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Abstract—The advancement of satellite-based quantum net-
works shows promise in transforming global communication
infrastructure by establishing a secure and reliable quantum
Internet. These networks use optical signals from satellites to
ground stations to distribute high-fidelity quantum entanglements
over long distances, overcoming the limitations of traditional
terrestrial systems. However, the complexity of satellite-based
entanglement distribution and terrestrial quantum swapping in
the integrated network requires joint optimization with satellite
assignment, resource allocation, and path selection. To address
this challenge, we introduce a hybrid quantum-classical algorithm
to solve the optimization problem by leveraging the strengths of
both quantum and classical computing. The original problem
is decomposed into a master problem and several subproblems
using Dantzig-Wolfe decomposition and linearization techniques.
Through experiments, this study demonstrates the effectiveness
and reliability of the proposed methods in optimizing large-scale
networks and managing qubit usage compared to the classical
optimization techniques. The findings provide valuable insights
for designing and implementing satellite-based entanglement
distribution in quantum networks, paving the way for a secure
global quantum communication infrastructure.

Index Terms—Entanglement distribution, quantum swap-
ping, quantum networks, hybrid quantum-classical optimization,
space-terrestrial integrated network

I. INTRODUCTION

UANTUM entanglement distribution has the potential to

revolutionize fields such as quantum secure communi-
cation [1], quantum key distribution (QKD) [2], and quantum
teleportation (QT) [3]. However, it has been a challenge to dis-
tribute quantum entanglement in the development of quantum
networks. Ground-based methods have faced limitations and
drawbacks that hinder their effectiveness. These limitations
include susceptibility to environmental disturbances such as
atmospheric interference and fiber attenuation, which can
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Fig. 1. The overall satellite-based entanglement distribution and terrestrial
quantum swapping architecture.

degrade the fidelity of entangled states and limit the achievable
distances for entanglement distribution. Moreover, ground-
based systems are also vulnerable to eavesdropping, posing
a significant security risk for quantum communication.

In recent years, there has been increasing interest in uti-
lizing satellite-based quantum entanglement distribution as
an alternative approach, as depicted in Fig. 1. This method
offers several advantages over ground-based techniques by
leveraging space-based platforms. Satellite-based distribution
can overcome environmental factors that typically degrade
entanglement fidelity on the ground, enabling the establish-
ment of long-distance entangled links with enhanced fidelity
and security. Furthermore, the ability to distribute entangled
states from space enables global coverage, overcoming the
geographical limitations of ground-based systems. The archi-
tecture of a satellite-based quantum network typically involves
deploying quantum-enabled satellites equipped with entangled
photon sources and communication modules, serving as relay
nodes to distribute entangled states between ground stations
equipped with photon receivers, thereby creating a global-scale
quantum network. This satellite-based infrastructure facilitates
the establishment of quantum links between geographically
distant locations, enabling secure communication and quantum
key distribution on a global scale [4]-[6].

Despite the promising potential of satellite-based quantum
entanglement distribution, previous studies [7]-[9] have en-
countered several limitations and challenges. For instance,
Khatri et al. [7] extensively investigated the double down-
link architecture for a satellite constellation in polar orbits,



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, MAY 20XX

aiming to optimize entanglement distribution rates between
ground stations by reducing the number of deployed satellites.
However, their approach which is based on a heuristic greedy
algorithm, overlooked certain resource constraints in the prob-
lem formulation, such as the number of transmitters and
receivers. Similarly, Panigrahy et al. [8] considered resource
constraints at satellites and ground stations but efficiently
solved the problem only for specific scenarios by transforming
it into maximum weight independent set or maximum weight
bipartite matching problems. Therefore, a more versatile ap-
proach is necessary, such as incorporating terrestrial quantum
swapping to support satellite-based quantum entanglement
distribution scenarios.

Given the limited resources in satellite-based quantum
networks, including the number of transmitters per satellite,
photon sources, and receivers at ground stations, it is cru-
cial to allocate network resources and schedule transmis-
sions efficiently. This optimization is essential for enhancing
network performance while considering the specific satellite
constellation and ground station configurations. In this study,
we explore a scenario involving joint satellite assignment,
resource allocation, and path selection to establish quantum
entanglements for ground stations using satellite-based entan-
glement distribution and terrestrial quantum swapping within
the space-terrestrial integrated network (STIN). By integrating
terrestrial quantum swapping into satellite-based distribution,
more traffic ground station pairs can be accommodated, lead-
ing to improved quantum entanglement for various quantum
applications. We introduce a joint optimization model and
a novel hybrid quantum-classical Dantzig-Wolfe (HQCDW)
decomposition technique, combining the strengths of quan-
tum and classical computing to effectively manage network
resources in a large-scale setting. Our proposed methodologies
aim to address the limitations of existing approaches and tackle
the challenges associated with satellite-based entanglement
distribution and quantum communication, with the ultimate
goal of enabling global-scale quantum communication and
computation, thereby unlocking the full potential of quantum
technologies for secure and efficient information processing.

To sum up, the contributions of this paper are as follows.

o We explore a scenario of distributing entanglement via
both satellites and terrestrial quantum swapping to co-
operatively generate entanglement for pairs of traffic
ground stations. We formulate a joint satellite assignment,
resource allocation, and path selection problem modeled
as integer non-linear programming (INLP), to maximize
the overall utility of all traffic ground station pairs.

« We propose a novel hybrid quantum-classical Dantzig-
Wolfe decomposition algorithm (HQCDW) by leveraging
the advantage of both quantum and classical computing
to solve the complex INLP problem. The original opti-
mization problem is decomposed into a master problem
that is solved in a classical computer and several subprob-
lems that are processed in a quantum annealer. Several
linearization strategies are proposed to handle the qubit
limitation for different network scales.

« We conduct extensive simulations using the commer-
cial quantum annealer to evaluate our proposed algo-

rithms. Numerous experiments have demonstrated that
our proposed HQCDW can handle more complex network
settings compared to the non-decomposed manner, and
achieve the same result as the classical schemes but with
shorter solver accessing time, which demonstrates the
quantum advantage.

The remainder of this paper is structured as follows. Sec-
tion II reviews related work. Section III introduces our system
model and the joint optimization problem is formulated in
Section IV. Section V presents our proposed methodologies
HQCDW and several linearization strategies. Evaluations of
the proposed method are provided in Section VI and Sec-
tion VII concludes the paper with possible future directions.
A preliminary version of this paper appears as [10].

II. RELATED WORK

Entanglement Distribution: A long-standing subject of
Yin et al. [11] is to transfer a quantum state over arbitrary
distances. Being of fundamental interest, the result represented
a significant step towards a global quantum network. Yin et al.
[4] demonstrated the satellite-based distribution of entangled
photon pairs to two locations separated by 1203 kilometers
on Earth. Wang et al. [5] explored using orbital angular mo-
mentum (OAM) for satellite-based entanglement distribution,
showing potential for improved loss-distance scaling. Yin et
al. [6] demonstrated entanglement-based QKD between two
ground stations separated by 1,120 kilometers at a finite secret-
key rate of 0.12 bits per second, without the need for trusted
relays. Khatri et al. [7] proposed a global-scale quantum
Internet consisting of a constellation of orbiting satellites that
provides a continuous, on-demand entanglement distribution
service to ground stations. Following a similar scenario, Pani-
grahy et al. [8] solved it efficiently for some special cases.
Wei et al. [9] further proposed a few solutions for more
different cases. Liorni et al. [12] proposed to combine quantum
repeaters and satellite-based links, into a scheme that allows
achieving entanglement distribution over global distances with
a small number of intermediate untrusted nodes. Gonzalez-
Raya et al. [13] studied the effects of atmospheric turbulence
in continuous-variable entanglement distribution and quantum
teleportation in the optical regime between a ground station
and a satellite. Chang et al. [14] defined a system model that
considers both satellite movement over time and inter-satellite
links. Previous research has largely focused on verifying
the possibility of satellite-based entanglement without taking
into account practical resource limitations or addressing only
special cases. Additionally, terrestrial quantum swapping has
been overlooked in previous studies. Our work, however,
takes into consideration a broader range of scenarios and
specific resource constraints and introduces terrestrial quantum
swapping when distributing entanglement via satellite.

