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Abstract—Accurate calibration of control parameters in quan-

tum gates is crucial for high-fidelity operations, yet it represents

a significant time and resource challenge, necessitating periods

of downtime for quantum computers. Robust Phase Estimation

(RPE) [8] has emerged as a practical and effective calibration

technique aimed at tackling this challenge. It combines a provably

efficient number of control pulses with a classical post-processing

algorithm to estimate the phase accumulated by a quantum gate.

We introduce Bayesian Robust Phase Estimation (BRPE), an in-

novative approach that integrates Bayesian parameter estimation

into the classical post-processing phase to reduce the sampling

overhead. Our numerical analysis shows that BRPE markedly

reduces phase estimation errors, requiring approximately 50%
fewer samples than standard RPE. Specifically, in an ideal,

noise-free setting, it achieves up to a 96% reduction in average

absolute estimation error for a fixed sample cost of 88 shots when

compared to RPE. Under a depolarizing noise model, it attains

up to a 47% reduction for a fixed cost of 176 shots. Additionally,

we adapt BRPE for Ramsey spectroscopy applications and

successfully implement it experimentally in a trapped ion system.

Index Terms—Quantum computing, Trapped ion quan-

tum computing, Quantum gate calibration, Phase estimation,

Bayesian methods

I. INTRODUCTION

Progress in quantum computing has accelerated in recent
years and systems containing tens of qubits now exist in
both academia and industry [1], [5], [6], [14], [21], [23].
Quantum gate fidelities have likewise improved and the field
has moved closer towards fault-tolerant quantum computing
[15]. System calibration has played a pivotal role in the
progress up to date. However, current calibration methods
continue to be time and resource-intensive processes, requir-
ing up to four hours per day for system sizes of tens of
qubits [1]. This calibration time constitutes downtime during
which experiments or applications cannot be run. As quantum
computers begin to include hundreds and thousands of qubits
the calibration overhead becomes untenable. Novel and time-
efficient calibration methods are needed for both single and
two-qubit gates.

Robust Phase Estimation (RPE) [8] has established itself
as a practical calibration routine for both single-qubit and
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two-qubit gates. RPE is a non-adaptive parameter estimation
protocol which can tolerate state preparation and measurement
(SPAM) errors up to a threshold, and exhibits Heisenberg-like
scaling with regards to control system pulses. However, this
does not always translate to a reduction in overall runtime
as the sampling overhead required by the classical post-
processing algorithm can become unfavorable [12], [17].

In this work we propose a novel post-processing algo-
rithm which uses Bayesian parameter estimation instead of
the conventional trigonometric algorithm employed in RPE.
Through simulation and experiment we show our method,
which we call Bayesian Robust Phase Estimation (BRPE), has
several advantages over traditional RPE, particularly when the
sampling overhead is low and information is limited. In these
scenarios, we have found that BRPE not only cuts the sampling
overhead by roughly 50% compared to standard RPE methods
but also decreases the average absolute error of estimates.
Specifically, in an noise-free setting, BRPE reduces estimation
error by 96% for a fixed sampling overhead of 88 shots,
and under conditions of depolarizing noise, the reduction is
47% for a fixed cost of 176 shots. Further, BRPE exhibits
improved tolerance to coherent errors during state preparation
and measurement operations, which we refer to as coherent
SPAM (C-SPAM) errors and measure in radian difference from
the desired rotation. In the presence of this type of error,
BRPE achieves accurate phase estimates even with C-SPAM
errors as high as 0.533 radians. This is an improvement over
traditional RPE, which is limited to C-SPAM errors up to
0.167 radians. In scenarios where these coherent errors are
commutative and directly correlated with the target gate, such
as during Rabi frequency calibration, BRPE’s algorithm can be
slightly modified to extend resilience and BRPE can tolerate
C-SPAM errors up to 1.547 radians.

This paper is outlined as follows. Section II briefly dis-
cusses the two concepts underlying BRPE, namely RPE and
Bayesian parameter estimation. Section III provides details
on the BRPE calibration and its post-processing algorithm.
Section IV includes numerical analysis which explores BRPE
and RPE performance using an error-free model, as well
as models which include measurement error, depolarizing
error and C-SPAM error. In section V BRPE is adapted for
Ramsey spectroscopy and is used to experimentally calibrate
the carrier frequency for single-qubit gates in a trapped ion
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quantum computer. Finally, in Section VI future directions are
discussed.

II. BACKGROUND

A. Robust Phase Estimation
Robust Phase Estimation (RPE) [8] is a protocol which

can be used to characterize the rotation angles and axes of a
quantum gate. For simplicity we describe the single parameter,
single-qubit implementation of RPE.

