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MAGNETIC RESPONSE PROPERTIES OF TWISTED BILAYER
GRAPHENE

SIMON BECKER, JIHOI KIM, AND XTAOWEN ZHU

ABSTRACT. In this article, we analyse the Bistritzer-MacDonald (BM) model (also known
as the continuum model) of twisted bilayer graphene (TBG) with an additional external
magnetic field. We provide an explicit semiclassical asymptotic expansion of the density
of states (DOS) in the limit of strong magnetic fields. The explicit expansion of the DOS
enables us to study magnetic response properties such as magnetic oscillations which includes
Shubnikov-de Haas and de Haas-van Alphen oscillations as well as the integer quantum Hall

effect. In particular, we elucidate the role played by different types of interlayer tunnelings
(AA'/BB’ vs. AB’/BA’) in the study of the DOS, and magnetic properties.

1. INTRODUCTION

It is arguably one of the most exciting recent discoveries in condensed matter physics that
by twisting two sheets of graphene at certain magic angles, the material exhibits a super-
conducting phase [C18]. The experimental discoveries were motivated by earlier theoretical
work [LPNO7, BM11] which introduced the continuum model of twisted bilayer graphene
(TBG). From this model they predicted the first magic angle by observing the appearance
of a relatively flat band of the Hamiltonian at a small twisting angle. To discuss our study
of TBG in magnetic fields, we first briefly introduce the BM model (see §2.1, [BM11]):

. . . . . ( HY, Te(a:)>
The BM model is an effective 4x4 matrix-valued Hamiltonian 0/ \\x 6], T €
(T%(x))"  Hp
R2, composed of two twisted-Dirac-operators H%, HBQ representing two isolated graphene
sheets, according to the Wallace model [W47] respectively, and a tunneling potential term
aoV(5) alU(=3)
aU(5)  aoV (%)
represent two different types of interlayer tunneling potentials. In fact, when two layers of

T(x) = where the diagonal potentials and off-diagonal potentials

graphene are twisted at an angle #, a macroscopic honeycomb structure of scale \g, called the
moiré pattern, is formed (by a purely geometrical superposition of two sheets of graphene;
see Fig.1). Then the two different types of interlayer tunnelings (see Fig.1) are respectively:

(1) the chiral tunnelings U(x/)g) and U(—x/)g) localized near the vertices of each moiré
hexagon, with tunneling strength a; and a stacking similar to AB’ and B A’-stacking;

(2) the anti-chiral tunneling V(z/\g), localized near the centers of each moiré hexagon,
with a tunneling strength o and a stacking similar to AA’/BB’-stacking.

Here A and B label the equivalence classes of vertices on the honeycomb lattice and atoms

on the lower lattice are indicated by a prime, cf. Figure 1. We refer to the BM model as
1
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F1GURE 1. On the left: Moiré pattern at twisting angle § = 5° with single
moiré hexagon on the right, with (A=red, B=blue) and (A’=green, B’=black)
denote vertices of two sheets of graphene respectively.

the chiral or anti-chiral model in the limit of purely chiral (ap = 0) or anti-chiral (a; = 0)
tunneling interaction, respectively.

While in the full BM model, the bands close to zero appear only approximately flat, it has
been shown in [TKV19, BEWZ20a, BEWZ20b, N21, NL22| that the chiral model exhibits
a perfectly flat band at the magic angle [TKV19, BEWZ20a] while the anti-chiral model
does not [BEWZ20b, LW21]. In our study of the magnetic response, we find that chiral and
anti-chiral tunnelings exhibit intrinsically different features for the asymptotic expansion of
the DOS in strong magnetic fields (see §4) which leads to different physical phenomena (see
§5).

In §4, we derive the explicit asymptotic expansion of the DOS in strong magnetic fields
for both models. We find that the magnetic anti-chiral model has a similar behavior as
a magnetic Schrédinger operator, where Landau levels in general split under perturbations
of electric potential, while the magnetic chiral model has stable Landau levels especially
at energy zero. Thus, chiral tunneling enhances the peaks of the DOS at Landau levels
which leads to an enhancement of physical phenomena including magnetic oscillations and
the quantum hall effect, which we discuss in §5, while anti-chiral tunneling weakens them.

Our study of strong magnetic fields originates naturally from the interest in analyzing
small twisting angles. In fact, as the twisting angle # decreases to zero, the scale of the
moiré hexagon \g ~ (sin#)~! increases significantly. Thus, by rescaling coordinates the
study of a fixed magnetic field at small twisting angle can be related to a fixed twisting
angle in a strong magnetic field, see also [D21, HA21] for further physical motivation. We
denote the two scaling in the following as adiabatic (see §2.3) and semiclassical (see §2.4)
scalings, respectively.

In particular, this means we provide the theoretical background for the study of the depen-
dence of Landau levels on small twisting angle that have been studied for a simplified model
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in [CHK11] and numerically in [MGJ20] for a tight-binding model. Furthermore, combining
with the study of chiral and anti-chiral tunnelings, we put the substantially pronounced
peaks of the DOS for small twisting angles at the Landau levels in [MGJ20, Fig. 2,3] on
a rigorous footing. Furthermore, our results can also be used to understand the impact of
strong pseudo-magnetic fields generated by physical strain.

Finally, we summarize all our main results in an outline of the paper below:

e In Section 2, we introduce the BM model with external magnetic field for TBG.
e In Section 3, we discuss general properties of the DOS.
e In Section 4, we derive asymptotic formulae for the DOS:
— of the chiral model: Theorem 1;
— of the anti-chiral model: Theorem 2;
— is termwise-differentiable with respect to B: Prop 4.9.
e In Section 5, we discuss physical applications of our semiclassical formulae.
e The article also contains two technical appendices to which some of the computations
and auxiliary results for the derivation of the DOS are outsourced.

Our approach to analyze physical response properties rests on a thorough asymptotic anal-
ysis of the DOS. Here, our approach is inspired by ideas of Helffer and Sjéstrand [HS89] who
studied the perturbation theory of periodic Schrodinger operators in strong magnetic fields
and Wang [W95], who studied fine spectral asymptotics for random Schrédinger operators
in strong magnetic fields. While Helffer and Sjostrand stopped at studying the spectral
perturbation for strong magnetic fields, the so-called Grushin problem, we obtain a full as-
ymptotic expansion of the DOS. This has also been obtained by Helffer and Sjéstrand for
weak magnetic fields [HS90] where the analysis relied on the semiclassical eigenvalue dis-
tribution close to a potential well. In our case, there is no natural well-structure and the
asymptotic expansion relies on an asymptotic expansion of the parametrix with a splitting
argument to overcome non-elliptic regions close to the real axis. Unlike in previous works
by Helffer and Sjostrand [HS90] and an article on single-layer graphene by the first author
and Zworski [BZ19], we resolve the issue of differentiability of the asymptotic expansion with
respect to the semiclassical parameter by relating the asymptotic expansion with the one
of the differentiated symbol, here. This expansion is needed for the rigorous analysis of the
DOS when differentiated with respect to the magnetic field which is relevant for both the
de-Haas van Alphen as well as the quantum Hall effect.

Acknowledgements. We are very grateful Svetlana Jitomirskaya for initiating this collab-
oration and to Katya Krupchyk for valuable comments and references on the semiclassical

expansion studied in this manuscript. This research was partially supported by Simons
681675, NSF DMS-2052899 and DMS-2155211.

2. INTRODUCTION OF MAGNETIC BM MODEL

We start by introducing relevant notation.
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Notation. Throughout this article we identify R? ~ C by x = (21, 13) ~ z = 11 + izy. We
denote by L the Lebesgue measure on R* ~ C. For functions of complex variables f(z, %)
we often just write f(z). If there exists a constant Cy such that || f||lg < Cug, we write
f=0u4(9)u. In particular, f = O(h*™)y means that for any N there exists Cy such that
| fllz < CyhY. We also use the short notations (z) := /1 + |z|?, B.(z) = {y : l[y—z| < r}.

We introduce the symbol class S(R*"; 7) := {p € C°(R?" x Rug; ) : Thg, for all vy €

N% 3c, >0 s.t. for all (z,§) € R*™ for all h € (0, hy) : D, ep(x,& h)| < Cv}- In addition,

let S§(R2,) denote the class of symbols a € C*°(R*" x Rxq) such that
0200 a(w, & h)| < Cagh™ ) for all o, 8 > 0.

We denote standard partial derivatives in direction x; by 0., and accordingly D,, := —i0,,.
The principal symbol of a semiclassical operator a(x,hD,) is denoted by oo(a(x,hD,)). We
say a symbol a has an asymptotic expansion in S¥, a ~ Z;’O:O aj, if a € S¥ and there is a
sequence of a; € S?j s.t. kj — —o0 as j — oo and a — Z;V:o a; € SN When k or § = 0,
we omit the respective sub and superscript. The spectrum of a linear operator T is denoted
by Spec(T). We also introduce rotated Pauli matrices ol = e”'%"?’akei%”?’, fork=1,2.

2.1. Moiré lattices and TBG. We recall from the introduction that by twisting two hon-
eycomb lattices with respect to each other, the emerging moiré honeycomb pattern exhibits
different scales \g at different twisting angles 6. Thus it is easier to characterize such macro-
scopic honeycomb structures using a “unit-size honeycomb lattice” of side length f/—%:

Let w = exp(%), ¢ = 4miw, (& = 4miw?. The “unit-size honeycomb lattice” is invariant

under translations along a triangular lattice I' = (GZ @ (oZ. We denote its unit cell, dual

lattice, and the Brillouin zone of the dual lattice by £ = C/I', T* = mZ @ neZ, and
* * UJ2 w

E* = C/I'*, where n; = o5 and gy = — 2.

2.2. Chiral and anti-chiral tunnelings. The chiral and anti-chiral tunneling potentials,

V and U, are smooth “unit-size” periodic functions (cf. [BM11]) satisfying for a; = Zmiw?

with j = 0,1, 2 the following symmetries
Viz+a;) =V (2), Viwz)=V(z), V(z) =V(-2), V(2)=V(-2),
Uz +a;) =wU(2), Uwz)=wU(z), UZ)=U(z).
In particular, since ¢; = 3a;, (» = 3ay, we have V(2 + (;) = V(2) and U(z + () = U(z) for

j=1,2. Thus V(2), U(z), U_(z) := U(—z2) are periodic with respect to I'. The tunneling
potentials on the physical moiré scale are then V(z/\g), U(z/Xg), U_(2/Xg).

2.3. Magnetic BM model with Adiabatic scaling. To introduce the BM model with
magnetic field we start with the physical or adiabatic scaling. Since we will immediately
change to a semiclassical scaling, we denote all objects with a ”"~” in this paragraph to
distinguish the two notations. Let A(2) = (A;(2), Ay(2),0) € C°(C;R?) be the magnetic
vector potential of a magnetic field perpendicular to the TBG. The tunneling potentials,
U and V| defined on the “unit-size honeycomb lattice” are then rescaled to the physical

b
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-5 0 5 -5 0 5 -5 0 5
(a) |[V|? for AA’/BB’-coupling.  (B) |U|? for AB'-coupling. (c) |U-|? for BA’-coupling.

FIGURE 2. Modulus of tunneling potentials for various coupling types.

moiré-size by rescaling coordinates by A\g. Thus the magnetic BM model is HO D(,%Z % c
L?(C;C*) — L*(C;CY)

20 o0, 5 (Hp O 0 7°

V' are given above and &; represent the tunneling strength, : = 1, 2.