Quantum Computing for Optimization: Quantum com-
puting (QC) has been proven to be superior to solving many
challenging computationally intensive problems [15]-[19]. For
example, Jeong et al. [15] introduced quantum-inspired binary
particle swarm optimization (QBPSO), combining conven-
tional BPSO with quantum computing principles. Glover et
al. [16] discussed the features of the quadratic unconstrained
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binary optimization (QUBO) model, highlighting its broad
applications in optimization. Ajagekar et al. [17] explored
quantum computing applications in energy systems optimiza-
tion and addressed associated challenges. Borders et al. [18]
demonstrated integer factorization as an example of problems
addressed by adiabatic and gated quantum computing. Tilly
et al. [19] aimed to provide an overview of the progress
made on various parts of the algorithm. Recently, a hybrid
quantum-classical (HQC) computing framework has been de-
veloped to solve complex optimization problems using both
quantum and classical computers, as the current state of
quantum computers is limited by availability and cost. Such
hybrid quantum optimization has been applied in different
areas including machine learning, mobile computing, network
communication, and task scheduling [20]-[28]. For instance,
Tran et al. [20] first introduced an HQC approach for solving
the complete tree search problem, while Ajagekar e al. [24]
proposed HQC-based optimization techniques for large-scale
scheduling problems. Similarly, both [23] and [25] developed
HQC algorithms using Benders’ decomposition techniques to
solve mixed integer linear programming (MILP) problems.
Such a method has been applied in distributed learning [27],
[29]. Zhao et al. [26] further employed a quantum approximate
optimization algorithm (QAOA) to assist in solving the mas-
ter problem within the Benders’ decomposition framework.
Paterakis [22] also provided an HQC optimization algorithm
for unit commitment problems and introduced a method for
controlling the size of the master problem through various
cut selection criteria. Similar to previous studies, our works
also utilize the HQC computing framework but leverage the
Dantzig-Wolfe (DW) decomposition technique based on the
nature of our formulated problem.

ITII. SYSTEM MODEL
A. Space-Terrestrial Integrated Network (STIN)

We consider a STIN that consists of |M]| satellites (SAT),
|N| ground stations (GS), and total |O| ground station pairs
(GSP) as shown in Fig. 1, where M = {1,--- ,|M]|} indexed
by i, N = {1,---,|N|} indexed by k, O = {1,---,|0O|}
indexed by j. We also define O’ C O as the traffic GSP
set that needs to generate the entanglement link. In addition,
let O C O be the GSP set of GS k. We consider the
polar satellite constellation and assume that each satellite has
a quantum memory that can store at most sm; entangled
photon pairs. Each satellite is also equipped with ¢r; trans-
mitters that can transmit entangled photon pairs to multiple
GSPs. Let sm = {smi,sma,---,smp} be the quantum
memory set of all satellites and we can find the maximal one
S$Mypar = max{sm;,Vi € M}. Each GS also has a quantum
memory gmy for any quantum application such as QKD or
QT. Additionally, each GS owns 77} receivers to receive the
photon from the satellite or generate the entanglement link
from other GSs by using quantum swapping. We also define
an elevation angle threshold 6. for any satellite and GSP.
The entangled photon can be successfully received at the GS
as long as the elevation angle between the satellite and the
horizon at the GS exceeds this threshold.

satelliteorbit .-~~~
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Fig. 2. An example of the space-to-ground transmittance between one SAT
and two GSs for the entanglement distribution to this GSP.

B. Loss and Noise Model

The successful distribution of entangled photons through
satellite links heavily relies on photonic sources that produce
entangled pairs and free-space optical communication strate-
gies. The positioning and organization of these sources, links,
and related hardware are dictated by the selected quantum link
configuration of the user(s).

In a STIN, there are typically multiple quantum commu-
nication paths as illustrated in [13], such as downlink and
uplink channels, between a ground station and a satellite,
either directly or through an intermediate station. Moreover,
there may be lateral paths between two ground stations or
two satellites. This work mainly focuses on the dual down-
link architecture for photonic entanglement distribution with
spontaneous parametric down-conversion (SPDC) [30]. Free-
space optical transmission is a crucial aspect to consider in
analyzing such links. Therefore, we take into account the
optical channel’s characteristics, including transmission loss
and noise. The transmission of photons from satellites to
ground stations can be effectively modeled using a bosonic
pure-loss channel with transmittance. Based on previous works
[7], [8], the space-to-ground transmittance 7)., between SAT
i and GS k consists of two parts: the free—spaée transmittance

77{ + and the atmospheric transmittance 7™, and can be
defined as below
mif =l M

Here, nlf_ % depends on the orbital parameters, such as altitude
and zenith angle, while n®/™ depends on the atmospheric
conditions, e.g., turbulence and weather conditions. As shown
in Fig. 2, let [;; be the distance length between SAT ¢
and GS k, and h;; be the distance height between GS
k and atmospheric boundary when connected to SAT i. In
our analysis, we take into account the circular apertures of
diameter d! and dI? for the transmitter and receiver telescopes
at SAT ¢ and GS k, respectively. These telescopes operate at
a specific wavelength . Hence, the free-space transmittance
and the atmospheric transmittance can be calculated by

T]fs — (W(d?/2)2)(ﬂ(dkR/2)2) nqtm — e*dhi,k (2)
i,k ()\li,k:)Q ’ i,k s
where & is the atmospheric extinction coefficient.

Next, we examine the transmission of photons in the
presence of background photons. Let ny be the number of
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background photons received by GS k and F{, be the initial
fidelity of the entangled photon pair. We consider an initially
imperfect Bell state under the high-loss low-noise regime with
the assumption that 0%, = n;%, = n;% and 7y, = ng, = n;.
Therefore, the fidelity of entangled photon pair after transmis-
sion can be approximated by

3 (1 + (;f(’njl),z> f O kys Ok, > Oc, (K1, k2) € 4,

n )

Fij:

0, otherwise.

3)
C. Terrestrial Quantum Swapping

An intermediate GS, equipped with quantum memories
entangled with memories on two remote GSs, is used to
perform entanglement swapping. The successful execution of
this process creates an extended entanglement “link” between
the remote GSs. The probability of a successful entanglement
swapping is represented by ps, while the probability of failure
is denoted by 1 — ps. If the process fails, the two Bell
pairs involved are discarded. We consider a perfect quantum
swapping and two depolarized Bell states (Werner states) will
be swapped to a new Werner state. Then the fidelities of the
new states after swapping are defined below [31]-[33]

(17F1)3(17F2)7 @

where F) and Fy are the fidelities of two entanglement links,
respectively. Note that by considering terrestrial quantum
swapping, our entanglement distribution can serve more GSPs
(even serving some GSPs which cannot be served by any SAT
directly due to either visibility or fidelity issues).