RPE defines the target quantum gate as

U(ω) = cos(
ω

2
)εI → i sin(

ω

2
)εX (1)

where εI and εX are Pauli operators, and ω is the parameter to
be estimated. To accurately estimate ω, RPE conducts multiple
rounds of experiments, which are indexed by k = 0, 1, . . . ,K.
Each round consists of Mk repetitions of two different experi-
mental sequences. In the first sequence, the qubit is initialized
to the |0↑ state and the unitary, U(ω), is applied N(k) = 2k

times. The qubit is measured in the εZ basis which projects it
to the |0↑ or |1↑ state. A transition probability, Pk,a = ak/Mk

is calculated, where ak is the number of times the qubit was
measured in the |1↑ state when using sequence 1 in round k.
The second sequence initializes the qubit in the |i↑ = |0→+i|1→↑

2
Again U(ω) is applied N(k) times and the qubit is measured
in the εZ basis. A transition probability Pk,b = bk/Mk is
calculated, where bk is the number of times the qubit was
measured in the |1↑ state when using sequence 2 in round k.
RPE then uses Pk,a and Pk,b in a classical post-processing
step to generate estimates of ω.

For each round k, beginning with k = 0, the classical
algorithm generates a set of possible estimates !̃k defined
as [19]

!̃k :=
{
ω̃

∣∣∣ ↓n ↔ Z :

ω̃ = arctan(2Pk,a → 1, 2Pk,b → 1)/N(k) +
2ϑn

N(k)

}

(2)

Next, it selects the estimate ω̃k ↔ !̃k which is closest to the
estimate found in the previous round, ω̃k↓1. In each round,
RPE restricts its estimate to a smaller range such that in the
end it finds estimate ω̃K which estimates ω with error at most

ω
N(K) [8]. As proven in [2], as long as

|ω̃k → ω| ↗ ϑ

3 · 2k↓1
(3)

RPE is guaranteed to find an accurate estimate. However, if (3)
is not satisfied all future rounds of RPE will be incorrect and
the calibration routine will fail to find a satisfactory estimate
of ω. Recent work has provided consistency tests which can
identify if the algorithm has failed at round k [19]. These
consistency tests can be used by experimentalists to identify
when RPE results can be trusted.

Importantly, when gate count (or control system pulses) is
the resource of interest, RPE shows Heisenberg scaling up to
constant factors [17]. Moreover, RPE is simple to implement

as it does not involve entangled states or ancilla qubits, and
it is non-adpative, meaning there is no closed-loop, quantum-
classical communication or classical optimizer. It has already
seen success in experimental trapped ion [17] and super-
conducting [18] systems. Despite these positive attributes,
RPE requires many experimental samples, especially when
characterizing noisy systems [12].

B. Bayesian Parameter Estimation

By incorporating prior knowledge about a system and
repeatedly updating this knowledge, Bayesian parameter es-
timation has been shown to reduce overall resource costs and
calibration run-time for various quantum calibration proce-
dures [3], [7], [11]. Although the implementation details differ
depending on the specific calibration, at the heart of Bayesian
parameter estimation is Bayes theorem [9]

P (ω̃|X) =
P (X|ω̃)P (ω̃)

∫
ε̃ P (X|ω̃)P (ω̃)

(4)

where ω̃ represents the parameters we wish to estimate, X

is measured experimental data, P (X|ω̃) is the likelihood of
X given parameters ω̃, P (ω̃) is the prior distribution and
P (ω̃|X) is the posterior distribution. The general procedure
for quantum calibration using Bayesian parameter estimation
begins with an initial prior distribution , P0(ω̃), initial pa-
rameter hypothesis, ω̃0, and a posterior convergence condition.
Typically, ω̃0 is determined by sampling P0(ω̃). This initial step
incorporates prior knowledge about the quantum system and
classical control system, and therefore the parameter search
begins at an informed starting point. Next, the following
iterative process is initiated :

1) Run experiments using ω̃i and collect the measured data
Xi.

2) Calculate posterior distribution Pi(ω̃|Xi) using Bayes
theorem

Pi(ω̃|Xi) =
P (Xi|ω̃)Pi(ω̃)∫
P (Xi|ω̃)Pi(ω̃)

(5)

If Pi(ω̃|Xi) satisfies the convergence condition then exit,
otherwise continue to Step 3.

3) Select new experimental parameters ω̃i+1 using classical
optimization techniques. Typically this involves finding
an optimal ω̃i+1 for a given cost function (e.g. cost
functions using information entropy, posterior variance,
etc.).

4) Define a new prior distribution equal to the calculated
posterior distribution, Pi+1(ω̃) = Pi(ω̃|Xi)

5) Return to Step 1.
Through this process, Bayesian parameter estimation will

generate a series of posterior distributions. Ideally, this series
converges to a final posterior distribution with an acceptable
credible interval thus allowing one to estimate ω̃ to within
some predetermined error.
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III. BAYESIAN ROBUST PHASE ESTIMATION

Although RPE is Heisenberg-limited in control pulses its
required sampling overhead significantly increases in the
presence of errors [17], [19]. For a single calibration, this
overhead may be tolerable and may not substantially affect
overall runtime. However, this issue escalates as the number
of gates requiring calibration grows, making time increase
a limiting factor. Bayesian Robust Phase Estimation (BRPE)
addresses this challenge by delivering improved accuracy and
precision with fewer samples, effectively enhancing scalability
and practicality.