), where \g, U and

2.4. Magnetic BM model with Semiclassical Scaling. We shall now rescale the Hamil-
tonian in the previous paragraph to “unit-size” and multiply the Hamiltonian by Ay to work
in another more convenient scaling called the semiclassical scaling: Let z = Z /g, c; = Ny,
Ai(2) = MA;i(N\g2z) (overall represented by a unitary operator U), we consider

HO() = N(UAT)(2) = (}éfg HOBa) + (T(Oz)* Téz)) — (), (21)

where HY = Y2 6%(D,, — A;(2)), or equivalently, HY = ¢~1%3 H,¢'1% where

i=1"1

o= (2 5) v (L = () o).

We denote the chiral model by 70 = #|,,—o and the anti-chiral model by S = |4, —o.

Remark 1 (Why strong magnetic fields?). Our study of strong magnetic fields in rescaled
coordinates is motivated by the observation that small tuisting angles naturally correspond,
for constant magnetic fields, to the limiting regimes o« 2 1 and B > 1. This provides the
basis of our study of large magnetic fields which we coin the semiclassical scaling.
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Ficure 3. Constant magnetic field: On the left, flat bands for chiral model
(cty = 1); in the middle (f = 0) and on the right (¢ = 7) non-flat bands for
anti-chiral model, (ag = 1).

2.5. The chiral and anti-chiral model. The chiral model is described by the Hamiltonian
(2.1) for oy = 0, such that upon conjugation by % = diag(e®?/*, e0o3/4 ¢0/4) . =
U A% it takes the form

= ) e (000 o A5 )

The anti-chiral model, with a; = 0, can be conjugated by a unitary V, with A = €', to a
Hamiltonian

0 \x* .
HO = VAV = ( 0 (Dac) ) with V = (Vl VQ) for V; = (M O) Vy = (O O) ,

Dl 0 V, W 0 0 0 —A
0 agV(2) eW2(2D; — (Ay(2) +iAy(2)))
Pac = (62’9/2(21% — (Ai(z) —iAy(2))) agV(z) ) '

The off-diagonal structure implies that for both the chiral and anti-chiral model with mag-
netic field, the spectrum is symmetric with respect to zero. In particular, let U := (03 ®idc2)
then it follows that UsU = —#, and UU = — 0.

3. DENSITY OF STATES

In this section we study general properties of the density of states and study the possible
values the density of states takes for the Hamiltonian of TBG.

3.1. General properties. In this subsection, we assume that the magnetic potential of the
Hamiltonian is of the form A = A, + Acon Where Ay, € C°(E) and Ag,y is the vector
potential of a constant magnetic field of strength B. Let f € C.(R) then we define the
reqularized trace

= L Tr(1p, f(£°) 1p,)
Tr(f(%e» - rli)r{.lo ’BRl
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where 1p,, is the indicator function of the square centered at 0 of side length 2R. By Riesz’s
theorem, there exists the so-called density of states (DOS) measure p satisfying

T((0e") = [ ) dpl) (31)
R
We start by showing the existence and smoothness of the DOS.

Lemma 3.1. For f € C%°(R) the regularized trace of f(#°) exists, satisfies

Te(f () = = Tepam (f(A7)) ‘E|/fjf9 (2,7) da,

|E|
and depends smoothly on B € R and 0 € R\ {0}, with Schwartz kernel f(H#°)(z,y) of
f(?).

Proof. Let N,, Ny CT'be N, :={C €T': (+F C Bg}and Ng := {(EF:(H—ECBR;A(Z)}.
Then

=|JE+¢cBrc |J E+(= 5k

CENr CENR
Thus for nonnegative f,
1 1
= Te(ls, f(7)) < 5 Te(lp, f(H7)) < (Lsy, F(A7)). (3.2)
Skl | Br| |15 ]

Furthermore, by definition, we see that for some C,C’" > 0, for all R,
#(Nr\ N,) <CR, and |Sg\ S, <C'R. (3.3)

By standard magnetic translation T., which are defined e.g. in [BKZ22, Lemma 2.1] of our
companion paper, satisfy [T¢, #°] = 0, therefore also [T¢, f(#?)] = 0. Furthermore, since
Te 1gpic T ¢ = 1, thus Tr(1gc (7)) = Tr(1g f(7)). Hence,

Te(Ls, f(7)) = Y Tr(Lpic f(A7) = (#N,) Tr(1p f (7))
CeNr
and similarly Tr(1g, f(#7)) = (#Ng) Tr(1g f(5£7)). Inserting this into (3.2), taking R —
oo we get by using (3.3) that
1

17 oo (F().

Te(f(A#)) =

To conclude the smooth dependence on 6 and B, it suffices to adapt the arguments starting
at [S5)89, p.251].

O
In the next Proposition, we show that the integrated density of states of the twisted bilayer

graphene Hamiltonian is stable under small perturbations of the magnetic field that do not
close any spectral gaps.
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Proposition 3.2. Let the magnetic vector potential A = Acon + Aper be the sum of a lin-
ear potential associated with a constant field By and Ay € C®(E). Assuming to,t; ¢
Spec(#9), there exists a neighbourhood B C R, open, connected, with By € B as well as
m = (my,mq) € Z* such that for any perturbation of the constant magnetic field B € B,
to, t1 & Spec(s#%) the DOS satisfies

pl(tart2) = (S ma ).

Proof. By density, we may assume that By|E| = 2mt € 2rQ. This implies by choosing A = ¢
that By|Ey| € 27Z. Let A,x be the n-th Bloch band of 4? for n € Z on k € E;. The

spectrum of J#? has band structure and is given by Spec(#) = U, J,, where J, = | Ak
KEEL

Let to, t1 & Spec(5#%). We call Z the set of bands fully contained in (¢y, ;). In terms of
k > u, ) given by the eigenvectors associated with A,y spectral projection of 4’ is given
by

ﬂ(to,tl)(%e)vk(x) :/ ]l(t(),tl)(t%’f)(x,y)vk( )dy with Lo 1) % Zujk T)ujx(y).
12 jET
So the spectral projection L, 4,) (2 fE (tot) )|E* Up, of A is

) dk
]l(to,t1)(%0)u<x> - /]R ]1(to,t1)(jf€>(xa y)u(y)dy with ﬂ(to,tl)(%e)(xay) = / ﬂ(to,tl)(%e)(xa y)m
X A

A
Since tg,t; ¢ Spec(2#?) and let N := |Z|, then by Lemma 3.1

- N
= [ 1 § : = t. Tr(1 ) = .
p((t07tl)) /E‘)\ (to,t1) ( flf [L' ‘E)\‘ /* A 47'('2 ’E/\‘ s.t I'( (tO,tl)(% )) ’E)\‘

If f € C=(R), such that f(z) =1 for z € convl], J,' and f(z) = 0 for x € Spec(H#7) \

conv | J,, J,,, then
N
p((to, t1)) = /Rf(t)P(dt) =B

Recall that By|E| = % = 2rL € 27Q. We then introduce a new lattice rcr
generated by ¢; = ¢, and ( = (. Then B,y|C/T| € 2nZ and |T'/T| = q. As before, if
to, t1 ¢ SpeC(%9>, then

By|E|

— 7+ 7
o +

O(Ba) = | B[ TRy () = |Elol(t0, ) = B [ F0)dt) € 2.

where the last inclusion follows since p, ¢ are coprime i.e. there exist ¢,d € 7Z such that
cp+dq = 1. Note that if zy € R\ Spec(.5#"), then there exists ¢ > 0 such that 2z ¢ Spec(#")
for all |z — zo| and small perturbations of the constant field |B — By| < € and ¢(B) is locally

Leonv is the convex hull
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a smooth function of the constant field B by Lemma 3.1, so there exists By € B C R open,
connected and m € Z2 such that for B € B,

B|E]
to,tl f |E‘ mi o mo |.

4. SEMICLASSICAL EXPANSION OF DENSITY OF STATES

In this section, we provide explicit asymptotic expansions of the regularized trace in the
semiclassical limit B > 1 for constant magnetic fields in the spirit of Remark 1 for the chiral
and anti-chiral model respectively. We also comment on the differentiability of the DOS at
the end of this section in preparation for applications in the next section.

We consider (2.1) with fixed 6 and constant magnetic field B:

9
A= AV (1) = (Hg)D H?f) 4 (T*(z@ Té“")) | (41)
Notice that the spectrum of % is composed of Landau levels A, p := sgn(n)+/2|n|B (see
Lemma 4.2) which we will perturb by the tunnelling potential ¥ (see Remark 3). To simplify
the notation, we therefore introduce Landau bands Ny gy := (An—1.8+ | |lcos Ans1.8— |7 [|o0)
for n € Z, in which the spectrum of #? is contained around the n-th Landau level ), g, cf.
Remark 4.

We start by stating the main result of this section which is the asymptotic expansion of
the DOS for the chiral model.

Theorem 1 (Chiral model). Let A, p = sgn(n)+/2|n|B. For a fivted n € Z, for ¢ > 0 small
enough, for all f € CX(A,py), with K > % —2, we have

T/ () = | 2 ) + 50 AVl )| + Ouepr (B759) (42)

with 4(n) = % [a3(U_ ()] = [Un)2)? + 4105T_(1) — ,U ()], Avelg) = & [ 9()L(d),
=2y + i, and On . ry = On([|7 [|sc|[ fllcx)-

Furthermore, fit N € NT and consider 2N + 1 Landau bands with n € {—N, .., N}, then
for all e > 0 small enough, for any f € CE(IA_(nt1).8 + [|¥]locs ANt+1,8 — H”I/HOOD with

K25—2 we have

T‘ﬂf(%)) = Z [gf()\” )+ \n\ Ave(Ll)f (/\n73)} + O(N),K,f,V(B_%+E)

where Oy i.rr =y, Onkfyr.
n=—N

Our proof also shows that all higher order terms, which in general have complicated
expressions, in the expansion of Tr(f(s%)) are of the form f*)(\, ) (see (4.33)), which is
different from the anti-chiral that we consider next.



10 SIMON BECKER, JIHOI KIM, AND XIAOWEN ZHU

For the anti-chiral Hamiltonian the sub-leading correction in the regularized trace is al-
ready of order v/B. Since the dominant sub-leading correction in the anti-chiral case is one
order higher than in the chiral case, we only state the correction up to order v/B.

Theorem 2 (Anti-chiral model). Under the same assumption as in Theorem 1, we have for
all e > 0 small enough, f € CE(A, py) with K > 32 —1

T ) = Ltalr) ~ L2

2m
where Oy i 5.7 = On(|V ||l fllox ) and
tno(f) =Ave (fnp +cn) + fnp — )y tar(f) = Ave (s2f (Mnp + ) + sof (Anp — cn)) s

(7)) sin [% , Qg COS 0 o 7
%mﬁz{ WV %m@:{ GV n

tn1 (f) + On k1,7 (B7), (4.3)

1
,Ave(g) = — dL(n).

Furthermore, fixt N € Nt and consider 2N + 1 Landau bands with n € {—N,..,N}. For
any e >0, f € CE(Anvo1,8 + |7 oo Ans1 — |V ]|c)) with K > 2 — 1, we have

+ Ow).1.x,7(B%)

Te(f(A0) = ) lgtn,oﬁnz—‘/ftn,l(ﬂ

N
where O(N),K,f,‘l/ = Z OH’K’f7/y/.
n=—N
For the rest of this section, we shall temporarily stop using the identification z = (x1, ) =~
z = x1+izy. We will use the Landau gauge for the constant magnetic field, i.e. A(z) = —iBx;
in 4.1. In this setup, Let ¥/ = diag(c?, 0;%). We can rewrite (4.1) as 7 = ¥ID,, +%9(D,,+
Bzy). We will only use x = (21, 22) to denote the position, while z is used in the resolvent

(0 — )7L,

Quantizations. Let © = (1,22), £ = (£1,&) € R®. For a symbol a(z,§) € S(R; ), we
define the (hy, hy)-Weyl quantization " (x, hyD,,, hoD,,) : L>(R%) — L?(R?) as

r+y
2

(@ (0. Doy Do) (o) = 5 [ el (220 ) ugy) dy ae. (1.0
In this section, we shall employ two different quantizations: in Subsections 4.1 and 4.2,
we use the (hy,hy) = (1,1)-Weyl quantization. Starting from Subsection 4.3, we use
the (z2,hD,,)-Weyl quantization of the operator-valued symbol which is related to the
(h1,ha) = (1, h)-Weyl quantization (see Subsection 4.3 for more details). Occasionally, we
denote a" (z, hyD,,, haD,,) by a'V for convenience.