Esw :F1F2+

IV. PROBLEM FORMULATION

The goal of this paper is to solve a joint satellite assignment,
resource allocation, and path selection problem for entangle-
ment distribution in STIN. In this problem, each satellite acts
as an entangled photon source (EPS) and distributes entangled
photon pairs to the GSP. The objective is to maximize the
overall utility of all traffic GSPs by optimally assigning the
satellites and allocating photon resources to the GSP when a
satellite is visible to both GSs within the same GSP.

In cases where no satellite is visible to the GSP, we explore
ground-based quantum swapping using the entanglement links
generated by satellite-based entanglement distribution. More-
over, we need to determine the optimal path selection for the
remaining GSPs. As shown in Fig. 3, given all GSPs, we need
to generate an entanglement link for each traffic GSP j € O’
by using either the satellite-based entanglement distribution
or terrestrial quantum swapping. Based on the fidelity calcu-
lation in Section III-C, we can predict which satellite can be
assigned to which GSP and form an entanglement distribution
graph (Fig. 3(b)) with both satellite-based assignment (line-dot
edges) and quantum swapping (line-dot-dot edges).

Specifically, we are interested in two-hop quantum swap-
ping and denote P as all two-hop paths from the graph indexed
by p. Let R°? = {j1,j2} be the GSP set in path p for GSP
j, and R;‘fjt = {i1,i2} be the related satellite set in path p
for GSP j. Moreover, let P, C P be the path set of GS k,

P; C P be the path set of GSP j, and P; C P be the path
set of SAT 4. Denote w; ; as the weight or utility associated
with the assignment of SAT ¢ to GSP j and w,, ; as the utility
associated with the selection of path p for GSP j. We also
assume that each satellite can generate at most sm; entangled
photon pairs.

Decision Variables. Let x; ; be a binary variable to indicate
whether satellite ¢ (¢ € M) is assigned to GSP j (5 € O) and
¥,; be an integer variable ranging from 0 to s1myq4 to indicate
the entangled photon pair allocation between satellite ¢ and
GSP j. Denote z, ; by a binary variable to indicate whether
path p (p € P) is selected for GSP j for quantum swapping.
We also define §J,; as an integer variable ranging from 0
to SMunq, to indicate the entangled photon pair allocation
for GSP j using the path p. For any GSP j € O, if it
can be served by the satellite, then we need to determine
which satellite is optimal and allocate appropriate resources
to this GSP j. The utility for this case can be defined as
U, = Zjeo, > iem Wi iTiyi . If no satellite can serve
the GSP j, then we consider the two-hop quantum swapping
by leveraging other available GSPs. Therefore, we need to
determine which path is optimal and also allocate appropriate
resources to the two GSPs in this path. Then, the utility for
this case can be defined as Uz = 3 ;cor X2 e p; Wp,i2p.iUp.j-

Thus, the joint satellite assignment, resource allocation, and
path selection problem is formulated as follows

Jhax, Z Z Wi jT5,5Yi,5 + Z Wp,j2p,Yp,j ®)
JjeEO’ \ieM pEP;
S.t. Z ZTi 4 + Z Zp,j < ].7 V] c O/7 (5a)
ieM pEP;
S>> @<, VEEN, (5b)
€M jEO
> wig<tri, VieM, (5¢)
jeo
DD gt ) D D wgles < gmuVk,
i€EM jEO J€O’ jeo,, pEP;
(5d)
> @igyig+ Y 2pilny) < smi, Vi€ M,
Jjeo’ peP;
(5e)
g Yo D> wep)=0=wij) -2,V
PEP; J'€RIP i’ e Ry ieM
(5D
S wij(Fij—F™ 4+ > 2 i(Fpy — F™) >0,V
€M pEP;
(52)
T4 j,%p,j € {Oa l}a yi,jvyp,j € {O, T 75mmax}-
(5h)

Here, constraint (5a) ensures that each GSP j € O’ only
connects to one satellite or only selects one swapping path if
the satellite assignment is not available. Constraint (5b) means
that a GS k£ can be part of multiple GSPs and thus is not
allowed to be allocated to more than rry, satellites. Constraint



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, MAY 20XX

GSky GS ky
“ g‘//\‘\ .
GSP j; . GSP j, SATi, 7y " SAT iy
\ ! N
GS ky \ GSks GSk, - / N, GSks
pe Gsb.\/‘ / -
@ . 9 o -i—-—— O
- \ ,/‘) \ SAT i, .- \f
s A : sati,
G s T J cnr s \\ /7 - 4,
GSPJs =7 A GSPJj6 st i, \ 3, - /
RS - L/ . SAT i o/
- ) ‘
Gsk, O _._._._. £ GSks Gsk, O O 6sks

(b) satellite-based assignment and

a) traffic ground station pairs . .
@ Ic grou fon pal terrestrial quantum swapping

Fig. 3. Graph models of satellite-based entanglement distribution in the
network of Fig. 1: (a) six traffic ground station pairs (blue lines) need quantum
entanglement links in this GS graph; (b) a graph with all possible satellite-
based assignment (line-dot) and terrestrial quantum swapping (line-dot-dot)
for six traffic GSPs. Different colors denote different SAT candidates.

(5¢) ensures that SAT ¢ does not get allocated to more than
tr; GSPs. Constraint (5d) makes sure that the total entangled
photon received from different satellites cannot exceed the
maximal quantum memory of GS k. Constraint (5e) guarantees
that the total entangled photon pair allocation fraction of SAT
1 cannot exceed sm;. Constraint (5f) emphasizes that if a
swapping path is selected, then two entanglement links along
this path must be established based on the satellite assignment.
Constraint (5g) confirms that the fidelity of entanglement
links after transmitting or swapping is larger than the fidelity
threshold. It is difficult to obtain the optimal solution to the
optimization problem since this is a quadratic constrained
quadratic discrete optimization problem, which is NP-hard
and challenging to solve with classical computing when the
problem scale increases. Note that our problem is much harder
and more general than the one in [8]. Their problem is a
special case of our problem (by removing quantum swapping,
entangled pair allocation, and quantum memory capacity).

V. QUANTUM-ASSISTED ALGORITHMS

To tackle the complex optimization in our formulated
entanglement distribution problem, we now leverage recent
advanced QC to design two quantum-assisted algorithms. We
first show how to convert the problem into QUBO format
so that it can be solved by quantum annealer directly. Then,
we introduce Dantzig-Wolfe decomposition technique [28] to
break the original problem into smaller-scale problems, so that
a hybrid quantum-classical solution (HQCDW) can be used to
solve the optimization more efficiently.

A. Quadratic Unconstrained Binary Formulation

Inspired by the superiority of quantum annealing (QA)
in solving large-scale complex optimization problems, we
leverage QA to obtain the optimal solution for our joint
satellite-based entanglement distribution and terrestrial quan-
tum swapping problem in quantum networks.