BRPE follows the same experimental implementation as
RPE discussed in section II-A, and thus maintains the same
Heisenberg-like scaling. It varies in the post-processing of
ak and bk. Rather than calculating transition probabilities
Pk,a and Pk,b it uses each ak and bk in Bayesian parameter
estimation.

To begin, BRPE starts with an empirically defined initial
prior P0(ω̃). For each round k, BRPE defines two likelihoods

Lk,a(x) = cos2(2↓k
ω̃ + (1→ x)

ϑ

2
) (6)

Lk,b(x) = cos2(2↓k
ω̃ +

ϑ

4
+ (1→ x)

ϑ

2
) (7)

where x ↔ {0, 1}. It then generates 4 intra-round posteriors
based on the measured values ak and bk,

Pk,a,1(ω̃|ak) =
Pk(ω̃)Lk,a(1)ak

∫
ε̃ Pk(ω̃)Lk,a(1)ak

(8)

Pk,a,0(ω̃|ak) =
Pk,a,1(ω̃|ak)Lk,a(0)Mk↓ak

∫
ε̃ Pk,a,1(ω̃|ak)Lk,a(0)Mk↓ak

(9)

Pk,b,1(ω̃|bk) =
Pk,a,0(ω̃|ak)Lk,b(1)bk∫
ε̃ Pk,a,0(ω̃|ak)Lk,b(1)bk

(10)

Pk,b,0(ω̃|bk) =
Pk,b,1(ω̃|bk)Lk,b(0)Mk↓bk

∫
ε̃ Pk,b,1(ω̃|bk)Lk,b(0)Mk↓bk

(11)

The last posterior is then used as the prior for the next round,
Pk+1(ω̃) = Pk,b,0(ω̃|bk). This process is repeated for all k

rounds until a final posterior Pn(ω̃|a0, b0, . . . , an↓1, bn↓1) is
generated.

After processing all k rounds, BRPE uses a maximum a
posteriori probability (MAP) estimate on the final posterior
distribution to find ω̃.

Like RPE, BRPE’s estimation accuracy degrades as errors
increase, albeit more slowly than RPE for most types of errors
(see Section IV). Accuracy degradation typically stems from
a multi-modal posterior distribution in which the difference
between several local maxima is too small to definitely distin-
guish an accurate ω̃. If the total variance of the local maxima
is less than the desired precision in the estimate then the
ω̃ corresponding to any of these local maxima will suffice.
However, if the variance is greater it becomes more difficult to
determine an accurate ω̃, with the difficulty being proportional

to the variance. To account for these scenarios, the last step
of BRPE is the calculation of a heuristic confidence score

C(D,ε,εmax) =
1

1 + exp(→5(f(D,ε,εmax)→ 3
4 )

(12)

f(D,ε,εmax) =
3D

2
+

1

4
(

1

1 + 1
10 exp(

1
4 (ε → εmax))

)

(13)

where D = max
ε̃

Pn(ω̃|a0, b0, . . . , an↓1, bn↓1) is the MAP

estimate on the final posterior distribution, ε is the standard
deviation of the local maxima in the final posterior distribution,
and εmax is an empirically selected threshold. This score
encodes the conditions described above and quantifies the
confidence in the final estimate. In section V-B we demonstrate
the utility of the confidence score and examine how it can
assist in the implementation of BRPE. We note that this score
can be further modified to incorporate other conditions and
constraints.

IV. NUMERICAL ANALYSIS

In this section, we assess the accuracy and precision of both
BRPE and RPE in estimating phases under various conditions
through classical simulations. Additionally, we explore how
the estimation errors scale with the number of shots for each
method. We have made further statistical analysis beyond the
results reported here available publicly [22].

A. Performance Analysis Across Different Error Conditions
The accuracy and precision of BRPE and RPE are affected

by the operational enviornment. Here, we investigate their
performance in an error-free environment as well as error-
prone environments characterized by measurement errors, de-
polarizing errors, and C-SPAM errors.

Each simulation assumes the ideal gate of U(ω) (1) is
instead implemented as U(!) where ! = ω + ”, and ”
represents an unintentional deviation in phase. BRPE and
RPE are then used to find an estimate ”̃ of the deviation.
Simulations are performed across a range of manufactured
offsets ”j ↔ {ω·j

d | j = 0, . . . , d ; d ↔ Z+} to asses protocol
performance across a broad spectrum of phases.