4.1. First Reduction: Symplectic reduction. In this subsection, we first apply a sym-
plectic reduction to 5%, then provide a spectral description of £ and 5. In the end, we
introduce the Helffer-Sjostrand formula for our study of the regularized trace Tr(f(27)).
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Symplectic Reduction. Let (hy,hy) = (1,1) for this subsection. Then the operator 7
and ¥, when viewed as a (1, 1)-Weyl quantization, have symbols S (x,€) = X9&, +39(& +
Bz;) and ¥ () respectively. The following lemma provide the symplectic reduction of .7

Lemma 4.1. Let h = 1/B. Then there is a unitary operator % , symbols G0 (x, &) = $9& +
S92y and W (x,€) = ¥ (o + W'y, héy — h12&), st

U A (x, D)W " = VBG! (2, D,), (4.5)
wY (&)U~ =9V (x,D,). (4.6)

Remark 2. Notice that 92 (x,€) does not depend on (15, &), thus the (1,1)-Weyl-quantization
is 99 (x, D,) = (24D, + X921) ® Ip2r,,), where M2, ) is the identity map on L*(R,,).

Remark 3. It follows that % #°U " = VB(4 + Vhw'"). When B — oo, we can
interpret 9% .= G0 +h#'W as a small perturbation of Y.

Proof. Recall that a symplectic transformation (y,n) = k(x, &) applying to a symbol a(zx, ) =
ao k' (y,n) € S(R?), induces a unitary operator U, : L*(R2) — L*(R?) s.t.

Uea" (2, DU = (a0 k™ )W (y,D,). (4.7)
By applying the following three symplectic transformations to 5 (x, £):

ki(z, &) = (21,2, &, —22), kKo(x, <$1+%7I2751,§2—%1>7
K ( ) <\/_331,——, 2
we find

§) =
A o kit oyt oy (w,6) = VB(X{E + Xha), (4.8)
¥ onytorytoryt(x,6) = ¥ (s + hiay, hés + h3gy). .

By (4.7) and (4.8), the unitary operator U, := Uy, oU,, oU,, has then the desired properties.
0

Spectral Descriptions. As mentioned in Remark 3, we study the spectral properties of
4% and A% by viewing them as perturbations of 4¢ and . Therefore, we start with ¢/
and 7

Lemma 4.2. The spectral decompositions of 42 and ) are given by
Spec(4Y) = { A, :=sgn(n)\/2|n| : n € Z} with eigenspace N,
Spec(47) = {\u.p :=sgn(n)y/2[n|B : n € Z} with eigenspace % N?

where

N® — span { (:U = ul (21)81(22)

0 ) 2
0 > : (x = ugg(xl)&(@)) : Forall s1,50 € L (Rm)} :
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1

i i _ —7=, e Z 0
Here uf = 6_19”310”6?0”3, u, = C, (sgn(.n)rm 1), C, =< V2 " \ }, as well as
|| 1, n=>0

22
7.1 =0, = C" (Dy, + iz1)"e"2 where C', is constant s.t. Irmllz2@,,) =1 form € N.

. . . 0
Proof. The main observation here is for Gp 1= 01D, + 09721 = <a* 8) where a = D,, —

izy, we have [a,a*] = 2. Thus a and a* form a pair of annihilator and creator. By the
standard argument for the ladder operators, there is a sequence of normalized r,,(r1) =
! - (a*)me 2 = C' (Dy, +izy)me 2, for m > 0 st. ar, = V2mr,_; and a*r,, =
V2(m + 1)r, 1. Then one can check by computation and (4.5) that u?, N? and % N?

defined above are eigenvectors and eigenspaces of 4¢, 4Y and % with respect to eigenvalue
Ans A and A, g, for all n € Z. O

Remark 4. Since #° = A+, thus Spec(H#°) C Bjy.. (Spec(HY)) = U Bjy|jo. (An.B)-

Fizn, since ¥ is bounded, when B is large enough, {BW/'lw(/\j’B)}l | are disjoint. Since
7—n|<1 R
the DOS measure p is supported on the spectrum, by (3.1), the reqularized trace Tr(f(27))

is not affected by modifying f within the spectral gap (Mg—1.8 + || |loos Moz — |7 ]|o0), i-€.
Tr((XAkyByf)(t%”g)) = Tr((XBW”OO(,\qu)f)(%”@)), for any k € Z. Thus we will start with
f supported on a fixred A, gy to avoid the influence of bands nearby and then consider the
general case of f supported on a fized number of bands (see Theorem 1, 2 and their proofs
in Subsection J.5).

Remark 5. Both A\, p and )\, are called Landau levels of %9 and %9 respectively. To
study the corresponding operators near the Landau levels, we denote )’ = #° — \, g,
%‘?n =Y — A\up, 90 =97 — \, and %(fn =90 — \,.

n

Helffer-Sjostrand formula and regularized traces. We proceed by recalling the Helffer-
Sjostrand formula. Let K € N. Given f € CETY(R), we can always find f, an order-K
quasi-analytic extension of f, by which we mean a function f € CKX+1(C), such that

fle = f, and |9:f| < C||f|lcx+1|Im z|¥, for some C > 0. (4.9)

The concrete construction can be found in [AJ06, Sec. 4.1] or [DS99, Theorem 8.1], where
we can also choose f s.t. supp(f) D supp(f) is arbitrarily close to supp(f). We omit the
proof which can be found in the quoted references.

Lemma 4.3 (Helffer-Sjostrand formula). Let H be a self-adjoint operator on a Hilbert space.
Let f € CETY(R) and f be its order-K quasi-analytic extension, then

F(H) = % /(C 0. (=) (= — H)"\dz A dz. (4.10)
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In particular, for f € CETY(A, g y), define fo(x) = f(x+\, p) a function localized around
zero. By Remark 5, (4.5) and (4.10), we have

U H AU = U o HVU — _21 / 0o Fol(2) (2 — U AU dz A dz

\/%T c (4.11)

=50 [ 0de) @) V) de A
27T C

Thus to study f(.5#?), it is enough to study the resolvent (4¢ — v/hz)~".

4.2. Second reduction: Grushin problem. In this subsection, we apply the Schur com-
plement formula twice for operators 4, and 47 to characterize (¢ — Vhz)~! using the
effective Hamiltonian. In our context, the Schur complement formula is also called a Grushin
problem and we shall use that terminology in the sequel. See [SZ07] for more information
on Grushin problem.

Unperturbed Grushin problem. To set up our Grushin problem, we introduce the space
Bt = B*R,,;C") := (14 D2 + 2%)"2L*(R,,;C*). Then

g@

0,n?

are bounded. Define R} = R}(0) : BY ® L*(R,,;C) — L*(R,,;C?) and R, = R, (0) :
L2(Rx2§ C?) — B:Z ® L2<Rx2; C) by

9% Bi'® L*(R,,;C) = BE ® L*(R,,;C) C L*(R2;C*)

(Rft)(z9) = /RKS(xl)*t(xl,xg) dz, and R, (s)(z) = K°(x,)s(x,) (4.12)
with
woe) = (" ) (113

Then (R})* = R,,.
First, we consider the Grushin problem for the unperturbed operator %(f "= Vhz:

Lemma 4.4 (Unperturbed Grushin). Fiz n € Z. Let R} and R, be defined as (4.12). Let

RT 0/

n

Pon = Pon(z;h,0) = (
Then Py, is invertible iff Vhz & {\m — M\ : m #n}, and the inverse is

Ey,, Eon
(c/‘om = (Pom)_l =: (EOO’ - Ez’ ’1) (414)

where Eypy = Ry, By = R, Egni(z;h) = Vhz Ieaxe and
()0

u

KA (K8’ (5 ) (4 2)

Ef (zh) = e = - = (% 4.15
(1) mzyén)\m—kn—\/ﬁz mzﬁl Am — An — Vhz g (415
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with A, = sgn(n)y/2|n|,n € Z. Furthermore, we have
Eo’n,,(ggn — \/Ez)E(m,Jr =—Fon+ and
(goéin - \/Ez)il = EO,n - EO,n,—&-(EO,n,:t)ilEO,n,—‘

Remark 6. One can verify that Ef,, maps Nf to 0 and N}, to #ﬁa\/ﬁz if m # n.

Perturbed Grushin problem. Next, we consider the perturbed Grushin problem for

4% —\/hz.
Lemma 4.5 (Perturbed Grushin). Let RE, #'V be defined as (4.12), (4.6). Let

0 —
P, = Pulz:h,0) = (gn RQ/EZ %ﬂ) = Py + VAW

where W = diag(#,",, 022). Fiz n € Z, there exist hy = min 1 A=A , s.t. for
4x4

2[# oo’ 417 |l
all h € [0, hg), P, is invertible with inverse

- E, B,
En = (Po) = (E L 1) (4.16)

which is analytic in |z| < 2| # ||co- En+(2) : L*(Ry,; C?*) — L*(R,,; C?) is called the effective
Hamiltonian and satisfy

Eni(2)=vh <z RV +\/ﬁEo,n7/W)*1R;> —Vh(z—2Z%). (417

In addition, we have
En (4 —Vhz2)E,, = —FEn+ = VhE,_E,, = 0.E, 1, (4.18)
(@) —Vh2)' =, - B, E,;\E, _. (4.19)

Proof. Let hy be defined as above. When h € [0, hy), |z] < 2||# ||, we have
Vhz & {\p — Ao :m#n} = Py, is invertible with || Pg,|| > 1.

VA|W|s < 3 = P, = Py, + VhW is invertible with inverse &,.
|Vhz| < w = by (4.15) and (4.14), Ey ,(2) and &y, (z) are analytic.
Furthermore,
En =Py = (I + VIPIW) 'Poy = (=1Yh? (€, W) Eo -
=0

In particular, we get from the (2,2)-block of P! that
B, 1(2) = Eoni(2) + Y (=10 Eq W (Bou#™ Y Egt
j=1

= Vhz —VhRI WY (A+VhEy, #"V) 'R, .

In fact, by direct computation, one get that Ej,, £, + and E, _ can all be represented by
entries of &, which we proved are analytic, thus &,(z) is also analytic.
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In the end, (4.18) and (4.19) follows from &, P,E, = P, and the diagonalization on P,,. O

4.3. Properties of effective Hamiltonian. In this subsection, we proceed with our study
of E,.(z), E.L(2) and 0.E, 1 0 E;li, with their symbols denoted by E, i(x2,&; 2, h),

E;l (29, &; 2, h7) and r,(x9, &5 2, h) = 6zEn,i#E;i(x2, &5 2z, h). Apart from analyzing bound-

edness and asymptotic expansions of symbols, we are especially interested in understanding
the z-dependence and z vs. h competition of the symbols.

Before starting to analyze these properties, we introduce a key concept of this section: the

operator-valued symbol and its quantization.
Operator-valued symbol. Let 0" (x3,&;21, Dy,) € S(R2, s L(BE; BE))), which we

shall call an operator(-in-(xy, D,,))-valued symbol (in (z9,&s)), then its (xq, hD,,)-Weyl
quantization is defined as 0" (29, hDy,; x1, Dy, ) + L*(Ry,; BEM™) — L?(R,,; B% ) such that

ez dyod.
(b (2, hDyy 71, D, Ju) () = /6(2'?2)62 (bw (#»52;$17Dx1> U) (z1;92) gz h&'
T

In particular, if we have a symbol a € S(]Ri’g), and we view (xq,&) as parameters and
consider the (z1, D,,)-Weyl quantization of it, we get a"(z, D,,,&>) which is an operator-
valued symbol in (z9,&) (the superscript w represent the (x1, D,,)-Weyl quantization). If
we do a further (x9, hD,,)-Weyl quantization of a*(z, D,,, &), then we get the (1,h)-Weyl
quantization defined in (4.4).

