-stage Distributed optimization ADMM Network partitioning Communication
[11] Distributed Local optimization LvC Three-strategy proposal Assumptions

[12] Direct TS Power Flow AVR Voltage setpoint tracking Fix-and-forget
[13] Rule-based Robust minimization RCC Compute slope equation User-defined set
[14] Distributed Optimal Power Flow MISOCP Dyn reactive current control ~ Model required
[15] Distributed Optimal Power Flow MILP QV scheduling model Scalability

[16] Distributed Optimal Power Flow Multi-period PV with BESS Convergence

[17] Two-layer Local optimization EAC Voltage flicker stability, SSE ~ Global visibility
[18] Model-free DRL ~ Multi-agent DQN Multiple regulating devices No safety analysis
[19] Model-free DRL  Constrained Markov model =~ SAC Decoupled neural network Black-box design
[20] Model-free DRL ~ Multi-agent MADDPG Sub-network partitioning Information sharing
[21] Model-free DRL ~ Markov model SAC Hierarchial droop control Interpretability

wide-area monitoring systems, and microPMUs at the system-
level, alongside advanced metering infrastructure (AMI) and
measurement devices at the grid-edge, are supplying potential
real-time data which can be leveraged by utilities to enhance
grid operations [5].

A. Motivating Adaptive Centralized Volt-VAR Control

Optimal VVC, which utilizes reactive power support for volt-
age regulation, remains an extensively studied topic in ADNs
considering the problem of rising voltage instability and smart
inverter (SI) capabilities to provide grid services [6]. In response,
IEEE 1547-2018 was established to provide a uniform technical
standard for all DER grid interconnections and performance re-
quirements, including provisions for local autonomous reactive
power support from SIs [7]. Successful centralized DER coor-
dination is critical to achieving global system-level objectives.
Central and distributed optimal power flow (OPF) formulations
for VVC attempt to maximize power delivery and utility profits,
while reducing system losses and voltage limit violations using
off-the-shelf non-linear solvers, but convergence suffers from
forecasting errors, physical modeling inaccuracies, and noisy
data distributions [8].

Achieving fast optimal VVC dispatch solutions is becoming
intractable using existing approaches that may only provide lim-
ited input data, making them very difficult to solve [22]. Optimiz-
ing under uncertainty requires robust, stochastic techniques [9]
which pose scalability and accuracy issues under extremely
varying data. Decentralized optimization methods have also
been explored in the literature, where a two-stage distributed op-
timization approach designates real and reactive power rules for
SIs with alternating direction method of multipliers (ADMM) to
set legacy voltage regulation devices [10]. However, distributed
optimization still requires some sort of centralized oversight and
assumes the existence of a communication network between
agents, which may not be feasible in ADNs [11]. To address
these issues, our work combines the data-driven approach with
centralized management and decentralized local autonomous
SI controls to coordinate multiple DERs for improved system
observability under various dynamic uncertainties, eliminating
limited local blindness to global network information.

Regarding constrained optimization methods for VVC con-
trol, a significant drawback of optimizing SIs under the 1547-
2018 standard lies directly within the recommended QV-droop
curve settings established in Section V. Firstly, although the de-
fault settings are adequate during normal operating conditions,
they lack adaptability to local environment dynamics and may
prove suboptimal over time as the network evolves [12], [13],
requiring constant re-calibration. For example, [12] suggests
using an updated default setting by eliminating the dead-band
parameter to utilize the complete inverter gain capabilities while
simultaneously adjusting the setpoint reference voltage tracking
mechanism to avoid mitigation of the setpoint sensitivity. Al-
though these works provide corrective measures for improving
baseline droop curves, the strategies are not customized to each
inverter, indicating that all VVC responses should be similar
regardless of DER location, impacting adaptability over time
and optimality of the solution.

The authors in [14], [15] propose droop scheduling through
periodic adjustments, modeled as a mixed-integer linear pro-
gramming (MILP) problem, utilizing distributed optimization
techniques to solve the resulting mixed-integer second-order
cone programming (MISOCP) problem by enabling SI dynamic
reactive current control (DRCC). However, this method may
suffer from scalability challenges in larger networks with many
SIs and settings, specifically when all model information is
required. Incorporation of the mathematical constraints to model
the IEEE 1547-2018 standard requirements also poses signifi-
cant complexities in [16], where authors model a multi-time
period distributed OPF (DOPF) to optimize for the volt-VAR
and volt-WATT droop settings, represented as piecewise lin-
ear constraints into the optimization formulation. This pro-
cess introduces a large number of integer variables into the
problem, which significantly increases the computational cost.
In [17], a two-layer real-time adaptive droop control is used to
overcome instability due to voltage oscillations (flicker) under
fast-changing conditions. However, the local control is blind
to global information and less useful in meeting system-wide
optimization objectives. Unlike optimization-based approaches,
which can suffer from lack of model-based information and
convergence issues, our method learns to optimize within a
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feasible solution space without requiring a network model, while
guaranteeing safe operation.

B. Deep Reinforcement Learning and Smart Inverter VVC

Deep reinforcement learning (DRL) algorithms have proven
capable of performing a variety of power systems operational
tasks under model-based uncertainty [23], [24]. Unfortunately,
proposed solutions often lack safety guarantees required for
real-world adoption of these algorithms. Learned policies suf-
fer from limited transferability and policy degradation when
exposed to unseen data distributions online, known as the
simulation-to-reality gap [25], [26]. Authors in [27] discuss
safeRL and worst-case analysis, translating hard constraints
onto learning spaces to enforce safety boundaries, but at the
expense of creating conservatism in exploration leading to poor
performance.

Regarding DRL and VVC, [18] discusses a multi-agent DRL
framework utilizing SIs and legacy devices using model-free
deep Q-networks (DQN), but safe exploration is neglected. A
constrained soft actor-critic (CSAC) off-policy VVC is imple-
mented in [19], employing a device decoupled neural network
structure to improve efficiency in learning VVC among dual
timescale devices. Unfortunately, the authors mention the no-
tion of safety, but do not appropriately evaluate it. In [20], a
multi-agent (MADRL) approach to real-time local droop curve
adjustments is proposed. However, this approach requires a
neighboring agent communication infrastructure and does not
appropriately consider safe learning practices. A model-free
approach to VVC in [21] emphasizes hierarchical droop control
with fast acting response for real time loss reduction, but lacks in-
terpretability. Although these model-free DRL methods produce
promising results, they do not acknowledge safety criterion in
evaluative fashion, nor do they learn complete function sets. Our
model, however, embeds safe learning into the training process
to approximate compliant droop curves and provides a measure
of interpretability.