Further, to quantify performance of each protocol we sim-
ulate N independent trials of BRPE and RPE for each offset,
”j , and calculate the asbolute error in the estimation of each
trial ϖi,!j = |”̃i → (! → ω)|, i = 0, . . . , N → 1. We then
calculate the average absolute error, ϖ̄!j at each offset.

ϖ̄!j =

∑N↓1
i=0 ϖi,!j

N
(14)

To compare protocols we calculate the average absolute
error over all ”j

ϖ̄ =

∑d
i=0 ϖ̄!i

d+ 1
(15)

and use this metric to compare BRPE and RPE.
Finally, we define protocol failure to occur when average

error is above a threshold, ϖ̄!j > ϖ̄th. To determine this
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(a) (b)

Fig. 1: Plots of ϖ̄!j for RPE and BRPE in an error free environment using different shot counts. Averages are calculated using
1000 independent trials. Error bars represent standard error. a) When Mk = 4 and Mk = 8 BRPE results in a 96.08%±4.34%
and 85.08%± 17.5% decrease in average absolute error, respectively, when compared to RPE. b) BRPE outperforms RPE for
all values of Mk. RPE requires approximately twice as many shots to match BRPE performance. As shot count increases we
see convergence of BRPE and RPE performance.

threshold we find the maximum error in estimation which
results in a gate fidelity of F ↘ 0.9995.

Throughout this section we use ω = ω
2 , N = 1000, d = 40,

ϖ̄th = 0.02 and we fix the number of rounds to K = 11 for
both protocols.

1) Error Free: This section evaluates the performance of
BRPE and RPE in an error-free environment, particularly
focusing on the relationship between their performance and
the shot count, denoted as Mk. It is observed that BRPE
generally surpasses RPE in terms of performance when both
methods are applied with an equivalent number of shots,
as depicted in Figures 1a and 1b. A notable disparity is
evident at lower shot counts. Specifically, for Mk = 4, RPE’s
average error (ϖ̄ = 3.5 ≃ 10↓2 ± 2.5 ≃ 10↓2) surpasses the
threshold ϖ̄th = 0.02, indicating its likely failure in accurately
calibrating the target gate to the desired specification. In
contrast, BRPE maintains an average error below this threshold
at the same shot count, with ϖ̄ = 1.4 ≃ 10↓3 ± 1.2 ≃ 10↓3.
Although this performance gap diminishes with increasing
shot counts, RPE generally requires about twice as many shots
as BRPE to achieve comparable results.

2) Measurement Error: We next investigate the perfor-
mance of BRPE and RPE under the influence of measure-
ment error. This error is modeled using a post-processing
step in which we pass the measured, ideal expectation value

through a binary symmetric channel. Designating p as the
crossover probability we evaluate performance using p ↔
{0.005, 0.01, 0.015, 0.02, 0.025, 0.03} and shot count Mk ↔
{8, 16, 32, 64, 128}. In this section we use Mk = 8 as the
lower limit of our shot count. This choice is informed by
our findings in Section IV-A1, where we determined that
a minimum of 8 shots is required to ensure the successful
operation of both protocols.

In scenarios with lower shot counts (Mk ↗ 16), BRPE
demonstrates superior performance over RPE across all mea-
surement error probabilities. This is clearly illustrated in Fig.
2a where BRPE’s advantage is well pronounced at p = 0.01.
The same advantage is observed at Mk = 8 and p = 0.03,
where RPE achieves an average absolute error (ϖ̄) of less
than 3.7 ≃ 10↓3 ± 3.3 ≃ 10↓3, corresponding to a gate
fidelity error (1 → F) of approximately 1.74 ≃ 10↓6. In
contrast, BRPE achieves a significantly lower ϖ̄ of less than
2.51≃10↓4±8.2≃10↓5, with a corresponding fidelity error of
about 8.33 ≃ 10↓9, underscoring BRPE’s enhanced accuracy
in low-shot scenarios, even under high measurement errors.

For applications requiring higher gate fidelity or reduced
average absolute error, an increase in shot count becomes
necessary. Fig. 2b presents the performance of both protocols
at higher shot counts for p = 0.01. As more shots are utilized
to minimize the average absolute error, the performances of
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(a) (b) (c)

Fig. 2: Performance of RPE and BRPE for 0 ↗ ”j < ϑ in the presence of measurement error and depolarizing error with
varying shot count. Averages are calculated using 1000 independent trials. a) When measurement error is set to p = 0.01 and
shot count Mk ↗ 16 BRPE yields estimates with average absolute error substantially below that of RPE. b) Increasing shot
count while maintaining a measurement error of p = 0.01 provides a greater performance boost for RPE than BRPE. BRPE
continues to yield the overall minimum lowest average absolute error across all values of ”j , but inconsistently outperforms
RPE. BRPE outliers at boundaries can be mitigated by shifting search space over ”j (See Section IV-A2). c) In the presence
of a 1% depolarizing error BRPE results in lower average absolute error than RPE. As shot count increases RPE performance
begins to the converge to that of BRPE.