To effectively solve optimization problems using the quan-
tum annealer, these problems need to be formulated as an
Ising model or a QUBO model. In a QUBO problem, there
is typically a set of binary variables represented by vector
x and an upper-diagonal matrix denoted as Q, which is an

N’ x N’ matrix with upper-triangular properties. The objective
of QUBO is to minimize the following function:

f(x) = Z Q, xi + ZQi,inXj7 (6)
i i<j
where Q;; is the diagonal terms with linear coefficients
and Q; ; is the nonzero off-diagonal terms with quadratic
coefficients. Furthermore, (6) can be expressed as a general
form defined below
min
x€{0,1} N’

x' Qx. (7

Note that problem (5) is a quadratic problem and all integer
variables y, § can be expressed as a vector of binary variables.
Hence, problem (5) can further represent the quadratic binary
optimization problem. Next, we need to deal with all con-
straints to convert the problem into the pure QUBO form. To
do so, we introduce a penalty for each constraint. The idea
behind this is to find an optimal penalty coefficient of the
constraints. Here, we leverage the binary search method to
iteratively determine the optimal penalty for each constraint.
Some constraints are converted as follows

e
(5&) = 191 . Pl(z Ti,j5 + Z Zp,g — 1+ ZQlSll)Q,
ieM pEP; =0
where I = [logy[l —min(> zi;+ > ;)]
TE e pEP;
(59) = V7:PT(= Y wi;(F;—F™)
ieM
v
- Z zp,i(Fp.j — Fh) + Z 2's7)?,
pEP; =0
where [7 = [logz[min(z x; j(F;j — F™)
OF iem
+ D 2 (Fpy = FO)IN.

pEP;

Here, P* is the predefined penalty coefficient when the cor-
responding constraint is violated. s} is a binary slack variable
and [* is the upper bound of the slack variable number.

Then, the original problem in (5) can be rewritten in the
QUBO form as follows

Irr;a;xy Z Z Wi i i Y45 + Z Wp,j2p,Up,j
jeO! \ieM peEP;
+ 1 + Yo + V3 + V4 + U5 + U6 + V7. (8)

Now, we can send the reformulated problem in (8) to
the quantum annealer to calculate the optimal solution. It is
worth noting that the quantum annealer currently has restricted
qubits and can not perform the execution when the model
scale further increases. Therefore, we apply Dantzig-Wolfe
decomposition to decompose the original problem into the
master problem and several subproblems to reduce the model
scale. In this case, the quantum annealer can solve the smaller-
scale subproblems parallelly and separately.
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B. Dantzig-Wolfe Decomposition

The DW decomposition algorithm is a method used to solve
linear programming problems that have a specific structure
(i.e., a block-angular or block-diagonal arrangement in the
constraint matrix). It employs a delayed column generation
(CG) technique to make solving large-scale linear programs
more manageable. When applied to integer linear program-
ming (ILP) problems, the DW algorithm often has most
columns (variables) outside of the basis. The basis refers to a
set of linearly independent columns from the constraint matrix
that makes up the current active solution. In this approach, a
master problem includes the currently active columns (basis),
and a subproblem or subproblems are utilized to generate
additional columns to enter the basis, thereby improving the
objective function. The difference between the CG technique
and DW decomposition is that in the CG process, a column
is added to the master problem while an extreme point or
extreme ray is added to the master problem in the DW process.
In the following, we first develop an algorithm based on full
linearization to reduce the non-linearity, and then we develop
an improved algorithm based on partial linearization.

1) Full Linearization with Two DW subproblems: Recall
that the problem in (5) is non-linear, but the DW decompo-
sition is available to solve ILP problems. Therefore, we need
to linearize the original problem first. Due to the existence of
non-linear terms x; ;v; ; and z, ;7 ; in the objective function
and constraints, we introduce additional variables to linearize
them. After full linearization, the original problem in (5) is
defined as follows

'Jhyv—gbaal};iﬂﬂﬂ J;/ gwiﬂ'@d + pg};j Wp,5Pp,5 9)
s.t.  (ba) — (5h),

bij <vyij, VieM,jel, (9a)
Gij < XijSMmaz, Vie M,jeO, (9b)
Tij+ Yij — SMaz < G55, Vie M,jeO, (9c)
opi <Upj, Vi€O,peP, (9d)
©pj < 2pjSMmaz, Vj€O',pe P, (%e)
Zp,j + Up,j — SMmaz < @p,j, VJjE O'.pe P, (91)
Vpjirg' < zpj, Vi€ O, pePyi e R, j €RIY,

%2)
Upjirg < Ty, V.0, (9h)
zpj + iy — 1< Yy, ViDL i)
Tijy 2p.js Upga e € {0,1}, C))
YisjrUp,js s Pp, € {0, $Mimaa}- (9k)

Here, ¢;; and ¢, ; are auxiliary integer variables, 1, ;i j/
is the auxiliary binary variable. Constraints (9a)-(9¢c) are the
linearization of non-linear term x; ;y; ;. Constraints (9d)-
(9f) are the linearization of non-linear term z, ;i j, while
Constraints (9g)-(91) are the linearization of non-linear term
Zp i 4. Since problem (9) and constraints are all linear, the
problem can be further expressed as a general form below

6

max h'Y (10)
st. B1X < by, (10a)
BoX = bs, (10b)

CY < b, (10c)
AX + GY < by, (10d)
X=[z,z,¢]", XeX, (10e)
Y=1[y0¢6¢, YEV, (109)

where h is the coefficient for integer variables in the objective
function. A, B, B>, C, and G are coefficients in the constraints
while by, by, bs and by are constant vectors. Let dimx =
|M| x |O| +|P| x |O] + |P] x |O| x |M| x |O] and dimy =
(IM] x [O] + |P| x [O]) x 2.

Next, we reformulate the original problem by increasing
variable constraints to reduce the number of inequality or
equality constraints. Define X and ) as

X ={Xe€{0,1}%™ . B;X < b; and BoX = by}, (11)
YV={Y € {0, 8Mmpmaz}"™ : CY < b3}. (12)

Then optimization problem (10) is reformulated as
max h'Y (13)

X,Y

s.t. AX+ GY < by, (13a)
Xed, (13b)
Ye). (13c)

Let U be the feasible region of (13). A feasible region I/ is
the set of all possible points of (13) that satisfy the problem’s
constraints:

U={X€eX YeY:AX +GY < by} (14)

Note that every polyhedron U/ can be written as the sum
of finitely many extreme points and extreme rays. Thus, we
denote its sets of extreme points with Py = {XV), Vi € T}
and Py = {Y(j),Vj € J}. Then we can express the problem
(13) as the linear combination of its extreme points:

Ty,

max Z(h Yy, (15)

v vieg J€J

st Y (AXD)u; + 3 (GYW )y <by,  (15)

€L jeET
Shwi=1, (15b)
€L
> =1, (15¢)
jeT
pi €10,1], VieT, (15d)
v;€0,1], VjeJ, (15¢)

where 1; € R and v; € R represent the weights of each
extreme point for binary and integer variables. Since Z and
J contain an exponential number of extreme points, (15)
will have an exponential number of variables compared to
(13). Consequently, we consider a restricted version (restricted
master problem) of (15) by progressively adding each new
extreme point to the subsets Z' C Z and J’' C 7, i.e.,
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h'YD)y, 16
M;I\;za‘?z’ Z,( )Vj (16)
vy vieg I€7
st > (AXD)pi + Y (GYY)y; <by,  (162)
i€’ VISNA
> =1, (16b)
i€’
> vi=1, (16¢)
jeJ’
wi €[0,1, Viel, (16d)
v €01, VjeJ. (16¢)

Furthermore, we introduce the Lagrangian relaxation and
thus the problem can be represented as

max  ohy + > (—aAXD — ) + ¢
Wi, Vi€ gy
v Vjed’ el

G)YYV) — Qv +¢, (7)

+2 (h

JjeT’!