The fundamental problem with model-free RL is that safety
must be learned through environmental interaction, which pre-
sumes unsafe exploration in the initial stages of learning. Some
encouraging work in [28] discusses reward shaping for incor-
porating domain constraint knowledge into the learning process
to improve safety and the speed of policy learning. Promising
work in [29], [30] discusses utilization of control barrier func-
tions (CBFs) to improve safe learning under unknown system
dynamics by establishing safe learning sets through boundary
conditionals. To our knowledge, little progress has been made
in these areas with DRL in power systems applications, and is
thus a focus of this work.

C. Contributions

Specifically, targeting adaptive VVC droop control for im-
proved centralized dispatch operations, this paper builds upon
the aforementioned works, incorporating notions of safe learn-
ing and dispatch strategies through the use of constrained policy
space reduction and reward shaping. A summary of proposed
contributions of this work are as follows:

e We design a robust learning framework specifically for
potential utilities adopting this technology, focusing on
adaptive methods for DER coordination (see Fig. 1).

® We propose a centralized model-free VVC adaptive droop
curve dispatch method using Advantage Actor-Critic
(A2C) algorithm to simultaneously meet both regula-
tory [7] and global system objectives (voltage regulation
and loss reduction) by safely learning a set of compliant,
customized linear piecewise droop functions for dispatch
to multiple Category B-type smart inverters.

® We model the learning framework as a constrained Markov
Decision Process (CMDP) to incorporate explicit hard
constraints from IEEE 1547-2018 into the learning process
through informative reward design.

®* We implement a barrier function (BF) filter into the re-
ward design to enforce learning of compliant action sets
offline, avoiding unsafe simultaneous system interaction,
dispatching only safe droop curves to local SI controls.

® We show that the resulting method learns customized
QV-droop curves for multiple distributed DERs which
outperform the baseline for category B-type SIs designated
in [7] in testing on an overloaded distribution system.

e We demonstrate the ability of the agent to successfully
learn unique, compliant QV-droop curves in parallel with
traditional voltage regulation.

e We include a measure of interpretability of the trained
model using linear correlation metrics to provide insight
into the resulting policy.

The remainder of this work proceeds as follows. Section II
describes the problem formulation for a centralized VVC dis-
patch operation, covering device models and the standard QV-
droop function based on IEEE 1547-2018. Section III covers the
MDP modeling formulation and RL, DRL algorithm selection,
and reward function purpose with proposed learning spaces
implementation. Section IV details the simulation case studies
with training and testing results, and Section V concludes with
important takeaways and future work direction.

II. PROBLEM FORMULATION

This section describes the systematic approach to develop
the proposed DRL-based centralized VVC dispatch control in a
distribution network from Fig. 1. First, we introduce the mathe-
matical formulation for the centralized OPF with optimal VVC
QV-droop dispatch from a distribution systems operator (DSO)
to multiple SIs (or DERS). Next, we outline the solar PV system
model and generic droop curve from [7]. This optimization
problem motivates the DRL approach for VVC droop curve
adaptive tuning and dispatch modeled as a constrained Markov
Decision Process in the following section.

A. Centralized OPF Formulation and Distribution System

We model the distribution network as a graph G = {N, £}
containing a set of A nodes and £ lines (edges) such that
N ={1: N}, containing multiple solar PV SIs installed at
Nper buses such that [Nper| < [N and Npgr C A. Any two
nodes i and j are connected by an edge (i, ) representing a
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Fig. 1.

physical line connection, where node % is the parent of child
node j. The objective of the central controller is to dispatch
optimal QV-droop curves to selected DERs for system-wide
voltage regulation via locally automated SI VVC control based
on centrally collected measurement data at each time step ¢; ¢ is
omitted in the formulation for brevity.

The objective function in (1) minimizes voltage deviations
Vieo = vazl(vi —1)? from 1.0 per unit at all buses i under
observation, total system real power losses Pjoss = Y Pyen —
>~ Pioad, and provides a metric Dq;é"é’i to indicate a violation
of VVC QV-droop curve rules at the ith SI location from those
stated in IEEE 1547-2018 [7]. The operation must also abide
by the physical, operational and technical constraints of the
distribution power system and its components (1a)—(3).

N
min Y " Viey + Ploss + DB (1)
i
subject to
- N
P — PP = V; Y VY cos(8; — 65 — 0i5)
=1
— (Pper,i — Pp.i) (1a)
. . N
Q" = Q" = Vi Yy V;Yysin(8; — &5 — 0y5)
j=1
— (@QpEeR,i — QD)) (1b)
Pir;-]in < Py <PF™, VY(i,j) €€ (1c)
B <Qy < QEY, V(ij) €& (1d)

Constraints (1a)—(1d) delineate the power flow mismatch be-
tween real and reactive injected power P/, Q" atbus and the
specified powers P;P°, QP equivocal to generation minus

7 )

DRL Framework: Centralized volt-VAR Control and Dispatch via Advanced Distribution Management System.
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Fig.2. PV System Single Phase Model.

demand Ppgr,; — Pp,i» pER,: — @ D,i considering real and
reactive instantaneous penetration at each DER;, with line
flow limits F;; and ();;. The operational line voltage limits for
all buses are defined in (2) per the ANSI Standard [31] with
Vmax — 1,05 puand V™ = 0.95 puin (2). Each DER is bound
by its nameplate apparent power rating, .S gg{% in (3).

‘/imin S ‘/z S Vvimax, Vi € ./\/ (2)
0< \/PJ%ER,i +Qbprs < SBER: VYNpERi €N
3)

B. Smart Inverter Model and QV-Droop Function

The complete PV system model in Fig. 2 is built on the
foundational model provided from OpenDSS ver.9 in [32]. It
combines the solar array panel with weather inputs temperature
T and irradiance I and maximum power point tracking (MPPT)
Py pp for max real power delivery at unity power factor. The SI
module uses a standard efficiency curve Ef f,, from [32] and
follows the dispatched droop curve D%’E R, forlocal QpER.:
control in VOLTVAR mode. The inverter outi)ut is represented as
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Fig. 3. IEEE 1547-2018 Std Category B QV-Droop Curve.

a Norton equivalent current source I,,,,; at the point of common
coupling (PCC).