Remark 7. For the rest of this section, given an operator, e.q. 9, E,+ and W"W in (4.5),
(4.16) and (4.6), instead of viewing them as the (1, h)-Weyl quantization of the scalar-valued
symbol in S(R ), we will view them as the (xq, hD.,)-Weyl quantization of the operator-
valued symbol in S (Ri%&; L(B; B’;’f)), for appropriate ki, ko € Z.

In particular, since 92 only depends on (w1, Dy,), E, + only depends on (x2, hD,,), #V (x, D,)
is the (1,h)-Weyl quantization of the symbol ¥ (xy + Vhay, héy — VhE)), we see that the
operator-valued symbol of 4¢, E, + and #'V are respectively

2%1 + EgDm, By, +(9,62;2,h), and 77w(13, Dyy, &) = V" (12 + ﬁx1;€2 - \/EDxl)
where f(x,€) = f(xo + Vhay, & — Vh&). And since now
UV (x)U ™ =#V(x,D,) = VW (x, Dy, hDs,), (4.20)

we will use ¥V to replace WV in Lemma /.1 and 4.5. Finally, we mention that the proof
of Lemma 4.1 implies in general

U f(x)% = fV(z,D,,,hD,,). (4.21)

Boundedness with z dependence. We now study the boundedness of the operator-valued
symbol E,, 1, E; L and r, as well as the z dependence of them.

Notice that since E, 1 only depends on (x9, hD,,), when viewed as a (22, hD,,)-Weyl
quantization, its operator-in-(x1, D, )-valued symbol coincides with its Cyxo-valued symbol.

For convenience, we write S¥ (R;@; Caxz) as S¥ and omit the “0” in § and k.
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Lemma 4.6 (Boundedness). Let hy, E, + be as in Lemma J.5. Then for all h € [0, hy), we
have the symbol of E, v, E, i+ (x2,&;2,h), belongs to S~z uniformly in |z| < 2|7, i.e.
for any o, B > 0, there is Co 3 = Copn(]|?||e0), s-t.

sup H(‘?ﬁg@éEni(a:g,fg;z,h)HCQXQ < Ca757n\/ﬁ, for all 1z] < 2|7 |-

(x2,62)€R?

Furthermore, if | Im z| # 0, then we also have that for all h € [0, hy), |2] < 2|7 ||, @, 5 > 0,

0% 9. B ;2 h <C 1 G b2 | Tm z|~Uel+IED=1 (422
H x2Yey n,i(x27€27z7 )H(szz > Lo, pn IAX ’|Imz|3 ’ mz‘ ) ( . )

o (‘35 -2 h <C 1 Lﬂ I —(lal+18])-1 4.23
H o §2T’n($2,£272, )H(C2><2 > Cg,n Max ’|Imz|3 ’ 1’I12| . ( . )

1
In particular, if 0 <6 < i and |Imz| > h°, then E;} € S§+5 and r, € S2.

Proof. When h € [0, hg), |2| < 2|7l En+ is a YDO because P, is. In fact, by check-
ing term by term, we have the operator-valued symbol Py (z, Dy, &) € S(RZ . ; L(BEH x

C? Bf x C?)). By invertibility and Beal’s lemma, &£,(3,&;2,h) € S(RZ, . ; L(BL!
C? BE x C?)). In particular, we have
R € S(RE, ¢ L(B;,; C%)), Ry € S(RY, ¢, L(C% By)), (4.24)
Ey, € S(Riz’&;ﬁ(Bil; B];;rl)), Y e S(Ri%&; E(Bg’;jl;Bﬁl)).

Furthermore, by (4.15), when |\/Ez\ < M, Ey,, is uniformly bounded. Thus E,, 1, 0,E, + €
S~2 uniformly.
Then we consider E, i and r,. Let Iy, ly, --- be linear forms on R?

. Let L; =
2,82 J
lj(x2, hDy,,). Since E, 4 o E L = I, we get

ady, B} = —E, oady, E, 10 E,},
where adp, A = [L;, A]. Since ady (Ao B) = (ady, A) o B+ Aoadg, B, thus

ad, (0.En 0 E, L) =—0.E, 0 E, L oady, B, 10 E,\ +ady, 0.E,+0E, .
By (4.19), |[VAE L|lcsrr = O(|Tm 2|7Y). Recall that E, 1, 0,E, . € S73, thus

h

| Im 2|

h
lady, (VAE Y lleans = 0( ) and || ady, (9. Ep s 0 B4 )llesss = O (—) .

| Im 2|2
By induction,
— N
ladp, o+ oadpy (VRE,Y)|c,, = O (W)
ladz, 0+ 0 adpy (0.Enz © Exb)les = O (i)

By a parametrized version of Beal’s lemma, [D599, Prop. 8.4], we get (4.22) and (4.23). O
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Asymptotic Expansion with z dependence. We proceed by discussing the asymptotic

expansion of E, 1, E,} and r,. Again, we are concerned with z-dependence of each term

n,

in the asymptotic expansions. In order to focus on the main points, we outsource further
details concerning the asymptotic expansion of £, 1 and E, !, c.f. Prop. A1, and its proof
in the Appendix A, and present a shorter version here that only summarizes the results that

we eventually need in the sequel.

Lemma 4.7 (Asymptotic expansion). Let hg, E, + be as in Lemma 4.5, 0 < 6 < 1/2. If
h€[0,ho), |2] <2(|¥ oo, | Im 2| > RO, then vy (s, &o; 2, h) = 0, E, 1 #E, } has an asymptotic
expansion in S§:

(G+1)6-14

rn(x2, &5 2, h) ~ Zh%rn,j(xg,ég; z), with h%rn,j € S; (4.25)

More specifically, there are d,, jx1(T2,62; %), €njra(T2,62) €S s.t.

J k
Tnj = Z 2= 2n0) " H nogidod (T2, 625 2) (2 — Zn,o)fl} , (4.26)

k=0 =0

k jH+k—2
with H A jei(Ta, €23 2) = Z 2% jkal(T2,&2) and z,o given in Prop. A.2. Let R, ; =

a=

Zo hwn], then R, j € S AR , i.e. for all a, B > 0, there is C&,ﬁ,n s.t.
j
sup  |0%98 Ry g < CL g, hz =030l (4.27)
(z2,62)ER? 2 '

Furthermore, for the expansion of Trez(ry,), we have for n = xq + i&s,

1 2 A2
Chiral 42, (J =3) : Tre2(reno + h2rens + hrepns) = — ot 0+ ”5.1( )h,

(4.28)

2 2
Anti-Chiral 27, (J = 2) : Tre2 (Faemo + h¥Taenn) = ——— + sal# ) o

22 (Eoa)

where () = % [a2([U_(n)[2 — |U(n)[2)? + 40,0 (n )—&,U(n)P], Oy = 3(0ry—10g,), sn(n) =
{aosin<§>|v<n>\ nEO e {aocos<%>r (] n#0
aolV(n)| n=0, " a0V (n)| n=0.

Remark 8. Notice by Prop. A.2, z,0 = 0 for the chiral model. Thus we have r,; =

) .
> A k(w2 &) for appropriate fu ik € S when j > 1.
k=0

4.4. Trace formula. Now we are ready to characterize Trf(#)) using E, + and still use
the operator-valued symbol and (z5, hD,,)-quantization in this subsection.
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Lemma 4.8. Let E, + be as in Lemma J.5. Let f € CETY(A, g y) and fo(z) = f(z + M\.B)
be as in (4.11). Then the reqularized trace Tr(f (%)) satisfies

Te(f(7)) = —MQ;M/C/E@JEO Trez (1 (w9, &25 2, b)) dg d&s dz A dZ, (4.29)

Lemmas needed for the following proof are outsourced to Appendix B.

Proof. By (4.11), (4.19), and the analyticity of E,(z) when h € [0, ho), |2| < 2[|7]|co,

T i
UL AU = _%_/agfo(EHE;’;En,_)(z) dz N\ dZz.
C
Thus we have
Tef(A) = tim s Ty (U J() 1) = i — T (I 2 [y 2 1)
od4R2 AT )T posoarz VR R
2 .. ivh

- 1%1—{%0_87TR2

Tr, < / 0:fo(ly By ExAE, 1) dz A dz)
C
2 lim _Z_\/; / 9. fo Tty (ll;VEn7+E;1iEn7,]12/) dz A dz

4 .
L Jim 87TR2/<9f0T1r2 <]1RE B, E- i11R) dz A dz

/8f0Tr2 <]1R8 o i]lR) dz A dz

R—o0

g lim _1671'2hR2 / 05 f[) /RQ Trcz ]13#(9 En i# i#]lR) dl’g dég dz Ndz

7

- _47r2hyEy /C[Eazfo Tree (@Eni#E;i) dxry déy dz Ndz

where % lp %' =: " follows from (4.21). Here, ﬂ_{V = Tl;v(xg,th) where Tg(1,&)
coincides with 1 R(xl, xg) but is viewed as a function of phase space variables (x4, &) rather
than x. In addition, Try := Trpe(rz,ce), Tra := Trre,, c2).

The second line follows from the Helffer-Sjostrand formula in Lemma 4.3. The third line
follows from Lemma B.3, where we proved 1} E. E,LE,_ 1} is trace class. The fourth
line follows directly from Lemma B.4. The fifth line follows from (4.19). The sixth line
follows from

1

T £(12(R oy Hy )12 (R 2)) (@7 (T2, R Dy, )) = oy

/ Trr a1, (a(22, &) )dradEs.

z2,82

The seventh line follows from periodicity of #” and thus periodicity of 0.E, +#E,, !, which
follows immediately from its asymptotic expansion. O

4.5. Proof of main results. Now we can prove our main Theorems 1 and 2:
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Proof of Theo. 1, 2. Let 0 < § < 1/2. Assume f € C¥T(A, 5y). Let fo(z) := f(z + \n.B)
which is supported on a neighbourhood of 0. Recall by Lemma 4.8, we need to compute

Tr(f(%f)) = —m /L; /(; 82f0 Tr(c2 (7””(1‘2, 62, Z, h)) dz N dz d$2 d£2 (430)

We can rewrite the integral with expansion 7, = Z}];ol h/%r, ; + R, ; as in Lemma 4.7

J-1
{ / = fo Trea (ry)dz A dz] (29,69 h) = / 0:fo > h?2 Trea(ryy)dz A dz
C C §=0

+ / 82]?0 Tr(cz(Rn”])dZ Ndz
| Im z|>h9

+/ 82];0 Tr62(Rn7J)dZ ANdZ := Al + A2 + Ag.
| Im z|<hS

Notice that by Remark 4, we only need to consider fy supported at |z| < ||#]|, for which we
can pick fy s.t. fo is supported inside |z| < 2[|# || for the integral. As in Lemma 4.7, we
take J = 3 in the chiral case and J = 2 in the anti-chiral case.