BRPE and RPE start to converge. Notably, in high-error-
rate, high-shot-count scenarios, RPE begins to outperform
BRPE. For example, at Mk = 64 and p = 0.03, RPE
yields an average absolute error of 9.08≃ 10↓5 ± 8.9≃ 10↓6

whereas BRPE produces estimates with average absolute error
of 1.19≃ 10↓4± 8.6≃ 10↓5. However, it is important to note
that this shift in performance advantage occurs when the target
gate fidelity error is on the order of 10↓9.

In Fig. 2b, it is noteworthy that we observe significant
values for ϖ̄!j at both ”j = 0 and ”j = ϑ. In the presence
of measurement errors, the default implementation of BRPE
performs less effectively than RPE when ”j ↭ 1≃ 10↓3 and
Mk > 8.

This performance discrepancy arises because when ”j is
much smaller than 1 ≃ 10↓3, increasing the value of k does
not provide substantial new information. As a result, the
Bayesian process lacks sufficient additional data to improve
the posterior distribution effectively. Due to the periodicity of
our likelihoods the same discrepancy arises when ”j ⇐ ϑ.

However, a solution can be found by introducing an artificial
offset, denoted as U(ω + ϱ), where ϱ > 1 ≃ 10↓3. By ac-
counting for this offset when calculating ω̃, we can effectively
restore BRPE’s performance, even in scenarios where ”j is
significantly less than 1≃ 10↓3.

3) Depolarizing Error: We next look at the performance
of RPE and BRPE when our target gate is subject to a
depolarizing error channel. Specifically, we use the error

channel

E(ς) = (1→ p)ς+
p

3
(εXςεX + εY ςεY + εZςεZ) (16)

where ς = |φ↑ ⇒φ| is the density matrix representation of a
quantum state and p is the probability of error.

Fig. 2c presents a simulation of both BRPE and RPE in
an environment with a 1% depolarizing error. In this scenario,
both protocols effectively produce estimates with errors below
the threshold ϖ̄th for shot counts Mk ↘ 8. Notably, BRPE
consistently outperforms RPE by achieving a lower average
absolute error across various Mk values. The reduction in
average error achieved by BRPE compared to RPE varies
significantly, ranging from approximately 29.93% ± 33.21%
at Mk = 128 to a more pronounced 47.78% ± 10.73% at
Mk = 8.

The analysis is further extended to a scenario with a higher,
3% depolarizing error. In this case, BRPE continues to provide
more precise estimates than RPE. The improvement in average
absolute error with BRPE over RPE spans from 30.78% ±
30.93% at Mk = 128 to 46.85% ± 10.15% at Mk = 8.
However, a notable distinction arises at this higher error rate:
both BRPE and RPE require an increased number of shots
to maintain performance below the failure threshold. Specifi-
cally, while BRPE maintains effectiveness with a minimum of
Mk ↘ 8 shots, RPE requires a significantly higher shot count
of Mk ↘ 64 to stay under the threshold, highlighting BRPE’s
superior robustness in higher-error conditions.

We again see BRPE demonstrates heightened sensitivity to
depolarizing errors when ”j is on the order of 1≃ 10↓3, for
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(a) (b)

Fig. 3: Performance of RPE and BRPE for 0 ↗ ”j < ϑ in the presence of C-SPAM errors. C-SPAM errors are modeled as
coherent overrotations along the same axis as the target gate. Averages are calculated using 1000 independent trials. Notably,
the magnitude of these errors is correlated with the error present in the target gate itself. a) BRPE is implemented using
likelihoods defined in eqs. 6 and 7. When evaluated across the entire range of ”’s, BRPE and RPE performance varies.
Notably, both protocols fail to find reasonable estimates beyond ” > 0.925. However, with C-SPAM errors ↗ 0.839 radians
— a significant error margin — BRPE outperforms RPE in terms of lower average absolute error when using Mk ↗ 16 shots.
It also shows greater C-SPAM error tolerance, evident from the intersection points with the ϖ̄th threshold (see inset). b) When
BRPE likelihoods are modified to eqs. 18 and 19 performance gains are substantially greater. Average absolute error is further
reduced by using the tailored likelihoods and BRPE achieves tolerance to C-SPAM errors up to ϑ/2 .

analogous reasons to its sensitivity in the presence of mea-
surement errors. A similar mitigation technique as discussed
in section IV-A2 can be used.

4) C-SPAM Error: Finally we explore BRPE and RPE
performance in the presence of SPAM errors. Given the target
gate described in (1) and the measurement bases described
in Section II-A, modeling SPAM as a depolarizing channel
on the state preparation and measurement gates will yield
results similar to Section IV-A3. Instead we explore the impact
on performance when SPAM errors are modeled as coherent
overrotations in the state preparation and measurement gates
with the amount of overrotation directly correlating with the
error in the target gate, which we refer to as C-SPAM errors.
Further we note preparation of the |i↑ state is implemented
using an x-axis rotation and thus utilizes the same axis as the
target gate defined in (1). This model aligns with real-world
scenarios where state preparation gates, measurement gates, or
both, utilize rotations along the same axis as the target gate.
One common example of this is Rabi frequency calibrations.