Each PV system uses local reference control to monitor grid
frequency w,, reference voltage V;..r, and power factor (PF)
for constant operation in Wart Priority (WP) mode. All three-
phase inverter models follow the equivalent single phase circuit
convention per phase, and we assume a line of communication
exists at each DER location for DSO device monitoring and
control as per grid requirements in [7]. In WP mode, all SIs
give preference to real power as PB“EE Ri = Ppc,i x Ef fzy,but
may provide reactive power if no real power is needed (below
Y%cutin/cutout), and during the day may produce up to its
maximum real output power rating (4).

0 if  SI status off
ted : t %P, P,
Pppri =\ Poer: if  Pdpr, > e 5 @)
t
PB%RJ else

The reduced value of reactive power (Q“DUE% ;) capable of being

delivered to the circuit based on SI capacity is given in (5) as
the available reactive power at any time step 7.

sk =\ (6B~ Phon) O

From Section V of IEEE 1547-2018, all Category B-type SIs
must be capable of providing 44% of Sg‘ée}‘{i when generating
peak active power PB%%‘Z, but also depend on the amount of
active power produced as a percentage of S;‘)agﬁg{i. Provisions
also allow for SIs to produce reactive power injections and
absorptions up to their nameplate rating if real power is curtailed
or not needed (low sunlight hours) as per orders from the DSO,
when operating in WP and VOLTVAR modes. Assuming such
orders under overloaded conditions, the reactive power limits
can be described in (5a)—(5b) as a function of inverter real power
being produced.

limit il ted

B < QB if Poens <02SpHH, (G
limit ted ted

pER: <044 x SPER ;. if Pperi>02SpER,; (5b)

The standard QV-droop curve for Category B SIs based on
IEEE 1547-2018 is shown in Fig. 3. The linear piecewise
function includes a continuous operational range based on V.. s
from [0.9, 1.1]pu, with a dead-band from [0.98,1.02] designed

to prevent (Qpgrr,; adjustments when bus voltages are within
limits [12]. However, the dead-band limits effectiveness of
managing voltage fluctuations by not taking advantage of SI
capabilities, and mitigates sensitivity to the setpoint voltage V,..
[12]. We define the piecewise function in (6) and hereafter using
a single vector D%)ER’Z. = [V4, V4, V3, V4] containing a set of
voltage breakpoints for the ith DER curve. For example from
Fig. 3, D%}ER,1547catB =[0.92,0.98,1.02, 1.08].

PUgyail

KQmj X (VZ - V1)7

if Voep <0.92
if 0.92<V,.r<0.98
®QDER,; = 0 if 0.98 < V,er <1.02
Kig,,.| % (Va—VA), if 1.02 < V,ep < 1.08
—QEAf Ve > 1.08

(6)

The controller gains Kq,,, and Kq,,, define the slope as a
linear rate-of-change by which the SI may provide local VVC
between the minimum and maximum thresholds provided a
maximum open-loop response time of 5 sec [7], given by
Kg,,, = % and Kg,,, = % Thus, the metric D, 4 ;
from (7) is defined as the normalized degree of compliance
violation by the ith DER of the local inverter reactive power
output limits from (5a,5b) and the maximum allowable droop
gain Kiypp 0, = 22 listed in Section V-IIT of [7]. Here, any
value up to the limit for either term is deemed acceptable and
results in a zero cost.

qu
ping  _ QDER,i . Kpgr.i o
DER;i = Hlimit K
DER,i DER,max

Default droop settings for Category B SIs yield a gain of 7.33,
which has proven ineffective in countering fast voltage devia-
tions [12] and falls well below K7, . supporting further
the need for improved adaptive tuning techniques which can
optimize within the allowable space.

III. DEEP REINFORCEMENT LEARNING FOR CENTRALIZED
VOLT-VAR DISPATCH

In this section, we translate the formulation of centralized
VVC QV-droop curve dispatch to local SIs as a constrained
Markov Decision Process (CMDP). First, we outline fundamen-
tals of reinforcement learning and DRL, then briefly touch on
the actor-critic algorithm for this study. Finally, we detail the
CMDP framework to meet both regulatory and global objec-
tives, including learning space definitions and a reward shaping
mechanism using a barrier function filter.

A. Reinforcement Learning

Reinforcement Learning (RL) is a class of ML algorithms
concerned with training an agent to learn from interaction with
an environment by making sequential decisions while optimiz-
ing for a cumulative reward. Many RL problems are cast as
a Markov Decision Process (MDP), mainly due to an MDPs
inherent flexibility considering discrete optimization problems
modeled as learning paradigms, which represents the probabilis-
tic mathematical specification of both the environment and the
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- l l h Simulator 1—/ﬂ\
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St41 = Pr(si41]s1.ar)
Fig. 4. Reinforcement Learning Process.

control policy to be learned. We formulate the VVC droop curve
learning framework as an MDP due to its ability to incorpo-
rate learning space constraints (physical and safety-based) in a
model-free paradigm (see CMDP formulation in Section III-C)
based on probabilistic discrete scenario transitions. The MDP
structure also makes for convenient RL implementation with
power distribution system simulators executing control actions
and power flows at a fixed time step to capture system state
evolution.

The MDP framework consists of the tuple < S, A4, 7, R >,
consisting of actions a; € A, states s; € S, the transi-
tion probability function governing environmental dynamics
P(st,at,8;) = Pr(sy|sg,ar) =T : SXA — &', and real val-
ued reward function r(s;,a¢) : SX.A — R. The environment
begins in an initial state so € S, and at each time step ¢, the DSO
(agent) chooses action a; € A and receives a reward r (s, at)
dependent on the current state/action pair, after which the system
moves to the next state s;41 generated from P(-|s;, a;) (see
Fig. 4). The main objective of the agent is to learn an optimal
policy 7*(a¢|st), a conditional distribution of actions over a
given state, that maximizes the expected cumulative reward
obtained over the learning horizon H.

= [vtr(st, at)] 8)

The value (or cost) of a state s under some policy 7 is given
as Vr(sy) = Ex [ZtT:o y'r(st,ar)],V st, or the maximum ex-
pected return when starting from s and following 7 until the
final time step 7". Thus, the optimal value function V*(s;) can
be derived in (8).