where o € R is the row vector (dual variable) of constraint
(16a) and &, ¢ € R are Lagrangian multipliers for constraints
(16b) and (16c¢), respectively. Then the Lagrangian dual prob-
lem can be expressed as follows

m.glré abs+&6+¢ (18)
st. —aAX® —¢>0, VieT, (18a)
(h" —aG)YY) —¢ >0, VjeJ (18b)

The above optimization problem is called dual restricted
master problem. At every step t, we generate extreme points
X and Y. These extreme points are incorporated into the
master problem, necessitating the addition of new p; and v;
columns. Constraints (18a) and (18b) are called reduced cost.
Then the two pricing problems (subproblems) are given as

max —aPAX (19)
XeX

h' —a®G)Y 20

max ( a’G)Y, (20)

where a(®) is the dual variables of constraint (16a). If the
solution of (19) is larger than ¢, then we set 7/ « X,
Similarly, if the solution of (20) is larger than ¢(*), then we
set J' + Y®,

2) Partial Linearization with Two DW subproblems: We
observe that the dimension of feasible set X’ is drastically
increased with the number of SATs and GSs due to the
introduced variable . In addition, QUBO can handle the
quadratic binary term very well. Thus, based on the DW with
full linearization, we perform partial linearization where we
keep the pure binary quadratic term, i.e., ; j2, j, and only
linearize the mixed integer quadratic terms, i.e., x; ;¥; ; and

Zp.jUp,;- Then the general form of problem (10) after partial
linearization can be rewritten as

max h'Y 1)

st. B1X < by, (21a)

X"ByX = by, (21b)

CY < b, 21c¢)

AX + GY < by, (21d)

X=[zr,2", Xea, (2le)

Y=[y0¢¢, Ye, (21f)

where the dimension of X is reduced to dimyx = | M| x |O|+

[P| x |O].

The rest of the procedure after partial linearization is similar
to the one after full linearization. The only difference is that
the new feasible set X is redefined below

X ={X e {0,1}¥m : B;X < by and X ByX = by}.
(22)

Additionally, we propose the full and partial linearization
with three DW subproblems, where the detail can be found
in Appendix A and B. With the partial linearization and three
DW subproblems, the problem can be solved on a larger scale
under the limited qubits in the quantum annealer.

C. Hybrid Quantum-Classical Solution: HQCDW

In this subsection, we introduce the hybrid quantum-
classical algorithm for solving our original problem (5) using
DW decomposition. Recall that the DW process involves
solving a master problem and several subproblems iteratively.
As discussed in Section V-B, the restricted master problem is
defined as

Master: h'YD)y, 23
uig?gf Z,( )Vj ()
v vjeg’ 8T
s.t.  (16a) — (16¢).

This restricted master problem is easier to solve and can
provide initial solutions for the original master problem.
Hence, we can solve it by using a classical solver (e.g., Gurobi,
Scipy) running in the classical CPU computer. Subsequently,
two subproblems (pricing problems) are given by

Subproblem 1: max  — a®AX 24)

st. B1X <by, (24a)

B2X = b, (24b)

X € {0, 1}%mx. (24c)

Subproblem 2: max (h" —a®G)Y (25)
s.t. CY < b, (25a)

Y € {0, , $Mmaz }4™. (25b)

Here, Subproblems 1 and 2 are pure linear binary or integer
problems, which can be conveniently mapped into the QUBO
form as discussed in Section V-A, and we can solve them by
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Master Problem - ILP

Solve u, v with I'and
J' via the classical
CPU computer

No

The original
PR Dantzig-Wolfe ﬁ o)
optimization ——> g e Dual variables a® Stop criterla is
Decomposition satisfied?
problem Yes

Subproblem 1 - IP

Solve subproblem 1,
obtain X via quantum @
annealing (QA)

Add extreme
pointto /' or ]’

Subproblem 2 ||
Subproblem 1
Problem solved

Fig. 4. HQCDW framework with two subproblems for joint satellite-based
quantum entanglement distribution and terrestrial quantum swapping.

using the quantum annealer parallelly. Since the model scale of
problems (24) and (25) are smaller than the original problem
in (5), and they are all linear functions compared with the
quadratic term in the original problem in (5), we can solve a
larger-scale model compared with using pure QUBO solution.
Consequently, the proposed HQCDW algorithm iteratively
solves the restricted master problem and the pricing problems
until convergence is reached. The detailed procedure and
algorithm are shown in Fig. 4 and Algorithm 1, respectively.

In Algorithm 1, the input mainly consists of the network
parameters (e.g., satellite and GS attributes) and other loss
and noise parameters of downlink and uplink channels. The
algorithm yields the following outcomes: assignment and
allocation decisions x; j, 2, ¥i, and g, ;. The procedure
starts by extracting the coefficients of the objective function
and constraints, as well as initializing the extreme point (Lines
1 and 2). The initialized extreme points will be added to the
extreme point set (Line 3). Then, we also initialize the dual
values of the constraint (16a) as well as other parameters
(e.g., the maximal number of iterations) (Lines 4-5). In the
main loop, the algorithm computes two subproblems using
the QA machine parallelly and determines their reduced costs
(Lines 7-14). If both reduced costs are larger than 0, then the
algorithm adds the new extreme point to the corresponding
extreme point set (Lines 9 and 13). Next, the algorithm
solves the master problem using the updated extreme point
sets and then gets the related dual solution (Lines 15-17).
The algorithm terminates (i.e., stop_criteria_is_not_satisfied()
returns false) under the following conditions: (i) both reduced
costs of two subproblems is less than 0, (ii) the number of
current iteration reaches the maximal number of iterations.
Finally, we extract the required decision values and return
them. Such decisions will be used to control the STIN to
distribute the entanglement to traffic GSPs.

Three DW subproblems The solution with three DW
subproblems (HQCDW?3) is similar to the one with two DW
subproblems, but three subproblems need to be solved as
shown below

Master:  max Z (thng))l/j + Z (hQTYék))w;c
Z:jg? jeT’ ke
wi,VkeK'

(26)
s.t.  (34a) — (349).

Algorithm 1 Hybrid Quantum-Classical Dantzig-Wolfe De-

composition (HQCDW) Algorithm for Two Subproblems
Input: satellite set M, GS set N, GSP set O, quantum
memory of the ith satellite sm;, satellite transmitter tr;,
the maximal satellite quantum memory s$M,qz, quantum
memory of the kth GS gmy, GS receivers and transmitter
7}, elevation angle threshold 6., utility w; ;, wp,;, and other
loss and noise parameters.
Olltpllt: Lijs Zp,js Yij» QPJ

1: Get A,B¢,B5,C,G, by, by, bg and by

2: X(O), Y + Initialize the extreme points

37,7 «+ X0 y©

4. a0 £0) ¢(0) + Initialize the dual values

5: max_ttr < 100,t < 0, s1,52 < 0,0

6: while stop_criteria_is_not_satisfied() do

7: s1,X® « solve (24) with a(") > quantum
g if s1 > ¢ then

9: 7+ X® > add the extreme point to set 7’
10: end if

11 s2,Y® « solve (25) with a(®) > quantum
122 if 2> ¢ then

13: T YW > add the extreme point to set 7’
14: end if

15: W, v < solve (23) with X(t), Y® > classical
16: t—t+1

17: a® €@ ¢(t)  get dual solution from (23)

18: end while
190 Z; 4, Zp.j» Yi.j» Up,; < extract from 7', J’
20: return x; j, Zp i, Yij» Up,j

Subproblem 1: max  — a®AX 27

st. BX <by, (27a)

B.X = bo, (27b)

X € {0,1}%mx, (27¢)

Subproblem 2:  max (h] —a®G)Y, (28)
1

S.t. C1Y1 < bg, (28&)

Y1 €{0,- -, 8Mpaq )71, (28b)

Subproblem 3:  max (h) — aMG,)Y, (29)
2

s.it. CoYy < b4, (29a)

Yo € {0, -, $Mmaz } 72, (29b)

Furthermore, the partial linearization solution of two and
three DW subproblems are also similar, but the linear equality
constraint needs to be changed to the quadratic constraint.