In Fig. 3a we see both BRPE and RPE yield accurate
estimations up to an overrotation threshold, ”th,

”th = max{”j |ϖ̄!j < ϖ̄th} (17)

after which each protocol fails to provide an estimate with
error below our error threshold, ϖ̄th.

At lower shots counts, BRPE has both lower average error
(calculated up to ”th) and higher ”th. For example, at Mk =

16 BRPE yields ϖ̄ = 1.9 ≃ 10↓3 ± 4.2 ≃ 10↓3 up to ”th =
0.839 whereas RPE results in ϖ̄ = 2.9 ≃ 10↓3 ± 5.1 ≃ 10↓3

up to ”th = 0.576. This changes when Mk ↘ 32 and RPE
begins to provide better estimates at higher overrotation when
compared BRPE. However, it is important to note that ” ⇐
0.839 represents a sizeable overrotation error and we therefore
expect BRPE to be the more efficient protocol for the majority
of calibration scenarios that align with our model.

Furthermore, if calibration is needed when ” > 0.839
BRPE can be minimally adapted to substantially outperform
RPE. Specifically, we can modify our likelihoods such that
eqs. 6 and 7 become

Lk,a(x) = cos2(2↓k
ω̃ + (1→ x)

ϑ

2
) (18)

Lk,b(x) = cos2(2↓(k+1)
ω̃ + (1→ x)

ϑ

2
) (19)

These updated likelihoods more accurately capture our model
and allow BRPE to not only provide estimates with lower
average errors but also extend ”th as seen in Fig. 3b. When
using eqs. 18 and 19 as likelihoods, BRPE generates estimates
with ϖ̄ = 1.10≃ 10↓4 ± 5.9≃ 10↓5 and ”th = 1.55 at Mk =
32. Noteworthy, this adapted version of BRPE achieves ”th ⇐
ϑ/2 for all values of Mk.

While it is possible to adapt RPE for this specific model, the
flexibility and adaptability of BRPE stand out as notable ad-
vantages. BRPE facilitates the seamless incorporation of vari-
ous likelihoods by abstracting and encapsulating them within
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Fig. 4: The relationship between shot count, Mk, and estimate error, quantified by standard deviation, was evaluated for both
BRPE and RPE. Here, the phase offset was fixed at ” = 0.201 radians and both protocols were used to find estimates of
”. We computed the standard deviation across 1000 independent simulations for each specific shot count. This process was
replicated 5 times, and each point in the figure represents the average standard deviation calculated as ε̄ =

√
ε
2
1 + . . .+ ε

2
5 . We

then heuristically determined fits by identifying functions that most accurately represented the observed data. The error scaling
behavior of BRPE and RPE can be separated into two distinct phases. In the initial phase, characterized by low shot counts,
both protocols exhibit a rapid reduction in error due to the fast rate of information gain as shot count increases. Specifically,
BRPE scaling can be approximated as 0.76M↓0.57Mk

k , while RPE follows a scaling approximated by 1.26M↓0.25Mk
k . At higher

shot counts, specifically Mk = 6 for BRPE and Mk = 9 for RPE, the error scaling transitions to exponential. In the shot count
range from Mk = 6 to Mk = 9, BRPE demonstrates significant performance improvements over RPE. While BRPE shows
substantial performance improvements in the low shot count regime, its advantages become less pronounced at higher shot
counts. Furthermore, the error bars representing standard error indicate that these improvements are not statistically significant
in this range.

the code, effectively decoupling them from the overarching
algorithmic control flow. This abstraction feature provides a
modular, plug-and-play component within the BRPE algo-
rithm, enabling practitioners to effortlessly substitute different
likelihoods to accommodate adjustments to the system model.
In contrast, modifying RPE necessitates alterations throughout
the algorithm since the model lacks an isolated representation
in RPE.

B. Error Scaling

As discussed in Section IV-A, BRPE and RPE display
notable performance differences in scenarios with low shot
counts. This pattern persists both in error-free environments
and in the presence of errors. To further investigate the
enhanced performance of BRPE in the low shot count domain,
we analyzed how standard deviations for both methods evolve
with increasing shot counts. We examined 40 different phase
offsets ranging from 0 to ϑ/4. For each offset, we simulated
both BRPE and RPE across varying shot counts 1 ↗ Mk ↗ 50.
Each offset-shot count combination underwent 1000 indepen-
dent simulations, referred to as a trial. We conducted 5 such
trials per combination and calculated the aggregated standard
deviation and standard error for each.