T
Vz(s¢) = maxEx [Z V7 (st at)] )

t=0

When the complete dynamics model is unknown, the model-
free approach is taken, deriving 7* without explicitly learn-
ing the model dynamics when it becomes difficult to learn or
express using Q-Learning. The finite MDP is then solved us-
ing the state-action value function or Q-function, Q. (s¢,a;) =
E, [ZtT:o Yir(se, ar)|st, ar], which provides a quality metric of
the expected return for taking an action a in state s and following
policy monward. Optimal policies share the same optimal action-
value function, Q% (s¢, a;), satisfying the recursive consistency
conditions of the Bellman Equations from [33] in (9), where

(0] Policy NN
(o) -
> =:.: >  (actor)
.’ mo(at|st, 0)

Vi (s¢)i TD Error

A

\ 4

(6) Value Function NN )
state > =:..____’ (critic) action
St ... a¢
Adv = Q(s¢,at) — Ve(st)
A
reward | 7(s¢, at)
Environment <
Fig. 5. Advantage Actor-Critic Architecture.

s, and a, are the states and actions at the next time step and
a discount parameter « [0:1] is used to determine the value of
future rewards.

T
Q*(St7at> :Z PT(SHSIH at) [T(Staat) + ’yt n{laxQ*(sé,a;)
i—o aleA

(10)

B. Advantage Actor-Critic

If the learning spaces become large and/or continuous, as is
the case in power systems, tabular RL methods like Q-learning
suffer from high dimensional data, thus 7* is approximated
utilizing policy classes in the form of neural networks (NNs)
known as deep reinforcement learning (DRL). DRL algorithms
have the advantage of learning non-linear approximations via
backpropagation using reverse mode differentiation and gra-
dient descent for policy updates. Actor-Critic methods are a
class of on-policy DRL algorithms which use two main NN
function approximators in the form of an actor (policy-based
NN) to select actions and improve 7, and the critic (value-based
NN) to compute a step-ahead “critique” of the current policy
for updates to the actor network. This update occurs in the
form of a temporal difference (TD) error 67 computation
at each time step ¢ to update the value function in the form
of 6/'P = Ry 1 +~'Vi(s441) — V(s¢) where V; is the value
function approximated by the critic.

Advantage Actor-Critic (A2C) [34] is a synchronous variation
of A3C (Asynchronous Advantage Actor-Critic), a deterministic
multi-worker DRL algorithm which performs a policy gradient
step method averaged by all actors in a bootstrapping fashion.
The critic estimates the value V;(s;) of action « in state s by
approximating the Q-value @ (s, a;) expanded in the 677,
and computes the Advantage function to update the temporal
difference error of the expected reward minus the mean reward
among all actors based on the current action (see Fig. 5), given

Authorized licensed use limited to: Washington State University. Downloaded on August 07,2025 at 22:00:42 UTC from IEEE Xplore. Restrictions apply.



GLOVER AND DUBEY: LEARNING VOLT-VAR DROOP CURVES TO OPTIMALLY COORDINATE PHOTOVOLTAIC (PV) SMART INVERTERS 865

05
) ]

04 Q}mm O-dd yGrate
IDER,i |~ V"==*[" O DER,i
03

Qinjection I I
7 02

QMo

PlUqyai

Vi, Voflem
01
Ql‘“DEn.: o ‘/])LL
0[9 0.92 0.94 0.96 0.98 1.02 1.04 1.06 1.08 11

01
02 TT

Qabsorption 11
03 e xr

V3, Vajj€T™
04 mai. O-44-+-qratad
DERZ [ U ==|" °DERJ

__maz
Plavail 05

Fig. 6. CMDP Constrained Learning Space.

as Qr(a, s¢) — Vz(s¢) or simply,

Advr(s,a) = 1(s¢,a) + ’thﬂ(st) - Vﬂ(slt) (11)

The actor(s) update the policy distribution 7(a¢|s:, 6) suggested
by the critic(s) via the stochastic policy gradient descent step,
Vo (0) = Sy Vo log mg(as|s, 0) R(sy, ar), using the advan-
tage function to move the gradient in a specific direction param-
eterized by 6. More importantly, the actor-critic algorithm is
selected for this problem based on the generalized model-free
learning RL methodology, where the value function is learned
through temporal differencing via the advantage function to
optimize the policy parameters. This is similar to learning the
optimal Q-function utilizing Q-Learning, but by learning 7*
using gathered data in an on-policy fashion. In this manner, A2C
generally requires less data to train compared to generalized
Deep-Q Networks (DQN), making it a more stable, practical
approach for centralized dispatch operators implementing this
technology in the field at utility scale.

C. Constrained MDP Formulation

The constrained MDP (CMDP) framework sets boundaries
of the policy 7 by naturally encoding constraints from the opti-
mization criterion. From [27], the CMDP is defined by the tuple
<S8, A, T,R,C >, where C is the set of constraints applied to
the policy, and the expected value of the return is maximized
subject to any given number of constraints ¢; € C, as the i¢th
constraint must be satisfied by 7 in the set of allowable policies
II. A function related to the reward R; can be compared to an
inequality threshold ; restricting the values of the function in
(12).

max E.(R(s¢,a)) subjectto ¢; € C,c; ={R; < ;} (12)
We project the constrained learning spaces onto the 2-D grid
plane shown in Fig. 6 and reduce the area of continuous inverter
operation to Vpu = [0.9,1.1] and Q3% ; = Q%% ;. The in-
verter control module in the distribution systems simulator [32]
is grid-following and converts to a constant impedance outside
of this operational region. We define the allowable droop curve
setting ranges in the form of a constrained set of breakpoints
D‘g’EC}M = [V}, V5, V3, V] taken from Section V, Table VIII
in [7] for Category B-type Sls, assuming V,..; =V, =1 pu

I NEEEREEER) (L1 ;
09 0b2 054 09 ops 10 1p2 104 106 1p8 11

Fig. 7. CMDP Action Space.

such that D% - € Cin (13),

Viep —0.18V, <V <15, -0.02
Vref - 003Vn < ‘/2 < Vref

Vier < V3 < Vs +0.03V,,

V3 +0.02V, < Vi < Vyes +0.18V,

DY, = (13)

Also included in C' are constraints from (4, 5, 5a, 5b) for
reactive power limits, although nggﬁl maximum ranges can
theoretically reach as high as 100% nameplate ratings [7] if no
active power is needed. Thus, the only remaining unaddressed
constraint embedded in (13) lies within the voltage breakpoint
ranges for V| and V, indicating a minimum distance to V;
and Vy of 0.02. Thus, if Qi = 0.44 x Spid | Kq,,, and
Kq,,, are upper-bounded by K{, 5 ..., = 22. But physically
limiting the gain boundary by force is difficult as the range of
breakpoint settings defining the curve could lie anywhere inside
the allowable policy space II. Therefore, we aim to learn and
enforce this boundary through reward design.