First of all, we compute A; by (4.28) and the general version of Cauchy’s integral formula,
see [Ho03, (3.1.11)]: Let X be an open subset of C. Let g € C*(X), with m > n then

2mig™(¢) / 0:9(2) — =~y dz Ndz. (4.31)

In particular, take X to be a small open neighborhood of supp(fy). By (4.31) and the
definition of fy, we have

A= /C@ng E + %M(n)h] dz A\ dzZ = 2mi {Qf()\m )+ )\"Ll( ) ()\n,B)h:| ;
L S s2vVh N s2Vh

dzNdz
z2—cn z+e (z—cy)?  (2+c)? wheE

Al,ac—/aZfOTr(C2
C

=27 [f (A + €0) + F Qs = ) + f' Qs + )52V + [ Qs = ea)s2VR]

For Ay, by (4.27) and |z| < 2||7||s, when | Im 2| > R°, there are C,,, C’, > 0 such that

Al < [ ufolCuh L) < Ol w7
[ Im z|>h
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Finally, by (4.9), (4.23), (4.26), 0 < 6 < 1/2 and |2| < 2||#||~, we have for some C,, ;, Cl
J-1
| Trez (ra)| + Z

|As| < / 10: fol
| Im z|<hS =0

= Im 2|* mi g A dz
‘/umz|<hs”f foxlm lmax<|1mz| |1mz|4> Z|Imz|]+l] o

J—1
< 200 fllesen ¥ 1 [m (103, 0=0943) 4 37 s ]

Tl'c2 (h%ij)

]dz/\di

M\u

< O Flloxa || ¥ ]JsohE12,
Define C,, i s v = max(C, CL, CO|Y |lo || fllcxc+1. We see
§_ - —
|Agel < Cricprh?™ |Agael < Criyrh™®, |As] < Cpue iy B0

Combine the estimates of A;, Ay, Az, and plug them into (4.30), we have

~ 1 n| ., 1 —1)6—

Trf(H2) = %f()\n,B) + %f (An.B)U(1) + Oy i gy (R2749 4 pE=DIL w32)
4.32

= oy L 1 _35 | 3 (K—1)5—1

T () = grrtanf) + ot (1) OU 4+ H57)

where t,, O(f) Ave[f()‘n B—Cn)+f(An B+Cn)]7 tn l(f) = Avel[s 2f(An,B_Cn)"i"sif()‘n,B""Cn)]v
and Ave(g) |E‘ J& 9(n)dn. Thus we proved (4.2) and (4.3).

In general, fix N € NT and we consider 2N + 1 Landau levels centered at 0. Let B be
NN
large enough such that {Bll'i/noo()\n,B)} do not intersect. For any f € CET(A\_(ni1),5+
n=—N
17 |l oo, ANt1.8— 17 ||0o), by Remark 4, values of f on the gap do not contribute to Tr(f(#7)),
thus we can apply the partition of unity of f on {An,B,/y/}iV:_ n» e find f, such that

N

f= > foandsuppf, C A, py. Then we can apply (4.2) and (4.3) to each f, and take
n=—N

the sum. That gives us the rest of the Theorem 1 and 2.

Furthermore, as mentioned in Remark 8 zn 0 = 0 in the chiral case, thus each term in the
expansion of r, . is of the form r, ;. = Z zk I7 f i k(22,&). Now assume [ is smooth
enough, then for any J € N, by (4.31), we can see that

—j—1
A=Y W2 Z E i) fYU8(\,.p), for some F,;.(n) € S. (4.33)

=0 k=

[e=]

Thus for the chiral case, every term in the asymptotic expansion of Tr(f(.#?)) only depends
on derivatives f* at An,B-

O
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4.6. Differentiability. Finally, we comment on the differentiability of the regularized trace
with respect to the magnetic field. That h — Tr(f(2#?)) is a differentiable function follows
already from Lemma 3.1. However, what does not follow from Lemma 3.1 is that the
asymptotic expansion itself in Theorems 1 and 2 is differentiable. The following Proposition,
which uses the same notation as Theorems 1 and 2 shows that term-wise differentiation
yields the right asymptotic expansion:

Proposition 4.9 (Differentiability). Under the same assumption of A\, g, €, as in Theorem
1, we have that B — Tx(f(?)) is differentiable. For alle, f € C*(Anpy), that K > =2,
then for Onxsv = Ol |looll fllcx), we have: For the chiral model #° = 2,

0T () = 0 ) + L) B )0 + O, (579

(4.34)
For the anti-chiral model 9 = #°

ac’

05 Te(£(2)) = V2B (1) L (2t0(1) + V2 (7)) + O g (B7H 3

In particular, when n = 0, we get a better estimate for the chiral and anti-chiral case respec-
tively:

O Tr(f(A2)) = —1(0) + Oy (BEH)

- 1 3 (4.36)
IpTr(f(H0)) = 5=too(f) + 47T\/§t0,1(f> + Oo. v (B7H)

27
where t,o(f), taa(f), &, s, and ¢, are the same as in Theorem 1, 2.

To prove this proposition, we will need to prove two auxiliary Lemmas 4.10 and 4.11
discussing properties of Oy E, +, O E;, ! and Or,, which are similar to the two properties
needed for B, +, E, 1i and 7, previously in 4.6 and 4.7. The rest of the proof is similar to

Sec. 4.5. We start with some preparations: To discuss the differentiability of asymptotic
expansions, we define # for a(x,&; h),b(z, & h) € S(Ri&) by

. M
iy . i
a#h = [e2 (D Dg;Dy, D) (§U(DI,D§;Dy,Dn)) ] (a(z, & )by, 0, b)) le=v

(4.37)
= Y CaplOica)#(95,h).
|la|=|8]=M
where o(x,&y,m) = (£, y) — (x,n). Then we see that,
O (a#td) =agib + Y Cijn (Bha) #, (940). (4.38)
i+j+k=M
J#FM

The following result is derived for general M € N but we will, for simplicity, only consider
the M =1 case later:
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Lemma 4.10 (Boundedness). Let hy, E, + be as in Lemma 4.5. The symbol E,, 1 (x2,&s; 2, h)
is smooth in h when h < hg and for any M € N, O E,, .. € SM=3 uniformly in |z| < 2| ||,
i.e. for any multi-index o, 3, there is Copn = Copn(||? ]loc) such that

102,06, 08" En (2, €25 2, M) llcaus < CapaVh,  for all 2] < 2| |-
If [Imz| # 0, M > 0, then O} E, L and 0)'r, satisfy

[N

||a§2(9?28£/1E;i(x2,§2;Z,h)HCQXz < Ca,g,nmax (1’ |3> 1+2M| mZ| —2M—lal— \544 39

| Tm =z

N

105, 08,00 7 (2, €25 2, B) || car < Clay g marx (1 |3> M| T 2| ~2M1EPL (4.40)

| Im =z
1
In particular, when 0 < & < 1/2 and |Imz| > R, we have OME,, € S;w(%ﬂ)“ and
My, € GMETD.
Proof. Let P, be as in Lemma 4.5, by (4.24), 4% —\/hz, RE € S(R? 2,.6,) Furthermore, since

4% =49 + /R, by direct computation, we see M (4? — /hz) € SM- > while OMRE =0,
for M > 0.

Then consider &, = P, . First of all, by the proof of Lemma 4.6, we have &, (z, D,,, &) €
S(R2, . ; L(BE x C?* B! x C?)). By differentiating &, = &,#P,#&, with respect to h and

2,607

using (4.37) and (4.38), we have
OnEn = —EHOPHE A+ D Cop (08, EaHOL, PuHE.). (4.41)
lal=I5l=1

Since 0, P, € S %, thus 0,&, € S 3 above. By differentiating (4.41) with respect to h and using
(4.37) and (4.38), we see that §2&, € S2. An iterative argument shows that OME, € M~z
In particular, OME, + € SM=3 . Furthermore, by differentiating E;li = E;i#Eni#E;i
with respect to h and using (4.38) and (4.37), we have

ahE;i:_E;i#ahE”:i#E;i_ Z O"‘B 72,82 n:t# z2,82 ”Ft#ET:jE' (4.42)
lo|=|8]=1

When |Im z| > h°, by (4.23) and [Zw12, Theorem 4.23(ii)], we see that
8B, L] = O(h™2 [ Tm 2| 72) + O(h~2|Im 2| ) = O(h™%| Im 2| 2).
Furthermore, since [D, , AV] = (D, A)" and —[x;, AY] = (hD¢,A)", we see that

h": AN
Hw%OWMMA%E$Wﬂ=0< )-

|Im 2|2 |Im 2|V

y [DS99, Prop. 8.4], we get

hs
162 85 o, ni(ajg,@,z R)|cyys < Cl s max (1 m) h*%\ Imz|f2f|a|*|5|_ (4.43)
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Iterating this process by taking 0, of (4.42), expanding it and using (4.37), (4.38) and (4.43),
we see that every time we differentiate, we derive an extra order of 1/(h|Im z|?). Thus we
obtain (4.39) for M > 0. Then

Onrn = 0B s #EL L + 0. By st B+ Y Copl02, ¢,0-En ) #(0), ¢ ELL).
laf=[B]=1
By (4.23), (4.39) and [Zw12, Theorem 4.23(ii)], we see that ||0,r?V|| = O(h~!Im 2|72). By
the same argument as for E, ¢, we get (4.40). O

We shall now focus on M = 1, for simplicity, and study the asymptotic expansion of dyr,.

Lemma 4.11 (Asymptotic expansion). Let 0 < § < 1/2 and |Im z| > h?, then Oyr, has an
asymptotic expansion in S§+2‘5.'

(o] . o
Opry ~ Z % h%_lrw =: Z h%_lqw», where r,, ; are given in Lemma 4.7.
i=1 J=1
J-1 (
. Let Qn,J = 8hrn_ hE_IQn,j S S5
1

=

. 1 J
JH+1)o+1-12 J+1)6+1-%5

Then h%_lqn,j € Sé ,i.e., forall a, B >

0, there is C 5, such that
sup |02 92 Qug| < Ol g a1 FD0=dal+ 18l (4.44)
(w2,62)ER?
Furthermore, for the expansion of Trcz(0yry,), we have for n = xo + s,
)\2
Chiral (] = 3) : Tre2 (B2 g1 + Gu2) = “284(n),
z
A2+ ) (4.45)

(= = aPVi

We will prove that the termwise differentiation of the asymptotic expansion of 7, in (4.25)

Anti-Chiral J2° (J =2) : Trez(h™ 2gny) =

ac,n

is indeed an asymptotic expansion of d,r, in S§5+1.

Proof. Let g = v/h and consider 7, ~ > ¢/ Ty, By Borel’s theorem, see for instance [Zw12,
j=0
Theorem 4.15] or [Ho03, Theorem 1.2.6], we see that for such r,; € C*(R2, ), there is

Fn € C°(R} X Ry, ,) such that 7, = Zogjrn,j. Thus
]:

Ogfn = > g Ty (4.46)
j=1

On the other hand, uniqueness in Borel’s theorem implies that 7, — r, = O(h*>). Thus
Oy — Oyt = O(g>). Thus (4.46) is also an asymptotic expansion of J,r,. Furthermore,
since Opry, = ﬁagr n, thus we proved 0,1, has the following asymptotic expansion in S(%”‘s:

[e.9] .