Figure 4 illustrates trends consistent across all 40 offsets,
with the exception of ” = 0, where both methods demon-
strated comparable performance. We numerically fit functions
to two distinct regimes, allowing us to estimate the scaling
parameters for each protocol. In the initial regime, character-
ized by very low shot counts, both protocols display rapid
error reduction. This marked decrease in error is attributed to
the minimal information initially available and the substantial
information gains as shot counts increase. In this regime,
BRPE surpasses RPE due to its improved scaling, which
is approximated by the function 0.76M↓0.57Mk

k . In contrast,
RPE exhibits scaling approximated by 1.26M↓0.25Mk

K . Both of
these fits were determined through heuristic methods, where
we identified functions that most accurately represented the
observed data.

Transitioning to higher shot counts, beyond Mk = 6 shots
for BRPE and Mk = 9 shots for RPE, the scaling of each
protocol shifts to exponential. Specifically, BRPE scales ap-
proximately as 1≃10↓3

M
↓0.62
k , and RPE as 1≃10↓3

M
↓0.51
k .

In this regime, BRPE demonstrates marginally better error
reduction than RPE. However, the standard errors represented
by the error bars suggest that these improvements are not
statistically significant.

Notably, for shot counts between 6 and 10, the standard
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deviation of BRPE remains around 10↓3, significantly lower
than RPE’s which is closer to 10↓1. This improvement aligns
with the performance enhancements observed for Mk = 8, as
detailed in section IV-A.

V. EXAMPLE IMPLEMENTATION OF BRPE ON A TRAPPED
ION QUANTUM COMPUTER

To validate the functionality of BRPE, we conducted ex-
periments on a trapped ion quantum computer. Furthermore,
to illustrate the versatility of RPE and, by extension, BRPE,
we employed BRPE to implement an enhanced variant of
Ramsey spectroscopy [16]. This application is instrumental
in calibrating the carrier frequency of the control laser used
to implement a single-qubit gate on a trapped ion quantum
computer.

Before presenting the results of our experiments we briefly
discuss how BRPE can be adapted to implement Ramsey
spectroscopy.

A. Adapting BRPE for Ramsey Spectroscopy

Ramsey spectroscopy is an often used technique to calibrate
control laser frequency, ↼L, in trapped ion systems when the
laser frequency is offset from the transition frequency, ↼0, of a
target ion. The interaction Hamiltonian, HI , for this laser-ion
system is

HI =
#

2
(cos(↽)εX + sin(↽)εY ) +

ϱ

2
εZ (20)

where # is the Rabi frequency, ↽ is the laser phase and
ϱ = ↼L → ↼0 is the detuning from the resonance frequency.
From this Hamiltonian we can see the laser offset results in an
unwanted εZ rotation. Ramsey spectroscopy is routinely used
to detect and correct for the detuning parameter, ϱ. Similarly,
BRPE can also be used effectively to determine ϱ.

To accomplish this, we use target gate U = εI and treat
the εZ rotation which comes from the laser frequency offset
as the coherent overrotation of interest as discussed in section
III and simulated in section IV. Next we define a search space
[→ϱmax, ϱmax] where ϱmax is an empirically selected absolute
maximum expected laser frequency offset. Likelihoods are
modified to be

Lk,a(x) = cos2(ϱ̃⇀k + (1→ x)
ϑ

2
) (21)

Lk,b(x) = cos2(ϱ̃⇀k +
ϑ

4
+ (1→ x)

ϑ

2
) (22)

with

⇀k =
2k↓1

ϱmax
, k = 0, . . . ,K (23)

K = ⇑log(2ϱmax⇁)⇓ (24)

where ⇀k is a Ramsey spectroscopy wait time and ⇁ < T
↔
2 a

heuristically selected parameter. This selection of ⇀k ensures
the period of the initial likelihoods L0,a(x) is T0 = ϑ and the
final wait time, ⇀K ↗ ⇁.

B. Experimental Results

We experimentally implemented Ramsey spectroscopy us-
ing BRPE and RPE on a compact cyrogenic trapped ion system
[20]. The qubit is encoded in the hyperfine ground state of
an 171Yb+ ion, with state |0↑ := 2S1/2 |F = 0,mF = 0↑ and
state |1↑ := 2S1/2 |F = 1,mF = 0↑. Energy splitting between
|0↑ and |1↑ is 2ϑ≃12.642821 GHz [13]. Doppler cooling and
resolved sideband cooling [10] is used to cool the ion to its
motional ground state and optical pumping is used for state
preparation. The qubit rotations in our Ramsey experiments
are implemented using stimulated Raman transitions. We test
co-propagating and counter-propagating Raman transitions. In
both cases, transitions are driven with 355 nm picosecond-
pulsed laser beams controlled by acousto-optic modulators
(AOMs) and steered by micro-electromechanical systems
(MEMS) technology [4]. Co-propagating Raman transitions
are implemented with two tones on a single global beam, while
counter-propagating transitions are executed using the global
beam and one individual-addressing beam.