1) State Space: The observable state space s; € S at any
given time step is defined as a combination of power flow
variables and measurements taken immediately following a
load flow (bus voltages v; and active losses Pj,ss), including
droop curve parameters D%, r,; for gain calculations Kgq,,
and K, _, and Sl real and reactive power measurements taken
for all DERs (/N = 10 total) under surveillance in (14).

st = |DBgr.i» PDER; QDERis Ploss,vi| Yi € N (14)

2) Action Space: The actions at time a, from the central-
ized agent must originate from the policy space II defined
in Fig. 6. Actions are selected by the agent in the form of
the vector a; = D%JERJ. = [V1,V5, V5, V4] Vi € N consisting
of four breakpoints which represent the entire piecewise function
for N DERs of Q%@%’i upper and lower bounds by V) and
V4, and the dead-band width by V, and V3 as shown in Fig. 7.
Each breakpoint parameter is allowed an adjustable range further
bounded in II along the V), -axis, to give room for exploration
in the learning phase, thus affecting the dead-band and gain
parameters, simultaneously.

Although the region of continuous operation for SIs given
in [7] extends beyond this range, allowing exploration beyond
the bounded regions is meaningless, as gain levels would nat-
urally fall close to zero, defeating the purpose of optimizing
against the established baseline. Originally, A was formatted
as a continuously bounded space in II, however, we found in
experimentation that the agent remained stuck in a local minima
(corner of multi-dimensional box) due to the gradient update
step, severely limiting exploration. Thus, the action space is
discretized over the grid space for sake of the MDP structure
down to the nearest 0.001, allowing for finely tuned policy
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Fig. 8.  Barrier Function Filter Mechanism.

adjustment updates within the bounded regions, similar to a set
of controllable multi-discrete faders.

3) Reward Function: The downside of allowing larger action
spaces in a model-free DRL task such as this, is the potential
for unsafe action selection. Implementing the hard constraint
set C' from (13) requires further bounding of .4 using multiple
conditional layers in experimentation, still leading to learning
of some unacceptable droop curve gains (see Table IV) as the
goal of VVC is also based on global objectives. Thus, to enforce
learning the upper gain boundary limit Ky .. = 22 and
simplify the reward design, we implement a barrier function
(BF) filter into the reward at the initial stage of action selection.

Recall the stochastic distribution of actions over a given state
in some policy 7(a¢|s;) and assume a subset of safe actions A,
and one of unsafe actions A, such that A, C Aand 4, C A.
Consider the linear function B(at) : R — R defined in (15)
where  and x| represent either [V, V3] or [V3, V4], y represents
the associated reactive power points on the QV droop curve, and
KpEgr,i is the slope of the line for the i¢th droop curve D}I)vE R
at time ¢.

B(a) = Kppp,; x (v —z1) +u1 (15)
where,  B(a)) < K{pp e,V @t € As  and  B(a;) >

K p max¥ @t € Ay. Then B is a barrier function which
produces a barrier certificate if

B(a;) < K%UERMM — A, isinvariant (16)

Establishing the condition of forward invariance (constant) with
B(ay) allows the agent to update the policy (a function of a;)
along the boundary of the maximum allowable gain parameter
at every time step by computing B(at) at each step to validate
acceptable action sets. Thus, our regulatory cost function for
meeting the gain criterion is given in (17).

> _ qu qu qu
maa:B(at) - KDER,i s.L. KDER,'L' < KDER,maw an

From (17), we impose a normalized penalty By, ; on the ith
droop curve action at each DER prior to dispatch using the BF
filter. If the action passes through the BF filter, it is guaranteed
to satisfy (16), else it is not dispatched to the affiliated DER (see
Fig. 8).

11 110 112 113 114

Distributed Solar PV System (Cat B) | &

&

Fig. 9. IEEE 123Bus Distribution System with DERs.

The multi-objective reward function utilizes a negative
penalty scheme to train the agent for centralized VVC droop
curve compliance and dispatch. First, a deviation squared loss
function compares the bus voltage measurement v; to the target 1
pu for each DER bus under control. Next we compute normalized
total system loss given as Pioss = > Pgen — . Pload. We also
include a set of mean squared error (MSE) based penalties
to address large breakpoint distances from (12) for the pairs
(V1,Va) and (V3,Vy) using D(xy,x;) = |z — a2|. If the eu-
clidean distance between these points is greater than that of the
base case curve DY, R.1547cat 3 WE penalize the agentbased ona
square of that distance as the gain will be lower and less effective
in regulating voltages using Dy, i = D(z1,22)* if D > 0.06.
Lastly, we include the parameter B,,.,, ; for addressing the gain
parameter, and the final reward function is given in (18).

glgr}fE”R(st’ at) - ZN(Ul - 1)2 - Ploss - Bpen,i - Dpen,i
(18)

IV. SIMULATION CASE STUDIES
A. Centralized VVC Learning Environment

The case study simulation is conducted on the IEEE 123 bus
system from Fig. 9 with ten distributed solar PV systems (DERs)
modeled from Fig. 2. All default network controls (regulators,
cap banks, etc.) are disengaged to allow the SI controls complete
flexibility over voltage regulation, excluding the final case study
in which a voltage regulator at the feeder head is introduced.
Each PV System is calibrated for nodal installation using local
hosting capacity load matching considering a 25% overload,
operating autonomously following a local Volt-VAR curve pro-
vided by the centralized A2C agent (DSO). The following
assumptions apply from IEEE1547-2018, Section V.

1) All inverters assume a continuous operational re-
giOH of 0.9VNominal < Vref < 1.1VNominal, Where
VNomimat = 1 pu and V,.y is the noisy measurement
taken from the reference controller of the inverter

2) No fixed power factor for inverter operation is specified
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Fig. 10. RL Learning Environment Interface.