VI. PERFORMANCE EVALUATION

In this section, we examine the proposed quantum-assisted
algorithms, namely the pure QUBO, HQCDW, and HQCDW?3,
through extensive simulations. These algorithms are put to the
test on a hybrid D-Wave quantum processing unit (QPU) with
around 5, 000 qubits accessed through the Leap quantum cloud
service [34]. Due to the high cost of QPU utilization and the
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developer’s time constraints, we conducted several test cases
that can be resolved in under 100 iterations. For the classical
computation component, we employed the LP solver on a
classical CPU computer equipped with an Intel(R) Core(TM)
17-6700HQ CPU running at 2.60 GHz and 16GB of RAM.

A. Experiment Setup

Network architecture. We consider a polar satellite con-
stellation as discussed in [7], [8] where there are 10 spaced
rings of satellites in polar orbits and 10 satellites are deployed
in each ring within an altitude of 2,000 km to 10,000 km. We
consider a static scenario where a few satellites are visible
to a specific ground station within a fixed time window.
Hence, other satellite constellations can be applied. For each
satellite, the quantum memory and the number of transmitters
are randomly picked from the range of [20, 100] and [6, 10],
respectively. Furthermore, we consider several long-distance
cities as GS: New York, London, Rio de Janeiro, Mumbai,
Cape Town, Beijing, Sydney, Singapore, and Vancouver, where
their location is based on real GPS coordinates. In this case,
the maximal number of GSP |O| is 36 and we randomly
pick several GSPs as traffic GSPs. For each GS, the quantum
memory and the number of receivers are randomly picked from
the range of [10, 20] and [2, 6], respectively. Hereafter, we use
the numbers of SATs and GSs used in experiments to represent
the scale of different settings. For example, 14-5 means a test
case (setting) with 14 SATs and 5 GSs.

Loss and noise parameters. For the loss and noise pa-
rameters in the transmission of photons from satellites to
GS, we set them according to previous works [7], [8]: the
atmospheric extinction coefficient « = 0.028125 and the
wavelength A = 737 nm. In addition, we set the elevation angle
threshold for any satellite and GSP 6. = 10, the transmitter
telescope diameter at satellites diT = 0.2 m, and the receiver
telescope diameter at GSs dff = 2 m.

Comparison methods. To verify the effectiveness and
advantage of our algorithms, we compare our methods (pure
QUBO, HQCDW, HQCDW?3) with the following schemes:

o Steepest Descent (SD) [34]: SD is a solver for binary
quadratic models provided by D-Wave Systems and the
best move is computed using a local minimization.

e Random Steepest Descent (RASD) [34]: RASD is the
combination of random sampling and steepest decent,
where the algorithm performs a random sampling and
a feasible result will be the input of initial states of SD.

o Classical Optimizer (COPT): COPT solves the original
problem (5) by using a classical optimizer (e.g., Gurobi,
Scipy) in a classical CPU computer.

e Classical DW Decomposition (CDWD): CDWD decou-
ples the original problem by using DW decomposition
and solves the master problem as well as all subproblems
by leveraging a classical optimizer.

B. Experiment Results and Analysis

1) Performance of Number of Samples: In this part, we
explore how the number of samples affects the performance
of a quantum annealer in solving a problem. The number
of samples represents the output solutions from the quantum

annealer. The results, depicted in Fig. 5(a), compare the
algorithms COPT and various QUBO variants with different
sample numbers (1, 20, 50, 100, and 200) under different
network settings. Across network settings, COPT consistently
yields higher QUBO objective values compared to all QUBO
variations. As the network complexity increases, QUBO with
more samples shows higher QUBO objective values, with
QUBO-200 achieving the highest values, followed by QUBO-
100. QUBO-1 consistently produces the lowest values, indicat-
ing that a single sample is insufficient for good optimization
results. The trend holds across all network settings, with
QUBO approaching COPT’s performance with a sufficient
number of samples (usually 200 or more).

2) Performance in Objective Value: We proceed by com-
paring the performance of all methods based on the objective
value. Initially, we present the objective value under various
network settings using full linearization. Furthermore, for a
fair comparison in terms of the quantum computation aspect
for QUBO and HQCDW, we set the number of samples to
200. The results are depicted in Fig. 5(b). Firstly, SD and
RASD exhibit the poorest performance across all network
settings compared to the other four methods, possibly due to
the SD method becoming trapped in local optima. Secondly,
COPT, CDWD, QUBO-200, and HQCDW-200 achieve similar
results across most network settings, except for settings 13-
5 and 14-5. However, as the problem scale exceeds setting
12-5, QUBO-200 struggles to provide a solution due to the
limited number of qubits in the quantum annealer. In contrast,
HQCDW-200 can continue solving problems up to setting 14-
5. This observation underscores the efficiency and robustness
of leveraging the DW decomposition to decouple the original
problem for handling larger network scales.

We then present the objective value under different network
settings with three DW subproblems using partial linearization.
In this case, the problem scale is increased up to setting
16-6 and we compare four DW decomposition variants, i.e.,
CDWD, CDWD3, HQCDW-200, and HQCDW3-200. CDWD
and HQCDW-200 decompose the original problem into two
subproblems, while CDWD3 and HQCDW3-200 decompose
the original problem into three subproblems. The result can
be found in Fig. 5(c). Similarly, SD and RASD get the worst
performance among all network settings but can solve the
problem scale up to 16-6. When the problem scale is beyond
setting 14-5, HQCDW-200 cannot solve the problem due to
the qubit limitation in solving the master problem. How-
ever, CDWD, CDWD3, and HQCDW3-200 can continue to
solve the problem, which shows the advance of decomposing
the original problem into more subproblems within reason.
The performance difference between CDWD, CDWD3, and
HQCDW3-200 lies in the solver accessing time which will be
discussed later.

3) Performance in Solver Accessing Time: In this part, we
investigate the performance of our proposed methods regarding
the solver accessing time. The solver accessing time refers to
the actual time taken by the QPU solver and local solver,
excluding other overheads such as variable setting time and
parameter transmission time. Initially, we compare the solver
accessing time under various network settings for COPT
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and different numbers of QUBO sampling, as depicted in
Fig. 6(a). We can find that COPT shows a gradual increase
in solver accessing time as the network setting changes from
5-4 to 12-5. QUBO-1 and QUBO-20 remain fairly consistent
across different network settings, having the lowest solver
accessing times. QUBO-50, QUBO-100, and QUBO-200 show
an increasing trend in solver accessing time as the complexity
of network settings increases, with QUBO-200 having the
highest solver accessing time in each configuration. Although
QUBO-200 has the highest solver accessing time, the QUBO
objective value is the best among all other QUBO variants as
shown in Fig. 5(a). Furthermore, COPT appears to outperform
all QUBO variants when the problem scale is small. However,
it is anticipated that the solver accessing time of COPT will

Network...Setting...(B&S)

(a) solver accessing time

Network...Setting...(B&S)
(b) QPU sampling time

Fig. 9. (a) The solver accessing time under different network settings for
CDWD3-PL and different numbers of HQCDW3 sampling using partial
linearization. (b) The QPU sampling time under different network settings
for different numbers of HQCDW3 sampling using partial linearization.

increase significantly based on the complexity of the network
setting. We further look into the specific QPU sampling time
for all QUBO variants, as illustrated in Fig. 6(b). The QPU
sampling time represents the total time taken to read a batch
of samples from the QPU, excluding variable encoding. We
observe that the overall QPU sampling time trend of all QUBO
variants aligns with the solver accessing time trend but at
a lower level. Furthermore, we find that all QUBO variants,
except for QUBO-200, outperform the baseline (i.e., COPT).