1 = . i1 J,i
Ot~ —= > jh 7= =ha 'y,
2v/h j=1 j=1 2



24 SIMON BECKER, JIHOI KIM, AND XIAOWEN ZHU

The rest of the Lemma follows from Lemma 4.7. O

Proof of Prop. /.9 . Recall that fo(z) = f(z++/2|n|/h) also depends on h. By differentiat-
ing (4.29) with respect to h, we get

8hTNr(f(<%’f:6n)) = W/C/E@fo(z) Trez(r,) dre dés dz N dZ

L iV2nl/n

87r2h2|E|

_ _47T2h|E‘ /(C/Easz(Z) TI'(CQ(ahrn> dl’Q dfg dz Ndz := _Bl — B2 _ Bg_

// O:f'o(z +\/2n/h) Trez(ry) day déy dz A dZ
E

where the asymptotic expansion of B; = +Tr(f(#?)) and B, = 2"};‘3 Tr(f' (7)) are known

by (4.32). While B can be computed by splitting the integral as in Subsection 4.5:
J—1
[/ 0= fo Trca (Oprn)dz A dz] (22, &3 h) :/ 9: fo Z ha ' Trea (gn j)dz A dz
C C =

+ / 85f0 TI'(CZ (Qn,J)dZ A df
| Im z|>h9

+/ agfo Trez(Qng)dz A dz := A} + Ay + AL,
| Im z|<hS

and we imitate the estimates of A;, Ay, A3 in the Subsection 4.5 with d,r, instead of r,,
and we use Lemma 4.10 and 4.11 instead of Lemma 4.6 and 4.7. In short, we need (4.31)
and (4.45) for A}, (4.44) for A}, (4.40) and Lemma 4.11 for A% and we derive that

Af o =mif" (A nBWﬂ( )> Ao = T (2 O = €n) + 521 Mnp + ),
[Ab] < Corepoy B2 ™40 A < Cp g gy W20,
from which we can find Bs. We summarize By, By, Bs below:

For the chiral model where J = 3, we have

1
Bie= 3 (AnB) + Inl Ave(Ll) f"(M\u.B) + On,K,fﬂ/(h_%_M 4 pE-DI-2)
V2 2lnl)3
B2,c - |ZJ| f/(/\n,B) + ( |n|); AVG(ﬂ)f’”()\n’B) + On,K,fg//(h_l_M =+ h(K_l)‘S_%)
2mhz Smh2
Bs. = %f”()\n’]g) Ave(l) + O, .y (R340 4 P22y,

Whenn#OandK>i—3,Wehave

aﬁfr(f((}fé?n)) _ Y 2‘77/‘ f (/\an) - # (An,B) o (Z|n|)2 Ave(Ll)f'”()\n,B) + On,K,f,V/h_l_M-

orh’ hs
When n =0 and K > % — 3, since By, = 0, we get a better estimate:
- 1 L
O Tr(f(Hp)) = ) (0) — OOKf”I/h 49,
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FIGURE 4. SdH oscillations: Smoothed out DOS p(f,) with f,(z) =
_@=p)?

e 307 /V/2mo illustrating the oscillatory features. On the left, B = 30 and
on the right B = 50 for o = 1.

For the anti-chiral model where J = 2, we have

1 1
1, I h2 70(f>+ 9 3 ,1(f)+ 7K7f,7/( + )7

mh2
V/2|n| , V2| , e s
ac = tn tn On h 30 h(K 1)
200 = e tno(F) + Zmatna (F) 4 Onse gy (B2 70 + 2),
1
B3yaC = —gtn,l(f) + On,K,f,“//(h_l_S(s + h(K_2)6_2)-
4mh2

Thus when n # 0 and K > % — 2, we have

TS A2) =~ (1) = s () + VEltna()) = Oty h™H5.

47rhg B 4mh?
Ifn=0and K > % — 2, since By = 0, we get a better estimate:
- 1 3
WTr(f(HAL)) = ——t -t O him,
W Tr(f (7)) 573 0.0(f) e 01(f) + Oor s
Recall h = . By 05 = —550,, we get the results (4.34), (4.35) and (4.30). O

5. MAGNETIC RESPONSE QUANTITIES

This section discusses applications of the regularized trace expansions derived in the pre-
vious section, cf. Theorems 1 and 2 as well as Proposition 4.9. They form the rigorous
foundation of our analysis in this section and we shall focus on qualitative features rather
here, instead.

Our main contribution on magnetic response properties of TBG is a careful analysis of
the oscillatory behaviour of the DOS. While this effect can be easily explained using the

Poisson summation formula, we shall illustrate this phenomenon, by considering a Gaussian

density f,(z) = e /V2mo and analyze the Shubnikov-de Haas (SdH) oscillations in a




26 SIMON BECKER, JIHOI KIM, AND XIAOWEN ZHU

4
3 “\
k5 \/ﬂ” A 2?2
g2 2,
= Q e ~ -
g 2 \Y
=) 7]
© | —free 3 —free
= —chiral W ol —chiral
anti-chiral (6=0) anti-chiral (6=0)
0 ‘ ‘ ‘ ‘ ‘ -4 ‘ ‘ ‘ ‘ !
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
1/B 1/B

FIGURE 5. Magnetization and susceptibility for 8 = 4, a; = 3/5, and chemical
potentials =5 (left) and p = 10 (right).

smoothed-out version of the DOS p — p(f,) in Figure 4 for 0 = 1 using the asymptotic
formulae of Theorems 1 and 2. As a general rule from our study, we find that the AB/BA
interaction leads to an enhancement of this oscillatory behaviour compared to the non-
interacting case, while the AA’/BB’ interaction damps oscillations. The smoothing effect
of the AA’/BB’ interaction is due to a splitting and broadening of the highly degenerate
Landau levels. This splitting has also consequences for the Quantum Hall effect, see Fig. 10.
We also study the de Haas—van Alphen (dHvA) effect in TBG, see Fig. 5 and 8 for which
we find a similar phenomenon.

We study magnetic response quantities by thoroughly analyzing the following cases:

e The free or non-interacting case, corresponds to two non-interacting sheets of graphene
modeled by the direct sum of two magnetic Dirac operators, see also [BZ19, BHJZ21]
for similar results in a quantum graph model and [SGB04] for a thorough analysis of
the magnetic Dirac operator, directly.

e The chiral case, which corresponds to pure AB/BA interaction.

e The anti-chiral case, which corresponds to pure AA’/BB’ interaction.

For our analysis of the de Haas-van Alphen effect, we shall employ a cut-off function
ny € C°(R) that is one on the interval [0,v/2BN] and smoothly decays to zero outside
of that interval, enclosing precisely N + 1 Landau levels and 7™ which is equal to one on
[—V2BN,+v/2BN]. The choice of cut-off function mainly plays the role of a reference frame.
In particular, for the study of magnetic oscillations it seems more natural to consider ny
instead of ny " as the former cut-off function singles out the effect of individual Landau levels
moving past a fixed chemical potential . We shall employ the leading order terms for the
regularized trace in this section, as specified in Theorems 1 and 2 and Proposition 4.9. For
this reason, we write functionals p(f), where f € C*(R), as p(f) ~ g, to indicate that g are
the first terms in the asymptotic expansion of p(f) and analogously for derivatives of p(f)

with respect to the magnetic field.
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FIGURE 6. Smoothed out longitudinal conductivity 0., o< —p(Anjg(A — )
with ng, the Fermi-Dirac distribution, showing Shubnikov-de Haas oscillations.
On the left, B = 30 and on the right B = 50 for § = 1.5. with a; = g

5.1. Shubnikov-de Haas oscillations. We shall start by discussing Shubnikov - de Haas
(SdH) oscillations in the density of states. A common method of measuring SdH oscillations
is by measuring longitudinal conductivity and resistivity, see also [W11, Tanll]. In the
following, let o € R?*? be the conductivity matrix, such that the current density j = oE,
where E is an external electric field, then the resistivity matrix is just p = o~1. Hence, we
shall focus on conductivities in the sequel.

The SdH oscillations are most strongly pronounced at low temperatures in the regime of
strong magnetic fields and describe oscillations in the longitudinal conductivity o,, of the
material.

The expression for the longitudinal conductivity goes back to Ando et al [A70, A82] who
derived the following relation, see also [F'S14],

Ooal(B i B) = — / T — M) do(N),

where ng(x) = ﬁ is the Fermi-Dirac statistics. In the free case, i.e. without any tunnelling
potential, the oscillations happen precisely at the relativistic Landau levels. For the chiral
model, oscillations caused by higher Landau levels are enhanced compared to the free case,

whereas oscillations in the anti-chiral case are much more smoothed out.

The oscillatory behaviour of the longitudinal conductivity is visible both as a function of
chemical potential, for a fixed magnetic field strength, as shown in Fig. 6 as well as function
of inverse magnetic field in Fig. 7 for fixed chemical potential.

5.2. De Haas-van Alphen oscillations. In 1930, de Haas and van Alphen who discovered
that both the magnetization and the magnetic susceptibility of metals show an oscillatory
profile as a function of B~!. This effect is called the de Haas-van Alphen (dHvA) effect. Even
in the simpler case of graphene, both the experimental as well as theoretical foundations of
that effect are not yet well-understood [L.11, KH14, SGB04]. One problem in understanding
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FIGURE 7. Smoothed out longitudinal conductivity 0., o< —p(Anjg(A — )
with ng, the Fermi-Dirac distribution, showing Shubnikov-de Haas oscillations.
On the left, B = 30 and on the right B = 50, both for 5 = 2.5. with a; = 0.35.

the dHVA effect [SGB04], lies in the dependence of the chemical potential on the external
magnetic field. To simplify mathematical analysis, it is more convenient to work in the grand-
canonical ensemble, which is also discussed in [CMO1, SGB04, KF'17]. The comparison with
the canonical ensemble is made in this subsection as well.

The grand thermodynamic potential for a DOS measure p, at inverse temperature /3, and
field-independent chemical potential p is defined as

Qa(p, B) = (fs * (nnvp)) (1),

where f5(z) := —37log(e”® +1). The magnetization M and susceptibility y are then in the
grand-canonical ensemble defined as

M(B, i, B) = —% and x(B, u, B) = %-
The susceptibility describes the response of a material to an external magnetic field. When
X > 0 the material is paramagnetic, when y < 0 diamagnetic, and strongly enhanced y > 1
for ferromagnets.

While the approximation of computing the magnetization in the grand canonical ensemble
is common, one should strictly speaking compute it in the canonical ensemble, instead.

In this case, the charge density p given by the Fermi-Dirac statistics, with ng(z) := ﬁ,
according to
Qp(p, B)
0=——""7—"=pns(- — p)
o g

is fixed and the chemical potential becomes a function of p and B.

To see that this uniquely defines p as a function of o and B large enough, it is sufficient

pr Y () (A VB)

nez
is a monotonically increasing function. The Helmholtz free energy is then given as

to observe that
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FIGURE 8. Magnetization and susceptibility for 8 = 4, a; = 3/5, and chemical
potential = 5.
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F1GURE 9. Charge density with respect to chemical potential. Magnetic field
B =30 for § =1/2 and f = 2. We consider 100 Landau levels around zero
and an anti-chiral model with 6 = 0.

Fs(o, B) = Qg(u(o, B), B) + u(p, B)o

_ 9Fg(0,B)

with the magnetization given as the derivative M (3, o, B) = 55

zation in the canonical ensemble is also given by

. Hence, the magneti-

901, B)
M ) 7B e )
(ﬁ ¢ ) 0B w=p(e,B)
where the difference to the grand-canonical ensemble lies in the B-dependent chemical po-
tential. The dHVA oscillations are shown in Figures 5 and 8, with the AB’/BA’ interaction
leading to enhanced oscillations and the AA’/ BB’ interaction damping the oscillations, com-
pared to the non-interacting case.
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FIGUrRE 10. Full quantum Hall conductivity (5.1) on the left with g = 2,
B = 40 and on the right the high temperature conductivity (5.2) with g =
5,B = 50.

5.3. Quantum Hall effect. The (transversal) quantum Hall conductivity o, is, by the
Streda formula [MK12, (16)], for a Fermi energy p given by
N

oo B) = Y UTA 1) 5.1)

In case of the chiral Hamiltonian, the Gibbs factor vz, (1) = e?®VB=#) allows us to write

T ( 2 nﬁ(An\{TE = (1 - %mn(u)mw\/ﬁ - #)>

n=—N

N

B Al A2 8% Ave(8l)
X_:N 47\/B

At very low temperatures, and p well between two Landau levels, the contribution of the
derivative of the Landau levels with respect to B can be discarded.