3) A single line of centralized communication for remote

monitoring and control exists at each DER location

4) All SIs are set to operate in VOLTVAR with Watt Priority

mode(s).

Each SI comes “out-of-the-box” seeded with the recom-
mended (default) droop curve DY, R.isa7carp rom Fig. 3. At
each time step A, the agent suggests actions in the form of
a piecewise droop curve array Df o = [V1, V2, V3, V4], and
dispatches the updated droop ONLY when conditions from the
BF filter are satisfied. Otherwise, DY), R,; 1s not dispatched and
the «th DER maintains it’s existing settings until a centralized
load flow has been performed and the simulation moves to the
next time step. Thus, the DSO agent must learn to make decisions
(actions) every five minutes based on its objectives (reward
function), constraints, and observed system state(s) (see Fig. 1).

We simulate a real-world ADN operating scenario consid-
ering centralized coordination efforts for multiple distributed
DERs, accessible by the local ADMS (advanced distribution
management system) interface or similar (see Fig. 1). In order
to maintain robustness and fully capture the operating conditions
of demand and DER output in the distribution system, we
apply real irradiance I, temperature 7', and efficiency curve
data Ef f,, per DER (see Section II-B) in a quasi-static time
series data profile format, taken from the National Solar Ra-
diation Database [35] to emulate year-round seasonal weather
conditions. Dynamic residential and commercial type loadshape
curves from [32] are linearly interpolated to match the time
series, and are variably distributed to all system load types
via dss.Loads.Status (). In addition, we mimic a noisy,
stochastic system by additive noise € applied across all observed
data, which follows an independent, identically distributed (iid)
Guassian distribution with zero mean and variance 2, such that
e ~N(0,02).

Simulations are conducted with Python ver. 3.9.12 using
the open source distribution simulator OpenDSS [32], via an
interfaced Gymnasium environment [36]. This unique wrapper
acts as a pythonic environment class for agent-environment in-
teraction, exchanging state transition and load flow information
at each time step, configured with Stable Baselines 3 [37] for
DRL algorithmic implementation. See Fig. 10.

Three case studies are conducted for droop curve learn-
ing/dispatch and compared to the standard IEEE 1547-2018
base case droop D%, R.1547¢atp during evaluation. In Case 1,
the agent learns a single global droop curve function which is
dispatched to all DERs. In Case 2, the agent learns a set of

TABLE II
SUMMARY OF DRL TRAINING PARAMETERS
Hyper A2C
Parameters Case 1 Case 2 Case 3
Hidden Layers 164,32] [64,32] [64,32]
Actor-Critic Policy | MipPolicy | MlpPolicy | MlpPolicy
Activation Function relu relu relu
Batch Size 288 288 288
Epochs 180 180 180
Discount Factor 0.95 0.95 0.95
Parameter Noise 0.05 0.05 0.05
o=0.005 o=0.001
0.0
g
£ o
:
Z -10
o =10.0005 a=0.0001

Normalized Return
O‘ (=]
wn (=]

0 20 40 60 80 100120140160 180
Episode

0 20 40 60 80 100120140160 180
Episode

return = mean episodic return

Fig. 11.  Case 2 Training Returns Learning Rate Comparison.

uniquely customized droop curves for each DER. In Case 3, to
reiterate the adaptability of this method, we repeat Case 2, but
train alongside a voltage regulator placed at the feeder head to
analyze the impact on policy learnability during training due to
a voltage step change near the substation.

B. A2C VVC Simulation Training

The practical implementation of the algorithmic training pro-
cess with decision frequency is described here, for clarity. The
learning process, which occurs offline, is constructed over a
fixed 180 day horizon (March - August) with a five minute
time step A; = Smin (51840 total discrete steps). At every
step, the A2C agent suggests candidate droop functions for all
DERs in the system, which must satisfy the BF constraints to be
eligible for dispatch. Meanwhile, the A2C neural network policy
updates its parameters every 24 hrs to maximize the expected
discounted return after each day of training, learning which
functions are optimal and compliant and which are not. Once the
droop settings have converged, after some amount of time, they
are dispatched online and used for eternity in the system as they
are customized to the environment dynamics at each SI location.
As the network evolves over time due to new DER additions,
topology changes, and load changes, for example, the utility may
decide to retrain the droops while the converged settings remain
in place at their respective SIs, continuing to provide VVC lo-
cally. A brief summary of DRL training parameters is provided in
Table II. Four learning rates «; = [0.005,0.001, 0.0005, 0.0001]
are compared using the A2C algorithm in Fig. 11, showing mean
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TABLE III
AGENT TRAINING: LEARNING RATE TOTAL RETURN
Learning Total Cumulative Reward
Rate Case 1: Global | Case 2: Unique
a1 = 0.005 —4918.79 —5849.41
oz = 0.001 —4873.69 —2052.27
asz = 0.0005 —5864.23 —18850.73
ay = 0.0001 —4959.17 —4660.52
TABLE IV
CONVERGED DROOP SETTINGS W/OUT BF
Unique V1 V2 V3 V4 KQini | KQubs
PV1 0.976 | 0.997 | 1.007 | 1.022 | 20.95 29.33
PV2 0.973 | 0.995 | 1.006 | 1.029 20.0 19.13
PV3 0.977 | 0.988 | 1.015 | 1.023 40.0 55.0
PV4 0.977 | 0.999 | 1.014 | 1.021 20.0 62.86
PV5 0.973 | 0.991 | 1.007 | 1.031 24.4 18.33
PV6 0.97 0.983 1.01 1.029 33.8 23.16
pPVv7 0.977 | 0.998 | 1.008 | 1.035 20.95 16.3
PV8 0.969 | 0.986 | 1.008 | 1.042 25.88 12.94
PV9 0.95 0.981 | 1.002 | 1.034 14.19 13.75
PV10 0.962 | 0.995 1.01 1.046 13.33 12.22
Global | 0.962 1.00 1.004 | 1.024 11.58 22.0
TABLE V
CONVERGED DROOP SETTINGS WITH BF
Unique | VI \ V3 Vi [ Ko, | Kau.
PV1 0.962 | 0.983 | 1.002 | 1.026 20.95 18.33
PV2 0.964 | 0.984 | 1.018 | 1.038 22.0 22.0
PV3 0.975 | 0.997 | 1.003 | 1.029 20.0 16.92
Pv4 0.955 | 0.981 | 1.017 1.04 16.92 19.13
PV5 0.975 | 0.996 | 1.011 | 1.032 20.95 21.0
PV6 0.961 0.981 1.02 1.04 22.0 22.0
PV7 0.977 | 0.998 | 1.008 | 1.035 21.0 16.3
PV8 0.971 | 0.993 1.02 1.047 20.0 16.3
PV9 0.953 | 0.986 | 1.009 1.04 13.33 14.2
PV10 0.964 | 0.985 | 1.017 | 1.044 21.0 16.3
Global | 0.974 | 0.996 1.01 1.031 20.0 21.0

episodic return convergence of the learning curves. Upon exam-
ination it is clear that larger s incurred less initial and overall
penalties, converging to an optimal DY) . . setting earlier in
training. This is a direct result of the agent learning compliant
droop curves faster, satisfying the BF filter from (15).