We first validate the accuracy and precision of BRPE and
RPE in our experimental setup and compare average absolute
errors. The Raman lasers are configured such that our effective
laser frequency, ↼L = ↼0 + ϱ is artificially offset from ↼0 =
2ϑ≃12.642821 GHz, the transition frequency of our qubit, by
an amount ϱ. An estimate of the offset, ϱ̃, and confidence score
0 ↗ Cs ↗ 1 is then calculated using BRPE with Mk = 9. This
process is repeated for →2ϑ≃ 600Hz ↗ ϱ ↗ 2ϑ≃ 600Hz with
2ϑ ≃ 50 Hz increments.

For both co-propagating Raman transitions and counter-
propagating Raman transitions BRPE is highly accurate and
precise with ϖ̄ = 7.5≃10↓3±5.3≃10↓3 radians for counter-
propagating Raman transitions and ϖ̄ = 1.46 ≃ 10↓2 ± 9.6 ≃
10↓3 radians for co-propagating Raman transitions. These
findings are visually represented in Fig.5a, which charts the
BRPE estimates across all tested offset increments.

Using the same experimental data we calculated average
absolute error for RPE to be 8.8≃ 10↓3 ± 6.5≃ 10↓3 radians
when using counter-propagating Raman transistions and 1.49≃
10↓2±9.9≃10↓3 radians when using co-propagating Raman
transitions.

In the regime where ϱ is small relative to ↼0, we anticipate
the gains from using BRPE to be minimal. Nevertheless, BRPE
remains the preferable protocol because, as ϱ increases, it
provides more accurate and precise estimates as demonstrated
in section IV.

Next, we focus on two specific instances of BRPE to
illustrate the effectiveness of our confidence metric. Fig. 5b
displays two BRPE posterior distributions calculated from
independent sets of experimental data. The plot in green rep-
resents a typical high-confidence posterior distribution charac-
terized by a distinct, single peak. This strong signal enables
BRPE to determine an estimate of ϱ̃ = →2ϑ ≃ 449.23 Hz
with a confidence score of Cs = 0.99 for an experimentally
introduced offset of ϱ = →2ϑ ≃ 450 Hz. In contrast, the
plot in red features a posterior distribution with two peaks
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(a) (b)

Fig. 5: a) The accuracy and precision of BRPE was evaluated in an experimental trapped ion system. For both counter-
propagating and co-propagating Raman transitions, the laser frequencies, ↼L, were artificially offset from the transition
frequency of the qubit, ↼0, by an amount ϱ such that ↼L = ↼0+ϱ. BRPE was then used to find an estimate, ϱ̃, of the offset. When
applied to co-propagating Raman transitions, BRPE yielded an estimate with average absolute error of 1.46≃10↓2±9.6≃10↓3.
For counter-propagating Raman transitions, BRPE provided an estimate with average absolute error of 7.5≃10↓3±5.3≃10↓3.
b) Two final posterior distributions produced by BRPE from independent sets of experimental data. The green plot shows a
high-confidence, single-peak distribution yielding an accurate estimate with a confidence score of Cs = 0.99. In contrast, the
red plot’s dual-peak distribution results in a low-confidence estimate (Cs = 0.34), suggesting a need to rerun BRPE.

of approximately equal amplitude but separated by several
hundred Hertz. In this scenario, BRPE is unable to deliver
a high-confidence estimate, resulting in ϱ̃ = →2ϑ≃245.83 Hz
with a confidence score of Cs = 0.34 for an experimentally
added offset of ϱ = →2ϑ≃250 Hz. This low confidence score
is a strong indication to distrust this estimate and rerun BRPE.

VI. CONCLUSION

In this work, we introduced Bayesian Robust Phase Estima-
tion (BRPE), an advanced version of Robust Phase Estimation
(RPE). BRPE stands out for its ability to produce estimates
with significantly lower average absolute error, requiring fewer
experimental trials compared to traditional RPE. Our numeri-
cal simulations demonstrated that BRPE can achieve estimates
with a 96% lower average absolute error when using a fixed
sampling count. Notably, this enhancement is consistent even
in conditions involving measurement, depolarization, and C-
SPAM errors. In practical applications, we successfully imple-
mented BRPE on a trapped ion quantum computer, confirming
its speed and efficiency in line with our simulation predictions.

Looking ahead, our research agenda includes plans to
validate BRPE’s performance on various hardware platforms,
further exploring its resilience against different types of errors.
Additionally, we aim to refine our confidence metric, enhanc-
ing its reliability. This update will provide experimentalists
with a more robust tool to assess the trustworthiness of the
estimates, facilitating more accurate and reliable quantum
measurements. Finally, in this work we focused on a non-
adaptive protocol to ease experimental implementation, but
future work will explore how the accuracy and precision
of BRPE can be further improved by incorporating adaptive
Bayesian techniques. .
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