+ W5V B = 1) (Y (1) = 4380 (10)* + Y50(1)°) ) (1+0(1))

We then obtain the high-temperature limiting expression

5 0s(Ans — 1)
~ n,B
ny,c(ﬁv Ly B) = Z 5 T
n=—N

as ng(Anp — i) = 1 — HA\V/B — p) for 31 oo, where H is the Heaviside function.

This expression reveals the well-known staircase profile of the Hall conductivity which can
already be concluded in this model in the 8 — oo limit from Proposition 3.2.

For the AA’/BB’ interaction, the situation is rather different. Due to the broadening and
splitting of the Landau levels, the staircase profile is less pronounced at non-zero temperature.
. ~ tn o— . ..
Setting 0,y ac(B, 1, B) 1= tno(ng(®—p)) — %, where in the limit 8 — oo, the second
term vanishes, for p away from the spectrum as n’ﬁ is a 0p approximating sequence such that

also in case of the AA’"/BB’ interaction limg_, 6,,(5, 11, B) = [{n; | A\n.5] < p}-

— {5 Asl < 4} (5.2)



TBG IN MAGNETIC FIELDS 31

APPENDIX A. ASYMPTOTIC EXPANSION

In this appendix, we shall prove Prop. A.1 which, in particular, includes the proof of
Lemma 4.7. The quantization is as in Subsection 4.3.

Proposition A.1. Let hy, E, 1 be as in Lemma J.5. For h € [0,hg), |z| < 2||# |, we
have

(1) The symbol \/LgEmi has an asymptotic expansion in S: There are a, ;i € S such that

j—1

1 = ‘ .
ﬁEn,:l:(x%f?;Z) h) ~ ZhiEn,j(I%g% z) with Ey j = Zan,j,k(ﬂhafz)zkd >1. (A1)
=0

k=0
In particular, E,0 = 2z — 2p0, FEn1=—2n1, En2= —2,2, where z,; are given in
Lemma A.2.

(2) Let 0 < 6 < 1/2, if [Imz| > h?, then VhE,} has an asymptotic expansions in S2:

j+k—2
There are by, j k1, Cnjx € S such that in terms ofH b jki(T2,62;2) = D 2% jk(72,&2)
=0 =0
the expansion of

[e'S) _ k
E iNzhéFn,j(x%g%Z)a thh Fn,j:Z Z_ZnO 1H n,j,k,l .%2,52, )(Z_zn,())il)-
j=0
(A.2)

Thus h%FnJ € S910=2)40 " In particular, we have

Foo,z—2zn
Fn,O = (Z - Zn,O)_la Fn,l = Fn,OZn,an,Oa Fn,2 = Fn,O <Zn,1Fn,l + Zn,QFn,O - { 0 2 ,0}> )
(A%3)

where {-,-} is the Poisson bracket.
(3) Let 0 < § < 1/2, if [Tm z| > h®, then 1, has an asymptotic expansions in Sg: There

k
are dy jki(T2,62;2), €njka(T2,&2) € S, such that in terms of [] dnjri(x2,&:2) =
=0

k-2
2. 2%njkal®2,62)
a=0
00 _ 7 k
FA . —
rn(x, &5 2, h) NZhQTn’j(fI:Q,éQ;Z, h), with ., ; :Z Z— Znp) 1H ikt (T2, €2 2) (2 — 200) ") -

S(()J—i—l)é—%

Thus h%m’j € . In particular,

Tno = Fn,Ov Tn,a1 = Fn,la Tn2 = Fn,2 - (8zzn,2)Fn,O-
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(4) Finally, let n = xo + &y, then the leading terms of Trez(ry,) are:

2 A2
Chiral 2, : Tree(reno + B2 Temi + hreps) = - S0+ "u( ),

2 2
Anti-Chiral 2% :Tree (Tacmo + hérac,n,l) _ < 4 sa (2 + C”)\/E

ac,n 22 _ o2 (22—62)2
n n

where U(n) = <

(U-) = (UG P) + 40,0 () = 0,U ()], 0, = 30, -
i0e,), su(n) = {O‘O sin(

V)| n#0 >
and c,(n) =
=g e {ao|v<n>

We will prove Proposition A.1 in the rest of this appendix in two steps: First, we compute
explicitly the leading terms (three terms for the chiral model, two for anti-chiral model) in
the expansion of Z,(xa,&s; 2, h), the symbol of ZW | where E, 1 = Vh(z — ZV) by (4.17).

n
Then, we exhibit the z dependence for each term in the expansmn of £, 1, from which we

n =

build up both the legitimacy of the existence of asymptotic expansions of £, ! and r,, and
the z dependence of each term in the expansions.

Explicit leading terms. Recall that by (4.17) and (4.20), E, + = Vh(z — ZV) with
ZW (23, hDyyh) = REVY (I +VRE], 7V) 'R,

oo ~ B > A4
=N WA (-DFREVV(ES, VR, =D hE QW (@, hDyy: h), (A.4)
k=0 k=0
where RE, Ef,,, " are given in (4.12), (4.15) and (4.20). Then we can express the asymp-

totic expansion of Z,,(xq, &) in terms of @, (22, &2):
Proposition A.2. Let Q) (x, hDq,; h) = (—1)’“R:{”/}W(Eg,n”f7w)kR;. Then symbols Qn.o,
Qn1, Q2 have the following asymptotic expansions
Qno(x2, &1 h) = QU (2, &) + VRQLY (22, &) + hQ\rh (w2, &) + Os(h?),
Q2,21 h) = Qi (w2, 62) + VRQ (22,E2) + Os(h),
Qna(w2, &2 h) = QV) (w2, 6) + Os (V).

For the chiral Hamiltonian, with n = xo + i&, D, = (D,, —iDs,),

2

a\,
anO = Qc2710 = Q((:(,Jr)L,Q = 07 anl = IT UU|2 - ‘U,|2] 03,

oW AnQi1 0 D,U — D;U-
en0 = "o \D,U_ — DU 0 ’

=5 RInI(JUP + [U-*) Tasa +(|U* = [U-*)os] n #0,

Q=13 . (lUP 0 B
2 9 n = 0.
0 |U_|
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Analogously, for the anti-chiral Hamiltonian, when 3¢° = ., we have, when n = 0,

1 1 0
Qz(m)o 0~ Qac ,0,1 — Qgc)O 1= Q;c?o,z =0,

0O 0 eV o % 0 e 2N,y e,V
w00 =0 ey g )00 T g eBin,, T ’

when n # 0,

a§|V|Qsin2(g) za3|V|Qsin2(g)

Qs(ign,o = 07 Qggn,l = 2)\71 Il2><2a Qacn 1= 4)\2 :ﬂ2><2’
* 3 2 o 0
0 _ o (0 V ©  @lVPsin®(§cos(3) [0V
Qac,n,O = Oy COS(§> (V 0 ) JQac,n,Q - 4A% V* 0 )

(2) Qo [ . -0 0 Azz,ﬁz V
2 7)) — = — .
Qacno = 2 ( In|cos(5) —ios 81n(2)) ( e )

o
In particular, Z, has an asymptotic expansion Z, ~ > hgzmk mn S with
k=0

0 0
Zn,O:QEq,z)a Zn,l :Qn1+QnO7 zTLZ*Q( ) +Qn1+Qn0

Proof. Q. has the symbol @, (z2,&) = fR (K9 (x1)) ”/}w#(Eg,n”iw)#sz(:vl)da:l.
Recall that by(2.1), (4.13), and (4.15), we have

0 7 0
o (u, O (0 T [V U o _ (€n O
K = <0 un(’) V= (T* 0)  I'= (Ole agV )’ Eon = 0 eps)’

Thus, inserting the above expressions into the definition of (), x, we find for its symbol

o= [ (5 o) (o D ((F i) (o 0)) (5 2 5

where T = T (x5 + h2x1,& — h2D,,). In particular,

QW:(H%&%*%mjww@%ﬁMO’

(Sl T e (T uf dy 0
2= 0 gty @y oty ) A
: ) T (P e T
Qn,Z = —0\* (Tw\* .0 Tw,—0 (Tw\x,,0 7 7 :
f(un ) (T ) eO,nT eO,n<T ) und'rl 0

Notice that since both 7% and egm depend on h, we need to further expand them in order to

obtain asymptotic expansions of @), 5. Thus the proof of Proposition A.2 rests now on the
following two lemmas.

Lemma A.3 (Expansion of 7% and €f )
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(1) Let T € C3°(R?). Recall the definition T(x,€) = T(ws + h3w1,& — h3&) € S(RY,).
Then

T (z, Dy, , &) =T (x2,§2)+\/_< Ve T (12,&2), (71, —Dy,))

h 3
+§<(9ﬁ1,—Dm)aHeSST(fEQ,&)(%,—D )7 >+OS(R c(m;89,))(h?)

(2) Let €f, be as in (4.15). Then egn(x Dml,fz) has an asymptotic expansion ef) , ~

9 *
3% htou(ch,) uhere ou(ch,) = 3 Gt
k=0
Lemma A.4 (Projections). Let S¢ = span{u?, v’} with S, = S° and u, = u. The
following properties hold:

(1) Reflection invariance with respect to 0 such that S° = S.° in particular u? =
oS (g) u,? +isin (g) uZf.
(2) Let M = (g g) € C**2 then Mu,, € S,_1 U S, 11, for any n > 0. More specifically
for 8 =0
ol I51)
MU:I:n = 7(un+1 - u—(n-i—l)):F 9 (un 1T u— ) fOT n>2
i 15} Q@
Muy, = —(us —u_g) + — d Muy = —=(u; —u_yq).
g1 = o (up — Us) 5oy and Mug ﬁ(ul u-1)

(3) We have xquf € S8_,US,,, Dyyul € S%_USY, . More specifically

nul, = Q[ui_l(x/ﬁ ++vVn—1)+ul,_y(VnFVn-1)
+un+1(\/n+ + v/n) £ u?. (1 (VI 41 F/n)], for|n|>2

il = bl B VT) o (VI VT and = Y2l )

Proof. We omit the proof of this Lemma here as it follows from straightforward but lengthy

basis expansions and the simple observation that (u_? u?) = cos (g) O n+1sin (g) Om,—n. U

From the preceding Lemmas A.3 and A.4, we can compute the asymptotic expansion of
each term of @, in (A.5) and therefore prove Prop.A.2.

For the (1,2)-entry of @0, by Lemma A.3, we have

/(uz)*fwuneda:l :/(ufl)*Tuned:L‘l + ﬁ/(ui)*(vm@ﬂ (x1, —Dx1)>u;9d:c1

h
+ 5/(U?@)*((xh—Dasl)aH%ST(x%&)(fla — D)"Yy, day
:tf-g[)) + \/Etle,g) + ht@) -+ OS(R2 ;szz)(h )

Nleo
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Specializing now to the chiral case, in which case the #-dependence can be gauged away, we
choose

B 0 Oé1m
T(22,&) = (alU(xz,fz) 0 )

where in the chiral case, by Lemmas A.3 and A.4, we see that

=0, ¢!, = A &12(8 U_ - 8,U), and t%)

c,n,0 cnO_ )

4(0)

c,n,0

while in the anti-chiral case, choosing T'(xq, &) = gV (29, &s) idc,, ,

0) {ao cos( Woon#0, ()

t( acnO_O andtacno_{

ac,n,0 —

0 -0
a0 ,—15
age 2"V n= 0, Le 2 AL, 6V

Due to the conjugacy relation [(u?)*(T%)*u;%dx, = ([(u;?)*T*uldx,)*, the expansion of
o follows by (A.5).
Slmllarly for the (1, 1)-entry Qn 1, denote
= [y e T ey = 4+ E0VR + O )

x2 &2’
where, using Lemma 1, in the chiral case,

2

(0 =~ 0 0 ) and 18 y_{ “FRInI(UP + [U-[?) + (U = [U-2)], n#0

T|U|27 n=70

c,n,l

and in the anti-chiral case
211712 sin2( 2 21112 sin2( @
©) B {oa0|v|2;n (2)7 n7é0 dt {_a0V|4i% (2)7;7 n?éo
ac,n,1 0

ac,n,1
0, n=>0 n =0.