Results in Table III confirm the learning rate of 0.001 pro-
duced the highest total rewards for both cases, while 0.0005
performed the worst, indicating «; must be large enough to
learn safe actions quickly but small enough to make finely
tuned adjustments for voltage regulation within the safe set.
Convergence of the learning curve signifies not only that an
optimal DY), . setting has been learned, but that the resulting
settings are conipliant with [7], maximizing the reward function.
The resulting discrete policies are shown in Table IV (without
BF filter) and Table V (with BF Filter) for both cases.

When the BF filter is not used, the agent compensates for
voltage deviation by selecting higher gain settings which violate
the standard threshold at multiple SIlocations. PV3 and PV4, for
example, received droop settings producing more than twice the
allowable gain, which could cause rapid reactive power adjust-
ments leading to unsafe operating conditions. On the contrary,
by inserting the BF filter, all SIs are dispatched ONLY safe
D% ik curves which remain IEEE 1547-2018 compliant. A
visual of Table V Case 2 is presented in Fig. 12 along with
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Fig. 12.  Converged Droop Curves with BF.
TABLE VI
CONVERGED DROOP SETTINGS WITH BF AND VR
Unique |y V2 V3 va | Ko, . | K
+ VR Qinj Qabs
PVI1 0.964 | 0.984 1.02 1.042 22.0 20.0
PV2 0.964 | 0.984 1.009 1.03 22.0 20.95
PV3 0.973 | 0.993 1.02 1.045 22.0 17.6
PV4 0.961 0.986 1.0 1.021 17.6 20.95
PV5 0.965 | 0.985 1.019 1.044 22.0 17.6
PV6 0.973 | 0.995 1.01 1.031 20.0 20.95
PV7 0.965 | 0.986 | 1.012 | 1.035 20.95 19.13
PV8 0.963 | 0.983 | 1.017 | 1.041 22.0 18.33
PV9 0.953 | 0.982 | 1.017 | 1.037 15.17 22.0
PV10 0.967 | 0.987 1.017 1.04 22.0 19.13
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Fig. 13.  Converged Droop Curves with BF and VR.

the standard base case droop, showing the learned curves all lie
inside the boundaries of the base case.

Finally, we discuss robustness of the method when learning
alongside legacy voltage regulation equipment to verify the abil-
ity of the agent to converge to optimal droop curves despite the
unknown actions of an on-load tap changer creating step changes
of the voltage source due to the variation of primary-side voltage
experienced at the substation. Therefore, we install a voltage
regulator (VR) at the feeder head location and retrain using the
same learning rate which produced the best result for Case 2.
Results in Table VI and Fig. 13 show that the agent suffers no
setbacks in training due to VR step changes, still converging to
optimal setpoints which satisfy the safety criterion. It should be
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TABLE VII
30-DAY EVALUATION RESULTS
Case | Total Active | Voltage | AvgBus | QEIRt [ KEmit
Study Loss [pu] Reg % Vpu Infs Infs
Base 0.4274 97.68 0.977 0 0
Global 0.4537 97.4 0.975 0 0
Unique 0.3654 98.23 0.983 0 0
Unique
+ VR 0.3709 99.58 0.996 0 0
Bus 66 Bus 47
0.980 0.985
B
i;“ 0.975 0.980
s
0.970 0.975
Bus 71 Bus 56
0.9850
z 0.980 09825
i;‘) 0.975 0.9800
S
0.9775
0.970
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Day Day
—— base droop curve =~ —— global A2C —— unique A2C
Fig. 14.  Bus Voltage Profile Case Study Comparison.

noted that the VR did have some impact on the resulting settings,
as more gain parameters converged to the maximum allowable
limit, an indication of the increased voltage fluctuations due to
the VR.

C. A2C Testing & Evaluation

The droop curves (7*) learned by the agent using a; = 0.001
for Case 1 (global), Case 2 (unique), and Case 3 (unique +
VR) are selected for testing against the conventional method
QV-droop curves specified for local category-B type SI's (base
case) providing voltage support DY 5 (547, 5- We evaluate
the uniquely learned droop policies for 30 consecutive days in
September at an equivalent time step under similar overloaded
network conditions. Results indicate the global settings do not
make a drastic improvement over the standardized droop, caus-
ing slightly higher total active system losses of 0.454 pu com-
pared to 0.427 pu with nearly identical voltage regulation per-
formance. As shown in Table VII, however, the unique settings
learned by the DRL agent (Case 2) show significant network
loss reduction by nearly 10% and improved voltage regulation
system wide, maintaining average bus voltages above 0.98 pu
compared to the default droop settings. Loss reduction for Case
2 even surpassed the total losses in Case 3 (0.3709 pu), as the
presence of the voltage regulator improved voltages overall, but
at the expense of limited loss reduction. As expected, the combi-
nation of the VR with A2C delivered the best voltage deviation
reduction, showing an average pu voltage of 0.996 across the
feeder. In addition, all learned policies for each case incurred
zero reactive power output and/or gain infractions during the
testing and evaluation period.

Bus 66 PV5S Bus 47 PV1
0.75
=
£ 050
z
2025
0.00
Bus 71 PV10 Bus 56 PV8

Power [pu]

0 5 10 15 20 25 30 0 5 100 15 20 25 30
Day Day

—— Active Power (P_DER) —— Reactive Power (Q_DER)

Fig. 15. Case 2 DER Real and Reactive Power Output.