We then analyze the solver accessing time across various
network settings for CDWD-L, CDWD-PL, and different
numbers of HQCDW sampling using partial linearization. The
detailed comparison is presented in Fig. 7(a). Notably, CDWD-
L with full linearization exhibits a significant increase in solver
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accessing time as the network setting progresses from 5-4 to
14-5. Particularly for network settings beyond 11-5, the solver
accessing time of CDWD-L surpasses that of HQCDW-200.
Conversely, CDWD-PL with partial linearization demonstrates
a gradual increase, while all HQCDW variants maintain con-
sistency across different network settings. Furthermore, the
problem can be solved up to 14-5, compared to 12-5 without
leveraging the DW decomposition. A similar trend is observed
for the QPU sampling time, as depicted in Fig. 7(b). This
observation not only underscores the benefits of employing
partial linearization to address the master problem’s bottleneck
but also subtly highlights the advantages of using the DW
decomposition to overcome the constraints imposed by the
maximum number of qubits in the quantum machine.

Next, we further demonstrate the performance of using three
DW subproblems under full and partial linearization. Fig.8
shows the solver accessing time and QPU sampling time for
CDWD3-L with full linearization and all HQCDW3 variants
with partial linearization, while the partial linearization results
of CDWD3-PL is illustrated in Fig.9. It can be seen in
Fig.8 that CDWD3-L shows a significant increase in solver
accessing time as the network setting changes from 12-5 to
16-6 compared to all HQCDW3 variants with a consistent
time. This result further proves the efficiency and robustness of
leveraging quantum annealing to solve the subproblems. Fig.9
demonstrates a similar trend as shown in Fig.7 and can solve
the problem scale up to 16-6. It also reveals the importance
of decomposing the original problem into a proper number
of subproblems based on the problem structure. In addition,
as the complexity of the network setting increases, the gap
between CDWD3-PL and HQCDW-200 becomes small. From
Fig.9(b), we are looking forward to a better performance of
hybrid quantum-classical computing in terms of the solver
accessing time and QPU sampling time.

4) Qubit Usage Comparison: We proceed to compare the
total qubit usage under different network settings for two
DW subproblems. In Table I, we present a comprehensive
comparison of the total qubit usage across various settings,
each represented as a row with size specifications such as 5-
4, 9-5, 10-5, and so on. The table columns are divided into
two main categories: Non-DW and DW. Non-DW denotes
that the original problem is not decomposed, while DW
signifies that the original problem is decomposed into two DW
subproblems. Furthermore, each category is further segmented
into subcategories: Quadratic (representing the original prob-
lem), Linear (indicating the full linearization of the original
problem), and P-Linear (denoting the partial linearization of
the original problem) for Non-DW; and Linear and P-Linear
for DW. Within these subcategories, the qubit usage is further
delineated into LQ (Logic Qubit used to represent the problem)
and RQ (Real Qubit utilized in the quantum annealer).

Firstly, we examine the impact of problem linearization on
qubit usage. Table I illustrates that the total qubit usage for
both LQ and RQ increases as the network setting grows larger.
This is logical, as larger problems require more qubits for
representation and encoding in the quantum machine. Among
the subcategories, Linear requires the most qubits, followed by
P-Linear, while Quadratic uses the fewest qubits to encode the

problem. This is because Linear fully linearizes all quadratic
terms into linear ones, necessitating the most qubits, while P-
Linear only partially linearizes some quadratic terms. Since
the quantum annealer can effectively handle quadratic terms,
Quadratic can encode the problem using the fewest qubits
compared to Linear and P-Linear. An interesting observation
is that the number of LQ and RQ is equal in Linear, while it
differs in Quadratic and P-Linear. This is because the problem
becomes purely an integer problem after full linearization,
allowing it to be formulated as a QUBO model using the
same logical qubits and real qubits. However, Quadratic and
P-Linear still contain quadratic terms that require more qubits
for encoding into the real quantum machine. Lastly, the Non-
DW approach is limited to a network setting of 12-5, as it has
utilized most of the available qubits in the quantum machine
and cannot handle problem scales beyond this network setting.

Furthermore, we analyze the impact of linearization on qubit
usage for the two DW subproblems. As depicted in Table I,
the primary distinction lies in the linearization of subproblem
X, while subproblem Y remains unchanged in Linear and
P-Linear. The qubit usage of Sub Y takes precedence in
the quantum machine, becoming the bottleneck in problem-
solving. In P-Linear, the qubit usage of Sub X is lower
than in Linear, as the quadratic term can be represented or
encoded using fewer qubits compared to full linearization,
which introduces additional integer variables. Similarly, the
number of RQ remains larger than LQ for Sub X in P-Linear.
Additionally, the DW decomposition allows us to solve larger-
scale problems up to 14-5 compared to Non-DW. However,
beyond the network setting of 14-5 (e.g., 14-6), the problem
becomes unsolvable. This is due to the significant number
of variables in the master problem, rendering it unsolvable
using a classical solver. Furthermore, the qubit usage of the
subproblem exceeds the maximum number of qubits in the
quantum machine. Overall, the experimental data demonstrates
the advantage of employing DW decomposition to solve
larger-scale problems.

Lastly, we investigate the impact of the number of de-
composed subproblems when using the DW decomposition
technique. In this part, we decompose the original problem into
three subproblems rather than two, and Table II demonstrates
the result. For the case Linear, we can observe that the
total qubit usage of Sub X stays the same as in two DW
subproblems, while the total qubit usage of Sub Y1 and Y2
is fewer than SUB Y in two DW subproblems. Nevertheless,
the solvable problem scale is also limited to 14-5 due to the
limitation of the classical solver in solving the master problem.
If the classical solver can overcome the limitation of maximal
numbers of variables, it is believed that our methods can solve
larger-scale problems. Next, we look into the performance of
the partially linearized way in three DW subproblems. We
also fully linearize subproblems Y1 and Y2, while subproblem
X keeps the quadratic terms. There is no doubt that the
total qubit usage of Sub Y1 and Y2 stays the same as in
Linear, and the number of used qubits for Sub X is fewer
than that in Linear. We then observe that the problem can be
solved up to network setting 16-6 after partially linearizing
Sub X. It can be illustrated that the linearization of Sub
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TABLE I
TOTAL QUBITS USAGE UNDER DIFFERENT NETWORK SETTINGS FOR TWO DW SUBPROBLEMS.
Non-DW DwW
Setting Quadratic Linear P-Linear Linear P-Linear
Sub X Sub Y Sub X Sub Y
LQ RQ LQ RQ LQ RQ LQ RQ ILQ RQ LQ RQ IQ RQ
5-4 336 399 670 670 614 621 100 100 570 570 44 47 570 570
9-5 1750 2083 2856 2856 2670 2709 324 324 2532 2532 138 182 2532 2532
10-5 1960 2278 3149 3149 2943 3009 359 359 2790 2790 153 189 2790 2790
11-5 2170 2490 3484 3484 3258 3310 394 394 3090 3090 168 213 3090 3090
12-5 3360 4549 5176 5176 4820 4981 568 568 4608 4608 212 360 4608 4608
13-5 - - - - - - 638 638 5058 5058 234 372 5058 5058
14-5 - - - - - - 708 708 5574 5574 256 401 5574 5574
LQ: Logic Qubit, RQ: Real Qubit, “-”: Not available.
TABLE II

TOTAL QUBITS USAGE UNDER DIFFERENT NETWORK SETTINGS FOR THREE DW SUBPROBLEMS.