In a similar fashion, the (2, 2)-entry of (), 1, defined in (A.5), can be obtained by precisely
the same computations after only replacing 6 by —0 and T™ by T, i.e. U switching with U_
and using V* instead of V. Thus the asymptotic expansion of QZ; follows.

Similarly for QY , we restrict us to the (1,2) entry in (A.5). Then, we denote
[y Ty el T, o = é2+oww e (V).

It follows then by Lemma 1, that in the chiral model7 . n 5 = 0 while in the anti-chiral model,

t(O) i _a0|V|251n (G)COS
n2 ar2

2y, By the conjugacy relation

/(UEQ)*(T“’) conT eon(T") updz, = (/(UZ)*Tweai(Tw) eon "t 9df€1) :

this also yields directly the expansion of Q? 0

ac,n,2*

Existence, derivation and z-dependence. Now we prove the rest of Prop. A.1, which
includes the existence and derivation of asymptotic expansion of £, ! and r, and the z

dependence of each terms in the expansions of £, ., E’i and r,.

n,

%(2|n| cos(g) — 103 sin(g))A%&V,

n # 0
n=20.
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Proof of Prop. A.1. By (A.4) and Prop. A.2, E,+ = Vh(z—Z,), and Z, has an asymptotic
expansion in S. Thus, TE” + also has an asymptotic expansion in S: f By~ Z h2E, j

with E, ; € S. To exhibit the z-dependence, we notice that only Ej,, depends on z in (A.4).
Thus, by (4.24), we have

7z = REVY(A+VhE V") 'Ry = RiVVR, + Y RV (VB V)R,

a=1
B (0]
- e - KO (K0 S Vhe
= RvY "R h2REyW mim R-
n n+; 2 n %Am_Ané )\m—)\n n

(Mo

— RVVER; +ZZh TAY, (29,hDy) = REVV R, — Zh

a=1 v=0 Jj=1

j—1
(Z zkamyk(x% th))

k=0

for some appropriate A, o ~(22,&) € S and ay, j;(22, &) € S. Thus we proved part (1).

We can formally derive (A.2) and (A.3) for VR E, L, using a formal parametrix construction
by using

(A.6)

H S (( (Dus DD, ) (a(wz,fz)b(y,n))>

z2=y, §2=n

More specifically, there is a formal expansion of vh E; 4, which is denoted by VhE, ~

S hiF,;, such that —=F, 1 #VhF, = ly.a. Denote o(Ds,, Dey; Dy, Dy) in (A.6) by o, we

j
can solve for F,, ; by considering

]12><2 = En’:t;g:Fgl ~ i i h%En,a%LFn,,B

0
DN EDN ((%) (Enal(z2,&2) sy, 77)))
a=0 =0 =0 za=y,E2=1
oo j j—B ; io j7(§7'8
j=0 B=0 a=0 z2=y,£2=1

Then we compare the parameter of the term of h3 on both sides and get

—a—p

i1 j—ﬁ( N
—EnoFn; = <—)
B=0 a=0 2

M

I

(Ena(z2, &) Fop(y, 77)))

Ta=Y,§2=1)



TBG IN MAGNETIC FIELDS 37

from which we can solve for F,, ;. Furthermore, by (A.1) and E, o = 2z — 2,0, we can check
inductively that for j > 0, there are b, jx, ¢y, such that

J k
Fn;= Z(Z — Zno) ! H (bn g (2, €23 2) (2 — 2n0) )

k=0 1=0
k j+k—2
1 . _ o .
with an7j7k7l($2,§2, z) = 5 2%Cp ;1 (T2, &), for appropriate ¢, ;i € S.
=0 a=0

Notice that %ﬁ differs from the actual sharp product #:
atth = 47D DD (a2, €)b(y,m) laamy, c1m (A7)

Now we claim that this formal expansion for v/AFE, is legitimate as an asymptotic expansion
in S¢ and in fact, it is exactly the asymptotic expansion of vhE, + when |z| < 2||# s and
| Tm 2| > K. In fact, VA(E,} — F,) € S~>.

In fact, since |z| is bounded and |Imz| > A% and F,; is a rational function in z, thus

; (51
hiF,; € Sgw 2 Since j(6 — 1)+ 6 — —oo, (A.2) is not only a formal expansion but is
indeed an asymptotic expansion of F), in the symbol class S2.

Furthermore, comparing (A.6) with (A.7), we see that F,#E, + = 1—R,, with R, € S™%.
By Beal’s lemma, there is 12, € S~ such that (1 — RY)™' = 1— RY. Thus VhE,} =

F#(1 — RY) € S¢ and have exactly the same asymptotic expansion as F, in (A.2) since
R, € Sy*°. Thus part (2) is proved.

It follows that r, := 0,E, +#kE, ! is also well-defined with an asymptotic expansion in
S2. Since

fe'e) N fe’e) 5 [ sBNe's) atp [e'e] i ~
ra Y BEOEua#t ) hiFy=) % by W ((5> (Ena(2, &5 2) Fo gy, m; Z)))
a=0 =0 a=0 =0 v=0 z2=y,E2="
o Ji io ig 8
=33 hirjas ) (Ena(z2,&2;2) Fap(y, m; 2))
J=0 a=0 =0 To=Y,§2=N

Combining it with part (1) and (2) and the fact that o is linear in D,,, Dy,, we get part (3).
Part (4) follows directly from parts (1), (2), (3) with Prop. A.2. O

APPENDIX B. FOR THE PROOF OF LEMMA 4.8

In this subsection, we provide several lemmas that together complete the proof of Lemma
4.8. We start with a proposition that expresses the Hilbert-Schmidt norm of the quantization
in terms of its operator-valued symbol.

Proposition B.1. Let 54, 4 be two Hilbert spaces. Let P : R* — L(JA;.6) be an
operator-valued symbol in the symbol class S(R ; L(54; 75)). Furthermore, let || - |lus
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denote the Hilbert-Schmidt norm of maps 4 to 7 or L*(R,; 74) to L*(Ry; ). Then

1
1PV kD) s = 5z [ 1Pl do
In particular, if 764 = 76 = R, for the scalar-valued symbol P, we have

1P(y, 77)|’%2(R2;R)
2mh '

IPY (y, hDy) s = (B.1)

The next Lemma allows us to interchange the order of trace and integration.

Lemma B.2. Let E,, _, E, . be as in (4.16). Let fl;v, Tl‘év be as in the proof of Lemma /.7.
Then, there exists a constant C > 0 such that

W - =W _
H]lR En,fHHS(LQ(]R%),LQ(RIQ)) < Ch 1/2R and HEH,*]lR HHS(LQ(R%)’LQ(RIQ)) < Ch 1/2R.

Proof. The first equation follows from (B.1). For the second equation, we first recall that

Claim 1. If a € S(R*; L(X,Y);m1), b € S(R*;HS(Y,Z);msz) and mym, € L*(RYY),

where my, mo are order functions, then
b#ta € S(R*™, HS(X, Z); mimy) and (b#a)" = b"a" € HS(L*(R?; X); L*(R?; Y)).
Similar to Lemma 1 in [W95], we can show that

Claim 2. For any k' such that 1 < k', we have

(1) En_<x2’£2) € S( xr2, fg’£< Ilk/7c2))
(2) ]lR(vangQ) (Rig §2aHS(L21; /)7m)? where m(ﬂfg,fg) = (1 + (|($27€2)| -
R))¥ is the order function.

Then it follows that, by Claim 1, we have E, _#1, € S(R?_ . ;HS(L2,);m), i.e.

22,6

HEn,—#ﬁlI;(IZ:52)||HS(L9251) < m(we, &) = (1+ (|(22,&)| — R)3) 7 .

Thus by Prop. B.1, since for all £ > 0,

[+ (a2, €01 = BT dode = mR? + O(R™0-22) — O(R),

we get ||En7_fl2/||HS(L2(R:C2;L2(R$1;((;4));,;2(&2;@2)) < Ch~'?R and the Lemma is proved. O
Lemma B.3. Let E, _, E, ., E, 1 be as in (4.16). For Imz # 0, both operators
iy B E;\E, 1l and 1y B, _E, E; 41y

are trace class as bounded linear operators L(L*(Ry,; L*(R,,; CY))) and L(L*(R,,; C?)), re-
spectively.
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Proof. By Lemma B.2, the fact that il;VEm_F is the adjoint of Em_ilg/ and boundedness of
E, 1 from (4.19), we have
- - CR? - _ CR?
Toy (1 By BV E, ) < ———— and Tro(1) B, B, E;LT0) < o —.
’ hz|Im z| ’ hz|Im z|
O

The second proposition allows us to change the position of E, _ in the averaging and
limiting process in the proof of Lemma 4.8.

Lemma B.4. Let E,, _,E, ,E, + be as in (4.16), then

— W 1 W
Trreeeicny(1y Ent By LEn1y) — Triam, o0 (Ig En—En B 4 1R ) <

Proof. Since Tr(AB) = Tr(BA) when AB and BA are both of trace class.
Try(y Bu By LB ) = Tro(1y By By B, L1 )
= Tro(Eo (I V' Eu s By k) = Tro(I)* BB o By L)
~Tr, [(Em_flg/ - ﬂgEny_)ﬁ;VEwE;;] 4Ty [ﬁZ(En,_iZ — Ay E, B, B
=Tty [ (B, Ul T By Bk | + T T3 (B, Tl B B L
=:Try(A1) + Tra(As)
where [E, _, 1g]w = Em_]ng/ - Tl};VEn’_. Then the following claim completes the proof.

Claim 3. For Imz # 0, Ay, Ay are trace class operators and there is a C > 0 such that

Try(Ay), Tra(Ap) < Ch™ 1 Im z]_?’/zR?’/Q.

Proof of Claim 5. From Lemma B.2, we already know
I[En— Irlw llusw < Ch™'2R,

where HSY = HS(L?(R,,; L*(R,,; C*)); L*(R,,; C?)). We will improve the upper bound from
Ch™'?R to Ch™'?R"/2,

Let X% = 1 — Xrg, fl; = 1 — 1. First notice that from the proof of Lemma B.2, and
replacing xr by X%, we have

1[En-: Ll (@2, &)l < rreerasgnsr 2nd B Lo (@e: &2)llus < mrmaimr

where [E, _, 1g], (22, &) = Em_#ilf2 — 1g#E, _ is the symbol in (23, &) of [E, _, 1]y and
HS = HS(L?(R,,; C*); C?). Since [E, _, 1g]y = —[E, —, 13w, we have

[En— Dglw(w2, &) lus < Cull + ||(z2, &) — BRI .
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Thus by Prop. B.1 and a straightforward computation of the following integral

1 R

/2 [1 + ||(£L’2,§2)| - R|]_2kd$2d§2 = (2]{3 _ 2)(2k — 1) + 2k — 1 B

O(R)7

széz

we find that ||[E,_, 1z]w|gsw < Ch™Y2RY2. Since TIZ/EWF is the adjoint of En,,flg, this
yields that
Tr(A,) < Ch™32R¥? Tr(Ay) < Ch™®*R3/2.

O

In next Lemma, we state the averaging property of periodic symbols to reduce the regu-
larized trace to a fundamental cell.

Lemma B.5. Let E,, _, E, 1, E, 1, 1 be as in (4.16). Then

1

) 1 _ L
lim — Tr(cz(]lR#azEn,i#Eni#]lR) dxy déy = E

R—o0 4R2 R2

/ ai.fTrCQ (azEn,:t#Egli) d.TQ de
E
The proof of this Lemma can be found in [W95, Prop.3].
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