By inspection of Table VII and Fig. 14, the base case droop
(conventional method) DY), R.1547¢qtp OIS a majority of the
nodal voltage distribution just below 0.98 pu, directly at the edge
of the dead-band. However, the customized (Case 2) proposed
method regulates a larger percentage of voltages above this mark
and supports weaker locations further from the slack bus with
greater efficiency (bus 71) when no VR is included in the simula-
tion. Voltage profiles at four buses are compared in Fig. 14, reaf-
firming the effectiveness of the approach for uniquely learned
droop dispatch for improved voltage regulation.

In order to validate SI power output constraints embedded in
the CMDP formulation at all DERs, PV system real and reactive
powers are plotted at the same four bus locations in Fig. 15
during the 30-day evaluation period. Results clearly show the
inverter reactive power remains engaged in VOLTVAR mode
(even at night), but still defers to real power (Volt-Watt) when
needed, never exceeding the SI’s kVA rating or reactive power
constraints from (4, 5, 5a, 5b) (powers are displayed on the local
PV system Sps. for clarity) and [7]. Interestingly, only PV5 at
bus 66 required momentary reactive power absorptions, likely
due to higher system demand, explaining why the agent learned
VVC droop curves with shorter dead-bands below the reference
voltage.

D. Discussion on Interpretability

A crucial component of the proposed DRL algorithm for SI
QV-droop curve learning is the simplistic degree of resulting
policy interpretability and understanding. It is well-known that
many alternative DRL algorithms (Deep Q-Networks, Deep
Deterministic Policy Gradient, etc.) and deep learning (DNN)
approaches exist for such autonomous grid operations, however
many of these methods may not be fully understood and/or are
viewed as implicitly black-box. Therefore, we provide a brief
explanation on model behavior to further establish transparency
of the proposed solution.

The first important aspect of the resulting optimal policy 7*
lies in its simplistic coherent nature as seen in TablesIV-VI.
The multi-objective reward design is built to converge to learned
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Fig. 16. Pearson Correlation Coefficient Comparison. (top) DER pairwise PC
scores for [V, V3]. (bottom) DER pairwise PC scores for [V, V4].

droop curve settings upon the satisfaction of system voltage de-
viation, loss reduction, and regulatory compliance (operational
safety) metrics, which are prioritized by any grid operators using
this technology. Simply put, the resulting policy yields a set of
piecewise function breakpoints by which all parameters of the
VVC inverter response may be directly computed by the end
user. Furthermore, by explicitly discarding candidate functions
which may not be allowable during training, the model output
is naturally interpretable by the utility.

To quantify relationships between the learned functions, we
compute the model’s Pearson Correlation (PC) based upon
the selected droop breakpoints in Tables IV and V. The PC is
defined as a measure of linearity and strength among variables,
relating the covariance of two data sets (or samples) X and YV
as cov(X,Y) = L3 (z; — z)(y; — y) over the product of
their standard deviations o x and oy in (19). The PC is measured
from [—1, 1], with a positive maximum score of 1 indicating the
greatest correlation strength between the pair.

cov(X,Y)

Ppcexy = —o = (19)
In Fig. 16, the PC scores are visualized for each possible DER
pair of droop settings D%, R (some pairwise labels shown
for reference), describing the relationship between breakpoints
[Vi,V2] and Kq,,;, and for [V3, V4] and thus Kq,,.. Here, a
darker marker defines a stronger PC score, indicating DER pairs
with similarly learned DY), i settings, and a lighter marker
points to a weaker correlation between learned functions. PC
scores are plotted against the ascending order of all possible
DER combinations pv1pv2, pulpv3, ..., pv9pv10 whereby the
natural order also delineates a measure of distance (isolation) to
other DERs in the system (left to right).

Overall, there is a stronger correlation amongst all DERs
regarding converged droop settings for reactive power injec-
tions (top) due to the need for larger amounts of DER support
considering overloaded network conditions causing weaker bus
voltages. However, PVs 1-5, which are located within the closest
proximity to other DERs, showed the largest PC scores relating
K, , breakpoint selection (top) compared to PVs 6-10, which

nj

are more isolated units located further from the feeder head.

Conversely, those same PV droop settings exhibited lower PC
scores learned for Kq, . (bottom). This observation makes
sense because multiple DERs supplying local VVC close to one
another act in a coordinated manner, impacting the same general
feeder areas together to regulate voltage. By the same token,
more remotely located DERs (e.g. PV10 at bus 71) required
learning custom droop settings based on local load dynamics not
experienced by other DERSs in the system, leading to different
droop settings.

Finally, it is important to reaffirm that the integration of
the IEEE 1547-2018 standards through a mathematical bar-
rier function to reinforce safety is a critical component of
model understanding. Control center operators prioritize safety
for all utility-scale applications, specifically when considering
autonomous decision-making tools for grid operations. Thus,
acceptance of this method by utilities requires not only meeting
performance benchmarks, but providing thorough explanation
on how safe online operation can be guaranteed (in this case via
barrier certificates) to enhance translation across the simulation-
to-reality gap.

V. CONCLUSION AND SUMMARY

Evaluation of the proposed method shows the capabilities
of a centralized A2C DRL controller to learn successful VVC
coordination among multiple SIs. Results proved the agent can
quickly learn a policy in the form of a customized piecewise
droop curve function for multiple SIs without an explicit model
compliant with regulated specifications using a CMDP formula-
tion. The use of a barrier function filtering mechanism embedded
into the reward design established transparent learning of safe
droop curve action sets through constraint satisfaction, which
can be dispatched at discrete time intervals to SIs for local
autonomous VVC, abiding by the IEEE 1547-2018 standards
at all times. Case studies compared to the baseline droop curve
recommended by IEEE 1547-2018 prove the DRL controller
is able to significantly improve voltage deviations during peak
loading conditions and reduce system losses. Results also show
the DRL agent can learn droop settings alongside legacy voltage
regulation equipment, enhancing usability in modern systems.
Furthermore, customized droop curve settings proved to be
optimal and even somewhat similar among solar PVs located
in close proximity in the network, an indication of the NNs
extracting inexplicit feature dynamics in the learning process.
It is also important to note that the agent learns to reduce
the dead band asymmetrically, taking advantage of the full SI
reactive power capabilities, suggesting that droop curve adap-
tation to both local and global dynamics is key to improved
centralized DER coordination using DRL. Authors of this work
suggest combining safety-based approaches with mathematical
optimization and DRL to improve on these methods for future
use in DER dominated power grids.
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