Linear P-Linear

Setting Sub X Sub Y1 Sub Y2 Sub X Sub Y1 Sub Y2
LQ RQ LQ RQ LQ RQ LQ RQ LQ RQ LQ RQ
5-4 100 100 270 270 192 192 44 47 270 270 192 192
9-5 324 324 810 810 1248 1248 138 170 810 810 1248 1248
10-5 359 359 900 900 1398 1398 153 197 900 900 1398 1398
11-5 394 394 990 990 1548 1548 168 223 990 990 1548 1548
12-5 568 568 1080 1080 2712 2712 212 331 1080 1080 2712 2712
13-5 638 638 1170 1170 3024 3024 234 354 1170 1170 3024 3024
14-5 708 708 1260 1260 3336 3336 256 389 1260 1260 3336 3336
14-6 C C C C C C 352 557 1764 1764 4380 4380
15-6 C C C C C C 399 687 1890 1890 5040 5040
16-6 C C C C C C 428 692 2016 2016 5520 5520

17-6 C C C C C C 450 729 2142 2142 5814 -

LQ: Logic Qubit, RQ: Real Qubit, “-: Not available, C: Classical optimizer limited.

X dominates the total variables of the master problem and
becomes the bottleneck of solving the master problem. In
other words, if we linearize Sub X, the total variables in the
master problem increase significantly and the classical solver
may not handle it. Overall, we have observed the advantage of
using the DW decomposition technique and a proper number
of decomposed subproblems, which is beneficial to solving a
larger-scale problem compared to the method without using
the DW decomposition.

VII. CONCLUSION

This study explores the complexities of joint satellite assign-
ments, resource allocation, and path selection for entanglement
distribution in a space-terrestrial integrated network. By utiliz-
ing both satellite-based entanglement distribution and terres-
trial quantum swapping, we tackled a challenging optimization
problem. Our innovative approach, combining quantum and
classical computing through the Dantzig-Wolfe decomposition
technique, demonstrated the potential for effectively managing
large-scale network optimization tasks and optimizing qubit
utilization. Through experiments, we provided compelling
evidence of the efficiency and reliability of our methods,
showcasing a stable solver with consistent results and faster
access times compared to classical optimizers. These findings
establish a solid groundwork for future advancements.

Though our model and experiments concentrate on a par-
ticular satellite network and parameter configuration, our pro-
posed study and findings can be further extended to other
network architectures and parameters. For instance, (1) other
constellations such as the Iridium or Starlink constellations
can be considered; (2) instead of randomly selected parameters
or the simplified free-space model, more practical parameter
settings and complex channel models can be considered;
(3) we focus on solving the short-term static optimization
problem, while the long-term optimization with the satellite
dynamic can also be investigated. We leave these topics as
possible future works. In addition, we will explore distributed
quantum computing by decomposing complex problems into
smaller, more manageable subproblems. This approach will
allow us to maximize the utilization of qubits and improve
the efficiency of quantum computing systems.

APPENDIX

A. Full Linearization with Three DW Subproblems

We further find that the dimension of Y is also the bottle-
neck of solving the subproblem related to Y since decision
Y is an integer variable that needs to be encoded into a
binary variable while using quantum annealing. The larger the
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dimension of Y, the more qubits are used to encode. Hence, we
further consider a DW decomposition with three subproblems.

Following the full linearization problem (9), we reformulate
the general form (10) as follows

Jhax h{Y; +h) Y, (30)
s.t. B1X < by, (30a)
B>X = by, (30b)

C1Y;1 <b;s, (30c)

C2Y2 < by, (30d)

AX + G1Y1 + G2Y2 < bs, (30e)
X=[z,zy]", Xex, (30f)
Yi=[y4", Yied, (30g)

Yo =[,¢]", Y2€. (30h)

The new feasible set for X, Y; and Yo are rewritten below

X ={Xe€{0,1}%™ . B;X < b; and BoX = by}, (31)
Vi ={Y1 €{0, ,8Mmaz }*™1 : C1Y1 < b3}, (32)
yQ = {Y2 € {07 e vsmmaz}dimy2 . C2Y2 < b4} (33)

Similar to the case in two DW subproblems, the problem
(30) can be represented as the linear combination of its
extreme points:

max > (WY )+ Y (Y (34
5]:]’217/ jeT’ ek’
wk,VkGIC'
st Y (AXD); + 3 (G Y )+

i€’ JjeET’
> GV )wx < b, (342)
ke’
> mi=1, (34b)
€T’
Z vj =1, (34c)
jeJ’
Z wi = 1, (34d)
keK!
wi €10,1, Viel, (34e)
Vv € [0, ].], VJ S .,7/, (341)
wp €[0,1], VkeKk' (34g)

Then we applied the Lagrangian relaxation to reformulate
the problem.

max  aby+ Z(faAX(’) i+ ¢
i Vi€’ T’
v VieT’ €
wi VkeK!

+ 3 (] = aG)YY Oy +¢
JjeT’

+ Z ((h;r — aGg)Yék) — 0wk + o,
keK’

(35)

where « is the dual variable of constraint (34a), &, ¢ and
o are dual variable of constraints (34b), (34c) and (34d),
respectively. Then the related dual problem is defined as

Hgli{n abs+&{+ (40 (36)
st. —aAXW —¢>0, VieT, (36a)
(b —aG)YY) —¢>0, VieJ, (36b)

(h] — aG)Y —0 >0, VkeK. (360

At every step t in DW, at most three extreme points X,
ng ) and Yék) are generated and incorporated into the master
problem, necessitating the addition of new p;, v; and wy
columns. Then three subproblems are defined as

max —aPAX. (37)
XeX
h{ — a¥G)Y;. 38
figg M mereom o
max (hy — a¥Gy)Ys. (39)

Y1€)2

If the solution of (37) is larger than £(*), then we set T’ «
X® . Similarly, If the solution of (38) is larger than ¢(*), then
we set J' « y(t). If the solution of (39) is larger than o,
we set K' yét .

B. Fartial Linearization with Three DW Subproblems

We also consider the partial linearization for binary vari-
ables, hence the constraints (30b) and (30f) need to be rewrit-
ten as follows

Jax h{Y; +h) Y, (40)
s.t. BiX < by, (40a)
X"B,X = by, (40b)

C1Y; < bg, (40c)

C2Y2 < by, (40d)
AX+G1Y; +G2Ys < bs, (40e)
X=[z,2", XeAa, (40f)
Yi=[y,¢", Yied, (40g)

Yo =1[0,¢]", Y2€ (40h)

Then the rest of the procedure after the partial linearization
is similar to the one after full linearization with three DW
subproblems.
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